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Abstract

Recently, the performance of speech recognition has witnessed rapid improvement due to modern
architectures. Those models typically require thousands of hours of training data for the target
language. However, there are around 8000 languages in the world, the majority of which do not
have any audio or text dataset, which significantly restricts the scope of target languages.

This thesis attempts to expand the target languages of speech recognition to more than thou-
sands of languages by reducing the dataset requirement. In particular, we present a speech recog-
nition pipeline that does not require any audio for the target language. The only assumption is
that we have access to raw text datasets or a set of n-gram statistics for the target language. In the
minimalist assumption, we only employ the lexicon from the target language. Our speech pipeline
consists of three components: acoustic model, pronunciation model, and language model. Unlike
the standard pipeline, our acoustic and pronunciation models use multilingual models without any
supervision of the target language.

The first part of this thesis discusses the hierarchical acoustic model which can be decomposed
into two submodules: the universal phone recognition model recognizes language-independent
phones using phonological articulatory features, and subsequently the allophone model mapping
phones into language-dependent phonemes. In the second part, we turn our focus on the pronun-
ciation model and language model. We develop a zero-shot learning grapheme-to-phoneme (G2P)
model which approximates the target language using nearest languages from the phylogenetic tree.
G2P model serves as a pronunciation model. The language model can be built using n-gram statis-
tics or the raw text dataset. We build our language model by combining it with a large endangered
languages n-gram database and a lexicon database. In the last part, we introduce two databases we
use in the pipeline and relevant alignment applications. Using the proposed pipeline and datasets,
we build speech recognition systems for 6185 languages, which significantly expands the scope of
target languages in speech recognition.
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Chapter 1

Introduction

1.1 Low-Resource and Zero-Resource Languages

With the development of deep neural networks, there is growing interest in applying deep neural
network models to speech recognition (Amodei et al., 2016; Chiu et al., 2018; Chan et al., 2016).
Those deep models, however, are restricted to languages with a large amount of training set such
as English and Mandarin (Godfrey et al., 1992; Panayotov et al., 2015), therefore, they are not
available for most languages in the world. Additionally, the majority of the languages in the world
have never been written (Coulmas, 2013), it has been unclear how to develop speech recognition
systems for those languages.

Figure 1.1: Statistics of the number of languages from the speech resources perspective

Ethonologue, which is one of the most extensive catalogs of world’s languages, has estimated
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the total number of languages is about 7000∼ 8000 (Lewis, 2009). However, only a small portion
of those languages have audio or language resources, not to mention a clean parallel speech training
corpus. Figure.1.1 shows some statistics related to the number of languages classified by their
speech resource conditions. Out of the total 8000 languages, only half of the languages have a
written form and can be written down in some form. However, only around 2000 languages are
estimated to have source web text data available online (Scannell, 2007; Bapna et al., 2022). As
of 2009, even Bible has just been translated into only 2508 languages (Lewis, 2009). The largest
supervised dataset might also be the Bible audio collection, for example, the Bible.org website
contains audios for around 1000 languages (Black, 2019; Pratap et al., 2023). Supervised speech
recognition typically requires the paired audio and text dataset, therefore, the upper bound for
existing supervised approaches is around 1000 languages. For example, Google’s cloud Speech-
to-Text service provides 120 languages and their variants, the Whisper model also covers nearly
100 languages (Radford et al., 2022). Meta’s latest model has increased the number of languages to
around 1000 languages by using the collected Bible dataset. (Pratap et al., 2023). However, 1000
is only a fraction of all languages. the main focus of this thesis is to propose speech recognition
systems for those low-resource and zero-resource languages.

Figure 1.2: World Map showing all languages in Glottolog

Not only the number of available languages is limited, but even among the high-resource lan-
guages, it is not distributed geologically evenly across the world. Figure.1.2 shows the geological
distribution of all 8000 languages in the world, each orange circle denotes a language. In contrast,
Figure 1.3 shows the distribution of languages with pretrained models in ESPnet (Watanabe et al.,
2018). It is clear the most of the available pretrained models are concentrated in the Europe and
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East Asian areas, but it cover a few languages distributed in the American and African continents.
Papua New Guinea is known as one of the most linguistically diverse countries in the world, it has
854 local languages but none of them are covered in Figure 1.3.

Figure 1.3: World Map showing all languages whose recipes are available in ESPnet

The goal of this thesis is to build speech recognition for languages with few audio datasets
and/or text datasets. The main target of this thesis is the 2nd category (languages with text data
available online) and the 3rd categories (languages with lexicon) in Figure.1.4. We propose an
approach to build speech recognition systems for languages the 2nd category (around 2000 lan-
guages) and extends it to the 3rd category (around 6000 languages)

1.2 Background

Most speech recognition approaches can be classified into one of several groups depending on their
data requirements. The most common group has access to the paired supervised dataset

Dsupervised = {(Xi, Yi)}Ni=1 (1.1)

, where (X, Y ) is a paired audio and text of an utterance. If the size N of the dataset is large
enough, various end-to-end models can be trained using CTC, ASG, seq2seq, RNN Transducer,
and other objectives (Graves et al., 2006; Collobert et al., 2016; Graves et al., 2013; Sutskever
et al., 2014). If the size is small, then it would be a low-resource speech recognition in which some
acoustic knowledge should be transferred from high-resource languages (Li et al., 2019a; Xu et al.,
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Figure 1.4: The scope of target languages addressed in this thesis

2020). Self-supervised training takes advantage of another large raw speech dataset {Xj} to learn
hidden representations of speech signals, those representations are useful to the supervised tasks
and can reduce the amount of the paired dataset (Baevski et al., 2020; Hsu et al., 2021). The semi-
supervised learning approach also leverages unlabeled speech datasets or text datasets to augment
the supervision set (Veselý et al., 2017; Synnaeve et al., 2019; Rosenberg et al., 2019).

Dsemi_supervised = ({(Xi, Yi)}Ni=1, {X ′
j}Jj=1) (1.2)

In the semi-supervised learning, a supervised model is first trained using the paired supervised
dataset {(Xi, Yi)}Ni=1 and then transcribes another unlabeled speech dataset {X ′

j}Jj=1 into a text
dataset {Ŷ }Jj=1. They augment the supervised dataset with pseudo-label dataset {(X ′

j, Ŷj)}Jj=1 to
train a better supervised model.

Recently, unsupervised speech recognition attempts to target the dataset

Dunsupervised = ({Xi}Ii=1, {Yj}Jj=1) (1.3)

, where we have access to an unlabeled raw audio set {Xi}Ii=1 and a raw text dataset {Yj}Jj=1 (Baevski
et al., 2021). The audio and text do not need to be aligned with each other and size of two datasets
I, J do not need to be same. A generator model is jointly trained with a discriminator model. The
generator model attempts to translate audio into phonemes, while the discriminator model attempts
to distinguish between phonemes transliterated from text and phonemes recognized from the gen-
erator. The disadvantage of this direction is that the model could only recognize phonemes instead
of words and it requires a phonemizer (pronunciation model) for the target language, which would
not be available for most languages. Another related direction is unsupervised speech unit discov-
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ery (Chorowski et al., 2019; Tjandra et al., 2019), which is similar to the self-supervised learning
approach and attempts to discover phone units from audios

Dunit_discovery = {Xi}Ii=1 (1.4)

This group of approaches, however, cannot emit explicit phonemes or words as it does not have
knowledge of the lexicon and language model for the target language.

In this thesis, we propose a new paradigm to focus on the text-only dataset

Dproposed = {Yj}Jj=1 (1.5)

While all the previous groups require some amount of audio datasets {Xi} (paired or unpaired)
for the word recognition of the target language, we argue this requirement can be relaxed to some
extent. In the minimalist setting, we only assume the lexicon for the target language as the text-only
dataset.

1.3 Approach

1.3.1 Motivation

As mentioned in the first section, most of the languages do not have any training set (and even
test set), it is impossible to create any end-to-end models directly. Instead of building the end-to-
end models, we propose to model multiple linguistic units (e.g: phonemes, graphemes) explicitly
and decompose the entire model into a sequence of separate models, each model represents a
transformation from one linguistic unit to another linguistic unit. We briefly introduce all linguistic
units or components we are using throughout this thesis.

1. audio: input speech into the pipeline. Our audio is typically encoded as a WAV format file
with 1 channel, 16k Hz frequency and 16-bit precision.

2. phonological feature (articulatory features): a set of discrete features characterizing how
is each phone produced (i.e. manner of articulation) and where does it get produced (i.e.
place of articulatory gestures).

3. phone: language-independent phone units. It is the narrow transcription of the speech signal
which shows more phonetic detail by using more specific symbols.

4. phoneme: language-dependent contrastive phone units. It is the broad transcription of the
speech signal which uses simpler and more abstract symbols. Different languages tend to
use different sets of phonemes.
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5. grapheme: language-dependent contrastive units in the writing systems. For example, we
consider the Latin alphabets as the grapheme set for written English.

6. text: the final output of the pipeline.

Chapter 2
 (AAAI 20)

Audio Phone Phoneme
Articulatory 

Feature Grapheme Text

Chapter 4
(Interspeech 21)

Chapter 3
(ICASSP 20)

Chapter 5
 (Finding of ACL 22)

Chapter 6 
(Interspeech 22)

currently 8k languages available 8k languages 6k languages

Figure 1.5: The overall architecture proposed in this thesis. The left four green components illus-
trate the acoustic model, which is covered in Part I. The right two components are corresponding to
the language model, which is the main topic of the Part II. Every arrow between two components
indicates the chapter and its published or submitted paper.

Figure 1.8 shows the overall architecture proposed in this thesis: the left part shown in green
color is the acoustic model, in which we transform the raw audio into language dependent phonemes.
The right part is the language model which translates the phoneme sequence into the text form.
Within each model, we further decompose them into several submodules and represent multiple
linguistic units (e.g: phonological features, phones) inside them.

This direction has many advantages over the end-to-end models:

1. some components are relatively less dependent on the training resources (e.g: texts are easier
to obtain than audios)

2. some of them are already well-defined by linguists (e.g: phonetics, phonology), those do-
main knowledge can be incorporated into the model through some Bayesian frameworks.

3. Sharing information across languages is easier (e.g: English and German shares many com-
mon phones, we can use the English inventory as the German inventory in case the German
inventory is not available)

Following this motivation, we divide our pipeline into the acoustic model, pronunciation model
and language model. The joint probability over speech audio X and speech text Y can be factorized
as
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pθ(X, Y ) =
∑
P

pam(X|P )ppm(P |Y )plm(Y ) (1.6)

, where P is the phoneme sequence corresponding to the text Y . The pronunciation model ppm is
typically modeled as a deterministic function δpm. In our pipeline, we assume that we have access
to some text datasets or equivalent statistics for the target language as our main focus is the 3rd
category in Figure.1.4. Using those datasets, we can directly create the language model plm(Y ).
However, both the acoustic model and pronunciation model cannot be built from the text datasets
and we need to approximate those models using zero-shot learning or transfer learning from other
high resource languages, therefore we denote p̂am, δ̂pm for the approximated acoustic model and
pronunciation model. The previous factorization can be approximated by

pθ(X, Y ) ≈ p̂am(X|P̂ )plm(Y ) (1.7)

where P̂ = δ̂pm(Y ) is the approximated phonemes. We shortly describe each of those three models
in the following subsection. The details of the acoustic model are covered in Part I of this thesis,
and the pronunciation model and the language model are the main focus of the Part II.

1.3.2 Acoustic Model

The acoustic model is to recognize phonemes or compute the distribution of phonemes conditioned
on the input audio pam(P |X). The major hurdle of training acoustic models for low-resource
languages is the lack of large supervised datasets because the acoustic model depends on the target
language and phonemes P are language-dependent units. However, as mentioned in the previous
section, most of the languages in the world do not have those supervised datasets, therefore we
cannot directly learn the acoustic model for those languages. This thesis proposes an architecture
to solve this problem without relying on any audio dataset for the target language. Our proposed
model attempts to further divide the acoustic model into two part as shown in Figure 1.6: the
upper part is the universal phone recognition model, which is a language-independent model. We
introduce it in Chapter 2. The lower part is the allophone mapping model, which is a language-
dependent model. We cover this model in Chapter 3. Chapter 4 combines those two models into a
single acoustic model.

This architecture attempts to decompose the phoneme recognition task into two subtasks: it first
recognizes language-independent phone units from the audio (universal phone recognition task) ,
then the phone units are transformed into the language-dependent phonemes (allophone mapping
task). Essentially, this architecture represents the acoustic model as follows:
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Figure 1.6: The acoustic model architecture. It consists of two parts: language-independent model
and language-dependent model.

p̂am(P |X) =
∑
Q

plang(P |Q)puni(Q|X) (1.8)

, where puni(Q|X) is a language-independent universal phone recognition model, recogniz-
ing physical-level phone units Q from the speech audio X . The language-dependent architec-
ture plang(P |Q) is to encode how each physical phone should be mapped to a language-dependent
phoneme. The relation between phones and phonemes is called an allophone, which is usually
encoded as a 1-n deterministic function annotated by phonologists for each language. The map-
ping is easier to obtain than the supervised dataset for low resource languages. We discuss this
allophone mapping model in Chapter 3.

In contrast, the universal phone recognition model puni(Q|X) does not have any dependency
on the target language, therefore it can be trained using high-resource languages such as English
and Mandarin. However, there exists one more issue with this model. The size of the phone
inventory |Q| is typically very large, we estimate there are ∼ 2000 distinct phones available in
the PHOIBLE dataset (Moran and McCloy, 2019). Many phones in this dataset cannot be found
in high-resource languages, therefore we cannot learn their representation directly. To tackle this
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problem, we further decompose the phone into lower-level representations: phonological features
or articulatory features. For example, Figure 1.7 shows the IPA chart of the most common basic
vowels. From the chart, we can see the phone [i] can be characterized by the phonological features
of unrounded, close, front, vowel . Those features can be extracted using some existing phonetic
tools (Mortensen et al., 2016a) or be parsed automatically using the simple rule introduced in
Chapter 2. We can first learn the representations of the phonological features, then use them to
compose the representations of each phones. This transformation reduces the task of estimating
representations over each phone into a much simpler task of estimating representations over each
phonological feature because the feature inventory size is typically much smaller than the phone
inventory size (for example, 20 vs 2000). More importantly, it enables us to recognize phones that
are unseen in the training set. This helps us achieve zero-shot learning of most unseen phones.
This idea is introduced in Chapter 2 and refined in Chapter 4.

Figure 1.7: IPA chart of vowels.Where symbols appear in pairs, the one to the right represents a
rounded vowel.

1.3.3 Pronunciation Model

The next component in the pipeline is the pronunciation model. We discuss it in Chapter 5. It
is essentially a G2P (grapheme-to-phoneme) model that can predict the phoneme pronunciation
given a grapheme sequence: P = δpm(Y ). For high-resource languages, the G2P model can be
either trained using a dictionary or be developed using rule-based systems (CMU, 2000; Mortensen
et al., 2018). However, the majority of the languages do not have any accessible dictionaries
or rules, therefore we consider an approximated pronunciation model δ̂pm instead. The easiest
approximation model is to simply take a high-resource languages and apply its G2P model instead.
For example, English is well-studied with respect to its G2P model and we consider it as one of our
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baseline pronunciation model. The model, however, only considers the orthography rules in one
language and might be inappropriate in other languages. A better option for approximation is to
use a language that is similar to the target language. For example, it would be more appropriate to
use German model to approximate English model than the Spanish model as German and English
belonging to the same Germanic language family. This nearest model however, still suffers from
the large variance issue as it depends on a monolingual model for the inference.

In this thesis, we propose a multilingual G2P model as our pronunciation model (Li et al.,
2022b). For any target language ltarget, this G2P model selects top-k nearest languages: ltopk ∈
KNN(ltarget) whose training set is available, then during the inference, it first propose k hypothesis
using each nearest language model δltopk , the models are ensembled by combining hypothesis into
a lattice to emit the most-likely approximated sequence:

δ̂ltarget = Ensemble({δltopk|ltopk ∈ KNN(ltarget)}) (1.9)

The similarity metric between languages is defined to be the shortest path of two languages
on the phylogenetic tree (i.e: language family tree). This approach enables us to approximate
the pronunciation model for every language in Glottolog database (Nordhoff and Hammarström,
2011), which contains phylogenetic information about 7915 languages.

1.3.4 Language Model

The last component in the pipeline is the language model. We discuss it in Chapter 6. For high-
resource languages, many modern architectures can be used to train the large language models
such as BERT (Devlin et al., 2018), GPT-3 (Brown et al., 2020), Megatron-LM (Shoeybi et al.,
2019). For low-resource languages, however, the text dataset is usually limited or not available as
discussed in the previous section, therefore we cannot train such large language models. Instead,
we rely on the classical n-gram models. In our language model, we first estimate the vocabulary
V = {w1, w2, ..., w|V |} from the raw text dataset {Yi} when it is available. For each word wi ∈
V , its pronunciation can be approximated using the pronunciation model and then this lexicon
information can be encoded into a lexicon graph L. The text dataset also enables us to estimate
the classical n-gram language model by counting n-grams statistics C(w1, ..., wn). This n-gram
language model can be then encoded into a grammar graph G. Composing the lexicon graph L

and the grammar graph G as well as the CTC topology graph H would generate a WFST-based
language decoder HLG (Miao et al., 2015).

We realize that the text dataset requirement {Yi} can be further relaxed as the building blocks
of the HLG graph only consist of the statistics {V,C} estimated from the text dataset. For lan-
guages whose text dataset {Yi} is absent but {V,C} is available, we can still proceed to build the
decoder HLG. This is common for many languages in the internet: while only a few hundred
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languages are recognized as being in use for web texts on the World Wide Web (Lewis, 2016),
there exists several large databases collecting lexicon-related statistics for thousands of languages.
For example, Crúbadán is a database consisting of vocabulary, bigrams, and character statistics for
around 2000 languages (Scannell, 2007). Employing statistics from it, we build speech recogni-
tion systems for around 2000 languages. In the minimalist setting, we only assume the lexicon for
the target language as the text-only dataset using the Panlex dataset (Kamholz et al., 2014). This
further expands the number to 6185 languages.

1.4 Overview

We briefly discuss the organization of this thesis and main topics of each chapter in this subsection.
In the first part of this thesis, we discuss the acoustic model. In Chapter 2, we introduce the

phonological features or articulatory features as the building blocks to represent high-level acoustic
units such as phones and phonemes. we demonstrate that using discrete phonological features, we
can efficiently share acoustic knowledge across languages. In Chapter 3, we introduce the concept
of allophone and discuss how to use them to connect language-dependent phonemes and language-
independent phones. In Chapter 4, we combine the ideas of Chapter 2 and Chapter 3. We propose
the complete acoustic model pipeline by using a hierarchical structure.

In the second part of this thesis, I discuss the language model related topics. In Chapter 5, we
introduce the pronunciation model used in this thesis. We demonstrate a multilingual grapheme-
to-phoneme model which can be applied to any language in Glottolog. In Chapter 6, we build
a language model using Crúbadán: an large online n-gram statistics for endangered languages.
Finally, the acoustic model proposed in Part I, the pronunciation model proposed in Chapter 5 and
the language model proposed in Chapter 6 are combined together to create a full speech pipeline.
This enables us to build speech recognition models for around 6000 languages, which is the main
focus in this thesis.

In the third part of this thesis, we introduce two datasets we used in the previous modeling
part. In Chapter 7, we discuss the problem of phoneme inventory estimation. Two models are
proposed to extend the language coverage by the PHOIBLE database. The estimated phoneme
inventory are used in our pipeline (both the acoustic model and the pronunciation model) when
the target language is not supported by PHOIBLE. In Chapter 8, a multilingual phonetic database
is introduced to evaluate the acoustic model. This dataset is used to evaluate phone prediction
performance for our acoustic model in Part I. In Chapter 9, we also discuss how to align speech
and text pairs using the proposed acoustic model and pronunciation model.
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Contributions

This thesis addresses the problem of low-resource / zero-resource speech recognition and proposes
a speech recognition pipeline for thousands of languages with the following key contributions:

1. Propose a multilingual acoustic model that can potentially perform phoneme recognition for
around 8000 languages.

2. Introduce a multilingual pronunciation model (Grapheme-to-Phoneme conversion model)
that can approximate G2P models without any supervised dataset for the target language.

3. Demonstrate that we can achieve speech recognition for around 6000 languages by combin-
ing acoustic model, pronunciation model, and language model

4. Develop several useful datasets and toolkits for low-resource speech recognition.
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Acoustic Models
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Chapter 2

Zero-shot Learning using Phonological
Features

Summary

We start Part I of this thesis by considering the task of phonemic recognition or phonemic tran-
scription. This task is to train an acoustic model pam(P |X) where X is the speech audio and P is
the phoneme sequence or phoneme transcription. This task is useful for low-resource applications
such as language documentation and language preservation. However, due to the lack of training
sets, only a tiny fraction of languages have phonemic transcription models. Fortunately, multilin-
gual acoustic modeling provides a solution given limited audio training data. A more challenging
problem is to build phonemic transcribers for languages with zero training data. The difficulty of
this task is that phoneme inventories P are language dependent and they often differ between the
training languages and the target language, making it infeasible to recognize unseen phonemes.

In this chapter, we address this problem by adopting the idea of zero-shot learning. In par-
ticular, we introduce the concept of the phonological features or articulatory attributes. These
features are the lowest-level units used in this thesis. Those attributes enables us to recognize
unseen phonemes in the target language without any training data. In our model, we decompose
phonemes into corresponding phonological features or articulatory attributes such as vowel and
consonant. Instead of predicting phonemes directly, we first predict distributions over articulatory
attributes, and then compute phoneme distributions with a customized acoustic model. We evalu-
ate our model by training it using 13 languages and testing it using 7 unseen languages. We find
that it achieves 7.7% better phoneme error rate on average over a standard multilingual model. The
acoustic model introduced in this chapter will be enhanced in Chapter 3 and Chapter 4.

Xinjian Li, Siddharth Dalmia, David R.Mortensen, Juncheng Li, Alan Black and Flo-
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rian Metze Towards zero-shot learning for automatic phonemic transcription. Proceed-
ings of the AAAI Conference on Artificial Intelligence.

2.1 Introduction

Over the last decade, automatic speech recognition (ASR) has achieved great successes in many
rich-resourced languages such as English, French and Mandarin. On the other hand, speech re-
sources are still sparse for the majority of other languages. They cannot thus benefit directly
from recent technologies. As a result, there is an increasing interest in building speech process-
ing systems for low-resource languages. In particular, phoneme transcription tools are useful for
low-resource language documentation by improving workflow for linguists to analyze those lan-
guages (Adams et al., 2018; Michaud et al., 2018).

A more challenging task is to transcribe phonemes in the language with zero training data.
This task has significant implications in documenting endangered languages and preserving the
associated cultures (Gippert et al., 2006). This data setup has mainly been studied in the unsuper-
vised speech processing field (Glass, 2012; Versteegh et al., 2015; Hermann and Goldwater, 2018),
which typically uses an unsupervised technique to learn representations which can be used towards
speech processing tasks.

However, those unsupervised approaches could not generate phonemes directly and there has
been few works studying zero-shot learning for unseen phonemes transcription, which consist of
learning an acoustic model without any audio data or text data for a given target language and
unseen phonemes. In this work, we aim to solve this problem to transcribe unseen phonemes for
unseen languages without considering any target data, audio or text.

The prediction of unseen objects has been studied for a long time in the computer vision field.
For specific object classes such as faces, vehicles and cats, a significant number manually labeled
data is usually available, but collecting sufficient data for every object human could recognize is
impossible. Zero-shot learning attempts to solve this problem to classify unseen objects using
mid-level side information. For example, zebra can be recognized by detecting attributes such
as stripped, black and white. Inspired by approaches in computer vision research, we propose
the Universal Phonemic Model (UPM) to apply zero-shot learning to acoustic modeling. In this
model, we decompose the phoneme into its attributes and learn to predict a distribution over var-
ious articulatory attributes. For example, the phoneme /a/ can be decomposed into its attributes:
vowel, open, front and unrounded. This can then be used to infer the unseen phonemes for the
test language as the unseen phonemes can be decomposed into common attributes covered in the
training phonemes.

Our approach is summarized in Figure 2.1. First, frames are extracted and a standard acoustic
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Figure 2.1: Illustration of the proposed zero-shot learning framework. Each utterance is first
mapped into acoustic space (or hidden space) H. Then we transform each point in the acoustic
space into attribute space P with a linear transformation V . Finally phoneme distributions can be
obtained by applying a signature matrix S

model is applied to map each frame into the acoustic space (or hidden space)H. Next we transform
it into the attribute space P which reflects the articulatory distribution of each frame (such as
whether it indicates a vowel or a consonant). Then, we compute the distribution of phonemes for
that frame using a predefined signature matrix S which describes relationships between articulatory
attributes and phonemes in each language.

To evaluate our UPM approach, we trained the model on 13 languages and tested it on another
7 languages. We also trained a multilingual acoustic model as a baseline for comparison. The
result indicates that we consistently outperform the baseline multilingual model, and we achieve
7.7% improvements in phoneme error rate on average.

The main contributions of this chapter are as the followings:

1. We propose the Universal Phonemic Model (UPM) that can recognize unseen phonemes
during training by incorporating knowledge from the phonetics/phonology domain.

2. We introduce a sequence prediction model to integrate a zero-shot learning framework for
sequence prediction problem.

3. We show that our model is effective for 7 different languages, and our model gets 7.7% better
phoneme error rate over the baseline on average.
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Figure 2.2: Illustration of the sequence model for zero-shot learning. The input layer is first
processed with a Bidirectional LSTM acoustic model, and produces a distribution over articulatory
attributes. Then it is transformed into a phoneme distribution by a language dependent signature
matrix S

2.2 Approach

This section explains the details of our Universal Phonemic Model (UPM). In the first section, we
describe how we constructed a proper set of articulatory attributes for acoustic modeling. Next, we
demonstrate how to assign attributes to each phoneme by giving an algorithm to parse X-SAMPA
format. Finally we show how we integrate the phonetic information into the sequence model with
a CTC loss (Graves et al., 2006).

2.2.1 Articulatory Attributes

Unlike attributes in the computer vision field, attributes of phonemes are independent of the corpus
and dataset, they are well investigated and defined in the domain of articulatory phonetics (Lade-
foged and Johnson, 2014). Articulatory phonetics describes the mechanism of speech production
such as the manner of articulation and placement of articulation, and it tends to describe phones
using discrete features such as voiced, bilabial (made with the two lips) and fricative. These articu-
latory features have been shown to be useful in speech recognition (Kirchhoff, 1998; Stüker et al.,
2003b; Müller et al., 2017a), and are a good choice for attributes for our purpose. We provide some
categories of articulatory attributes below.
Consonants. Consonants are formed by obstructing the airstream through the vocal tract. They
can be categorized in terms of the placement and the manner of this obstruction. The placements
can be largely divided into three classes: labial, coronal, dorsal. Each of the class have more
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fine-grained classes. The manners of articulation can be grouped into: stop, fricative, approximant
etc.
Vowel. In the production of vowels, the airstream is relatively unobstructed. Each vowel sound can
be specified by the positions of lips and tongue (Ladefoged and Johnson, 2014). For instance, the
tongue is at its highest point in the front of the mouth for front vowels. Additionally, vowels can
be characterized by properties such as whether the lips are rounding or not (rounded, unrounded).
Diacritics. Diacritics are small marks to modify vowels and consonants by attaching to them. For
instance, nasalization marks a sound for which the velopharyngeal port is open and air can pass
through the nose. To make the articulatory attribute set manageable, we assign attributes of diacrit-
ics to some existing consonants attributes if they share similar articulatory property. For example,
nasalization is treated as the nasal attribute in consonants.

In addition to articulatory attributes mentioned above, we note that we also need to allocate an
special attribute for blank in order to predict blank labels in CTC model, and backpropagate their
gradients into the acoustic model. Thus, our articulatory attribute set Aphone is defined as the union
of these three domain attributes as well as the blank label,

Aphone = Aconsonants ∪ Avowels ∪ Adiacritics ∪
{
blank

}
Attribute Assignment

Next, we need to assign each phoneme with appropriate attributes. There are multiple approaches
to retrieve articulatory attributes. The simplest one is to use tools to collect articulatory features
for each phoneme (Mortensen et al., 2016a). However, those tools only provide coarse-grained
phonological features but we expect more fine-grained and customized articulatory features. In
this section, we propose a naive but useful approach for attribute assignment. We note that we
use X-SAMPA format to denote each IPA in this work. X-SAMPA was devised to produce a
computer-readable representation for IPA. Each IPA segment can be mapped to X-SAMPA with
appropriate rule-based tools (Mortensen et al., 2018). For example, IPA /@/ can be represented as
/@/ in X-SAMPA.

The assignment can be formulated as the problem to construct an assignment function f :

Pxsampa → 2Aphone where the domain Pxsampa is the set of all valid X-SAMPA phonemes, and the
range 2Aphone is a subset of articulatory attributes for each phoneme . The assignment function
should map each phoneme into its corresponding subset of Aphone. To construct the function in
the entire domain Pxsampa, we first manually map a small subset Pbase ⊂ Pxsampa and construct
a restricted assignment function f

∣∣
Pbase

: Pbase → 2Aphone . The mapping is customizable and has
been verified with the IPA handbook (Decker et al., 1999). Then for every phoneme p ∈ Pxsampa,
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Algorithm 1: G2P algorithm
Data: X-SAMPA representation of phoneme p
Result: Articulatory attribute set A ⊆ Aphone for p
A← []
while p ̸∈ Pbase do

find the longest suffix ps ∈ Pbase

Add f
∣∣
Pbase

(ps) to A
Remove suffix ps from p

end
Add f

∣∣
Pbase

(p) to A

we continue to remove diacritics suffix from it until it could be found in Pbase. For example, to
recognize /ts_>/, we can first match the suffix, /_>/ as an ejective, and then recognize /ts/ as a
consonant defined in Pbase. The Algorithm 1 summarizes our approach.

2.2.2 Sequence model for zero-shot learning

Zero-shot learning has rarely been applied to speech sequence prediction problems. Zero-shot
translation is an example of applying zero-shot learning to a different type of sequence prob-
lems(Johnson et al., 2017). In the standard settings, the zero-shot translation means that the target
language pair is not in the training dataset. However, both languages should be already seen in
other training pairs. In contrast, we assume a harder problem here: there is no available training
audio or text for the target language at all.

In this section we describe a novel sequence model architecture for zero-shot learning. We
adapt a modified ESZSL architecture from (Romera-Paredes and Torr, 2015). While the original
architecture is devised to solve the classification problem with CNN(DECAF) features, our model
aims to optimize a CTC loss over a sequence model as shown in Figure 2.2. We note our architec-
ture is a general model, and it can also be used for other sequence prediction problems in zero-shot
learning.

Given the training set {(xn,yn, ϕn), n = 1...N} where each input xn ∈ X is an utterance,
ϕn is its language, and yn ∈ Y is the corresponding phoneme transcription. Suppose that xn =

(x1
n, ..., x

T
n ) is the input sequence where xt

n is the frame of time step t, and T is the length of
xn. Each frame xt

n is first projected into a feature vector ht
n ∈ Rd in the hidden space H with a

Bidirectional LSTM model.

ht
n = θ(xt

n;WLSTM) (2.1)
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Language Corpus Name # Utterances Language Corpus Name # Utterances

English TED 268k Mandarin Hkust 197k
English Switchboard 251k Mandarin OpenSLR 18 13k
English Librispeech 281k Mandarin LDC98S73 36k
Amharic OpenSLR 25 10k Bengali OpenSLR 37 196k
Cebuano IARPA-babel301b-v2.0b 43k Dutch Voxforge 8k
Italian Voxforge 10k Javanese OpenSLR35 185k
Kazakh IARPA-babel302b-v1.0a 48k Kurmanji IARPA-babel205b-v1.0a 46k
Lao IARPA-babel203b-v3.1a 66k Turkish IARPA-babel105b-v0.4 82k
Sinhala openSLR52 185k

German Voxforge 41k Mongolian IARPA-babel401b-v2.0b 45k
Russian Voxforge 8k Spanish Callhome Hub4 31k
Swahili OpenSLR 25 10k Tagalog IARPA-babel106b-v0.2g 93k
Zulu IARPA-babel206b-v0.1e 60k

Table 2.1: Corpora of the training set and the test set used in the experiment. Both baseline model
and proposed model are trained with 17 corpus across 13 languages, and tested on 7 corpus in 7
languages.

where WLSTM is the parameter of the Bidirectional LSTM model. We assume that our phoneme
inventory of ϕn consists of z phonemes in the training set, each of them having a signature of
a attributes constructed as mentioned above. We can first represent our attributes in a constant
signature matrix S ∈ {0, 1}z×a of ϕn. The (i, j) cell in the signature matrix is 1 if the i-th phoneme
has been assigned the j-th attribute, otherwise it is assigned to 0. We note that while the signature
matrix is constructed automatically in this work, it can be refined by linguists using phonology
in each language. Then, we transform ht

n into articulatory logits with the transformation matrix
V ∈ Ra×d. Then it is further processed into the phoneme logits ltn with S.

ltn = SV ht
n (2.2)

The logits ln = (l1n, ..., l
T
n ) are then combined with yn to compute the CTC loss (Graves et al.,

2006). Additionally, regularizing V has been proved to be useful in the original ESZSL archi-
tecture (Romera-Paredes and Torr, 2015). Eventually our target is to minimize the following loss
function:

minimize
V,WLSTM

CTC(xn,yn;V,WLSTM) + Ω(V ) (2.3)

where Ω(V ) is an simple ℓ2 regularization. This objective can be easily optimized using stan-
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Language # unseen phoneme Baseline PER% UPM PER% Baseline Substitution% UPM Substitution%

German 2 68.0 64.9 51.9 46.9
Mongolian 18 87.8 77.5 44.1 35.8

Russian 19 74.5 54.4 63.5 34.5
Swahili 2 55.7 48.9 27.4 26.6
Tagalog 0 60.7 57.0 27.2 20.1
Spanish 2 48.6 44.4 31.0 26.2

Zulu 8 73.1 67.9 36.2 33.5

Average 7.3 66.9 59.2 40.2 31.9

Table 2.2: Phoneme error rate and phoneme substitution rate of the baseline, and our approach.
Our model (UPM) outperforms the baseline for all languages, by 7.7% (absolute) in phoneme error
rate, and 8.3% in phoneme substitution error rate.

dard gradient descent methods.
At the inference stage, we usually consider a new language ϕtest with a new phoneme inventory.

Suppose that the new inventory is composed of z′ phonemes, then we can automatically create
a new signature matrix S ′ ∈ {0, 1}z′×a, and estimate probability distribution of each phoneme
Pacoustic(p|xt

n) from logits using S ′ instead of S.

2.3 Experiments

2.3.1 Dataset

We prepare two datasets for this experiment. The training set consists of 17 corpora from 13
languages, and the test set is composed of corpora from 7 different languages. They are used by
both our model and the baseline described later. Details regarding each corpus and each language
are provided in Table 2.1.

We briefly describe our strategy of corpus selection in the experiment. To select the training
corpus, the rich-resourced languages should be taken into account firstly to make sure the acoustic
model can be fully trained. Therefore, we add three English corpora and three Mandarin corpora
to the training set. Additionally, we expect both the baseline and our Universal Phonemic Model
should be trained to recognize a variety of phonemes from different languages. Therefore we
collect a number of corpora from different language families and diverse regions. Finally, we
attempt to make the acoustic model robust to various channels and speech styles. For example,
TED (Rousseau et al., 2012) is the conference style, Switchboard (Godfrey et al., 1992) is the
spontaneous conversation style and Librispeech is the reading style (Panayotov et al., 2015). We
note that 5 percent of the entire corpus was used as the validation set. The test corpora are selected
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in a similar style. They are selected from a variety of languages: not only from rich-resourced
languages, but also low-resourced languages with stable audio alignments and reliable g2p models.

2.3.2 Experimental Settings

We use the EESEN framework for the acoustic modeling (Miao et al., 2015). All the transcripts are
transcribed into phonemes with Epitran (Mortensen et al., 2018). The input feature is 40 dimension
high-resolution MFCCs, the encoder is a 5 layer Bidirectional LSTM model, each layer having
320 cells. The signature matrix is designed as we discussed above, different signature matrices are
used for different languages. We train the acoustic model with stochastic gradient descent, using
a learning rate of 0.005. In each iteration, we apply the uniform sampling (Li et al., 2019b): first
randomly select a corpus from the entire training set, and then randomly choose one batch from
that corpus.

Our baseline model is the multilingual acoustic model with a shared phoneme inventory. This
type of architecture is one of the standard approaches in the multilingual ASR community (Tong
et al., 2017; Vu and Schultz, 2013). In this architecture, all languages share a common acoustic
model and a single output layer. The output layer is to predict phonemes in the universal phoneme
inventory shared by all the training languages. In our experiment, the inventory consists of 131 dis-
tinct phonemes from 14 training languages. To compare the baseline with the proposed model, we
also use the Bidirectional LSTM model as the encoder to compute phoneme distributions P (p|xt

n).
Then we decode phonemes with greedy decoding as in our approach. We use the same configura-
tion of LSTM architecture as well as the training criterion. As we focus on phonemic transcriptions
in this work, we use phoneme error rate (PER) as the metric for evaluation.

2.3.3 Results

Our results are summarized in Table 2.2. As is shown, our approach consistently outperforms
the baseline in terms of phoneme error rate. For example, the baseline achieves 55.7% phoneme
error rate when evaluated with Swahili, and our approach obtains 48.9% in the same test set. For
each language in our evaluation, we observe that we improve the phoneme error rate from 3.1%
(German) to 20.1% (Russian) respectively. On average, the baseline has 66.9%, and our model
gets 7.7 % better phoneme error rate.

The table also indicates the strong correlation between the number of unseen phonemes and the
improvement in the phoneme error rate. For example, Russian achieves the largest improvement
with our UPM: it improves significantly by 20.1% phoneme error rate. In our experiment, the
Russian phoneme inventory has 48 phonemes in total out of which 19 of them are unseen during
training. This suggests our model has a good generalization ability to adapt to languages whose
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Language Baseline unseen PER% UPM unseen PER% Baseline seen PER% UPM seen PER%

German 100.0 100.0 63.9 61.9
Mongolian 100.0 91.9 86.8 78.6

Russian 100.0 96.1 69.5 51.7
Swahili 100.0 86.4 54.3 46.2
Tagalog N.A. N.A. 57.4 54.2
Spanish 100.0 58.0 45.2 41.7

Zulu 100.0 88.3 70.5 64.6

Average 100.0 89.8 64.2 57.0

Table 2.3: Phoneme error rate (%PER) of the seen phonemes and unseen phonemes in the baseline
and our approach.

acoustic contexts are rarely known. On the other hand, every phoneme in the Tagalog inventory has
been covered by other languages in the training set. Therefore, the number of its unseen phoneme
is 0 and the corresponding 3.7% phoneme error rate improvement is relatively limited. Similarly,
the least improved language is German, which improved from 68.0% to 64.9% because there are
only two unseen phonemes in German. This fact can also be explained by the relationship between
German and English. German comes under the West Germanic branch in the Indo-European lan-
guage family like English. As English is the largest training set in this experiment, phonemes of
English are well-trained in the baseline and should be generalizing well to German. Therefore it is
hard for UPM to outperform by a large margin. Additionally, we find that the correlation between
the number of unseen phonemes and phoneme error rates is relatively weak. For example, Tagalog
has 12% higher phoneme error rate compared with Spanish, even its unseen phonemes are less
than Spanish. This might be explained by the discrepancy of the phoneme distribution between the
target language and training languages. For example, even though in principle all the phonemes
of Tagalog have been covered in the training languages, their relative frequencies are not similar,
which would affect the quality of the results.

To further investigate the reason for improvements for our model, we computed the (phoneme)
substitution error rate, shown in the two right columns of Table 2.2. It goes down from 40.2% in the
baseline to 31.9% in our model. The numbers show that we have 8.3% improvement in substitution
error rate. This result suggests that our model is good at improving confusions between phonemes.
However, it also indicates that our model is not able to improve addition and deletion errors.

To understand how the number of training languages contributes to the performance in the
experiment, we train different models by changing the numbers of training languages: we train
those models with 2, 6, 10, 14 languages. The first two languages are English and Mandarin which
are corresponding to the 6 well resourced corpus in Table.2.1. The other 4, 8, 12 languages are
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randomly selected from the remaining training languages.
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Figure 2.3: Illustration of the relationship between the number of training languages and the aver-
age phoneme error rate over 7 languages

Figure.2.3 demonstrates their performance: the red line (with triangular mark) and blue line
(with cross mark) indicate the average PER of the baseline and UPM respectively. They suggest
that increasing the number of training languages is helpful to reduce phoneme error rate for both
models. For the baseline model, it indicates that the acoustic model get exposed to more diverse
phonemes present in different languages. Therefore it learns to predict them with reduced error
rates in the test set. Our UPM also improves by learning various acoustic contexts of broader artic-
ulatory attributes. The curves in Figure.2.3 show that UPM outperforms the baseline consistently
with different training size. Additionally, the gap of phoneme error rate between the two models
has increased when using more languages: the gap increased from 5.0 to 9.3. The results illustrate
that our UPM is better at taking advantage of the diverse training languages. Our model can infer
correlations between phonemes by using their shared articulatory attributes. This ability is helpful
when a specific phoneme is rarely seen but its attributes have already been well-trained using other
related phonemes. On the contrary, the baseline is not adapted well to those rare phonemes or
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unseen phonemes. It fails to predict those phonemes when their training data are limited.
Finally, to highlight the ability of our model, we compute the phoneme error rate for each

phoneme, then classify them into the seen group and unseen group based on whether the phoneme
is available in the training set. To compute phoneme error rate in this case, we align the expected
phonemes with the predicted phonemes using their edit distance, the phoneme error rate here
denotes the correction rate for each expected phone. Table.2.3 demonstrates the results of both
the baseline and UPM, it suggests the UPM outperforms the baseline on both groups. On average,
UPM would predict 10.2 % better for the unseen groups and 7.2 % better for the seen groups. The
average numbers demonstrate that our approach has the ability to predict unseen phonemes and
could even be adapted better to seen groups. The table also shows the difficulty of the task and
the weakness of our approach: we could not predict any unseen phonemes for German. The two
unseen phonemes of German are /pf/ and /C/, but the frequencies of both phonemes are less than
0.5 % in the test set, which makes the model extremely unstable when predicting those phonemes.
On the other hand, the Spanish improvement of unseen PER is extremely significant, which can
also be explained by the unstable prediction over low frequency unseen phonemes. Additionally,
the 89.8 error rate of unseen groups is still not practical in the real-world production systems.

2.4 Related Work

We briefly outline several areas of related works, and describe their connections and differences
with this work. Zero-shot learning was first applied to recognize unseen objects during training
in the computer vision field (Lampert et al., 2009; Palatucci et al., 2009; Socher et al., 2013).
However those works rarely mention speech recognition.

Meanwhile there has been growing interests in zero-resource speech processing (Glass, 2012;
Jansen et al., 2013), most of the work focusing on tasks like acoustic unit discovery, unsupervised
segmentation and spoken term discovery (Heck et al., 2017). These models are useful for vari-
ous extrinsic speech processing tasks like topic identification. However, the unsupervised concept
cannot be directly grounded to actual phonemes, hence making it impracticable to do speech recog-
nition or acoustic modeling. The usual intrinsic evaluations that these zero resource tasks are tested
on is ABX discriminability task or the unsupervised word error rate which are good for quality es-
timates but not practical as they use an oracle or ground truth labels to assign cluster labels. In
addition these approaches demands a modest size of audio corpus of targeting language (e.g: 2.5h
to 40h). In contrast, our approach assumes no audio corpus and no text corpus for targeting lan-
guages. The idea of decomposing speech into concepts was also discussed by (Lake et al., 2014),
where the authors propose a generative model to learn representations for spoken words which
they then use to classify words with only one training sample available per word. Though this is
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in the same line as the zero-resource speech processing papers, we feel the motivation behind the
decomposition is very similar to this work.

Another group of researchers explore adaptation techniques for multilingual speech recogni-
tion, especially for low resource languages. In these multilingual settings, the hidden layers are
either HMM or DNN models which are shared by multiple languages, and the output layer is ei-
ther language specific phone set or a universal IPA-based phone set (Tong et al., 2017; Vu and
Schultz, 2013; Thomas et al., 2010; Chen and Mak, 2015; Dalmia et al., 2018). However pre-
dictable phonemes are restricted to the phonemes in the training set, thus they fail to predict unseen
phonemes in the test set. In contrast, our model can predict unseen phonemes by taking advantage
of their articulatory attributes.

Articulatory features have been shown to be useful in speech recognition under several sit-
uation. Specifically, articulatory features has been used to improve robustness under noisy and
reverberant environment (Kirchhoff, 1998), compensate for crosslingual variability (Stüker et al.,
2003b), improve word error rate in multilingual models (Stüker et al., 2003a), be beneficial for
low resource languages (Müller et al., 2016), detecting spoken words (Prabhavalkar et al., 2013),
clustering phoneme-like units for unwritten languages (Müller et al., 2017a), recognizing un-
seen languages (Siniscalchi et al., 2011), developing phonological vocoder (Cernak and Garner,
2016). There are also some attempts to predict articulatory features or distributions for clinical
usages (Jiao et al., 2017; Vásquez-Correa et al., 2019), but they do not provide a model to predict
unseen phonemes.

We note that there are also several attempts to build acoustic models for unseen phonemes. For
example, the authors in (Scharenborg et al., 2017) present an interesting method to predict unseen
phonemes in Mboshi by mapping Dutch/Mboshi phonemes in the same space using an extrapo-
lation approach. However starting phonemes used for extrapolation had to be manually assigned
for every missing phoneme and every pair of languages. Compared with this work, our model
proposes a much more generic algorithm to recognize unseen phonemes. Another previous work
integrated articulatory attributes into the state-position based decision tree to predict unseen phones
in their multilingual model (Knill et al., 2014), however the approach is limited to traditional HMM
models and it is unclear how attributes are extracted and how it performs when predicting unseen
phonemes.

2.5 Conclusion

In this work, we propose the Universal Phonemic Model to apply zero-shot learning to the au-
tomatic phonemic transcription task. Our experiment shows that it outperforms the baseline by
7.7 % phoneme error rate on average for 7 languages. While the performance of our approach is
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still not enough for the real-world production systems, it paves the way to tackle zero-shot learning
of speech recognition with a new framework.
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Chapter 3

Universal Phone Recognition with Phones
and Phonemes

Summary

Multilingual models can improve language processing, particularly for low resource situations,
by sharing parameters across languages. The model introduced in the previous chapter attempts
to share information across languages by using the phonological features. This model and many
previously proposed model generally ignore the difference between phonemes (sounds that can
support lexical contrasts in a particular language) and their corresponding phones (the sounds that
are actually spoken, which are language independent). This can lead to performance degradation
when combining a variety of training languages, as identically annotated phonemes can actually
correspond to several different underlying phonetic realizations.

In this chapter, we introduce the concept of allophone and propose a joint model of both
language-independent phone Q and language-dependent phoneme P distributions. In multilin-
gual ASR experiments over 11 languages, we find that this model improves testing performance
by 2% phoneme error rate absolute in low-resource conditions. Additionally, because we are
explicitly modeling language-independent phones, we can build a (nearly-)universal phone rec-
ognizer that, when combined with the PHOIBLE (Moran and McCloy, 2019) large, manually
curated database of phone inventories, can be customized into 2,000 language dependent recog-
nizers. Experiments on two low-resourced indigenous languages, Inuktitut and Tusom, show that
our recognizer achieves phone accuracy improvements of more than 17%, moving a step closer to
speech recognition for all languages in the world.1

1A web demo is available at https://www.dictate.app, the pretrained model is released at https://
github.com/xinjli/allosaurus
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Xinjian Li, Siddharth Dalmia, Juncheng Li, Matthew Lee, Patrick Littell, Jiali Yao,
Antonios Anas-tasopoulos, David R-Mortensen, Graham Neubig, Alan W Black, et al.
2020. Universal phone recognition with a multilingual allophone system. In ICASSP
2020-2020 IEEE International Conference on Acoustics, Speech and Signal Process-
ing (Chapter 3)

3.1 Introduction

There is an increasing interest in building speech tools benefiting low-resource languages, specifi-
cally multilingual models that can improve low-resource recognition using rich resources available
in other languages like English and Mandarin. One standard tool for recognition in low resource
languages is multilingual acoustic modeling (Dalmia et al., 2018). Acoustic models are generally
trained on parallel data of speech waveforms and phoneme transcriptions. Importantly, phonemes
are perceptual units of sound that closely correlate with, but do not exactly correspond to the actual
sounds that are spoken, phones. An example of this is shown in Figure 3.1, which demonstrates
two English words that share the same phoneme /p/, but different in the actual phonetic realizations
[p] and [ph]. Allophones, the sets of phones that correspond to a particular phoneme, are language
specific; distinctions that are important in some languages are not important in others.

peak speak ping bing

ENGLISH MANDARIN CHINESE

‘level’ ‘ice’
/pik/ /spik/ /phiN/ /piN/

[phik] [spik] [phiN] [piN]

Figure 3.1: Words, phonemes (slashes), and phones (square brackets).

Most multilingual acoustic models simply use existing phoneme transcriptions as-is, taking the
union of the phoneme sets to be shared by all training languages (Lin et al., 2009; Cohen et al.,
1997; Schultz and Waibel, 2001, 1997; Li et al., 2020d). The assumption is reasonable under some
circumstances as phoneme names are typically associated with their most common or least marked
allophone. However, this is obviously an over-simplistic view: in Figure 3.1, for example, this
would mean that all training in English would assign the phones [p] and [ph] to phoneme /p/. This
is detrimental if we want to recognize Mandarin Chinese, for instance, where the two phones are
corresponding to two distinctive phonemes /p/ and /ph/.
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In this chapter, we propose a novel method for multilingual recognition based on phonetic
annotation to tackle this problem: Allosaurus (allophone system of automatic recognition for
universal speech). Our method incorporates knowledge of phonology into the multilingual model
through an allophone layer, which associates a universal narrow phone set with the phonemes that
appear in the transcription of each language. Our model first computes the phone distribution using
a standard ASR encoder, then the allophone layer maps the phone distribution into the phoneme
distribution for each language. This model can be trained end-to-end using only standard phonemic
transcriptions and an allophone list created by phoneticians. The allophone layer is first initialized
with the allophone list, then is further optimized during the training process. We demonstrate that
accounting for the phoneme-phone mismatch in this way improves the accuracy of multilingual
acoustic modeling by 2.0% phoneme error rate in low-resource conditions.

Furthermore, the architecture simultaneously makes it possible to perform universal phone
recognition. Previous approaches cannot perform phone recognition in a universal fashion as they
depend on language-specific phonemes, as illustrated with the previous example of English not
distinguishing /p/ and /p h/ as required in Mandarin. In contrast, because our approach allows
recognition of phones directly, it already has learned to make these fine-grained distinctions. Tak-
ing advantage of this fact, we incorporate a large phone inventory database collected by linguists,
PHOIBLE (Moran and McCloy, 2019), and demonstrate that our phone recognizer can be cus-
tomized to recognize over 2000 languages without any training data in the languages themselves.
By evaluating the recognizer with completely unseen testing languages, we found that our recog-
nizer achieves 17% better performance absolute compared with the traditional approach.

3.2 Related Work

While some recent work in multilingual ASR focuses on end-to-end models to directly predict
graphemes (Watanabe et al., 2017; Toshniwal et al., 2018), most systems still depend on phoneti-
cally inspired acoustic models. Multilingual acoustic models fall into two groups. The first group,
shared phoneme models, creates a shared phoneme inventory of all phonemes from all training
languages (Lin et al., 2009; Cohen et al., 1997; Schultz and Waibel, 2001, 1997; Li et al., 2020d;
Thompson et al., 2019). The second group, private phoneme models, treats phonemes from each
language as completely different classes performs phoneme classification separately for each lan-
guage (Huang et al., 2013; Dalmia et al., 2018; Li et al., 2019a). However, these two groups
have their own respective drawbacks: the first group fails to consider the disconnect between the
phonemes across languages while the second group completely ignores cross-lingual phonetic as-
sociations and is not applicable to recognition of new languages. In contrast, our approach solves
both of these problems by taking into account allophones with phone-phoneme mappings.
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Figure 3.2: Traditional approaches predict phonemes directly, either for all languages (left) or
separately for each language (middle). On the contrary, our approach (right) predicts over a shared
phone inventory, then maps into language-specific phonemes with an allophone layer.

There have been some attempts to apply phone recognizers to low resource languages. For
example, English recognizers have been applied to align transcription corpora of an endangered
language (DiCanio et al., 2013), facilitate language documentation (Michaud et al., 2018), identify
languages with language models (Matejka et al., 2005), and perform linguistic annotation (Neubig
et al., 2018). However, these approaches depend heavily on training data in the language of interest
and their specific phonemic transcriptions. Our approach, on the other hand, abstracts away the
dependency to phonemes by applying the allophone transformations.

3.3 Approach

3.3.1 Phone-Phoneme Annotation

Suppose there are |L| training languages, and each language Li has its own phoneme inventory
Pi which can be easily obtained by enumerating the phonemes appearing in its annotated training
data. Most traditional multilingual approaches handle inventories at the phoneme level, and create
a shared phoneme inventory Psha by taking union of the phoneme sets:
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Table 3.1: Results of three models’ phoneme error rate performance on 11 languages. The top-half
shows the results trained with all training datasets. The bottom-half shows the low-resource results
in which only 1k utterances are used for training from each dataset.

Amh Eng Ger Ita Jap Man Rus Spa Tag Tur Vie Average

Fu
ll Shared Model 78.4 71.7 71.6 62.9 65.9 76.5 76.9 62.6 74.1 76.6 82.7 73.8

Private Model 37.1 22.4 17.6 26.2 17.6 17.9 21.3 18.5 47.6 35.8 56.5 25.6
Allosaurus 36.0 20.5 18.8 23.7 23.8 17.0 26.3 19.4 57.4 35.3 57.3 25.0

L
ow

Shared Model 80.4 73.3 74.3 72.2 77.1 83.0 83.2 72.8 84.8 84.4 84.5 78.4
Private Model 55.4 50.6 41.9 31.6 36.8 37.0 47.9 36.7 62.3 54.5 73.6 43.8
Allosaurus 54.8 47.0 41.5 37.4 40.5 33.4 45.0 35.9 70.1 53.6 72.5 41.8

Psha =
⋃

1≤i≤|L|

Pi (3.1)

In contrast, our method distinguishes phonemes from their phone realizations. We have lin-
guists annotate each phoneme p ∈ Pi with its corresponding allophone set Qi

p, where each phone
q ∈ Qi

p is a realization of p in language Li.
Merging these sets for all languages, we obtain the universal phone inventory Quni.

Quni =
⋃

1≤i≤|L|

⋃
p∈Pi

Qi
p (3.2)

Additionally, we obtain a signature matrix Si = {0, 1}|Pi|×|Quni| describing the association of
phone and phonemes in each language Li: Suppose the phoneme p ∈ Pi has the row index j where
1 ≤ j ≤ |Pi| , phone q ∈ Quni has the column index k where 1 ≤ k ≤ |Quni|, if the q is a realization
of p, then (j, k) cell of the Si has a value of 1, otherwise it is assigned 0.

3.3.2 Allophone Layer

As mentioned in Section 3.2, traditional multilingual models can be divided into two groups.
The first group, shared phoneme models (Figure 3.2 left), predicts phoneme distributions over
the shared phoneme inventory Psha. The second group, private phoneme models (Figure 3.2 mid-
dle), on the other hand, shares a common encoder but computes distribution over private phoneme
inventory Pi for each language Li. These approaches handle phonemes directly with no concept
of underlying phones.
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Table 3.2: Training corpora and size in utterances for each language. Models are trained and tested
with 12 rich resource languages (top) and 2 low resource unseen languages (bottom).

Language Corpora Utt.

English voxforge, Tedlium (Rousseau et al., 2012), Switchboard (Godfrey et al., 1992) 1148k
Japanese Japanese CSJ (Maekawa, 2003) 440k
Mandarin Hkust (Liu et al., 2006), openSLR (Hui Bu, 2017; Dong Wang, 2015) 377k
Tagalog IARPA-babel106b-v0.2g 93k
Turkish IARPA-babel105b-v0.4 82k
Vietnamese IARPA-babel107b-v0.7 79k
German voxforge 40k
Spanish LDC2002S25 32k
Amharic openSLR25 (Abate et al., 2005) 10k
Italian voxforge 10k
Russian voxforge 8k

Inukitut private 1k
Tusom private 1k

In contrast our proposed approach, Allosaurus, (Figure 3.2 right), comprises a language inde-
pendent encoder and phone predictor, and a language dependent allophone layer and a loss func-
tion associated with each language. The encoder first produces the distribution h ∈ R|Quni| over the
universal phone inventory Quni, then the allophone layer transforms h into phoneme distribution
gi ∈ R|Pi| of each language. The allophone layer uses a trainable allophone matrix W i ∈ R|Pi|×|Quni|

to describe allophones in the similar way as Si. The allophone matrix W i is first initialized with
Si, and is allowed to be optimized during the training process, but we add an L2 penalty to pe-
nalize divergence from the original signature matrix Si. The allophone layer computes its logit
distribution gi by finding the most likely allophone realization in Quni with maxpooling.

gij = max({wi
j,k · hk; 1 ≤ k ≤ |Quni|}), (3.3)

where gij ∈ R is the logit of j-th phoneme in gi for language Li, wi
j,k ∈ R is the (j, k) cell of the

allophone matrix W i, hk ∈ R is the logit of k-th phone in h. Intuitively, if the j-th phoneme has
the k-th phone as an allophone, wi

j,k would be near 1, otherwise wi
j,k would be near 0. Therefore,

the phoneme logit of gij is decided by the largest allophone logit hk. The phoneme distribution gi

is further fed into the loss function. This method for phoneme prediction can be used with any
underlying multilingual ASR system. Here we specifically optimize the parameters by minimizing
CTC loss (Graves et al., 2006) for all training languages, with the addition of regularization of the
allophone layer controlled by hyperparameter α.
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L =
∑

1≤i≤|L|

(Li
ctc + αW i − Si2

2). (3.4)

3.3.3 Universal Phone Recognition

Not only does the allophone layer abstract away from the language-specific phonemes, which
contributes to the improvement in the multilingual acoustic modeling, the model also gives us the
capability to predict universal phones themselves. This has rarely been attempted in previous work.
By applying the greedy decoding strategy over the phone distribution h, we can obtain a phone
sequence in which all phones Quni in the training languages are candidates. When combined with
a large training languages sets, our universal inventory is expected to cover most common narrow
phones appearing in many languages in the world, which we show in the experiment section.

Furthermore, this recognition protocol can take into account phone inventories that have al-
ready been created for many languages in the world by linguists. For example, PHOIBLE (Moran
and McCloy, 2019) is a database of phone inventories for more than 2000 languages and dialects,
allowing our model to be applied to these languages with some degree of accuracy. If the phone
inventory for language Li is Qi, we can restrict the decoder to only produce phones in Qi ∩ Quni

by filtering out other phones. When the universal inventory Quni covers most frequent phones in
the world, we could expect that Qi ≈ Qi ∩Quni.

3.4 Experiments

3.4.1 Settings

As we are interested in creating a large universal phone inventory, we select a phonetically diverse
set of 11 training languages as summarized on the top of Table 4.1. We include corpora from a
variety of speech domains to make our model robust (e.g., read speech, sponatenuous speech).
5% of the dataset is used as the test set, and the remaining data are used as the training set and
the validation set. We also consider a low resource condition, where 1,000 random utterances
are used from each corpus to train the model. As baselines, we compare with the previously-
described shared phoneme and private phoneme models. All methods use the same encoder and
features. Features are high-resolution 40 dimensional MFCCs extracted with Kaldi (Povey et al.,
2011). The encoder is a 6-layer stacked bidirectional LSTM with hidden size of 1024 in each layer.
The regularization hyperparameter α is set to 10. Phonemes for training languages are assigned
using the grapheme-to-phoneme tool Epitran (Mortensen et al., 2018). For each phoneme in each
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Table 3.3: Statistics of the phone coverage mean (standard deviation) of areas. Phone coverage of
language Li is defined as |Puni∩Pi|

|Pi|

Area # Language Shared Allosaurus

Africa 875 53% (13%) 84% (11%)
America 659 52% (14%) 81% (13%)
Asia 377 46% (15%) 79% (13%)
Pacific 152 59% (15%) 87% (12%)
Europe 92 35% (9.5%) 69% (13%)

All 2155 52% (15%) 82% (13%)

Table 3.4: Comparisons of phone error rates in two unseen languages

Inuktitut Tusom

Shared Phoneme PER 94.1 93.5
Best Private Phoneme PER 86.2 85.8

Allosaurus PER 84.1 77.3
Allosaurus+PHOIBLE PER 73.1 64.2

language, phoneticians create the allophone mappings. (Mortensen et al., 2020)2

We evaluate using phoneme error rate for the training languages. Furthermore, we select two
languages not included in the training data: Inukitut and Tusom. These languages are indigenous
languages with few training resources, representing a realistic scenario where our model is applied
to entirely new languages, as may be done when ASR is used for documentation of endangered
languages. The datasets of these two languages are transcribed with phones, and accordingly we
use phone error rate rather than the phoneme error rate. While Allosaurus is able to predict phones
in a natural way by decoding h, the two baselines could not predict phones directly. In this unseen
language experiment, we assume phonemes predicted by the baselines correspond to phones of the
same name.

3.4.2 Main Results

Table 3.1 demonstrates the performance of the baseline models and Allosaurus evaluated on 11 lan-
guages. The top half of the table summarizes the performance when trained with the full training

2its database is available at https://github.com/dmort27/allovera
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Table 3.5: An English example from switchboard in which Allosaurus could distinguish [ph] and
[p] for phoneme /p/

Model Phones

Utterance the quebec people that that speak french
Annotation /ð @ k w @ b E k p i p @ l .. s p i k f ô E n Ù/
Allosaurus [ð @ x o b @ k 5 ph i T o: l .. s p ô I k f ô E n d]

set. The results suggests both the private phoneme model and the Allosaurus model outperforms
the shared phoneme model significantly. The results of the shared phoneme model can be ex-
plained by the disagreement of phoneme assignments across languages. In contrast, the private
phoneme model handles this issue by using language specific phoneme layers. Our model also
circumvents this issue by introducing the language-specific allophone layers. The bottom half of
the Table 3.1 highlights the results when the training set of each language is limited as mentioned
above. Unsurprisingly, limiting the amount of training data hurts accuracy across the board. While
the private phoneme model and our model achieve similar results when using the full training set,
our model outperforms the private phoneme model by 2.0% when training data is limited. This
suggests that our model is better at sharing parameters across languages by using prior phonetic
knowledge in this case, likely due to the fact that the private phoneme model needs to learn each
phoneme predictor from scratch, while our model already has phone-phoneme mapping knowledge
seeded by linguistically motivated annotations.

3.4.3 Universal Phone Recognition Results

In addition to the improvements over low resource settings, our model enables us to predict (nearly-
)universal phone distributions. By merging phone inventories from all of our languages, we obtain
a shared inventory of 187 phones. First, we assess how close this inventory gets to covering the
languages registered in PHOIBLE. The Allosaurus column in Table 3.3 summarizes the phone
coverage of our model, split into different geographic areas. The phone coverage in each cell
represents the mean and standard deviation for each category. As the table suggests, our model
has a promising phone coverage over all areas consistently. On average, it has 82% mean phone
coverage and 12.8% standard deviation over all PHOIBLE languages. Furthermore, by comparing
our model with the baseline model in which we merged all the phoneme inventories from the
corpus as-is, we significantly improve the phone coverage by 30%. Additionally, the standard
deviation shows that our model covers phones more consistently than the baseline model.

Next, we actually evaluate the model with respect to its ability to recognize phones. Table 3.5
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Table 3.6: A qualitative example from Inuktitut dataset

Model Phones

Ground Truth [i l i t s i l: i]
Allosaurus [e l e p ö I l: e]
Allosaurus+PHOIBLE [i l i t i l: i:]

shows a decoded English example. The utterance contains three English phonemes /p/ in word
people and speak. The underlying allophones, however, are [ph] and [p] as mentioned in Section
1. While the original English training set annotates those two words with the same phoneme /p/,
Allosaurus is able to predict different allophones by leveraging knowledge from other languages
(e.g: Mandarin). We also note that Allosaurus is still not perfect: it fails to recognize the second
/p/ in “people.”

Additionally we also investigate unseen languages on the Inuktitut and Tusom datasets. The
results are summarized in the Table 3.4. As the result show, the shared phoneme model can hardly
recognize any phonemes in these two languages, with more than 90.0% phone error rate on both
datasets. Next, we try all 11 private phoneme models from the training datasets and use the one
with the lowest phoneme error rate. Unsurprisingly, this also can not achieve satisfying results on
both datasets, as none of our 11 languages is similar to Inuktitut and Tusom; they both have over
85.0% phone error rate. On the other hand, the proposed Allosaurus model achieves 84.1% phone
error rate on Inuktitut and 77.3% phone error rate on Tusom, a significant drop. When combined
with the PHOIBLE inventory, the error rates are further improved to 73.1% and 64.2% respectively,
which shows 17% improvements on average over the shared phoneme baseline. Table 3.6 shows
one qualitative example from Inuktitut data. It suggests that simply applying Allosaurus could
capture some aspects of the target phonemes, but it still made many errors especially substitution
errors between [e] and [i]. The reason is Allosaurus has a much broader phone search space (187
phones), it might be difficult to distinguish similar phones (e.g: both [e] and [i] are front vowels,
but [e] is a close vowel and [i] is a close-mid vowel). We find those substitution errors account
for the majority of errors in the test sets. Those confusing phones, however, might be solved when
combined with an appropriate inventory such as PHOIBLE. The last row suggests that Allosaurus
could fix those substitution errors as [e] does not exist in Inuktitut’s inventory.

3.5 Conclusion

In this chapter, we propose Allosaurus, which considers the relationship between phones and
phonemes in multilingual acoustic modeling. It improves significantly the phone recognition ac-
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curacy over unseen languages by 17%.
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Chapter 4

Acoustic Model: Hierarchical Multilingual
Model

Summary

There is growing interest in building phone recognition systems for low-resource languages as the
majority of languages do not have any writing systems. Phone recognition systems proposed so far
typically derive their phone inventory from the training languages, therefore the derived inventory
could only cover a limited number of phones existing in the world. It fails to recognize unseen
phones in low-resource or zero-resource languages.

Chapter 2 and Chapter 3 discuss two different multilingual acoustic model. In Chapter 2,
each phoneme is represented using phonological features, in Chapter 3, each phoneme is repre-
sented using its corresponding phones (i.e. allophones). This chapter combines those two architec-
tures into a single hierarchical model: we explicitly model three different entities in a hierarchical
manner: phoneme, phone, and phonological articulatory attributes. In particular, we decompose
phones into articulatory attributes and compute the phone embedding from the attribute embed-
ding. The model would first predict the distribution over the phones using their embeddings, next,
the language-independent phones are aggregated to the language-dependent phonemes and then
optimized by the CTC loss. This compositional approach enables us to recognize phones even
they do not appear in the training set. We evaluate our model on 47 unseen languages and find the
proposed model outperforms baselines from Chapter 2 and Chapter 3 by 13.1% PER.

Xinjian Li, Juncheng Li, Florian Metze, and Alan W Black. 2021. Hierarchical phone
recognition with compositional phonetics. In Proc. Interspeech
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4.1 Introduction

With the development of deep neural networks, there is growing interest in applying deep neural
network models to speech recognition (Amodei et al., 2016; Chiu et al., 2018; Chan et al., 2016).
Those deep models, however, are restricted to languages with a large amount of training set such as
English and Mandarin (Godfrey et al., 1992; Panayotov et al., 2015), therefore, they are not avail-
able for most languages in the world. Additionally, the majority of the languages in the world have
never been written (Coulmas, 2013), as a result, the only accessible speech recognition systems are
phone recognition systems. Many works have focused on developing phone recognition systems
for low-resource languages (Schultz and Waibel, 1997; Li et al., 2020d; Thompson et al., 2019;
Li et al., 2019a). However, most of them face the problem of the limited phone inventory. As the
training languages typically consist of rich resource languages such as English and Mandarin, the
training phone inventory usually consists of common phones available in European languages and
East-Asian languages. This situation makes it hard to recognize unique phones in other language
families. Another problem is the imbalanced phone distribution among the training set: some
phones might appear frequently in many languages, but other phones might only occur in limited
cases in one specific training language and therefore have much fewer training samples. This issue
would cause the model to predict the first group more frequently and suppress the second group.
Note that we distinguish the concept of phone and phoneme in this work (Ladefoged and Johnson,
2014): phone represents the physical speech sound, it is the language-independent unit shared by
all languages. In contrast, phoneme is the language-dependent unit, it is the smallest unit to distin-
guish meaning in a specific language. Phones and phonemes are highly related to each other and
one phoneme might correspond to multiple phones (those phones are referred to as the allophones).
For example, the phoneme /p/ in English have two actual phonetic realizations (allophones) [p] and
[ph].

In this chapter, we propose a novel hierarchical model to tackle the two problems stated above.
While most traditional works tend to consider each phone as the basic independent building block,
we further decompose phones into their components: phonological articulatory attributes. For
instance, the phone [a] can be characterized as a open front unrounded vowel where each word
(e.g: open) can be seen as its attribute. We assign each attribute an attribute embedding to encode
its information, then the phone embedding can be constructed by summing up its corresponding
attribute embeddings. Those embedding would be fine-tuned during the training process. With
those embeddings, we can build the recognition model as illustrated in Figure.9.1: the encoder
(BLSTM) first receives the input features and generates hidden vectors. We take the inner product
of the phone embedding and the hidden vector to compute the phone distributions. Then the
phone distribution is mapped to phonemes in each language using the allophone mappings. Finally,
the phoneme distribution is optimized by the loss (CTC) function. This approach enables us to
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Figure 4.1: The architecture of the hierarchical model. We first compose the phone embeddings
from their attribute embeddings. Then we compute the phone distributions using the embeddings
and the hidden vector from the encoder, Next, the language-independent phones are transformed
into language-dependent phonemes with the allophone mappings, which would finally be opti-
mized by the loss (CTC) function.
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solve the aforementioned two problems: first, the phones are no longer independent units, they
are interconnected by articulatory attributes shared with each other. Even for a new phone which
we have not encountered so far, we can decompose it into existing attributes and then compute its
embedding as well. Therefore, this model has the ability to handle unseen phones. Furthermore,
this model would suffer less from the imbalanced phone distribution problem as we are optimizing
the attribute embeddings instead of the phones themselves: even the rare phones would be fully
trained through their attributes shared with other frequent phones. We apply our models to 47
unseen languages and the results indicate that our model improves the average PER (Phone Error
Rate) by 13.1%.

4.2 Related Work

Training speech recognition systems for low-resource languages remains a challenge due to the
limited supervised training set. One common approach is to train multilingual models on languages
with rich supervised resources and then transfer its knowledge to new languages (Huang et al.,
2013; Heigold et al., 2013; Veselỳ et al., 2012). Another promising method proposed recently is to
use the unsupervised approach to pretrain the encoder with a large amount of unsupervised dataset.
The pretrained encoder can be fine-tuned to the target language with a limited size of training set
(Schneider et al., 2019; Conneau et al., 2020; Rivière et al., 2020).

Despite the success of those models, they still rely on the supervised set for the target lan-
guage and could not be applied to any unseen languages. In particular, the unseen language might
contain unseen phones which are not available in the training languages. One solution is to use
language-independent phones instead of the language-dependent phonemes or subwords (Li et al.,
2020a). During the training phase, the model can first predict the distribution over the language-
independent phones, then it transforms the distribution into the language-dependent phonemes to
be optimized (as most of the training set is typically available in the form of phonemes). As the
language-independent units are shared by all languages, this model can be applied to unseen lan-
guages without any training set for the target language. The only information required for such
a model is the phone inventory, which is easy to obtain as PHOIBLE has published the inventory
containing more than 2000 languages (Moran and McCloy, 2019). However, even this model can-
not solve the issues of unseen phones as the available phone inventory is limited to the phones
covered by the training languages. Additionally, it suffers from the problem of the imbalanced
phone distribution we mentioned above.

One potential approach to overcome those two problems is to use phonological articulatory
attributes. The articulatory attributes are well-defined by the linguists and most phones can be
reduced to a list of discrete articulatory attributes (Ladefoged and Johnson, 2014). By learning
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the representations over the articulatory attributes, we can associate any unseen phones with well-
known attributes and therefore be available to use those phones during inference. Note that ap-
plying articulatory attributes to speech recognition tasks is not a new idea. To name a few, it has
been applied to improve robustness under the noisy environment (Kirchhoff, 1998), improve per-
formance for multilingual speech recognition (Müller et al., 2016), doing phoneme clustering for
unwritten languages (Müller et al., 2017a). However, most works do not apply them to predict
unseen phones. One work has applied a similar idea to recognize unseen phones as ours (Li et al.,
2020c). This work, however, does not distinguish between phones and phonemes, it constructs the
language-dependent phonemes directly from the articulatory attributes. We find this model would
not be properly trained when the number of training language increases because more languages
would bring more phone-phoneme inconsistencies.

4.3 Approach

4.3.1 Compositional Phonetics

In this work, we introduce the approach of compositional phonetics, where we decompose phones
into a list of phonological articulatory attributes. Each attribute has been assigned a fixed length
of embedding which we refer to as the attribute embedding, those embeddings are first randomly
initialized and get fine-tuned together with other parameters during the training process. By using
those attribute embeddings, each phone can also be assigned an embedding by linearly composing
the embedding from their attributes. Formally, consider a set of phones P , for each phone p ∈ P ,
we could determine a list of its attributes Ap. For each attribute in the list a ∈ Ap, we could
assign an attribute embedding ea ∈ Rn where n is the hidden size of the model. Then, the phone
embedding ep ∈ Rn can be computed by aggregating its attribute embeddings.

ep =
∑
a∈Ap

ea (4.1)

Suppose that the encoder computes the hidden vector h ∈ Rn for the current frame, we can
obtain the logit lp for this phone p by taking inner product

lp = hT ep (4.2)

Note that the embedding composition approach is not the only way to associate attributes and
phones. A more simple idea used in (Li et al., 2020d) is to first compute the attribute logits lA ∈
R|A| from the encoder, where |A| is the size of entire attributes, then add up logits of corresponding
attributes. We would refer to this model a linear model.
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lp =
∑
a∈Ap

la (4.3)

While the two approaches seem to be similar, we find that the embedding composition approach
is more stable and typically leads to better performance. Our hypothesis is that the linear model
encodes the hidden information with a small size of |A|, on the contrary, the embedding approach
encodes the information with a much larger hidden size n and thus has better expressive power (in
our experiment, n = 640, |A| = 23). Additionally, the embedding approach enables us to have a
better understanding of the model through their embedding spaces.

Notice that while the potential number of phones is very large, the number of articulatory at-
tributes is significantly smaller. In our estimation, we find PHOIBLE has listed more than 2000
unique phones across all registered languages (Moran and McCloy, 2019), however, the articu-
latory phonological attributes are well-defined and we only consider 22 unique attributes (+1 ctc
attribute) in this work. Even if a particular phone does not exist in the training set, we can still do
the inference as we can easily compose its embedding from the known attribute embeddings.

4.3.2 Allophone Layer

We review the idea of the allophone layer from Chapter 3. The allophone layer is to transform the
language-independent phone distributions into the language-dependent phoneme distributions. For
the allophone layer, we follow the architecture proposed in the previous work (Li et al., 2020a).
Suppose the current language is L, and its phoneme inventory is QL. For each phoneme in the
inventory q ∈ QL, it has multiple allophones corresponding to it. Suppose the allophone set for q
is Pq. Then each phone p ∈ Pq is an allophone for q. The allophone layer computes the phoneme
logits by selecting the max logits among its allophones.

lq = max{lp|p ∈ Pq} (4.4)

Finally, the phoneme distributions are fed into the CTC loss to be optimized (Graves et al.,
2006). CTC loss is selected as it has the conditional independence assumption, which reduces the
dependency to the language modelings of the training languages, and thus make it easier to predict
unseen phone sequence patterns.
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4.4 Experiments

4.4.1 Settings

In this section, we describe our experiment in this work. We select 11 training languages as de-
scribed in Table.4.1. Those languages are selected as they have large training sets and their phonol-
ogy is well understood. We use Epitran to convert text into phoneme for each utterance in the
text (Mortensen et al., 2018). Each phoneme might correspond to several phones, those mapping
rules are provided by Allovera (Mortensen et al., 2020). Finally, we extract discrete phonological
articulatory attributes from each narrow phone by using Panphon (Mortensen et al., 2016b). The
tool supports 22 distinct features, we create two different attributes from each feature by consid-
ering whether that feature exists or not. For instance, +syllabic means it is a syllabic phone,
-syllabic means it is not.

For the testing languages, we use a recently proposed dataset (Li et al., 2021c). The dataset
contains many small corpora from around 100 languages. Each corpus is phonetically annotated
by linguists and manually aligned. We sort all corpus by their size and extract corpus whose size
of utterances is larger than 50. The number of unique languages in this subset is 47, their ISO-639
id are abk, ady, afn, afr, agx, ajp, apc, ape, apw, asm, azb, bam, cbv, cpn, dan, ell, fin, guj, hau,
haw, heb, hil, hin, hrv, hun, hye, ibb, ilo, isl, kan, kea, khm, klu, knn, lad, lav, lit, lug, mlt, mya,
nan, nld, pam, pes, prs, wuu, yue.

For the evaluation, we compare 4 different acoustic models. The first one is the English phone
recognition model which is a standard LSTM model trained using only English training sets. This
model is used as a baseline to contrast language-dependent models and language-independent
models. The second model is the Allosaurus model (Li et al., 2020a) whose architecture has
an allophone layer mapping between phones and phonemes, it does not model any articulatory
attributes and thus each phone is considered independent from each other. Those two models are
open-sourced and available on Github.1. The other two models are hierarchical models we propose
in this work. One hierarchical model is using a simple linear model mapping articulatory distri-
butions into phone distributions. The other model is the main model we discuss in the previous
section where we compose phone embeddings from the attribute embeddings and apply those em-
beddings to estimate distributions. All 4 models are using the same input feature and same encoder
architecture: 40 dimension MFCCs and 5 layer bidirectional LSTM with 640 hidden size, the loss
function are all CTC loss. The English model connects the encoder directly to the loss function, the
Allosaurus model has an allophone layer between the encoder and loss function, the hierarchical
models have the aforementioned compositional architecture.

1eng2102 and uni2005 from https://github.com/xinjli/allosaurus
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Table 4.1: Training corpora and size in utterances for each language. Models are trained with 11
rich resource languages

Language Corpora Utt.

English voxforge, Tedlium (Rousseau et al., 2012), Switchboard (Godfrey et al., 1992) 1148k
Japanese Japanese CSJ (Maekawa, 2003) 440k
Mandarin Hkust (Liu et al., 2006), openSLR (Hui Bu, 2017; Dong Wang, 2015) 377k
Tagalog IARPA-babel106b-v0.2g 93k
Turkish IARPA-babel105b-v0.4 82k
Vietnamese IARPA-babel107b-v0.7 79k
German voxforge 40k
Spanish LDC2002S25 32k
Amharic openSLR25 (Abate et al., 2005) 10k
Italian voxforge 10k
Russian voxforge 8k

4.4.2 Results

Table.4.2 shows the main results of our experiment. For each model, we evaluate it across all 47
languages and take the average of their PER (phone error rate). In addition, we also show the
percentage of errors of addition, deletion, and substitution. The table indicates that the English
model has 72% PER, which is the worst phone error rate among all models. The result is expected
as the English model could only recognize phones available in English but is not able to recognize
any unseen phones in our testing languages. This also explains the high substitution error rate
in English as it typically replaces unknown phones with English phones during inference. The
Allosaurus model performs better than the English model as it is a language-independent model
and could cover a larger phone inventory. It improves the substitution error rate from 45.6% to
37.8%. Both hierarchical models perform significantly better than the Allosaurus model. The
linear model has 57.6% PER and the compositional model has 51.2% PER.

To have a better understanding of performance across languages, Figure.4.2 shows the box plot
of the 4 models. It is clear from the figure that each model has a very large variance: some lan-
guages perform better and other languages perform worse. By investigating the performance of
each language, we find languages with better recording environments tend to obtain better scores,
and languages with many background noise tend to score worse. We also compute the correlations
across 4 models as shown in Figure.4.3. It demonstrates that Allosaurus model and both hierarchi-
cal models are highly correlated, but the English model is much less related. This is because the
three models are language-independent models but the English model is language-dependent.

Next, we investigate the most common errors of the embedding model. Table.4.3 shows the
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Table 4.2: Average Performance of 47 testing languages for each model. The proposed Hierarchi-
cal model using embedding approach performs best. PER is the phone error rate, Add, Del, Sub
denotes the addition, deletion and substitution errors. All numbers are shown in %

Model PER Add Del Sub

English model 72.0 11.2 15.2 45.6
Allosaurus model 64.3 7.86 18.6 37.8

Hierarchical (linear) 57.6 7.87 13.6 36.1
Hierarchical (embedding) 51.2 3.4 18.9 28.8

Figure 4.2: The boxplot of performance distribution across all 47 languages for each model

top 3 errors and their occurrences across the dataset. The statistics indicate that the most common
error is the deletion of phone [s]. Our hypothesis is that our model might have some difficulties
in recognizing unvoiced sounds. For example, [s] is an unvoiced fricative consonant and [t] is an
unvoiced plosive consonant. We find those unvoiced sounds typically have some characteristic
patterns in the high frequency regions of spectrograms. However, our training set contains many
8k frequency audios and therefore the resolution of our model is restricted to 4k due to the Nyquist
sampling theorem. Those deletion errors might be overcome by using high resolution audio corpus
in the future. Another major errors come from the substitution errors, they have longer tails than the
other two errors. The table suggests that most common substitution errors come from ambiguous
vowels.
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Figure 4.3: Performance correlation between 4 models

Table 4.3: Most frequent errors in the Hierarchical model (embedding), the left side in the tuple is
the error and the right side is its total occurrences in the test set. In the substitution row, the phone
on the left side is the reference and the phone on the right side is the hypothesis

Types Most Common Errors

Add ([i], 104), ([a], 53), ([m], 47)
Del ([s], 247), ([a], 238), ([t], 221)
Sub ([a] -> [], 122), ([u] -> [o], 109), ([a] -> [A], 104)

4.4.3 Analysis of Embeddings

During the training process, we also obtain the embeddings of both articulatory attributes and
phones. The attribute embeddings do not have much patterns in them as they are mostly inde-
pendently from each other. However, the phone embeddings have several interesting patterns.
Figure.4.4 shows the embeddings of English phones. The embeddings originally have 640 dimen-
sion and get reduced to 2 dimension by PCA. There are several interesting things we can observe
in the figure. First, there are a couple of clusters in the graph. The easiest one to identify is the
vowel cluster at the right bottom corner. We have vowels such as [a], [o], [u] clustered together.
This provides another reason for the substitution error: the embeddings of those phones are near to
each other, therefore it is easy to confuse them with each other. On the top of the figure, we have
the plosive velar group: [k] and [g]. [ng] near them is another velar consonant. Furthermore, we
could find several word2vec like relations (e.g: king - queen = man - woman) in the figure. For
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Figure 4.4: PCA projected embeddings for all phones available in English. The embeddings are
from the Hierarchical (embedding) model.

example, for voiced and unvoiced sounds,

e([k])− e([g]) = e([p])− e([b]) (4.5)

Similarly, for aspirated and unaspirated sounds, we find following relations:

e([ph])− e([p]) = e([kh])− e([k]) (4.6)

4.5 Conclusion

In this chapter, we propose the hierarchical model for low-resource phone recognition where we
explicitly model three different entities: phoneme, phone and articulatory attributes. We test the
model on 47 unseen languages and the result demonstrates that our approach achieves 13.1% PER
better than the baseline model. The model will be integrated into the Allosaurus repository for
more researchers to explore phone recognition systems.
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Part II

Language Models
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Phoneme Grapheme Text

8k languages 6k languages

Pronunciation Model Language Model

Figure 4.5: The language model covered in Part II
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Chapter 5

Pronunciation Model: Grapheme to
Phoneme Conversion

Summary

Part I of the thesis covers the acoustic model, which converts the speech audio X into the phoneme
transcription P . For languages without any writing systems, the phoneme transcription can be the
final outputs of the pipeline. If the target language has some writing systems, we need to continue
to convert phoneme transcriptions into word sequences. To achieve this conversion, we should
establish the connection between phonemes and graphemes for the target language. In particular,
we are interested in creating a language-dependent model P = δ(Y ) where Y is a text and P is its
phoneme pronunciation. This is the Grapheme-to-Phoneme (G2P) conversion task and it has many
applications in NLP and speech fields. Most existing work focuses heavily on languages with
abundant training datasets, which limits the scope of target languages to less than 100 languages.

This chapter attempts to apply zero-shot learning to approximate G2P models for all low-
resource and endangered languages in Glottolog (about 8k languages). For any unseen target
language, we first build the phylogenetic tree (i.e. language family tree) to identify top-k nearest
languages for which we have training sets. Then we run models of those languages to obtain a
hypothesis set, which we combine into a confusion network to propose a most likely hypothesis as
an approximation to the target language. We test our approach on over 600 unseen languages and
demonstrate it significantly outperforms baselines.

Xinjian Li, Florian Metze, David R Mortensen, Shinji Watanabe, and Alan W Black.
2022. Zero-shot learning for grapheme to phoneme conversion with language ensem-
ble. Findings of ACL.
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Language Grapheme Phoneme

English hello /hlU/
Mandarin 你好 /nixAU/
French bonjour /bOZuK/
German hallo /halo/
Japanese こんにちは /konnichiwa/
Spanish hola /ola/

Table 5.1: A small sample of G2P examples from high-resource languages in our training set.

5.1 Introduction

Grapheme-to-Phoneme (G2P) plays a crucial role in many NLP tasks. In particular, it is used
heavily in many speech-related tasks such as speech recognition and speech synthesis (Arık et al.,
2017; Miao et al., 2015). Even in the latest end-to-end systems, it still has a strong impact on the
speech performance (Hayashi et al., 2021). Typically, the G2P task is language-dependent—many
language-specific factors affect the G2P process such as the general characteristics of scripts (Ager,
2008), phonotactic constraints (Hayes and Wilson, 2008) and other orthography factors (Frost and
Katz, 1992). For example, in Table 5.1, Mandarin and Japanese are not using the Latin script, there-
fore they cannot share their G2P models with English. As a consequence, to develop a G2P model,
we need either to create a training set for the target language, like (CMU, 2000), or to ask linguists
to explicitly define a set of orthographic rules to map from graphemes to phonemes (Mortensen
et al., 2018). Both approaches have achieved success for high-resource languages; however, they
can only account for a small number of the world’s languages. The majority still do not have access
to G2P due to limited training resources. A good G2P model would be beneficial to many speech
tasks in low-resource languages (Li et al., 2020a,c; Yan et al., 2021)

In this work, we attempt to tackle this challenging problem by using the language ensemble
approach. Our approach allows us to propose an approximated G2P baseline to all languages
present in the GlottoLog database: around 8000 of them (Nordhoff and Hammarström, 2011). The
main insight of our approach is that we can approximate the G2P model of an unseen language
using those of related languages because languages related to the target language should have
similar orthographic rules (of both the context-free and context-dependent type). For example, a
native speaker of English (a Germanic language) is likely to make accurate guesses about how a
text in German (another Germanic language) would be pronounced. In Table 5.1, both German and
English pronounce the "h" grapheme explicitly, but Spanish (a Romance language) does not share
the same property. We define the similarity between languages as the shortest distance between
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two languages in the phylogenetic tree (i.e. language family tree). We first build models for the
subset of languages (training languages) where we have a large enough training set (e.g., Italian,
Spanish, etc.). Then, for each unseen language (e.g., Catalan), we first find the top-k nearest
training languages (like Italian, Spanish, etc.) and use those languages’ G2P models to generate k

hypotheses. Finally, we ensemble the G2P outputs by building a confusion network and discover
the most-likely sequence as an approximation to the target language.

In our experiments, we build a large dataset from Wiktionary in which we use 260 languages as
the training languages and test our approach on 600 unseen languages. We apply our approach to
3 different architectures: a joint-sequence n-gram model (Novak et al., 2016), an LSTM sequence-
to-sequence model (Rao et al., 2015), and a transformer-based sequence-to-sequence model (Peters
et al., 2017). Using any of the architectures, our approach outperforms all baselines by more than
5% PER (phoneme error rate).

The main contributions of this work are as follows:

1. A novel approach to approximate target language G2P models using the nearest languages
in a phylogenetic tree

2. An approach to ensemble predictions from multiple outputs using confusion networks.

3. A demonstration that our approach achieves significantly better performance than baselines
when testing on 600 unseen languages.

5.2 Related Work

Traditionally, a G2P component is built using rule-based models. For example, the phonological
constraints can be incorporated into context-sensitive grammars and implemented using finite-
state transducers (Kaplan and Kay, 1994). However, designing the rules requires many hours from
linguists and can be prohibitive for low-resource languages if they have deep orthographies1.

Statistical models overcome this problem by learning the rules automatically. Typically, there
are two steps in building such a model: first, the sequence of phonemes and graphemes are aligned
to each other, then another prediction model is built on top of the alignment. The alignment model
is typically done using Expectation and Maximization (Ristad and Yianilos, 1998; Jiampojamarn
and Kondrak, 2010). The prediction model can be done using neural networks (Sejnowski and
Rosenberg, 1987), decision trees (Black et al., 1998), joint-sequence models (Bisani and Ney,
2008) and WFST-based n-gram models (Novak et al., 2016). More recently, deep neural net-
works have been applied to the G2P task. Various architectures have been explored, for example,
1Orthographies in which the relationship between graphemes and phonemes has been obscured by history or is other-
wise complicated.
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RNNs (Rao et al., 2015; Yao and Zweig, 2015; Lee et al., 2020), CNNs (Yolchuyeva et al., 2019)
and Transformers (Yolchuyeva et al., 2020).

Traditionally, each G2P model was typically built for one high-resource language. Recently,
many researchers have started to focus on low-resource G2P models. One related work adapts
high-resource language models to low-resource language models by measuring similarity between
languages and phonemes (Deri and Knight, 2016). This previous work creates a new training set
for every low-resource language by adapting the training set from the top-3 nearest languages.
However, there are several issues with this approach. First, it has to prepare separate training sets
and n-gram models for every testing language, which is quite computationally expensive. It also
suffers from the limited training set problem even after merging top-3 languages because the vo-
cabulary size of most training languages are less than 100, which is insufficient to train any stable
neural models. In contrast, we only prepare one unified training set and one unified model in our
neural approach, which circumvents these problems. Additionally, the testing languages and train-
ing languages are mixed in this work, therefore the performance on unseen languages is not clear.
Only a limited number of papers so far focus on developing G2P models for unseen languages.
The most common strategy is to drop the target language information and make predictions using
a shared multilingual model (Peters et al., 2017; Bleyan et al., 2019). This is one of our baseline
(the global language model) in this work.

5.3 Approach

In this section, we describe our zero-shot learning approach. We first introduce three G2P models
to be used for supervised learning and covering high-resource languages. Next, we define the
language similarity and language families. Finally, we explain how to ensemble nearest languages
models to predict G2P for an unseen language.

5.3.1 Monolingual Model

In this section, we introduce our monolingual G2P models: a joint n-gram model based on WFSTs,
two neural models based on sequence-to-sequence LSTMs, and transformer models. We select
those models as they are the three baseline models used in the SIGMORPHON Multilingual G2P
task (Gorman et al., 2020). These models are trained for every training language and then used as
building blocks to approximate G2P models for unseen testing languages.

The joint n-gram model is a standard monolingual G2P model (Novak et al., 2016). For each
training language, the dataset is first aligned using Expectation Maximization, then an n-gram
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English Dutch
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Figure 5.1: Illustraction of a partial phylogenetic tree (i.e. language family tree). The subtree has
Proto-Indo-European as the root of the family (there also exists many other root language families).
The Germanic branch and Italic branch can be derived (not directly though) from the Proto-Indo-
European, they are further divided into the modern languages we are using today. This information
can help us compute the similarity between languages.

model is built using a WFST2. The neural model is a standard sequence-to-sequence model. We
tried two common architectures: bidirectional LSTM and transformer. Unlike the n-gram model,
the neural model is trained by combining all training sets into one large dataset. To distinguish
different languages, a ISO 639-3 language ID is attached to the input sequence, for example, we
attach the "<eng>" to "hello", so the input sequence is "<eng> h e l l o". This approach was ex-
plored in previous work (Peters et al., 2017). It allows the parameters to be shared across different
languages. Even language with a limited training set could benefit from other high-resource lan-
guages.

5.3.2 Phylogenetic Tree and Nearest Languages

The model discussed in the previous subsection could predict phonemes for any training language,
however, it cannot deal with any unseen languages. Our main contribution in this work is to select
the highly related languages and then effectively combine those models to approximate the target
language. In this subsection, we introduce the concept of the nearest language in terms of the
phylogenetic tree (i.e. language family tree), then we explain how we ensemble nearest languages.

There are many metrics to measure the distance between languages from different perspectives

2https://github.com/AdolfVonKleist/Phonetisaurus
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(Dryer and Haspelmath, 2013; Littell et al., 2017). In this work, we only consider the phylogenetic
tree (i.e., language family tree) to measure the distance between languages. This is because the
phylogenetic information is available for a larger portion of languages than any of the other bases
of linguistic distance or similarity. Glottolog provides us with language family information for
around 8000 languages (Nordhoff and Hammarström, 2011).

In Figure 7.1, we write a subtree of the entire phylogenetic tree, in particular, it illustrates two
major branches of the linguistic Stammbaum: the Germanic and Italic. Both of them are children
of the Proto-Indo-European (PIE) node. The tree also indicates that English and Dutch are closely
related languages and that Norwegian and Icelandic are closely related languages. To measure the
distance between any pair of languages, we can compute the length of the shortest path between the
two languages. In our example, the English/Dutch pair has a distance 2, and the English/Norwegian
pair has a distance of 4. The shortest path can be computed efficiently by using Lowest Common
Ancestor (LCA).

d(l1, l2) = H(l1) +H(l2)−H(LCA(l1, l2)) (5.1)

where d(l1, l2) is the distance between language l1 and l2, H compute the height of a node
in the tree. This time complexity is O(log(M)) where M is the max height of the phylogenetic
tree (Cormen et al., 2009). Suppose the entire language set is L and training languages are T ⊂ L,
we could compute the k nearest languages for every language l ∈ L, those languages would allow
us to ensemble models.

Note that the original tree structure in Glottolog groups languages into separate top-level fam-
ilies, therefore languages belonging to different top-level families do not have any direct path
among them. To connect all languages, we add a root node and set all top-level languages as its
direct children. There are also several assumptions in our approach that might not be correct: for
example, we assume languages belonging to the same family should share similar orthography,
however, this is not always the case. They are also influenced by non-linguistic aspects such as po-
litical factors and cultural factors. Additionally, we assume each language is only using one script,
but some languages are actually written in multiple scripts. For example, Uzbek is written with
a Perso-Arabic, Cyrillic, and Latin script. Despite all those limitations, information on language
families provides a reasonable starting point.

5.3.3 Model Ensemble

After obtaining the nearest languages and the monolingual model for each of the training lan-
guages, we can use those models to approximate the target model. In particular, we are interested
in combining prediction outputs from different models to create a single prediction output. If
the models are one of the local prediction models (i.e: for each grapheme, we decide whether
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Figure 5.2: An illustration of an actual ensemble example from our dataset. The input is ’that’
from Old Dutch (odt), its top-2 nearest language in our training set are Dutch (nld) and Middle
Dutch (dum). The left-hand side denotes two hypotheses generated from those two languages,
from which we compose into a confusion network. The composed confusion network has three
confusion sets, which would vote ’/t a t/’ as a final prediction.

to generate a phoneme and which phoneme to generate) (Sejnowski and Rosenberg, 1987; Black
et al., 1998), the ensemble task is simple. As we made one phoneme prediction at every grapheme
position, we can use the voting to decide the most likely phoneme.

[p̂] = argmax[p]

∑
i

1([p] = [p]i) (5.2)

However, for the more general sequence-to-sequence neural model, it is more complicated.
Different models would predict outputs with variable sequences, therefore voting at each position
would be meaningless. For example, suppose two phoneme sequences "/helo/" and "/elo/" are
generated from "hello" using two different languages. It is difficult to average /h/ and /e/ as they
are corresponding to different graphemes. To solve this problem, we use a robust approach to
ensemble outputs with variable lengths. Our approach is similar to the ROVER system (Fiscus,
1997), which is a commonly used approach to combine multiple speech outputs into one output.
It has been applied to combine phoneme sequence (Schlippe et al., 2014), but only under the
monolingual scenario in which they combine different models to improve the performance. This
work focus on combining multilingual outputs and modifying the standard word-based network to
consider the phonological structure.

One actual example from our dataset is illustrated in Figure 5.2. First, we build one confusion
network (or lattice) per language in our nearest language set. The raw confusion network represents
a single hypothesis using a directed graph whose edge corresponds to a single phoneme from the
hypothesis3. When we compose multiple confusion networks into one confusion network, there

3We can also generate n-best hypotheses from each model and build confusion networks, however, we only consider
the top-1 hypothesis in this work for simplicity. N-best hypotheses might be a future work
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would typically be more than one edge connecting two nodes. The set of edges connecting two
contiguous nodes is typically referred to as the confusion set (or correspondence set) (Fiscus, 1997;
Mangu et al., 2000). For example, the first confusion set from the right network in Figure 5.2 is
{/t/, /s/}. The goal of our ensemble approach is to compose all confusion networks into a single
network, and then pick up the best hypothesis from the composed network.

Unlike the original work in which hypotheses are composed without any specific order, we
iteratively compose the network using the nearest order: we first compose the nearest and second
nearest confusion network into a single network, then further merge the third nearest network into
it. In each composition step, we align two networks by computing the similarity between pairs of
confusion sets. While the standard network computes the similarity step using the exact matching
metric, we relax this exact matching scheme and use a more coarse matching strategy by consider-
ing the phonological distance structure. In particular, we use the phonologically-equivalent class,
which collapses similar sounds into a small number of classes (Mortensen et al., 2016b). This
means we could easier match /a/, /o/ (vowel pairs) than /a/, /s/ (vowel, consonant pairs). After
composing all confusion networks into one network, the most likely phoneme sequence can be
generated from the final network. To generate the sequence, we pick up 1 phoneme per confusion
set and concatenate them together. The phoneme in each confusion set is selected using the voting
scheme. When there are multiple candidates with equal votes, we break the tie by selecting the
candidate generated from the nearest language. Algorithm 1 summarizes the entire steps in our
approach.

5.4 Experiments

In this section, we show the experiment results on our G2P models. First, we introduce the main
datasets we used to build our model, next we describe our baseline models and G2P architectures
we use in our experiments. Finally, we demonstrate that the proposed ensemble approach outper-
forms those baseline models in different architectures.

5.4.1 Data

The main training/testing dataset we used is the Wiktionary website. Wiktionary is a large multi-
lingual website containing lexicon information for many languages, including many low-resource
languages. One previous work has prepared a dataset using Wiktionary (Deri and Knight, 2016),
but the testing languages and training languages are mixed together in this dataset: many testing
languages are also available as training languages. To demonstrate our approach on unseen lan-
guages, we create a new dataset using the latest Wiktionary. First, we download a dump file from
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Algorithm 2: G2P algorithm
Data: input, lang (Grapheme sequence and its language)
Result: output (ensembled phoneme sequence)
klangs← KNearestLanguage(lang)
hyps← []
for klang ∈ klangs do

hyp← G2P (input, klang) ; /* Generate hypothesis for every
nearest language */
hyps.append(hyp)

end
x← ConfusionNetwork()
for hyp ∈ hyps do

n← ConfusionNetwork(hyp)
a← align(x, n)
x← composite(x, n, a)

end
output← []
for cs ∈ x do

p← vote(cs) ; /* vote 1 phoneme per confusion set */
output.append(p)

end

the website and extract all words with pronunciation information4. We group all words by their
languages, which gives us 972 languages in total. However, not all languages yield a similar num-
ber of training data. Figure 5.3 shows the log-scaled histogram of language counts for different
vocabulary sizes. Only 1 language: English, has more than 400k vocabulary items. Most of the
languages are concentrated in the lowest histogram bar. In our dataset, we find that the majority of
the language have less than 100 vocabulary items. Therefore, the model needs to be able to handle
low-resource training scenarios.

Next, most languages from Wiktionary can be assigned an ISO 639-3 ID, which can be identi-
fied in our phylogenetic tree. As mentioned in the previous section, our phylogenetic tree is built
using the Glottolog database (Nordhoff and Hammarström, 2011), which contains phylogenetic
information about 7915 languages. We split all languages into training languages or testing lan-
guages depending on the vocabulary size: we consider the language to be a training language if
the vocabulary size is above a predefined threshold, otherwise, it is classified as a testing language.
Typically, there is a trade-off when selecting the threshold: making the threshold lower would in-
crease the number of training languages and make it easier to find the nearest languages, however

4https://github.com/tatuylonen/wiktextract
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Figure 5.3: Log-scaled histograms of the count of languages grouped by the vocabulary size avail-
able in Wiktionary. The language with over 400k vocabulary is English, however, most languages
are low-resource languages for which we have less that 100 Wiktionary entries.

lower threshold make the training process more difficult due to the number of limited vocabulary,
additionally, it would reduce the number of testing languages. In our experiment, the threshold is
set to 50 by following the previous work (Deri and Knight, 2016), and the statistics of both training
datasets and test datasets are shown in Table 5.2. We have 269 training languages and 605 testing
languages. Most of the training languages have a large vocabulary size but the testing languages
have only 8 vocabulary items per language on average. The number of distinct graphemes is 9082
and the number of phonemes is 416. The grapheme number is much larger than the phoneme one
because many languages are using non-Latin scripts, for example, there are around 4000 distinct
Chinese characters in our grapheme set. We train both the n-gram model and neural models using
only the training languages, and then test them on the testing languages, which are not seen during
the training process. The evaluation is done using the average PER (phoneme error rate) across all
testing languages.

5.4.2 Baselines

In our experiments, we consider three different baseline models: the fixed language model, which
is a model trained using the English dataset. The global language model is a shared model mixing
all training sets, it ignores the target language id during inference, this was explored in the previous
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Dataset # Languages # Vocabulary

Training set 269 1,672,444
Testing set 605 4,796

All 874 1,677,240

Table 5.2: Statistics of the Wiktionary dataset we used in the experiment. 269 languages are used
for training and 605 languages are used for testing.

N-gram Model LSTM Model Transformer Model

PER Add Del Sub PER Add Del Sub PER Add Del Sub

Fixed Model 76.0 4.52 9.39 62.1 78.1 4.53 20.4 53.2 78.5 3.2 19.0 56.2
Global Model 70.4 6.89 9.86 53.6 72.8 3.4 29.0 43.4 74.2 2.9 20.6 50.8
Nearest Model 68.4 4.51 12.4 51.5 43.8 12.1 4.0 27.6 45.4 15.8 3.6 26.1

Ensemble Model 55.0 0.56 23.6 30.9 35.7 10.0 3.4 22.2 39.8 13.9 3.1 22.8

Table 5.3: Experiment Results of the our approach. It compares our ensemble model with three
baselines: Fixed Model, Global Model and Nearest Model. The comparison is performed under
three different architectures: N-gram model, LSTM model, Transformer Model. In all settings, the
proposed model outperforms baselines.

work (Peters et al., 2017). The nearest language model can be seen as a special case of our
proposed model: we compute the most similar language to the target language and run inference
using that language’s model instead. For each of the baseline models, we investigate three different
architectures: N-gram, LSTM, and transformer architecture. We use OpenNMT-py5 for our neural
models. The LSTM architecture is using the framework’s default configuration: 2 standard LSTM
layers for both encoder and an attention-based decoder, each layer has 500 hidden size. This
model is optimized with 1.0 learning rate using SGD optimizer. The transformer model uses the
framework’s WMT sample configuration6: we have 6 layers for both the encoder and decoder with
500 attention and feedforward size. The mode has a positional encoding layer and is using 8 heads
in self-attention. The optimizer is Adam with learning rate 2.0 and 8000 steps for warmup. Both
neural models are trained with 20k steps. In our ensemble model, we use the top-10 languages
(k = 10) in our main experiment.

5https://github.com/OpenNMT/OpenNMT-py
6https://opennmt.net/OpenNMT-py/FAQ.html#how-do-i-use-the-transformer-model
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Figure 5.4: The effect of using different number of nearest languages when ensembling models. It
shows that we reach the best performance when we use the top-10 languages to ensemble outputs.

5.4.3 Results

Table 5.3 shows our experiment results. For each of the G2P architecture (N-gram Model, LSTM
Model, Transformer Model), we demonstrate our ensemble model’s results as well as 3 baselines.
The leftmost architecture shows the N-gram Model result: the fixed language model performs
76% PER, The global language model get 70%, which is better than the fixed language model.
the nearest language model further improves it to 68%. While all those models perform poorly,
the reason for their poor performance is different from each other: the fixed language model is
only trained with the English dataset, therefore it cannot handle orthography rules in other lan-
guages. The global language model suffers from the inconsistency of the training set: the same
grapheme might map to different phonemes in different languages, therefore it cannot learn consis-
tent rules across all languages. Recall the grapheme "h" have different pronunciations in English
and Spanish. Finally, the nearest language model has the problem that the nearest language might
be a low-resource language. As we mention in the previous section, most languages have few
training vocabularies, even we restrict the training languages to have more than 50 vocabularies,
the large proportion of languages still have 50 to 100 vocabularies, which might be insufficient
to train a good model. Additionally, depending on a single language might have a large variance.
The proposed ensemble model solves those issues to some extent: it relies on more than 1 lan-
guage when predicting for the target language: even 1 language is a low-resource language, other
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languages might be able to compensate for that low-resource language. Additionally, introducing
more language also reduces the variance. The proposed model significantly improves the PER to
55.0%.

Table 5.3 also demonstrates the performance of two neural models: the LSTM model and the
transformer model. Interestingly, the neural model’s performance does not perform better than the
n-gram model when using a fixed language, even slightly worse than it. It is because the neural
model further overfits the English dataset and could not capture orthography rules in other lan-
guages. The global model has the same trend, which again fails to fit each language. However,
the nearest language model significantly reduces the error rate by almost 30%. Unlike the N-gram
architecture, whose models of different languages are trained using a separate dataset, the neural
model uses the shared architecture, and only distinguishes different languages by a language tag.
This allows efficient parameter sharing between low-resource languages. Ensembling the model
further reduces the error rate by more than 5%. In our experiment, the LSTM model and the
transformer model have similar trends in their performance, but the LSTM model has a better per-
formance than the transformer’s one. The reason might be that there are far more hyperparameters
to be tuned in the transformer model and the default sample configuration provided by the frame-
work might not be optimal. As the main contribution of this work is to propose a general approach
to ensemble languages rather than exploring different neural architectures, we only focus on how
to ensemble models of different languages in this work.

5.4.4 Ensemble Analysis

It would be interesting to compare the number of languages when ensembling languages. Fig-
ure 5.4 demonstrates the influence of the number of languages from the LSTM model. PER drops
quickly when we start ensembling models, it reaches the bottom when the number of nearest lan-
guages is 10, then starts to increase very slowly. We observe that there exists a bias-variance
trade-off when changing the number of languages. When the number is relatively small, the pre-
diction relies heavily on each language, therefore causing high variance when predicting for the
target language. Increasing the number of languages could alleviate the variance problem, but
using a large number of languages would decrease the accuracy as the selected languages are no
longer close to the target language, which introduces more bias to the model.

To further understand the behavior of the model, we also show curves of Addition, Deletion,
and Substitution in Figure 5.4. It indicates that after we start ensembling the model (from 2), the
addition is increasing while the deletion is decreasing in general, the substitution decreases first
and remains relatively flat later. The opposite trend of addition and deletion can be explained
by the ensembling approach: when we introduce a new hypothesis into the model, it is probable
some phonemes might not be aligned to the existing confusion set in the confusion network, to
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Errors Most Common Errors

Add /a/, /k/, /u/, /i/, /n/, /o/
Del /a/, /i/, //, /e/, /j/, /u/
Sub (/a/, /o/), (/o/, /u/), (/r/, /l/), (/t/, /d/)

Add /a/, /i/, /k/, /u/, /s/, /o/,
Del /a/,//, /i/, /e/, /u/ , /j/
Sub (/r/, /l/),(/a:/, /a/), (/i:/, /i/), (//, /e/)

Table 5.4: Most frequent errors in the LSTM model. The top half shows the errors in the nearest
model, the bottom-half shows the errors when using 10 languages

incorporate these new phonemes into the network, we need to create new confusion set, which
would lead to more phoneme emissions. More phonemes would also contribute to decreasing the
deletion rate as well. Therefore, that curve of PER is very similar to the curve of the substitution
error (as the addition and deletion almost cancel each other). Not only does the ensemble model
improve the substitution error quantitatively, it also improves the errors qualitatively: Table 5.4
shows the most frequent errors made by the nearest language model and the top-10 ensemble
model. It indicates the most frequent substitution errors (/a/, /o/) and (/o/, /u/) are replaced by
(/a/, /a:/) and (/i/, /i:/). We find latter errors are much closer to each other (they have phonological
distances of 1, while the former errors have larger distances), therefore they are much better errors
than the first two pairs qualitatively.

5.5 Limitations

While we get reasonable performance in our testing languages, we acknowledge that there are
several limitations in our approach: first, both of our training languages and testing languages are
limited to languages available in Wiktionary. The full Glottolog Phylogenetic Tree has 110 top-
level branches in total, however, our dataset only spans 40 branches. Therefore if we want to apply
our approach to unseen languages in the remaining 70 branches, we have to depend on unrelated
languages to build our ensemble model, which might lead to worse performance. Second, as our
approach heavily depends on Glottolog and Wiktionary, if the language is not available in the
Glottolog database or the vocabulary quality in Wiktionary is not good enough, then our approach
cannot be applied to it. Finally, many of the 8k languages do not have orthographies, therefore it
might be difficult or meaningless to evaluate the G2P performance for them.
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5.6 Conclusion

In this chapter, we propose a zero-shot learning method to approximate G2P models for 8k lan-
guages in the world. We use the phylogenetic tree to measure the distance between languages and
combine multilingual outputs. We test our approach on 600 unseen languages and demonstrate it
significantly outperforms baselines.
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Chapter 6

Language Model: Speech Recognition for
2000 Languages

Summary

Most recent speech recognition models rely on large supervised datasets, which are unavailable
for many low-resource languages. In this chapter, we conclude the entire speech pipeline proposed
in this thesis. We present a speech recognition pipeline that does not require any audio for the
target language. The only assumption is that we have access to raw text datasets or a set of n-gram
statistics. Our speech pipeline consists of three components: acoustic, pronunciation, and language
models. Unlike the standard pipeline, our acoustic and pronunciation models use multilingual
models without any supervision.

The acoustic model is the model proposed in Part I, especially in Chapter 4, the pronunciation
model is the model introduced in the previous Chapter 5. In this chapter, we propose the language
model, which is built using n-gram statistics or the raw text dataset. We build speech recognition
for 1909 languages by combining it with Crúbadán: a large endangered languages n-gram database.
Furthermore, we test our approach on 129 languages across two datasets: Common Voice and
CMU Wilderness dataset. We achieve 50% CER and 74% WER on the Wilderness dataset with
Crúbadán statistics only and improve them to 45% CER and 69% WER when using 10000 raw
text utterances.

ASR2K: Speech Recognition for Around 2000 Languages without Audio Interspeech
2022
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6.1 Introduction

Recently, the performance of speech recognition has witnessed rapid improvement due to modern
architectures (Gulati et al., 2020; Karita et al., 2019; Watanabe et al., 2018). Those models typically
require thousands of hours of training data for the target language. However, there are around
8000 languages in the world (Lewis, 2016), the majority of which do not have any audio or text
datasets. There have been some attempts to reduce the size of the training set by using pretrained
features from self-supervised learning models (Baevski et al., 2020; Hsu et al., 2021). However,
such models still rely on a small amount of paired supervised data for word recognition. More
recently, inspired by the recent success of unsupervised machine translation (Conneau et al., 2017;
Artetxe et al., 2018), there is some work applying the unsupervised approach to speech recognition
as well (Baevski et al., 2021). Those models apply adversarial learning to automatically learn a
mapping between audio representations and phoneme units. They can learn a phoneme recognition
model using an unlabeled audio dataset and a text dataset.

Despite the success of those recent approaches, all of these models rely on some audio datasets
of the target language (labeled or unlabeled), which significantly restricts the scope of target lan-
guages. In this work, we investigate whether we can develop speech recognition systems without
requiring any audio dataset or pronunciation lexicon for the target language. The only assump-
tion is the existence of some monolingual text or a set of n-gram statistics for the target language.
Our proposed method consists of three components: acoustic, pronunciation, and language mod-
els. Both acoustic and pronunciation models can be trained using supervised datasets from high-
resource languages, and then applied to the target language by taking advantage of some linguistic
knowledge. Both models can be applied in a zero-shot learning fashion without any supervision.
Finally, we use the raw texts or n-gram statistics to create a language model, which is then com-
bined with the pronunciation model to create a WFST decoder. To analyze our pipeline more
efficiently with small test sets, we also propose an approach to decompose the observed errors into
acoustic/pronunciation model errors and language model errors.

We apply our approach to 1909 languages using Crúbadán: a large endangered languages
n-gram database and then test our approach on 129 languages from the Common Voice (34 lan-
guages) and CMU Wilderness dataset (95 languages) (Ardila et al., 2019; Black, 2019). On the
Wilderness dataset, we achieve 50% CER (character error rate) and 74% WER (word error rate)
respectively when using Crúbadán’s statistics only, and improve them to 45% CER and 69% WER
by using 10000 raw text utterances. As far as we know, this is the first attempt to build speech
recognition for thousands of languages without audio.
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6.2 Related Work

Most speech recognition approaches can be classified into one of several groups depending on
their data requirements. The most common group has access to the paired supervised dataset
D = {(Xi, Yi)}Ni=1 where (X, Y ) is a paired audio and text of an utterance. If the size N of the
dataset is large enough, various end-to-end models can be trained using CTC, ASG, seq2seq, RNN
Transducer, and other objectives (Graves et al., 2006; Collobert et al., 2016; Graves et al., 2013;
Sutskever et al., 2014). If the size is small, then it would be a low-resource speech recognition
in which some acoustic knowledge should be transferred from high-resource languages (Li et al.,
2019a; Xu et al., 2020). Self-supervised training takes advantage of another large raw speech
dataset {Xj} to learn hidden representations of speech signals, those representations are useful to
the supervised tasks and can reduce the amount of the paired dataset (Baevski et al., 2020; Hsu
et al., 2021). The semi-supervised learning approach also leverages unlabeled speech datasets or
text datasets to augment the supervision set (Veselý et al., 2017; Synnaeve et al., 2019; Rosenberg
et al., 2019).

Recently, unsupervised speech recognition attempts to target the datasetD = ({Xi}Ii=1, {Yj}Jj=1)

where we have access to an unlabeled raw audio set {Xi}Ii=1 and a raw text dataset {Yj}Jj=1 (Baevski
et al., 2021). The audio and text do not need to be aligned with each other. A generator model is
jointly trained with a discriminator model. The generator model attempts to translate audio into
phonemes, while the discriminator model attempts to distinguish between phonemes transliter-
ated from text and phonemes recognized from the generator. The disadvantage of this direction
is that the model could only recognize phonemes instead of words and it requires a phonemizer
(pronunciation model) for the target language, which would not be available for most languages.
Another related direction is unsupervised speech unit discovery (Chorowski et al., 2019; Tjandra
et al., 2019), which is similar to the self-supervised learning approach and attempts to discover
phone units from audios D = {Xi}Ii=1. This group of approaches, however, cannot emit explicit
phonemes or words as it does not have knowledge of the lexicon and language model for the target
language.

In this work, we propose a new paradigm to focus on the text-only datasetD = {Yj}Jj=1. While
all the previous groups require some amount of audio datasets {Xi} (paired or unpaired) for the
word recognition of the target language, we argue this requirement can be relaxed to some extent.

6.3 Model

Our speech pipeline is divided into the acoustic model, pronunciation model and language model.
The joint probability over speech audio X and speech text Y can be factorized as
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pθ(X, Y ) =
∑
P

pam(X|P )ppm(P |Y )plm(Y ) (6.1)

, where P is the phoneme sequence corresponding to the text Y . The pronunciation model ppm is
typically modeled as a deterministic function δpm. In our pipeline, only the language model can be
estimated from the text, both the acoustic model and pronunciation model are approximated using
zero-shot learning or transfer learning from other high resource languages, therefore we denote
p̂am, δ̂pm for the approximated acoustic model and pronunciation model. The previous factorization
can be approximated by

pθ(X, Y ) ≈ p̂am(X|P̂ )plm(Y ) (6.2)

, where P̂ = δ̂pm(Y ) is the approximated phonemes.

6.3.1 Acoustic Model

We briefly review the acoustic model introduced in the Part I. The acoustic model should be able
to recognize phonemes of the target languages even when the languages are unseen in the train-
ing set. We follow a direction of recently proposed allophone-based multilingual architectures (Li
et al., 2020a, 2021a). This direction attempts to recognize phonemes of an unseen language us-
ing language-independent phone representations and their mappings to the language-dependent
phonemes. Essentially, those architectures attempt to represent the acoustic model as follows:

p̂am(P |X) =
∑
Q

plang(P |Q)puni(Q|X) (6.3)

, where puni(Q|X) is a language-independent universal phone recognition model, recognizing
physical-level phone units Q from the speech audio X . The allophone architecture plang(P |Q)

is to encode how each physical phone should be mapped to a language-dependent phoneme. The
relation between phones and phonemes is called an allophone, which is usually encoded as a 1-n
deterministic function annotated by phonologists for each language. The mapping is easier to ob-
tain than the supervised dataset for low resource languages. We rely on Allovera and PHOIBLE
datasets for allophone mapping of more than 2000 languages (Mortensen et al., 2020; Moran and
McCloy, 2019). The other model puni(Q|X) does not have any dependency on the target language,
therefore it can be trained using high-resource languages such as English and Mandarin. The
CTC objective is used to train this acoustic model (Graves et al., 2006). The conditional indepen-
dence assumption in CTC prevents the model from biasing too much towards one specific language
model (e.g: English), therefore it can be easier to apply to other low-resource languages. In our
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experiment, we observe the originally proposed model (Li et al., 2021a), is not very robust when
recognizing audios from different domains. To further improve the model, instead of using the
standard filterbank features, we use self-supervised learning (SSL) features as our frontend feature
extraction (Baevski et al., 2020; Hsu et al., 2021; Conneau et al., 2020).

6.3.2 Pronunciation Model

We also shortly revisit the pronunciation model covered in Chapter 5. The pronunciation model
is essentially a G2P (grapheme-to-phoneme) model that can predict the phoneme pronunciation
given a grapheme sequence: P = δpm(Y ). For high-resource languages, the G2P model can be
either trained using a dictionary or be developed using rule-based systems (CMU, 2000; Mortensen
et al., 2018). However, the majority of the languages do not have any accessible dictionaries or
rules, therefore we consider an approximated pronunciation model δ̂pm instead. In particular, we
apply a recently proposed multilingual G2P model as our pronunciation model (Li et al., 2022b).
For any target language ltarget, this G2P model selects top-k nearest languages: ltopk ∈ KNN(ltarget)

whose training set is available, then during the inference, it first propose k hypothesis using each
nearest language model δltopk , the models are ensembled by combining hypothesis into a lattice to
emit the most-likely approximated sequence:

δ̂ltarget = Ensemble({δltopk|ltopk ∈ KNN(ltarget)}) (6.4)

The similarity metric between languages is defined to be the shortest path of two languages on the
phylogenetic tree (i.e: language family tree). This approach enables us to approximate the pro-
nunciation model for every language in Glottolog database (Nordhoff and Hammarström, 2011),
which contains phylogenetic information about 7915 languages.

6.3.3 Language Model

For the language model, we first estimate the vocabulary V = {w1, w2, ..., w|V |} from the raw
text dataset {Yi}. For each word wi ∈ V , its pronunciation can be approximated using the pro-
nunciation model and then this lexicon information can be encoded into a lexicon graph L. The
text dataset also enables us to estimate the classical n-gram language model by counting n-grams
statistics C(w1, ..., wn). This n-gram language model can be then encoded into a grammar graph
G. Composing the lexicon graph L and the grammar graph G as well as the CTC topology graph
H would generate a WFST-based language decoder HLG (Miao et al., 2015).

We realize that the text dataset requirement {Yi} can be further relaxed as the building blocks of
the HLG graph only consist of the statistics {V,C} estimated from the text dataset. For languages
whose text dataset {Yi} is absent but {V,C} is available, we can still proceed to build the decoder
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HLG. This is common for many languages in the internet: while only a few hundred languages
are recognized as being in use for web texts on the World Wide Web (Lewis, 2016), there exists
several large databases collecting lexicon-related statistics for thousands of languages. For exam-
ple, Crúbadán is a database consisting of vocabulary, bigrams, and character-trigrams statistics for
around 2000 languages (Scannell, 2007). Employing statistics from it, we build speech recognition
systems for around 1909 languages.

We further push the boundaries by eliminating the dependency on C. Our endeavor focuses
on building a language model utilizing only the vocabulary V , given that lexicon information
is more readily available compared to raw text information. Expanding the range of languages,
we leverage the Panlex database (Kamholz et al., 2014)—a lexicon-only resource that provides
information for 5981 languages. Adopting a naive uniform distribution over the vocabulary for
each language, we construct a unigram language model. Combined with the languages already
present in the Crúbadán database, we effectively cover 6185 unique languages from the 7915 listed
in the Glottolog database.

6.3.4 Error Decomposition

Since the acoustic, pronunciation models are approximated models, it is helpful to understand how
the approximation would impact our results. As the final observed errors also contain the language
model errors, we propose a framework to decompose the observed errors ϵobserved into language
model errors and other errors. To achieve this, in addition to the experiment using the approxi-
mated models, we conduct a new set of experiments using the oracle acoustic and pronunciation
models (i.e. the acoustic and pronunciation model that achieves perfect performance), such that
any recognition errors in this new experiment should be attributed to the language model ϵlm. The
gap between the observed error ϵobserved and the oracle error ϵlm should correspond to the errors
made by the approximated acoustic and pronunciation model ϵam/pm. In other words, the observed
errors can be decomposed as follows:

ϵobserved = ϵam/pm + ϵlm (6.5)

To estimate the oracle error ϵlm, every testing utterance is first converted to the phoneme se-
quence using our pronunciation model, the phoneme sequence is then augmented with the CTC
blank labels by inserting blank labels "⟨blk⟩" between every pair of phonemes. (e.g: "a b" is
converted to "⟨blk⟩ a ⟨blk⟩ b ⟨blk⟩"). Next, the augmented sequence is converted to CTC logits
by giving an extremely high probability to each phoneme (including blank) for every timestep.
Finally, the logits is fed into the decoder HLG to be decoded. We obtain the oracle error ϵlm by
comparing it against the expected word sequence. The achieved error rate is the oracle error rate, as
we assume the pronunciation model is perfect: pronunciation in logits is perfectly consistent with
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the pronunciation in the HLG decoder. The acoustic model is perfect as well: it assigns extremely
high probability to the “correct” phoneme.

6.4 Experiments

For the acoustic model, we tried 4 different models, one from the previous literature and the newly
proposed SSL-based models (Li et al., 2021a). All the models are trained using cmn, deu, eng,
fra, ita, rus, tur, vie languages from the Common Voice dataset (Ardila et al., 2019). In the SSL-
based model, we tried three different self-supervised learning features: HuBERT, wav2vec2, and
XLSR (Baevski et al., 2020; Hsu et al., 2021; Conneau et al., 2020). All the features are extracted
using s3prl framework (wen Yang et al., 2021). For every SSL model, the features from the last
hidden layer were used. Two layers of transformers are appended on top of the pretrained features,
which are then connected with the multilingual architecture plang(P |Q) as proposed in the original
literature (Li et al., 2021a). The transformer layer has a 768 hidden size and 4 multi-attention
heads. Other parameters follow the original literature (Li et al., 2021a). For the pronunciation
model, we use the multilingual model proposed in the previous literature and its implementation (Li
et al., 2022b) 1. For the language model, we first download the complete dataset from Crúbadán’s
website (Scannell, 2007), which results in 1909 languages after cleaning. Each language consists
of several files: unigrams, bigrams, web urls for the target language, and character trigrams. The
most relevant files are unigrams (vocabulary) and bigrams. We provide statistics in Table 6.1. The
same set of information can also be extracted from raw text sets {Yi} if we have access to them.
For the WFST decoder, we use the k2 library and adapt its icefall recipe2. We build trigram models
from texts and bigram models from Crúbadán. During the decoding, we set the search beam size to
be 20, output beam size to be 8, min and max active states to be 30 and 10000. For the lexicon-only
experiment, we build a unigram language model only using the vocabulary {V }.

Table 6.1: Descriptive statistics for distinct unigrams and bigram for 1909 languages from
Crúbadán database.

mean std 25% median 75%

unigram 10870 14012 837 5149 14761
bigram 29383 22087 2504 42996 50000

To test our approach on unseen languages, we use the 34 languages from Common Voice
dataset (denoted by CV) and 95 languages from CMU Wilderness corpus (denoted by WN) (Black,
1https://github.com/xinjli/transphone
2https://github.com/k2-fsa/icefall
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2019). For the Common Voice languages, we select the subset of languages whose text size is larger
than 1000. Any languages seen in the acoustic model are excluded (i.e: cmn, deu, eng, fra, ita,
rus,tur, vie). 95 languages from Wilderness are selected based on the top-100 MCD score, which
measures the alignment qualities. 5 languages are excluded due to duplications and preprocess
failure (i.e: gag, xsb, nah, may, pxm).

6.4.1 Results

We first evaluate the acoustic model using PER (phoneme error rate). Note that our PER is only
an approximation of the actual PER as the expected phoneme sequence relies on the pronunciation
model, which is only an approximation. However, it reveals many useful insights into the acoustic
models. Table 6.2 shows the performance across 4 models. The baseline acoustic model has around
50% PER and half of the errors are deletion errors (e.g: /a/, /i/ are our most deleted phonemes).
We find the main causes of deletion errors are the domain mismatch and language mismatch. To
improve the robustness, we employ the SSL-based models, which decreases the error rate by 5%.
Most of the improvement is from the deletion reduction. We find the XLSR model, which is a
multilingually pretrained model, performs the best and we use it as the main model in the pipeline.

Table 6.2: Average results (%) of the acoustic model on all test languages. PER is the phoneme
error rate, Ins, Del, Sub are Insertion, Deletion and Substitution Error. CV and WN denote Com-
mon Voice and Wilderness datasets.

Acoustic Model PER Ins Del Sub
CV WN

Baseline (Li et al., 2021a) 51.7 49.2 1.02 30.2 19.7
SSL (HuBERT) (Hsu et al., 2021) 49.7 44.3 1.15 23.8 20.8
SSL (wav2vec2) (Baevski et al., 2020) 49.8 43.4 1.37 25.8 18.1
SSL (XLSR) (Conneau et al., 2020) 47.8 42.1 1.49 24.7 19.2

Table 6.3: Average Performance (%) of the lexicon-based language model on all testing languages
under different resource conditions. CER, WER denotes character error rate and word error rate.

Language Model CER WER
CV WN CV WN

Random Word Model 102.1 114.4 100.0 100.0
Most Frequent Character Model 86.8 81.2 99.4 99.4
Panlex Model 54.5 52.1 98.3 79.0
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Table 6.4: Average Performance (%) of the n-gram based language model on all testing languages
under different resource conditions. CER, WER denotes character error rate and word error rate.

Language Model CER WER
CV WN CV WN

Crúbadán Model 65.5 50.2 92.4 74.5
Text Model (1k utterances) 55.3 50.8 84.6 76.9
Text Model (5k utterances) 51.3 47.0 80.2 72.2
Text Model (10k utterances) 50.9 44.9 79.0 69.2

Text Model (10k utterances, 2023) 39.8 37.2 69.7 59.1

Table 6.5: A Welsh example from the Common Voice dataset. The top two rows are the hypothesis
(HYP) and reference (REF) phonemes, the bottom two rows are the hypothesis and reference
words. Deleted phonemes and words are highlighted.

Model Sentence

HYP kOpTXi:ðErp@nv@nk@sfOn@k@nhar@X
REF kOpe:aTjOi:jXi:ðErp@nvi:nEkEsfo:n@nk@nharaX

HYP gobeithio ch dderbyn yn gyson cynharach
REF gobeithio i chi dderbyn fy neges ffôn yn gynharach

Table 6.3 presents the performance of the Panlex-based language model and several lexicon-
based baselines (with XLSR as the acoustic model). Initially, we examine the random word model,
where words are randomly chosen from the lexicon to match the reference text’s length. As an-
ticipated, this baseline model fails to produce any meaningful predictions, resulting in a CER and
WER that are approximately 100% or higher. Subsequently, we employ the repetition of the most
frequent character from each language as the prediction outcome, achieving approximately 15%
correct character predictions, albeit without word recognition capability. In contrast, the employ-
ment of lexicon information from Panlex in the model substantially reduces the CER to nearly
50%, demonstrating the utility of incorporating a lexicon. Nonetheless, the lexicon-based model
still struggles with word recognition, owing to the absence of frequency information.

Table 6.4 shows the language model performance (using XLSR as the acoustic model). First,
we try n-gram statistics from the Crúbadán without using any text dataset. It shows that Crúbadán
captures some character-level information even without any text dataset: it achieves 65% and 50%
CER on two datasets. The Crúbadán WER of the Wilderness languages is also very promising
under this condition: 74.5%. Next, we use 1k, 5k, 10k text utterances from the training set to
train the model without Crúbadán. As the training text datasets are in the same domain as the
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test dataset, this improves the performance significantly. With 10k text dataset, we achieve 51%
and 45% CER respectively. While we omit the result in this table, we also investigate the effect
of combining Crúbadán and text language models together. However, it does not improve the
performance because there is a domain mismatch between two models. The text-only language
model shown in Table.6.4 performs the best.

To understand the language model errors, we compute the insertion, deletion, and substitution
errors. We find the dominant errors are deletion and substitution. By comparing the most common
word errors and phoneme errors, we observe that the phoneme errors have been propagated into
the word errors: the previous deletion of phonemes /a/, /i/ caused deletions of the entire words,
especially of some short words (e.g: na, ni). The substitution error also suffers from the missing
phonemes issue. For example, the most substituted pair is (charirca, carica), it is clear that our
model failed to recognize several consonants. Table 6.5 shows a typical example from the pipeline.
The acoustic model tends to recognize fewer phones from the audio, those phoneme deletions
propagate to the language model and lead to the word deletions.

6.4.2 Error Decomposition Analysis

Next, we apply the error decomposition framework to our results in Figure 6.1. The figure shows
the trend of how the CER/WER responds to the size of the training text dataset. Each blue circle
point on the top region represents an observed error ϵobserved from the Common Voice corpus and
each orange square point on the bottom region is an oracle error ϵlm with our framework. It shows
that both errors tend to decrease as the size of the text dataset increases, however, the oracle error
has a much sharper decreasing slop than the observed one. As we mentioned in the previous
section, the oracle error shows the errors from the language model and the gap between the two
errors is the error from the acoustic and pronunciation model. Based on this assumption, the figure
indicates that 30 ∼ 40% word errors are from the language model and 40 ∼ 50% word errors are
from the acoustic model and pronunciation model; most of the character errors are caused by the
acoustic model and pronunciation model.

6.4.3 Language Analysis

We can also interpret the results from the linguistic perspective and discuss several limitations of
the pipeline. First, we find the phonology of the target language has a crucial impact on the PER
performance. Since our acoustic model is trained using high-resource languages (most of them,
Indo-European) and then applied to the target language, phonemes that are not common in Indo-
European languages should be difficult to recognize. For example, non-pulmonic consonants are
common in some languages (e.g: implosive consonants are widespread in Sub-Saharan Africa)
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Figure 6.1: The trend of CER (left) and WER (right) using different sizes of training text. The
horizontal axis represents the size of the text dataset. The vertical axis is the error. Each blue circle
point denotes an observed error ϵobserved from a particular language in the Common Voice corpus
and each orange square point shows the oracle error ϵlm. An OLS estimator is applied to all sets of
points.

but are not typical phonemes in high-resource languages. Another example is the tonal language,
we find the Sochiapam Chinantec language displays bad performance: 73% PER, 75.9% CER,
and 96.5% WER. This language is a tonal language with 7 different tones. The acoustic model
is trained without tonal information and fails to distinguish tonal contrasts (Mandarin Chinese,
a tonal language, is included in the acoustic training set, but the tonal information was not used
during the training). Orthography depth is another important factor for acoustic performance. The
pronunciation model tends to fail more frequently when the language has a deeper orthography (i.e.
the rules to map graphemes to phonemes are complicated). For instance, the Swedish language
has deep orthography, which makes the PER (67%) significantly worse than the average PER.
Furthermore, if the writing system of the target language is unknown to the pronunciation model,
then the model cannot infer its pronunciation. In our dataset, the Maldivian language is written in
the Thaana script, which is mostly unknown to the pronunciation model. The error rates are 80%
PER, 81% CER and 99% WER. Finally, we observe that some languages have relatively small gaps
between CER and WER, and others have larger gaps. For example, the Tai Dam language has an
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error rate gap of less than 20%. On the other hand, in the closely related Northern Thai language,
we observe a gap of around 40%. We find the length of a typical word is the main cause: the
average token length in Tai Dam is 3.48 characters (e.g., choi), but Northern Thai has an average
token length of 7.04 (e.g.: we-machi-warbogwad-e-nandi). We find there is a strong correlation
between the gap and the length of word (r = 0.8015, in our experiment).

6.5 Conclusion

In this chapter, we propose a speech recognition pipeline using raw text or n-gram statistics, and
we apply it to around 2000 languages. Our training scripts will be released for more researchers to
explore this direction.3

3our code will be available at https://github.com/xinjli/asr2k
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Part III

Datasets and Applications
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Figure 6.2: The datasets covered in Part III
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Chapter 7

Phoneme Inventory: Phoneme Inventory
Estimation for Every Language

Summary

In Part I, we discuss the multilingual acoustic model that can be applied to unseen languages.
Unlike the traditional acoustic model, it can be applied to languages without any supervised data.
The only requirement for the target language is its phoneme inventory. However, even the largest
collection of phone inventory only covers about 2000 languages, which is only 1/4 of the total
number of languages in the world. A majority of the remaining languages are endangered. To
extend the phoneme recognition to all 8000 languages, we need to solve the task of phoneme
inventory estimation, which is to identify the phoneme inventory for unseen languages. It is also a
crucial component in language documentation and the preservation of endangered languages.

In this chapter, we attempt to tackle this problem by estimating the phone inventory for any
language listed in Glottolog, which contains phylogenetic information regarding 8000 languages.
In particular, we propose one probabilistic model and one non-probabilistic model, both using
phylogenetic trees (“language family trees”) to measure the distance between languages. We show
that our best model outperforms baseline models by 6.5 F1. Furthermore, we demonstrate that,
with the proposed inventories, the phone recognition model can be customized for every language
in the set, which improved the PER (phone error rate) in phone recognition by 25%.

Xinjian Li, Florian Metze, David R. Mortensen, Alan W. Black, Shinji Watanabe.
LREC 2022 Phone Inventories and Recognition for Every Language
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Figure 7.1: Illustration of a subtree sample from the Germanic branch a phylogenetic tree. We
derive the testing inventory for Dutch and Icelandic using the training inventory from English and
Norwegian

7.1 Introduction

A fundamental aspect of the description or documentation of any language is establishing its phone
inventory (Bird and Simons, 2003; Michaud et al., 2018). This is a necessary prerequisite to further
phonetic and phonological analysis (including transcribing text, discovering allophonic patterns,
and developing an orthography), these are foundations upon which other facets of linguistic de-
scription can be built. Traditionally, phone inventories have been discovered by field linguists
using a mixture of audio, visual, and lexical tools to arrive at a set of sounds sufficient to charac-
terize the phonetics of the language. The largest collection of phone inventory aggregated so far is
the PHOIBLE dataset (Moran and McCloy, 2019), which is a collection of phone inventories from
over 2000 languages. However, there are around 8000 languages in the world, for most of which no
documented phone inventory exists. Unfortunately, those languages are typically endangered (Net-
tle et al., 2000). Language preservation projects typically target languages in this category. Field
linguists starting work on a new language will benefit from knowing, in approximate terms, what
the phone inventory of that language is like.

In this work, we attempt to solve this problem by estimating the phone inventory for any lan-
guage listed in Glottolog (Nordhoff and Hammarström, 2011), which contains around 8000 lan-
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guages. In particular, we take advantage of the phylogenetic trees from Glottolog (as this informa-
tion is available for almost every language in the world)1. We propose two approaches that exploit
this tree structure: First, we impose a probabilistic structure on the phylogenetic tree (“language
family tree”), where each child node is expected to have a similar phone distribution to its parent.
Next, we introduce nearest language ensemble approach, in which we compute the nearest neigh-
bor languages for any unseen target language and we ensemble the phone inventory from those
nearest languages as the inventory for the target language. Note there are other features such as
geographical coordinates to derive closeness between languages. These features, however, are not
easy to model for non-leaf nodes in our approach (e.g: it might not make sense to assign a spe-
cific coordinate to the Indo-European family node). As a result, we only consider the simple tree
structure in this work. We apply our approach to 77 languages, whose inventories are excluded
from our training set. This experiment shows that our approach achieves an F1 score of 65.9,
which is 6.5 points better than the best baseline model. Finally, we demonstrate that, using the
proposed phone inventories, we enable a recently proposed phone recognizer to recognize all 8000
languages (Li et al., 2021a)(Chapter 4). Our results show that with the hypothesized phone inven-
tories, we achieve 64.2% PER (phone error rate), which is 25% better than the original model (Li
et al., 2020a) (Chapter 3). To the best of our knowledge, this is the first speech recognition system
that has been successfully customized for almost every known language known to comparative
linguistics.

7.2 Related Work

Compiling the phonemic/phonetic inventory for a single target language is typically an impor-
tant task in phonetic and phonological analysis (Hayes, 2011). However, not all languages in
the world are equally well-researched. For example, much phonological research has focused on
richly resourced languages (therefore they usually have well-defined phone inventories (Interna-
tional Phonetic Association et al., 1999)), while other, low-resource languages have historically
received less attention. Recently, there have been several unsupervised models proposed that are
meant to discover linguistic units for unwritten languages (Varadarajan et al., 2008; Müller et al.,
2017b; Dunbar et al., 2019, 2020), those models typically require the raw speech recordings for
discovery, whose resources are limited for most languages (Black, 2019).

While most traditional phonetic research has been focused on a single language or a few lan-
guages, there have been several attempts to compile large databases to collect many phone in-
ventories of a diversity of languages. PHOIBLE (PHOnetics Information Base and Lexicon) is a
1Since linguists do not always agree upon the phylogenetic groupings of languages—especially of poorly-studied
languages—the trees from Glottolog are necessarily imperfect. However, they usually represent state-of-the-art clas-
sifications and are thus useful for our experiments here.
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phonological inventory database which contains inventory information of more than 2000 distinct
languages (Moran and McCloy, 2019), each phone also has been assigned distinctive phonological
features (Jakobson et al., 1951; Chomsky and Halle, 1968). Another large database compiled by
Merritt Ruhlen is the Ruhlen Database (Creanza et al., 2015). It contains not only the phonological
information for each language, but also a wealth of extra-linguistic information (e.g: number of
speakers and the geographical location of each language). While both projects have successfully
collected many sound inventories, the majority of the inventories of the world’s languages remain
undocumented. To address this problem, this work attempts to give a reasonable approximation of
each phone inventory for every language registered in Glottolog.

7.3 Approach

In this section, we introduce our two proposed approaches: Bayesian Network Estimation and
Nearest Languages Ensemble. Before that, though, we propose two baselines and setup notations
used in this work.

7.3.1 Baseline

Assume a set of training languages is L. For every training language l ∈ L, we have access to
its phone inventory Σl. The simplest inventory estimation model uses the inventory Σ̂fixed from a
fixed language, for example Tagalog: Σ<tgl>. This is because Tagalog’s inventory has a reputation
for typicality. Note that not every well-known language can be a good baseline. The English
inventory Σ<eng>, for example, is atypical: it includes some very rare phones like [T] and [D] but
lacks (depending on analysis and dialect) some very common phones like [a], [e], and [o]. This
Fixed Inventory, however, only covers phones from a single language; therefore it fails to include
common phones in other languages and has low recall. Another possible baseline would be to the
use the entire phone inventory available from all training languages:

Σ =
⋃
l∈L

Σl (7.1)

This is a default inventory used in some phone recognition works (Li et al., 2021a, 2020a). This
naïve approach should improve recall but it includes far more phones that any individual language
and most of them are, invariably, false positives. To improve the precision, we sort all phones by
the number of times they appear in our training languages and only keep the top-n most frequent
phones based on the following statistics. This inventory baseline is the Global Inventory Σ̂global
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∑
l∈L

1([p] ∈ Σl) (7.2)

7.3.2 Bayesian Network Estimation

The global inventory reflects the overall trend of phones across all languages, but it does not capture
the local similarity between languages. We propose to exploit a phylogenetic tree to capture the
local relations between languages (based on the insight that languages that are phylogenetically
close also have similar phone inventories). Our first model is to impose a probabilistic structure to
the tree. In particular, we consider the tree to be a Bayesian Network (i.e: a directed probabilistic
graphical model). For each node in the tree, a multinomial distribution over the entire inventory Σ

is assigned. We assume that the inventory of the child node is drawn from its parent’s multinomial
distribution. Formally, suppose we have a parent node r and its child l where the child l is one
of our training languages. We can model the probability of drawing the child inventory using r’s
multinomial distribution:

Prob(Σl|Θr) =
|Σl|!∏
i(xi!)

∏
i∈Σl

θxi
i (7.3)

where Θr = {θr1, ..., θrΣ} is the parameter of parent node r, and each parameter θri is the proba-
bility to draw the i-th phone from all available phones Σ, and xi is the indicator function whether
the i-th phone is contained in the child l’s inventory. The parameter Θr can be inferred using
Maxmimum Likelihood Estimation (MLE). After obtaining the parameter Θr of the parent node
r, we could construct the phone inventory Σ̂bayes for the parent node by selecting phones with the
top-n highest probability. This is equivalent to select the top-n phones which have the highest
counts in children of r. ∑

l∈Children(r)

1([p] ∈ Σl) (7.4)

7.3.3 Nearest Language Ensemble

The Bayesian Network model can infer parent’s inventory using its children information, however,
it cannot take advantage of information from other close nodes (e.g: sibling nodes). To fix this
issue, our second model is to use the nearest languages to approximate the inventory of the target
language. The metric to define distance between languages is the length of the shortest path be-
tween any two languages in the phylogenetic tree. The shortest path between any two language
nodes can be efficiently computed with Lowest Common Ancester (LCA) whose time complexity
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is O(log(H)) where H is the height of the phylogenetic tree (Cormen et al., 2009). For a target
language, suppose we find the top-k nearest languages Lk, then we first count the appearance of
each phone [p]: ∑

l∈Lk

1([p] ∈ Σl) (7.5)

Then we could select the top-n phones Σ̂nearest using these counts. For example in Figure 7.1,
suppose that our training languages are English and Norwegian, and we would like to estimate the
inventory for Dutch, when we use the top-1 nearest language, only English would be selected and
we could simply copy the English inventory to the Dutch inventory, when we use k = 2, we would
identify English and Norwegian as the nearest languages, and average them using counts.

7.4 Universal Phone Recognition

The hypothesized phone inventories pave the way for many new applications. Notably, they allow
us to create phone recognition systems for (almost) every language in the world. In this section, we
first introduce the acoustic model we use in this work, then we explain how to apply the estimated
inventory for the recognition task.

7.4.1 Architecture

We closely follow the architecture described in the previous work (Li et al., 2021a): The archi-
tecture has a hierarchical structure which is illustrated in Figure 9.1. We model three different
units explicitly: phonemes, phones and phonological attribute. Phonemes are typically language-
dependent units, whereas phones are language-independent units. Phonological attributes or ar-
ticulatory attributes are a set of discrete properties to characterize each phone. The set of phones
corresponding to one phoneme in a particular language is called the allophones of the phoneme,
which is annotated by phonologists. We use an annotated dataset to map between phone and
phonemes (Mortensen et al., 2020). Similarly, each phone can also be decomposed into a set of at-
tributes. The correspondence is also well-studied by linguists and we use tools to extract attributes
for each phone (Mortensen et al., 2016b). During the training process, the encoder would first
encode each frame of the audio into a hidden vector, from which we could obtain the distributions
of phones in each frame using their attributes. Each phone distribution is further transformed into
phoneme distribution and optimized by the CTC loss function. In this work, the encoder is a 12-
layer transformer-based encoder whose hidden size is 640 and multi-head attention size is 4. The
feature is the 40-dimension filter bank. We train the model using eng, cmn, deu, fra, ita, rus, tur,
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Figure 7.2: The architecture of the phone recognition model. We first compose the phone rep-
resentations using their phonological attributes. Then we compute the phone distributions using
the hidden vector from the encoder, Next, the language-independent phones are transformed into
language-dependent phonemes with the allophone mappings, which are finally optimized by the
loss (CTC) function

vie languages from Common Voice corpus (Ardila et al., 2019). Our trained model is available
online. 2

7.4.2 Inference

As the lower part in Figure 9.1 is language-independent, we can apply the trained model to any un-
seen languages whose inventory is accessible: if both phoneme and phone inventory are available,
we can plug those inventories into the model and run the inference. If only the phone inventory is
available, we approximate the phoneme set with its phone set, assuming each phone is mapped to
the same phoneme.

Even the phone inventory, however, is not always available for every language. For languages
whose phone inventory is absent, an approximated phone inventory should be used instead. In pre-

2Interspeech21 model at https://github.com/xinjli/allosaurus
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vious works, the inventory was chosen to be the global inventory Σ̂global: all the available training
phones to make their prediction (Li et al., 2020a, 2021a). This naïve approach, however, has the
low precision problem because the set of all training phones is too large. We demonstrate that,
employing the hypothesized inventories Σ̂bayes, Σ̂nearest introduced in the previous section, we can
improve the phone recognition accuracy.

7.5 Experiments

In this section, we demonstrate our experimental results for both phone inventory evaluation and
phone recognition. As mentioned in the previous section, we first build the phylogenetic tree using
Glottolog (Nordhoff and Hammarström, 2011). The tree contains 7915 languages, where there
are 43 top-level language families. We further create a root language node which possesses all
top-level languages as its children, therefore all the languages are connected and can be reached
from a single root node. Most leaf nodes can be identified with ISO 693-3 language ID while most
non-leaf nodes have Glottolog IDs attached to them. Next, we use the PHOIBLE as our training
phone inventory. PHOIBLE contains 2100 languages, and 2091 of them can be mapped to one of
the leaf node in the Glottolog-based tree.

For every unseen node in the tree (leaf or non-leaf), we estimate its phone inventory using our
proposed models. For each model, we specify the size of inventory to be n = 40, which is a typical
size of the phone inventories in our training set. To evaluate the model, we select 77 languages
as the unseen testing languages and take them out of our training languages. The languages are
selected from a recently proposed multilingual phone dataset (Li et al., 2021c), in which we can
identify 77 out of 95 languages in our tree. For every testing language, we evaluate both their
inventory coverage (using the F1 score) and the phone recognition accuracy (using phone error
rate) as an extrinsic task. The ISO 693-3 id of testing languages are abk, ace, ady, afn, afr, aka,
asm, azb, bam, bem, ben, bfd, bfq, bin, brv, bsq, cbv, ces, cha, cpn, dag, dan, deg, dyo, efi, ell,
ema, eus, ewe, ffm, fin, fub, gaa, gla, guj, hak, hau, haw, heb, hil, hin, hrv, hun, hye, ibb, ibo, idu,
ilo, isl, kan, kea, khm, klu, knn, kri, kub, kye, lad, led, lgq, lit, lkt, lug, mak, mal, mlt, mya, nan,
njm, nld, ozm, pam, pes, run, tzm, wuu, yue.

7.5.1 Phone Inventory Evaluation

Table 7.1 shows the statistics for the four models: the fixed language inventory has 51.1 F1 with
48.8 precision and 57.5 recall. As mentioned in the previous section, the Tagalog inventory con-
tains many cross-linguistically common phones, which makes the recall much higher than the
precision. We found it interesting to investigate which commonly used languages perform better

102



Model F1 Prec Rec

Fixed Inventory (Σ̂fixed) 51.1 48.7 57.5
Global Inventory (Σ̂global) 59.4 58.1 64.8

Bayesian Network (Σ̂bayes) 61.2 60.0 66.7
Nearest Neighbor (Σ̂nearest) 65.9 71.3 64.7

Table 7.1: F1, precision and recall for 77 testing languages and each model. The two models on
top are the baseline models and the two on the bottom are the proposed models.
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Figure 7.3: Comparison of inventory evaluation using different fixed language. Spanish has the
highest F1 score among the top-10 languages ranked by the population.

in this regard. We evaluate the top ten languages, ranked by the population of first language speak-
ers (Lewis, 2009). Figure 7.3 indicates that Romance branch from the Indo-European language
family tends to have relatively high scores, but none of them outperforms the Tagalog inventory.
While the fixed language inventory can capture 50% of the inventory, it only consists of the inven-
tory from an individual language and fails to reflect the global properties of all languages. On the
contrary, the global inventory baseline is built using statistics from all training languages, which
improves the F1 score by 8 points. Our experiment shows that selecting the most frequent phones is
essential for the global baseline. We also consider another global inventory baseline which consists
of all basic phones available in the IPA table (without diacritics and modifiers). This model only
achieves a 27.2 F1 score: it captures most phones in every language (high recall), but it generates
many false positives, which significantly decreases the precision.
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Figure 7.4: Comparison of performance when using different number of nearest neighbors

To further incorporate information from local language branches, we propose the Bayesian
Network model and Nearest Neighbor model. Table 7.1 shows that they further improve the F1
score by 1.8 and 6.5 points respectively. Despite the simplicity of the nearest neighbor model,
it outperforms the Bayesian Network model by 4.7 point. This is because the nearest neighbor
model can capture more languages than the Bayesian Network Model. Suppose we would like
to estimate the inventory of West Germanic (as in Figure 7.1). The Bayesian model will only
rely on the training languages among its children: English alone. On the other hand, the nearest
neighbor model can take advantage of training languages in other branches: Norwegian. This gives
the nearest neighbor model more information when deciding the inventory, which significantly
improve its precision from 60.0 to 71.3. Next, we investigate the effect of using different number
of nearest neighbors. Figure 7.4 is a line plot showing the result of using different number of
nearest neighbors (k). We observe a bias-variance trend in our experiment. When k = 1, we
simply search for the nearest language and use that language to approximate the target language.
This suffers from large variance as it only uses one language’s inventory. Increasing k reduces the
variance by averaging over k nearest languages. However, increasing k too much also hurts the
performance as the additional languages are far from the target language and introduce bias into
the inventory instead.
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7.5.2 Universal Phone Recognition

Finally, we report the results of the extrinsic task in Table 7.2. The original phone recognition
models propose to use the union of all available phones when the inventory is not available. This
approach, again, suffers from the low-precision problem and only achieves 89.2% PER. In contrast,
all 4 models introduced in this work (including the two baselines) improve the PER by more than
20%. the nearest neighbor model again achieves the highest performance of 64.2%. The gap be-
tween 4 models, however, is smaller than the inventory evaluation. This is because phones are not
uniformly distributed in utterances (Li et al., 2021b), and frequent phones typically have already
been captured by the global inventory (as we select them based on the sorted order). The major F1
improvement of Bayesian Network and Nearest Neighbor approach comes from the identification
of other rare phones, therefore the improvement is reduced in this task. Despite the small gap be-
tween the 4 proposed models, we show that using a proper inventory could significantly improve
the PER.

Model PER Add Del Sub

Default Inventory (Σ) 89.2 3.8 16.2 69.1

Fixed Inventory (Σ̂fixed) 67.4 3.6 15.4 48.2
Global Inventory (Σ̂global) 65.3 3.4 15.2 46.7
Bayesian Network (Σ̂bayes) 64.6 2.5 20.1 41.8
Nearest Neighbor (Σ̂nearest) 64.2 3.2 16.4 44.6

Table 7.2: Statistics of the universal phone recognition task. Lower PER (phone error rate) indi-
cates better performance. Add, Del, Sub are Addition, Deletion and Substitution errors

7.6 Limitations

While we get reasonable performance in our testing languages, we acknowledge that there are sev-
eral limitations in our approach: first, our approach heavily depends on Glottolog, if the language
is not available in the Glottolog database, then our approach cannot be applied to it. Second, if
the target language does not have any training languages near it (e.g: it is the only language in its
branch), then the approximation might not be accurate.
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7.7 Conclusion

In this work, we propose multiple approaches to estimate phone inventories for unseen languages.
By using the knowledge derived from phylogenetic trees, we demonstrate that they significantly
improves the inventory quality over competitive baselines and boost performance in a phone recog-
nition task. This work also paves the way for appling speech recognition technology to (almost)
every language in the world. All the phone inventories of 7915 languages would be released to
enable more researchers to explore them in future research.
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Chapter 8

Dataset: Multilingual Phonetic Dataset for
Low Resource Speech Recognition

Summary

In Part I of this thesis, we discuss the multilingual acoustic model, in particular, we introduce a
language-independent phone recognition model, which is able to recognize phones of low-resource
languages. However, most speech recognition datasets so far only focus on high-resource lan-
guages, there are very few datasets available for low-resource languages, especially datasets with
detailed phone annotation.

In this chapter, we present a large multilingual phonetic dataset, which is preprocessed and
aligned from the UCLA phonetic dataset. The dataset contains around 100 low-resource lan-
guages and 7000 utterances in total. This dataset would provide an ideal training/evaluation set for
universal phone recognition. This dataset is used as an evaluation dataset in Chapter 4.

Xinjian Li; David R. Mortensen; Florian Metze; Alan W Black. ICASSP 2021 Multi-
lingual Phonetic Dataset for Low Resource Speech Recognition

8.1 Introduction

Recently, speech recognition communities have made significant progress towards building deep
neural networks for speech recognition by taking advantage of huge volumes of training data and
high-quality test sets (Amodei et al., 2016; Xiong et al., 2018). While high-resource languages such
as English and Mandarin have been able to benefit from the newly developed technology (Godfrey
et al., 1992; Cieri et al., 2004), most of the languages in the world are low-resource languages
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Figure 8.1: A alignment sample from the dataset where the left Table shows the annotated phones/utter-
ances extracted from the website, the table on the right side is the segmented audio chunks and the rec-
ognized phones. Two tables are first aligned automatically with phonetic features distances and then fixed
manually.

lacking large sets of training data or even small test sets. More importantly, many languages do not
have standardized orthographies; speech datasets fully annotated with phonetic transcriptions are
the only means of building speech technologies for them. Unfortunately, phonetically-annotated
data sets are also largely limited to high-resource languages (Garofolo et al., 1993). Additionally,
the annotated data is usually monolingual corpus with a limited phone inventory. Ideally, a well-
annotated dataset should contain a large number of languages and have a rich phone inventory. This
would be useful not only to train the recognition system for the target language but also benefit
to build/evaluate any language-independent universal phone recognizers as introduced in Part I of
this thesis (Li et al., 2020c).

In this chapter, we introduce a large multilingual phonetic dataset, which is derived from the
online UCLA phonetics archive (Ladefoged et al., 2009)1. The online phonetics archive contains

1http://archive.phonetics.ucla.edu/

108



a large amount of speech data collected by field linguists. For each language, there are typically
a variety of materials available including the audio recordings in WAV format, transcribed word
lists, information about the native speakers, etc. The total number of languages is around 300, and
most of them are low-resource languages (most of which have less than 1 million native speakers).
However, for each subset of the data, the archive only includes a large audio file and a table of
transcriptions, along with some other information. No alignments are provided, which poses a
challenging problem to create the aligned phonetic dataset.

In this work, we tackle this problem by using two-step alignment: in the first step, we segment
the transcriptions and audio files into small utterances. All audio files are transcribed into phones
with the recognizer proposed in Chapter 3 (Li et al., 2020a). Every transcribed utterance is aligned
automatically with the recognized utterances by measuring the phone feature distance. Next, all
aligned utterances are manually validated and corrected by human experts. Additionally, during the
second step, we implement several simple but effective strategies to speed up alignment correction.
The prototype dataset contains around 100 languages and 7000 utterances, it will be distributed to
benefit future work2. Note that the number of utterances and languages might change in the final
version.

8.2 Related Work

Previously, many multilingual datasets have been created from different sources such as audio-
books, broadcast news, and online recordings. These include the Babel database (Harper, 2011),
TUNDRA corpus (Stan et al., 2013), Voxforge collections (Voxforge.org) and common voice
dataset (Ardila et al., 2020). While those datasets sometimes cover more than 10 languages, the
target languages are typically high-resource languages, whereas low-resource languages are rarely
included. More recently, a dataset has been prepared for a much broader group of languages
(Black, 2019). However, the dataset is automatically aligned and alignment quality differs among
languages. Additionally, the transcription is in the orthographic form where the phonetic tran-
scriptions are not available. In this chapter, we prepare a low-resource language dataset with fully
annotated and validated phonetic transcriptions.

To develop a good alignment tool is essential for this work, as a fully manually alignment would
be a poor use of valuable expert time. The automatic alignment problem, arising when curating
speech corpora or synchronizing audiobooks, has been addressed in prior works (Anguera et al.,
2014; Bordel et al., 2012; Malfrère et al., 2003; Black, 2019). There are typically two approaches
to finding alignments between audio and transcriptions. The first is to utilize a speech recognizer
to transcribe audio into text or phones, and then estimate the alignment between the outputs with

2https://github.com/xinjli/ucla-phonetic-corpus
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the provided transcriptions (Anguera et al., 2014; Bordel et al., 2012). The second, on the other
hand, obtains the audio signals by synthesizing transcriptions, then aligns the original audio with
the generated audio (Malfrère et al., 2003; Black, 2019). While both groups have achieved some
success in obtaining usable alignments, they typically require some prior knowledge of the target
language, and the aligned pairs are usually not systematically validated. In this work, we establish
the alignment for around 100 languages while assuming little prior information. Additionally,
human feedback is used efficiently to validate and correct alignments.

8.3 Approach

In this section, we introduce the methods used to develop the dataset. We obtain the raw dataset
by crawling the archive pages. We then automatically align the recognized phones and annotated
phones for the utterances. Finally, experts employ an online tool to manually but efficiently validate
and correct the alignments.

8.3.1 Preprocessing

The crawler first downloads the top page and extracts all available languages. It then recursively
parses the individual links to the pages for each language and extracts all annotated word or utter-
ance lists, together with the corresponding audio files. The utterance lists are typically contained in
tables whose headers document the content type of each column. As the headers do not always fol-
low identical naming conventions, several regular expressions are used to determine which column
contains the phone annotations. From each utterance list, we typically extract 10 to 100 annotated
words/utterances.

The corresponding WAV file is usually a long audio recording containing the entire contents
of the utterance list. Besides, it usually contains many unrelated contents such as the introduction
of the native speaker, instructions regarding what to read next, and some incidental conversation.
Since most of our annotated utterances typically contain a single word in each utterance, voice
activity detection is applied to segment the audio into small chunks. For each annotated utterance,
one particular chunk is expected to contain its speech. It is important to note that the acoustic
environment varies significantly across different languages’ recordings; some are clean enough for
the voice activity detection to work efficiently, but others contain so much noise and overlapping
speech that voice activity detection cannot consistently distinguish silence and speaking intervals.
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8.3.2 First Pass Alignment

Next, all audio chunks are fed into a recently proposed multilingual phone recognizer proposed in
Chapter 3 (Li et al., 2020a), by which each chunk is transformed into an appropriate sequence of
phones. The first-pass alignment is done by matching the golden annotated phone labels and the
recognized phone labels. Typically, the phone-level alignment is done using standard string edit
distance and greedy search. i.e, for each annotated utterance, we compute the edit distance with all
recognized phone sequences and select the utterance with the lowest cost. However, this baseline
alignment fails to produce a good first-pass alignment in this case, due to two challenges: First,
the gold phone transcriptions are partial transcriptions. Many speaking parts in the recordings are
not transcribed as they are not related to annotation (e.g: instructions to native speakers of what
to read next). Second, the recognizer has not seen most of the languages (and, understandably,
performs worse on languages it has not seen). However, by taking advantage of several properties
in the dataset and the recognizer, we arrive at alignments that are much better than those produced
by this baseline. Three approaches are introduced in this section.

Monotonic Alignment

First, the annotated utterances are not listed in random order. The relationship between the an-
notated word list and the associated recording is typically monotonic. While other material may
intervene in the recording, the utterances of interest are in the same order in the recordings as
in the annotations. We note there are several cases in which this order fails to be monotonic, for
example, the native speaker occasionally forgets reading some utterances and returns to those utter-
ances later. However, by imposing this constraint, the available matching pairs are greatly reduced.
Coupled with dynamic programming, this makes alignment much more efficient.

Phonological Distance

Next, we use phonological features to measure the distance between annotated phones and recog-
nized phones (instead of using the exact phone match). The phonological distance enables us to
quantify similarity more precisely. In particular, we use the PanPhon tool to compute the phono-
logical distance between two utterances where 22 phonological features are taken into account
(Mortensen et al., 2016a). For example, [syllabic], [sonorant], [consonantal], etc. Instead of pe-
nalizing phone mismatch with 1 cost, it imposes a penalty based on partial feature mismatch.

Consecutive Segment Merger

Another improvement in the alignment can be made by merging consecutive vowels or consonants
in the recognized phones. During the experiment, we found that the recognizer tends to generate
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more than one vowel or consonant for a single phone when that specific phone context is rare in
the training set. This issue tends to increase the distance even when the recognized phones are
close to the annotation. Table 8.1 shows such an example in which merging multiple vowels and
consonants could lead to a more accurate distance. We note that it is not always correct to merge
vowels and consonants since sequences of multiple vowels or multiple consonants do occur in
many languages; however, we find this approach helps to reduce many misalignments in practice.

Annotated Phones Recognized Phones Distance

[thAÌb6] [m a z] 1.45
[thAÌb6] [t Ce i: bfl u@ @] 3.04
[thAÌb6] [t e bfl u@] 1.18

Table 8.1: An actual example from the experiment to merge consecutive vowels and consonants
into one phone. The annotated phones [thAÌb] should be aligned with the [t Ce i: bfl u@ @], but was
originally misaligned with [m a z] as it has less distance, after merging vowels and consonants in
the 3rd row, it has less distance and could be aligned correctly.

8.3.3 Second Pass Alignment: Real-Time Feedback

During the second phase, we use our online tool to update the first pass alignment in real time
based on feedback (validation or correction) from annotators. In particular, we exploit two types
of feedback to improve the alignment. Both types are fast enough to update alignments in real
time.

First, we use the anchor point to improve the alignments. When a new validation is confirmed
or a new alignment is fixed, the aligned utterance index and audio index are sent to the server,
notifying it of the new anchor point. The remaining unverified alignments are updated, subject to
this new anchor point. In the first pass alignment, the alignment errors tend to propagate through
the last utterance whenever there is a large mismatch. Fixing the anchor point could bring the
alignment back to the correct starting point.

Next, we use the index interval information to improve the alignment. During the experiment,
we noticed that the aligned audio index has a typical index interval in each dataset. For example,
the aligned audio index might be 10, 12, 14, etc: the first utterance is aligned to the 10-th audio,
the second utterance is aligned to the 12-th audio. This is because the native speaker and the
linguist are talking in turns: one reads the utterance, then the other instructs what to read next.
Each dataset has a different pattern, but the index interval is usually consistent in each dataset.
During the second pass, we use the validated utterances to estimate the typical index interval by
taking the mean of validated/fixed utterances intervals. The interval is then taken into account as
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Approach Acc. Mean Acc. Std

First Pass (baseline) 4.88% 6.37%
First Pass (+ monotonic) 27.3% 21.6%
First Pass (+ distance) 6.62% 12.5%
First Pass (+ merge) 5.64% 8.32%
First Pass (+ all) 38.0% 26.4%

Second Pass 56.0% 24.3%

Table 8.2: Alignment accuracy of different approaches. The first pass on the first row is the baseline
alignment, in which there are no constraints in the alignment. Additionally, we add three different
First Pass approaches and measure the performance separately and jointly. The Second-Pass shows
the improved alignment accuracy by using real-time feedback.

a new distance factor when updating the alignments. By combining those two types of real-time
feedback, the validation and fixing process requires much less manual works.

8.4 Experiments

In this section, we evaluate our alignment approach and provide statistics for the collected dataset.
In the first version of our dataset, we provide alignments for 106 languages. For each language’s
dataset, the alignment is first automatically aligned and then validated/fixed by an expert.

8.4.1 Alignment Evaluation Results

We first evaluate the alignment performance across all 106 languages. The metric is the alignment
accuracy: whether each annotated utterance is correctly aligned with the target audio chunk or not.
As we handle a large number of languages in the experiment, instead of showing the alignment
accuracy for each language, we show the mean and standard deviation of accuracy across all lan-
guages. The results are shown in Table.8.2, in which we compare several approaches we mentioned
in the last section. First, we consider the naive first pass alignment in which we greedily match
each utterance with all audio candidates. The results are around 5% accuracy, which is hardly use-
ful as the first pass alignment. Next, we try the three approaches mentioned above: imposing the
monotonic order, using phonetic distance instead of the naive edit distance, merging consecutive
vowels and consonants. The monotonic constraint improves the alignment significantly by about
20% accuracy. The other two only increase the metric marginally when used separately, however,
when all three approaches combined, it improves the accuracy by more than 30%.
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During the first pass alignment, we notice there is a huge accuracy variance across different
languages as shown by the standard deviation: some datasets are aligned very successfully with
almost 100% accuracy. On the other hand, some corpora fail with near 0% accuracy. The variance
can be explained by several factors: first, the audio quality varies significantly across different
languages: some recordings were made in a clean environment, while others were done in rel-
atively noisy rooms. The audio quality affects the recognition accuracy and therefore makes a
huge difference during the first pass. Second, the recordings are segmented by voice activity de-
tection. Some speakers wait for 1–2 seconds between every utterance while others continue to
speak several utterances without any interruption. As there is no silence between the utterances,
the single audio chunk contains several utterances and could not get aligned with any of the target
annotations. Finally, imposing the monotonic order might propagate the alignment error to the last
utterance. While the first pass alignment could align 40% correctly, it still requires a huge amount
of effort to fix the remaining 60% utterances. In the second pass, we apply the real-time feedback
to the system and automatically fix many alignment errors with the new anchor point and interval
information. The table suggests that alignment accuracy is further improved to around 60% in the
second pass. Finally, the remaining 40% misaligned utterances are fixed manually.

8.4.2 Dataset Statistics

The first version of our dataset contains 106 languages with 6,880 validated utterances. Each
language contains around 60 utterances on average with 28.4 std. We find that some languages
have many more utterances and speakers than others.

The data related to areal distribution is shown in Table.8.3. We show the language distribu-
tion and utterance distribution across different areas. The table suggests that nearly half of the
languages in the dataset are from Africa, while only 4% of languages are from the Pacific area.
The utterance distribution is relatively proportional to the language distribution. However, Asian
languages dominate in the utterance count with 43.6%. African languages have fewer utterances in
proportion to the number of languages. We also investigated the distributions of phones in the en-
tire dataset. In total, we find the number of unique phones (phone types) is more than 400. 51.7%
of the phones are consonants and 48.3% are vowels. The detailed feature distribution is shown
in Table.8.4, which suggests that the phone inventory is rich in various categories. This dataset
should be useful in many ways. First, it can be used to evaluate phone recognition systems for the
included low-resource languages. Additionally, it might serve as a good training/evaluation set for
any universal phone recognizers due to its rich inventory and large coverage of languages.
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Language Area Language % Utterance %

Africa 48.5% 23.1%
America 6.15% 8.63%
Asia 26.2% 43.6%
Europe 15.3% 22.5%
Pacific 3.85% 2.17%

Table 8.3: Area distribution of languages and utterances

syllabic sonorant continuant delayed release
44.3% 67.8% 68.0% 0.53%
lateral nasal strident spread glottis
4.02% 10.8% 1.74% 1.71%

cons glottis anterior coronal distributed
2.04% 38.2% 30.4% 4.67%
labial high low back
16.9% 25.0% 17.4% 25.4%
round click tense long
13.1% 0.28% 37.4% 2.61%

Table 8.4: Phone distribution of features

8.5 Conclusion

In this work, we introduce a new multilingual phonetic dataset for low resource languages. The
dataset is prepared from an online archive by two steps alignment. The dataset contains around 100
languages and 7000 utterances, and would be released to the community to benefit speech research
in low resource phone recognition.
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Chapter 9

Alignment: All Language Quick Alignment

Summary

In this chapter, we consider an application in speech alignment using the proposed pipeline. Speech
alignment has numerous practical applications, such as constructing text-to-speech datasets, gen-
erating automatic captions for online videos, and analyzing phonetics. However, most existing
speech aligners have been designed to align rich-resource languages by providing pre-trained
acoustic and pronunciation models. These methods are not easily applicable to low-resource lan-
guages without training new models or conducting adequate model adaptation.

To address this challenge in this chapter, we propose ALQAlign: All Language Quick Align-
ment that can be applied to most languages globally (7915 languages) without any further training
or adaptation. Our method leverages the acoustic model proposed in Chapter 4 and the pronun-
ciation model proposed in Chapter 5, which is then used for the alignment process. We evaluate
our method on two different tasks: forced-alignment experiments and text-to-speech experiments,
where our approach consistently outperforms the baselines.

Xinjian Li, Ondřej Klejch, Peter Bell, Alan W Black, Shinji Watanabe. Submitted to
EMNLP 2023

9.1 Introduction

Speech alignment has a wide range of applications in both the fields of speech processing and
linguistics. For example, speech alignment can be used to improve speech recognition perfor-
mance (Rybach et al., 2009), construct speech corpora (Black, 2019; Rousseau et al., 2012),
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Figure 9.1: Architecture of our toolkit: phonemes are extracted from both the speech and the
transcriptions, then those phonemes are aligned with each other modality

improve speaker diarization (Moattar and Homayounpour, 2012), conduct phonetic analyses of
endangered languages (DiCanio et al., 2013), perform empirical analyses of sociolinguistics (Pen-
nington et al., 2019), facilitate language documentation, and enable psycholinguistic research (Schilling-
mann et al., 2018).

Despite its importance, speech alignment tools are limited in their application due to their de-
pendency on language-specific acoustic and pronunciation models, such as grapheme-to-phoneme
conversion models. As a result, many aligners have been developed exclusively for rich-resource
languages (McAuliffe et al., 2017; Gorman et al., 2011; Yuan et al., 2008; Strunk et al., 2014).
Unfortunately, those tools are rarely supported for long-tail low-resource languages, which is es-
timated to be between 7000-8000 in the world (Lewis, 2016). This limitation highlights the need
for more universal and flexible alignment methods that can support a broader range of languages.

In this work, we propose ALQAlign (All Language Quick Alignment), which provides an ap-
proximated language-specific speech alignment tool for all 7915 languages and dialects registered
in Glottolog (Nordhoff and Hammarström, 2011). Our approach relies on the phoneme modality
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and is illustrated in Figure 9.1: first, we use an acoustic model to transform the speech input into a
phoneme distribution, and then apply a pronunciation model to extract the phoneme sequence from
the input transcription. Finally, both phoneme outputs are aligned by our alignment model. While
our general workflow is a standard alignment pipeline, our acoustic and pronunciation models
are multilingual models that provide an approximated model for every target language (7915 lan-
guages) by default. Therefore, it can provide a language-specific model without requiring training
on every target language. In the experiment section, we demonstrate that our approach significantly
outperforms baseline models on two tasks: forced-alignment and text-to-speech alignment.

9.2 Related Work

There are two main families of approaches to aligning audio and transcription. The first family uses
a pretrained acoustic model to transform given speech into textual modalities, then the given text
is also transformed into the same representation, and alignment between both outputs is estimated
using Viterbi algorithm (Anguera et al., 2014; Bordel et al., 2012). There is a varities of differ-
ence across those approaches, for example, the input type can be raw audio signals, Mel-frequency
cepstral coefficients (MFCC) (Kelley and Tucker, 2018), or self-supervised features (Zhu et al.,
2022), the pre-trained acosutic models can be either HMM-based architectures (Lamere et al.,
2003; Strunk et al., 2014) or end-to-end neural networks (Watanabe et al., 2021; Kürzinger et al.,
2020). The textual representation can be utterances, graphemes, phonemes, or subwords (Stan
et al., 2016; McAuliffe et al., 2017; Kürzinger et al., 2020; Watanabe et al., 2021). The existing
alignment tools are typically implemented with some speech frameworks such as HTK (Young
et al., 2002), Kaldi (Povey et al., 2011) or ESPnet (Watanabe et al., 2018). The second family,
on the other hand obtains the audio signals by synthesizing transcriptions, then aligns the original
audio with the generated audio using Dynamic Time Warping (DTW)(Malfrère et al., 2003; Black,
2019; Pettarin, 2017). While both groups have achieved some success in obtaining usable align-
ments, they typically require some prior customized models of the target languages, which limits
the scope of their application. In this work, we present a model which can be applied to many
languages without any specific customization such as adaptation or pretraining. Note there are a
few works tackling similar problems, for example, ReadAlong Studio is a zero-shot tool that uses a
cross-lingual G2P and an English acoustic model to align indigenous language audiobooks (Littell
et al., 2022).
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9.3 Toolkit

Our alignment toolkit is divided into the acoustic model, pronunciation model and alignment
model. Both Acoustic model and pronunciation model transforms inputs into phoneme repre-
sentations, which is then aligned by the alignment model.

9.3.1 Acoustic Model

The acoustic model proposed here is the model we introduced in the previous chapter 4. Our acous-
tic model is a multilingual phoneme-based model. Rather than training language-specific acoustic
models for each language, we use an allophone-based multilingual architecture to approximate
the acoustic model for every language (Li et al., 2020a, 2021a). This architecture consists of two
modules: a universal phone recognition module and an allophone mapping module. The uni-
versal phone recognition module first attempts to recognize physical-level phones (i.e. language-
independent phonetic units) from the given audio. The allophone mapping module then transforms
these language-independent units into language-specific phonemes. This method approximates the
acoustic model for each language using a shared set of universal phonetic units.

9.3.2 Pronunciation Model

We propose a three-level combination to fully leverage existing pronunciation and grapheme-to-
phoneme (G2P) resources for a broader range of languages. Our toolkit integrates three methods
into the model: a lexicon-based method, a rule-based model, and a multilingual G2P model. These
models decrease in accuracy in the aforementioned order, but increase the scope of target lan-
guages, with the last G2P model providing an approximation to any of the 7915 languages by
default.

Lexicon-based Method obtaining high-quality dictionaries for each language is a challenging
task, and low-resource languages often lack such resources. To address this challenge, we lever-
aged Wiktionary website (Deri and Knight, 2016) as our primary source of pronunciation data,
resulting in 1.6 million entries spanning 874 languages.

Rule-based Model While lexicon-based information is accurate, the dictionary does not nec-
essarily cover every possible word forms in each language. To address this challenge, we use the
rule-based model as our next step. In this work, we apply Epitran (Mortensen et al., 2018), which
covers nearly 100 languages.

Multilingual G2P Model The G2P model here is the model we introduced in the previous
chapter 5. Since the majority of languages lack accessible dictionaries or rules, we use an approxi-
mated pronunciation model. Specifically, we apply a recently proposed multilingual grapheme-to-
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phoneme (G2P) model as our pronunciation model (Li et al., 2022b): For any unseen languages
during inference, this G2P model selects the top-k nearest languages for which a training set is
available in Wiktionary, then it proposes k hypotheses using each of the nearest language’s model.
Those outputs are then ensembled into a lattice to emit the most likely approximated sequence.

9.3.3 Alignment Model

The alignment model used in our experiments is derived from CTC-segmentation (Kürzinger et al.,
2020). While the original model is mainly designed for aligning characters or subwords, we mod-
ified it to handle the phoneme modality specifically. In our setting, the model takes the CTC
phoneme logits from the acoustic model and the phoneme sequence from the pronunciation model.
It then constructs a lattice to run forward propagation. The timestamps of each phoneme are de-
cided by backtracking from the most likely timestamp of the last phoneme.

9.4 Forced Alignment Experiment

We conduct two sets of experiments: forced alignment and text-to-speech alignment. The forced
alignment experiment measures the quality of alignment at the phoneme/word level, while the
text-to-speech alignment experiment measures the utterance alignment.

9.4.1 Dataset

Datasets with precise timestamps for phonemes or words are relatively easy to find for rich-
resource languages (Garofolo et al., 1993). However, finding datasets of low-resource is a chal-
lenging task. To evaluate the forced-alignment experiments over low-resource languages, we con-
structed a forced-alignment dataset from the UCLA Phonetic Corpus (Li et al., 2021c). This dataset
contains 95 low-resource languages, each with nearly 100 audio clips reading a single word. To de-
velop a forced-alignment evaluation dataset, we concatenated all audio clips of the same language
to create a single long audio clip and apply the alignment.

9.4.2 Baseline

We compared our method with several baselines, including the Montreal Forced Aligner (McAuliffe
et al., 2017), ProsodyLab Aligner (Gorman et al., 2011), FAVE Aligner (Rosenfelder et al., 2014)
and Penn Aligner (Yuan et al., 2008). Since most of those aligners typically only support En-
glish, the low-resource languages we are targeting are not supported by default. To enable a fair
comparison, we adapted the English models by mapping each phone in our transcription to the

120



Alignment Model Precision Recall F1 max F1 min F1 std F1

MFA (McAuliffe et al., 2017) 0.57 0.57 0.57 1.00 0.00 0.27
ProsodyLab Aligner (Gorman et al., 2011) 0.67 0.67 0.67 0.96 0.26 0.16
FAVE Aligner (Rosenfelder et al., 2014) - - - - - -
Penn Aligner (Yuan et al., 2008) 0.68 0.68 0.68 1.00 0.24 0.16

ALQAlign (this work) 0.78 0.78 0.78 1.00 0.41 0.15

Table 9.1: Results of forced-alignment performance on the UCLA dataset measured by the average
scores across 95 languages. The proposed aligner has outperformed other base aligners in all
categories.

closest English phoneme (i.e., ARPABET) by measuring the phonological distance using Pan-
Phon (Mortensen et al., 2016b). Note that this adaptation process itself is a nontrivial task, which
highlights the benefits of our toolkit. For the evaluation metric, we adapted the evaluation script
from the MGB-challenge (Bell et al., 2015) by measuring the difference in onsets.

9.4.3 Results

We now present the results of the forced-alignment evaluation on the UCLA dataset in Table 9.1.
Our approach achieves an average F1 score of 0.78, which significantly outperforms all of the
baselines. For example, the MFA model achieves an F1 score of 0.57, while the ProsodyLab
Aligner achieves an F1 score of 0.67. In our experiment, FAVE Aligner is not able to identify align-
ments successfully, it was able to identify shorter alignment when transcription only contains a few
phonemes, but is not able to find successful path in our longer settings even by tuning the search
size. By analyzing the results, we find voiceless fricatives (variants of [s] such as [sh], [sj], [s′])
are among the most challenging phonemes to align. This difficulty arises because some of these
phonemes are rarely seen in our training languages. Consequently, our acoustic model does not
perform well in recognizing these phonemes. For instance, [s′] is a highly misaligned phoneme in
our experiment. It is an ejective consonant that phonemically contrasts with pulmonic consonants,
but does not appear in our training set.
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Alignment Model MCD max MCD min MCD std MCD

Wilderness Aligner (Black, 2019) 7.32 8.59 6.13 0.70
ALQAlign (this work) 6.43 7.99 5.51 0.64

Table 9.2: Comparison of our toolkit with the original aligner used in the CMU Wilderness corpus.
We measure the alignment quality by building TTS model and evaluate the MCD scores(a lower
score indicates a better performance).

9.5 Text-to-Speech Alignment Experiment

9.5.1 Dataset

The dataset we evaluate on is the CMU Wilderness corpus and its raw datasets (Black, 2019),
which comprise recordings of readings of the New Testament in 700 languages. The raw datasets
were collected by crawling the Bible.is website. In each language, the readings are organized
into chapters, with each chapter containing raw text and corresponding audio that is usually a few
minutes long. We use our toolkit to extract utterance alignments in every chapter.

9.5.2 Baseline

In this experiment, the transcriptions are in text form, which requires an appropriate pronuncia-
tion model to transform them into phoneme sequences. Unlike our proposed model, the baseline
aligners in the previous section cannot handle orthography in unknown languages. Instead of using
those aligners, we compare our method to the original aligner proposed in the CMU Wilderness
corpus dataset (Black, 2019). This aligner synthesizes transcriptions to obtain the audio signals
and then aligns the original audio with the generated audio. We compare our alignment with the
first pass alignment of the original aligner since both alignments are not adapted to the data. As
there are no golden labels or timestamps for the dataset, it is challenging to directly measure the
quality of the aligned results. Therefore, we build TTS models from the aligned text-speech sen-
tence pairs. A better TTS model indicates better alignment quality. The TTS model is evaluated
using the Mel cepstral distortion (MCD) score, which compares the synthesized audio with the
ground truth audio from the test set. A lower MCD score indicates a better model.

9.5.3 Result

Table.9.2 presents the results of our experiment. Our model achieved an average MCD score of
6.43, which is 0.91 MCD lower than the baseline aligner’s average score of 7.34. This suggests
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that the TTS model using our aligned datasets achieves better resynthesis quality than the original
aligned datasets. In addition to the mean MCD score, our model also improves the maximum and
minimum MCD scores. Furthermore, it improves the standard deviation, indicating that our model
is more robust across a variety of languages.

Upon further investigation, we find that the performance of the original aligner is worse when
the orthography of the target language is not consistent with the aligner’s pronunciation rule. It
is common for different languages to have different pronunciations for the same grapheme. For
example, the letter <h> in "hello" is pronounced with the [h] phoneme in English but is not pro-
nounced explicitly in "hola" in Spanish. The original aligner assumes a universal pronunciation
rule regardless of languages, meaning that the letter "h" is always considered [h] in every lan-
guage. This rule fails when applied to Spanish. In contrast, our model considers the differences
across languages and assigns different phonemes depending on the language.

9.6 Conclusion

In this work, we propose ALQAlign, All Language Quick Alignment to apply speech alignment
to most languages globally without training or adaptation. Our method relies on approximated
acoustic model and pronunciation model, which outperform baseline aligner significantly over two
evaluation tasks. Our software will be released from Github.
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Chapter 10

Conclusion

As we have seen so far, most recent speech recognition technology relies on large supervised
datasets, which are limited to a few hundreds of high-resource languages. However, there are 8000
languages in the world, the majority of which are low-resource languages and large supervised
datasets are not available. Therefore, the traditional speech recognition pipeline cannot be applied
to them directly, which significantly restricts the scope of target languages. In this thesis, we
present a speech recognition pipeline that attempts to reduce the dataset requirement as much as
possible. In particular, we consider a pipeline that does not require any audio datasets for the target
language. This assumption enables us to expand the scope of target languages to around 6000
languages.

In the first part of this thesis, we propose a multilingual acoustic model which can be trained
from high-resource languages and applied to low-resource languages without any audio supervi-
sion. In the second part of this thesis, we discuss the pronunciation model and the language model.
The pronunciation model is a grapheme-to-phoneme conversion model which can also be learned
without any supervision from the target language. The language model is the n-gram model built
from a large online n-gram database. In the last part, we introduce two datasets and one application.

When I initially embarked on my work in multilingual speech recognition in 2017, the pre-
dominant focus of research was on training monolingual models for a handful of languages with
abundant resources (Xiong et al., 2018). The available multilingual corpora at the time, such as
voxforge (Voxforge.org) and the BABEL project (Harper, 2011), were limited in their language
coverage and hours of training datasets. During my involvement in the LoReHLT project (Chaud-
hary et al., 2019), I became aware that numerous languages worldwide lacked speech systems
due to the scarcity of supervised datasets. Recognizing the potential significance of developing
speech recognition for thousands of languages, I shifted my focus. Instead of relying on super-
vised datasets, I found it considerably more feasible to obtain phonetic information for a broad
range of long-tail languages (Moran and McCloy, 2019) and identified phonemes as a promis-

124



ing foundation for expanding language coverage. Our approach involved enhancing the existing
phonetic corpus by annotating allophones (Mortensen et al., 2020) and broadening language cov-
erage (Li et al., 2021b). Subsequently, we devised universal speech systems towards multilingual
phoneme recognition (Li et al., 2020a, 2021a). To establish a fully operational speech recognition
pipeline, we devised a universal grapheme-to-phoneme(G2P) model for phoneme translation (Li
et al., 2020d). The culmination of these efforts resulted in the development of a functional pipeline
capable of supporting thousands of languages (Li et al., 2022a).

In recent years, an increasing number of research groups have begun exploring avenues to
expand the range of languages covered in speech recognition systems. Notably, OpenAI’s Whisper
system has made significant strides by encompassing approximately 100 languages (Radford et al.,
2022), while Google’s USM system offers a similar coverage (Zhang et al., 2023) Meta’s MMS
system surpasses them both by providing support for a remarkable 1000 languages (Pratap et al.,
2023). The primary distinction between our approach and theirs lies in the reliance on datasets.
While all of these systems are trained end-to-end using supervised datasets, our model solely
depends on text data without the inclusion of any audio datasets for the target language. The
advantage of our pipeline lies in its broader language coverage (6000 languages compared to 1000),
but it does come with a drawback in terms of recognition accuracy (10% CER compared to 40%
CER).

As the availability of supervised datasets approaches its upper limit, our text-only approach is
poised to remain the only viable option for achieving such extensive language coverage. However,
as previously discussed, there are many limitations in our pipeline. We will discuss the limitations
and potential future works of the acoustic model and language model separately in the following
sections.

10.1 Acoustic Model Discussion

We first discuss a few limitations and potential future directions of the acoustic model in this
section.

10.1.1 Limitations of Annotations

The multilingual model proposed in Chapter 3 is largely dependent on manually curated allophone
(phone-phoneme) annotations (Mortensen et al., 2020). This approach presents two significant
challenges:

Limitations on Language Diversity The model, as explained in Chapter 3, has been trained
with annotations from approximately 10 languages. However, a vast number of languages avail-
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able could potentially enhance the phone recognition model. Relying solely on manually curated
annotations makes it costly to incorporate additional languages into the model.

Inefficiencies in Annotation As the model encompasses more languages, the cost and time of
annotation for each language will increase correspondingly. As previously discussed in this disser-
tation, we estimate the universal phone inventory, denoted as Quni, as follows:

Quni =
⋃

1≤i≤|L|

⋃
p∈Pi

Qi
p (10.1)

The phone inventory size, denoted as Quni, in this experiment ranges from 200 to 300. However,
we observe that this number tends to increase rapidly as we increase the number of languages |L|.
From the PHOIBLE dataset (Moran and McCloy, 2019), we estimate that there are over 2000
distinct phones. As such, it would prove inefficient, even infeasible, to verify if every phone from
the inventory could be a variant allophone for a given phoneme.

Rather than depending on manually curated annotations, as future work, we propose to auto-
mate their learning through a problem we term as the Automatic Allophone Estimation. Here, we
discuss our formulation and some potential future directions.

In this dissertation, we’ve established the signature matrix as S = {0, 1}|P |×|Quni| where P is
the phoneme inventory for a particular language and Quni is the complete phone inventory. The
signature matrix, primarily predefined by our annotation, remains mostly stable throughout train-
ing, although it is subject to occasional fine-tuning. Under this model, let the acoustic model be a
neural network parameterized with θ. We optimize the model by minimizing the empirical risk of
L(θ) over the multilingual training set D with established signature matrices S.

minimizeθED[L(θ;S)] (10.2)

This optimization problem outlined above only depends on θ. However, if the signature matrix
S is unknown, we can extend the formulation by including it as well. Put simply, our objective
should minimize the empirical risk with both parameters considered.

minimizeS,θED[L(S, θ)] (10.3)

The precise solution to this augmented optimization problem is computationally unfeasible, as
the original problem L(θ)—a special case of this new problem—is already intractable. The revised
optimization problem is subject to more intricate constraints, significantly complicating the task.
Several potential pathways could be explored to address this issue. For instance, the Expectation-
Maximization (EM) algorithm could be employed to iteratively optimize with respect to both θ and
S after each training cycle.
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10.1.2 Suprasegmentals Problems

This dissertation primarily focuses on phonemes, phones, or segments, and does not incorporate
suprasegmental features such as stress, pitch, and intonation in the model’s pipeline. These fea-
tures, which often extend across multiple consonants or vowels, play vital roles in many lan-
guages (Leben, 1973). For instance, Mandarin uses tonal distinctions, with four primary tones and
one neutral tone, to differentiate the meanings of words. Explicit modeling of these features can
enhance speech processing and analysis (Mehler, 1981).

The primary challenge in creating a universal suprasegmental system could be the limitations of
the available datasets and the absence of a unifying framework, as each language exhibits unique
suprasegmental characteristics. While it is feasible to gather a large Mandarin and Vietnamese
dataset for training a monolingual tonal recognition model (Hui Bu, 2017; Yuan et al., 2021),
it becomes substantially more challenging to acquire a similarly large dataset for other lower-
resource tonal languages, such as Cherokee (Lewis, 2016). Additionally, to devise a universal
suprasegmental model, we should aim to develop a unified framework capable of accommodating
differences across languages.

10.1.3 Self-Supervised Learning Models

In Chapter 6, we leverage self-supervised learning models to enhance our acoustic model. We have
discovered that self-supervised models trained on a multilingual dataset improve the performance
of our acoustic model (Conneau et al., 2020). The value of multilingual self-supervised models
arises from their exposure to a larger array of languages and a broader phonetic context. Given the
recent availability of expansive multilingual datasets (Conneau et al., 2023; Pratap et al., 2023),
it might be worthwhile to train self-supervised models on hundreds of languages and investigate
their potential impact on our pipeline.

Another intriguing direction for future research could be to explore how to utilize pre-trained
discrete representations, and correlate these intermediate tokens with the phonological tokens we
have modeled in this dissertation (Zeghidour et al., 2021; Défossez et al., 2022). These inter-
mediate tokens, given their generalization over vast training sets, may serve as better discrete
representations than the explicit phone tokens currently in use.

10.2 Language Model Discussion

Next, we discuss the limitation and some potential future directions in the language model in our
pipeline.
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10.2.1 Limitation of Pronunciation Models

In our pipeline as described in Chapter 5, we employ tree-based metrics to gauge the distance be-
tween languages (Nordhoff and Hammarström, 2011), under the assumption that languages from
the same branch of a linguistic family likely share similar writing systems and pronunciation rules.
However, this assumption doesn’t always accurately capture the real degree of closeness. The
phylogenetic metric only measures one aspect of linguistic distance. Incorporating other metrics,
such as typological and geographical distance, may enhance the accuracy of closeness measure-
ments (Littell et al., 2017). Moreover, we operate on the assumption that each language possesses
only a single writing system, an assumption that doesn’t always hold true. In fact, a single lan-
guage, such as Uzbek, can have multiple writing scripts (Perso-Arabic, Cyrillic, and Latin) used
by different groups and in different contexts.

In our pronunciation model, the number of languages used for ensembling is set at 10. How-
ever, this number does not necessarily need to be constant and it might be more beneficial to adjust
the number dynamically based on each language. For instance, for languages with fewer neigh-
boring languages, we might want to utilize a larger ensemble. Conversely, for languages with
numerous neighbors, a smaller ensemble might suffice.

10.2.2 Limitation of Language Models

While we assert that we’ve developed acoustic models, pronunciation models, and language mod-
els for thousands of languages, accurately measuring the true coverage of our pipeline is challeng-
ing, given that we lack testing datasets for every language. The largest testing dataset utilized in
this work is the CMU Wilderness dataset (Black, 2019), and we estimate the zero-shot performance
based on its outcomes. However, this may not reflect the true performance across the long tail of
languages. The quality of datasets often decreases along this tail, presenting a typical trade-off
between the number of languages covered and the quality of performance (Kamholz et al., 2014).
Even the task of correctly identifying languages presents significant challenges (Caswell et al.,
2020; Bapna et al., 2022). To provide a more accurate estimation, it’s worth considering the cre-
ation of new datasets, which should not only sample from the first 1000 languages but also more
frequently cover the long tail of languages.

Furthermore, in Chapter 6, we rely on traditional n-gram models as our language modeling
module. The primary reason being that our main language resources are lexicon and n-gram
counts (Kamholz et al., 2014; Scannell, 2007). However, the capabilities of such n-gram mod-
els are inherently limited due to the size of each monolingual dataset. A potential avenue for future
research could involve leveraging large language models like GPT and PaLM (OpenAI, 2023;
Chowdhery et al., 2022) to facilitate knowledge transfer from high-resource languages to those
with fewer resources.
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