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Abstract
Data-driven techniques have significantly advanced the state-of-the-art in a wide

range of natural language processing (NLP) tasks. However, their primary strength

lies in pattern discovery within observed signals. As a result, these techniques of-

ten struggle to capture implicit knowledge–information that is implicitly assumed in

human communication and not explicitly present in textual data. Human communi-

cation is full of semantic gaps due to reliance on such implicit knowledge. Although

the importance of implicit knowledge has been widely recognized in the research

community, it still remains challenging to represent implicit knowledge for target

applications, align it with language expressions, and incorporate it into NLP systems

for high-level semantic analysis.

To achieve accurate and robust language understanding, this thesis proposes a

series of techniques to identify and operationalize implicit knowledge, demonstrat-

ing that eventuality-centric knowledge is essential for understanding language phe-

nomena across various real-world NLP application scenarios. The first part of the

thesis focuses on the use of psychological and social implicit knowledge, showing

that human basic motives underlie the sentiment expressed in customer reviews and

that knowledge about human activities enhances computational representations of

user-generated To-Do task descriptions. The thesis then argues that open-domain

conversation systems necessitate an understanding of implicit situational context,

encompassing psychological, social, and physical aspects. Empirical analyses reveal

that implicit information can benefit NLP systems, but at the same time introduces the

challenge of filtering out irrelevant information, for which potential solutions are ex-

plored. Finally, the thesis discusses implicit knowledge of the physical world, propos-

ing frame-based representations of cooking recipes to capture unspoken knowledge

about physical states, actions, and effects. Through these studies, this thesis intro-

duces novel methods for defining tasks to achieve end goals, representing and ac-

quiring implicit knowledge, and incorporating it into computational models as input

signals and predictive targets.
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Chapter 1

Introduction

It has been a common perception in the natural language processing (NLP) community that the

performance bottleneck of state-of-the-art NLP systems is, at least in part, due to a lack of compre-

hension of implicit knowledge. This thesis addresses the issue of identifying and operationalizing

implicit knowledge in order to better understand and produce natural language.

Human communication is grounded in a variety of surrounding information, including phys-

ical and psychological states. In many situations, speakers rely on shared context and knowledge

to convey meaning rather than explicitly detailing every aspect of their communicative intent.

To fully understand human language, it is crucial to comprehend implicitly assumed facts. For

example, consider the following interaction between a traveler and a station attendant at an in-

formation booth in a train station:
1

(1) Traveler : Do you know when the Windsor train leaves?

(2) Attendant: *Yes.

While a simple “Yes” (2)may be a correct response to the question (1), amore appropriate response

would include information about the time and location of the train to assist the traveler.

(3) Attendant: It’s 3:15 at gate 7.

This is because certain facts, such as the understanding that people go to train stations to take

trains and that being at the departure location at the departure time is necessary for doing so, are

implicitly understood by both. Typically, people do not explicitly mention these pieces of knowl-

edge to avoid redundancy, particularly if the information is already known or can be observed

by the conversation participants. Similarly, customer reviews of restaurants, products, and other

entities often merely describe what happened without explicitly detailing the writer’s emotions

or sentiments:

(4) Restaurant guest: Came for a lunch. It took 50 minutes for our food to all come out.

1
An example from (Allen and Perrault, 1980)
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Although the writer did not explain their mental states, we can infer that they wanted to have

lunch without waiting too long, as this is a common basic motive shared by many people. Fur-

thermore, when writing instructions such as cooking recipes, people often omit details even if

they are crucial:

(5) Heat the pan on the stove and add butter.

This sentence assumes that the reader will understand that the butter is to be moved onto the

pan, and that it will melt on the pan. Humans are able to obtain, infer, and use such implicit

information in interactions to fill in semantic gaps. A lack of such knowledge can lead to errors

and, at times, socially inappropriate output.

The significance of implicit knowledge has been widely recognized in the research commu-

nity, and in the past few decades, numerous machine-readable data repositories of world knowl-

edge have been created (Lenat, 1995; Speer et al., 2017; Tandon et al., 2014). These resources has

facilitated knowledge-based NLP techniques that can produce relevant, informative language to

the input (Yu et al., 2022). Knowledge-based methods have also been proven effective for detect-

ing topical proximity between input and output candidates in tasks like question answering and

information retrieval (Lan et al., 2021). Moreover, recent studies have shown that pre-training

on a large-scale corpus enables language models to store various types of linguistic and world

knowledge and utilize it in response to input texts (Brown et al., 2020; Chi et al., 2020; Petroni

et al., 2019; Roberts et al., 2020).

Despite the advancements in knowledge-based techniques, it still remains challenging to build

NLP systems that can perform complex language tasks in a robust, controllable and interpretable

manner. Even advanced data-driven models can make simple mistakes and be easily misled by

irrelevant noise in input (Pandia and Ettinger, 2021). In addition, it is not easy to induce required

knowledge stored within a model for a target application while avoiding the generation of un-

truthful information (Lin et al., 2022). The blackbox nature of recent mainstream neural network

models also makes it difficult to identify and rectify errors. These challenges impede the use of

NLP techniques in potential real-world applications, and researchers are actively working to find

solutions.

To achieve optimal results in applications, it is vital to ask the right question and provide

sufficient information to systems. This is challenging as the interpretation and production of

language often depend on various types of unmentioned knowledge, and the range of implicit

knowledge is extensive, making it difficult to identify and define required knowledge. Different

NLP tasks and domains require varying types of knowledge. For example, knowing that “an ele-

phant cannot fit through the doorway in typical houses.”
2
may be useful in some situations but

not in others, such as sentiment analysis. In contrast, understanding underlying intent would

be beneficial in comprehending human sentiment and could improve the performance and in-

2
An example from the DARPA Machine Common Sense project (https://www.darpa.mil/program/machine-

common-sense)
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terpretability of automatic sentiment analysis. Thus, we need to address the following research

questions: How can we define a target task? What type of knowledge is necessary? How can we

represent it, and how can we inject it into systems?

This thesis explores several approaches to appropriately define tasks for target NLP applica-

tions, represent and acquire implicit knowledge, and equip computational models with knowl-

edge. Specifically, this work focuses on the implicit knowledge centered on psychological and

physical eventualities, which has been considered to be a fundamental component for natural

language understanding (Rieger, 1976; Schank and Abelson, 1977; inter alia). The thesis presents
a series of empirical analyses that demonstrate the potential of incorporating eventuality-centric

implicit knowledge as training signals and predictive objectives to enhance NLP systems in real-

world applications.

Chapter 2 provides an overview of the key theoretical and technical topics related to the

presented work. The following chapters delve into the different aspects of implicit knowledge.

Chapter 3 proposes a task of human motive detection, which aims to understand the reasons

behind sentiments in customer reviews. This study demonstrates that connections between hu-

man motives and eventualities can be identified computationally and used for detailed sentiment

analysis. Chapter 4 addresses the challenge of representation learning for under-specified to-do

descriptions, proposing a multi-task learning approach that enables text encoders to associate

short texts with eventuality knowledge. Chapters 5 and 6 discuss the importance of situational

context in open-domain conversations. The empirical study shows that conversational systems

can benefit from the understanding of implicit context, but irrelevant contextual information can

also influence their behavior, indicating the need for filtering steps. Chapter 7 focuses on physical

knowledge, which is crucial for reasoning about the physical world. This chapter highlights the

challenges associated with procedural texts and proposes a novel computational representation

that overcomes the limitations of prior work. The outcome of this study facilitates more accu-

rate analysis of implicit knowledge with broader coverage. Overall, this thesis demonstrates the

benefits of incorporating eventuality-centric implicit knowledge to improve the performance and

interpretability of systems in various NLP applications.

Thesis Statement

The comprehension of implicit knowledge centered on psychological and physical eventuality is

beneficial in NLP tasks that necessitate a thorough understanding of human activities and pro-

cedures from both semantic and pragmatic perspectives. This type of knowledge can be utilized

to enhance the performance of machine learning models by incorporating it as training signals,

constraints, and predictive targets in an interpretable manner.

Although it is necessary for language processing systems to possess knowledge, pre-trained

language models consisting of billions of parameters can perform knowledge-intensive tasks to

some degree even without external knowledge, suggesting these models already acquire required
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knowledge through pre-training. This thesis demonstrates that implicit knowledge inside the

models can be induced for the application goal by appropriately defining tasks and providing

external signals. Nevertheless, due to the opaque nature of these complex models, their internal

logic is not clear, such as whether they ground language in world knowledge or simply reuse

patterns found in training data. Furthermore, it remains unclear when and how these models use

implicit knowledge to process language. To advance the state-of-the-art in language technolo-

gies, future research should establish systematic methods to evaluate the behavior of pre-trained

language models.

Contributions

This thesis addresses the problem of implicit knowledge acquisition and reasoning for NLP with

the following key contributions:

1. Identify the benefit of the implicit knowledge centered on psychological and physical even-

tualities in multiple real-world NLP tasks that require deep semantic analysis.

2. Provide implications for what kind of knowledge should be represented and acquired to

advance the state-of-the-art of language technologies.

3. Introduce three new tasks along with manually-curated datasets to develop and evaluate

knowledge-driven systems.

4. Propose techniques to improve system performance by incorporating implicit knowledge

as training signals and predictive targets.

5. Perform empirical analysis of state-of-the-art models from the viewpoint of psychological

and physical eventuality-centric knowledge.

4



Chapter 2

Background

This thesis is focused on knowledge that is required for understanding and generating natural

language and can be represented symbolically in a textual format. This chapter discusses its key

aspects, provides an overview of prior research, and contextualizes the chapters of this thesis

within a broader context.

2.1 Facets of Knowledge

Knowledge can be categorized based on various factors such as the subject matter, universality,

and prevalence (as illustrated in Figure 2.1). Implicit knowledge, the main focus of this thesis,

manifests in various subjects and levels of universality and is closely linked to the prevalence of

knowledge.

Subject Universality

Prevalence

What is the knowledge concerned with? To what extent does the knowledge depend on context?

How many people know the knowledge?

generally valid  valid only in limited context

common-sense, shared knowledge
 specialized knowledge, private knowledge 

Linguistic knowledge, world knowledge, …

Figure 2.1: Three facets of knowledge discussed in this chapter: subject, universality, and preva-

lence.
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Linguistic knowledge

World knowledge

Knowledge Lexical knowledge
Syntactic knowledge …

Domain knowledge

General knowledge

Medical knowledge
Engineering knowledge …

Encyclopedic fact

Common-sense - ordinary objects
- everyday human activities …

Figure 2.2: Categorization of knowledge based on subject.

2.1.1 Subject

Figure 2.2 depicts the categorization of knowledge based on subject matter. The top-level dis-

tinction can be made between linguistic knowledge and world knowledge. Linguistic knowledge

is concerned with lexicon and grammar and is crucial for comprehending the literal meaning of

language and generating well-formed language. Recent studies have shown that deep neural net-

works can capture and retain some degree of linguistic knowledge such as lexical semantics (Vulić

et al., 2020), syntactic relations (Clark et al., 2019; Hewitt and Manning, 2019), and grammatical-

ity (Linzen et al., 2016; Warstadt et al., 2020). However, possessing knowledge about lexicon and

grammar does not necessarily imply that models can comprehend the meaning of language. A

single language form can convey multiple distinct meanings, and the same meaning can be ex-

pressed in many different forms. The capacity of current state-of-the-art computational models

to comprehend such form-meaning relationships is an active area of active exploration and not

yet fully understood. Resolving this ambiguity often requires an understanding of the context or

knowledge beyond just the surface forms. To illustrate this point, consider the following exam-

ples:

(6) Pat ate it with a fork.

(7) Pat ate it with ketchup.

(8) Pat ate it with great relish.

Interpreting the meaning of these sentences, despite sharing the same syntactic structure, re-

quires relying on our world knowledge. Specifically, we must understand that “a fork” in the

first sentence is a tool used for eating, “ketchup” in the third sentence is a condiment to be eaten

together, and “great relish” in the second sentence expresses the manner of eating. Moreover, the

communicative intention of language frequently depends on the understanding of the context,

as exemplified by the various interpretations of the question “Can you drive a car?”. This ques-

tion could refer to the hearer’s qualifications and willingness to drive the speaker somewhere,

depending on the world state in which the conversation occurs.

World knowledge can be further divided into domain knowledge and general knowledge. Do-
main knowledge refers to specialized knowledge that individuals acquire through education or

training in a particular subject area, such as medical science. This type of knowledge is typically

6



shared only among a group of specialists who work in specific domains. In contrast, general

knowledge is knowledge that is acquired by almost everyone in their daily lives, in many cases,

unintentionally. For example, most people know the color of an apple from seeing it in places such

as orchards, supermarkets, books, and television. The representation and acquisition of domain

knowledge have significant practical implications (Roy and Pan, 2021; among others) as such

knowledge plays an essential role in processing language in a specific application. On the other

hand, general knowledge is important in many different domains and applications, spanning a

wide range of categories and forms. Thus, incorporating general knowledge into computational

models has been recognized as one of the major challenges in the research community (Jansen

et al., 2016; Schubert, 2015; Weikum, 2017). In this thesis, we focus primarily on implicit knowl-

edge under general knowledge. However, the methods proposed in this thesis will be applicable

to implicit domain knowledge as well.

2.1.2 Universality

Some types of information are valid and shared only within a given context. I refer to this knowl-

edge as “situational knowledge,” which encompasses information that is dependent on a particu-

lar situation. For example, the condition of the following statement depends on the location and

time in which it is spoken.

(9) It’s a bit chilly today.

In other contexts, such as different cities or different dates, the statement may not hold true. Sit-

uational knowledge is acquired through interactions and observations and is usually not retained

for an extended period. In contrast, certain statements, like the following example, are generally

accepted as true by most individuals regardless of location or time:

(10) The outside temperature is low during winter.

People accumulate such knowledge (universal knowledge, henceforth) in their memory by expe-

riencing and learning something. Effective semantic analyses of language require reasoning over

both types of knowledge, situational and universal, to derive accurate meaning.

As the aforementioned example implies, universal knowledge can be acquired by finding

general patterns in observations of the world. This idea has motivated researchers to develop

resources of universal knowledge by aggregating observations from web texts and human an-

notators (Mitchell et al., 2015; Schubert, 2002; Speer et al., 2017; Tandon et al., 2014). These

resources have facilitated NLP research that centers on universal knowledge. In contrast, sit-

uational knowledge has received less attention and is typically assumed to be implicitly provided

within unstructured input texts, with some exceptions such as knowledge-grounded dialogue

studies (Dinan et al., 2019; Moghe et al., 2018), where situational knowledge is allocated dedicated

representations. Chapter 5 and Chapter 6 explore methods to connect situational and universal

knowledge and demonstrate improved system performance in open-domain conversations.
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2.1.3 Prevalence

The prevalence of knowledge—the degree of being shared by people is the most relevant dimen-

sion to this thesis. Information that is domain-specific or highly situational is generally shared

among a limited number of people such as domain experts and conversation participants. In

contrast, information that can be easily observed (by seeing, hearing, looking up, etc.) or can be

obtained through daily activities is likely to be shared by a larger number of people. Common-

sense, a type of knowledge that everyone knows, is recognized as a fundamental element of

intelligent interactions and has attracted the attention of many researchers. (Ilievski et al., 2021;

Lenat, 1995; Sap et al., 2019; Speer et al., 2017).

While the prevalence of knowledge is influenced by its subjectmatter and universality, domain-

specific and situational knowledge can be considered common sensewithin certain groups of peo-

ple and contexts. For instance, some cooking techniques, such as separating eggwhites and yolks,

constitute specialized knowledge but are widely known among those who frequently cook. It is

crucial to note that common knowledge primarily pertains to stereotypical information about

entities and events, which most people agree upon. Such knowledge is often presupposed by
certain language expressions and implicitly assumed during communication to minimize redun-

dancy (Grice, 1975; Levinson, 1983; Prince, 1978). This particular trait poses a distinct challenge

for language technologies. This thesis will discuss methods for representing, acquiring, and rea-

soning over implicit knowledge to develop workable systems.

2.1.4 Eventuality-centric Knowledge

The main focus of this thesis is knowledge centered on eventualities (Bach, 1986), including the

world state (e.g., “this room is hot”) and dynamic change of states including unintentional process

(e.g., “the snow on the street melted”) and intentional action (e.g., “I cut carrots”). Eventualities

have specifications such as participants, time, and location and are associated with each other

semantically in temporal relations, causality, etc. The knowledge of such plays an important role

in language understanding. Distinct from eventuality-centric knowledge is knowledge pertaining

to objects and concepts. Examples of this type of knowledge include declarative statements, such

as “beer is a type of alcoholic drink and can be purchased at liquor stores” and “Pittsburgh has

many bridges.” Although not the primary interest of this thesis, this type of knowledge is also

crucial for many NLP tasks.

Numerous formal logic-based representations of events have been developed (Moore, 1984;

inter alia), but it is often challenging to apply these approaches to real-world NLP problems that

involve complex, open-ended language phenomena. In this thesis, we discuss representations

that are more closely related to less formal data structures, such as a semantic frame and script.
A semantic frame (Minsky, 1974) is a data structure that represents a stereotyped situation and

its variable attributes. is a data structure that captures a stereotypical situation and its variable
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attributes. A collection of semantic frames is linked together to describe a scene from various

viewpoints. The attributes (terminals) of each frame can be assigned default values if they are

not explicitly declared:

[...] if I say, “John kicked the ball”, you probably cannot think of a purely abstract

ball, but must imagine characteristics of a vaguely particular ball; it probably has a

certain default size, default color, default weight. [...] In any case your image lacks

the sharpness of presence because the processes that inspect and operate upon the

weakly bound default features are very likely to change, adapt, or detach them. (Min-

sky, 1974)

This process of default assignments constitutes implicit knowledge. While semantic frames can

represent a broad range of subjects not limited to eventualities, script knowledge (Schank and

Abelson, 1977) is specifically focused on stereotypical event sequences that are associated with

frequent scenarios and can be regarded as a subtype of semantic frame knowledge. Empirical

studies by Bower et al. (1979) showed that people share some level of script knowledge. Later,

researchers have shown that significant amounts of script knowledge can be extracted from large-

scale web texts (Chambers and Jurafsky, 2008) and generated with machine learning models (Sak-

aguchi et al., 2021). Nonetheless, what is lacking is research on how to operationalize eventuality-

centric knowledge in practical NLP tasks, particularly how to integrate such knowledge into

cutting-edge data-driven NLP systems.

This thesis aims to discuss the relevance of eventuality-centric knowledge to real-world NLP

tasks and show novel methods to represent, acquire, and incorporate it into NLP systems. The

focus is on two main categories of events: psychological and physical. These categories will be

discussed in more detail in the following sections.

2.1.4.1 Psychological Implicit Knowledge

Psychological knowledge pertains to all of the aspects of the way that people think they think. (Gor-
don and Hobbs, 2004) and includes both intra-personal (e.g. emotion, motive, and goal) and inter-

personal ones (e.g. speech acts and social norms). Without a proper understanding of psycholog-

ical knowledge, the behavior of NLP systems can be awkward, inefficient, and even impolite.

Research on dialogue systems is one area of NLP where psychological knowledge plays a cru-

cial role. For instance, systems must capture emotions to engage in conversation and provide

human-like responses (Rashkin et al., 2019), and desires/goals are essential to complete task-

oriented dialogues, where users communicate with machines to carry out specific tasks, such as

making a reservation (Budzianowski et al., 2018; Byrne et al., 2019). In a similar way, intelligent

assistance technologies, such as information retrieval systems, must understand user intent to

effectively satisfy their needs (Allen and Perrault, 1980). Basic human motives and needs have

been studied outside the NLP community, and psychologists have devised various models (Reiss,

2004; Talevich et al., 2017). Maslow’s hierarchy (Maslow, 1943) is arguably the most widely rec-
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ognized theory in the NLP community, which conceptualizes a hierarchical view of needs that

everyone seems to share. Some NLP studies discuss its implications for analyzing psychological

factors in language expressions (Ding and Riloff, 2018; Li and Hovy, 2017; Rashkin et al., 2018).

Recent studies have also constructed large-scale datasets for incorporating diverse types of psy-

chological knowledge into machine learning systems (Asai et al., 2018; Chaturvedi et al., 2016;

Goldberg et al., 2009; Rashkin et al., 2016; Sap et al., 2019).

While there are many practical NLP problems that could be better addressed by explicitly

modeling psychological knowledge, machines’ comprehension of this type of knowledge is still

still far below a satisfactory level. Furthermore, different application areas are likely to require

different types of psychological knowledge. This thesis discusses how psychological knowledge

can be incorporated into NLP systems in three applications: human motives as predictive tar-

gets for sentiment analysis (Chapter 3), user intent as weak-supervision for to-do management

assistance (Chapter 4).

2.1.4.2 Physical Implicit Knowledge

Physical knowledge plays a crucial role in the understanding of procedural texts, which are com-

monly used for conveying information about processes and actions in various domains, such as

science (e.g., wet lab protocols), engineering (e.g., auto repair manuals), and daily human activi-

ties (e.g., cooking recipes). However, authors of such texts often assume that certain details are

common-sense and avoid describing them. This makes it challenging for machines without the

necessary knowledge to follow instructions and perform intelligent tasks.

To address this issue computationally, adequate and accurate semantic representations of

physical phenomena must be defined. Formal physical-world representations, such as naïve

physics (Hayes, 1985) and qualitative modeling (Forbus, 1984), are widely used in research on

robotics and planning, where agents observe the world and perform actions via formal lan-

guages (Fikes and Nilsson, 1971; inter alia). However, the targets of these formal representations

are typically too narrow to cover the long-tail language phenomena encountered in real-world

NLP systems. Hence, recent applied NLP studies rely on less formal representations. Some stud-

ies capture procedural knowledge from web resources in a weakly canonicalized and structured

textual form (Chu et al., 2017; Park and Motahari Nezhad, 2018; Zhang et al., 2012), which can be

used for downstream applications such as how-to information retrieval (Yang and Nyberg, 2015)

and automatic instruction generation (Chandu et al., 2019; Kiddon et al., 2016; Paris et al., 2002).

Other studies proposed methods to parse instructions into meaning representations that orga-

nize predicates, arguments, and entity states structurally (Bosselut et al., 2018; Dalvi et al., 2018;

Kulkarni et al., 2018; Mori et al., 2014; Tandon et al., 2020). Existing knowledge resources such

as ConceptNet (Speer et al., 2017), WebChild (Tandon et al., 2014), and VerbNet (Schuler, 2005)

provide some physical common-sense information, such as quality of objects and pre-conditions

and effects of actions.
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However, it is still relatively unexplored how to leverage implicit information in procedural

texts. There is limited research on using physical implicit knowledge to parse real-world pro-

cedural texts at scale (Clark et al., 2018; Ribeiro et al., 2019; Tandon et al., 2018). Furthermore,

the accuracy and coverage of physical knowledge depend heavily on how the task is framed and

represented, which can consequently affect system performance. Chapter 7 of this thesis explores

methods for representing and incorporating physical common-sense into machines to enhance

procedural text understanding.

2.2 Representations of Language and Knowledge

This section provides an overview of the technical background relevant to the research presented

in this thesis, specifically regarding how language and knowledge are represented computation-

ally for NLP. In the early stages of AI and NLP research, the primary approach involved formal

logic representations as we reviewed in the previous sections. Recent data-driven approaches

typically represent the meaning of language using real-value vectors due to their easiness for op-

timizationwithin a framework ofmachine learning. A large part of this thesis was conducted after

2019, when Transformer-based pre-trained language models were introduced. Below, I highlight

some topics on pre-trained language models to provide technical backgrounds of this thesis.

2.2.1 Transformer-based Pre-trained Language Models (PLMs)

Pre-trained language models (PLMs) based on the Transformer architecture, a deep neural net-

work introduced by (Vaswani et al., 2017), have demonstrated significant effectiveness in gen-

erating contextual representations of texts (Qiu et al., 2020), achieving improved performance

across various NLP tasks. Generally, PLMs are built by optimizing parameters on large-scale

general-domain corpora for language modeling, which involves predicting the next or masked

token based on context. After pre-training, PLMs are fine-tuned with a task-specific module to

maximize performance on the target task. This approach has become a common practice in NLP

because of the ease of use and high representational power of the many publicly available pre-

trained models.

Pre-training for representation learning was already recognized to be effective prior to the

introduction of Transformer (Mikolov et al., 2013; Peters et al., 2018). However, compared with

previous approaches, Transformer-based PLMs have considerably high model capacity with bil-

lions of parameters and are trained on gigabytes or even terabytes of text corpora. In addition,

Transformer employs several advanced techniques such as the multi-head attention mechanism,

which has proven effective in capturing contextual dependencies in language.

Examples: Ever since the first generation of Transformer-based PLMs, namely GPT (Radford

et al., 2018) and BERT (Devlin et al., 2019), were presented, numerous extensions of these models
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have been developed for diverse languages, domains, and applications. GPT is optimized for

the causal language modeling objective, which involves predicting the next token of an input

sequence based on the past context, while BERT is optimized for predicting masked tokens and

next sentences based on input token sequences (i.e., the masked language modeling objective).

Notable among existing causal language models is GPT-3 (Brown et al., 2020), a PLM with 175

billion parameters trained on 45TB of text. It has been reported that GPT-3 can perform various

tasks with a few-shot or even zero-shot manner. Masked language models have been extended

with different learning objectives and data, resulting in improved models such as RoBERTa (Liu

et al., 2019b) and DeBERTa (He et al., 2021a). In addition to causal and masked language models,

pre-trained encoder-decoder models have also been developed, which are suitable for sequence-

to-sequence NLP tasks such as machine translation and text summarization. Examples of such

models include BART (Lewis et al., 2020a) and T5 (Raffel et al., 2020).

Prompt: Recent studies have revealed that task-specific instances can be converted into natural

language expressions of instruction-answer pairs, and by training models on such data, PLMs can

be trained to perform NLP tasks without task-specific fine-tuned modules (Ouyang et al., 2022;

Raffel et al., 2020). This finding has led to a new technique used with PLMs, known as prompting.

This approach provides a short prompt, optionally coupled with a few demonstrative examples,

to PLMs to generate the desired task-specific output. The use of prompting with PLMs is gain-

ing popularity as it is highly effective for a wide range of NLP tasks, including summarization,

question answering, and text classification. (Liu et al., 2023).

Open challenges: (1) While PLMs are extremely effective at predicting/classifying textual lan-

guage forms, the pre-training task does not involve symbol grounding and is unlikely to be suf-

ficient for learning language meaning and for acting on language (Bender and Koller, 2020; Bisk

et al., 2020). To address this problem, some sort of guidance is required to align form repre-

sentation within PLMs and signals of meaning. Chapter 3 and 7 address this issue. (2) PLMs,

particularly English models, are typically trained on well-formed sentences and are suboptimal

for short or under-specified language. We review this problem in Chapter 4 and Chapter 7. (3)

Large-scale PLMs are extremely capable of combining different pieces of information in input,

but on the other hand, slight changes in input often lead to inaccurate output (Shi et al., 2023).

Chapter 5 addresses this problem.

2.2.2 Knowledge in PLMs

It has been reported that corpora exhibit reporting bias (Gordon and Van Durme, 2013; Misra

et al., 2016), wherein people tend to omit information that is too obvious for readers to deduce,

while explicitly describing unlikely facts. This suggests that PLMs also reflect such biases in

the data and may not learn universal or common knowledge comprehensively. However, recent
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Input
LM

(fine-tuned)
PersonX buys groceries xNeed go to a store

Output

Figure 2.3: Illustration of COMET, a knowledge generation model. The LM component can be

either a causal PLM or a pre-trained encoder-decoder model, which is fine-tuned to complete

knowledge triples obtained from resources such as ATOMIC. Triples are converted (linearized)

into a sequence of tokens that contain a special token representing the semantic relation of inter-

est. In this figure, “xWant” is a relation type in ATOMIC that connects two consecutive events.

studies have shown that PLMs are capable of processing and generating implicit knowledge to

some extent, without explicit training. The success of prompting indicates that PLMs already

possess rich knowledge, although it may not necessarily be grounded in something external to

language forms.

Knowledge Induction: A number of prior studies have demonstrated that various types of

knowledge, including linguistic and general world knowledge, can be found in PLMs (Chi et al.,

2020; Petroni et al., 2019; Roberts et al., 2020). This finding indicate that, given sufficiently large

training corpora, even implicit knowledge can appear somewhere in the data and can be stored

within the parameters of large-scale representation models. Furthermore, recent research has

shown that fine-tuning PLMs for knowledge generation can significantly improve their ability

to generate meaningful knowledge with higher accuracy and coverage. One such example is

the Commonsense Transformers (COMET) model (Bosselut et al., 2019; Hwang et al., 2021; West

et al., 2022), which is fine-tuned on linearized knowledge snippets to generate relevant concepts

or events in response to an input prompt (Figure 2.3). Da et al. (2021) have demonstrated that

even a few examples can substantially enhance the quality of the generated knowledge. This

finding underscores the importance of providing appropriate signals to induce the knowledge

that is already stored within the PLMs.

Knowledge Injection: While PLMs are capable of capturing various types of knowledge, their

coverage is limited to the information present in their training corpora. Moreover, facts that are

infrequent or require multi-hop reasoning are challenging to retrieve (Kandpal et al., 2022). To

address these limitations, researchers have proposed a range of methods, including combining

PLMswith information retrieval systems (Guu et al., 2020; Komeili et al., 2022; Lewis et al., 2020b),

symbolic knowledge resources (Ma et al., 2021; Wang et al., 2021b; Yasunaga et al., 2021), and

separate knowledge generation models (Bosselut et al., 2021; Liu et al., 2022b; Wang et al., 2020b;

Zhou et al., 2022b). Knowledge can be represented in different forms, such as natural language

expressions, knowledge graphs, and triples (Bauer and Bansal, 2021). Knowledge respresented in

plain texts are often employed with prompting approaches (Liu et al., 2022b; Zhou et al., 2022b).
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Open Challenges: (1) It is not easy to control the behavior of PLMs to ground them on specific

types of knowledge, particularly when the target involves complex semantics such as psycholog-

ical and physical reasoning. To mitigate this problem, tasks need to be designed carefully, with

a clear definition of input and output requirements. We revisit this aspect in Chapter 3 and 6.

(2) While the language generated by PLMs can be semantically rich and fluent, it is not always

truthful (Lin et al., 2022). As discussed in Chapter 5, this is due, at least in part, to the under-

specification of the problem space. When input information is insufficient, PLMs may resort to

fabricating information.
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Chapter 3

Human Motive Detection

Overview

In this chapter,
1
we delve into the task of sentiment analysis and discuss how the knowledge of

underlying human motives can provide useful insights into the problem. Prior studies on senti-

ment analysis have primarily focused on identifying holders, facets, and valences of sentiment,

but have overlooked the reasons behind sentiment decisions. Understanding the causes of sen-

timent has significant implications for product and service development. For instance, knowing

that many customers are unsatisfied with the weight of their laptops is more informative for

laptop manufacturers than simply observing numerical ratings that quantify their overall sen-

timent. In the work presented in this chapter, we consider human motives as the driving force

behind sentiment and address the problem of motive detection as the first step. To characterize

these underlying motives, we drew from psychological studies and defined six fundamental mo-

tive categories that encompass a broad range of topics found in review texts. We annotated 1,600

texts in the restaurant and laptop domains with these motives and evaluated data-driven classifi-

cation methods on this new dataset. Our results demonstrate that cross-domain transfer learning

boosts motive detection performance, indicating that these universal motives exist across various

domains.

3.1 Introduction

Understanding the sentiment of a person based on text has practical implications for improving

the quality of products and services, as well as scientific implications for psychology and other

fields. Despite a rich body of sentiment analysis research, sentiment is often simply assumed to

be expressed through uni-dimensional binary or ternary labels (positive, neutral, and negative).

Relatively little attention has been paid to the reasons for holding a particular sentiment value.

1
A large part of this chapter has been published in the proceedings of ACL 2019 (Otani and Hovy, 2019).
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Figure 3.1: Restaurant review texts and human motives of interest (rectangles).

Aspect-based sentiment analysis (ABSA), which considers fine-grained categories (aspects) that
may cause sentiment, partially addresses this problem. However, aspects are typically limited

to properties of entities such as the price of food and design of a product (e.g., (Pontiki et al.,

2016)). They do not really show why such aspects matter and how they cause sentiment. For

example, some people desire cheap and quick meals to save time and money, while others desire

high-quality food to enjoy the dining experience itself.

In this study, we follow Li and Hovy (2017) and view sentiment as a realization of an indi-

vidual’s mental state that relates to their satisfaction toward a specific event or entity. Sentiment

can be driven by a sentiment holder’s emotional and non-logical preference (such as “I just don’t

enjoy that kind of food”) and can also be conditioned by long-term plans and resources that the

holder has. However sentiment is largely triggered by whether one of the holder’s goals is satis-

fied or not. As illustrated in Figure 3.1, one will have negative sentiment toward a restaurant if

the service is terrible because one’s basic motive for social behavior is not met.

The exploration of fundamental motives shared by humans has been the focus of research for

decades in areas such as psychology (Maslow, 1943; Reiss, 2004). Talevich et al. (2017) recently

proposed a taxonomy of motives based on a meta-review of prior work and human subject re-

search. Their taxonomy includes Self-fulfillment, Appreciating Beauty, Social Relation,

Health,Ambition&Ability, and Finance. We employ their definitions of motives for analyzing

sentiment (§3.2).

Our work is in line with studies that aim to identify relevant motives in texts, aiming to enable

machines to identify a more complete description of a situation and explain human decisions and

actions. For instance, Ding and Riloff (2018) extracted predicate-argument tuples from web texts

and classified them into motive categories. Rashkin et al. (2018) analyzed narratives authored by

crowd workers with motive and emotion labels. In contrast, our work analyzes user-generated

review texts at a sentence level.

As a first step towards deep understanding of sentiment, we conduct a task of human mo-
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Self-fulfillment (Sf)

Finding meaning in life.

Feeling satisfied with one’s life.

“Ess-A-Bagel is by far the best

bagel in NY.”

*Embrace

&Explore Life (Ee)

Being entertained.

Exploring a new thing.

“The wine list is extensive.”

Appreciating

Beauty (AB)

Enjoying fine design/natural beauty.

Being creative.

“A beautifully designed dreamy

restaurant.”

Social Relation (Sr)

Being treated well by others.

Belonging to a social group.

“Everyone was cheerfully

cooperative.”

Health (H) Being physically healthy.

“The fish was not fresh and the

rice tasted old.”

Ambition&Ability (Aa)

Being competent/knowledgeable.

Keeping things in order. Being efficient.

“I’ve waited over one hour for

food.”

Finance (F)

Saving money

Getting things worth the financial cost.

“The prices are high, but I felt it

was worth it.”

Table 3.1: Motive categories, definitions and examples sentences. *Embrace&Explore Life is

merged to Self-fulfillment (Section 3.2).

tive detection. We manually annotated 1,600 review texts in restaurant and laptop domains from

the SemEval ABSA datasets (Pontiki et al., 2016) with the six motives (§3.3). The annotation re-

sults reveal that sentiment is driven by different motives in different domains. We report the

performance of machine learning models on this new dataset (§3.4). Based on research on hu-

man motivation, we hypothesize that underlying drivers of human behavior are universal across

domains, although the distributions can vary. With this assumption, we leverage out-of-domain

data to improve a human motive detector in the target domain. Our experiment shows that

transfer learning across the restaurant and laptop domains is effective in motive detection. The

best-performing model achieves an F1 score of 0.7, but there is still a gap between the system and

human-level performance. Finally, we discuss how human motives can provide implications for

sentiment analysis (§3.5).

3.2 Representation of Human Motives

Our aim is to anallyze sentiment using human motives. To this end, we require a taxonomy of

human motives. Motives are defined as reasons people hold for initiating and performing volun-

tary behavior (Reiss, 2004). A study of human motives dates back to Aristotle (384—322BC), who
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Meaning Communication Agency

Morality & Virtue Self-Actualize Avoidance Motives Social Relation Health Mastery
& Competence

Finances

Ambition & Ability 

Organized
& Efficient Money & Wealth

… …

Appreciating Beauty 

Openness
to Experience

Self-fulfill
…

Social Life
& Friendship

Stability
& Safety

Figure 3.2: Illutration of the motive taxonomy of Talevich et al. (2017).

proposed a distinction between ends and means.
2
Means motives are desires for other motives,

while end motives are ultimate goals of individuals. For example, eating fresh vegetables can be a

mean of an end motive, becoming healthy. Ends, for which there are several theories, are believed

to be a closed class (e.g. (Maslow, 1943; Reiss, 2004)).

The aforementionedmotives are drawn from a taxonomy of 161motives (Talevich et al., 2017).

Talevich et al. derived basic motives based on an extensive literature survey and grouped them

hierarchically based on similarity judgments collected from human subjects. The hierarchical

structure of their taxonomy, as illustrated in Figure 3.2, embodies conceptual relationships be-

tween motives. Higher-level motives in the hierarchy are more abstract, and lower-level motives

are more concrete. The motives we picked are intermediate categories in the taxonomy that cover

a wide range of topics appearing in our review texts (Table 3.1). These intermediate categories

represent 55% of the 161 bottom-level motives.

3.3 Annotation of Human Motives

To annotate review texts with human motives, we used Amazon Mechanical Turk (MTurk) and

assigned three crowd annotators to each sentence. We then aggregated their responses to obtain

the final results, where a single sentence may include multiple labels.

Data: Wecollected restaurant and laptop review sentences from the SemEval 2016 datasets (Pon-

tiki et al., 2016). We discarded sentences with longer than 25 tokens,
3
and sample 800 sentences

from each domain.

2
In his book “Nicomachean Ethics”

3
We use Stanford CoreNLP v.3.9.2 (Manning et al., 2014) to tokenize sentences.
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Why did a reviewer say this?

In product reviews, people describe various positive/negative opinions. We are interested in what kind of human goals is behind those opinions.

Please select ALL human goals related to a given laptop computer review based on the following guideline.

Goal Guidance

Finding meaning in life or feeling happy
with one's life

Select this if the item embodies emotion/opinion related to a reviewer's desire for self-fulfillment. For
example, "Having my own MacBook was one of my dreams!"

Appreciating fine design/arts/natural
beauty or being creative

Select this if the item embodies emotion/opinion related to a reviewer's desire for enjoying the
beauty. For example, "The design is awesome"

Exploring and enjoying life Select this if the item embodies emotion/opinion related to a reviewer's desire for exploration or
enjoyment. For example, "The HD display is sensational, and now watching movies is a very
enjoyable experience for me."

Being treated well by others, being
attractive, or belonging to a social group

Select this if the item embodies emotion/opinion related to a reviewer's desire for social relations. For
example, "Their customer service is friendly, and I never had a problem."

Being physically healthy Select this if the item embodies emotion/opinion related to a reviewer's desire for health. For
example, "This large HD monitor helps to extend my screen and keep my eyes fresh!", "It is not ideal
for children because of the temp."

Being competent/knowledgeable, keeping
things in order, or being efficient

Select this if the item embodies emotion/opinion related to a reviewer's desire for competence or
efficiency. For example, "This laptop is so slow and I hate it!.", "It's very user-friendly.", "It has a 5-6
hour battery life."

Saving money or getting things worth the
financial cost

Select this if the item embodies emotion/opinion related to a reviewer's desire for money. For
example, "I spent a lot of money on this product and it's been a nightmare."

One text is likely to be linked to one, two, or three goals. If none of the listed goals fits the text, select NONE. (See examples below.)

 

Correct Example 1:

This computer way overpriced.
→ "Saving money or getting things worth the financial cost  "
The reviewer says this because getting a prodct worth the cost is one of his goals.

Correct Example 2: - One text may be related to two or more goals. Choose ALL goals that are applicable.

MacBook is always good-looking and fast.
→ "Appreciating fine design/arts/natural beauty or being creative" and "Being competent/knowledgeable, keeping things in order, or being efficient"

Both of nice design (good-looking) and efficiency (fast) are important for the reviewer.

 

Incorrect Example:
I'm so happy with this computer. It's absolutely AMAZING!!
→ "Finding meaning in life or feeling happy with one's life" (incorrect)
→ "NONE" (correct)
The reviewer expresses his/her emotion, but we cannot tell the reason from this sentence. So, choose "NONE" in this case.

Has a 5-6 hour battery life.

Because his/her goal was _____. (Please select ALL goals related to the text.)

Finding meaning in life or feeling happy with his/her life

Appreciating fine design/arts/natural beauty or being creative

Exploring and enjoying life

Being treated well by others, being attractive, or belonging to a social group

Being physically healthy

Being competent/knowledgeable, keeping things in order, or being efficient

Saving money or getting things worth the financial cost

NONE

Figure 3.3: MTurk interface for the annotation task of human motives
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Sf Ab Sr H Aa F

Restaurant 348 79 137 31 95 109

Laptop 188 164 52 9 370 145

Table 3.2: Distribution of humanmotives. Sf: Self-fulfillment,Ab: Appreciating Beauty, Sr: Social

Relation, H: Health, Aa: Ambition & Ability, F: Finance.

Annotation: We recruited crowd workers who reside in the US and completed 1,000 or more

HITs at ≥ 95 approval rate with reward of $0.1 per sentence.
4
We presented the definitions of

human motives along with a few examples to crowd workers and instructed them to assign all

applicable motive labels to an input sentence. Figure 3.3 shows the annotation interface.

Quality Control: We first collect annotations on 200 sentences in each domain without any

filtering of workers. We then evaluate the workers on the 400 sentences: one of the authors

examine the responses and made the gold-standard label set, and we calculate the F1-score of

each worker against the gold-standard. We only use the workers whose scores are ≥ 0.5 in the

remaining annotation tasks.

Annotation Agreement: Our crowd workers agreed moderately on annotations: Krippen-

dorff’s α was 0.48 and 0.59 in the restaurant and laptop domains, respectively. We found that

Self-fulfillment and Embrace & Explore Life are often hard to distinguish. We, therefore,

collapsed these categories, and Krippendorff’s α increased to 0.51 and 0.61. For reference, three

graduate students studying language technology annotated 150 sentences in the restaurant do-

main. Their Krippendorff’s α was 0.72 on the original annotation scheme and 0.74 on the col-

lapsed scheme.

Post-processing: We next aggregated crowd workers’ responses using MACE (Hovy et al.,

2013), where a response was regarded as a binary value of a combination of a text and a human

motive. We set the prior probability of a positive class to 1/6 (i.e., one text is likely to have one of

the six motives). This prior fits the responses better than a uniform prior.

Analysis: Table 3.2 shows the distributions of human motive labels. There is a clear difference

between domains: the restaurant domain has a variety of motives relevant to hedonic motives (i.e.

pleasure seeking) like Self-Fulfillment (Sf) and Social Relation (Sr), while the laptop domain

tends to have utilitarian motives (i.e. practical needs) such as Ambition&Ability (Aa) and Fi-

nance (F).

4
We set the reward based pilot annotation studies so that workers can earn at least $6/hour.
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3.4 Human Motive Detection

We propose the task of motive detection, where a system detects human motives relevant to a

given input sentence. This is essentially a multi-label sentence classification task. Note that a

single text can have multiple labels, as it may contain more than one motive.

3.4.1 Baseline Systems

We evaluated four groups of systems, namely: (1) support vector machines, (2) shallow neu-

ral networks (specifically, multi-layer perceptron), (3) Transformer models that were fine-tuned

for this task, and (4) a Transformer model (specifically, GPT-3) that performed the task using a

prompt-based approach without fine-tuning.

3.4.1.1 Support Vector Machines (SVM)

We built a linear SVM classifier on bag of n-grams (BoNG) of sentences. We counted 1-, 2-, and

3-grams of words in each sentence to construct a BoNG vector. To avoid overfitting to rare words,

we discarded n-grams that occurred only once in a training set. We also applied TF-IDF scaling

to BoNG vectors to emphasize topic words (BoNGtfidf).

3.4.1.2 Multi-layer Perceptron (MLP)

We built an MLP classifier with one hidden layer on top of word embedding-based sentence rep-

resentations. We employed three methods to convert off-the-shelf word embeddings into fixed-

sized sentence embeddings.

Simple word-embeddings model (SWEM): We calculated element-wise average and max-

pooling of word embeddings in a sequence and concatenate them (Shen et al., 2018).

Convolutional neural network (CNN): We used a CNN to aggregate adjacent word embed-

dings in a hierarchical manner. We followd Kim (2014) and used filter windows of 3, 4, and 5.

Bidirectional LSTM (BiLSTM): The aforementioned methods are not sensitive to word order.

To consider word order, to which the aforementioned two methods are insensitive, we encoded

a sequence of word embeddings by a bidirectional LSTM. We concatenated hidden states at the

final time steps from both directions to obtain a sentence vector. We set the number of layers to

two.
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3.4.1.3 Pre-trained Language Models (PLMs)

Transformers: Weencoded input tokens by PLMs based on the Transformer architecture (Vaswani

et al., 2017). We employed three PLMs: (1) BERT (Devlin et al., 2019), (2) RoBERTa (Liu et al.,

2019b) and (3) DeBERTaV3 (He et al., 2021a). Following the standard practice, we wrapped input

tokens with special tokens that denotes the sentence beginning (BOS) and ending (EOS). After

encoding the input tokens, we fed the last hidden state of the BOS token to an MLP classifier with

one hidden layer. We set the hidden units of the MLP classifier to the hidden dimension of the

PLM models (=768).

3.4.1.4 Few-shot In-context Learning with a Language Model

GPT-3: We fed to GPT-3 (text-davinci-003; 175B parameters) (Brown et al., 2020) a prompt that

contains instructions, definition of human motives, and six examples in addition to an input sen-

tence. For each motive category, we picked one example from a training split that has similar

sentence embedding to that of the input text. The sentence embeddings were computed through

Sentence Transformers (Reimers and Gurevych, 2019) with MPNet (Song et al., 2020) as a back-

bone model. We devised the prompt based on the performance on validation splits.

3.4.2 Training

We simply treated our multi-label classification task as a set of binary classification tasks, where

MLP classifiers shared parameters except for those of an output layer over motive categories. To

handle highly skewed class distributions, we weighted a loss function to train a model (Morik

et al., 1999). For example, MLP classifiers were trained to minimize a weighted cross-entropy

loss:

L = −
∑

(x,y)∈D

∑
c∈C

[wcyc logMLPc(x) + (1− yc) log(1−MLPc(x))] , (3.1)

where (x,y) is a pair of a sentence and a label in dataset D, C is a set of categories, and MLPc is

an output function w.r.t. category c. We computed the class weight as follows.

wc =

∑
(x,y)∈D(1− yc)∑

(x,y)∈D yc
(c ∈ C) (3.2)

Transfer Learning Across Domains: Our hypothesis is that, in contrast to entity aspects that

must be defined for each domain, underlying human motives are universal across domains while

their distributions can be different. If this hypothesis holds true, then it would be possible to
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Restaurant Laptop

Method Precision Recall F1 Precision Recall F1

SVM-BoNG .565 (±.028) .394 (±.052) .451 (±.046) .480 (±.043) .358 (±.018) .397 (±.006)
+ Transfer .518 (±.042) .422 (±.055) .459 (±.050) .555 (±.102) .396 (±.023) .453 (±.039)

SVM-BoNGtfidf .544 (±.018) .482 (±.032) .492 (±.015) .577 (±.106) .449 (±.014) .477 (±.038)
+ Transfer .542 (±.060) .477 (±.041) .475 (±.012) .566 (±.071) .461 (±.012) .489 (±.029)

MLP-SWEM .376 (±.027) .783 (±.002) .478 (±.026) .359 (±.007) .592 (±.022) .416 (±.001)
+ Transfer .462 (±.040) .662 (±.025) .516 (±.013) .393 (±.011) .534 (±.047) .436 (±.025)

MLP-CNN .565 (±.032) .499 (±.045) .524 (±.032) .468 (±.011) .410 (±.014) .423 (±.007)
+ Transfer .700 (±.059) .541 (±.017) .583 (±.020) .519 (±.033) .432 (±.021) .456 (±.006)

MLP-LSTM .447 (±.007) .631 (±.008) .511 (±.007) .419 (±.007) .568 (±.001) .473 (±.005)
+ Transfer .475 (±.017) .618 (±.011) .531 (±.005) .500 (±.031) .572 (±.003) .518 (±.006)

PLM-BERT .569 (±.032) .627 (±.077) .569 (±.032) .596 (±.079) .544 (±.045) .596 (±.079)
+ Transfer .614 (±.019) .656 (±.086) .614 (±.019) .645 (±.018) .562 (±.030) .645 (±.018)

PLM-RoBERTa .542 (±.025) .743 (±.094) .542 (±.025) .530 (±.080) .710 (±.058) .530 (±.080)
+ Transfer .615 (±.032) .742 (±.056) .615 (±.032) .627 (±.011) .694 (±.052) .627 (±.011)

PLM-DeBERTa .533 (±.016) .685 (±.048) .533 (±.016) .489 (±.060) .577 (±.063) .489 (±.060)
+ Transfer .621 (±.015) .673 (±.063) .621 (±.015) .590 (±.059) .644 (±.107) .590 (±.059)

GPT-3 .709 (±.008) .804 (±.007) .709 (±.004) .719 (±.002) .829 (±.002) .732 (±.003)

(Ref.) Human .724 (±.014) .859 (±.014) .781 (±.012) .766 (±.021) .855 (±.019) .806 (±.017)

Table 3.3: Results of humanmotive detection. Macro-precision, recall, and F1-measure scores

are averaged over three folds in cross-validation (except for the performance of crowd workers

in row Human). The higher numbers in each metric are denoted in bold face.

leverage out-of-domain data to enhance the performance of motive detectors. Motived by this,

we implemented transfer learning across domains to minimize the loss function below.

L′ = Lin + λLout, (3.3)

where Lin and Lout are loss functions defined on in-domain and out-of-domain data, and λ is a

hyperparameter to discount the out-of-domain loss.

3.4.3 Experimental Setup

Our primary evaluation metrics is macro-average F1 measures across motive categories. We per-

formed three-fold cross-validation, where the dataset is evenly divided into training, validation,

and test sets. In each fold, we conducted a grid search of hyperparameters based on the validation
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set, and subsequently trained a model on the training and validation sets before testing it on a

test set. The average scores over test splits were then reported as the final score.

We used pretrained 100-D GloVe embeddings that were trained on 6 billion tokens from the

Wikipedia and Gigaword corpora (Pennington et al., 2014)
5
for the MLP classifiers. For the Trans-

former classifiers, we used the pre-trained parameters through thetransformers library and

OpenAI’s API (for GPT-3). Further implementation details can be found in the appendix A.1.

3.4.4 Results

The results of the baseline systems are presented in Table 3.3. The performance of GPT-3 was

the best, even with only six training examples. GPT-3 was superior especially in terms of recall.

The other supervised models, however, produced fewer motive labels and resulted in lower recall,

which might be due to the imbalance in class distribution in the training data. Furthermore, the

poor performance of SVM classifiers suggest that surface-level features are not enough to detect

the various realizations of human motives.

For estimating human performance, we compared individual responses from crowd workers

against aggregated, gold-standard labels. We generated 100 sets of human responses by repeat-

edly sampling one of three workers for each sentence. The performance of GPT-3 (0.7 F1) was

very close to human performance, but there is still room for improvement.

Interestingly, adding out-of-domain data (+Transfer) improved the performance of the SVM,

MLP, and PLM classifiers except SVM-BoNGtfidf. The improvement is particularly evident in pre-

cision scores. The transfer learning was most effective for PLM, which likely benefited from the

increased training data size. This transferability of inductive bias demonstrates the universality

of underlying motives across domains.

3.5 Connection to Sentiment Analysis

This chapter so far has highlighted the significance and potential for automatically detecting

underlying human motives across domains. In this section, we once again turn our focus to

sentiment analysis.

Firstly, as previously discussed, we believe that the detectedmotives themselves offer valuable

insights into services or products of interest. For instance, the distribution of motive labels can

reveal the types of human motives that are important in a particular domain, thereby providing

guidance for future decision-making.

Moreover, we can approach sentiment analysis based on motives as proposed by Li and Hovy

(2017). Once the relevant motives are identified, we can analyze sentiment by determining the

5
We also tried other word embeddings like word2vec (Mikolov et al., 2013), but they yielded similar results.
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GPT-3
“The food here is rather good,

but only if you like to wait for it.”
(1) Self-fulfill
(2) Ambition & Ability

Input Output (1)Step 1
Detecting human motives

GPT-3

(1) Having tasty food,
→ Satisfied

(2) Having food served as soon as possible
→ Dissatisfied

Input
Output (2)Step 2

Identifying
Goal and Condition

“The food here is rather good,
but only if you like to wait for it.”

(1) A motive for … feeling satisfied …
(2) A motive for … being efficient

Figure 3.4: Illustration motive-based sentiment analysis using GPT-3. The process involves two

steps: First, GPT-3 identifies relevant motive categories for the given text, and in the second step,

it uses the predicted motive labels to generate relevant goals and judge if each goal was satisfied.
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Figure 3.5: Co-occurence of the gold-standard motive and aspect labels. The co-occurence counts

are normaliezd by the total occurence of each human motive. SF: Self-fulfillment, AB: Appreciat-

ing Beauty, SR: Social Relation, H: Health, AA: Ambition & Ability, F: Finance.

goals, plans, and actions that were activated to fulfill these motives and whether they were suc-

cessfully completed. To evaluate the feasibility of this approach using state-of-the-art language

models, we tested ten random samples from the restaurant domain with GPT-3 (text-davinci-003)

in few-shot in-context learning in two step depicted (Figure 3.4). First, we performed the human

motive task with GPT-3 to obtain relevant motive categories. In the second step, we added the

predicted motive labels to the input and generated goals and their conditions (satisfied or not).

As demonstrated by the examples presented in Table 3.4, GPT-3 provided reasonable analyses,

indicating the potential of this approach for future research.
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Input text “The food here is rather good, but only if you like to wait for it.”

Motives (1) Self-fulfill, (2) Ambition & Ability

Goals (1) Having tasty food. (2) Having food served as soon as possible.

Conditions (1) Satisfied. (2) Dissatisfied.

Input text “This place is worth a one-hour drive.”

Motives (1) Self-fulfill

Goals (1) Having a meal that is worth the effort of driving for an hour.

Conditions (1) Satisfied.

Table 3.4: Examples of motive-based sentiment analysis using GPT-3. We provided GPT-3 with

a prompt containing six examples and the input text. The model generated relevant motives,

goals, and conditions (satisfied or dissatisfied) step-by-step (Figure 3.4). The motive labels were

detected by GPT-3 in a separate process and then converted into language expressions through

templates before being used for generating goals and conditions.

Lastly, aspect categories in aspect-based sentiment analysis can be seen as the intermediate

realization of human motives within specific domains. The co-occurrence of human motive and

aspect labels, as shown in Figure 3.5, indicates a connection between human motives and partic-

ular groups of domain-specific aspect categories. For example, the Social Relation (Sr) motive is

often present in sentences that discuss service (restaurant) and customer support (laptop). The

same motive can be manifested as different aspects for different services and products as ex-

emplified by the Appreciating Beauty (Ab) motive. Typically, defining domain-specific aspects

typically requires domain knowledge and is done manually by experts. Human motives can po-

tentially facilitate this process. By leveraging the universality of basic motives, researchers can

detect the most relevant motives in the target domain and subsequently define domain-specific

aspects through an analysis of how these motives are manifested.

3.6 Conclusion

We aimed at to understand why a writer of a text holds a particular sentiment and proposed a task

of human motive detection as an essential building block for achieving this goal. We presented a

taxonomy of motives derived from a psychology study and annotated 1,600 restaurant and laptop

reviews with six motives in order to facilitate the development and evaluation of computational

models.

We evaluated the performance of baseline predictive models on this dataset and found that
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automatic identification of implicit humanmotives is feasible.
6
The best-performing model, GPT-

3, achieved an F1 score of 0.7 in the restaurant and laptop domains. However, there is still a

performance gap between automatic detectors and humans.

One interesting finding is that the same underlying motives can appear in different domains,

although their distribution may differ. We empirically verified this by transferring learned pa-

rameters across domains, which showed that predictive models can strongly benefit from out-of-

domain instances.

Future Work: We analyzed two domains, restaurants and laptops, and found that people are

driven by hedonic motives in many cases and utilitarian motives in some cases in the restaurant

domain. The laptop domain is mostly driven by utilitarian motives. There are many other do-

mains that could be explored, such as the movie domain, where people watch movies primarily

for enjoyment. Exploring other domains would be an interesting direction for future research.

Although our focus was on sentiment analysis in this study, detection of motives can benefit other

NLP applications, such as in-depth machine reading. For example, underlying motives could pro-

vide a strong clue for modeling a sequence of actions that share the same actor (a.k.a narrative
chains (Chambers and Jurafsky, 2008)).

6
Code and data used in this study are available online:

https://github.com/notani/acl2019-human-motive-identification
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Chapter 4

Representation of To-Do Texts

Overview

In recent years, an increasing number of people have started managing their daily and work-

related tasks with digital to-do management software. Within these software applications, users

create personal notes to help them remember and organize the various things they need to com-

plete. However, the brevity and lack of specificity in these to-do descriptions present a challenge

for text representation models, making it difficult for NLP systems to provide effective assistance.

In this chapter, we discuss a solution to this problem based on the implicit knowledge about user

intent.
1
This work presents a novel neural multi-task learning framework that extracts repre-

sentations of to-do texts using a multi-head attention mechanism on top of a pre-trained text

encoder. To adapt the representation model to to-do texts, weak-supervision labels are collected

from semantically rich external resources, such as a common-sense knowledge base, based on the

principle that to-do tasks with similar intents have similar labels. The model is then trained on

multiple generative and predictive training objectives jointly. The trained representation model

is evaluated on five downstream tasks, and the results show that the proposed approach con-

sistently outperforms baseline Transformer models, achieving an error reduction of up to 38.7%.

This demostrates the effectiveness of the approach in improving the performance of NLP systems

on to-do descriptions with limited contextual information.

4.1 Introduction

Task management tools are widely used to organize tasks and keep track of progress in work

and daily lives. Examples include Microsoft To-do, Todoist, Trello, and digital assistants such as

Amazon Alexa and Google Assistant. Machine learning techniques can automate various aspects

of task management such as task creation (Mukherjee et al., 2020), organization (Landes and Di

1
This chapter is based on the work conducted at Microsoft Research Redmond (Otani et al., 2022).
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Vector representations
of to-do tasks

Groceries

milk

eggs

carrots

Today

Pay credit card

Call Mom

Pick up Chris at 4

Description

List name

Intelligent
assistance

task detection,
organization, 
recommendation, …

User-generated to-do texts

Figure 4.1: Our aim is to encode user-generated to-do texts (list names and descriptions) into

vector representations so that machine learning systems can provide various kinds of intelligent

assistance.

Eugenio, 2018), prioritization, and decomposition of complex tasks (Nouri et al., 2020; Zhang et al.,

2021a).

The goal of this work is to develop a single, general-purpose encoding system that converts

to-do task texts into real-valued vector representations (Figure 4.1). Using one encoding system

for multiple task functions (task detection, organization, recommendation, etc.) as opposed to

having multiple dedicated encoders saves the computational costs of updating models regularly

and encoding texts from millions of users.

Representation learning has been extensively studied in natural language processing (Camacho-

Collados and Pilehvar, 2018). Adapting models pre-trained on massive amounts of raw texts to

a target domain or a task has become common practice (Qiu et al., 2020), with many publicly

available pre-trained models such as BERT (Devlin et al., 2019), GPT-2 (Radford et al., 2018), and

sentence encoders (Cer et al., 2018; Reimers and Gurevych, 2019). Leveraging word context is one

of the key strengths of these pre-trained models. However, to-do texts exhibit unique character-

istics that make this context-based modeling less effective (§4.2).

Our analysis on a dataset of 6.5 million entries shows that to-do texts are short and often lack

an action verb. While similar to web search queries, they are not written to be understood by a

search engine but instead are personal notes to the users themselves and assume rich personal

context. On the other hand, some task management applications allow users to organize their

to-dos under user-defined lists, which, our analysis shows, can sometimes convey important in-

formation about their meaning. For instance, a “grocery” list indicates that the listed items are

things to buy, but some lists are not indicative of actions like “today”.

Our hypothesis is that we can effectively fine-tune contextualized representation models for

under-specified texts using multiple weakly-supervised prediction/generation tasks that focus

on knowledge about to-do tasks. We induce supervision signals semi-automatically from exist-

ing resources so that to-do tasks that have similar intents share similar target labels. To this end,
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we propose LITE,2 a framework for training to-do task representation models using the following

auxiliary tasks: (1) autocompletion of to-do descriptions, (2) pre-action and goal generation based

on COMET (Bosselut et al., 2019; Hwang et al., 2021), and (3) action attribute predictions based

on FrameNet (Ruppenhofer et al., 2016). We implement LITE on top of existing pre-trained lan-

guage models and evaluate its performance through downstream tasks on two proprietary and

two publicly available datasets (Jauhar et al., 2022; Landes, 2018): urgent and important to-do de-

tection, actionable to-do classification, co-located and co-timed to-do pair detection, and intent

detection.

Overall, we make the following contributions: (1) A neural multi-task learning framework

to fine-tune embeddings of to-do texts based on intents.
3
(2) A methodology to collect weak

supervision signals from various resources without costly manual annotations. (3) An empiri-

cal comparison of contextual embeddings models on real to-do texts, where LITE outperforms

various baseline models including BERT, RoBERTa, Sentence-BERT/RoBERTa, achieving error

reduction of 4.8-38.7%.

4.2 User-generated To-do Data

In this section, we introduce our primary to-do dataset and discuss its characteristics: (1) to-do

descriptions are generally short, (2) most of to-do descriptions do not have action verbs, and (3)

some list names are less informative about task intents than others.

4.2.1 Data Collection

For training and data analysis, we use a dataset based on the now-retired Wunderlist task man-

agement app. The app was available on multiple platforms and had more than 13 million users

in 2015. The dataset (henceforth WL) contains 6.5 million English to-do texts. Each to-do text
includes a description (e.g., “call mom”) and associated list name (e.g, “today”). See Appendix B.1
for more details on how the dataset was anonymized.

We performed a basic linguistic analysis on theWL data. As observed by Landes and Di Euge-

nio (2018), general-purpose analyzers often fail to analyze to-do texts correctly due to the writing

style and the lack of context words. To alleviate this problem, we use frequency information ob-

tained from a large corpus to correct automatically assigned POS tags, through the following

3-step process. First, we run the spaCy tagger (Honnibal et al., 2020)
4
to assign POS tags. Then,

motivated by Keyaki and Miyazaki (2017), we correct the POS tags based on frequency informa-

tion derived from 3 billion sentences from the DepCC corpus (Panchenko et al., 2018).
5
Finally,

2
Short for Latent Intent Task Embedding

3
The code is available at github.com/microsoft/Intent-based-Task-Representation-Learning

4
We use the English model en_core_web_lg v3.0.0

5
We extracted the first 100 files from DepCC and re-tagged the sentences using spaCy. We counted the fre-
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Figure 4.2: Distribution of the lengths (number of tokens) of to-do descriptions. The average

length is 2.4.

we apply the spaCy dependency parser to the texts with the corrected POS tags and identified

main verbs and arguments.

4.2.2 Observations

To-do descriptions are very short: The mean number of tokens per to-do description is

2.4 (Figure 4.2), which is similar to that of search engine queries (Taghavi et al., 2012), but with

two key differences: (1) many search queries are intended for information seeking (Broder, 2002),

while to-dos typically express things to perform or to remember, and (2) people write search

queries with the capabilities of a search engine in mind, but to-do descriptions are personal notes

to the users themselves.

Most to-do descriptions have no action verb: We observed that 87.8% of to-do descriptions

do not have action verbs. If an action verb is present, 75.1% and 12.7% have a direct object and

a prepositional phrase, respectively. The degree of under-specification depends on a to-do’s list

name. An action verb is more frequently used in to-do descriptions that appear in generic lists,
such as “inbox”

6
(29.7%), “to do” (28.4%), and “today” (22.1%). When list names already imply a

specific action, the action verb is more likely to be omitted such as in the “shopping” (3.3%) and

“movies to watch” (4.7%) lists.

List names can be indicative of task intents but not always: For example, a to-do text

(description = “avocados”, list name = “to buy”) signifies the intent “to buy avocados”, but the same

description can appear also in generic lists, such as “to do” or “reminders”. When a list name is

generic, a task description needs to be weighted more to accurately capture the intent of a task.

Figure 4.3 shows that this is a non-trivial problem for pre-trained language models like BERT. The

quencies of 1-3 grams of token-XPOS pairs and replaced tokens that appeared fewer than 100 times with an out-

of-vocabulary token. The frequencies were used to score the sequences of the POS tokens obtained in the previous

step, and replace them with more frequent ones, if found. One of the authors manually evaluated the 100 frequent

to-do descriptions with tags changed by post-processing and found 17/57 errors were corrected.

6
“Inbox” was the default list name in the Wunderlist app.
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BERT-base BERT-base-DA BERT-base-LITE (ours)

(<grocery>, to buy)
(buy <grocery>, to do)
(buy <grocery>, reminders)
(<person>, to call)
(call <person>, to do)
(call <person>, reminders)

Figure 4.3: t-SNE (van der Maaten and Hinton, 2008) visualization of the embeddings of to-do

texts generated by (1) BERT-base, (2) BERT-base domain-adapted by masked language modeling

on WL, and (3) LITE.
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[SEP]
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Figure 4.4: LITE model overview. We encode input tokens with an off-the-shelf text encoder and

feed the hidden states and type embeddings to an intent extractor to obtain the representation of

the to-do task. We train LITE over three training objectives (1-3) jointly.

figure visualizes the distribution of the embeddings of the “buy <grocery>” and “call <person>”

to-do texts
7
expressed in two ways: (1) the descriptions “buy <grocery>” and “call <person>”

are paired with generic list names (“to do” and “reminders”); or (2) the descriptions “<grocery>”

and “<person>” are paired with specific list names (indicating the actions “to buy” and “to call”).

To produce embeddings, we concatenated descriptions and list names in the input and extracted

their pooled output from the encoders (§4.3.1). We can see that a BERT model cannot capture the

similarity within the buy nor call intent groups even after domain adaptation (DA) to to-do texts

(see §4.4.3 for more details on DA). Our model, LITE, can successfully ignore the generic lists and
group similar tasks together.

4.3 Method: Multi-task Learning (MTL)

We propose a multi-task learning (MTL) framework to represent to-do descriptions along with

their list names (Figure 4.4). Our model first encodes text using off-the-shelf encoders (§4.3.1).

The token representations along with information about their types are merged by an intent

7
<grocery> stands for grocery items, and <person> stands for person names taken from the followingweb pages:

vegetablesfruitsgrains.com and ssa.gov/oact/babynames
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extractor withmulti-head attention (§4.3.2). We train the encoder and extractor on three auxiliary

tasks (§4.3.3,4.3.4).

4.3.1 Off-the-shelf Text Encoder

We encode input texts using off-the-shelf pre-trained transformer-based language models. Our

model takes as input the concatenation of two types of texts, descriptions and list names, sepa-

rated by the token

[SEP] : <s> description [SEP] list name </s>, (4.1)

where <s> and </s> are beginning-of-sentence and end-of-sentence tokens pre-defined for the

encoder. The encoder converts a sequence ofN input tokens w1, w2, · · ·wN into real-valued vec-

tor representations using multiple layers of attention mechanism and fully-connected networks.

We use the last hidden states H = {hi}i=1,2,··· ,N as the contextual token representations of the

input.

4.3.2 Intent Extraction with Attention

List names are often—but not always—indicative of task intents (§4.2). For example, a “shopping”

list tends to have items that a user wishes to purchase and is useful for identifying intents, but

some list names merely express time (e.g., “today”), topics/targets (e.g., “family”), or nothing

specific (e.g., “things to do”). In these cases, the model should “pay more attention” to the to-do

description. To handle this, we use a multi-head attention mechanism (Chaudhari et al., 2021;

Vaswani et al., 2017) to extract a vector representing the intent of a to-do task and introduce

token type embeddings to explicitly inform a model of text types.

Multi-head attention: An attention mechanism is suitable to model the variable nature of

token importance. We use a multi-head, scaled dot-product attention mechanism (Vaswani et al.,

2017) and aggregate H based on token importance into the intent embedding z.

Suppose we have T attention heads. For each head, we convert a token representationhi ∈ H

into vectors ut
i,v

t
i ∈ Rd′

by trainable transformation matrices, W t
u,W

t
v ∈ Rd′×d

. We set d′ to

d/T .

ut
i = W t

u tanh (hi) (4.2)

vt
i = W t

v tanh (hi) (4.3)
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We then compute attention scores αt ∈ (0, 1) and an output vector ot ∈ Rd′
:

αt
i =

exp(qtTut
i/
√
d′)∑N

j=1 exp(q
tTut

j/
√
d′)

(4.4)

(4.5)

ot =
N∑
i=1

αt
iv

t
i , (4.6)

where qt ∈ Rd′
is a trainable vector. Finally, we obtain an intent vector z by concatenating the

output vectors of the T attention heads:

z = Concatenate(o1,o2, · · · ,oT ) (4.7)

Token type embedding: We introduce token type embeddings, etask, elist, eother ∈ Rd
, to in-

form a model of the source of each token. BERT injects token type embeddings in the lowest

layer, the embedding layer, and we train them during pre-training (Devlin et al., 2019), but other

models do not (Liu et al., 2019b; Radford et al., 2018; Raffel et al., 2020). To avoid breaking the pre-

trained parameters of those models, we add type embeddings to H and feed it to the multi-head

attention module:

h′
i = tanh (hi) + tanh (e

type(i)) (4.8)

where type(i) is the type of the i-th token.

4.3.3 Auxiliary Tasks for MTL

One straightforward way to train the extractor is to directly optimize it to predict the intent of

a given to-do task. However, task intents are often obscure and hard to discretize into a fixed

number of categories. As a result, manual collection of such categories can be costly and subjec-

tive. For example, “buy milk” and “buy a car” are both purchase action, but they differ in many

aspects: different locations, different prerequisite events, and different motives.

Instead, we propose to train the extractor on multiple auxiliary tasks with weak supervision

that provide semantic augmentation to under-specified to-do texts. The underlying assumption

is that tasks with similar intents have similar target labels/texts in the auxiliary tasks. Below, we

present our three auxiliary training tasks.

4.3.3.1 Autocompletion

Motivation: Inspired by the success of reconstruction learning tasks (e.g., Lewis et al. (2020a)),

our first task focuses on surface-level information of to-do texts, namely prediction of missing
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Input
(desc., list)

Output

(milk, groceries) buy milk

(buy milk, things to do) buy milk

(eggs, costco) buy eggs at costco

(Chris, today) call Chris today

Table 4.1: Examples of texts for the autocompletion objective (§4.3.3.1). Suppose to-do descrip-

tions “buy milk”, “buy eggs” and “call Chris” exist in the WL dataset. The phrases in the last two

examples, which are underlined, were generated by our list-based templates.

tokens based on context tokens. Specifically, we feed a to-do text (the combination of a description

and a list name) to a model, convert it into an intent embedding, and generate the maximal form

of a to-do description that is inferable from the input. We call this auxiliary task autocompletion
objective. We automatically collect such forms for under-specified to-do descriptions from the

WL dataset.

Data collection: As previously observed, to-do descriptions under generic lists (e.g., “today”)

tend to be more specified than those under lists whose names imply specific action. For each

to-do description in our WL dataset, we collect their longer descriptions (i.e., super-strings) up to

five. We also use several templates for lists that represent locations and times to further expand

descriptions (see details in Appendix B.2). Table 4.1 shows examples, two ofwhichwere generated

with templates. The resulting dataset contains 1,487,161 pairs of short and long to-do descriptions.

We combine them with specified to-do descriptions, which already have action verbs and do not

have longer counterparts, and sample 2M examples (50% of examples are under-specified.) During

training, one generation target is picked at random for each instance.

4.3.3.2 Pre-action and Goal Generation

Motivation: This task aims to represent to-do tasks based on their prerequisite actions (what

we must do beforehand) and goal events (what we want to achieve), assuming that tasks with

similar intents have similar prerequisites and goals. Here, a model is trained to generate prereq-

uisite and goal actions for a given to-do item (a task description and a list name). We call this

objective pre-action and goal generation objective.

Data collection: We leverage COMET (Hwang et al., 2021), a BART model (Lewis et al., 2020a)

fine-tuned on ATOMIC
20
20, to collect weak supervision signals about to-do tasks’ prerequisites

and goals.
8
Specifically, we feed a long description of a to-do task generated in the previous

8
We can retrieve prerequisites and goals of some to-do tasks from knowledge bases such as ATOMIC

20
20 (Hwang

et al., 2021) and ConceptNet (Speer et al., 2017) without relying on language generation, but it is not always the case
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Input
(desc.)

Output

buy milk go to store get milk for

breakfast

call Chris find number talk to someone

subscribe Netflix go to web-

site

watch a movie

Relation used: xNeed xIntent

Table 4.2: Texts generated for the pre-action and goal objective (§4.3.3.2) by COMET.

Input
(desc.)

Output

buy milk Buyer, Goods Money, · · ·
call Chris Addressee, Topic, · · · Medium, · · ·
FEs used: Core Non-core

Table 4.3: Labels collected from FrameNet for the action arguments prediction task (§4.3.3.3).

step (§4.3.3.1) to the BART model as a prompt followed by a relation token: (1) xNeed (pre-

requisite) token to generate the task’s prerequisite or (2) xIntent (goal) token to generate the

task’s goal. We use beam search with width of 3 and collect the top-3 results for each relation.

Table 4.2 shows generation results for three example to-dos.

4.3.3.3 Action Arguments Prediction

Motivation: Different to-do tasks have different domain-specific arguments. For example, a

purchase task must have a purchase target, and possibly a price argument. In contrast, contact
tasks usually have a receiver and a topic of communication argument. We design a multi-label

training task called action arguments prediction, where, given a description and a list name, a

model predicts all the action arguments associated with the to-do task.

Data collection: We use FrameNet (Ruppenhofer et al., 2016), a manually-created database

on the meaning and usage of English words/phrases. Semantic representations are defined for

concepts and events (called frames) and for their semantic elements (called frame elements, FEs);
example texts that trigger frames and FEs are also provided. FEs can be core FEs (essential infor-
mation for a frame), or non-core (optional). Table 4.3 shows examples.

Using the “long” to-do descriptions collected for the autocompletion task (§4.3.3.1), we iden-

tify frames in them using an off-the-shelf frame identifier (Swayamdipta et al., 2017). As our focus

that we can find the action of interest in the existing resources. The use of COMET is advantageous in handling

unseen actions as shown by several studies (Bosselut et al., 2019; Hwang et al., 2021).
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is on to-do tasks, we discard frames whose root frame is not Event. We then collect FEs for each

frame from FrameNet. If a to-do description has two or more frames, we take the union of their

FEs. For non-core FEs, we calculate importance weights by TF-IDF over the whole FrameNet

repository so that common FEs appearing in many frames (e.g., Manner) have low weight. We

normalize the weights into (0, 1] by dividing them by the maximum weight.

4.3.4 Optimization

For the autocompletion as well as the pre-action and goal generation tasks, we employ a two-

layer GRU (Cho et al., 2014) decoder with a cross-attention mechanism (Luong et al., 2015). We

use the embedding layer of the encoder also in the decoder. We train the model to minimize the

following cross-entropy loss for each instance:

Lgen = −
M∑
j=1

logP (yj|y<j, z, H), (4.9)

where M is the length of the output text. We apply label smoothing with a smoothing factor of

0.1 (Pereyra et al., 2017).

For the action arguments prediction task (multi-label classification), we use GILE as a label-

embedding approach (Pappas and Henderson, 2019). Given an intent embedding and label em-

bedding, GILE projects them into a joint vector space and computes an association score from

their element-wise product. Concretely, for each label l, we calculate its score P (l) ∈ (0, 1) as

follows:

ein = Act(Winz) (4.10)

e
(l)
label

= Act(Wlabelv
(l)) (4.11)

P (l) = Sigmoid

(
Wout(ein ⊙ e

(l)
label

)
)
,

(4.12)

where v(l) ∈ Rd
is a pre-computed label embedding (constant), Act is an activation function and

Win,Wlabel ∈ Rd×d
and Wout ∈ R1×d

are model parameters. To compute the label embeddings

for FEs (Eq(4.11)), we encode the definitions of FEs in FrameNet with pre-trained transformer

models.

We define the loss function to be:

Lclf =
1

C

C∑
c=1

(c logP (c) + (1− c) log (1− P (c))), (4.13)

where C is the number of classes. We optimize a model to minimize the following weighted loss

across three MTL objectives:

L =
∑
task

Ltask

logNtask

, (4.14)
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Task Size Example: (description, list name) [class]

Urgent and Important

To-Do Detection (UIT)

2,254

(pick up packages at FedEx, n/a) [urgent],

(sign up for HBO, n/a) [non-urgent]

Actionable To-Do

Classification (AT)

12,189

(Sign up for dance class, inbox) [Actionable],

(tomatoes, groceries) [ActionableCollection],

(Alex, baby names) [Notes]

Co-located To-Do Pair

Detection (CoLoc)

25,000

(fix tv, inbox)-(clean sink, today) [+],

(fix tv, inbox)-(refill medicines, today) [-]

Co-timed To-Do Pair

Detection (CoTim)

25,000

(get breakfast, daily)-(check news, inbox) [+],

(get breakfast, daily)-(pickup drycleaner, inbox) [-]

Intent Detection (ID) 253

(schedule appointments with site managers, n/a) [calendar],

(fix the CD ROM drive on my computer, n/a) [find-service]

Table 4.4: Evaluation tasks. Note that the UIT and ID datasets do not have list names.

where Ltask is the loss function of each task, which is either Lgen or Lclf. Ntask is the number of

target labels in a subtask (Aghajanyan et al., 2021). For the generation tasks, it is equivalent to

the vocabulary size.

4.4 Experiments

Our aim is to obtain a single, general-purpose representation model that is effective on various

downstream applications. We run LITE on top of BERTbase, BERTlarge, and RoBERTa and evaluate

its performance.

4.4.1 Evaluation Tasks

We evaluate LITE on four downstream tasks (Table 4.4): (1) urgent and important to-do detection

(UIT), (2) actionable to-do classification (AT), (3) co-located and co-timed to-do pair detection

(CoLoc and CoTim), and (4) intent detection (ID).

Urgent and Important To-do Detection (UIT): The goal of this task is to detect urgent or

important tasks, an essential step for to-do prioritization in real applications. To evaluate this task

we use a proprietary dataset (derived from WL) containing 2,254 human-labeled to-do descrip-

tions. Each description is categorized into urgent and not-urgent classes based on the majority

vote of 3 annotators. This dataset does not provide list names, hence we use a dummy list name

“inbox” for LITE.
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Actionable To-do Classification (AT): This task aims to identify to-do tasks that require a

concrete, individual action to accomplish (ActionableTask) (e.g., “Sign up for dance class”). We

evaluate this task using a proprietary dataset (derived from WL) containing 12,189 to-dos. Each

instance consists of a description and a list name, and is manually categorized intoActionableTask,
Note, and ActionableCollection. A Note is a list item that users add for future use, without the need

for immediate action (e.g., “baby names”). Tasks that are labeled as ActionableCollection are not

performed individually but rather as part of a collection of items in a larger task: “tomatoes” in

the “groceries” list, for example, are part of the larger task "do groceries" where all the individual

to-dos are addressed at the same time and location. Each example was annotated by 3 annotators,

the majority label is the gold label. Tasks where one or more annotators were unsure about the

correct label were eliminated.

Co-located and Co-timed To-do pairs Detection (CoLoc/CoTim): his task focuses on the

location and time where to-do tasks are accomplished. Time and location are particularly pow-

erful cues for task recommendations and reminders (Graus et al., 2016). In this task, given a pair

of to-do items, the model predicts whether the two to-do tasks can be completed in the same lo-

cation (CoLoc) or at the same time (CoTime). To evaluate this task we use the MS-LaTTE (Jauhar

et al., 2022) dataset (derived from WL), which contains 25,000 pairs of to-do tasks (description +

list name), of which 17,778 (71%) are labeled as CoLoc and 9,469 (38%) as CoTime.

Intent Detection (ID): This task focuses on predicting the intent associated with a to-do de-

scription. We use Landes and Di Eugenio (2018)’s dataset, which contains 253 to-do instances,

each one labeled with one of nine intent classes (“calendar”, “find-service”, “buy”, etc.). No list

name is provided in this dataset, so we use the generic list name “inbox” for LITE.

4.4.2 Setup

In all tasks, we first generate vector representations of instances in the dataset with a pre-trained

encoder and train a simple classifier on them. The quality of the embeddings is measured by

the performance of the classifier. We use a logistic regression classifier implemented in scikit-

learn (Pedregosa et al., 2011), with or without a penalty term. To train a classifier for CoLoc

and CoTim, which provide two to-do descriptions as input (see section 4.1), we concatenate the

vector representations of the two items along with their element-wise product and difference

vectors (Mou et al., 2016).

We generate 20 sets of training, validation, and test splits at random (Gorman and Bedrick,

2019)
9
, and, in each trial, we use a validation split to tune hyperparameters by grid search (a

regularization ∈ {None, L1, L2} and a regularization coefficient ∈ {2−5, 2−4, 2−3, 2−2, 2−1, 1}).

9
We split data into 6:2:2 for UIT, AT, and CoLoc/CoTim, and 8:1:1 for ID.
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4.4.2.1 Implementation Details

We implemented our MTL framework using PyTorch v1.10.0 (Paszke et al., 2019) and ran ex-

periments on NVIDIA GeForce GTX TITAN X and RTX A6000 (for BERTlarge). We use uncased

BERTbase, uncased BERTlarge, and cased RoBERTabase, in thetransformers library v4.6.1 (Wolf

et al., 2020) with the default parameters for dimensions, activation functions, and dropout. We

set the number of attention heads in the extractor and the dimension of hidden states based on

the choice of a text encoder, namely (T, d) = (12, 768) for BERTbase-LITE and RoBERTa-LITE,

and (T, d) = (16, 1024) for BERTlarge-LITE. We applied dropout of 0.1 to our modules except for

the output layers. We optimized the model parameters using AdamW (Loshchilov and Hutter,

2019) with batch size of 2,400, learning rate of 5e-5, L2 weight decay of 0.01, and linear learning

rate decay with warm-up steps of 2% of the total steps. We also apply gradient norm clipping of

1. We train our models for 15 epochs, and freeze the transformer encoder for the first 5 epochs.

We sampled 3,459 examples as validation data, on which we evaluate a model every epoch, and

terminate training if the validation loss does not improve for three consecutive epochs. We tuned

hyperparameters and architectural choices (§4.3.2) based on the average validation scores over

20 random trials on all the datasets (more details in Appendix B.3).

4.4.3 Baselines

We compare the following encoders as baselines.
10

BERT (Devlin et al., 2019): We take the embedding of the first token, [CLS], to represent

a to-do text. [CLS] embeddings are trained to represent the whole input sequence by next

sentence prediction (NSP). We compare the base (12 layers, 768D) and large (24 layers, 1024D)

models.

RoBERTa (Liu et al., 2019b): We take the average of the last hidden states to represent an

input sequence as RoBERTa is not trained with NSP. We use RoBERTa base(12 layers, 768D).

Motivated by Gururangan et al. (2020), we also compare the domain-adapted (“DA”) version

of BERT and RoBERTa. We perform additional pre-training to BERTbase and RoBERTa on the 6M

raw to-do texts (<s> description [SEP] list name </s>) from WL.

Sentence-Transformer: We also test off-the-shelf general-purpose sentence encoders based on
Transformers. These encoders are pre-trained to induce sentence embeddings with siamese and

triplet network on top of pre-trained Transformer models (Reimers and Gurevych, 2019). We use

the pre-trained encoder based on BERTbase and RoBERTa base. The encoders are trained on about

286k of natural language inference and textual similarity instances.

10
We evaluate additional baselines in Appendix B.4. The implementation details can be found in Appendix B.5.
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UIT AT CoLoc CoTim ID
Prec. Rec. F1 Acc. Prec. Rec. F1 Prec. Rec. F1 Acc.

BERT .826 .798 .811 .906 .800 .917 .855 .511 .362 .423 .628

BERT-DA .862 .821 .840 .928 .801 .921 .857 .510 .386 .439 .614

Sentence-BERT .821 .787 .803 .901 .817 .892 .853 .499 .396 .442 .542

BERT-LITE .871 .855 .863 .932 .826 .901 .862 .511 .409 .454 .670

RoBERTa .805 .763 .783 .868 .777 .923 .844 .492 .335 .398 .506

RoBERTa-DA .819 .745 .779 .913 .787 .922 .849 .488 .360 .414 .500

Sentence-RoBERTa .831 .789 .809 .897 .820 .893 .855 .493 .386 .433 .572

RoBERTa-LITE .871 .847 .859 .919 .826 .905 .864 .509 .402 .449 .674

BERTlarge .817 .795 .805 .896 .805 .910 .854 .488 .404 .442 .636

BERTlarge-LITE .863 .849 .855 .936 .830 .907 .867 .516 .441 .475 .718

Table 4.5: Results on downstream applications. The best scores in each text encoder are denoted

in bold, and the overall best scores are underlined. The results of statistical significance tests can
be found in Table 4.6.

4.4.4 Results

Table 4.5 shows the main results. LITE demonstrates superior performance across all tasks and

for all three encoders, indicating the generality of the learned representations. DA resulted in

performance improvements in most cases but only marginally.
11

This is probably because to-do

texts are too short to perform effective language model training.

Despite their effectiveness in various sentence-level tasks (Reimers and Gurevych, 2019), the

Sentence-Transformer models did not perform as well as the vanilla BERT and RoBERTa encoders

in this experiment. We speculate that these sentence encoders struggle to leverage contextual

information effectively, as they are pre-trained on sentences that differ significantly from to-do

texts.

FollowingGorman and Bedrick (2019), we conducted a permutation test with 5,000 trials, com-

paring the scores of vanilla Transformer vs. DA, vanilla Transformer vs. LITEmethod, and DA vs.

LITE in each of twenty trials. We used Bonferroni correction to cariburate p-values obtained from

the tests (Dror et al., 2017) to avoid over-estimate statistical significance. Table 4.6 reports the

number of trials where one model’s score is significantly higher than that of the other (α = 0.05).

The results indicate that LITE performs significantly better than the vanilla counterpart more fre-

quently than DA. In some tasks, the score of RoBERTa-LITE is even significantly higher than that

of RoBERTa-DA. (UIT, CoLoc and CoTim).

Our training framework also allows for fine-tuning Sentence Transformers to adapt them to

11
It is also possible to combine domain adaptation by language modeling and LITE, however, it underperformed

LITE overall. With BERTbase, the performance were UIT 0.873, AT 0.931, CoLoc 0.863, CoTim 0.447, and ID 0.656.
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UIT AT CoL CoT ID

BERTbase
vanilla < DA 0 20 0 1 0

vanilla < LITE 7 20 4 8 0

DA < LITE 1 0 1 2 0

Sent. < LITE 14 20 5 0 0

RoBERTa
vanilla < DA 0 20 3 2 0

vanilla < LITE 20 20 20 19 1

DA < LITE 13 1 20 10 1

Sent. < LITE 6 20 6 0 0

BERTlarge
vanilla < LITE 6 20 3 9 1

Table 4.6: The number of random trials (out of 20) where the test score of the model on the right

side is significantly better than the model on the left side after Bonferroni correction (α = 0.05).

UITF1 ATAcc CoLocF1 CoTimF1 IDAcc

Full .863 .932 .862 .454 .670

-Ac .855 .931 .861 .448 .656

-PG .859 .923 .860 .449 .726
-Aa .857 .928 .860 .440 .702

Table 4.7: Ablation study on BERT-LITE demonstrating the effect on F1 and accuracy scores of

removing (A)uto(c)ompletion, (P)re-action and (G)oal generation, or (A)ction (a)rguments predic-

tion.

short and under-specified to-do texts, which we plan to explore in future work. Although our

goal is to train a general-purpose encoder, readers interested in task-specific fine-tuning can refer

to Appendix B.6 for evaluation results.

4.4.5 Analysis

In contrast to DA, the proposed method consistently resulted in improved performance. We

speculate that the auxiliary tasks of LITE collectively aided in training text encoders to extract

richer semantic information from under-specified texts. Table 4.7 shows the contribution of our

auxiliary tasks to overall performance. The full model performed the best in all tasks except ID.

As discussed in Section 4.2, text encoders need to combine information from both To-Do de-
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List Attn. × Norm

*errands .036±.004
to do list .040±.003
things to do .040±.003
movies to watch .040±.004
house to do .041±.004
.
.
.

trip .093±.005
target .094±.006
cleaning .097±.005
bring .097±.006
movies .098±.007

Table 4.8: To-do lists that are assigned low and high attention weight × vector norm scores by

LITE. Generic lists are denoted in bold, and specific lists in italic. *“errands” is an interesting

case which implies actions (go to somewhere to do something) but is a general list at the same

time as it has many kinds of different tasks like “(buy) water filter” and “(get) an emission test”.

[CLS] call vet [SEP] to do list [SEP]

[CLS] litter ##box [SEP] cleaning [SEP]

0.0 0.1 0.2 0.3 0.4 0.5

Figure 4.5: Comparison of attention weight × vector norm scores between “to do list” (general

list) and “cleaning” (specific list).

scriptions and list names to infer the meaning of To-Do tasks. To evaluate LITE in this regard, we

analyzed the product of attention weights and vector norms (Kobayashi et al., 2020) of encoded

tokens for list names from the AT dataset that appear with more than 17 different to-do descrip-

tions (90th percentile). Table 4.8 displays list names with the highest and lowest average scores

assigned by BERT-LITE. We can see that generic lists (such as “to do list” and “house to do”) have

low scores, while specific, action-related lists (such as “bring” and “cleaning”) have much higher

scores. Figure 4.5 visualizes the distributions of attention scores on two examples. Although

generic lists are unlikely to indicate the core meaning of intents, we believe it would not be wise

to ignore them, as they can still provide semantic and pragmatic clues. For example, a list named

“wishlist” typically contains things and activities that a user does not need to act on immediately,

and can thus be a strong indicator of a non-actionable task in AT.
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Desc. (In) List (In) Pre-action (Out)

18 min cardio inbox go to gym

1 swim suits packing list go to store

ride bikes kids go to bike shop

fertilize lawns home go to garden center

cell bio book inbox go to library

Table 4.9: Generation examples of “go to (location)” pre-action. The pre-action text was generated

from BERT-LITE with a prompt “go to”.

LITE leverages implicit knowledge related to To-Do tasks such as pre-actions, goals, and ac-

tion arguments, which can be advantageous for relevant downstream tasks. For instance, we

hypothesized that encoding pre-actions such as “go to a store” would be useful in identifying

co-located To-Do pairs. However, we did not observe a clear benefit from the PG objective in the

CoLoc task. Examining the top-1 greedy generation result of “go to (location)” pre-action from

BERT-LITE (examples provided in Table 4.9), we found that the model tends to over-generate "go

to store," which was generated for 32% of the examples in CoLoc. Consequently, the generated

pre-action is not a helpful clue. When two tasks share the same location in the generated “go to”

pre-action, 70% of them are labeled as co-located, which is close to the overall class distribution.

The over-generation of "go to store" is understandable as “grocery” is one of the most frequent

list names in the WL data, and the model encountered many shopping tasks during training. If

we exclude examples with “go to store” predicted, then the ratio of co-located labels increases

to 84%, and the model’s precision, recall, F1 scores also rise to 0.875 (±0.027), 0.966 (±0.021),
0.918 (±0.016), respectively. This result is promising, indicating that more precise and richer

supervision could help a model encode more accurate knowledge and improve performance.

4.5 Related Work

Intelligent systems can assist users with task management in many ways. To-do tasks can be in-

ferred automatically from emails (Mukherjee et al., 2020). Systems can detect types of to-do items

and suggest relevant applications or resources to users (Gil et al., 2012; Landes and Di Eugenio,

2018; Shah andWhite, 2021). Once to-do tasks have been created, a system can help users manage

the completion progress, e.g., by sending reminders (Graus et al., 2016). Complex tasks can be de-

composed automatically into more manageable sub-steps (Nouri et al., 2020; Zhang et al., 2021a).

In all these use cases, a common step is to represent the input language as computational vector

representations, but none of the existing studies has produced general-purpose representations

of to-do tasks.
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Short-text Representations: Multiple NLP areas involve very short texts with some unique

characteristics. Several methods have been developed for tweets (e.g., Nguyen et al., 2020). Tweets

pose the added challenge of containing many non-standard colloquial expressions and contain

non-language text like URLs. Still, Wang et al. (2020a) present a similar finding to ours: massively

pre-trained encoders do not always perform well. Search queries are also short, with an average

of three terms (Taghavi et al., 2012). Unlike to-dos, information such as click logs (Zhang et al.,

2019) can be used as an indicator of user intent. Another key difference is that search queries are

written with the goal of having a machine interpret them.

Multi-task Learning: Multi-task learning improves the performance of pre-trained language

models in various NLP tasks (Aghajanyan et al., 2021; Liu et al., 2019a; Shuster et al., 2020). The

common perception in the research community is that auxiliary training tasks are effective when

they are similar to the target domain/task (Shui et al., 2019). However, there are few relevant tasks

and datasets for the to-do domain. Our study is the first work to propose a time- and cost-efficient

way to harvest weak-supervision for MTL in that domain.

4.6 Conclusion

This work addresses the challenge of computing general-purpose representations of short and

under-specified to-do texts for intelligent task assistance. As our analysis of user-generated data

has revealed, To-Do texts are often extremely short and lack in context that context-based repre-

sentation models can leverage. To encoding such texts, representation models need to effectively

combine task descriptions and list names and infer latent intents.

Our method, LITE, employs a multi-head attention mechanism with token type embeddings

on top of an off-the-shelf contextual text encoder for effectively inducing semantic information

from the combination of to-do descriptions and list names. The model is trained using three

auxiliary tasks: autocompletion, pre-action and goal generation, and action arguments prediction.

We applied LITE to BERTbase, BERTlarge, and RoBERTa and compared them with various baseline

models on five downstream tasks. LITE consistently outperformed the baselines, demonstrating

its effectiveness in generating semantic representations of to-do texts.
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Chapter 5

A Textual Dataset of Situated, Goal-aware
Responses

Overview

Recent data-driven conversational models have made significant progress in producing fluent,

consistent, and informative responses to a variety of requests and utterances in help-seeking sce-

narios. However, such responses often lack broader contextual understanding and proactive en-

gagement with the interlocutor, such as offering relevant suggestions to help customers achieve

their goals. This limitation arises due to the models’ inability to fully comprehend the interlocu-

tor’s situation and intent, which are typically implicit in conversations. To address this issue,

this chapter proposes a textual conversational task that is anchored by situational context. A

manually-curated dataset of 1.7k English conversation examples is presented, which includes sit-

uational background information and a set of response options. A well-designed conversation

system should be able to provide suitable responses while avoiding inappropriate ones. Achiev-

ing this objective demonstrates the system’s capacity to comprehend the request and contextual

cues. As a proof-of-concept, several response selection systems were developed and evaluated

on the new dataset. The benchmark experiments showed that this task is challenging, even for

strong neural models, indicating potential opportunities for future research. The dataset can be

used to advance the development of conversationally-informed and proactive dialogue engines.
1

5.1 Introduction

Conversational assistant systems have recently shown significant improvements for understand-

ing users’ inquiries along with background knowledge, conducting requested operations, and

1
This chapter is based on Otani et al. (2023a).
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The room temperature is hot.

Situation 1

Can you open the window?

User utterance

The room is smoky.

Situation 2

Candidate A
Sure. Shall I run the air 
purifier, too?

To cool off
The user’s Implicit goal

To air the room

System response

Candidate B

Sure. Shall I bring you cold 
water, too?

Figure 5.1: An example of situated goal-aware proactive response selection. The response candi-

date A is appropriate in Situation 1 but not in Situation 2.

returning natural language responses. Yet, typical systems are likely to be passive and only pro-

cess user-initiated requests or merely ask values for domain-specific slots (Ammari et al., 2019;

Williams et al., 2013). In contrast, human assistants like hotel concierges are more proactive, act-
ing to address unmentioned needs and expected future events (Bellini and Convert, 2016; Cho

et al., 1996). They do not only make a direct response or a clarification question to their inter-

locutors but also provide personalized information/assistance based on context and knowledge.

To push the frontier of task-oriented conversation technologies, we propose a task of proactive
response selection for single-turn help-seeking conversations in English. We mean by proactive

that a system engages in an interaction in a cooperative manner (Grice, 1975) and suggests some-

thing helpful to a user. The proposed task touches upon two crucial aspects of help-seeking

conversations: situation-awareness and goal-awareness.

Situation: Situational information plays an important role in conversations as we illustrate

in Figure 5.1. The example shows a user utterance “Can you open the window for me?” (top)

and two response candidates (bottom). Although both candidates here sound helpful, their ap-

propriateness varies depending on context: When the room is hot, suggesting a cold drink is

appropriate assistance (left), but on the other hand, if the room is smoky, then running an air

purifier is more helpful (right). Likewise, different situations make different responses more ap-

propriate. A fair amount of situational information can be perceived as visual image, sound, and

other kinds of sensory signals, and some of those are effectively incorporated into multi-modal

conversational systems (Crook et al., 2019; Kottur et al., 2019). Yet, there are many other types

of information that modern conversation assistance systems have access to, for example, via ex-

ternal APIs such as calendars and maps. In this study, we represent situation statements of six

semantic categories (location, possession, etc.) in free English texts, which are more explicit as

a semantic representation than just maintaining conversation histories (Henderson et al., 2019;

Li et al., 2017; Lowe et al., 2015) and more flexible than structured representations of limited

vocabulary (Budzianowski et al., 2018; Williams et al., 2013).
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Goal: In the aforementioned example, the two actions address two different goals associated

with opening a window, namely, to cool off and to air the room. While often being unspo-

ken, underlying goals provide important semantic connections among context and utterances

on many occasions (Allen and Perrault, 1980) particularly when language is indirect (Perrault,

1980; Stevens et al., 2015; Walker et al., 2011). We use goal information as a stimulus for soliciting

naturalistic and proactive responses from human annotators in data collection.

We introduce a new dataset of SitUatated, Goal-Aware, and proactive Responses (SUGAR;
§5.3), which contains 1,761 examples of single-turn English conversations. Each conversation

includes a user request anchored by an implicit goal, a reference response, and 12 sentences of

situational information. As a proof of concept, we perform the task of situated response selection

on SUGAR by adding two extra response candidates to each example. All responses are annotated

with three-point appropriateness ratings. This dataset can also be used to develop and evaluate

response generation systems as discussed in the next chapter.

To create SUGAR, we extracted user utterances and goals from common-sense knowledge

bases, namely ATOMIC (Sap et al., 2019) and ConceptNet (Speer et al., 2017), and collected proac-

tive responses with supporting situational context by crowdsourcing. We then used a language

generation model, COMET (Bosselut et al., 2019; Hwang et al., 2021), to generate additional sit-

uational statements. Finally, we selected two more response options for each reference response

using an adversarial method to form examples of three-choice response selection. To ensure data

quality, we performedmultiplemanual validation steps during data collection. In our experiments

on SUGAR (§5.4), Transformer-based rankers achieved over 80% precision@1 when when only

the relevant situational statements were presented. However, precision decreased when distrac-

tors were included in the input, and this trend further continued as more distractors were added

in our controlled experiments. These results suggest potential opportunities for future research.

5.2 Related Work

5.2.1 Conversational Dataset

Acquisition and annotation of real(istic) conversational data has been an essential step for de-

veloping conversation engines that imitate human communication (Serban et al., 2018). Various

datasets have been constructed with a focus on different aspects of communication.

With regard to target communicative aspects, the most relevant to our work is SIMMC (Moon

et al., 2020). SIMMCencompasses surrounding situational information that gives a basis for verbal

interactions in task-oriented scenarios in the shopping domain. Moon et al. collected visually-

grounded conversation examples from pairs of human annotators interacting with each other in

a virtual environment (Crook et al., 2019), where one annotator seeks help for shopping, and the

other provides assistance. SUGAR is also concerned with how human interlocutors perform sit-
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uated conversations in a help-seeking setting. Our work extends this direction to scenarios other

than shopping and includes more diverse types of information that modern conversational assis-

tants could access via sensors or external APIs (e.g., temperature and schedule) by representing

situational information in a textual form as opposed to visual images.

The choice of modality is motivated by existing conversational datasets that express various

kinds of background information in plain text: the persona of an interlocutor (Dinan et al., 2020;

Zhang et al., 2018), emotional states (Rashkin et al., 2019), and related documents (Dinan et al.,

2019). These examples demonstrate the utility of textual forms for representing both explicit and

implicit information of various kinds.

Some existing datasets are concerned with information-seeking conversations like restau-

rant recommendation where suggestions by assistants naturally occur (e.g., “If you like French

cuisine, how about RestaurantX?”, “I can find transportation for you.”). However, it is not triv-

ial to solicit such naturalistic proactive utterances in more diverse help-seeking scenarios. In

many cases, the minimum objective of a conversation can be achieved by responding to user-

initiated inquiries, and such kinds of responses are relatively easy to collect from non-expert

annotators (Budzianowski et al., 2018; Byrne et al., 2019; Eric et al., 2020). We address this prob-

lem by leveraging implicit goals behind user requests. The comprehension of goals in conversa-

tions has been recognized to be important not only in task-oriented dialog research but also in

a broad range of research areas such as linguistics, psychology, and artificial intelligence. (Clark

and Schaefer, 1989; Gordon and Hobbs, 2004; Rahimtoroghi et al., 2017; Schank and Abelson,

1977). Human interactions often involve indirect speech acts (Gibbs and Bryant, 2008; Perrault,

1980) and indirect responses like non-yes/no answers to polar questions (de Marneffe et al., 2009;

Hockey et al., 1997; Louis et al., 2020; Stevens et al., 2015). These studies motivate our strategy

for soliciting natural-sounding proactive responses from crowd workers.

In contrast to most datasets we introduced here, SUGAR only contains single-turn conver-

sation examples due to the ease of data collection and quality control. Yet, our primary focus is

on conversational assistance, which is likely to be completed within a few turns (Völkel et al.,

2021). Thus, we believe that single-turn examples are still useful for system development. It is

possible to extend our problem setting and data collection approach to a multi-tern setting, which

we leave as future work.

5.2.2 Response Selection

Automatic response models can be divided into two approaches: response generation and re-

sponse selection. Response generation directly generates natural language response text from

scratch, and response selection selects a response from a candidate pool built by humans, tem-

plates, or language generation systems. The latter approach is widely used in many real-world

applications cases because of the controllability of responses and the easiness of evaluation (De-

riu et al., 2020). In this study, we focus on the task of response selection as a proof of concept. We
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Figure 5.2: Pipeline for data collection. We start with existing common-sense knowledge bases

(ATOMIC and ConceptNet) and extract utterance and goal events as a seed (1). We collect re-

sponses and situation statements for each seed by crowdsourcing (2-5), acquire more situation

statements semi-automatically (6), and select distractor responses and situations to form response

selection examples (7). We finally validate the examples manually (8). Steps (2) and (3-4) are ex-

ecuted in parallel.

assume that an external response generation system generates candidates based on the system’s

functionality and focus on picking the appropriate ones. SUGAR can also be used for training

and testing generation systems on SUGAR, which is the focus of next chapter.

To train and evaluate a response selection system, each example must have distractors (nega-

tive responses), but typically, conversational datasets only contain ground truth responses. Thus,

it has been commonly practiced to pick negative responses by random sampling (Henderson et al.,

2019; Lowe et al., 2015). This approach is practically advantageous but may introduce negative

responses that are clearly off-topic or false negatives (Akama et al., 2020; Hedayatnia et al., 2022).

To alleviate this problem, we use an adversarial filtering algorithm (Bhagavatula et al., 2020; Sak-

aguchi et al., 2019; Zellers et al., 2018) to select competitive distractors and recruit crowd workers

to rate candidates, allowing each example to have multiple acceptable responses.

5.3 Task and Data

The goal of this study is to provide a resource for developing a system that can observe situational

information and return a proactive response to a user. We consider six categories of observable

situational information (Table 5.1): location (where the user is), possession (what the user has),

time, date, behavior (what the user is/was doing), and environment (temperature, etc.) We define

a proactive response to be a response that provides suggestions to help users achieve their goals.
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Category Definition Example

Location Information about [user]’s current

location.

[user] is home. / [user] is at the en-

trance of a house.

Possession Information about what [user] pos-

sesses.

[user] owns a car. / There are apples

in the kitchen.

Time Information about time. It’s midnight. / It’s morning.

Date Information about date and season. It’s [user]’s birthday. / It’s summer.

Behavior Information about [user]’s behavior. [user] just woke up. / [user] came

back from jogging.

Environment Information about non-user entities

(person, objects, etc.).

The room is hot. / [user]’s car has a

flat tire.

Table 5.1: Definitions of the situation categories.

5.3.1 Problem Formulation

Our task has five components: (1) a user utterance u, (2) situation statements S = {si}i=1,··· ,l,

where l is the number of statements, (3) responses R = {ri}i=1,··· ,m, where m is the number of

response candidates
2
, (4) their appropriateness ratings Y = {yi}i=1,··· ,m, where yi is a three-point

Likert scale, and (5) an implicit goal g. S can include distractors that are not directly relevant to

the conversation. u, S, and R are given as input, and the task is to re-rank R. Response selection

systems are trained and evaluated by Y . In this study, we set l = 12 andm = 3. Table 5.2 shows

an example.

5.3.2 Data

SUGAR contains 1,760 high-quality examples, each of which has three response candidates and

12 sentences of situational information. Table 5.3 shows the dataset statistics. We constructed

the dataset with the eight steps shown in Figure 5.2. We describe them below.
3

(1) SeedUtterance&Goal Selection: Weharvested action and goal events from two common-

sense knowledge bases, ATOMIC (Sap et al., 2019) and ConceptNet (Speer et al., 2017), where

knowledge is represented as nodes representing events or concepts and edges connecting them

with semantic relations. The collected action-goal node pairs served as the seed utterance-goal

for soliciting responses and situational statements in the following data collection steps. First,

2
Wepickm−1 responses automatically such that they are less appropriate than the reference response in a given

context (See Step 7). Nevertheless, there usually exist one or more acceptable responses to a given user utterance.

We thus annotate all acceptable responses manually (Step 8).

3
See also Appendix C.1 for technical details.
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Utterance Please turn on the TV.

Situations It is evening now.

[user] is home.

[user] is in the living room.

[user] is sitting on the couch.

[user] has a TV in the house.

[user] has an outfit on the bed.

[user] has drinks and snacks in the kitchen.

[user] has game cards on the shelf.

The TV is off.

[someone]’s birthday is today.

There are several sports games available to watch.

There is a basketball game scheduled.

Responses Sure. Would you like me to check today’s sports listings? (Best)
Sure. Shall I pour a drink and bring some snacks for the game? (Acceptable)
Sure, shall I select an outfit for you? (Bad)

Table 5.2: Response selection example in SUGAR. Each example has 12 situational statements,

some of which are distractors. [user] and [someone] are placeholders to denote person names.

we extracted nodes consisting of verb phrases (VPs) that appear at least five times within English

request phrases (e.g., Please VP, Could you VP?, etc.) in the OpenSubtitles corpus (Henderson

et al., 2019). These request expressions were also used as the surface form of u. Two of the

authors then selected 563 events that can be achieved within a reasonable time span, can be

assisted by someone else, and can be triggered by a goal. We retrieved their implicit goals g

by goal-related edges in ATOMIC and ConceptNet. Specifically, we used xNeed in the reverse

direction and xIntent in ATOMIC and HasPrerequisite in the reverse direction and

MotivatedByGoal in ConceptNet. Finally, two of the authors evaluated the node pairs and

picked 501 (u, g) pairs for which we can naturally say “I do u to achieve g.” We also merged

synonymous expressions (e.g., go to a market and go to a supermarket) into a single entry and

corrected grammatical errors and unnatural phrases.

(2) Situation Collection I: We collected situation statements in two phases to simplify anno-

tation work. The first phase focuses on u and g, and the second phase considers r in addition

to u and g. In this step, we presented a pair of u and g texts to crowd workers and instructed

them to specify situational information that is required to guess the goal based on the utterance.

For example, an implicit goal “to cool off” can be naturally inferred by situations like “The user

is home. The room temperature is hot.” We asked workers to write observable facts in the six
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u r g s

Unique sentences 380 1,738 431 4,450

Tokens 14,458 28,694 7,499 147,710

Tokens per example (mean average) 8.2 16.3 4.3 83.9

Table 5.3: Dataset statistics. The dataset contains 1,760 examples (33,794 sentences).

(a) Step 3 (Response Collection)

(b) Step 5 (Situation Collection II). The output of Step 2 is provided as an initial value.

(c) Exercise question. (This figure is for Step 3.)

Figure 5.3: Annotation interface for data creation. In addition to annotation guidelines, we pro-

vide one exercise question per task to train crowd workers. We used exercise questions in all the

crowdsourced annotation tasks in our pipeline (c).
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semantic categories (Table 5.1). For example, “The room temperature is hot.” is valid, but “The

user feels hot.” is invalid as assistance systems cannot observe the user’s feeling. We recruited

one worker for each (u, g) pair and paid $0.12 per HIT
4
(one (u, g) pair/HIT).

(3) Response Collection: In parallel to Step (2), we recruited two crowd workers for each (u,

g) pair to collect responses. The workers created at least two responses: one of the responses

accepts and the other rejects the request. We asked the workers to write a proactive response,
a response providing suggestions for goal fulfilment.

5
To solicit responses closely connected to

implicit goals rather than to domain knowledge, we instructed the workers to avoid posing a

clarification question like “Sure, I’ll turn on the air conditioner for you. Would you like it on a
high or low setting? (= clarification)” The workers were presented one u-g pair in each HIT and

were paid $0.30/HIT. Figure 5.3a shows the annotation interface for this step.

(4) Response Validation: We present the utterances, goals, and collected responses to crowd

workers and evaluated the helpfulness of the response. A response is considered to be valid if

it satisfies the following criteria: (1) the response suggests or requests something new, and (2)

the suggestion or request is helpful for achieving the goal. Each response was evaluated by three

workers. We then picked the responses that were approved by two or three workers. We call a

verified response a reference response r1 hereafter. Each HIT contains up to seven responses, and

one of them is a dummy question for evaluating crowd workers. For quality control, we filtered

out crowd workers who participated in the task twice or more and did not reach 0.75% accuracy

for the dummy questions. The workers were paid $0.18 for this task. Krippendorff’s α was 0.547.

(5) Situation Collection II: We collected situation statements from crowd workers with the

following two goals: (1) to collect situation statements that cover the reference response r1 and (2)

to verify the situation statements collected in Step (2). We presented (u, g, r1) with the statements

obtained in Step (2) and again instructed crowd workers to write observable facts. The results

of Step (2) were provided as editable initial values, and we encouraged workers to update the

texts when it is necessary. We recruited one crowd worker for each (u, g, r1) with the reward of

$0.42/HIT. Figure 5.3b shows the annotation interface for this step.

(6) Semi-automatic Situation Collection: We found that the collected situations were of-

ten under- or over-specified. We addressed this by automatic situation generation and manual

verification.

One of the authors examined all the situation statements, discarded/modified inappropriate

situations, and categorized them into six categories. We then used the cleaned and labeled texts to

4
Human Intelligence Task, a unit of task in MTurk.

5
For a response that rejects a user’s request, we instructed the workers to provide a reason for rejection (e.g., we

cannot brew coffee because we are out of coffee filters) in addition to a suggestion.
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[u]Please open the window.[g]to cool off[r]Sure, shall I bring cold water, too?

Input

[environment] The room is hot.

Output
[possession] There is bottled water in the refrigerator.

BART

( text) ( text) ( text)

(Generated text)

Figure 5.4: Example of automatic situation generation by BART (Step 6). [u], [g], and [r]
are special symbols to denote the types of the following texts. The first output token is given as

a prompt to control the semantic category of output.

Location Possession Time Date Behavior Environment

1990 3546 1083 152 1699 2793

Table 5.4: Number of situation statements (∈ S1).

fine-tune a neural sequence-to-sequence to generate more situations. Specifically, we fine-tuned

BART (Lewis et al., 2020a) trained on ATOMIC
20
20 (Hwang et al., 2021)

6
to take a concatenation of

u, g, and r1 as input and generate a text for a given situation category as illustrated in Figure 5.4.

We performed a beam search of width 3 and took top-3 generation results for each input and

relation. Finally, we manually verified the generated situations, resulting in 4,375 unique situa-

tions (6.4±1.3 statements per example). We denote the situation statements attached to (u, g, r1)

by S1. Table 5.4 shows the distribution of situation categories in SUGAR. Statements about pos-

session and environment appear most frequently, which is reasonable because such situational

information often decides actions that can be carried out (e.g., to drink coffee, coffee must be

available). The other categories are less frequent, but 64% of examples have at least one time or

date information, and 69% have a statement about behavior.

(7) Distractor Selection: The examples collected in the previous steps only contain reference

responses r1 and supporting situation statements S1. We addedm− 1 response candidates along

with their relevant situational information as distractors so that all examples have m response

candidates and l situation statements. We set m = 3 and l = 12. In this section, we describe the

high-level idea of our algorithm. Appendix C.2 presents technical details.

Distractors can be obtained by random sampling as practiced in many studies (Henderson

et al., 2019) or by advancedmethods such as adversarial filtering (Gupta et al., 2021; Li et al., 2019).

However, such approaches may introduce off-topic responses that are easy to rule out and false

6
Note that the framework of pre-training Transformermodels on common-sense knowledge bases was originally

proposed by Bosselut et al. (2019).
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Figure 5.5: Result of rating annotations (Step 8). The labels denote (the number of Bad options,

the number of Acceptable options, number of Best options). We removed one example with three

Acceptable responses (0, 3, 0) from the dataset.

negatives — acceptable responses treated as negative examples, degrading system performance

as well as reliability of evaluation (Akama et al., 2020; Hedayatnia et al., 2022).

To alleviate this problem, we combine lexical matching and adversarial filtering (Bhagavat-

ula et al., 2020; Sakaguchi et al., 2019; Zellers et al., 2018) to construct distractors and validate

them manually (see Step 8). We first created an initial dataset by a lightweight method based

on sentence embeddings and lexical matching. We then performed J = 3 rounds of adversarial

filtering. In each round, we split the dataset into K = 10 folds, and for each split, we trained a

binary logistic regression classifier that takes sentence embeddings of u, S1, and a response can-

didate. We computed sentence embeddings by SentenceTransformers (Reimers and Gurevych,

2019) with MPNet (Song et al., 2020). We used the trained classifier to identify easy distractors

and replace them with more confusing ones with respect to the score function. We sampled two

responses for each example. All response candidates in the same example have the same polarity.

Finally, we expanded S1, which only contains relevant information to u and r1, to obtain a set

of l = 12 situations S such that some of them are related to distractors but do not disqualify r1,

and statements do not contradict with each other. We again used sentence embeddings to find

topically related situational information and avoid contradiction with keyword-based heuristics.

(8) Validation: There are usuallymultiple appropriate responses in one conversational context,

and therefore, some of the challenging “distractors” picked in the previous step can be acceptable

or even more appropriate than the reference r1. To avoid introducing false negatives, we rated

all response candidates on a three-point Likert scale (Bad, Acceptable, or Best) by crowdsourcing.
We recruited three crowd workers per example with the reward of $0.25/each and asked them

to pick an appropriate response candidate (Krippendorff’s α (Krippendorff, 2006) of 0.484). We

then aggregated ratings by the statistical model proposed by Zhou et al. (2014) to obtain the final
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rating Y .
7
We discarded one example in this validation step and obtained 1861 examples with

all responses rated. Figure 5.5 shows the annotation result. As we expected, a fair number of

examples (56%) have more than one Best or Acceptable responses. One of the authors reviewed
61 examples (3.5%) where r1 was rated as Bad and fixed contradicting situational statements.

Examples without Best responses were also reviewed and revised if necessary.

5.4 Experiments

We evaluate several baseline models on SUGAR to explore two questions concerned with the

nature of the proposed task and dataset: (1) Is understanding of situational information required

to identify proactive responses in SUGAR? (2) Can standard matching-based systems capture

relevant situational information and solve the task?

5.4.1 Baselines

We evaluate a lexical-matching approach and several Transformer-based response selection sys-

tems. A variety of neural networks have been proposed for the task of response selection Tao

et al. (2021), but we opted to focus on the direct application of pre-trained Transformers rather

than equipping them with extra modules/resources. Pre-trained models have proven effective in

conversation tasks with minimal adaptation (Budzianowski and Vulić, 2019) and even achieves

the best performance in a response selection task (Han et al., 2021).

TF-IDF ranker: As the simplest approach in our evaluation, we used a lexical-matching base-

line system that ranks response candidates by cosine similarity of TF-IDF vectors of context and

a response candidate (Lowe et al., 2015). We calculated TF-IDF weights on a training split with

scikit-learn library.

Transformer ranker: Wefine-tuned and evaluated four variants of Transformer-based rankers:

1. BERT-FP (Han et al., 2021): This model is an uncased BERTbasethat underwent additional

training on the Ubuntu Dialogue Corpus (Lowe et al., 2015). The training process includes

unsupervised post-training and supervised fine-tuning. As of 2023, this model is one of the

leading systems on the Ubuntu dataset.

2. BERT (Devlin et al., 2019): We also tested an uncased BERTbasewithout the additional train-

ing of Han et al. to analyze its benefits in our task. In the experiments of Hedayatnia et al.

(2022), the BERT ranker performed similarly to BERT-FP.

7
In the first run, all candidates were rated as equally good or bad in 18 examples. We updated and re-annotated

17 examples.
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3. RoBERTa (Liu et al., 2019b): RoBERTa has the same architecture as BERT as a backbone

but was trained using improved training configurations, resulting in better performance

across multiple tasks and datasets. We used the pre-trained base model (12 layers ≈ 125M

parameters)

4. DeBERTa (He et al., 2021a,b): DeBERTa is a model that improves upon BERT and RoBERTa

by using disentangled attention mechanisms. In our experiments, we used the base De-

BERTa v3 model (12 layers ≈ 86M parameters).

Following Han et al., we encoded a concatenation of input tokens, which will be explained in the

next section, and a response option using these Transformer encoders. We then roduced a score

of the option by a logistic regression classifier that takes the last hidden state of a special token,

[CLS], at the first position in the input. Model parameters were optimized using Adam (Kingma

and Ba, 2015) to minimize the max-margin loss.

5.4.2 Experimental Setup

Input format: We concatenated context and a response candidate for the Transformer rankers.

To address our questions, we experimented with three variants of context:

1. u: Utterance (u)-only

2. u+ S1: Utterance (u) plus relevant situation (S1)

3. u+ S: Utterance (u) plus relevant and irrelevant situation (S)

Training and Test: We performed five-fold cross-validation (training:validation:test=6:2:2).
8

For each round, we trained a Transformer ranker for 10 epochs with a batch size of 32 and eval-

uated the model by nDCG@3 on the validation split every epoch. We then selected the best

checkpoint for evaluation. To stabilize training, we applied weight decay of 0.05, set the maxi-

mum gradient norm to 5.0, and used a linear learning rate scheduler with 5% (≈ 20) warm-up

steps. We further performed light-weight grid-search for hyperparameter tuning based on an av-

erage nDCG@3 score on validation splits, with learning rate ∈ {5e− 5, 1e− 5}, and margin for

the max-margin loss ∈ {1.0, 0.5, 0.1}. One epoch of training took 1-2m on GeForce GTX TITAN

X. We report the average Precision@1 and nDCG@3 on the test splits.

5.4.3 Results

The results in Table 5.5 shows the average test scores over a five-fold cross-validation. Two

general patterns can be observed: (1) the Transformer-based models, except for BERT-FP, out-

performed the TF-IDF baseline, and (2) the systems that were provided with the request utterance

8
We removed examples without Bad response options from the validation and test splits
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System Input Precision@1 nDCG@3

TF-IDF u .5993±.0223 .8377±.0042

u+ S1 .7995±.0119 .9289±.0042

u+ S .5683±.0121 .8499±.0035

BERT-FP u .6455±.0254 .8799±.0076

u+ S1 .8386±.0280 .9461±.0084

u+ S .6631±.0273 .8869±.0094

BERT u .7292±.0256 .9102±.0071

u+ S1 .8637±.0109 .9563±.0030

u+ S .7266±.0158 .9110±.0038

RoBERTa u .7178±.0273 .9055±.0097

u+ S1 .8723±.0173 .9596±.0059

u+ S .6992±.0230 .9039±.0040

DeBERTa u .7787±.0265 .9305±.0074

u+ S1 .8981±.0112 .9686±.0041

u+ S .7850±.0286 .9314±.0084

Table 5.5: Average test scores over five-fold cross-validation.

u and relevant statements S1 outperformed their counterparts with different input settings. In

regard to the key questions, the results reveal several interesting findings:

1. Comparison of two input settings u and u + S1 demonstrates that relevant situational in-

formation leads to a clear performance boost as expected (e.g., +0.13 in Precision@1 and

+0.05 in nDCG@3 with BERT).

2. The performance gain inu+S1 can be attributed to the increasedword overlaps between the

context and the correct responses, as indicated by the performance of the TF-IDF baseline.

However, with the addition of distractors in the u+ S setting, the performance of the TF-

IDF baseline dropped substantially (-0.20 in Precision@1 and -0.09 in nDCG@3). This result

suggests that our dataset effectively avoids superficial clues, highlighting the importance

of a higher-level understanding of situational context.

3. Interestingly, in the u+ S setting, the performance of Transformer rankers also decreased

significantly to the same level as their corresponding systems without situational state-

ments in the input (the u setting).

4. Additional pre-training of BERT-FP was not effective in our task, which is consistent with

the observation of Hedayatnia et al. (2022). We speculate that this is due to a domain mis-

match of training corpora. BERT-FP is pre-trained on technical topics related to Ubuntu,
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Figure 5.6: Average test scores over five-fold cross-validation with different numbers of distrac-

tors

whereas SUGAR concerns a wider range of topics in daily life.

These findings provide valuable insights into our research questions. First, the understanding

of relevant situational context helps systems select proactive responses accurately, indicating that

SUGAR is an effective resource for the development and evaluation of situated conversation sys-

tems. Secondly, it is challenging for Transformer rankers to identify useful clues from a mixture

of relevant and irrelevant situational context.

5.4.4 Robustness to Distractors

The results presented in the previous section indicate that Transformer rankers have difficulty

distinguishing relevant and irrelevant information. To explore this further, we evaluated these

rankers with varying numbers of distractors to examine if their performance continues to decline

as more distractors are added.

In this experiment, we controlled the number of distractors by creating instances with 5, 10,

and 15 distractors. Situational statements were randomly added as necessary. We trained and

tested the same response rankers following the same setup, with the exception that we fixed the

learning rate to 5e-5, which generally produced better results than 1e-5 in the main experiments.

It is important to note that the first 1-7 distractors were adversarially selected (§5.3), while the

remaining distractors were added at random.

Figure 5.6 displays the precision@1 and nDCG@3 scores of the response rankers. The per-

formance of TFIDF indicated that the addition of random distractors slightly increased the word

overlap rates between input and distractor responses, but not substentially. However, as hypoth-

esized, all systems demonstrated decreasing scores as more distractors were included. Interest-

ingly, the performance of the advanced models, RoBERTa and DeBERTa, decreased drastically as
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more distractors were added (0.87 → 0.67 for RoBERTa and 0.90 → 0.61 for DeBERTa in Pre-

cision@1). We speculate that these models are powerful but also susceptible to overfitting spu-

rious patterns between situational statements and response options, resulting in low test scores.

In contrast, the BERT-based rankers were more robust to distractors, but their absolute perfor-

mance remained low (Precision@1 of 0.73 and nDCG@3 of 0.91 for BERT). This finding highlights

the need for future work to develop models that are more robust to the inclusion of irrelevant

situational context.

5.5 Limitations

Data size: SUGAR is relatively small compared to recently published datasets. This is due to

the complexity of our problem setting and annotation pipeline. We prioritized quality over quan-

tity and performed multiple steps of manual intervention to reduce errors, false negatives, and

annotation artifacts. These problems have been reported in various NLP tasks not limited to con-

versational tasks (Akama et al., 2020; Elazar et al., 2020; Gururangan et al., 2018). Nonetheless,

our experiment has shown that pre-trained Transformer models can be trained to outperform

a TF-IDF ranker by a clear margin, which is encouraging. In addition, we could automatically

induce noisy but large-scale training instances from existing resources, for example, by harvest-

ing event pairs that can be used as u and r from event knowledge bases such as ATOMIC
20
20and

generating situation statements using our generator (§5.3).

Representation of situation information: In SUGAR, situation information is represented

in textual expressions. In real-world applications, such information could be collected via ex-

ternal APIs (e.g., calendar and map) and sensors (e.g., camera) and stored in non-textual forms.

Our study is a proof-of-concept that shows the understanding of situational information is very

important for response selection. Future research should explore ways to process situation in-

formation that is expressed in other forms of data (e.g., structured texts, numbers, images). Even

if the value is structured or images, we could transform them into textual forms as done in data-

to-text research (Miura et al., 2021; Shen et al., 2020). Besides, we acknowledge that situational

information is often under-specified in SUGAR because some information is considered to be

common-sense (e.g., a room has a door) or presupposed (e.g., “Please open the door” presupposes

that the door is closed.), and such information was not explicitly stated by human annotators dur-

ing data collection. Therefore, response selection systems should be equipped with a mechanism

to handle implicit knowledge to solve the task.

62



5.6 Conclusion and Future Work

We proposed a task of situated proactive response selection for developing and evaluating con-

versational assistants that can help users proactively in various help-seeking scenarios. We con-

structed a dataset of 1.7k examples by crowdsourcing and semi-automatic generation.

There are several interesting directions for future research. First, as shown in our experi-

ments, it is challenging to pick up relevant situational information and use it to reason about

user requests and potential assistance. To achieve this, conversational systems will need to be

equipped with world knowledge to effectively align situation information with an interaction.

One promising approach is knowledge-based response models such as graph neural networks,

which recently has shown to be effective in various NLP tasks (Zhang et al., 2020; Zhou et al.,

2022b; inter alia). Second, although we leveraged implicit goals only for soliciting proactive re-

sponses in data collection in this study, understanding of goals should be necessary for building

better conversation engines as claimed in early studies (Allen and Perrault, 1980; inter alia). We

believe SUGAR can facilitate future research in this direction.
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Chapter 6

Towards Situated Response Generation

Overview

The development of open-domain conversation systems has been advanced by a plethora of au-

tomatically or manually constructed datasets of conversations. However, most of these datasets

lack situational context information, such as time and location, that plays a crucial role in hu-

man communication. This absence of situational context can lead to an under-specification of

the problem space, resulting in undesired behavior by the system. This chapter explores the ben-

efits and challenges associated with processing contextual information. An analysis of response

generation using SUGAR and two external datasets shows that explicitly providing situational

context information enhances the coherence and specificity of generated responses. However,

further experiments reveal that generation systems struggle to distinguish relevant contextual

information from irrelevant ones, which aligns with the findings in the previous chapter. To

address this challenge, automatic filtering methods that leverage topical similarity and implicit

knowledge are evaluated. This evaluation provides valuable insights into the problem and direc-

tions for future research.
1
.

6.1 Introduction

Human communication heavily relies on information about a situation–a set of observable infor-

mation about relevant objects, their properties, and relationships in the world at a specific time

and place. Crucial information can often be implicitly assumed during a conversation, particu-

larly when it can be inferred from co-observed facts (e.g., “They are talking at the front desk in a

hotel.”) or shared a priori (e.g., “the person was staying in the hotel”).

Incorporating such information is essential for both the development and evaluation of con-

versational technologies. To illustrate this point, we show a conversation example from Daily-

1
This chapter is based on Otani et al. (2023b)

65



A: Hello. I’m leaving. Here is my key.

B: [Sytem output]

BlenderBot2: Thank you. It is very kind of you. Do you want me to lock the door?

GPT-3: Thanks. Have a safe trip.
ChatGPT: Thank you for leaving the key. Have a good day.

+They are in the hotel. A has a car and is carrying a suitcase. It is raining outside.
BlenderBot2: Sure. Do you want me to load your luggage in the car? It’s raining.

GPT-3: Thank you for staying with us. Do you need help with your luggage?

ChatGPT: Can I help you with anything, sir? Is there something you need assistance with

in your room or with your car?

Table 6.1: Responses from three systemswith andwithout situational information as input. When

the context is unknown, systems produced responses based on their made-up assumptions (top).

However, when a few statements of context are given, all the systems recognized the same sce-

nario (A is checking out of a hotel) and generated richer and more cooperative responses (bottom).

See Appendix D.1.2 for the generation setup.

Dialog (Li et al., 2017), along with responses generated by three systems: BlenderBot2 (Komeili

et al., 2022; Xu et al., 2022), GPT-3 (Brown et al., 2020), and ChatGPT (GPT-3.5) in Table 6.1.
2

DailyDialog is a widely used
3
dataset of multi-turn conversations in English. The original ex-

ample does not describe a surrounding environment explicitly, resulting in ambiguity regarding

the situation. Person A could be a traveler leaving a hotel or someone handing over their house

key, among other possibilities. The response generated by BlenderBot2 is somewhat relevant to

the latter situation but clearly inappropriate in the former. In contrast, the response generated

by GPT-3 is appropriate in the latter situation but not in other contexts. ChatGPT’s response is

neutral, though less engaging. This ambiguity underscores the fundamental problem caused by

the underspecification of the situation. The provision of situational information, such as “they are

in a hotel,” narrows down the range of ideal behaviors, which helps generation systems produce

context-specific responses and establishes a more solid standard for judging quality. This issue is

not limited to this particular dataset. Many common open-domain conversational datasets con-

tain little or no additional information besides conversation history (the Twitter dataset (Ritter

et al., 2011); DREAM (Sun et al., 2019); MuTual (Cui et al., 2020); inter alia). This task setting,

which requires systems to infer almost all information solely from previous utterances, poses

unnecessary challenges and may lead to undesired system behavior.

This chapter discusses the current state of open-domain conversational datasets concerning

2
See Appendix D.1.2 for the generation setup.

3
Based on Semantic Scholar, the dataset paper (Li et al., 2017) is cited by over 700 papers as of April 2023.
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how situations are represented (§6.2). Specifically, we consider situational statements
4
that pro-

vide partial information about immediately observable (e.g., today’s weather), commonly known

(e.g., umbrellas are often used on rainy days), or directly derivable facts related to the task,

speaker, and goals (e.g., the hotel’s check-out and a guest’s required action). Some of these ele-

ments have already been effectively integrated into modern conversational systems, particularly

for closed-domain, task-oriented dialogues. Situational information can be represented in multi-

ple ways, including formal logic and natural language statements. We argue that open-domain

conversational tasks and datasets should be equipped with some form of situational information.

Additionally, we conducted case studies on several datasets to explore the potential benefits and

challenges associated with situational information (§6.3). Our analysis indicates that distinguish-

ing between relevant and irrelevant situational information can be challenging for data-driven

response engines. To address this challenge, we evaluate automatic filtering methods that use

topical similarity and knowledge-based relevance. We demonstrate that the combination of these

two approaches achieves a ROC-AUC score of 0.82 in the situation filtering task on SUGAR, which

can lead to better response generation results.

6.2 Status Quo

In open-domain response generation tasks, systems generate responses in natural language based

on input dialog history (a list of utterances from previous turns). Dialog history often serves

as the primary, and sometimes sole, source of context information in many datasets. In this

section, we discuss how conventional task design can be improved through the explicit inclusion

of situational information.

6.2.1 Open-domain Conversational Datasets

The recent advancement of open-domain conversational technologies can be largely attributed to

the development of large-scale conversation datasets, which facilitate the training of data-driven

language generation models. However, many commonly used datasets lack crucial situational

information. Below, we provide a brief overview of representative datasets in the field.
5

Collection of naturally occuering conversation data can be costly (Godfrey et al., 1992). This

bottleneck was greatly alleviated by websites that contain naturalistic textual conversations. For

instance, millions of conversations can be scraped automatically from Twitter (Ritter et al., 2010).

Likewise, many large-scale datasets were produced from social media (Henderson et al., 2019;

Shang et al., 2015; Sordoni et al., 2015; Wang et al., 2013). While conversations on social media are

4
The situation of a conversation consists of numerous predicates that describe various aspects of surroundings.

By a situational statement, we mean a single predicate that describes part of a situation.

5
For a more comprehensive literature review, refer to survey papers on available resources (Kann et al., 2022;

Serban et al., 2017).
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essentially text chat and do not cover many of the dailylife interactions, online language learning

coursewares contain conversation examples in diverse scenarios (Cui et al., 2020; Li et al., 2017;

Sun et al., 2019). DailyDialog (Li et al., 2017) is one of the datasets built from English learning

materials and 13k multi-turn conversationswe spanning various topics and scenarios. Although

these datasets are generally large and effectively used for pre-training language models (Humeau

et al., 2020; Shuster et al., 2020), they contain only conversation history.

Some prior studies have created conversational datasets enriched with various semantic and

pragmatic features. Notably, multi-modal and task-oriented datasets generally allocate dedicated

representations for essential situational information such as physical signals (Haber et al., 2019;

Moon et al., 2020) and task-specific information or domain knowledge (Budzianowski et al., 2018),

but their coverage is limited to one or a few specialized domains. For open-domain conversation

systems, the use of focused information has been explored for improving response quality, such

as related documents (Dinan et al., 2019; Zhou et al., 2018) and user-based features such as per-

sona (Dinan et al., 2020; Majumder et al., 2020; Zhang et al., 2018), emotion (Rashkin et al., 2019),

social norms (Kim et al., 2022), and behavior (Ghosal et al., 2022; Zhou et al., 2022a). Sato et al.

(2017) explored the utilization of time information as well as user types for analyzing conver-

sations on Twitter. Though these studies demonstrate that integrating surrounding information

improves response quality in aspects such as informativeness and engagement, the scope has

been limited to specific modalities, domains, and semantic categories. Moreover, detecting cer-

tain features, like internal emotion and plans, can be non-trivial in practice. Observable situa-

tional information has received little attention. While SUGAR (Chapter 5) aims to represent such

information in free-form English texts, the available resources are limited, and it remains unclear

whether existing datasets can be extended to include situational information.

6.2.2 Necessity of Situational Information

Most importantly, the absence of situational information leads to the underspecification of the

problem space. Without knowing the situation in which an utterance is expressed, its interpreta-

tion cannot always be determined. For instance, the request “please call Pat” could mean at least

two actions: speaking to Pat in person or making a phone call.

Additionally, without sufficient knowledge of the world state, systems may produce mean-

ingless or contradictive responses even if they appear natural. In the research community, the

inconsistency within generated responses is recognized to be one of the unsolved problems (Nie

et al., 2021; Shuster et al., 2022). This problem may be attributed to the underspecified task set-

ting. As previous examples suggest, the interpretation of human communication often relies on

unspoken information. When situational information is absent, systems must assume implicit

parameters of the world state on their own, which may not always be correct. Furthermore,

training on this problem formulation may force systems to learn superficial patterns.

The challenge of evaluating conversation systems is also compounded by the broadness of
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Training Validation Test Avg. turn

SUGAR 1,214 102 25 1.0

CICERO 15,171 5,325 25 3.0

ConvAI2 16,878 1,000 25 4.7

Table 6.2: Datasets used in this study. For manual evaluation, we sampled 25 examples from the

test split of each dataset (not presented in this table).

the problem space. Previous studies have discredited the use of automatic evaluation methods in

response generation tasks (Liu et al., 2016). Although techniques such as considering multiple

reference responses may alleviate this problem to some extent (Sai et al., 2020), it remains a

significant challenge. Furthermore, even in the task of response selection, reliably evaluating

system output is non-trivial due to the potential for false negatives when confusing distractor

statements are included in the pool of candidate responses (Hedayatnia et al., 2022).

6.3 Situated Response Generation

In order to analyze the impact of incorporating situational information into response genera-

tion, we conducted an empirical analysis using two neural generation models and three English

datasets.
6

6.3.1 Datasets

We used the following English datasets.

1. SUGAR This dataset consists of single-turn conversations in different help-seeking scenar-

ios. Each example includes 12 sentences that describe situational information across six cate-

gories, including date, time, location, speaker’s behavior, environment, and speaker’s posses-

sion (§5.3). Some of the statements are irrelevant and serve as distractors. SUGAR represents

datasets that provide rich situational information.

2. CICERO (Ghosal et al., 2022): This dataset is a compilation of three datasets, including Daily-

Dialog (Li et al., 2017), MuTual (Cui et al., 2020), and DREAM (Sun et al., 2019). CICERO is an

example of conversational datasets that do not explicitly present situational information.
7

3. ConvAI2 (Dinan et al., 2020; Zhang et al., 2018): This dataset is designed for persona chats, with

each conversation featuring the speaker’s persona information in 4-5 sentences.
8
ConvAI2 is

6
The purpose of this analysis is to find out if there are any notable patterns associated with the inclusion of

situational statements rather than benchmarking response generation systems.

7
Although CICERO includes annotations of common-sense reasoning about target utterances, we did not use

them as they include unobservable facts. We only used CICERO for the pre-filtering it underwent.

8
We used revised persona statements.
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A Hi, Mike! how are you feeling now?

B How did you know I was here? is it Tom?

A Iwas talkingwith Bob yesterday and I learnt your right leg had been injured. How did it happen?

B [System output]

Generated situational statements
Person B’s leg had a surgery last night. It is afternoon now. Person A and Person B are in

the hospital. Person B injured his right leg when he was playing baseball. Person A has been

informed. Person A has a phone. Person B has a leg brace on. Person B’s leg is injured. Person

B’s leg is getting better. Person A’s car is in the parking lot.

Table 6.3: An example of generated situational statements. This conversation is taken from the

CICERO dataset. These statements represent an assumption about the situation. In practice,

situational information is perceived in some way rather than generated.

a dataset with user-based features.

We selected 25 test instances formanual evaluation from the test split of each dataset. For CICERO

and ConvAI2, which consist of multi-turn conversations, we randomly selected one target turn

from each dialogue. We chose targets of test instances the second to the fourth turn to reduce the

cognitive load during evaluation. As the test split for ConvAI2 is not publicly available, we used

its validation split as our test data and selected 1,000 examples for validation from the training

split. Table 6.2 shows the dataset sizes after our filtering process.

6.3.2 Generating Situational Statements

CICERO and ConvAI2 do not contain descriptions of situational information. We utilized a

Transformer-based generation model to automatically generate situational statements for these

datasets, which allowed us to analyze how systems could generate situated responses within a

specific context (See Appendix D.1.1 for details). Table 6.3 shows an example of generated situa-

tional statements.

To generate the situational information descriptions, we used the SUGAR dataset to fine-tune

Comet
dis

til
(West et al., 2022), which is a GPT-2-XLmodel (Radford et al., 2018) trained on common-

sense knowledge data. We concatenated a previous utterance, a response, and a reference situa-

tional statement into one sequence and trained the model to minimize a cross-entropy loss over

the situation part. We also fine-tuned another Comet
dis

til
(West et al., 2022) model without refer-

ence responses in input to avoid including the gold-standard information in testing instances. In

input sequences, each text was headed by special symbols indicating the text type: <utterance>

for an utterance, <response> for a response, and <situation category> for a situational statement.

The <situation category> symbol is one of date, time, location, behavior, environment, and pos-

session.
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Using the fine-tuned model, we added 10 situational statements to each example, including

one each for date, time, location, and behavior, and three each for environment and possession.

Finally, for quality control, one of the authors manually checked the test samples from CICERO

and ConvAI2 (25 for each) and corrected context statements when required (e.g., conflicting facts).

The reference responses were hidden during the manual verification to avoid bias. This manual

verification process ensures the quality of the test dataset in order to minimize the confusion of

annotators in the following manual evaluation of responses.

6.3.3 Setup

Systems:
1. BlenderBot2: A Transformer-based response generation model that is pre-trained on mul-

tiple conversational datasets. We used a distilled 400M-parameters model in the ParlAI li-

brary (Miller et al., 2017).

2. GPT-3: A Transformer-based causal language model that is pre-trained on a massive collec-

tion of documents. We used GPT-3-DaVinci (175B parameters) through OpenAI API. For each

dataset, we manually selected four high-quality training examples and embeded them in a

prompt.

We fine-tuned BlenderBot2 on themixture of the aforementioned datasets in amulti-task learning

setting. We up-sampled SUGAR and CICERO to balance the data sizes. To alleviate the random-

ness of system output, we trained two BlenderBot2 models with different random seeds, and for

each model, we generated one response by beam search with width 2. We obtained top-2 gener-

ations from GPT-3 with a beam width of 4. Appendix D.1.2 describes implementation details.

Evaluation: We recruited three annotators on Amazon Mechanical Turk to evaluate each re-

sponse.
9
We employed three criteria: (1) grammaticality (whether the response is grammatically

correct), (2) Coherence (whether the response is coherent and contextually appropriate), and (3)

context-specificality (whether the response is specifically relevant to the given context.) The lat-

ter two criteria were defined based on prior work (Thoppilan et al., 2022; Zhou et al., 2022a).
10

Table 6.4 shows some examples. We collected a total of 1,800 binary judgments for each criterion

in our evaluation. The inter-annotator agreement was relatively low, with a Fleiss’ kappa of 0.38,

likely due to the subjective nature of the quality assessment. The agreement for evaluating BB2

was notably low, possibly because its responses are often not fluent, making it difficult for anno-

tators to rate individual criteria. In contrast, GPT-3’s responses were fluent, resulting in a Fleiss’

9
Prior work provides multiple empirical results showing that automatic evaluation metrics are not strongly

correlated with human judgments (Deriu et al., 2022; Liu et al., 2016). Therefore, we solely rely on manual evaluation

in this study. See Appendix D.2 for details.

10
We adopted the definitions of Zhou et al. with modified terminology.
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Input Situation Response Coh. Spe.

1 Please start my car. The speaker’s car is func-

tioning.

Sure, I’ll do that right now. ✓

2 Please start my car. The speaker’s car is out of

gas.

Sure, I’ll do that right now.

3 Please start my car. The speaker’s car is out of

gas.

Sorry, but I’m afraid your car is

out of fuel. Would you like me

to call a taxi for you instead?

✓ ✓

4 Please start my car. The speaker’s car is out of

gas.

Sorry, but I can’t. Would you

like me to call a taxi for you in-

stead?

(*) ✓

5 What is the weather

like today?

It’s currently raining out-

side.

It’s sunny and warm. ✓

6 Can I get some beer,

please?

No beer is left, but wines

are available.

Yes, I’ll get it right now for you.

7 Can I get some beer,

please?

There are beer and some

snacks in the kitchen.

Yes, I’ll get it right now for you.

Would you also like me to bring

some food?

✓ ✓

Table 6.4: Examples for the coherence (denoted as Coh) and context-specificity (denoted as Spe)

ratings. ✓ means the criterion is satisfied. (*) The response is not coherent because it does not

explain why the car is unavailable.

kappa of 0.48. To minimize the impact of this variance, we calculated the final score of each re-

sponse by averaging the ratings of three annotators and manually reviewed responses with high

variance.

Evaluation: We recruited three annotators on Amazon Mechanical Turk to evaluate each re-

sponse
11
. We evaluated if the responses are grammatically correct, coherent, and context-specific.

The latter two criteria were defined based on prior work (Thoppilan et al., 2022; Zhou et al.,

2022a).
12

We collected a total of 1,800 binary judgments for each criterion in our evaluation.

The inter-annotator agreement was relatively low, with a Fleiss’ kappa of 0.38, likely due to the

11
Prior work provides multiple empirical results showing that automatic evaluation metrics are not strongly

correlated with human judgments (Deriu et al., 2022; Liu et al., 2016). Therefore, we solely rely on manual evaluation

in this study. We recruited human evaluators in Amazon Mechanical Turk. Our evaluation task does not collect any

personal information other than anonymized worker IDs and country of residence (due to our location-based worker

qualification). We decided the task reward (= $0.30/HIT) based on trial studies so that the estimated hourly rate

would reach at least $9.00.
12
We adopted the definitions of Zhou et al. with modified terminology (sensible → coherent and specific →

context-specific).

72



Figure 6.1: Evaluation criteria presented to crowd workers.

subjective nature of the quality assessment. The agreement for evaluating BlenderBot2 was no-

tably low, possibly because its responses are often not fluent, making it difficult for annotators to

rate individual criteria. In contrast, GPT-3’s responses were fluent, resulting in a Fleiss’ kappa of

0.48. To minimize the impact of this variance, we calculated the final score of each response by

averaging the ratings of three annotators.

6.3.4 Results

Figure 6.2 shows the average scores of responses. shows the average scores of responses. GPT-

3 was highly capable of generating fluent responses based on its internal assumptions about

the situations. The annotators was likely inferred the assumed situations to interpret the GPT-

3’s responses, resulting in higher ratings. In the example below, GPT-3 produced appropriate

responses regardless of the presence of situational information.

Example 1
A: “Hi, Mike! how are you feeling now?”

B: “How did you know I was here? is it Tom?”

A: “I was talking with Bob yesterday and I learnt your right leg had been injured. How did it

happen?”
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Figure 6.2: Manual evaluation results. The values displayed represent the average scores of re-

sponses in three criteria: (1) grammatical correctness, (2) coherence, and (3) specificity to the

context.

GPT-3 (Without situational information in input)

(a) “Yeah, I slipped on the stairs and I sprained my ankle.”

(b) “It was a sports accident. I was playing basketball and I sprained my ankle.”

GPT-3 (+Situation: “Person A and Person B are in the hospital.”, ..., “Person B injured his right leg when

he was playing baseball.”)

(c) “Yeah, I was playing baseball and I twisted my ankle.”

(d) “Yeah, I had a surgery last night. It happened when I was playing baseball. I’m feeling much

better now, thanks.”

On the other hand, BB2 struggled to identify generalizable patterns through fine-tuning when

situational information was not provided. This was evident in SUGAR, where only a single ut-

terance was provided as input to the system. The following example shows responses generated

by BB2.

Example 2 A: “Could you help me take a bus?”

BB2 (Without situational information in input)

(a) *“Sure. shall I book a taxi as well? I can also book a ride for you to and from work.”

(b) “Sure. would you like me to bring your bags, too? they are heavy.”

BB2 (+Situation: “The speaker has a bus schedule.” ... “There is a backpack near the desk.”)

(c) “Sure. shall I pull up your bus schedule? it will show you when the bus is coming.”
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[· · · ]
A I just have my dog, trooper.

B My wife is thinking about getting our kids a dog. What kind is yours?

A [System output]

Without context
1st: I have a border collie. He’s a great companion.

2nd: He’s a lab mix. He’s a great companion.

+A has a pet bulldog named Trooper.
1st: Trooper is a bulldog. He’s the best!
2nd: He’s a bulldog. He’s a great companion!

Table 6.5: Top-2 response generation results from GPT-3. The example was taken from CICERO.

(d) “Sure. would you like me to get your bag ready? it will go in your backpack.”

BB2 produced more coherent and context-specific responses when situational information

was explicitly provided. However, as the examples above indicate, BB2’s responses were not as

fluent as GPT-3’s, resulting in lower overall performance.

We observed that in some examples, GPT-3 selected information that was not directly relevant

to the immediate previous utterance and returned unnatural responses like the example below.

Example 3 A: “Could you help me stretch?”

GPT-3 (Without situational information in input)

“Absolutely. Letme knowwhichmuscles youwant to focus on and I can showyou some stretches.”

GPT-3 (+Situation: “The speaker is wearing a jogging suit and running shoes.”, ..., “There is a beach ball

at home.” ... “The nearest beach is open.”)

*“Of course! Let’s go to the beach and play with the beach ball while we stretch.”

Furthermore, as shown in Example 1 and Table 6.5, semantic consistency within the top-k

responses improved when more situational information is given, although this was not evaluated

in our experiments. This behavior is fundamentally rooted in the design of the task. Having

inconsistent and mutually-exclusive top-k candidates is not a problem when systems need to

ground them on nothing.

6.3.5 GPT-3’s Robustness to Distractors

GPT-3 demonstrated superior performance in response generation, but our observations suggest

that it can be misled by irrelevant situational statements (distractors) and return suboptimal re-

sponses. To further investigate the model’s robustness to distractors, we evaluated GPT-3 on

SUGAR with varying numbers of situational statements.
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Experimental Setup: Wecontrolled the number of distractors by extending the SUGARdataset,

whose examples have about six distractors. We created instances with 5, 10, and 15 distractors

by sampling statements from the whole dataset as necessary. We selected 30 examples at random

for this experiment and manually fixed contradictions within situational statements. We gener-

ated two responses for each example using GPT-3 through OpenAI’s API, employing the same

hyper-parameter setting used in the previous experiment.

Evaluation: We recruited two annotators on Amazon Mechanical Turk to evaluate each re-

sponse. Based on previous annotation results, we updated the annotation guidelines and qualifi-

cation criteria
13
, resulting in substantial agreement (Fleiss’ kappa of 0.76). We calculated average

scores for three dimensions: (1) grammaticality, (2) coherence, and (3) context-specificity.

Results: The evaluation scores of GPT-3 are presented in Figure 6.3. The grammaticality and

context-specificity of responses remained at the same level regardless of the number of distrac-

tors. On the other hand, the coherence scores exhibit a different trend. The scores are high when

no or five distractors were presented (0.86 and 0.90 for 0 and 5 distractors, respectively). As more

distractors were added, the coherence scores decreased (0.81 and 0.77 for 10 and 15 distractors,

respectively). This is exemplified by the following model outputs.

Example 4 A: “Please lock the door.”

No distractors (“The speaker is dressed in nice clothing.” ..., “The door is unlocked.”, ..., “The windows

are open.”)

“Sure, and do you want me to close the windows too?”

5 distractors (+ “The speaker has a printout titled, Interior design for beginners.”, “Person A’s doctor told

him he should lose weight.”, ...)

? “Sure, and do you need any help with the interior design project?”
14

10 distractors (+ “The speaker has laundry piled up in the room.”, “Person A has scissors in the house.”,

...)

? “Sure, and should I turn off the windows too?”

15 distractors (+ “Person A has a telescope in the house.”, “Person A owns an exercise bike.”, ...)

*“Sure, and would you like me to help you with the laundry too?”

The coherence score was relatively low (0.86) when no distractors were presented. We con-

jecture the model may have learned to copy phrases to generate responses instead of reasoning

over input texts. We found that the model’s responses tended to sound abrupt, as shown in the

following example:

Example 5 Person A: “Can you assist me with brushing my teeth?”

13
See Appendix D.2.

14
This response might be acceptable given that the speaker has a printout about interior design.
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Figure 6.3: Manual evaluation results with varying number of distractors.

No distractors (“The speaker has a dental cleaning scheduled.”, ..., “There is no more toothpaste in the

house.”)

*“Sure, I can help you get some toothpaste at the store. Would you like me to come with you?”

6.4 Situation Filtering

The empirical analysis presented so far shows that providing situational information can enhance

the quality of responses generated by response generation systems. However, it is difficult for

these systems to identify relevant information when just a small number of irrelevant statements

are provided in input. The experimental results presented in Sections 5.4.4 and 6.3.5 also indicate

that large, high-performing neural models are more likely to be misled by distractors. Addition-

ally, there is a technical limitation on the length of input that a model can handle. Situational

information can typically be obtained from various sources, and often, an excessive amount of

information is present. Humans can quickly focus on crucial information and discard the rest,

otherwise, it would take forever to read, process, and reason over surrounding information.
15

To overcome these challenges, we need to develop methods to identify the information that

is most relevant. In this section, we explore computational methods to filter out irrelevant sit-

uational statements before generating responses. We compare two distinct methods: a method

based on topical similarity and a method based on implicit knowledge. Our experiments using

SUGAR demonstrate that these methods have their own strengths, and their combination pro-

vides accurate results.

15
Researchers have identified the Frame Problem (McCarthy and Hayes, 1969) that describes the dilemma of a

reasoning system in determining which aspects of a situation change and which remain constant after an action.
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The room temperature is hot. “Can you open the window for me?”
There are cold drinks

in the refrigerator.

cool offsweat

As a result,
the person
is likely to…

The person wants to…

Because the person
wants to…

drink something cold

Requires
Because the person
wants to…

Implicit knowledge

Figure 6.4: To capture the relevance of situational context, we often require the comprehension

of implicit eventuality knowledge.

Problem Setting: The task involves an input utterance u16
and L situational statements S =

s1, · · · , sL. Each situational statement is a single sentence that is assigned a binary relevance

judgment yi ∈ {relevant, irrelevant}(i = 1, · · · , L). The goal is to rerank S so that relevant

statements are ranked higher in the output.

6.4.1 Method

We employed two distinct approaches to filter out irrelevant situational context. The first method

is based on topical similarity between the input utterance and situational statements, and the

second method relies on implicit eventuality knowledge that connects input texts.

During the development of our dataset, we found that topical similarity is highly correlated

with the relevance of situational context. For instance, if an utterance is requesting drinks (e.g.,

“Can I have some water, please?”), context about drink and food is likely relevant. Our first

approach uses sentence embeddings for detecting such similarity. We encoded the utterance u

and situational statements S by Sentence Transformers using MPNet and computed the cosine

similarity between u and each si as the score of the statement. We refer to this method as TSim

henceforth.

Topical similarity is not always sufficient for detecting relevant information. It is also im-

portant to consider other factors such as temporal/causal associations and interactions among

situational statements. For instance, consider the example utterance “Can you open the room

window for me?” and two situational statements: (s1) “The room temperature is hot” and (s2)

“There are cold drinks available in the refrigerator.” While the relevance of u and s1 may be

explained by topical similarity, s2’s relevance involves more complex multi-hop reasoning (as il-

lustrated in Figure 6.4), and the three pieces of information are mutually dependent. That is, the

relevance of u and s2 may not be obvious if s1 is absent.

To address these problems, we developed an alternative approach, KRel (a knowledge-based

relevance measure). KRel estimates the relevance of situational context based on implicit even-

tuality knowledge represented as a graph. We built the graph using the Comet
dis

til
(West et al.,

16
In our study, we follow the configuration of SUGAR and regard u as a single sentence. However, utterances

may span multiple sentnces and may consist of multiple turns of conversations.
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2022) model by generating top-K knowledge triples for input texts (u+S) up to 3 hops. We post-

processed the graph to remove language variation and errors in the generation, and discarded

knowledge nodes connected only with one input text.
17
Personalized PageRank (PPR) algorithm

was used to estimate the relevance of situational context, with the interactions among knowledge

nodes taken into account. Let us suppose we have N nodes, u corresponds to the first node, and

si ∈ S corresponds to i + 1-th node. We set the initial score and the personalization score of

node j to the following values.

PPR
(0)
j =


W−1
W

(j = 1; utterance node)
1
W
× cj−1∑L

i=1 ci
(j ∈ {2, · · · , L+ 1}; situation node)

0 (Otherwise),

(6.1)

whereW > 0 is a hyperparameter to represent the relative importance of u, and ci(≥ 0) denotes

the initial weight of i-th situational context. We set cj = 1/L. We then updated the scores until

they converge using the equation below.

PPR
(t)
j = γ

∑
k∈Nj

wk,jPPR
(t−1)
j + (1− γ)PPR

(0)
j (t = 1, 2, · · · ) (6.2)

γ ∈ [0, 1] is a damping factor, Nj is the set of nodes connected to node j, and wk,j ∈ [0, 1] is the

weight of the edge from node k to node j. We computed edge weights by a pre-trained knowledge

scorer released with Comet
dis

til
.
18
Intuitively, the PPR algorithm simulates a random walk over the

graph, starting at the node determined by PPR
(0)

and moving to another node using the graph

edges or the personalization scores. Nodes that are more likely to be visited during the walk are

assigned higher scores, which, in our case, indicates their relevance to the input texts.

Finally, we also experimented with the combination of the two methods. We first computed

scores by TSim and used them as cj in the initial and personalization scores (Equation (6.1)).

TSim’s scores were truncated into [0, 1] before being used with KRel.

6.4.2 Experiments

We evaluated TSim, KRel, and their combination on the SUGAR dataset, which contains man-

ually annotated relevance labels for situational statements. Each example contains six relevant

statements on average and 15 distractors (irrelevant statements). We randomly split the dataset

into 10% for tuning hyperparameters and 90% for evaluation. We setW = 10 and γ = 0.85.

Our results (Table 6.6) show that TSim achieved a high ROC-AUC score of 0.79, demonstrating

the effectiveness of sentence embeddings in detecting the semantic proximity of situational con-

text to the given input utterance. KRel performed slightly better than TSim when a larger knowl-

edge graph (K = 5) was used but performed worse with a smaller knowledge graph (K = 3).

17
Appendix D.3 provides technical details of this post-processing.

18https://github.com/peterwestai2/symbolic-knowledge-distillation
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TSim KRel (K = 3) KRel (K = 5) TSim + KRel (K = 3) TSim + KRel (K = 5)

ROC-AUC 0.792 0.763 0.798 0.811 0.820

Table 6.6: ROC-AUC scores of situation selection.

This is because a smaller knowledge graph results in fewer or no connections between the in-

put utterance and situational context, making PPR less effective. Finally, combining TSim and

KRel with PPR resulted in better performance than either method alone, indicating that the two

approaches have complementary strengths.

To further analyze this complementary nature of TSim and KRel, we reviewed examples with

relevance score estimated differently by the two methods. Overall, TSim tended to successfully

identify the relevance of statements with overlapping words (Table 6.7a: “Please set the table.”

and “The table has not been set yet.”). In contrast, KRel leveraged eventuality knowledge instead

of surface similarity to detect the relevance. Table 6.7b shows an example where KRel chose a

situational statement that appears to be topically distant (“The doorbell has been rung.” with

respect to the utterance “Please let [someone] in.”) using a generated knowledge path.

The doorbell has been rung.

−−−−→
xWant open a door

←−−−
xNeed let someone in

On the other hand, such informative paths are not always available for KRel. Knowledge nodes

can be disconnected due to the language variation of the generation output and contextually

related knowledge may not appear in the top-K generation outputs, especially if the input even-

tuality is associated with many eventualities in different contexts (e.g., an event “to come back

home” can be followed by many different events such as “to change clothes”, “to take a shower”,

and “to eat dinner”). These problems were mitigated by combining TSim and KRel.

These results demonstrate that filtering methods can benefit from implicit knowledge. How-

ever, KRel has a major drawback in terms of its computational complexity, making it difficult to

scale to a larger number of input texts. In our experiments, it took about 8.5 hours to generate a

knowledge graph using KRel for top-5 generation up to 3 hops on 4,621 sentences. Additionally,

the size of the knowledge graph also affects the computational cost of PPR. Therefore, future re-

search should explore more efficient methods to incorporate implicit knowledge into situational

context selection.

6.5 Discussion

Models’ internal assumptions: As discussed in Section 2, the lack of sufficient situational

information often makes the interpretation of utterances ambiguous. In such a setting, systems

need to learn to make various assumptions about the world state to produce naturally-sounding

language, which can be regarded as a form of hallucination. Responses generated in this way can

80



TSim [0.99] KRel (K = 5) [0.75] TSim+KRel (K = 5) [0.85]

1 The table has not been set yet. [user] has dishes and utensils

to set the table with.

[user] has dishes and utensils

to set the table with.

2 [user] has dishes and utensils

to set the table with.

[user] is home in the kitchen. The table has not been set yet.

3 The kitchen has a table. The table has not been set yet. [user] is home in the kitchen.

4 [user] has not had dinner yet. [user] has finished cooking

dinner.

[user] has finished cooking

dinner.

5 [user] has finished cooking

dinner.

The kitchen is dirty. The kitchen has a table.

(a) Input: “Please set the table.”’

TSim [0.93] KRel (K = 5) [1.00] TSim+KRel (K = 5) [1.00]

1 [someone] is at the front door. The doorbell has been rung. [someone] is at the front door.

2 [user] is expecting [someone]. [someone] is at the front door. The doorbell has been rung.

3 [user] has a bathtub in the

house.

[user] is home. [user] is home.

4 [user] is cooking right now. [user] is cooking right now. [user] is cooking right now.

5 [user] is home. [user] is expecting [someone]. [user] is expecting [someone].

(b) Input: “Please let [someone] in.”

Table 6.7: Examples of reranking results. Top-5 situational statements are presented. The values

in the squared parentheses denote ROC-AUC scores.

be useless in real applications, where theworld state is predetermined. Our empirical analysis also

indicates that the systems’ consistency can be improved with detailed situational information,

which is also aligned with the initial motivation of background-based conversational tasks like

persona chat.

Resource acquisition: Simple collections of textual conversations can be easily obtained at

scale from the web, but acquiring their situational information is more difficult. For example,

although conversations on Twitter may be grounded in the weather, sport events, and news on

a particular day, automatically extracting such alignments may be challenging. The connection

between utterances and related information is often obscure, and manual intervention is likely

required to obtain high-quality annotations. As a potential remedy for this challenge, we at-

tempted automatic generation of situational information in our case study. The quality of the

generated result was fair, but we needed to manually revise the test instances. Recent studies

have demonstrated promising results in inducing world knowledge from PLMs (Ghosal et al.,
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2022; West et al., 2022). The future advancement in this line of work may make it possible to

annotate existing open-domain conversation datasets with situational information in a post-hoc

manner.

Availability: Different platforms of conversational systems have access to different types of

situational information. Smart speakers may be equipped with physical sensors to observe visual

and audio information. On the other hand, virtual assistants and text-based chatbots may not

have access to such information. However, it is likely that there are some available signals that

human communicators and systems could refer to, such as approaching holidays and personal

information obtained through previous conversations. Finch et al. (2019) demonstrated that men-

tioning recent events can improve user engagement in chit-chat. Furthermore, if conversation

systems have access to the Internet, which is often the case, they can access diverse kinds of

information through external APIs. Access to APIs can also facilitate conversational assistance

with task-specific information in various domains (Liang et al., 2023).

Adequacy: When situations are taken into account, a different problem arises. Our findings

indicate that it is not straightforward to identify relevant situational information and integrate it

into a coherent response, even with just 10 situational statements. Additionally, there is a techni-

cal limitation on the length of input that a model can handle. situational information can typically

be obtained from various sources, and often, an excessive amount of information is present. Hu-

mans can quickly focus on crucial information and discard the rest, otherwise, it would take

forever to read, process, and reason over surrounding information. Researchers have identified

the Frame Problem (McCarthy and Hayes, 1969) that describes the dilemma of a reasoning system

in determining which aspects of a situation change and which remain constant after an action. To

date, there has been no satisfactory solution to this questions, making the challenge of situated

conversation an interesting open challenge.

Commonground: Knowledge about situations is closely related to common ground–the infor-

mation shared by conversation participants. Without common ground, conversation participants

would need to convey every parameter of their message, which is extremely inefficient. The im-

portance of common ground is widely recognized, and decades of dialogue research have been

devoted to developing systems that can effectively establish common groundwith their interlocu-

tors by inferring, presenting, requesting, accepting, and repairing individual beliefs about various

information through conversations (Clark, 1996; Poesio and Rieses, 2010; Traum and Allen, 1994;

inter alia). In this chapter, we did not delve into the problem of common ground, but the consider-

ation of situations, which is our main proposal, is the first step towards computational modeling

of grounding.
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6.6 Related Work

Conversation history: There is a rich line of work on how to induce useful contextual infor-

mation from conversation history, for example, by designing dedicated components for capturing

contextual information (Sankar et al., 2019; Tian et al., 2017) and using external knowledge (Young

et al., 2018; Wu et al., 2020; inter alia). While conversation history contains rich information, we

need to also incorporate situational information, which is often unspoken, and to this end, we

should think about how to design tasks and datasets.

Prompt design: Our analysis is closely related to work on in-context learning, or prompting,

with PLMs. In particular, much attention has been paid to the effective provision of demonstrative

examples (Liu et al., 2022a; Min et al., 2022; Zhao et al., 2021). This chapter discussed the problem

from a different perspective, namely what clues should be included in prompts (situations) and

how PLMs perform (misleading by distractors). Our observation regarding the latter is consistent

with priorwork that revealed the vulnerability to perturbations in input (Elazar et al., 2021; Pandia

and Ettinger, 2021). Future work should explore ways to robustly identify relevant situational

information to generate optimal responses.

6.7 Conclusion

Our main claim is that situational information, which may or may not be stated explicitly by hu-

mans, should be represented and incorporated as input in open-domain conversational tasks and

datasets in order to advance the capabilities of conversation systems. We posited that the absence

of situational information results in an underspecified problem space, causing a severe problem

for both the development and evaluation of conversation systems. Our experiments highlight

the benefits of providing context information explicitly to response generation systems, which

motivates future research on context-specific conversation systems. On the other hand, we also

showed the importance of selecting relevant situational statements, which is not a trivial problem

for systems. To this end, we developed and evaluated filtering methods based on topical similar-

ity and implicit knowledge and demonstrated that their combination achieves a high reranking

accuracy. However, the tested knowledge-based method does not scale to a large-scale problem,

and more efficient approaches should be explored in future research.

Limitations

Firstly, we did not address the fundamental challenge of determining an adequate amount of sit-
uational information. It is very difficult, if not impossible, to describe all the situations required
to perform rationale reasoning, so we need to give up somewhere, relying on the reasoning ca-

pability of NLP systems.

83



Secondly, we did not use large-scale data or conduct an extensive search for optimal hyper-

parameters and prompts (for GPT-3) in our experiments as the primary goal of this study was

to raise attentions to potential issues and benefits associated with situational informaiton. The

models may have performed better with different configurations. We did not examined the ca-

pabilities of larger PLMs in conducting situated conversations at scale. In our empirical analysis,

we opted for GPT-3 due to its transparency about technical details compared with later versions

of GPT.

Finally, while situational information can aid in the development of truthful and creative

response generation systems, it does not address well-known issues associated with conversa-

tional technologies, such as safety and bias. In fact, poorly chosen situational information may

even amplify undesired bias by linking two irelevant concepts together. To mitigate this problem,

researchers and developers should exercise caution when collecting data and carefully monitor

system output.
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Chapter 7

Represention of Cooking Procedures

Summary

This chapter focuses on the implicit knowledge of physical events and addresses the issue of pro-

cedural text understanding. Procedural texts are commonly used to describe various human activ-

ities, and automatic procedural text understanding technologies have practical applications, such

as how-to information retrieval. English cooking recipes have been widely studied in the NLP

community due to data availability of data and manageable vocabulary size. Researchers have

devised representation schemes, datasets, and systems that parse raw texts into structured se-

mantic representations. Recent neural-based models have achieved promising parsing accuracy.

However, the existing schemes are insufficient in representing common phenomena in cooking

recipes, which can mislead language understanding systems and make evaluation results ques-

tionable. An empirical analysis presented in this chapter reveals that widely used representation

schemes fail to capture essential phenomena in cooking instructions, and machine learning mod-

els trained on those schemes can learn undesired patterns. In light of these findings, this study

proposes a representation scheme based on a graph of semantic frames and construct a dataset

of 108 cooking recipes by crowdsourcing followed by manual verification. The proposed repre-

sentation scheme achieves better coverage of cooking actions than the existing schemes. We also

review existing studies and discuss directions for future research.
1

7.1 Introduction

A procedural text, which instructs people to complete a particular activity, is a widely observed

type of human communication found in a variety of areas such as cooking, engineering, and sci-

ence. Our goal is to structure procedural knowledge, described in cooking recipes, into meaning

representations that facilitate reasoning about the physical processes and states. This problem

1
This chapter is based on Otani et al. (2023c).
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has substantial implications for real-world applications such as information retrieval (Yang and

Nyberg, 2015) and personalization (Shirai and Kim, 2022; Twomey et al., 2020). Furthermore, the

task of procedural text understanding itself has received attention as an interesting sub-problem

of natural language understanding (Dalvi et al., 2018; Tandon et al., 2020; Zellers et al., 2021).

This study focuses on English cooking recipes, which exhibit many unique linguistic charac-

teristics (Culy, 1996) similar to other types of procedural texts.

Writers generally do not explicitly describe detailed information that they assume readers

can infer. Even crucial actions are often assumed implicitly when they can be deduced from the

surrounding context and common sense, as shown in the example below:

(11) Lay the dough over the tart pan and tuck the excess dough in around the edges. Brush

with some oil and bake at 390F for approx. 20 min.

In this example, the action “bake” implies that the tart pan is transferred into an oven beforehand.

Similarly, cutting actions such as “Finely dice the onions” often appear without mentioning a

location, which is typically a cutting board.

To develop systems that can analyze the semantics of procedural texts as humans do, we must

first explore how to represent underlying semantics. Researchers have designed various repre-

sentation schemes and constructed annotated datasets. The existing schemes can be categorized

into two approaches. The first approach focuses on a surface structure (Fang et al., 2022; Kulkarni

et al., 2018; Maeta et al., 2015), where text spans of semantic elements, such as actions, ingredients,

and tools, are first recognized and then connected by labeled edges to represent relationships be-

tween actions and objects. The second approach focuses on entity state tracking (Bosselut et al.,

2018; Dalvi et al., 2018; Tandon et al., 2020), which identifies entities that undergo physical state

changes at each step.

Although recent neural-based models have demonstrated impressive parsing accuracy on

these meaning representations, their performance remains below human-level accuracy. We ar-

gue that the inadequacy of a representation scheme is a contributing factor to this gap (§7.3.2).

The representations based on surface structures only model actions and entities that are explic-

itly stated in texts, although many are not. While the entity tracking approach captures implicit

information to some extent, it represents the flow of cooking processes in a very simplified way,

limiting grounding for reasoning and potentially leading machine learning systems to overfit

spurious patterns.

To address these problems, we propose extending these schemes to model action sequences,

their arguments, and underlying states based on a graph of semantic frames (§7.4). Our repre-

sentation scheme is designed to achieve a wider coverage of implicit information, including un-

mentioned actions, ingredients, tools, and physical states, with higher accuracy than prior work.

Specifically, we represent a cooking procedure by linking actions, denoted by frames, with their

participants and modeling underlying state changes that ingredients undergo at each action. The

resulting graph elucidates unmentioned actions and arguments, as well as how ingredients merge

86



and separate during the cooking process. Following prior work on entity state tracking (Bosse-

lut et al., 2018), we defined four internal physical states, including location, temperature, state

of matter, and size. As a proof-of-concept, we annotated 108 English cooking recipes using the

proposed representation scheme. The annotation result revealed the prevalence of implicit in-

formation that was not fully covered by prior work, suggesting the advantage of our scheme

in representing, acquiring, and operationalizing physical knowledge. This chapter also offers

insights into the computational models of recipe parsing for future research.

In summary, this study contributes to annotation research on cooking recipes by:

• Identifying prevalent linguistic phenomena in cooking recipes that was not addressed by

previous work.

• Proposing an extension of existing schemes to address these issues.

• Providing 108 annotated English recipes.
2

7.2 Related Work

This section provides a review of prior work on procedural text understanding.

7.2.1 Procedural Text

Procedural texts are written to explain to others how things work and how to perform actions

to achieve a specific goal. Language technologies for procedural texts have various applications

such as how-to information retrieval (Yang and Nyberg, 2015), recommendation (Twomey et al.,

2020), question answering (Bisk et al., 2019; Dalvi et al., 2018), and instruction generation (Chandu

et al., 2019; Paris et al., 2002).

English procedural texts have unique characteristics (Culy, 1996). First of all, instructions are

usually written as imperative sentences, and secondly, writers often omit essential information

that they assume readers can infer based on their knowledge and experience, and “too much

detail is often considered too verbose and unnatural” (Gerhardt, 2013). These characteristics pose

a unique challenge to standard NLP techniques.

7.2.2 Procedural Text Understanding

Different representation schemes favor different computational approaches. For SSR, many stud-

ies employ a sequential pipeline of linguistic analyzers to obtain structured output (Maeta et al.,

2015; Shirai and Kim, 2022; inter alia). In contrast, the task of state tracking can be reduced

2
A few examples are included as supplementary material for this submission. We plan to release our full anno-

tation data upon acceptance.
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to relatively simple classification problems, for which neural networks can be effectively ap-

plied (Bosselut et al., 2018; Dalvi et al., 2018; Huang et al., 2021). The comprehension of entity

states often requires world knowledge. Motivated by this observation, several knowledge-based

approaches have been proposed, such as the use of heuristic rules (Du et al., 2019; Tandon et al.,

2018) and external knowledge resources (Clark et al., 2018; Kazeminejad et al., 2021; Zhang et al.,

2021b).

Recent studies have demonstrated that PLMs can perform the task of procedural text under-

standing by prompting (Madaan et al., 2022; Spiliopoulou et al., 2022). This indicates that these

models learn physical knowledge to some extent during pre-training, and we can induce the

knowledge with the appropriate problem formulation and prompts.

7.3 What Makes Recipes Hard?

In this section, we discuss the challenges that arise in representing and analyzing cooking in-

structions. We first focus on basic linguistic analysis, then delve into knowledge representations.

7.3.1 Surface-level Challenges

English cooking instructions typically express actions using action verbs, with the participants of

the actions often marked as direct objects (e.g., “mix eggs and salt”) or prepositions (e.g. “season

with pepper”). Semantic parsing of English recipes would be straightforward if a dependency

parser worked almost perfectly as it does in newswire texts. However, English cooking recipes

exhibit unique syntactic and semantic characteristics (Malmaud et al., 2014), such as the frequent

use of imperative expressions and null core arguments. Standard NLP tools are developed mainly

for texts in the indicative mood, making parsing imperative expressions challenging.

To measure the difficulty of POS tagging and dependency parsing, two annotators with a

background in NLP manually analyzed 50 cooking recipes sampled from the NYC dataset (Bosse-

lut et al., 2018). These texts were collected by Kiddon et al. (2016) from an online recipe repository

for a recipe management software called “Now You’re Cooking”. Most of the recipes were orig-

inally sent to mailing lists of online cooking communities in the 1990s. Our 50 recipes contain

404 sentences with 4,462 tokens, with an average of 8.08 sentences per recipe.

The two annotators were first trained with the annotation guidelines of Universal Dependen-

cies v1 (Nivre et al., 2016) and performed annotation on brat (Stenetorp et al., 2012), a web-based

visual annotation tool. The annotation work primarily focused on the detection of verbs (uni-

versal POS of VERB), direct objects (dependency relation of obj), and obliques (dependency

relation of obl), as they often correspond to predicates and themes in cooking instructions. We

first ran StanfordNLP (Qi et al., 2018) to obtain initial annotations. The annotators then checked

the texts and corrected POS tags and dependency relations when necessary. The inter-annotator

agreement was measured using Cohen’s κ, which resulted in a value of 0.891. Ambiguous cases
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Prediction target P R F1

POS VERB 0.99 0.88 0.93

Dependency obj 0.92 0.83 0.87

obl 0.76 0.90 0.66

Table 7.1: The performance of StanfordNLP analyzer in the identification of verbs, direct objects,

and obliques in the 50 cooking recipes.

were discussed by the annotators in the first 10 recipes, and one of the annotators adjusted the

annotations on the rest accordingly.

Table 7.1 presents the results of manual annotation on the 50 recipes. We identified 747 verbs

in 404 sentences, with 93.3% in the imperative mood. However, the StanfordNLP tagger misclas-

sified some verbs as nouns, resulting in a recall of 0.88. This suggests that the tagger may miss 1-2

verbs per recipe. The StanfordNLP dependency parser achieved F1 scores of 0.87 and 0.66 in iden-

tifying direct objects and obliques, respectively, which are lower than typical scores for newswire

texts. Several factors account for the parser’s degraded performance. For example, 57.8% of verbs

do not have an object, meaning that action targets must be inferred based on the context in many

cases. Errors in detecting obliques can also be attributed to verb-particle phrases, such as “pour

in” not being recognized as a compound verb. Similar errors were observed by Zhang et al. (2012).

Moreover, oblique relations are often omitted, despite the fact that location changes are frequent

and important information in instructions, which is consistent with the finding of Jiang et al.

(2020) that only 17% of verbs had an argument that denotes a target location in their analysis.

Note that the extent and frequency of omissions may vary across cooking recipes of different

styles, with more casual recipes tending to omit more details Culy (1996). The NYC recipes in

our dataset are relatively casual as they were primarily written for mailing lists by non-experts.

We also observed frequent errors in sentence and word segmentation, such as “bake for approx.

3 min.” being divided into two sentences.

In addition, semantic parsing also poses several unique challenges in interpreting predicates,

arguments, and control structures (Malmaud et al., 2014; Momouchi, 1980). To examine this, the

same two annotators annotated the 50 recipes with semantic roles, particularly patient/theme

and locative. The results showed that 35.8% of predicates implicitly referred to the ingredients

mentioned in a previous sentence as an argument, requiring cross-sentence semantic analyses.

Furthermore, the referent of an implicit mention is often ambiguous, as in the example “Crack

eggs into a large bowl. Whisk well.” Implicit knowledge is required to determine that the target

of “whisk” is the eggs, not the large bowl.
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7.3.2 Representation Challenges

Researchers have proposed various representation schemes, which can be grouped into two cat-

egories: representations of surface structures and representations of entity states.

A surface-structure representation (SSR) identifies text spans that denote actions, events, in-

gredients, tools, and configurations, and connects them with labeled edges to denote predicate-

argument structures and event sequences (Kulkarni et al., 2018;Maeta et al., 2015;Mori et al., 2014;

Mysore et al., 2019; Shirai and Kim, 2022; Yamakata et al., 2020). While the resulting structures

represent the flow of processes, this approach is primarily designed for structuring information

that is explicitly stated in text. There are a few exceptions that focus on specific phenomena, such

as anaphora resolution (Jiang et al., 2020), the existence of state changes (Fang et al., 2022), and

tools (Nabizadeh et al., 2020).

The other line of work, an entity-state representation (ESR), employs intermediate representa-

tions that encode semantic information, including the type of actions, composition of ingredients,

and physical properties of ingredients. This approach, called entity state tracking, has represen-

tative datasets such as the Now You’re Cooking (NYC) dataset in a cooking domain (Bosselut

et al., 2018), the ProPara dataset in a science domain (Dalvi et al., 2018) and the OpenPI dataset

in a general domain (Tandon et al., 2020).

SSR structures only the actions, ingredients, tools, and parameters that are explicitly
stated in the instruction texts. However, many actions and entities may be implicitly as-

sumed in the texts (Culy, 1996; Gerhardt, 2013; Gil, 2015; Malmaud et al., 2014). For instance,

modifiers and combinations of verbs can express a cooking action (Donatelli et al., 2021). Con-

sider the following examples taken from different cooking recipes.

(12) Add oil and crashed garlic to the pan.

(13) Boil pennes in the saucepan with salted water.

(14) Put the tray in the oven. Take out after 8 minutes.

In Examples 12 and 13, the modifiers of nouns imply cooking actions. In Example 14, the combi-

nation of two actions “put in the oven” and “take out” suggest that the food on the tray is baked

between the two actions. Moreover, the change of location associated with common cooking ac-

tions is often implicitly assumed. In the example below, the onions are transferred to a cutting

board before being cut.

(15) Finely chop the onions.

These examples suggest the limitations of surface-level representations.

ESR falls short ofmodeling cookingflows. The ESR approach captures the entities involved

in each instruction and their physical states, which may not be explicitly stated in the text. How-
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garlic

clove

shallot salt spice paprika oil chicken

1. Mince and mash the garlic and shal-

lots to a paste with the salt.

✓ ✓ ✓

2. In a bowl stir the paste together
with the spice powder, paprika, and

the oil.

✓ ✓ ✓ ✓ ✓ ✓

3. Add the chicken. ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 7.2: A recipe containing merging actions (1, 2). In the entity-state representation scheme,

ingredients are labeled separately even after being merged (denoted by✓).

ever, due to the simplification in the representations, ESR does not accurately represent certain

prevalent actions, such as merging and separating.

1. Once entities are merged, they will undergo the same state changes afterward, but in the

ESR scheme, merged entities are analyzed separately, as denoted by ✓ in Table 7.2. The

labels assigned tomerged entities account for 31.8% of predictive targets in the development

data of the NYC dataset, making the task of entity tracking virtually easy. Just by detecting

the first occurrences of entities with heuristics and predicting them in the next steps, we

can achieve over 70% accuracy (Gupta and Durrett, 2019). Thus, accuracy scores with ESR

are likely to be inflated due to the representation of a merging action. In addition, it is

possible that data-driven models overfit the spurious pattern and do not learn generalizable

patterns.

2. In cooking recipes, it is often the case to separate one ingredient and use it in different

steps, as in the examples below:

(16) Season salmon with salt. Heat on the pan. In a large bowl, season tomatoes with

salt.

In this example, the ingredient “salt” is used twice separately, but this separation is not

accurately described in ESR, as shown in Table 7.3. This representation leads to incorrect

procedural knowledge extracted from cooking recipes (e.g., salt must be extracted from

salted salmon.).

Therefore, ESR falls short in representing the full range of cooking actions found in recipes.

7.4 Semantic Frame Graph

To address the challenges discussed in the previous section, we propose a representation scheme

for cooking recipes based on a graph of semantic frames. We define a cooking recipe as a series of
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salmon tomato salt

1. Season salmon with salt. ✓ ✓
2. Heat in the pan. ✓ ✓
3. In a bowl, season tomatoes with salt. ✓ ✓

Table 7.3: A recipe containing separation of ingredients. Salt is used for salmon and tomatoes

separately but is represented as a single entity in the entity-state scheme (denoted by ✓). Con-

sequently, the pre-location of salt in step 3 is considered to be the pan.

T sentences S = {s1, s2, · · · , sT} that instruct a reader to complete the steps required to make a

target dish. The task is to identify the cooking actions instructed in each sentence, as well as the

entities, such as ingredients, tools, and containers, that are affected by each action. We denote

the entities as E = {e1, e2, · · · , eN}.

7.4.1 Entity States

Important details are often left implicit due to the assumption that readers can guess them based

on common sense and contextual information. Such implicit comprehension includes knowledge

about a cooking action’s pre-conditions and effects. For example, the “cut” action is typically

applied to solid ingredients, and the “melt” action indicates that the input ingredient will become

liquid. Knowledge about entity states can provide crucial information to resolve semantic gaps.

we consider the following physical states to cooking processes based on prior work (Bosselut

et al., 2018; Malmaud et al., 2014; Tasse and Smith, 2008) and our preliminary annotation study.

Location: The location of an entity, which is another entity available in the cooking process

such as an ingredient or a container. One entity can have only one location value. If entities

are nested, such as a pancake placed in a baking pan inside an oven, the location points to the

inner location (i.e., the baking pan for the pancake). The location information often constitutes

the pre-conditions of actions such as a cutting board for “cut” and an oven for “bake”.

Temperature: The temperature of an entity, either “high”, “low”, or “unknown”. The change

in temperature is prevalent in cooking procedures but is often assumed implicitly.

State of matter: The state of matter of an entity, either “solid”, “liquid”, or “unknown”. As

mentioned before, some English action verbs denote the state of matter of target ingredients.

Size: The size of ingredients, either “small”, “large”, or “unknown”. Cutting actions are often

required before other actions such as “sauté”. Thus, the size of an entity provides some clue in

identifying missing arguments for those actions.
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1. Mince and mash …
into the paste …

garlic clove shallot salt spice paprika oil

a.MatterStateChange

b.Merge

garlic clovea shallota

paste

c.Merge

chicken

mixture

d.Merge mixtured

2. In a large bowl, 
stir the paste … 

bowl

lo
catio

n

bowl3

3. Add the chicken.

Frame Entities (ingredients and utensils)

Figure 7.1: The graph representation of merging actions. This example corresponds to the ex-

ample in Table 7.2. LocationChange frames for the first and second cooking instructions are not

shown in this figure for brevity.

In addition, we denotemixtures of ingredients by a binary flag. Once entities havemixed, they

will not be divided afterward in general. This information will be useful to resolve the referent

of mentions such as “the mixture”.

We intend to use these entity states as supplementary clues for identifying unmentioned ac-

tions and entities. Therefore, we opted to simplify the values of entity states.

7.4.2 Semantic Frames

We represent a cooking action using a structured representation called a frame (Fillmore et al.,

2012; Minsky, 1974) that maintains terminals (semantic elements) of an action with their roles.

We focus on four semantic roles: input, output, location, and tool. Input entities undergo changes

in their underlying physical fluency, such as temperature, size, and state of matter, and output

entities correspond to the entities after their state changes. A location entity represents where the

output entity will be afterward, and tool entities denote the tool used for performing the action.

While one sentence can evoke multiple frames, each frame fi is evoked by exactly one sen-

tence, denoted by s(i). In most existing schemes, actions are limited to ones explicitly triggered

by verbs. However, in the SFG scheme, frames can be evoked by a construction (e.g., “fold _ into”

and “bake _ in the oven” for a change of location), non-verbs (e.g., “salted water” for a merge

action), or without explicit trigger terms (e.g., a transfer action implied by “cut the onions”).

We defined six semantic frames: Merge, LocationChange, SizeChange, TemperatureChange,

MatterStateChange, and OtherChange. The first five frames are concerned with entity states that

are frequent and often essential to make a target dish. OtherChange covers miscellaneous actions

that are not vital or frequent in cooking recipes, such as tilting, reshaping, soaking, and washing.

Table 7.4 shows their definitions and examples.

We assume that each frame has different default assumptions about pre-conditions and effects.
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Frame Definition Effect Example

Merge This frame represents the com-

bination of input entities, re-

sulting in a single mixture en-

tity.

Input entities are linked

with one output entity

which is marked as

“mixed”.

“Mix milk, salt, and

pepper.”

LocationChange This frame changes the location

of entities by transferring them.

A specified location is as-

signed to the location of

output entities.

“Pour in milk,” “Sea-

son the steak with

salt and pepper.”

TemperatureChange This frame changes the temper-

ature of entities by heating or

cooling.

The temperature of out-

put entities is set to “high”

(higher than before) or

“low” (lower than before).

“Heat butter,” “Pre-

heat an oven.”

MatterStateChange This frame changes the state of

matter of entities through ac-

tions such as melting and freez-

ing.

The state of matter of

output entities are set to

“solid” or “liquid”.

“Melt butter,” “Freeze

juice in a fridge.”

SizeChange This frame changes the size

of ingredients, usually making

them smaller through cutting,

chopping, etc.

The size of output entities

is set to “small” (smaller

than before) or “large”

(larger than before).

“Cut carrots into

small pieces.”

OtherChange This frame covers various ac-

tions such as reshaping, soak-

ing, drying, washing, rotating,

and peeling.

None “Roll up the tor-

tillas,” “Wash pota-

toes well,” “Flip

the omelet,” “Peel

carrots.“

Table 7.4: Semantic Frames

For instance, SizeChange requires input entities to be solid ingredients, and LocationChange re-

quires input entities to be in places other than the destination. We can also consider more specific

subframes, such as LocationChange triggered by an action verb “pour” requiring input to be liq-

uid. We leave these extensions as future work.

We construct a directed acyclic graph of semantic frames where nodes denote frames and

entities, and edges denote the relations between frames and entities. We use three edge types to

denote frame-ingredient and frame-location, and frame-tool connections. A merge frame com-

bines the ingredient entities in input and yields one intermediate ingredient entity, but does not

merge tool entities. Frames of the other types take ingredients/tool nodes as input and yield the

same number of output nodes. The separation and repeated use of ingredients are represented

as nodes with two or more outgoing edges. This representation approach resolves the problem
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1. Season salmon
with salt.

salmon tomato salt

a.Merge

b.Temperature Change

salmona

salmonb

c.Merge tomatoc

2. Heat in the pan.

3. … season tomatoes
with salt.

Frame Entities

Figure 7.2: The graph representation of separated ingredients. This example corresponds to the

example in Table 7.3. LocationChange frames, location entities (pan and bowl), and their edges

are not shown for brevity.

Major category Minor category Recipes

Appetizers Salad, Soup 10 for each

Stew 5

Entree Burger, Wrap, Pizza, Casserole, Curry, Meatball 5 for each

Entree Sandwich, Pasta 4 for each

Side Omelette, Quiche 5 for each

Drink Smoothie 10

Dessert Cheesecake, Chocolate cake, Muffin, Custard/pudding, Ice pop 5 for each

Table 7.5: 108 recipes collected from the KitchenStories website.

with the entity-state representations, as illustrated in Figures 7.1 and 7.2.

7.5 Annotation of Cooking Recipes

As a proof-of-concept, we annotated cooking recipes using the SFG schema. This section outlines

our annotation process and results.

7.5.1 Data Collection

We collected English cooking recipes authored by professional writers from Kitchen Stories
3
, a

website that provides a variety of recipes. We selected common and diverse dishes based on

dish genres and user ratings on the website, resulting in a total of 108 recipes covering various

categories (Table 7.5). We extracted lists of ingredients and tools and instruction sentences from

3https://www.kitchenstories.com/en
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each recipe. This data is formatted using a standardized structure on the website
4
. We defined

E using the ingredient and tool lists provided in each recipe. When necessary, we supplemented

E with entities often implicitly assumed, such as water, a container, a refrigerator, and a cooling

rack. The dataset comprises 1,263 sentences and 15,198 tokens in total.
5

7.5.2 Manual Annotation

Initially, we employed crowdsourcing to identify frame types and their arguments (seeAppendix E.1

for details). Although the crowdsourced annotations were largely accurate, we found that all

annotated recipes contained a few incorrect and/or missing frames. Consequently, one of the

authors manually re-annotated the data and refined annotation guidelines through regular dis-

cussions with the other authors.
6

7.5.2.1 General Instructions

The goal of this annotation task is to collect semantic annotations of cooking instructions from

which an automatic analysis system can use to learn explicit and implicit changes of ingredients

and utensils. To this end, we aim to:

1. Identify the nature and extent of state changes in each instruction.

2. Identify the entities (ingredients and tools) that undergo each state chages.

3. Identify the specific changes in each state, including changes in temperature and location.

All changes in location, temperature, state of matter, and size should be marked by a correspond-

ing frame. For instance, if the temperature of an ingredient changes, a TemperatureChange frame

must be assigned, and TemperatureChange frames can only change temperature. For example,

“Heat butter in a pan.” includes changes in location, temperature, and state of matter. Therefore,

the following three frames are assigned to this sentence.

• LocationChange(in=butter, out=butter1, effect=pan)
• TemperatureChange(in=butter1, out=butter2, effect=pan)
• MatterStateChange(in=butter2, out=butter3, effect=pan)

7.5.2.2 Entities

Entities are ingredients, tools, and containers involved in cooking actions. In our annotation, we

use lists of ingredients and tools provided in each recipe from Kitchen Stories to define an entity

4https://schema.org/Recipe
5
We tokenized texts by spaCy (en_core_web_sm) (Honnibal et al., 2020).

6
The primary annotator is a Ph.D. student studying NLP in a university in the USA, and the other (3) authors

hold Ph.D. degrees with NLP backgrounds. All authors are fluent in English.
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list E. Some entities may not be specified in the list. In such cases, we create a new entity, as

demonstrated in the examples below.

(17) Transfer the mixture into baking tins and bake in a preheated oven at 110C/230F for ap-

prox. 40–45 min. until fully set. Then, remove from oven and let cool. (A new entity

“cooling rack” was created as the destination of the underlined LocationChange action.)

(18) In a saucepan, cook an egg in boiling water for approx. 2-3 min. (A new entity “water”

was created for the underlined LocationChange (→ a saucepan) and TemperatureChange

actions.)

Implicit ingredients are typically limited to common entities such as water and seasonings, which

can be easily determined based on context. In contrast, implicit location entities cannot always

be determined uniquely. To maintain consistency, we pre-define and use frequently observed

entities or general entities. Specifically, our vocabulary includes: container, oven, refrigerator,

cooling rack, and countertop.

We do not mark entity mentions in our annotation, as many entities, like inferred entities and

intermediate ingredients, do not have corresponding language expressions.

7.5.3 Semantic Frames

We represent intended cooking actions using frames. Each of these frames takes one or more

input entities, such as ingredients and tools, and produces corresponding output entities, which

could be either a single entity (for Merge frames only) or the same number of entities as there

are input entities.

Triggers: When cooking actions are explicitly stated, we mark a triggering expression for each

semantic frame. A triggering expression can be an action verb (e.g., heat), a phrasal verb (e.g.,

heat up), or non-verbs (e.g., melted butter, and stir _ into). In either case, we consider minimal

expressions as triggers. For example, “cool” should be marked for an expression “allow to cool”.

We intend to utilize the information of triggering expressions to facilitate knowledge acquisition

associated with language expressions. For instance, LocationChange frames triggered by the verb

“pour” are likely to take liquid ingredients as input. Future work should explore methods to auto-

matically induce this kind of knowledge and leverage it for more accurate recipe understanding.

7.5.4 Analysis

Table 7.6 displays the average number of frames per recipe.

Implicit Actions in Recipes: In all recipes, at least one action does not have an explicit men-

tion in the text. 81% of such frames involve a change of location, followed by actions such as a
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Frame Per recipe

Merge 3.32

LocationChange 10.36

TemperatureChange 3.53

MatterStateChange 1.51

SizeChange 2.65

OtherChange 1.85

Table 7.6: Average number of frames per recipe

change of size (e.g., cutting and slicing; 30%), change of temperature (e.g., baking and heating;

18%), and merging (e.g., combining and whisking; 8%). Notably, a considerable number of actions

are indicated by non-verbs, such as prepositional phrases (e.g., “In a large bowl, mix...” and “Bake

in a preheated oven.”). These results highlight the need to consider actions without linguistic

expressions or with non-verb triggers and demonstrate the benefits of our representations for

addressing this phenomenon. Table 7.7 presents some examples.

Merging Ingredients: Mixing ingredients is a common action in cooking recipes, with an av-

erage of 3.3 Merge frames per recipe. It is important to note that even if ingredients are brought

together in one location, they are not necessarily combined into a single mixture in our repre-

sentation scheme. For instance, beef stew is not a single mixture because some of its ingredients

(beef, roux, etc.) can still be identified individually, and they do not share the same states (i.e.,

beef is solid, and roux is liquid). Instead, the Merge frame represents an action that produces a

non-separable ingredient with largely shared physical states (e.g., roux, smoothie, dough). We be-

lieve that accurately representing the merge action is essential for conducting semantic analysis

based on knowledge of physical states.

Separation of Ingredients: Our annotation work revealed that the separate use of a single

ingredient is quite common in cooking recipes. In our dataset, 69% of the recipes have at least

one ingredient used separately in different steps. Most of these ingredients are seasonings such as

salt and pepper, but other types of ingredients can also be used separately, as shown in Table 7.8.

We found that many cases could be handled based on prior knowledge (i.e., seasonings are often

used multiple times) and linguistic cues such as “half of” and “remaining.” Yet, our scheme pro-

vides an opportunity to explore this important and interesting phenomenon concerning anaphora

resolution, which was not addressed in existing entity-state representations.
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Dish Cooking instructions and evoked frames for the underlined text

Pudding [...] Add milk, heavy cream, a third of the sugar, the seeds of one vanilla bean , and

a small pinch of salt to a saucepan. Bring mixture to a slight boil. Whisk together

eggs and another third of the sugar in a bowl. Now, add the hot milk mixture to

the beaten egg mixture. [...]

1. LocationChange(in=[eggs, sugar], out=[eggs1, sugar1] effect=bowl, trig-
ger=None)
2. Merge(in=[eggs1, sugar1], out=[eggmixture], effect=“mixed”, trigger=“whisk”)

Pizza [...] Discard top layer of parchment paper, transfer to a baking sheet, and bake in

preheated oven at 180c/350f for approx. 15–20 min. Spread ricotta evenly over

crust. Then, top pizza off with salmon, shrimp, pine nuts, and freshly grated

horseradish. [...]

1. LocationChange(in=[dough], out=[dough1] effect=preheated oven, trig-
ger=None)
2. TemperatureChange(in=[dough1], out=[dough2], effect=“high”, trig-

ger=“bake”)

Table 7.7: Examples of implicit actions in the KitchenStories dataset. We assigned Location-

Change frames corresponding to the implicit actions presented in this table.

7.6 Computational Instantiation

So far, we have identified the limitations of prior representation schemes and discussed how they

were addressed by the proposed representation scheme, SFG. This section discusses potential

technical instantiations of the SFG scheme.

7.6.1 Semantic Parsing

Automatic parsing of cooking recipes requires computational modeling of actions, entities, and

their states, for which the proposed representation scheme introduces some important and in-

teresting challenges. First, we must identify implicit actions and entities that may not be present

in the text. Therefore, we cannot rely solely on textual cues to compute their representations.

Second, the comprehension of merging actions often requires complex reasoning. For example,

the mixture of milk and sugar is likely to be liquid, but the mixture of milk and flour is typically

not. This problemwill be challenging for previous approaches that were built on simplified repre-

sentations. Finally, our problem subsumes the resolution of complex anaphora phenomena. This

subproblem is an open challenge for language technologies (Fang et al., 2022; Jiang et al., 2020).

Recent studies have demonstrated that pre-trained languagemodels (PLMs) learnworld knowl-
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Dish Cooking instructions

Meatballs [...] In a bowl, combine onion, garlic, ground meat, panko breadcrumbs, milk, and

half of the harissa paste. Season generously with salt and pepper. [...] Combine

bell peppers, onions, and chickpeas in a bowl, then add remaining harissa paste,

olive oil, salt, and pepper. Stir to combine. [...]

Popsicles Place some of the orange juice and sugar in saucepan and cook for approx. 5 min.

over medium-low heat until the sugar has completely dissolved. Add lemon juice

and remove from heat . Add the remaining orange juice to measuring cup along

with the sugar-juice mixture and stir. [...]

Table 7.8: Examples of ingredients that are used separately in different steps.

edge through pre-training, which can be induced for performing various language tasks with a

few or no training examples (Brown et al., 2020; Raffel et al., 2020). For procedural language

understanding, Spiliopoulou et al. (2022) demonstrated that PLMs can perform the task of state

change prediction with proper task encodings, although they still fall short of complex physical

reasoning. Furthermore, Madaan et al. (2022) revealed that PLMs trained on human-generated

computer programs can describe sequential entity state changes expressed by procedural texts in

the form of Python code. Combining PLMs with physical knowledge, such as symbolic knowl-

edge representation introduced in early studies (Forbus, 1984; Hayes, 1985), will be an interesting

direction for future research.

7.6.2 Knowledge Acquisition

While implicit knowledge can be acquired to some degree from annotated recipes and external

resources, it is difficult to fully cover the required knowledge on the first try. Knowledge bases

are often incomplete (Ilievski et al., 2021), and the range of semantic knowledge is so broad that

manual knowledge engineering takes a significant amount of time (Fillmore et al., 2012; Lenat,

1995).

A potential approach is to progressively acquire knowledge. We could discover new knowl-

edge in parsed cooking recipes. For example, suppose we know that a cutting action requires a

target object to be solid and we read an instruction like “Cut [unknown ingredient]”; then, we can
learn that the ingredient is solid. Conversely, if we encounter many sentences saying “[unknown
action] carrots/apples/beef/...”, we can deduce that the pre-condition of the action is an input in-

gredient being edible and solid. Moreover, multiple texts for the same procedure with different

information granularity levels (e.g., recipes of omelette for beginners and experts) can provide

clues for assumed knowledge more reliably.
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7.7 Conclusion

This chapter addressed the problem of meaning representations for English cooking recipes,

which has significant implications for practical applications. We discussed challenges in un-

derstanding implicit cooking knowledge and identified shortcomings in current representation

approaches. To address these limitations, we expanded existing schemes and proposed repre-

senting cooking procedures using a graph of semantic frames. Our approach captures crucial

phenomena in cooking recipes with greater accuracy and coverage compared to previous efforts.

As a proof-of-concept, we annotated 108 cooking recipes, and the results suggest that the pro-

posed scheme offers advantages in operationalizing physical knowledge for reasoning.
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Chapter 8

Conclusion

This chapter summarizes the key findings and contributions of the thesis, discusses the limitations

of the study, and suggests possible avenues for future research.

8.1 Findings and Contributions

This thesis has highlighted the benefits of incorporating implicit eventuality-centric knowledge

for enhancing our understanding of language in a more controllable and interpretable manner.

In this section, I summarize the key findings and contributions of this study.

8.1.1 Representation, Acquisition, and Incorporation of Implicit Knowl-
edge Facilitates Deeper Understanding of Language

The accuracy and coverage of language analysis greatly depends on how we define a task and

represent associated knowledge, as emphasized in Chapter 7. Ill-defined problem settings hin-

der obtaining optimal results through NLP systems and fail to capture important language phe-

nomena. Conversely, NLP systems benefit from accurate and adequate task designs in acting on

language at a higher level.

This thesis has presented several improved task designs and knowledge representations. Chap-

ter 3 demonstrates that the inclusion of basic human motives provides a domain-agnostic view of

sentiment and helps us understand why and how human sentiment is realized in various even-

tualities. Chapters 5 and 6 show that situational context in input enables systems to grasp a

high-level semantic and pragmatic understanding of a user request. Chapter 7 proposes a new

representationmethod of cooking recipes that addresses the accuracy and coverage of prior work.

These studies also introduce annotated resources to facilitate future research.
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8.1.2 The Consideration of Implicit Knowledge Leads to More Control-
lable and Interpretable Language Technologies

Effective communication between individuals would be challenging even for humans if there

were not sufficient situational context available. Consider a scenario where you receive a phone

request from an unknown person without prior knowledge of their identity or the conversation’s

purpose. In such a situation, meaningful interactions would be difficult, if not impossible, without

seeking clarifications to establish context. However, the development and evaluation of language

technologies often rely on this setting, which could be a cause of the common errors observed in

modern generative NLP systems, such as the controllability of system behavior. Chapter 6 pro-

vides empirical evidence that response generation systems generate coherent output with pro-

vided situational context, but when it is not sufficiently presented, systems can learn to improvise

contextual information, generating mutually-contradictory responses within N -best candidates.

This result highlights the importance of appropriately representing and incorporating eventuality

knowledge that is omitted from human communication.

In addition to improving controllability, implicit knowledge also enables systems to produce

more interpretable output. The human motive detection proposed in Chapter 3 provides a modu-

lar approach toward sentiment analysis, where human sentiment is decomposed into underlying

human motives, their associated eventualities and conditions (i.e., satisfied or dissatisfied). The

system output has rich implications for service and product development. Chapter 4 demon-

strates that very short, under-specified descriptions of To-Do tasks can be linked with eventual-

ity knowledge that humans are also likely to possess. Training on such supervision enables text

encoders to evaluate the similarity of To-Do tasks from the eventuality-centric viewpoint (e.g.,

judging if To-Do tasks share similar prerequisite or next actions).

8.2 Limitations and Future Directions

Finally, this section discusses the limitations of the thesis and potential opportunities for future

research.

8.2.1 Extensions to Large-scale PLMs

As discussed in Chapter 2, cutting-edge large-scale PLMs can store and utilize world knowledge

to perform various language tasks, even with no or only a few task-specific training signals. Re-

searchers are actively exploring the application of such advanced models by prompting them

to perform step-by-step reasoning (Wei et al., 2023), framing a reasoning task as the genera-

tion of programming code (Madaan et al., 2022), and feeding supplementary background knowl-

edge (Zhou et al., 2022b). These emerging techniqueswere not extensively discussed in this thesis.

However, in a nutshell, they are showing that we need to represent, acquire, and feed essential
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knowledge for making the most of pre-trained models, which aligns with the main claim of this

thesis.

Nevertheless, the opaque nature of these complex models makes it unclear whether they

ground language in world knowledge or simply reuse patterns found in training data. Further-

more, it remains unclear how and when these models use implicit knowledge to process lan-

guage. To advance the state-of-the-art in language technologies, future research should establish

systematic methods for evaluating the behavior of pre-trained language models.

8.2.2 Types of Knowledge

This thesis focuses on eventuality-centric knowledge due to its close connection to the target

applications. However, other types of knowledge also play significant roles in language process-

ing, such as knowledge specific to a certain domain or centered around entities. When certain

facts and inferences are shared and evident to participants in communication, they can constitute

implicit knowledge, regardless of the topic. Future research could explore extending the methods

presented in this thesis to other types of implicit knowledge.

Chapters 5 and 6 demonstrate that proactive conversations require knowledge about the

user’s behavior and possessions. This underlines the value of personalized knowledge, which

is a type of situational knowledge that focuses on individuals. While personalized knowledge

has already been recognized as valuable in some applications, including dialogue systems, search

engines, and recommendation systems, other NLP applications can also benefit from personal-

ized knowledge for disambiguating situated language use. In Chapter 4 we observed that users

of To-Do management apps describe To-Do tasks as a reminder for themselves, resulting in short

and under-specified texts that are often difficult to interpret without knowing the author and con-

text. While obtaining real data on personalized knowledge may be challenging due to privacy

concerns, studying language comprehension based on personalized knowledge is an important

area for future research.

8.2.3 Modality of Knowledge

Text is commonly used as the primary input modality in various NLP applications due to its

availability and flexibility in representing a wide range of information and its ease of use in

conjunction with PLMs. For this reason, this thesis has focused on textual representations of

knowledge. However, knowledge can also be efficiently represented and acquired through other

modalities such as visual images and audio. For instance, in cooking recipes, essential yet obvious

information may be explicitly observable in attached pictures, even if it is not included in the text

(e.g., “using a knife to cut vegetables”). In fact, information that can be observed from non-verbal

sources is often omitted from texts. Therefore, future research should investigate how non-verbal

contextual information can be utilized to handle semantic gaps in communication more robustly.

105



8.2.4 Common ground

In language communication, a speaker may assume that the listeners know or can easily infer

certain facts, even if the information is highly personal, specialized, or context-dependent. This

is one of the important aspects associated with the prevalence of knowledge. To handle this,

NLP systems must model how common ground is established during communication through

co-observations, clarification, and acknowledgment.

Modeling common ground computationally is a challenging task. It remains unclear whether

data-driven models can acquire the concept of common ground solely from data. Empirical anal-

yses presented in the response generation study indicated that GPT-3 may skip necessary clarifi-

cations and produce responses that sound abrupt. This result underscores the need for dedicated

processing of common ground, as implemented in modularized dialogue systems. It is also pos-

sible that other types of non-conversational NLP applications can benefit from considering the

notion of common ground.
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Appendix A

Supplementary Materials for Chapter 3

A.1 Implementation Details

We implemented baseline methods in Python and conducted experiments on a machine with

NVIDIA GeForce GTX TITAN X GPUs.

SVM: For SVM, we used the LinearSVC implementation in scikit-learn (v0.20.2). We tested the

following hyper-parameter grid on validation splits:

• Regularization: {L1, L2}

• Loss function: {Hinge loss, Squared hinge loss}

• Penalty parameter: {2−3, 2−2, 2−1, 0}

MLP: We used the AllenNLP library (v0.8.2) (Gardner et al., 2018) with PyTorch (v1.0.1) for MLP

and encoders. For all encoders, we initialized an embedding layer with 100-D pre-trained GloVe

embeddings (Pennington et al., 2014) fixed the values throughout training. We also experimented

with other embedding algorithms, but they yielded similar results. The details of the hyper-

parameter settings of the encoders are as follows:

• SWEM: No tunable hyperparameters

• CNN:

Window size: 3, 4, 5

Number of filters: picked from {50, 100}

• BiLSTM:

Number of layers: 2

Number of hidden units: picked from {50, 100}

The hyper-parameters of MLP are set as follows:
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• Number of hidden layers: 1

• Number of hidden units: picked from {50, 100, 200}

• Activation: picked from {ReLU, tanh}

• Dropout: 0.5
1

We used the Adam optimizer (Kingma and Ba, 2015) with learning rate 0.001 to optimize param-

eters. The weight decay parameter (L2 regularization) were chosen from {0, 0.1} Finally, we tuned

out-domain discounting factor λ from {2−3, 2−2, 2−1}.

Fine-tuned Transformers: We used the Transformers library to use pre-trained Transformer

models.

• Number of epochs: 10

• Batch size: picked from {32, 64}

• Learning rate: picked from {5e-5, 1e-5}

• Number of hidden units of the classifier: the same as the hidden units of each Transformer

model (e.g., 768 for BERTbase)

For other hyperparameters such as a dropout rate, we folloed the setting of each PLM. We opti-

mzied model parameters by Adam and performed early stopping based on a validation score.

GPT-3: We provided GPT-3 with a prompt through OpenAI’s API and generated results. For

each input sentence, we retrieved similar example sentences in terms of cosine similarity sen-

tence embeddings so that each of the six motive labels has at least one example sentence. We

computed sentence embeddings through Sentence-Transformer (Reimers and Gurevych, 2019)

with MPNet (Song et al., 2020), whose dimension is 768. Table A.1 and Table A.2 show the prompt

for performing motive detection (§3.4) and motive-based sentiment analysis (§3.5), respectively.

1
The same dropout rate was applied to LSTM encoder.
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Read a sentence from a restaurant reviewwebsite and identify relevant basic humanmotives.

We have six human motive categories.

1. Self-fulfill: A motive for finding meaning in life, feeling satisfied with one’s life, being

entertained, and exploring a new thing.

2. Appreciating Beauty: Amotive for enjoying fine design/natural beauty and being creative.

3. Social Relation: A motive for being treated well by others and belonging to a social group.

4. Health: A motive for being physically healthy.

5. Ambition & Ability: A motive for being competent/knowledgeable, keeping things in

order, and being efficient.

6. Finance: A motive for saving money and getting things worth the financial cost.

Review sentence: "this place had ALL the trimmings and i mean all."

Consider the following human motives: Self-fulfill, Appreciating Beauty, Social Relation,

Health, Ambition & Ability, Finance. Which motives are relevant?: Self-fulfill

Review sentence: "Over all it was a very nice romantic place ."

Consider the following human motives: Self-fulfill, Appreciating Beauty, Social Relation,

Health, Ambition & Ability, Finance. Which motives are relevant?: Self-fulfill, Appreciating

Beauty

· · ·

Review sentence: "I thought this place was totally overrated."

Consider the following human motives: Self-fulfill, Appreciating Beauty, Social Relation,

Health, Ambition &Ability, Finance. Whichmotives are relevant?: [GPT-3 generates
text starting here.]

Table A.1: Prompt for motive detection using GPT-3
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Please extract the underlying human motive(s), relevant goal(s), and whether the goals are

met from the following restaurant review text.

Text: "Ess-A-Bagel is by far the best bagel in NY."

Motive: (1) A motive for finding meaning in life and feeling satisfied with one’s life.

Goal: (1) Having tasty bagels.

Result: (1) Satisfied.

Text: "A beautifully designed dreamy restaurant."

Motive: (1) A motive for enjoying fine design/natural beauty and being creative.

Goal: (1) Having a meal at a restaurant with a nice interior design.

Result: (1) Satisfied.

Text: "The service was a bit slow, but everyone was cheerfully cooperative."

Motive: (1) Amotive for being competent/knowledgeable, keeping things in order, and being

efficient. (2) A motive for being treated well by others and belonging to a social group.

Goal: (1) Having prompt service. (1) Being treated friendly by a waiter/waitress.

Result: (1) Dissatisfied. (2) Satisfied.

· · ·

Text: "The food here is rather good, but only if you like to wait for it."

Motive: (1) A motive for finding meaning in life and feeling satisfied with one’s life. (2) A

motive for being competent/knowledgeable, keeping things in order, and being efficient.

Goal:(1)[GPT-3 generates text starting here.]

Table A.2: Prompt for motive-based sentiment analsyis using GPT-3. The motive labels were gen-

erated by GPT-3 in a different prompt (Table A.1) and then converted into language expressions

through templates before being used in this process.
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Appendix B

Supplementary Materials for Chapter 4

B.1 Ethical Considerations

The proprietary Wunderlist data was anonymized and personally identifiable information was

scrubbed. Names were replaced by random names. In addition, k-anonymization was performed

on the data so that tasks that were created by fewer than five users or fewer than 100 times in

total were automatically discarded. The result is an aggregate view of the logs, devoid of any

identifiers, private information or infrequent tasks that can be correlated back to a user. The data

cleaning process was approved by an internal legal review board before the data was cleared for

internal use. None of the internal data has been exposed to the public throughout this study, and

the example texts presented in Chapter 4 were created by the authors.

Although the proposed method is not specifically designed for English, it will require signif-

icant cost to deliver the outcome to other languages due to the dependence on English resources

(knowledge bases used for training COMET and English FrameNet).

As LITE is essentially built on pre-trained language models, biases existing in the original

language models can still remain in the final model (e.g., biased associations between gender and

actions). We did not observe any undesired associations caused by themodels in our experiments,

but it may be required to monitor biases and apply debiasing techniques before deploying the

model to production systems.

B.2 Templates for Autocompletion Data

We used 312 hand-crafted templates for collecting the autocompletion data. We first created

templates for common nouns used in list names such as today, monday, mom, home. We then

used a publicly available dataset
1
to mine list names that represent company names like “costco”

and “target”. We show representative examples in Table B.1.

1
kaggle.com/peopledatalabssf/free-7-million-company-dataset/version/1
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list name Expansion

<date> (description) on <date>
<shop> (description w/ verb) at <shop>

buy (description w/o verb) at <shop>
netflix watch (description w/ verb) on netflix
mom (description) for mom

Table B.1: Examples of the templates used to generate autocompletion data. Tokens added by the

templates are denoted in bold (<date>=monday, tuesday, weekend, · · · , <shop>=costco, whole-
foods, · · · , etc.)

UITF1 ATAcc CoLF1 CoTF1 IDAcc

None .860 .900 .860 .443 .676

Input .851 .923 .856 .448 .670

Intent ext. .856 .929 .863 .453 .714

Table B.2: Best validation scores with different type embedding settings: no token-type embed-

dings, injection into the input layer, and injection into the intent extractor. The models were

trained on a 500k subset of the Wunderlist dataset.

B.3 Architecture Search

We present the validation scores with different architectural choices in Table B.2 (how to inject

type embeddings) and Table B.3 (number of attention heads in the intent extractor). We used

BERTbaseas the base text encoder and trained BERT-LITE on 500k samples of our dataset.

B.4 Additional Baseline Results

In this section, we present experimental results with the following additional baselines:

GPT-2 (Radford et al., 2018): We take the average of the last hidden states to represent an

input sequence as we do for RoBERTa. Unlike BERT and RoBERTa, GPT-2 is a unidirectional

encoder.

Sentence-MPNet: MPNet is a Transformer-based pre-trained language model that is reported

to outperformBERT and RoBERTa (Song et al., 2020). Sentence-Transformer (Reimers andGurevych,

2019) based on MPNet (Sentence-MPNet) is trained on 1.2B sentences from various tasks and is

considered to be the best-quality general-purpose encoder (Reimers, 2021).
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UITF1 ATAcc CoLF1 CoTF1 IDAcc

1 .857 .893 .856 .446 .650

4 .862 .925 .862 .450 .700

8 .860 .923 .862 .447 .740
12 .856 .929 .863 .453 .714

Table B.3: Best validation scores with different numbers of attention heads (T ). The models were

trained on a 500k subset of the Wunderlist dataset.

UIT AT CoL CoT ID
Prec. Rec. F1 Acc. Prec. Rec. F1 Prec. Rec. F1 Acc.

GPT-2 .845 .803 .823 .908 .805 .907 .853 .501 .353 .414 .544

Sentence-MPNet .865 .834 .849 .919 .798 .924 .856 .499 .386 .435 .654

word2vec .856 .804 .829 .789 .780 .925 .846 .493 .284 .360 .628

word2vec-DA .857 .816 .835 .805 .798 .896 .844 .506 .279 .360 .604

fastText .856 .816 .835 .797 .780 .923 .845 .492 .282 .358 .678

BERT-LITE .871 .855 .863 .932 .826 .901 .862 .511 .409 .454 .670

RoBERTa-LITE .871 .847 .859 .919 .826 .905 .864 .509 .402 .449 .674

BERTlarge-LITE .863 .849 .855 .936 .830 .907 .867 .516 .441 .475 .718

Table B.4: Performance of additional baseline models and LITE (from Table 4.5) on downstream

applications. The overall best scores are denoted in underlines.

word2vec and fastText: Unlike the other baseline encoders, word2vec (Mikolov et al., 2013)

and fastText (Bojanowski et al., 2017) do not contextualize embeddings. We use a 300D word2vec

model trained onGoogleNews 100B and extend it byMagnitude (Patel et al., 2018) for OOVwords.

For fastText, we use a 300Dmodel trained on CommonCrawl 2M.We also train a word2vec model

from scratch on the same texts without special tokens as the domain-adapted version (DA).

Results (Table B.4): GPT-2 performed worse than BERT and RoBERTa. Sentence-MPNet is

trained with a huge amount of additional training data but still under-performs LITE. word2vec

and fastText performed similarly and outperform vanilla BERT and RoBERTa on UIT and ID. The

two datasets do not provide list names as input and have fewer data points than the other datasets.

Thus, we conjecture that (1) there is not enough word context that vanilla BERT and RoBERTa

can leverage and (2) the dimension of embeddings is too high for a classifier to find generalizable

patterns from a small amount of data.
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UIT AT CoLoc CoTim ID
Prec. Rec. F1 Acc. Prec. Rec. F1 Prec. Rec. F1 Acc.

BERT .828 .840 .833 .938 .898 .942 .919 .542 .608 .563 .320

RoBERTa .849 .859 .853 .940 .864 .952 .905 .411 .432 .384 .288

Table B.5: Result of in-dataset fine-tuning.

B.5 Implementation Details of Baselines

We implemented the baseline encoders with the following libraries.

Transformers: We used Huggingface’s transformers library (Wolf et al., 2020) to run

pre-trained Transformer models.

Sentence Transformers: We use the Sentence-BERT library (Reimers and Gurevych, 2019)
2

to run pre-trained sentence encoders. We used the following pre-trained models:

BERT: roberta-base-nli-stsb-mean-tokens3

RoBERTa: roberta-base-nli-stsb-mean-tokens4

MPNet: all-mpnet-base-v25

B.6 Fine-tuning BERT and RoBERTa

We present the performance of BERT and RoBERTa fine-tuned on downstream datasets. Note

that our main goal is to train a general-purpose encoder that does not need to be re-trained for

each downstream task as we describe in §B.5. We aim to answer the following two hypothetical

questions.

Q1 (In-dataset fine-tuning): How well could BERT and RoBERTa perform if they were fine-

tuned on the target dataset? This approach is commonly practiced for task-specific repre-
sentations (Devlin et al., 2019).

Q2 (Cross-dataset fine-tuning): How well could BERT and RoBERTa perform on the target

dataset if they were fine-tuned on another dataset? (Were the fine-tuned encoders gener-

alizable to multiple to-do datasets?)

2
www.sbert.net/

3
huggingface.co/sentence-transformers/bert-base-nli-stsb-mean-tokens

4
huggingface.co/sentence-transformers/roberta-base-nli-stsb-mean-tokens

5
huggingface.co/sentence-transformers/all-mpnet-base-v2
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→Test

↓Train UIT AT CoLoc CoTim ID

UIT .833 .638 .793 .394 .110

AT .604 .938 .801 .405 .134

CoLoc .497 .560 .919 .394 .116

CoTim .325 .512 .814 .563 .148

ID .362 .541 .782 .394 .320

LITE .863 .932 .862 .454 .670

(a) BERTbase

→Test

↓Train UIT AT CoLoc CoTim ID

UIT .853 .645 .793 .373 .112

AT .536 .940 .798 .372 .110

CoLoc .412 .570 .905 .328 .104

CoTim .276 .513 .823 .384 .106

ID .359 .509 .796 .360 .288

LITE .859 .919 .864 .449 .674

(b) RoBERTabase

Table B.6: Test performance of fine-tuned BERT and RoBERTa. The diagonal cells show the

performance of the models trained with the in-dataset fine-tuning setting.

Setup: We fine-tune and evaluate BERTbase and RoBERTabase models on the 20 random splits

used in the main experiments. We follow Devlin et al. (2019) and add a linear classification layer

that takes in the final hidden state of the first token ([CLS] token). For fine-tuning, the encoder

and classifier are trained to optimize a binary cross entropy loss (UIT, CoLoc, and CoTim) or a

cross entropy loss (ID and AT). We use the same optimization configurations described in §B.5.

We continue training for 5 epochs and take the checkpoint that achieves the best validation score.

For the cross-dataset experiment, we initialize the encoder with the fine-tuned parameters and

freeze it during training. We use the same optimization settings except that we set a learning rate

to 0.001.

A1 (TableB.5): As expected, the fine-tunedmodels perform better than LITE on several datasets

(AT, CoLoc, and CoTim with BERT, and AT with RoBERTa). When the main goal is to build task-

specific representations, and there is a sufficiently large training dataset, task-specific fine-tuning

will be a better solution than LITE. However, the result shows the fine-tuned models do not al-
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ways outperform LITE. We conjecture that for datasets without a sufficient number of training

instances like UIT and AT, a fine-tuning strategy is not very effective.

A2 (Table B.6): Performance consistently drops when the encoders are trained on another

dataset, and all the scores are far below those of BERT/RoBERTa-LITE. This result indicates that

LITE is more effective for training generalizable encoders than fine-tuning on a single dataset.
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Appendix C

Supplementary Materials for Chapter 5

C.1 Manual Annotation

We recruited non-expert crowd workers in Mturk in annotation steps (2-5). In all steps, crowd

workers were required tomeet the following qualification requirements: (i) Their number of tasks

approved≥ 5k, (ii) the task approval rate≥ 99%, (iii) their location is the US, and (iv) they answer

an exercise question correctly.

Two of the authors were involved in the annotation steps (1), (4), (5), and (8). They are ESL

with a degree in computer science from a school in the US (one holds a master’s degree, and the

other holds a Ph.D.). They all have backgrounds in NLP/CL research.

C.2 Distractor Selection

This section presents the technical details of the distractor selection method (Step 7). Below, tun-

able parameters like thresholds on scores and the number of iterations were empirically selected

based on several pilot runs.

C.2.1 Response Selection

Our method selects distractor responses from all the responses in the dataset in two steps: We

first create an initial dataset by a light-weight method (Algorithm 1) and then perform adversarial

filtering (Algorithm 2).

First Step (Algorithm 1)

The objective of the first step is to avoid including false-negative responses (Lines 3-6). We discard

responses that are too similar to r1 in terms of the overlap coefficient of content words (noun,
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Algorithm 1 Create an initial dataset by light-weight filtering

Input: m, Dataset D = {(u(i), g(i), r
(i)
1 , S

(i)
1 )}i=1,··· ,N , ▷ N := num. of examples in the dataset.

Output: D′ = {(u(i), g(i), R(i), S
(i)
1 )}i=1,··· ,N ▷ R(i) := {r(i)1 , · · · , r(i)m } ▷ Initial dataset

1: function InitDataset(m,D)
2: D′ ← ∅
3: for i : 1..N do
4: P ← {r(j)1 }j=i,··· ,i−1,i+1,··· ,N ▷ All the responses in D but r

(i)
1

5: # (1) Remove too similar responses
6: for j : 1..N do
7: if i=j then
8: continue
9: if Overlap(u(i), u(j)) ≥ 0.75 or Overlap(g(i), g(j)) ≥ 0.75

or EmbSim(u
(i)
1 , r

(j)
1 ) ≥ 0.5) then

10: Remove r
(j)
1 from P

11: # (2) Pick m− 1 similar responses
12: R(i) ← {r(i)1 }
13: for j : 1..m− 1 do
14: Sample r ∈ P
15: Add r to R(i)

16: # (3) Remove similar responses from the pool
17: for all r′ ∈ P do
18: if Overlap(r, r′) ≥ 0.75 then
19: Remove r′ from P
20: Add (u(i), g(i), R(i), S

(i)
1 ) to D′

21: return D′

verb, adjective, and adverb).

Overlap(x, y) =
|CW(x) ∩ CW(y)|

min (|CW(x)|, |CW(y)|) ,
(C.1)

where CW(x) is a set of content words in x. We set the threshold of overlap coefficient to 0.75.

We use the same constraint on their goal texts. We also measure their closeness by the cosine

similarity of their sentence embeddings (denoted as EmbSim) and discard candidates whose sim-

ilarity is 0.5 or higher. We then sample m− 1 responses from this filtered response pool one by

one (Lines 11-15). To diversify response options, we remove similar responses to the picked one

from the pool based on overlap coefficient (Line 16-19).
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Algorithm 2 Adversarial filtering (AF) for R

Input: m, Dataset D = {(u(i), g(i), r
(i)
1 , S

(i)
1 )}i=1,··· ,N , ▷ N := number of examples in the

dataset.

Output: D′ = {(u(i), g(i), R(i), S
(i)
1 )}i=1,··· ,N ▷ R(i) := {r(i)1 , · · · , r(i)m }

1: P ← {(r0)i} ▷ All responses in D
2: (1) Create an initial dataset D0

3: D0 ← InitDataset(m,D) ▷ See Algorithm 1

4: (2) Run AF for J rounds
5: for j : 1..J do ▷We set J = 3

6: Split Dj−1 into K-folds {(T k,Vk)}k=1,··· ,K ▷We set K = 10

7: for k : 1..K do
8: Train a binary logistic regression classifierM on T k

9: for all (u, g, R, S1) ∈ Vk do
10: for all r ∈ R \ {r1} do
11: (f :M’s score function)

12: if f(r) + γ ≤ f(r1) then ▷ γ is a margin, which we set to 0.05.

13: Remove r from R

14: Pick r′ s.t. f(r′)− γ > f(r1)

15: Add r′ to R

16: Update Vk
with the new R

17: Dj ←
⋃K

k=1 Vk
18: D′ ← DK ▷ End

Second Step (Algorithm 2)

We then perform J = 3 rounds of adversarial filtering. Our method is a slightly modified version

of the algorithm used by Bhagavatula et al. (2020). In each round, we split the dataset into K =

10 folds (Line 6), and for each split, we train a binary logistic regression classifier that takes

sentence embeddings of u, S1, and a response candidate r ∈ R (Line 8). We pre-compute their

sentence embeddings with the pre-trained SentenceTransformers (Reimers and Gurevych, 2019)

with MPNet (Song et al., 2020). Once the classifier is trained, we score response candidates in

each example and identify distractors whose scores are lower than that of the reference response

r1 plus a margin γ = 0.05. We replace these easy distractors with more confusing ones (Line

14-16). In this way, we repeatedly update the dataset (Line 17) and output the final result (Line

18).
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C.2.2 Situation Selection

Next, we update S1, which only contains relevant information to u and r1, to include l statements

in total such that some of them are associated with distractors or not directly related to the con-

versation. Otherwise, reference responses can be easily identified by superficial clues. Having

irrelevant situation statements is also for simulating real use cases, where a conversational sys-

tem has access to a wide range of sensory information or external APIs, but most of them are

unimportant for addressing a user’s request.

It is required that (a) additional situation statements do not disqualify the reference response,

and (b) they do not contradict others. To this end, we again use sentence embeddings with

keyword-based heuristics. We first combine the statements associated with distractor responses

and create a pool of candidates. Here, we drop statements that are similar to the response candi-

dates in terms of the overlap coefficient of content words with a threshold of 0.75. We also used

manually defined keywords to discard situation statements that tend to contradict others (e.g.,

the time is midnight, the user is injured, etc.). We then iterate over six categories and pick situa-

tion statements from the pool one by one. We score statement s of category c using the function

below:

f(s;R, S ′) = max
r∈R

EmbSim(s, r)− max
s′∈S′

c

EmbSim(s, s′)− 1

2
max

s′∈S′C\{c}
EmbSim(s, s′), (C.2)

where S ′
is the current situation statements, S ′

c ⊂ S ′
represents the statements in S of category

c, and C denotes a set of situation categories. We pick distractor statements until we exhaust all

the candidates in the pool or the maximum score does not reach 0. We then draw statements

from the entire dataset in the same way until |S| reaches l = 12. For time, date, behavior, and

location categories, we pick zero or one statement as those categories are not likely to have more

than one value.
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Appendix D

Supplementary Materials for Chapter 6

D.1 Implementation Details

Throughout the experiments, we used the models implemented in Python 3.8 with PyTorch

v1.13.1 (Paszke et al., 2019) and the Transformers library (Wolf et al., 2020). We preprocessed

texts by spaCy
1
(en-core-web-sm model) and NLTK

2
. Our tools and resources do not involve li-

cense restrictions on the use for research purposes. We will release our code and pre-trained

model parameters.

D.1.1 Situation Generation

We employed Comet
dis

til
(West et al., 2022), which is based on GPT2-XL (Radford et al., 2018) (1.5B

parameters), for situation generation. Comet
dis

til
is trained on a large-scale collection of event-

centric common-sense triples, ATOMIC
20
20, whichmay serve as a useful inductive bias for situation

generation. The goal of situation generation is to generate statements of observable situational

information for a given conversation. Reference responses were added to the input along with

an previous utterance for the training and validation data. However, to prevent introducing clues

about the reference result, responses were not included in generating situational statements for

the test instances in CICERO and ConvAI2.

We fine-tuned a model on the SUGAR dataset using two different input settings. The first

setting concatenats a previous utterance, a response, and a reference situational information into

one sequence. The second setting concatenated a previous utterance and a reference situational

information into one sequence for generating situational statements on test instances, for the

aforementioned reason. In both cases, each text was headed by special symbols indicating the

text type: <utterance> for an utterance, <response> for a response, and <situation category> for

1https://spacy.io/
2https://www.nltk.org/
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Max iterations 5,000

Batch size 16

Gradient accumulation 16

Optimizer Adam

Weight decay 0.01

Gradient clipping max norm of 1.0

Learning rate (LR) 0.000005

LR warmup (linear) 300 steps

Dropout 0.1

Table D.1: Hyperparameters for the Comet
dis

til
-based context generator

a situational statement. The <situation category> symbol is one of date, time, location, behavior,

environment, and possession. The model was optimized to minimize a cross-entropy loss with a

label smoothing factor of 0.1 for the tokens in the situational information. Table D.1 shows the

hyperparameters for the training step. We evaluated the average token-level perplexity on the

validation split every 100 steps and terminated training if the value did not improve for 5 con-

secutive validations. The training process took approximately four hours on an NVIDIA TITAN

RTX GPU with the DeepSpeed (Rasley et al., 2020) library.

To generate situations on the CICERO and ConvAI2 datasets, we concatenated a conversation

history and a response (for the training and validation splits) followed by one of the situation

categories as input. We generated three candidates for each category using nucleus sampling

(p = 0.9). As the model was trained on SUGAR, which only contains single-turn conversations,

we observed that feeding many previous utterances impaired the generation quality. Therefore,

we limited the number of previous utterances in the input to 3. Finally, for quality control, one of

the authors manually checked the test samples from CICERO and ConvAI2 (25 for each) and cor-

rected situational statements when required (e.g., conflicting facts). The reference responses were

hidden during the manual verification to avoid bias. This manual verification process ensures the

quality of the test dataset in order to minimize the confusion of annotators in the following man-

ual evaluation of responses.

D.1.2 Response Generation

BlenderBot2: We used the pre-trained BlenderBot2 model with 400M parameters
3
with web

search turned off. We concatenated persona statements (for ConvAI2), context descriptions, and

a conversation history with newline symbols

n. We denoted text types by dedicated prefixes as practiced in pre-training of BlenderBot2,

namely, a persona statement is headed by text your persona:, a context description is

3https://parl.ai/projects/blenderbot2/

152

https://parl.ai/projects/blenderbot2/


Max epochs 10

Batch size 16

Optimizer Adam

Weight decay None

Gradient clipping max norm of 1.0

Learning rate (LR) 0.00001

LR warmup (linear) 100 steps

LR decay (based on validation) coef. of 0.5

Dropout 0.1

Table D.2: Hyperparameters for BlenderBot2

headed bycontext:, and each utterance in a conversation history is headed by either<speaker1>
or <speaker2 which corresponds to the speaker of the utterance. a We followed the original

configuration of hyperparameters (Table D.2). We evaluated a model on the validation set every

1/4 epoch and terminated training if the average token-level perplexity score on the validation set

did not improve five times in a row. In our experiments, training finished at around two epochs,

taking about 4 hours on one NVIDIA TITAN RTX. For generation, we used nucleus sampling

with p = 0.9.

GPT-3: We generated responses with GPT-3 with a few-shot learning mannar. We picked four

high-quality examples from the training and validation splits for each dataset and provided them

with a short instruction in a prompt. Table D.3 shows an example of our prompt. We generated

responses with top-p=0.9 and temperature=0.7.

ChatGPT: We used the same prompt as that of GPT-3 for generating responses with ChatGPT

through OpenAI’s interactive demo page
4
. As ChatGPT’s technical details are not fully trans-

parent, we only used ChatGPT for performing a few case studies like the example in Table 6.1 in

this study.

D.2 Crowdsourced Evaluation

In the first experiment we rectuited crowd workers on Amazon Mechanical Turk. We set the

following qualification requirements for filtering workers: (1) at least 1,000 HITs are approved

so far, (2) ≥ 99% approval rate, (iii) living in US. Each HIT involves judgment of three response

candidates. Workes were paid $0.30 for each HIT.We used the guidelines and interface developed

by (Zhou et al., 2022a). Figure D.1 shows the annotation guidelines. To monitor the performance

4https://chat.openai.com/
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(a) General instructions

(b) Evaluation criteria

Figure D.1: Evaluation guidelines. Note that the third criterion was removed from the final results

due to the low inter-annotator agreement.

of workers, we embedded one dummy response in each HIT. We created the dummy responses

to be a clearly bad response.

Initially, we followed Zhou et al. (2022a) and also evaluated if the responses are interesting or

not, but we found the inter-annotator agreement of this criterion is high enough to draw a reliable

conclusion (Fleiss’ kappa of 0.2). Therefore, we removed this criterion from our final results.

D.2.1 Second Experiment

In the second experiment, we recruited workers who met the following qualifications: (1) The

Mechanical Turk Masters Qualification has been granted by the platform, (2) Number of HITs

approved ≥ 1,000, (3) HIT approval rate ≥ 95%, (4) Location is US. We increased a reward based

on the numbder of distractors. ($0.35 for 10 distractors and $0.40 for 15 distractors.)
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Figure D.2: Evaluation interface.

D.3 Knowledge Generation for KRel

We used the pre-trained Comet
dis

til
-high model released by West et al. (2022).

5

Input format: As defined byWest et al., the model was provided a prompt in the following for-

mat for a target input text and relation label (either xNeed, xIntent, or xWant): [CLS] <head>
(input text) </head> <relation> (relation label) </relation> [GEN]
to, where [CLS], [GEN], <head></head>, and <relation></relation> are spe-

cial tokens to inform the model of the input format.

Generation: We generated edges up to five hops through the transformer library’s genera-

tion API with the arguments presented in Table D.4. We used a pre-trained Transformer-based

classifier
6
to filter out ungrammatical outputs.

5https://github.com/peterwestai2/symbolic-knowledge-distillation
6
The model is available at https://huggingface.co/madhurjindal/

autonlp-Gibberish-Detector-492513457. We set the minimum score for the “clean” class to

0.3.
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Normalization: To form a densely connected graph, we grouped synonymous expressions by

heuristics. We performed the following post-processing at each round of the generation step.

• Lemmatization: We used spaCy to lemmatize generated expressions into verb or noun

phrases without articles and modifiers (e.g., PersonX reads interesting books→ read book).

• Clustering of sentence embeddings: We encoded the lemmatized phrases into 768-D vectors

by PhraseBERT (Wang et al., 2021a) and clustered them using the Fast Clustering algorithm

implemented in the SentenceTransformers library.

• Representative forms: Finally, for each cluster, we picked the most frequent expression as

the cluster’s representative form.

Edge scoring: The resulting graph contains some edges that represent implausible or incorrect

knowledge. We used the pre-trained classification model relaesed byWest et al. (2022) to estimate

the confidence score of each edge, which was fed to the PageRank algorithm to discount the

influence of noisy edges.
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Two people are having a conversation in the following examples. Both people are helpful and

friendly.

# Example 1

Context:

1. Today is Monday.

2. It is afternoon now.

3. <speaker1> and <speaker2> are at school.

4. <speaker2> is studying English.

5. <speaker1> has a phone.

6. <speaker1> has alrady finished lunch.

7. <speaker2> has an English book with her.

8. The nearby restaurant is open.

9. Final exams are coming soon.

10. <speaker2> has not had lunch yet.

Conversation:

<speaker1>: Hi, Lily. Where were you at lunchtime? I was looking for you in the dining hall.

<speaker2>: Oh, sorry, I missed you . My English class ran late again.

<speaker1>: That’s been happening quite often recently . Maybe it’s because the final exams

are coming up.

· · ·

# Example 5

Context:

1. Today is Sunday.

2. It is daytime now.

3. <speaker9> and <speaker10> are in the hotel.

4. <speaker10> is working at the hotel.

5. <speaker9> has a car.

6. <speaker9> is carrying a suitcase.

7. <speaker10> has a computer.

8. The door is closed.

9. <speaker9>’s keys are on the desk.

10. It is raining outside.

Conversation:

<speaker9>: Hello. I’m leaving. Here is my key.

<speaker10>:

Table D.3: Example of the prompt for GPT-3 and ChatGPT. The examples are taken from CICERO.
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do_sample False

max_new_tokens 10

num_return_sequences 3 or 5 (=K)

num_beams num_generate ×3
top_p 0.9

top_k 40

temperature 1.0

repetition_penalty 1.0

no_repeat_ngram_size 3

bad_words_ids See Table D.5

Table D.4: Hyperparameters for knowledge generation

"I", "me", "you", "your", "we", "us", "they", "them",

"this", "that", "these", "those", "it",

"some", "any", "all", "few", "many", "most",

"PersonX", "PersonY"

Table D.5: Disallowed words for knowledge generation
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Appendix E

Supplementary Materials for Chapter 7

E.1 Crowdsourced Annotation

This section provides details of crowdsourced annotation tasks to identify frame types and their

arguments.

E.1.1 Step 1: Frame Identification

The first step is to identify cooking actions and their types. In this step, we considered 11 se-

mantic frames, including the six frames that were later grouped into OtherChange. To ensure

accurate annotations, we first conducted a trial round with 100 sentences, where we solicited 10

workers for each sentence and updated annotation instructions and interface based on the results.

Figure E.1 displays the annotation interface.

We recruited five workers per sentence for the remaining sentences. To estimate worker

accuracy, we added one test question to every nine sentences, and workers who failed to an-

swer the test question correctly were filtered out. We aggregated the collected responses using

MACE (Hovy et al., 2013) to obtain the final frame type labels. In our manual evaluation of 100

sentences, MACE outperformed majority voting with an F1 score of 0.1.

Quality: We achieved satisfactory inter-annotator agreement, with macro average Krippen-

dorff’s α (Krippendorff, 2006) and Fleiss’ κ (Fleiss, 1971) of 0.648 and 0.657, respectively (Ta-

ble E.1).

E.1.2 Step 2: Argument Identification

In this step, we identified arguments of a frame that were detected in Step 1. To simplify our

annotation work, we used natural language questions, such as “A cook moves ___ somewhere.
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Figure E.1: Annotation interface used in Step 1. Crowd workers pick one or more actions that a

cook performs in a given cooking instruction.

What’s ___?” inspired by work on question-answering-style semantic role annotations (He et al.,

2015). Figure E.2 provides an example of the annotation questions.

The main challenge in this step was missing or inferred arguments. We instructed annotators

to identify an action where the output of the previous action is involved (“Result of Step 1” in

Figure E.2). If arguments were not present in the text, annotators were asked to write the most

likely participants in a text field (e.g., seasonings for “Season salmon.”). We conducted several

rounds of internal annotation practice to develop annotation guidelines and collect stereotypical

and challenging cases. We provided an exercise question and several examples in the annotation

instructions to train the crowd workers.

Quality To evaluate the annotations made by crowd workers, one of the authors annotated

a subset of the annotation targets (287 frames) to create reference annotations. The F1 score

between the crowdsourced annotations and the reference annotations was 0.880 and 0.833 for

input and location slots, respectively, indicating substantial agreement. One exception was the

input slots of TemperatureChange, where the precision was 0.449. Major disagreements were

found when a location entity was heated or cooled, as in “Bake the crust in an oven.” Some crowd

workers tagged an oven as both an input and location entity, while the reference annotation

considered the oven to be only a location.
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Frame type Responses α κ

Divide 290 .535 .548

SizeChange 1233 .894 .894

Merge 1479 .649 .655

LocationChange 3001 .640 .639

TemperatureChange 1805 .820 .822

MatterStateChange 442 .399 .401

AngleChange 20 .323 .349

ShapeChange 244 .579 .601

WetnessChange 161 .718 .718

CleanlinessChange 84 .829 .852

Serve 466 .737 .741

Macro avg. .648 .657

Micro avg. .751 .753

Table E.1: Inter-annotator agreements (Krippendorff’s α and Fleiss’ κ) of responses against 1,263

sentences in step 1. Note that, for Fleiss’ κ, we randomly sampled 5 workers per sentence in the

first 90 sentences, for which we recruited 10 workers. The values report the average over 100

trials.

Simplification of Semantic Frames: We considered 11 semantic frames but found it difficult

to identify some frames (e.g., AngleChange) with a satisfactory level of inter-annotator agreement

in Step 1. We also found some frames were not frequent or indispensable (e.g., ShapeChange is

often concerned with a stylistic feature of food) in cooking recipes. Thus, we decided to focus

primarily on the four action types that are crucial to completing cooking and combined 6 frame

types into a category called OtherChange as we described in Section 7.4.
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Figure E.2: Annotation interface used in Step 2. For each frame identified in Step 1, another set

of crowd workers annotated participants and locations (if exist).
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