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Abstract
In natural language processing (NLP), many tasks involve structured prediction:

predicting structured outputs consisting of a group of interdependent variables. This
allows extracting useful information from unstructured raw texts, which can benefit
downstream tasks and analyses for both humans and machines. To obtain automatic
models, the main paradigm is in a data-driven supervised-learning fashion. In this
paradigm, the main bottleneck is the availability of manually annotated data, which
is usually expensive and time-consuming to obtain. Moreover, we usually would
like to extend the models to various new scenarios, like in different domains or lan-
guages. The model performance could drop dramatically if the training instances are
insufficient to cover the target scenarios, while it is costly and inefficient to annotate
large amounts of data instances in all these new cases.

To mitigate this problem and ease the reliance of structured prediction models
on large amounts of annotations, we need to consider both aspects of the model
and the data, which are the main driving forces of data-driven machine learning.
Related to these core aspects, we examine three directions. Firstly, we investigate
structured modeling in model design, which involves how the complex structured
outputs are modeled and predicted. This is especially important for structured pre-
diction tasks, which usually have large output spaces. Moreover, on the interaction
of model and data, we examine transfer learning where related data is utilized to
help low-resource target tasks. In this case, how to design models that are more
agnostic to the discrepancies between the source and target data resources is also
crucial for the success of the transfer. Finally, we explore active learning, with a
specific focus on the data itself. When resources are limited, it is difficult to obtain a
large amount of annotated instances, but annotating a small set can be feasible. With
a strategy to select an informative set of instances, much fewer manual annotations
may be required to achieve satisfactory performance.

This thesis consists of three parts, corresponding to these three directions. In the
first part, we investigate the influence of structured output modeling in deep neural
models. We find that structured modeling brings benefits on sentence-level com-
plete matches and with more efficient models. We further extend the analyses to
low-resource scenarios and investigate the interactions of structural constraints and
training data sizes. In the second part, we investigate a series of related structured
tasks and find that supervision from related data, such as those from the same task but
in different languages (cross-lingual learning) and those from related tasks (multi-
task learning), can be beneficial, especially if utilizing models that care less about
the source and target differences. Finally, in the third part, we perform a systematic
investigation of active learning for structured prediction in NLP. Especially, we an-
alyze the effectiveness of annotating and learning with partial structures, which can
improve data efficiency for active learning. Moreover, we show that combining ac-
tive learning with self-training with the unlabeled instances from the active learning
data pool can bring further improvements.
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Chapter 1

Introduction

In natural language processing (NLP), we usually need to extract structured information from
unstructured texts. This process is crucial for better accessing and representing the information
available in text and can be helpful in further downstream applications and analyses for both
humans and machines. Moreover, proper analysis of language structures is usually a requirement
for basic natural language understanding. For example, to realize the meaning of the sentence
“The student wrote a paper at Carnegie Mellon University”, we need to figure out several layers
of structures, some of which are shown in Figure 1.1 (automatically processed by CoreNLP
(Manning et al., 2014) and AllenNLP (Gardner et al., 2018)):

Figure 1.1: Example structures for an English sentence.

• Each word in the sentence carries certain syntactic functionalities, such as lexical cate-
gories which can be reflected by part-of-speech (POS) tags. For example, “wrote” is the
main verb, and “student” and “paper” are nouns.

• The words and phrases also carry semantic meanings and can refer to entities. For example,
“student” is a person, and “paper” is an object. Moreover, the multi-word expression
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“Carnegie Mellon University” is a named entity of an organization.
• Going beyond individual words and phrases, each sentence has its syntactic structure, con-

necting the sub-units of words and phrases with syntactic relations. For example, “student”
is the subject (nsubj) of the main verb “wrote” while “paper” is its object (obj).

• As the underlying driving force, semantics also involves relational structures. Considering
shallow semantics, the “student” is the agent (ARG0) of the writing action, and the “paper”
is the theme (ARG1) that is written.

All these tasks above involve structured prediction (BakIr et al., 2007), where the system needs to
output a structured object consisting of a group of inter-dependent variables, such as a sequence
of POS or entity labels, a syntactic tree or a semantic graph.

Structured prediction has been an important and fundamental topic for natural language pro-
cessing (NLP) (Smith, 2011) and many NLP tasks can be cast as or already involve the prediction
of structured outputs. For example, sequence labeling, the most fundamental structured predic-
tion formalism, can be applied to a wide range of NLP tasks, including linguistic tasks like POS
tagging (Ratnaparkhi, 1996; Lafferty et al., 2001) and chunking (Tjong Kim Sang and Buchholz,
2000), information extraction tasks such as named entity recognition (NER) (McCallum and Li,
2003) and entity and event mention detection (Lin et al., 2020) as well as slot filling in spo-
ken language understanding (Raymond and Riccardi, 2007; Yao et al., 2014). Beyond tagging,
predicting more complex structures like trees and graphs is also required for many tasks, like
syntactic parsing (Kübler et al., 2009), semantic role labeling (Gildea and Jurafsky, 2002), and
meaning representation graph parsing (Koller et al., 2019). Moreover, natural language genera-
tion tasks like machine translation and summarization can be also modeled as structured predic-
tion problems (Edunov et al., 2018). Therefore, more effective structured prediction approaches
could benefit a variety of NLP applications.

1.1 Motivation
Recently, the field of NLP has witnessed a wave of successful applications of neural networks
(Goodfellow et al., 2016), which bring improvements to a variety of NLP tasks (Bengio et al.,
2003; Collobert et al., 2011; Sutskever et al., 2014; Chen and Manning, 2014; Ma and Hovy,
2016; He et al., 2017; Vaswani et al., 2017). Especially, adopting large-scale unlabeled corpora
to pre-train neural models, such as those for static word embeddings (Mikolov et al., 2013a,b;
Pennington et al., 2014; Bojanowski et al., 2017) and contextualized word representations (Pe-
ters et al., 2018; Devlin et al., 2019; Liu et al., 2019; Yang et al., 2019), has been a crucial step
for the success. Structured prediction tasks themselves also benefit much from the utilization of
deep learning. For example, the task of dependency parsing has been continuously benefiting
from better neural contextualized encoders (Kiperwasser and Goldberg, 2016), structured decod-
ing modules (Dozat and Manning, 2017) as well as pre-trained contextualized representations
(Kulmizev et al., 2019).

More recently, the developments of large language models (LLMs) have further revolution-
ized the field of NLP. Especially, models such as ChatGPT1 and GPT-4 (OpenAI, 2023) have

1https://chat.openai.com/
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shown great capabilities of natural language understanding and text generation. With a simple
prompting-based approach (Liu et al., 2023), many NLP tasks can be tackled by letting the model
respond to the corresponding prompts (Jiao et al., 2023; Qin et al., 2023; Bang et al., 2023; Wei
et al., 2023; Bubeck et al., 2023). It will be especially interesting to think about the roles of
structured prediction in the era of LLMs.

Why Studying Language Structures? Recent neural models and especially LLMs have shown
great capabilities of solving a wide range of NLP tasks, and more interestingly, this can be done
by directly taking raw text sequences as input without relying on explicit language structures.
In this case, we will need to face the question of why we still study and care about language
structures. Here are some of the reasons why language structures can still be relevant to the field
of NLP:

• For linguistic importance. Natural languages are organized in a structured way. This
will not change regardless of what underlying models we are using to process natural lan-
guages. Studying language structures is still linguistically and theoretically important to
understand the underlying working mechanisms of natural languages, especially the con-
nections between surface form and underlying meaning. For example, word order, which
indicates how words are linearized in sentences, is a typical example of how structures
encode meaning (Dryer, 2007). The two sentences “The dog chases the cat” and “The cat
chases the dog” contain the same tokens but denote different meanings with different word
orders. Therefore, understanding language structures is a prerequisite to understanding the
semantic meaning. Although nowadays typical LLMs do not explicitly encode language
structures, they must have some mechanisms to implicitly encode structural knowledge.

• For precise representations. Although LLMs have surprisingly great capabilities at text
generation and completion according to the given prompts, these open-ended generation
models still suffer from the problem of hallucination (Ji et al., 2023), producing unrelated,
unintended and even degenerated outputs. Moreover, extra efforts are still required to more
precisely access the information contained in raw texts. Representing using explicit struc-
tures is such a way to obtain preciseness, which would make it easier for computers to
directly store and retrieve relevant information. For example, information extraction sys-
tems extract nodes and relations from raw texts, which can further be utilized to construct
knowledge graphs (Ji et al., 2021). Text-to-SQL systems convert natural language queries
to structured query languages, which can be directly executed by SQL systems (Qin et al.,
2022). In these applications, understanding the correspondences between the target struc-
tured representations and the source language structures can be a promising way to enhance
more precise transformations.

• For direct applications. Although LLMs have shown great capabilities of solving many
NLP tasks in an end-to-end fashion, there are still many cases where explicit structures
can be helpful. An educational application where the system aims to help a student to
learn a foreign language is a typical example. For an input sequence from the student,
our goal is not only doing corrections but also highlighting and tagging the mistakes that
the student makes. For the latter job, it will be more straightforward to model it as a
structured prediction task of extracting and labeling input spans. Moreover, when we aim
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to perform natural-language queries over a large number of instances, such as millions of
database entries, it will be more efficient to use structured ways to represent and query the
candidates rather than transforming all the items to natural language forms and querying
with LLMs.

• For better understanding. Neural models have been questioned for their opaque nature
(Lipton, 2018) and a better understanding of their working mechanism is an important re-
search problem. A series of papers have been devoted to their analysis and interpretation
(Belinkov and Glass, 2019; Belinkov et al., 2020). For example, probing has been uti-
lized to query structured linguistic information (Conneau et al., 2018; Tenney et al., 2019;
Hewitt and Manning, 2019; Chi et al., 2020; Conia and Navigli, 2022; Müller-Eberstein
et al., 2022) over the neural representations. In a way, these can be viewed as looking
for explicit structures inside neural networks, and exploring the connections between im-
plicit neural encoding and explicit language structures is a promising way to achieve better
interpretations of neural networks.

• For better controlling. Although LLMs seem to excel at language generation, it still
remains a question of how to control them in the way that the users want. Prompting
engineering is still a crucial procedure to properly steer the LMs (Liu et al., 2023). Towards
more controllable text generation (Zhang et al., 2022a), utilizing language structures can be
an interesting direction. For example, syntax has been utilized as the controlling guidance
for paraphrasing (Iyyer et al., 2018; Huang and Chang, 2021) and graph-to-text generation
(Liu et al., 2022b; Lee et al., 2022). Frame semantics have also been used to control
dialog generation (Gupta et al., 2021b). In addition to traditional linguistic structures, the
structures of the prompts have also been shown important for the effectiveness of using
LLMs (Zhao et al., 2021b; Min et al., 2022b). How to better formalize the prompts is also
crucial to better control the LLMs.

• For better analyzing. Any model is imperfect and will make mistakes. It is important to
analyze the model’s errors to make further improvements. In the aspects of model analysis
and evaluation, language structures can also be helpful. For example, McCoy et al. (2019)
show that constituency structures can be useful to construct controlled evaluation examples
for natural language inference, Vamvas and Sennrich (2022) extract source constituents to
detect over- and under-translation, Cardon et al. (2022) annotate linguistic corpus to evalu-
ate text simplification and Xu et al. (2022) leverage syntax to diagnose spurious correlation
problems for entity typing. The directions of error analysis and performance evaluation can
be especially crucial in the era of LLMs because of their opaque nature and applications in
open-ended text generation. Language structures can be helpful tools for these directions.

Challenge of Limited Data. Although neural models and large-scale pre-training have brought
clear benefits to structured prediction tasks in NLP, the main problem-solving paradigm is still in
a data-driven supervised-learning fashion. This paradigm relies on the availability of manually
annotated data, which is usually expensive and time-consuming to obtain. The neural models
can perform well with abundant annotated instances, but learning remains difficult in scenarios
where such data resources are limited (Hedderich et al., 2021). Moreover, we usually hope that
the models can be able to generalize to various new scenarios, like in different domains or lan-
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guages. For example, we may want to apply a parser trained on newswire data to biomedical
texts for further processing. There are thousands of different languages in this world and we
would like to have a text analyzer that could handle multiple languages in a unified way. In these
scenarios, the model performance could drop dramatically if the training instances are insuffi-
cient to cover the target scenarios, and it is costly and inefficient to annotate large amounts of
data instances in all these new cases. For structured prediction, this resource-limitation problem
can be more challenging, since the annotation of high-quality structured data requires proper
training and demanding work from the annotators, limiting the scale of available corpora. For
example, in the Penn Treebank (Marcus et al., 1993), one of the largest and most utilized syntac-
tic corpora, most of the annotations come from news sources and it is unclear how well a parser
trained on this single source can adapt to other text genres. While Universal Dependencies (Nivre
et al., 2020), one of the largest syntactic annotation efforts, cover over one hundred languages,
the treebank sizes are still limited for many low-resource languages, leading to sub-optimal per-
formance. Therefore, it remains an interesting and important question of how to obtain more
effective structured predictors in resource-limited scenarios.

1.2 Research Objectives
In this thesis, we perform a comprehensive investigation on NLP structured prediction problems
in resource-limited scenarios, which bring great challenges due to the unavailability of large
amounts of annotated data for model training. To mitigate this problem, we need to consider
both the aspects of model and data, since they are the main driving forces of data-driven machine
learning. Specifically, we investigate the following three directions.

Structured modeling. Traditionally, how to model the structured output space is one of the
central topics for structured prediction in NLP. Since we need to predict complex structures like
sequences and graphs, the size of the output space is usually exponential to the input length.
For example, in the simplest sequence labeling case where we want to label a sentence of L to-
kens with T tags, there can be LT possible outputs, making it impossible to explicitly enumerate
each of the possibilities. Fortunately, the output space is highly structured, and with proper inde-
pendence assumptions, we could usually factorize the outputs and find polynomial solutions. For
example, the factorization of a sequence of labels into a linear chain with bi-gram interactions en-
ables square-time decoding (Viterbi) and learning (forward-backward) algorithms (Viterbi, 1967;
Baum et al., 1970); and the factorization of a dependency parse tree into individual dependency
edges enables cubic-time processing methods (Eisner, 1996; McDonald et al., 2005a). Most
traditional NLP work has been devoted to developing better structured models (Lafferty et al.,
2001; McDonald and Pereira, 2006; Koo and Collins, 2010; Punyakanok et al., 2008). Neverthe-
less, as deep learning methods come into the field of NLP and bring performance improvements
with better neural representations, the potential costs and benefits of structured modeling with
these neural models have not yet been comprehensively explored. Furthermore, structured infor-
mation, especially structural constraints such as tree constraints in parsing, can provide valuable
inductive biases to the models, especially in low-resource scenarios where there is a lack of abun-
dant data to implicitly learn such constraints. It will be worthwhile to explore the incorporation
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of such information into the model.

Transfer Learning. Although abundant direct annotations may be lacking for the target task,
there can be helpful signals from other corpus and annotations. This is the main motivation of
transfer learning (Pan and Yang, 2009; Ruder et al., 2019), which allows us to utilize the knowl-
edge from related data to boost the performance on the target task. In NLP, the extra signals
may come from various types of resources, such as those in the same task but in different lan-
guages (cross-lingual learning) (Yarowsky and Ngai, 2001; Padó and Lapata, 2009) and those in
different but related tasks (multi-task learning) (Caruana, 1997; Ruder, 2017). The recent influ-
ential pre-training/fine-tuning framework (Devlin et al., 2019) can also be viewed as a form of
sequential transfer learning, where the general language knowledge from large-scale unlabeled
data is learned by pre-training and transferred to the target task. For structured prediction, there
could be lots of chances for transfer learning, considering the shared underlying structures of
human languages. For example, for syntactic parsing, there can be shared syntactic structures
across different languages. This motivates the project of Universal Dependencies (UD) (Nivre
et al., 2016b, 2020), which provides consistent cross-lingual syntactic annotations and has hith-
erto covered over 100 languages, enabling great chances for transfer learning from high-resource
languages to low-resource ones. Moreover, considering the close relationship between the tasks
of syntactic parsing and shallow semantic parsing, syntactic information could provide valuable
auxiliary signals to help to learn semantic relations (Marcheggiani and Titov, 2017; Swayamdipta
et al., 2018; Strubell et al., 2018). In this way, transfer learning leverages and learns from auxil-
iary signals and provides promising ways to combat the dilemma of lacking direct annotations.
Notice that in transfer learning, there are discrepancies between source and target data. There-
fore, designing models that are agnostic to these differences can facilitate more effective transfer.

Active Learning. In resource-limited scenarios, although annotating large amounts of labeled
data is infeasible, there may still be budgets to obtain a small number of annotations. In this
case, the choice of the data instances to label could be crucial for the effectiveness of the model
training. This is the main idea behind active learning (Settles, 2009), which incorporates the
model in the loop of data annotation. Considering the most common pool-based active learning
setting (Lewis and Gale, 1994), a large collection of unlabeled data can be gathered and we
iteratively select to-be-annotated data instances from the unlabeled pool with the knowledge from
the current model. Each time we obtain new annotations, we further utilize them to learn better
models. In this way, the procedure could lead to a model achieving satisfactory performance
with fewer labeled data. There are further two aspects that may be interesting to explore. Firstly,
for structured prediction tasks, it is usually laborious to annotate the full structures while the
real desirable annotations lie in certain ambiguous sub-parts. For example, a sentence may be
ambiguous only in the attachment of some difficult sub-structures like prepositional phrases,
and in this case, the most effective way is to only annotate the related sub-structures. Allowing
annotating and learning with partial structures could potentially make active learning more data-
efficient for structured prediction tasks. Moreover, since we already have an unlabeled corpus,
active learning could be combined with other semi-supervised learning methods (Zhu, 2005),
which may lead to better utilization of the unlabeled data. Especially, self-training (Yarowsky,
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1995) is a promising way to better utilize unlabeled target datasets to improve model performance
(McClosky et al., 2006; Xie et al., 2020; He et al., 2020; Du et al., 2021a). It would be interesting
to explore whether there could be further benefits with the combination of active learning and
self-training.

1.3 Outline
According to these three aspects, we explore various methods to enable better structured predic-
tors in resource-limited scenarios. The outline of the thesis is summarized as follows:

Background. In Chapter 2, we briefly review some of the basic backgrounds for structured
prediction in NLP, including problem setups, typical tasks and models, as well as data resources.
This will provide background information for the remaining chapters.

Part I: Structured Modeling. This part mainly concerns structured output modeling with neu-
ral networks for structured prediction tasks. It consists of the following chapters:

• Chapter 3 describes an empirical investigation of the effectiveness of structured output
modeling together with the utilization of deep neural models. We take two typical struc-
tured prediction tasks, dependency parsing and semantic role labeling, as our study exam-
ples. With extensive experiments on various datasets, we find that though the improvement
brought by structured output modeling is modest when utilizing strong neural models, there
are still benefits on sentence-level complete-match metrics and with less powerful but more
efficient models.

• Chapter 4 further provides an analysis of the interactions of the effectiveness of decoding
with structural constraints and the amount of available training data for structured pre-
diction tasks in NLP. Our exploration adopts a simple protocol that enforces constraints
upon constraint-agnostic local models at testing time. With evaluations on three typical
structured prediction tasks (named entity recognition, dependency parsing, and event ar-
gument extraction), we find that models trained with fewer data predict outputs with more
structural violations in greedy decoding mode.

Part II: Transfer Learning. This part explores how the external resources from related datasets
can be utilized to help the target task. It includes the following chapters:

• Chapter 5 investigates cross-lingual transfer, positing that an order-agnostic model will per-
form better when transferring to distant foreign languages. With rigorous experiments on
dependency parsing over 30 languages, we find that order-sensitive sequential RNN-based
models transfer well to languages that are close to the source, while order-agnostic self-
attentive models have better overall cross-lingual transferability and perform especially
well on distant languages.

• Chapter 6 further extends the cross-lingual transfer method to the SRL task and explores
the helpfulness of syntactic supervision for cross-lingual SRL within a simple multi-task
learning scheme. With comprehensive evaluations across ten languages (in addition to
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English) and three SRL benchmark datasets, including both dependency- and span-based
SRL, we show the effectiveness of syntactic supervision in low-resource scenarios.

• Chapter 7 further explores transferring knowledge from SRL resources to help the task
of event argument extraction. With a template-based slot querying scheme, we show that
SRL models can achieve reasonable zero-shot performance for event argument extraction,
and the method could be promisingly extended to more settings such as semi-supervised
learning and cross-domain cases.

Part III: Active Learning. In this part, we perform a systematic investigation of active learn-
ing for structured prediction in NLP:

• Chapter 8 provides a literature review of active learning (AL) for its applications in natural
language processing (NLP). In addition to a fine-grained categorization of query strategies,
we also investigate several other important aspects of applying AL to NLP problems. These
include AL for structured prediction tasks, annotation cost, model learning (especially with
deep neural models), and starting and stopping AL.

• Chapter 9 provides a pragmatic method that reduces the annotation cost for structured la-
bel spaces using active learning. Our approach leverages partial annotation, which fur-
ther reduces labeling costs for structured outputs by selecting only the most informa-
tive sub-structures for annotation. We also utilize self-training to incorporate the current
model’s automatic predictions as pseudo-labels for unannotated sub-structures. In eval-
uations spanning four typical structured prediction tasks, we show that our combination
of partial annotation and self-training using an adaptive selection ratio reduces annota-
tion cost over strong full annotation baselines under a fair comparison scheme that takes
reading time into consideration.

Conclusions and Future Directions. In Chapter 10, we conclude this thesis by summarizing
our explorations as well as discussing future directions.
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Chapter 2

Background

2.1 Basics
As introduced in the previous chapter, there are abundant structured problems in natural language
processing, ranging from basic linguistic annotation tasks like tagging and syntactical parsing to
various downstream tasks like those in information extraction as well as text generation. In this
thesis, we focus on certain well-defined structured tasks, mostly consisting of classical linguis-
tic tasks and information extraction ones. Formally speaking, structured prediction involves the
prediction of a structured output object y ∈ Y given an input object x ∈ X . Here, the in-
puts are usually sequences of words or tokens, for example, a sentence consisting of L words:
x = {w1, w2, . . . , wL}. While being task-specific, an output object consists of multiple inter-
dependent variables that form certain structures for an input object. For example, in sequence
labeling, the output consists of a sequence of tags: y = {t1, t2, . . . , tL}, where each tag corre-
sponds to each input word of the same index. To solve the task, we aim to obtain a structured
predictor that could map an input object to an output object. Generally speaking, we need a
model m that could assign a scalar value score(y) to each output structure12 and the prediction
aims to find the highest scored output: ŷ = argmaxy score(y).

How to model the scoring function from the inputs to the structured outputs is one of the
central problems in structured prediction tasks. In the remainder of the section, we will introduce
typical structured modeling formalisms.

Parameterized Modeling and Supervised Learning
In typical language structured prediction as well as general NLP and machine learning tasks,
the model specifies a collection of functions. It transforms the inputs into the outputs, and this
procedure is realized by the application of these functions. The differences in these functions
specify the types of models. For example, traditional linear models consist of a manually de-
signed feature extractor and a linear transformation function, while recent neural models consist

1If the model is explicitly probabilistic, the score can be the probability of y given input x. Nevertheless, we
view the model as a scoring function for generality, which could cover both probabilistic and non-probabilistic cases.

2The scoring function depends on the input x and the model m as well, which we omit for brevity in this thesis
if the context is clear.
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of multiple layers of non-linear transformations. Despite the differences, the model is usually
parameterized, that is, its functions contain learnable and usually input-independent parameters,
which we refer to as θm. For example, for a linear function f that transforms an input vector
vin to an output vector vout by multiplying a weight matrix W and adding a bias vector vb:
f(vin) = vout = WTvin + vb, its parameters are θf = {W,vb} and their values are changeable
and can be adjusted by a learning procedure.

The basic form of learning is data-driven supervised learning, where we train the models with
a training corpus D, which contains a collection of input-output pairs:

D = {(x1,y1), (x2,y2), . . . , (xN ,yN)}, where (xi,yi) ∈ (X × Y)

This is inspired by the learning process of humans: people usually make decisions based on
knowledge learned from previous experience. Similarly, in machine learning, the model could
utilize the gold input-output supervision in the training data to adjust (learn) the values of its
parameters. In this thesis, although we are interested in scenarios where such training data re-
sources are limited, we still mainly follow the data-driven supervised learning paradigm.

Two Aspects: Factorization and Normalization
Structured prediction problems are different than plain classification or regression problems in
that the outputs are complex structured objects. Specifically, they have the following two unique
properties:

• Intractable to enumerate. Since the output consists of multiple variables, the possible
output space can be exponentially large and it is usually intractable to explicitly enumerate
all possible items. To handle the prediction in such a large output space, we need to shrink
the space that is modeled at one time.

• Structurally constrained. The variables in the output structure are usually explicitly or
implicitly connected to the inputs and are interdependent. In many problems, there are also
explicit structural constraints over them. For example, in parsing, the output should form
a tree, where there are no cycles with the predicted edges.

According to these characteristics, we examine two aspects for the output modeling of struc-
tured prediction problems: factorization and normalization.

1. Factorization denotes how the complex output structures are factorized into manageable
smaller parts. This directly aims to tackle the problem brought by the difficulty of enumeration.
Since the full output space is too large to explicitly enumerate, we have to split the full problem
into smaller pieces to consider at one time. This is the main idea of factorization or decomposi-
tion. Specifically, we usually decompose the full output structure y into a collection of smaller
parts (sub-structures) p and the score of y is the sum of the scores of the sub-structures:

score(y) =
∑
p∈y

score(p)

Factorization is usually the ever first thing that needs to be specified when modeling a structured
object and its realization is highly task-dependent. In NLP, the factorization usually follows the
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structure of the input sequences. For example, for the modeling of a sequence of tags, each of
which corresponds to one input token, a natural choice of factorization is to decompose the full
structure by assigning a score to each of the tags:

score(y) = score({t1, t2, . . . , tL}) =
∑

i∈[1,L]

score(ti|{tdep})

A central decision to be made for factorization is what kind of independence assumption we
would like to assume, that is, for the scoring of each sub-structure, how much it depends on the
other output sub-structures. Again taking sequence labeling as an example, if we do not make
any independence assumption and let the scoring of one tag depend on all other tags, we still
face an exponential problem if we want to find the exact global optimal structure. On the other
hand, if assuming that given the input, each of the output tags is independent of each other, each
scoring function will only need to consider the output space of a single tag, whose size is T . This
makes the search problem much easier, but the model will be less powerful since this assumption
is too strict. There can be options between these two extremes, for example, a classical way to
do factorization for sequence labeling is adopting an n-gram Markov assumption: the decision
of one tag only depends on previous n− 1 tags. In this way, the model becomes more powerful
since nearby tags, which are usually the most influential ones, are considered, while there can
still be efficient algorithms to tackle the search problem.

2. Normalization denotes how we want to compare different choices of the sub-structures that
we decompose according to certain factorization. This is closely related to the structural con-
straints of the problem. In the descriptions above, we use a general scoring function3 to denote
the model without assuming a probabilistic treatment. To better illustrate the idea of normaliza-
tion, we adopt probabilistic models and things can usually be generalized to non-probabilistic
ones. Typical choices of normalization for structured prediction include locally and globally
normalized modeling. The former performs comparisons to the local variants of sub-structures
while the latter compares overall global structures. Taking the sequence labeling with bi-gram
Markov assumption as an example, with local normalization over each tag, we have:

pl(y) =
∏

i∈[1,L]

p(ti|ti−1) where p(ti|ti−1) =
exp score(ti|ti−1)∑

t′i∈[1,T ] exp score(t′i|ti−1)

Here, we use score(t′i|ti−1) to denote the model-assigned score of each tag depending on its
previous tag.4 The probability of the full structure is factorized into the probability of each tag,
which is locally normalized to the tagging space. In this way, we only need to compare different
choices (and specify loss function) for this single tag at one time and thus this model is regarded
to be locally normalized. On the other hand, global normalization aims to compare full structures
over the full output space:

pg(y) =
exp score(y)∑

y′∈LT exp score(y′)
=

exp
∑

i∈[1,L] score(ti|ti−1)∑
y′∈LT exp

∑
j∈[1,L] score(t′j|t′j−1)

3With probabilistic models, the probability of the full structure is the multiplication of its sub-parts. We could
simply take the logarithm of the probability as the score which turns multiplication into summation.

4We simply assume a dummy tag t0 before the first real tag.
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Notice that in this formula, we no longer have individual local probabilities for each tag, but
there is one overall probability for the full structure and thus the comparisons are performed in
the global output space. Although in the denominator, we still need to calculate a summation
of exponentially sized items, thanks to the independence assumption, there are usually efficient
polynomial-time algorithms. One clear advantage of global models is that they could take arbi-
trary structural constraints into consideration since the normalization is performed directly in
the global space. For example, in parsing, we have a constraint that the final output structure
should be a well-formed tree, which is difficult to specify if adopting local models. However,
with global models, this can be naturally reflected by only including valid trees in the denomina-
tor. Notice that the difference between local and global models also depends on the factorization,
for example, in the single-tag factorization case without any output tag interactions, local and
global models are actually the same (by re-formulating the denominator with distributive law).

With these two aspects specified, we define a model for a structured prediction problem,
which could assign scores (or probabilities) to an output structure given an input object.

Three Problems: Representation, Decoding, and Learning

Once we specify a model, to apply it to the structured prediction task, we still face several
problems. According to McDonald et al. (2005a), there are mainly three basic questions:

• Representation: What representations to use to transform the inputs to the output scores?
• Decoding: How to find the highest scored output structure for an input?
• Learning: How to learn the model parameters from the training data?

In this sub-section, we provide some brief discussions on these central questions.

1. Representation. Previously we’ve been mainly discussing aspects with regard to the struc-
tured output modeling, another important facet of the model is the representations of the inputs
and the transformation to the output scores. As in many other NLP tasks, the representation
method evolves from manually specified sparse features to automatic neural representations. For
an NLP task, the inputs are usually sequences of discrete symbols, which could be represented
as one-hot vectors. For an input sequence of L words x = {w1, w2, . . . , wL} where each word
is one symbol from a vocabulary of size V , we could give each wi an integer that is the index
of the specific word in the input vocabulary. Then for each word, we could represent it with a
sparse vector vs = [0, . . . , 1, . . . , 0] where there is only one item that is 1 and the item’s index
is wi. Traditional feature-based methods further specify other features and higher-order feature
combinations with manually designed templates. For example, in addition to the current word’s
identity, we could also have various n-gram features which take surrounding words into con-
sideration. One crucial feature type in classical models involves higher-order combinations of
atomic features, which are the main source of the model’s discriminative power. We could view
each feature as an entry in the feature vocabulary and specify a sparse feature vector to repre-
sent the object to be scored. In NLP applications where features are usually binary, the feature
vector is a sparse vector, which most contains 0s except for a few 1s where the specific features
are activated. Following this feature extractor, traditional methods usually adopt a simple linear
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model, which contains a parameter weight w, to score the outputs. Each parameter in the weight
is associated with one feature in the feature vocabulary and scoring is realized by multiplying the
feature vector and the weight:

score(y) = w · f(y)

Here, f(y) denotes the feature-extracting function that generates the feature vector according
to the object to be scored. Although this representation and transformation method is simple
and intuitive, there are two main disadvantages: 1) Each feature is individually represented and
potential connections between them are mostly ignored. For example, in natural languages,
many words can express the same meaning, and if using one-hot features for representation,
such word similarity relations are not well considered. 2) Feature combinations are quite limited
since things can explode if moving to higher orders. In this way, most of the sparse features
only consider local word windows and could not effectively model longer contexts. The neural-
based methods come around with distributed dense representations, that could mitigate these
problems. Instead of sparse feature vectors, neural methods utilize low-dimensional vectors for
representations, which could effectively capture the relations of different features, such as word
similarities. Moreover, manually specified feature combinations are replaced by deep non-linear
transformations where layers of parameterized non-linear functions (usually a combination of
linear transformation plus non-linear activation) are applied to allow automatic feature combina-
tions. In this way, neural models could more effectively capture the information from a wider
range of input contexts.

2. Decoding. If we can only use one formula to show the essence of structured prediction,
probably that will be the decoding objective, that is, finding the highest-scored output:

ŷ = argmax
y∈Y(x)

score(y)

Here, Y(x) denotes the set of potential output structures for the input. As discussed above, the
main difficulty of decoding is that the output space is usually exponentially large corresponding
to the input size and explicit enumeration is nearly impossible. Moreover, the output usually
needs to be structurally constrained, which makes decoding even harder. There can be two ways
to mitigate the hardness of enumeration. Firstly, if we put strong independence assumptions,
there are usually efficient algorithms to solve the task. With independence assumptions that
enable factorization of the output into smaller pieces, which are usually easy to solve individually,
the final solution can be obtained by merging the answers of the smaller pieces. This is actually
the idea behind dynamic programming, and as we will discuss with detailed examples later, lots
of classical NLP algorithms could solve the decoding problems in such a way. On the other
hand, if we want to include more output dependencies and assume few or even no independence
assumptions, decoding can still be feasible but we usually need to concede to approximate but
reasonably good solutions rather than the exact best solution. Many algorithms are designed in
this way, in which greedy- and beam- search are probably the most widely used ones. These
searching algorithms decide the output variables in an incremental way, usually according to
the adopted factorization. In the decoding process, they maintain an agenda storing the partial
hypotheses so far and only keep the highest scored one or ones. There can be search errors
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where the actual highest-scored candidates get pruned because their prefixes get relatively low
scores. Nevertheless, in NLP applications, they usually empirically work well and are the typical
solutions for approximate searches.

3. Learning. Learning is the procedure of deciding the values of the model parameters with
the training data. Usually, a loss function L is specified for an input-output pair, and learning is
another optimization problem to get the optimal parameters leading to the minimal loss:

θ̂ = argmin
θ

1

N

∑
i

L(xi,yi; θ)

One of the widely adopted loss functions is negative log-likelihood (NLL) of the gold output
LNLL = − log p(y|x), leading to the well-known maximum likelihood estimation method. An-
other widely utilized loss function for structured prediction is the max-margin loss, which re-
quires the score of the gold output to be higher than others by certain margins. In structured
prediction, the loss function is closely related to the normalization aspect discussed above. For
local models, the loss function is usually easy to calculate with the price of less global modeling
power. Global models directly normalize over the output space and can adopt various structural
constraints, but the calculation of the loss is usually more difficult. The optimization problem in
the learning is usually hard to solve directly and iterative gradient-descent methods are utilized.
In the simplest form, at one iteration t, the current parameters θt are updated to θt+1 along the
opposite direction of their gradients with regards to the loss function L:

θt+1 = θt − α∇θL

where α is the learning rate specified as a hyper-parameter. For the neural-network-based mod-
els, stochastic gradient descent (SGD) and its variants are the default optimization algorithms.
Especially, for structured prediction, it requires not only clever decoding algorithms to find the
highest-scored structure in testing time but also similar inference algorithms for the purpose of
gradient calculation in training time. For example, if adopting the margin-based loss function,
performing loss-augmented decoding is a requirement to calculate the (sub-)gradient. And for
global normalized probabilistic models, the calculation of marginal probabilities of the sub-parts
is usually required, which can be solved with similar inference algorithms as in the decoding
process. In this way, structured prediction also distinguishes itself by requiring careful treatment
in the learning process.

In this section, we give a brief overview of the basics of structured prediction, covering the
basic parameterization and data-driven formalism, two aspects of structured output modeling
and three central problems. Most of these are well-known and widely-studied topics and more
details can be found in related textbooks (Manning and Schutze, 1999; Jurafsky, 2000; BakIr
et al., 2007; Smith, 2011; Goodfellow et al., 2016).

2.2 Tasks
In this section, we will describe several typical structured prediction tasks in NLP that are the
main topics in this thesis and the corresponding widely-utilized models for them.
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Sequence Labeling

Considering the structural nature of languages, sequence labeling, which gives a sequence of tags
to an input sequence of tokens, is a fundamental task form. Here, we take two typical tasks, POS
tagging, and NER, as examples:

Tokens: The student wrote a paper at Carnegie Mellon University

POS: DET NOUN VERB DET NOUN ADP PROPN PROPN PROPN

NER: O B-TITLE O O O O B-ORG I-ORG I-ORG

The POS task is straightforward: assigning a POS tag to each of the input tokens, such as
NOUN or VERB. While the NER task is more complex since it involves not only labeling but
also segmenting: entities can be multi-word expressions that span several tokens. Neverthe-
less, for the usual case where there are no overlapping entity spans, the outputs for NER can
still be represented as a label sequence with specific schemes. Here, we show the widely uti-
lized “BIO” scheme (Ramshaw and Marcus, 1995), specifying tags for the Beginning, the Inside
and the Outside of an entity span. For example, for the organization (ORG) “Carnegie Mel-
lon University”, “Carnegie” is the beginning token of the entity, thus receiving “B-ORG” while
the remaining ones get “I-ORG”, denoting that they are inside this entity. There could also be
other representation schemes such as BILOU, which specifies extra tags for the Last token and
Unit-length chunks and the choice of the schemes could have impacts on system performances
(Ratinov and Roth, 2009).

For the structured modeling of sequence labeling, a typical choice of factorization is to con-
sider the bi-gram interactions of nearby tokens. Classical models such as Hidden Markov Models
(HMM) (Rabiner, 1989), maximum entropy Markov model (MEMM) (McCallum et al., 2000)
and conditional random field (CRF) (Lafferty et al., 2001) usually adopt such decomposition.
HMM is a generative model for the joint probability of input and output p(x,y) and it performs
local normalization. On the other hand, MEMM and CRF are discriminative models directly
targeting at modeling p(y|x). The main difference is that MEMM normalizes locally while
CRF is globally normalized. Thanks to the Markov assumption, there are efficient square-time
algorithms for the inference algorithms for these models, including Viterbi algorithm (Viterbi,
1967) for decoding and forward-backward algorithm (Baum et al., 1970) for marginal infer-
ence in learning. While traditionally these models are based on sparse representations and linear
models, recent developments of neural models have brought clear improvements. LSTM-CRF
(Huang et al., 2015; Lample et al., 2016; Ma and Hovy, 2016) is a typical example that utilizes
long-short term memory (LSTM) (Hochreiter and Schmidhuber, 1997) network to encode the
context of the full input sequence. More recently, models based on pre-trained contextualized
models, such as BERT (Devlin et al., 2019) have been shown to bring further benefits. In addi-
tion, BERT-based models could surprisingly obtain good results on NER even when factorizing
the sequence into individual tags without considering any tag-to-tag dependencies. Nevertheless,
it has been shown that structural modeling can still bring benefits (Wei et al., 2021).
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Dependency Parsing
Dependency parsing is the task of processing input sentences into dependency tree structures
(Kübler et al., 2009). The history of the underlying dependency grammar can be traced back
to the old time before the Common Era, while the modern dependency grammar was generally
thought to start from the work of Tesnière (1959). Here is an example dependency tree, which is
auto-parsed by UDPipe (Straka et al., 2016):

Figure 2.1: An example dependency tree.

Here, each node corresponds to a word while an edge between two words forms a dependency
relation. These syntactic relations are represented by directed and labeled edges going from
parents (heads) to dependents (modifiers). Conventionally, an extra artificial “<root>” is added
as the root node of the tree. There are certain constraints for a well-formed dependency tree:

• No multi-edges: there is at most one edge between two nodes.
• Single-headed: there is one and only one incoming edge for each node, except the artificial

root node whose in-degree is zero.
• Acyclic: there should not be any cycles in the graph.
• (Optional) Projective: simply speaking, a tree is said to be projective if there are no cross-

ing arcs if drawn into a plane. Notice that this property is optional since there can be
non-projective arcs in languages like Czech and certain constructions in even highly pro-
jective languages like English.

All these properties or constraints will influence the algorithms for decoding and learning, which
we will especially investigate more in later chapters.

Dependency parsing is the task of obtaining a well-formed dependency tree for an input
sentence. Traditionally speaking, there are mainly two categories of parsing methods: transition-
based (Yamada and Matsumoto, 2003; Nivre, 2003) and graph-based (Eisner, 1996; McDonald
et al., 2005a). We can view these two groups of models from the aspect of factorization. The
transition-based models decompose the prediction of the parse tree into a series of incremental
transition actions while the graph-based ones decompose the full structures into individual sub-
trees to score. We will provide some brief descriptions for them and please refer to related texts
for more details (Kübler et al., 2009; McDonald and Nivre, 2014).
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Transition-based models derive the output structures by incrementally transiting from one
state to another, similar to the shift-reduce parsing paradigm in analyzing programming lan-
guages (Aho and Ullman, 1972). In the parsing procedure, we maintain some configurations as
states, including a stack which stores the already-built structures and a buffer which stores the
to-be-processed tokens. In each parsing step, the model decides an action that transits the cur-
rent state into the next. These actions usually include Arc actions which build dependency arcs
with the top nodes in the stack or buffer and Shift actions which move the top token from the
buffer into the stack. There are various different transition schemes, like ArcStandard (Yamada
and Matsumoto, 2003), ArcEager (Nivre, 2003, 2004), ArcHybrid (Kuhlmann et al., 2011) and
so on. These schemes differ in the definitions and the effects of the allowed transition actions,
which we will not discuss in more detail. Interested readers could refer to Bohnet et al. (2016) for
a generalized description of transition-based systems. Notice that transition-based models are not
constrained to left-to-right shift-reduced styled systems, and there can be non-directional models
such as the easy-first parser (Goldberg and Elhadad, 2010), which maintains a pending list for
current non-attached tokens and allows building arcs to any two nearby tokens in the pending
list. Recently, there is also work casting dependency parsing as sequence labeling (Strzyz et al.,
2019; Gómez-Rodrı́guez et al., 2020) with special encoding schemes. In some way, these sys-
tems can also be regarded as transition-based considering the similarities between the labels and
the transition actions.

Graph-based models directly decompose the full dependency tree into individually scored
sub-structures (sub-trees) and obtain the final decision with specific global parsing algorithms.
In its simplest form, that is, the first-order or edge-factored model, the score of a dependency tree
is the summation of all its edges’ scores, which are estimated individually:

score(T ) =
∑

(h,m)∈T

score(h,m)

Here, (h,m) denotes a dependency edge from a head word to a modifier word in a tree T . Ac-
cording to the single-headed constraint, each token (except the artificial root) has one parent
node and thus one incoming dependency edge with a score. First-order graph-based parsers
are well-studied and there are corresponding algorithms for the decoding and learning proce-
dures: Eisner’s dynamic programming algorithm (Eisner, 1996) and Chu-Liu-Edmonds’ maxi-
mum spanning tree algorithm (Chu and Liu, 1965; Edmonds, 1967) for decoding and a variation
of Inside-Outside algorithm (Paskin, 2001) and Matrix-Tree Theorem (Koo et al., 2007; Smith
and Smith, 2007; McDonald and Satta, 2007) for marginal inference in learning. We will provide
more detailed descriptions and analyses of algorithms and constraints for first-order graph-based
parsing in Chapter 3. Naturally, the model could be extended with the factorization of larger sub-
structures involving multiple edges, like second-order including sibling nodes (McDonald and
Pereira, 2006) and grand-parent nodes (Carreras, 2007) as well as third-order (Koo and Collins,
2010) and fourth-order (Ma and Zhao, 2012) models. Nevertheless, higher-order parsers pay the
price of higher computational complexities, and thus probably the most widely utilized graph-
based parsers are still the simplest first-order ones (Qi et al., 2018, 2020).

For the model architectures and representations, dependency parsing also evolves from tradi-
tional sparse-feature-based models to recent neural counterparts. Chen and Manning (2014) first
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applied a feed-forward neural network to score the actions for transition-based parsing and Pei
et al. (2015) similarly applied neural networks for the sub-part scoring in graph-based models.
Dyer et al. (2015) utilized better LSTM-based neural models to naturally model the sequential
decisions for transition-based parsing while previous work also showed the benefits of structured
modeling (Weiss et al., 2015; Zhou et al., 2015a; Andor et al., 2016). Later on, (Kiperwasser
and Goldberg, 2016) indicated the effectiveness of encoding the full input sequence with bidi-
rectional LSTM model while (Dozat and Manning, 2017) provided further improvements with
a deep biaffine-attention-based scoring component. Notice that the architecture from the Dozat
and Manning (2017)’s parser is nowadays one of the most widely utilized neural architectures for
parsing. More recently, the development of pre-trained contextualized language models brought
large improvements to dependency parsing, which also interestingly seems to make the behavior
of transition- and graph-based parsers converge (Kulmizev et al., 2019).

Shallow Semantic Parsing
While syntactic parsing only cares about syntactic relations such as subjects and objects, the goal
of natural language understanding is to realize the semantic meanings. Properly understanding
semantic roles, which is the task of shallow semantic parsing or semantic role labeling, is one
crucial step to achieve this goal. Considering the following ways of describing roughly the same
meaning:

• The student wrote a paper. (plain)
• A paper is written by the student. (passive)
• This is a paper that the student wrote. (relative clause)
• This is a paper written by the student. (relative clause + passive)

There are various syntactic ways to realize the fact that there is a “writing” action where the
writer is “the student” and the thing that is written is “a paper”. If looking at the syntactic
tree, the structures of these sentences are quite different, for example, the writer “student” can
be linked to the center verb with different syntactic relations. However, we know that in the
underlying semantics, the writer is always the same, that is, “the student” always acts as the role
of the writer. This is the idea behind semantic roles, which express the roles that are taken by the
arguments of action-like or eventive predicates.

A predicate and its arguments form a structure that is usually called a semantic frame, and
the task of shallow semantic parsing aims to extract such semantic frames from input texts.
Although the task itself is natural, it turns out to be quite difficult to specify a standard set
of semantic frames and especially their role labels. For example, in the writing scenario in the
above examples, we could have role labels at different granularities, either more general ones like
Agent and Patient or more specific ones like Author or Text. This leads to different semantic role
schemes, where PropBank and FrameNet are two representatives. PropBank (Palmer et al., 2005)
takes generalized and theory-neutral semantic roles of Arg0, Arg1, etc. (Arg0 and Arg1 usually
respectively correspond to the proto-agent and proto-patient concepts from Dowty (1991)) and
the actual meaning of them is frame-specific. On the other hand, FrameNet (Baker et al., 1998a)
takes a more fine-grained approach by collecting and grouping frames and frame elements and
giving them natural-language names. For example, for the same input sentence, we could parse
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it into similarly structured semantic frames according to these two schemes:
• PropBank: [The student]A0 wrotewrite.01 [a paper]A1 [at Carnegie Mellon University]AM-LOC

• FrameNet: [The student]Author wroteText creation [a paper]Text [at Carnegie Mellon University]Place

Here, in the PropBank scheme, “write.01” indicates that the predicate’s lemma is “write”, it
takes its first sense “01”, and its arguments have role labels of A0 and A1 which are speci-
fied to the “write.01” frame as well as a general location modifier “AM-LOC”. In FrameNet, it
assigns a “Text creation” frame to the predicate and more fine-grained roles to its arguments.
Based on what text provenances to extract, we could also categorize SRL into span-based and
dependency-based SRL. The former is closely related to constituency syntactic parsing and re-
quires the extraction of full-text spans (constituencies) of the arguments. While in natural lan-
guage, the semantic meaning of an argument span usually resides at certain head words. This
inspires dependency-based SRL, popularized by 2008 and 2009 CoNLL shared tasks (Surdeanu
et al., 2008; Hajič et al., 2009), which only requires the extraction of the head word for each
argument.

No matter what scheme to take, to perform automatic semantic role labeling (Gildea and
Jurafsky, 2002; Palmer et al., 2010), there are generally two steps: 1) predicate identification
and disambiguation, and 2) argument identification and labeling. The first step can be cast as a
classification or sequence labeling task, while the second role labeling step is of more interest
where relational predicate-argument links are required to be extracted. Traditional SRL systems
usually take syntactic trees as inputs (Xue and Palmer, 2004; Màrquez et al., 2008) and they treat
constituents from the tree as argument candidates. And again, recent developments of neural
networks allow end-to-end models that simplify the processing pipeline and get performance
improvements (Zhou and Xu, 2015; He et al., 2017; Tan et al., 2018; Strubell et al., 2018; Shi
and Lin, 2019). We will provide more discussions on the output modeling of SRL in Chapter 3
as well as the connection between syntax and SRL in Chapter 6.

2.3 Data Resources

In this section, we introduce widely utilized data resources for the structured prediction tasks
described above, which also include the main datasets we use in the later chapters.

Penn Treebank (PTB). PTB (Marcus et al., 1993) is probably one of the most representa-
tive linguistically-annotated corpus. The English PTB project manually annotates POS tags and
constituency syntactic trees over millions of words. Especially, the Wall Street Journal (WSJ)
portion of it is nowadays the most standard benchmark for the tasks of POS tagging and syn-
tactic parsing. While the syntactic trees annotated in PTB are constituency-based, there are
tools utilizing specific head-finding rules (Collins, 2003) to convert them into dependency trees.
Older conversions include Penn2Malt5 and LTH Constituent-to-Dependency Conversion Tool6

(Johansson and Nugues, 2007), while recently Standard Dependencies (de Marneffe et al., 2006;

5https://cl.lingfil.uu.se/˜nivre/research/Penn2Malt.html
6http://nlp.cs.lth.se/software/treebank_converter
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De Marneffe and Manning, 2008) become the canonical conversion target. Following the En-
glish PTB, similar treebanks for other languages have been created, such as the Penn Chinese
Treebank (CTB; Xue et al., 2005) and the Penn Arabic Treebank (PATB; Maamouri et al., 2004),
providing valuable data resources for the studying of syntactic parsing in multiple languages.

Universal Dependencies (UD). While previous treebanks adopt language-specific annotations
in different languages, the UD project (Nivre et al., 2016b, 2020) aims to provide consistent
annotations of grammar across different human languages. Its latest version (v2.12) adopts 17
universal POS (Petrov et al., 2012) tags and 37 universal syntactic relations (de Marneffe et al.,
2014) labels as annotating target sets, covering over 200 treebanks in more than 100 languages.
This provides valuable data resources and benchmarks for multilingual and cross-lingual analy-
ses of the structures of human languages.

Proposition Bank (PropBank). PropBank builds data resources annotated with semantic roles
(Palmer et al., 2005). Most of the PropBank resources create an SRL layer upon the syntac-
tic layer and adopt verb-sense-specific generic argument roles (Arg0, Arg1, Arg2, and so on).
Originally focusing on English, PropBank-styled annotations have been also extended to other
languages, such as Chinese (Xue, 2008), Arabic (Palmer et al., 2008), Finnish (Haverinen et al.,
2015) and so on. While the original version of PropBank focuses on verb predicates, a related
project, NomBank (Meyers et al., 2004), extends the annotations to nominal predicates. Recently,
PropBank has been updated to cover more predicate types (Bonial et al., 2014) and provide uni-
fied role-sets and data resources (O’Gorman et al., 2018; Pradhan et al., 2022), which are aligned
with Abstract Meaning Representation (AMR; Banarescu et al., 2013), another widely-adopted
meaning representation scheme.

FrameNet. The Berkeley FrameNet project produces thousands of English lexicon items as
well as annotated corpus (Baker et al., 1998a). Different from the PropBank approach, FrameNet
groups similar words together into frames and assign fine-grained frame-specific roles (called
frame elements) to each frame. For example, as discussed in the previous section, we would have
a “Text creation” frame with roles of “Author” and “Text” rather than a “write.01” frame with
“Arg0” and “Arg1”. In some way, FrameNet and PropBank aim to capture the same underlying
language phenomena but with different labels. Naturally, there is work trying to map among
different SRL frame sets, such as SemLink (Palmer, 2009; Stowe et al., 2021).

OntoNotes. The OntoNotes project (Hovy et al., 2006; Weischedel et al., 2013) creates a large-
scale corpus with multiple levels of linguistic structures for text, covering syntax, SRL, word
senses, named entities, and coreference. The annotations include texts from multiple genres
(such as newswire, conversation, weblogs, etc.) and multiple languages (English, Chinese, and
Arabic), creating a resource that could be broadly applicable.

CoNLL Shared Tasks. Since 1999, the Conference on Computational Natural Language Learn-
ing (CoNLL) has included a shared task each year, in which for a specific language task, training
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and testing data are collected and provided by the organizers to allow the evaluation and com-
parisons of current NLP systems in a systematic way. Here we list the ones that are related to the
main topics for structured prediction in this thesis:

• CoNLL-2000: Chunking. CoNLL-2000 (Tjong Kim Sang and Buchholz, 2000) includes
the task of text chunking, which can be formalized as a sequence labeling problem. The
datasets are prepared with the WSJ portion of PTB.

• CoNLL-2002 & 2003: Named Entity Recognition. CoNLL 2002 (Tjong Kim Sang, 2002)
and 2003 (Tjong Kim Sang and De Meulder, 2003) investigate the task of NER in four
languages. Especially, the English dataset in CoNLL-2003 taken from the Reuters Corpus
is probably the most standard and widely-used NER benchmark.

• CoNLL-2004 & 2005: Semantic Role Labeling. CoNLL-2004 (Carreras and Màrquez,
2004) and 2005 (Carreras and Màrquez, 2005) focus on SRL, utilizing the English Prop-
Bank. The CoNLL-2005 dataset is one of the standard SRL benchmarks, including a fresh
test set from the Brown corpus to test cross-domain performance.

• CoNLL-2006 ∼ 2009: Syntactic and Semantic Dependency Parsing. In four years, the
shared tasks are devoted to dependency parsing, greatly encouraging the development of
this task. The first two (Buchholz and Marsi, 2006; Nivre et al., 2007) only concern syn-
tactic dependency parsing, while the latter two (Surdeanu et al., 2008; Hajič et al., 2009)
include joint syntactic and semantic dependencies.

• CoNLL-2011 & 2012: Coreference. CoNLL 2011 (Pradhan et al., 2011) and 2012 (Prad-
han et al., 2012) investigate the task of coreference, taking data from the OntoNotes. No-
tice that the standard SRL benchmark with OntoNotes also takes the dataset splits of the
CoNLL-2012 task.

• CoNLL-2017 & 2018: Parsing into Universal Dependencies. CoNLL 2017 (Zeman et al.,
2017) and 2018 (Zeman et al., 2018) revisit the task of syntactic dependency parsing, but
this time focusing on Universal Dependencies with cross-lingual consistent annotations.

These tasks usually involve language structure predictions and provide standard benchmarks for
future research on these topics.

Notice that these data resources are usually costly and time-consuming to build. In NLP
applications, we usually meet problems that suffer from data distribution shifts from these exist-
ing large-scale datasets, such as those in different domains and different languages where direct
target data is limited. Therefore, it would be important to develop better NLP models and struc-
tured predictors in such resource-limited scenarios. In the remaining chapters, we will discuss
our investigations on this topic.
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Part I

Structured Modeling
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Chapter 3

An Empirical Investigation of Structured
Output Modeling for Language Structured
Prediction

As discussed in Chapter 1, while recent development of neural models has brought great im-
provements for structured prediction tasks, the costs and benefits of structured output modeling
have become less clear. To explore its roles, in this chapter, we provide an empirical investigation
of two typical structured prediction tasks:

• In Section 3.1, we study first-order graph-based dependency parsing with different ways
of normalization, which correspond to different structural constraints. Experiments on 14
treebanks show that generally global models can obtain better performance, especially on
the metric of sentence-level complete-match scores.

• In Section 3.2, we study semantic role labeling (SRL) with different factorization methods
for span extraction. We investigate five strategies, which fall into three categories: BIO-
based, span-based, and two-step approaches. With extensive experiments on PropBank
SRL datasets, we find that more structured methods outperform BIO-tagging when using
static word embeddings across all experimental settings.

3.1 Constraints in Dependency Parsing
In the past few years, dependency parsers, equipped with neural network models, have led to
impressive empirical successes in parsing accuracy (Chen and Manning, 2014; Weiss et al., 2015;
Dyer et al., 2015; Andor et al., 2016; Kiperwasser and Goldberg, 2016; Kuncoro et al., 2016;
Dozat and Manning, 2017; Ma et al., 2018). Among them, the deep-biaffine attentional parser
(BiAF) (Dozat and Manning, 2017) has stood out for its simplicity and effectiveness. BiAF
adopts a simple bi-directional LSTM neural architecture (Ma and Hovy, 2016; Kiperwasser and
Goldberg, 2016) with the first-order graph parsing algorithm (McDonald et al., 2005a,b). Simple
as it appears to be, BiAF has led to several record-breaking performances in multiple treebanks
and languages (Dozat et al., 2017).

In their pioneering work, besides the neural architecture, Dozat and Manning (2017) adopt a
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simple head-selection training object (Zhang et al., 2017a) by regarding the original structured
prediction task as a head-classification task in training. Although practically this simplification
works well, there are still problems with it. Due to local normalization in the training objective
(see §3.1.1), no global tree-structured information can be back-propagated during training. This
can lead to the discrepancy between training and testing, since during testing, the MST (Maxi-
mum Spanning Tree) algorithm (McDonald et al., 2005b) is used to ensure valid tree structures.
This problem raises concerns about the structured output layer. Several previous neural graph
parsers utilized structured techniques (Pei et al., 2015; Kiperwasser and Goldberg, 2016; Zhang
et al., 2016; Wang and Chang, 2016; Ma and Hovy, 2017), but their neural architectures might
not be competitive to the current state-of-the-art BiAF parsing model. In this section, building
upon the BiAF-based neural architecture, we empirically investigate the effectiveness of utilizing
classical structured prediction techniques of output modeling for graph-based neural dependency
parsing. Specifically, we focus on the normalization aspect of structured modeling and explore
various normalization methods corresponding to different structural constraints. We empirically
show that structured output modeling can obtain better performance, especially on sentence-
level metrics. However, the improvements are modest, probably because neural models make
the problem easier to solve locally.

3.1.1 Output Modeling

As discussed in Chapter 2, a common way to score the complex output structure is to factorize
it into sub-structures, which is referred to as factorization. A further step of normalization is
needed to compare different sub-structure choices and form the final score of an output structure.
We will explain more details about these concepts in the situation of graph-based dependency
parsing.

The output structure of dependency parsing is a collection of dependency edges forming
a single-rooted tree. Graph-based dependency parsers factorize the outputs into specifically-
shaped sub-trees (factors). Based on the assumption that the sub-trees are independent to each
other, the score of the output tree structure (T ) is the combination of the scores of individual
sub-trees in the tree. In the simplest case, the sub-trees are the individual dependency edges con-
necting each modifier and its head word ((m,h)). This is referred to as first-order factorization
(Eisner, 1996; McDonald et al., 2005a), which is adopted in (Dozat and Manning, 2017) and the
neural parsing models in this work. There are further extensions to higher-order factors, con-
sidering more complex sub-trees with multiple edges (McDonald and Pereira, 2006; Carreras,
2007; Koo and Collins, 2010; Ma and Zhao, 2012).

After obtaining the individual scores of the sub-structures, we need to compute the score of
the whole output structure. The main question is on what scale to normalize the output scores.
For graph-based parsing, there can be mainly three options: Global, Local, or Single, following
different structured output constraints and corresponding to different loss functions.

Global Global models directly normalize at the level of overall tree structures, whose scores are
obtained by directly summing the raw scores of the sub-trees without any local normalization.
This can be shown clearly if further taking a probabilistic CRF-like treatment, where a final
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normalization is performed over all possible trees:

Scoreg(T ) = log
exp

∑
(m,h)∈T Score(m,h)∑

T ′ exp
∑

(m,h)∈T ′ Score(m,h)

Here, the normalization is carried out in the exact output space of all legal trees (T ′). Max-Margin
(Hinge) loss (Taskar et al., 2004) adopts a similar idea, though there is no explicit normalization
in its formulation. The output space can be further constrained by requiring the projectivity of
the trees (Kübler et al., 2009). Several manual-feature-based (McDonald et al., 2005b; Koo and
Collins, 2010) and neural-based dependency parsers (Pei et al., 2015; Kiperwasser and Goldberg,
2016; Zhang et al., 2016; Ma and Hovy, 2017) utilize global normalization.

Local Local models, in contrast, ignore the global tree constraints and view the problem as
a head-selection classification problem (Fonseca and Aluı́sio, 2015; Zhang et al., 2017a; Dozat
and Manning, 2017). The structured constraint that local models follow is that each word can be
attached to one and only one head node. Based on this, the edge scores are locally normalized
over all possible head nodes. This can be framed as the softmax output if taking a probabilistic
treatment:

Scorel(T ) =
∑

(m,h)∈T

log
expScore(m,h)∑
h′ expScore(m,h′)

In this way, the model only sees and learns head-attaching decisions for each individual word.
Therefore, the model is unaware of the global tree structures and may assign probabilities to non-
tree cyclic structures, which are illegal outputs for dependency parsing. In spite of this defect,
the local model enjoys its merits of simplicity and efficiency in training.

Single (Binary) If further removing the single-head constraint, we can arrive at an even more
simplified binary-classification model for every single edge, referred to as the “Single” model,
which predicts the presence and absence of dependency relation for every pair of words. Eisner
(1996) first used this model in syntactic dependency parsing, and Dozat and Manning (2018)
applied it to semantic dependency parsing. Here, the score of each edge is normalized against a
fixed score of zero, forming a sigmoid output:

Scores(T ) =
∑

(m,h)∈T

log
expScore(m,h)

expScore(m,h) + 1

Here, we only show the scoring formula for brevity. In training, since this binary classification
problem can be quite imbalanced, we only sample part of the negative instances (edges). Practi-
cally, we find a ratio of 2:1 makes a good balance, that is, for each token, we use its correct head
word as the positive instance and randomly sample two other tokens in the sentence as negative
instances.

The normalization methods that we describe above actually indicate the output structured
constraints that the model is aware of. The global model is aware of all the constraints to ensure
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a legal dependency tree. The local model maintains the single-head constraint while there are
almost no structured constraints under the single model. To be noted, for all these normalization
methods, we can take various loss functions. In this section, we study two typical ones: prob-
abilistic Maximum-Likelihood loss (Prob), which requires actual normalization over the output
space, and Max-Margin Hinge loss (Hinge), which only requires loss-augmented decoding in the
same output space.

Normalization Constraints Loss Algorithm
Single NoMultiEdge Prob –
Local + SingleHeaded Prob –

Global-NProj + Acyclic
Prob Matrix-Tree Theorem

Hinge Chu-Liu-Edmonds

Global-Proj + Projective
Prob Inside-Outside

Hinge Eisner’s

Table 3.1: Summarization of the explored methods and their corresponding algorithms.

Table 3.1 summarizes the methods (normalization and loss function) that we investigate in
our experiments. For global models, we consider both Projective (Proj) and Non-Projective
(NProj) constraints. Specific algorithms are required for probabilistic loss (a variation of Inside-
Outside algorithm for projective (Paskin, 2001) and Matrix-Tree Theorem for non-projective
parsing (Koo et al., 2007; Smith and Smith, 2007; McDonald and Satta, 2007)) and hinge loss
(Eisner’s algorithm for projective (Eisner, 1996) and Chu-Liu-Edmonds’ algorithm for non-
projective parsing (Chu and Liu, 1965; Edmonds, 1967; McDonald et al., 2005b)). For Single
and Local models, we only utilize probabilistic loss, since in preliminary experiments we found
hinge loss performed worse. No special algorithms other than simple enumeration are needed
for them in training. In testing, we adopt non-projective algorithms for the non-global models
unless otherwise noted.

3.1.2 Experiments

Settings

We evaluate the parsers on 14 treebanks: English Penn Treebank (PTB), Penn Chinese Treebank
(CTB), and 12 selected treebanks from Universal Dependencies (v2.3) (Nivre et al., 2018a).
We follow standard data-preparing conventions as in Ma et al. (2018). For PTB, we follow the
dataset splitting convention: Sections 2-21 for training, Section 22 for validation, and Section 23
for testing. Dependency trees are obtained using the converter in Stanford Parser version 3.3.0.
The POS tags were predicted using the Stanford POS tagger (Toutanova et al., 2003) with 10-fold
jackknifing on the training data. For CTB, we follow the splitting of (Zhang and Clark, 2008),
and the dependencies are converted using the Penn2Malt converter. Following previous work,
gold segmentation and POS tags are used. For UD, we select 12 relatively large treebanks of UD
version 2.3 (Nivre et al., 2018a) and also use gold POS tags.

For evaluation, we report LAS (Labeled Attachment Score) and LCM (Labeled Complete
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Match). The evaluations on PTB and CTB exclude punctuations,1 while on UD we evaluate on
all tokens (including punctuations) as the setting of the LAS metric in the CoNLL shared tasks
(Zeman et al., 2017, 2018).

For the neural architecture, we also follow the settings in Dozat and Manning (2017) and
Ma et al. (2018) and utilize the deep BiAF model. For the input, we concatenate representations
of words, part-of-speech (POS) tags, and characters. Word embeddings are initialized with the
pre-trained fasttext word vectors2 for all languages. For POS tags and Character information,
we use POS embeddings and a character-level Convolutional Neural Network (CNN) for the
encoding. For the encoder, we adopt three layers of bi-directional LSTM to get contextualized
representations, while our decoder is the deep BiAF scorer as in Dozat and Manning (2017). We
only slightly tune hyper-parameters on the Local model and the development set of PTB and then
use the same ones for all the models and datasets. Note that our exploration only concerns the
final output layer which does not contain any trainable parameters in the neural model, and all
our comparisons are based on exactly the same neural architecture and hyper-parameter settings.
Only the output normalization methods and the loss functions are different.

We run all the experiments with our own implementation, which is written with PyTorch. All
experiments are run with one TITAN-X GPU. In training, global models take around twice the
time of the local and single models; while in testing, their decoding costs are similar.

Results

Method Single Local Global-NProj Global-Proj
Prob Prob Prob Hinge Prob Hinge

PTB 93.43/44.67 93.75/46.65 93.84†/47.17 93.91†/47.78† 93.79/47.16 93.96†/48.47†

CTB 87.03/31.26 88.16/33.16 88.26/33.73 87.92/32.77 88.46†/35.11† 88.14/34.00†

bg-btb 89.97/39.25 90.06/39.99 90.35†/41.25† 90.42†/40.83 90.15/40.98 90.20/40.53
ca-ancora 91.23/25.03 91.54/26.35 91.73†/27.19† 91.73†/26.65 91.39/27.39† 91.51/27.19†

cs-pdt 90.95/43.07 91.51/45.62 91.69†/46.60† 91.52/46.02† 91.10/44.43 91.18/44.02
de-gsd 83.68†/22.65 83.43/22.42 83.65†/22.86 83.66†/22.93 83.39/23.37† 83.63/23.51†

en-ewt 88.01/55.93 88.33/56.46 88.52†/57.29† 88.59†/57.33† 88.52†/58.29† 88.41/57.31†

es-ancora 90.82/27.27 91.05/27.41 91.12/27.89 91.14/27.35 90.84/28.41† 91.03/27.70
fr-gsd 88.00/20.03 88.13/20.83 88.43†/21.71 88.22/20.27 88.59†/23.80† 88.41†/21.88
it-isdt 91.71/44.05 92.01/44.26 92.16/45.30 92.08/45.02 92.49†/48.27† 92.37†/46.75†

nl-alpino 88.31/33.11 88.81/33.67 88.94/34.62 88.94/35.12† 88.37/33.05 88.45/33.00
no-bokmaal 92.89/53.60 92.89/53.58 93.02†/54.36† 92.78/53.09 92.82/53.57 92.70/52.71
ro-rrt 85.10†/12.85† 84.58/11.57 84.85†/12.44 85.04†/13.03† 84.89†/12.94† 85.16†/13.76†

ru-syntagrus 92.76/48.67 93.29/50.69 93.36†/50.97 93.29/50.72 93.11/50.79 93.19/50.17
Average 89.56/35.82 89.82/36.62 89.99†/37.39† 89.95†/37.07† 89.85/37.68† 89.88/37.21†

Table 3.2: Results (LAS/LCM) on the test sets (averaged over three runs).

We run all the models three times with different random initialization, and the averaged
results on the test sets are shown in Table 3.2. Here, ‘†’ means that the result of the model

1Tokens whose gold POS tag is one of {“ ” : , .} for PTB or “PU” for CTB
2https://fasttext.cc/docs/en/pretrained-vectors.html
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is statistically significantly better (by permutation test, p < 0.05) than the Local-Prob model.
Overall, the global models3 perform better consistently, especially on the metrics of Complete
Match, showing the effectiveness of being aware of global structures. However, the performance
gaps between global models and local models are small. More surprisingly, the single models
that ignore all the structures only lag behind by around 0.4 on average. In some way, this shows
that input modeling, including the distributed input representations, contextual encoders, and
parts of the decoders, makes the structured decision problem easier to solve locally. Neural
models seem to squeeze the improvement space that structured output modeling can bring.

Analysis

We further analyze output constraints and input modeling. For brevity, we only analyze PTB and
use probabilistic models. Single models are excluded for their poorer performance.
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93.73/46.44 93.75/46.65 93.78/46.8

90.97/27.87 93.84/47.17 93.87/47.54

80.08/3.6 85.6/15.63 93.79/47.16

Figure 3.1: Results (LAS/LCM), on the PTB test set) of different models (with prob loss) and
decoding algorithms.

Firstly, we study the influence of output constraint differences in training and testing. Here,
we include a naive “Greedy” decoding algorithm that simply selects the most probable head
for each token. This does not ensure that the outputs are trees and corresponds to the head-
classification method adopted by local models. The results of different models and training/testing
algorithms are shown in Figure 3.1. Here, rows represent the methods used in training and
columns denote the decoding algorithms in testing. Darker colors represent better scores. Inter-
estingly, the discrepancies in training and testing are only detrimental when the output constraint
in testing is looser than that in training (the left corner in the figure), as shown by the poorer
results in the training-testing pairs of “NProj-Greedy”, “Proj-Greedy” and “Proj-NProj”. Gener-
ally, projective decoding is the best choice since PTB contains mostly (99.9%) projective trees.

3Projective global models perform averagely poorer than non-projective ones since some of the treebanks (for
example, only 88% of the trees in ‘cs-pdt’ are projective) contain a non-negligible portion of non-projective trees.
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Figure 3.2: Evaluation differences (on the PTB test set) between global and local methods when
adopting various “weaker” neural architectures.

Next, we study the interactions of “weaker” neural architectures (for input modeling) and
output modeling. We consider three “weaker” models: (1) “No-Word” ignores all the lexical
inputs and is a pure delexicalized model; (2) “Simple-CNN” replaces the RNN encoder with a
much simpler encoder, which is a simple single-layer CNN with a window size of three for the
purpose of studying weak models; (3) “No-Encoder” completely deletes the encoder, leading
to a model that does not take any contextual information. Here, since we are testing on PTB
which almost contains only projective trees, we use projective decoding for all models. As
shown in Figure 3.2 (numbers below x-axis labels denote the evaluation scores (LAS/LCM)
of the local models), when input modeling is weaker, the improvements brought by the global
model generally get larger. Here, the LCM for “No-Encoder” is an outlier, probably because this
model is too weak to get reasonable complete matches. The results show that with weaker input
modeling, the parser can generally benefit more from structured output modeling. In some way,
this also indicates that better input modeling can make the problem depend less on the global
structures so that local models are able to obtain competitive performance.

3.1.3 Discussion

We only explore first-order graph parsing in this section, that is, for the factorization part, we
do not consider high-order sub-subtree structures. Recently, there has been work exploring the
effectiveness of higher-order parsing together with neural models. Falenska and Kuhn (2019)
suggest that with powerful neural models, second-order features seem redundant. Fonseca and
Martins (2020) show that the higher-order features provide small gains, but they are consistent
for long-range dependencies and long sentences. Zhang et al. (2020b) provide an efficient im-
plementation for second-order TreeCRF parser and show that it can bring improvements. Never-
theless, the helpfulness of higher-order modeling does seem modest if utilizing powerful neural
models that capture rich input features, which in some way is consistent with our results on the
modeling of constraints.

In this section, we call the models that are aware of the whole output structures “global”. In
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fact, with the neural architecture that can capture features from the whole input sentence, actually,
all the models we explore have a “global” view of inputs. Our experiments show that with this
kind of global input modeling, good results can be obtained even when ignoring certain output
structures, and further enhancement of global output structures only provides small benefits. This
might suggest that input and output modeling can capture certain similar information and have
overlapped functionalities for structured decisions.

3.2 Span Extraction in Semantic Role Labeling
In this section, we take a look at the task of semantic role labeling (SRL), a core natural language
processing (NLP) task that aims to identify predicate-argument structures in text (Gildea and Ju-
rafsky, 2002; Palmer et al., 2010). Following the neural encoder-decoder paradigm, we can view
an SRL model as combining an encoder, which builds hidden representations for the input words,
with a decoder, which extracts the argument spans based on the encoded representations. While
recent SRL models achieve high performance on popular benchmarks (Zhou and Xu, 2015; He
et al., 2017; Tan et al., 2018; Strubell et al., 2018; Shi and Lin, 2019), most improvements come
from better neural encoders, such as the Transformer (Vaswani et al., 2017) and pre-trained con-
textualized word representations, such as BERT (Devlin et al., 2019). However, the influence on
end-task performance due to the choice of the decoder has become less clear.

B-A0  I-A0       B-V       B-A1 B-A3 I-A3  I-A3   O

A0 A1 A3

A0 A1 A3

(a)BIO-based:   TV stations bought them for record prices .

(b)Span-based:  TV stations bought them for record prices .

(c)Two-step:      TV stations bought them for record prices .

Figure 3.3: Illustration of the explored decoding methods in this section.

We perform an empirical investigation of different factorization methods for span extraction,
as illustrated in Figure 3.3. Here, for the predicate “bought”, we identify argument spans by
(a) BIO-based sequence labeling; (b) direct span-based extraction; (c) two-step approach: first
identifying head words, then expanding to full spans by deciding left and right boundaries.

The most common strategy casts the task as a sequence labeling problem using the BIO-
tagging scheme (Zhou and Xu, 2015; He et al., 2017; Tan et al., 2018; Strubell et al., 2018; Shi
and Lin, 2019). While this approach is simple, it does not directly model the arguments at the
span level. Alternatively, the span-based method directly builds representations for all possible4

spans and selects among them (He et al., 2018a; Ouchi et al., 2018). Though this approach is
straightforward for explicitly modeling span-level information, composing a representation for

4Up to a fixed length, decided as a hyperparameter.
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every span can lead to higher computational costs. Inspired by dependency-based SRL (Surdeanu
et al., 2008; Hajič et al., 2009), a third option first identifies a head word and then decides the span
boundaries. This two-step strategy has been explored in previous work on information extraction
(Peng et al., 2015; Lin et al., 2019b; Zhang et al., 2020c), and we apply it here to SRL. Compared
with the sequential BIO-tagger, the latter two approaches more directly model the argument span
structures; we thus refer to them as more structured decoders.

We perform careful comparisons of these decoding methods upon the same encoding back-
bone, based on a deep Transformer encoder. We first experiment in the standard fully-supervised
settings on English PropBank datasets (CoNLL-2005 and CoNLL-2012). The results show that
more structured decoders, especially the two-step approach with syntactic guidance, consistently
perform better than BIO-tagging when using static word embeddings. However, if including
strong contextualized BERT embeddings, the benefits of more structured decoding are dimin-
ished and the simplest BIO-tagging method performs well across different experimental settings.
Error analysis shows that contextualized embeddings help in deciding span boundaries. We also
perform speed comparisons and analyze the accuracy-efficiency trade-offs among different de-
coding methods.

3.2.1 Model

For a given predicate, SRL aims to extract all argument spans and assign them role labels. To
model this task, we follow the neural encoder-decoder paradigm: the encoder produces hidden
representations for the input words, upon which the decoder decides the structured outputs. All
our models adopt the same encoding architecture: a deep Transformer encoder (Vaswani et al.,
2017), which has been shown effective for SRL (Tan et al., 2018; Strubell et al., 2018). For
a given input sequence of words {w1, . . . , wn}, we obtain their contextualized representations
{h1, . . . , hn} from the encoder. Upon these, we stack different decoders to extract the argument
spans corresponding to different extraction strategies, which will be described in the following.

1) BIO-based

Since argument spans do not overlap in the datasets we explore, the BIO-tagging scheme (Ramshaw
and Marcus, 1995) can be utilized to extract them, casting SRL as a sequence labeling problem.

For each word, we feed its representation h to a multi-layer perceptron (MLP) based scorer,
which assigns the scores of the BIO tags. Assuming that we have k possible argument roles in
the output space, each of them will have its “B-” and “I-” tags. Together with the “O” (NIL) tag,
the tagging space has a dimension of 2k + 1.

Furthermore, we consider the option of adopting a standard linear-chain conditional ran-
dom field (CRF; Lafferty et al., 2001) to model pairwise tagging transitions. If adopting the
CRF (BIO w/ CRF), we train the model with sequence-level negative log-likelihood and use the
Viterbi algorithm for inference. If not using the CRF (BIO w/o CRF), we simply use tag-level
cross entropy as the learning objective and perform argmax greedy decoding at inference time,
following Tan et al. (2018).
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2) Span-based

In the span-based method, we build neural representations for all candidate spans and directly
select and assign role labels (or NIL). Following He et al. (2018a), for a span a, we compose
its representation from start and end points, soft head-word vectors, and span width features by
concatenation:

g(a) = [hstart(a), hend(a), soft(a),width(a)]

Here, soft(a) denotes a soft-head representation obtained from an attention mechanism:

soft(a) =
∑

start(a)≤i≤end(a)

att(i, a)hi att(i, a) =
wT

atthi∑
start(a)≤i′≤end(a)w

T
atthi′

and width(a) denotes a width embedding corresponding to the span size (width).
All valid candidate spans are first assigned an unlabeled score, using an MLP scorer. This

unary score is then used as the criterion for beam pruning to reduce the computational costs of
full labeling. Since each predicate will not have too many arguments (most have less than 5),
we adopt a fixed beam size of 10. We also limit the maximum width of candidate spans to 30,
which covers around 99% of the cases. Surviving candidates are further assigned label scores
with another MLP scorer, with which we decide output arguments.

3) Two-step

In this approach, we decompose the problem into two steps: head selection and boundary deci-
sion. In the first step, each individual word is directly scored for argument labels (or NIL). We
again adopt an MLP classifier to obtain the probability that a word can be the head of an argu-
ment with label r (r can be NIL). The non-NIL labeled words are selected as the head words of
the arguments. Since the annotations usually do not contain head words for the argument spans,
we further consider two strategies to provide supervision for training:

HeadSyntax A straightforward method is to adopt guidance from syntax. Following dependency-
style SRL (Surdeanu et al., 2008; Hajič et al., 2009), we use syntactic dependency parse trees
and select the highest word (the one that is closest to the root) in the span as the head. In training,
we only assign the argument role to the syntactic head word, and all other words in the span get
a label of NIL.

HeadAuto In this strategy, all words in an argument span can be considered as the potential
head word. We adopt the bag loss from Lin et al. (2019b) to train the model to automatically
identify head words. Specifically, for a word wi inside an argument span a which has the role r,
the loss is computed as:

Loss(wi) = δi · [− log p(r|hi)] + (1− δi) · [− log p(NIL|hi)]

δi =
p(r|hi)

maxstart(a)≤j≤end(a) p(r|hj)
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Here, words that are more indicative of the argument will be assigned higher probabilities to the
argument role. This will give them larger loss weights (δ) and thus further encourage them to be
the heads. In this way, the head words are decided automatically by the model.

In the second step, we determine span boundaries for these head words. Here we adopt the
span selection method from extractive question answering (Wang and Jiang, 2016; Devlin et al.,
2019) using two classifiers to decide the start and end words ([s, e]) of a span:

p(s, e) = pstart(s) · pend(e)

pstart(s) =
exp scorestart(h′

s)∑
i exp scorestart(h′

i)
pend(e) =

exp scoreend(h′
e)∑

i exp scoreend(h′
i)

Here, we first add indicator embeddings to the head word’s encoder representations to mark its
positions, and then stack one self-attention layer to obtain head-word-aware representations for
the input sequence: {h′

1, · · · , h′
n}. We further introduce two linear scorers to assign the start and

end scores for each word, which are further normalized across the input sequence. For training,
the objective is minimizing the sum of negative log-likelihoods of picking the correct start and
end positions. When decoding, we select the maximum scoring span whose boundaries s and e
satisfy s ≤ e. We observe that at inference time, sometimes different head words may expand to
overlapping spans, which do not appear in the datasets we explore. To deal with this, we adopt
a greedy post-processing procedure to remove overlapping argument spans: iterating through
all argument spans ranked by model score and only keeping the ones that do not overlap with
previous surviving ones.

3.2.2 Experiments
Settings

Data The models are evaluated on standard PropBank datasets from the CoNLL-2005 shared
task (Carreras and Màrquez, 2005) and the CoNLL-2012 subset of OntoNotes 5.0 (Pradhan et al.,
2013). Table 3.3 lists the relevant statistics. For CoNLL-2005, we follow the splits from the
CoNLL-2005 shared task.5 For the English part of CoNLL-2012, we adopt the data from Pradhan
et al. (2013)6 but follow the splits of the CoNLL-2012 shared task.7 For evaluation, we adopt
the standard evaluation script of srl-eval.pl.8 For the “HeadSyntax” method that requires
dependency trees, we convert the original constituencies to Universal Dependencies (Nivre et al.,
2020) using Stanford CoreNLP (Manning et al., 2014) version 4.1.0. Notice that we only need
syntactic information to be provided during training, since the model predicts head words itself
at test time.

Input Features and Encoder For a fair comparison, we adopt the same input features, deep
Transformer-based encoders, and training schemes across all experiments. We consider two

5https://www.cs.upc.edu/˜srlconll/
6https://cemantix.org/data/ontonotes.html
7https://conll.cemantix.org/2012/
8https://www.cs.upc.edu/˜srlconll/soft.html
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CoNLL 2005 CoNLL 2012

Train Dev Test Brown Train Dev Test

Sent. 39.8k 1.3k 2.4k 0.4k 75.2k 9.6k 9.5k
Pred. 90.8k 3.2k 5.3k 0.8k 188.9k 23.9k 24.5k
Arg. 333.7k 11.7k 19.6k 3.0k 622.5k 78.1k 80.2k

Table 3.3: Statistics of the datasets: Number of sentences (Sent.), predicates (Pred.) and argu-
ments (Arg.).

types of word features: static word embeddings and pre-trained contextualized embeddings9

from BERTbase. We adopt fastText10 embeddings (Mikolov et al., 2018) and frozen features from
bert-base-cased. Before feeding the word-level features to the encoder, we concatenate
them and apply a linear layer to project them to the encoding dimension. We further add indicator
embeddings to let the model be aware of the positions of the predicates. For both cases of
static embedding and BERT features, we adopt a 10-layer Transformer module as the encoder.
The head number, model dimension, and feed-forward dimension are set to 8, 512, and 1024,
respectively. In addition, we adopt relative positional encodings for the Transformer (Shaw et al.,
2018) since we found slightly better performance in preliminary experiments.

Training We use the Adam optimizer (Kingma and Ba, 2014) for training. The learning rate is
linearly increased towards 2e-4 with the first 8k steps for warming up. After this, we decay the
learning rate by 0.75 each time the performance on the development set does not increase for 10
checkpoints. We train the model for a maximum of 150k steps and do validation every 1k steps
to select the best model. One model contains around 40M parameters (excluding BERT). For
each update, the batch size is around 4096 tokens. We apply dropout rates of 0.2 to the hidden
layers. For models using static embeddings, we further replace input words with a special UNK
token with a probability of 0.5 if it appears less than 3 times in the training set. At test time, a
word is represented by UNK if it is not found in the collection of static word embeddings. All
the models are trained and evaluated on one TITAN-RTX GPU, and training one model takes
around 1 day in our environment.

Performance Comparisons

Table 3.4 lists the comparisons of our test results (BIO w/ CRF using BERT features) to previous
work. Generally, our model can obtain comparable results, which verifies the quality of our
implementation.

Table 3.5 lists our main comparisons on the test sets. The overall trends are very similar.
For BIO-tagging, incorporating a structured CRF layer is generally helpful, which can improve
the F1 scores by around 0.5 points. When not using BERT features, more structured decoders

9We concatenate layers 7, 8, and 9 of BERT hidden representations. For words that are split into sub-tokens, we
utilize the representations of the first sub-token.

10https://fasttext.cc/docs/en/english-vectors.html
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Model WSJ Brown OntoNotes

He et al. (2018a) 87.4 80.4 85.5
Ouchi et al. (2018) 87.6 78.7 86.2
Shi and Lin (2019) 88.8 82.0 86.5
Ours (BIO w/ CRF) 87.9 82.1 86.6

Table 3.4: Comparisons of F1 scores with previous work in the fully-supervised settings (with
single model).

CoNLL 2005 In-domain (WSJ) Out-of-domain (Brown) CoNLL 2012 (OntoNotes)

P R F1 P R F1 P R F1

Without BERT

BIO (w/o CRF) 84.42 84.94 84.68±0.25 73.56 73.03 73.29±0.43 81.74 82.98 82.35±0.24
BIO (w/ CRF) 85.04 85.35 85.20±0.12 74.25 73.92 74.08±0.31 82.79 84.11 83.44±0.21

Span 85.68 84.62 85.14±0.32 75.88 74.23 75.05†
±0.42 83.42 83.49 83.46±0.15

HeadSyntax 85.84 85.38 85.61†±0.11 75.92 74.74 75.33†
±0.58 83.55 83.82 83.68†

±0.11
HeadAuto 85.30 85.17 85.23±0.14 74.98 73.85 74.41±0.50 83.09 83.71 83.40±0.09

With BERT

BIO (w/o CRF) 87.21 87.95 87.58±0.28 81.26 81.79 81.52±0.23 85.33 86.97 86.14±0.10
BIO (w/ CRF) 87.54 88.32 87.93±0.16 81.91 82.37 82.14±0.20 85.93 87.32 86.62±0.14
Span 87.75 87.33 87.54±0.14 81.87 81.60 81.73±0.77 85.97 86.26 86.12±0.09
HeadSyntax 87.76 87.96 87.86±0.08 82.10 81.60 81.85±0.90 86.17 86.77 86.47±0.10
HeadAuto 87.70 88.15 87.93±0.12 81.52 81.36 81.44±0.37 86.00 86.84 86.42±0.09

Table 3.5: Main test results. All the results are averaged over five runs with different random
seeds, and standard deviations of the F1 scores are also reported.

generally perform better than BIO-tagging. With the head word oracles from the syntax trees,
“HeadSyntax” performs the best overall. This agrees with Strubell et al. (2018) and Swayamdipta
et al. (2018), showing the helpfulness of syntactic information for SRL. However, when utilizing
BERT features, the benefits of more structured decoders are diminished and the simple BIO-
tagger robustly performs well. It seems that with a powerful encoder, the choice of the decoder
plays a smaller role in the final performance.

To further investigate this phenomenon, we perform error analysis on the development out-
puts of “BIO (w/ CRF)” and “HeadSyntax,” which are the two that perform the best overall.
We group the errors into four categories: “Boundary” denotes that the predicted head words and
role labels match the gold ones but the span boundaries are incorrect; “Label” denotes that the
predicted spans are correct but the role labels are wrong; “Attachment” denotes the errors caused
by incorrect phrase attachments, while “Others” denotes the remaining errors, which are other
missing and over-predicted arguments. The results are shown in Figure 3.4. When not using
BERT features, the main advantages of “HeadSyntax” over “BIO” are on the “Boundary” and
“Attachment” errors, where the former makes 11% fewer “Boundary” and 17% fewer “Attach-
ment” errors. Notice that these two types of errors are closely related to syntax, and they are
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Figure 3.4: Error breakdown for “BIO” and “HeadSyntax” on the CoNLL-2005 development
set.

mainly caused by incorrect phrase boundary predictions. In this way, it seems natural that in-
corporating syntactic information with head words can be helpful in this scenario. Nevertheless,
when utilizing BERT features, these advantages are reduced to a negligible level. This indicates
that BERT may provide sufficient information overlapping with syntax to help with boundary
decisions.

Speed Comparisons

300 400 500 600 700
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BIO (w/ CRF)
Span
HeadSyntax
HeadAuto

Figure 3.5: Comparing speed vs. F1 with different decoding methods (on CoNLL05 develop-
ment set).

Finally, we compare the decoding speed of different extraction methods against F1 scores
in Figure 3.5. Greedy BIO-tagging (w/o CRF) obtains the highest speed. However, this comes
with a drop of around 0.5 F1 points without BERT and 0.3 F1 points with BERT. Although the
two-step approaches require two decoding steps, they are still efficient thanks to the simplicity
of both steps. When trained with syntactic information, this model is the second best in terms
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of decoding speed. On the other hand, even with beam pruning, the span-based decoder still
needs to score a number of span candidates quadratic in the input sequence length, making it less
efficient compared to other decoders.

3.2.3 Related Work and Discussion

Argument Extraction Before the incorporation of end-to-end neural models, traditional SRL
systems usually depend on input constituency trees to obtain argument candidates (Xue and
Palmer, 2004; Màrquez et al., 2008). Although straightforward, this may suffer from error prop-
agation from syntax parsers. Recent neural systems utilize end-to-end models to solve the task.
Casting SRL as BIO-based sequence labeling problem is the most common decoding scheme
and can obtain impressive results (Zhou and Xu, 2015; He et al., 2017; Tan et al., 2018; Strubell
et al., 2018; Shi and Lin, 2019). On the other hand, span-based methods (He et al., 2018a; Ouchi
et al., 2018) directly select and label among argument span candidates. This is actually similar
to the traditional approaches, though the argument candidates are obtained by the model rather
than from input syntax trees. In addition to span-based SRL, the focus of this section, there is
another category of dependency-style SRL, which only requires the extraction of head words
of argument spans (Surdeanu et al., 2008; Hajič et al., 2009). Inspired by this, for span-based
SRL, we can extract argument head words as the first step and then expand to the full spans in
the second step. This idea has also been applied in information extraction, such as coreference
resolution (Peng et al., 2015), entity detection (Lin et al., 2019b), and event argument extraction
(Zhang et al., 2020c). Another interesting direction is considering the structured constraints of
the arguments, including work on integer linear programming (Punyakanok et al., 2004, 2008),
dynamic programming (Täckström et al., 2015) and structure-aware tuning (Li et al., 2020d).

Syntax and SRL There has been discussion of the relation between syntax and SRL (Gildea
and Palmer, 2002; Punyakanok et al., 2008), considering the close connections between these
two tasks. Though syntax trees are usually the inputs to traditional SRL systems, recent work
finds that syntax-agnostic neural models also work well (Marcheggiani et al., 2017; Cai et al.,
2018). Nevertheless, with recent neural models, syntax information has still been found helpful
for SRL in various ways, including multi-task learning (Swayamdipta et al., 2018; Strubell et al.,
2018), argument pruning (He et al., 2018b), and tree-based modeling (Marcheggiani and Titov,
2017; Li et al., 2018; Marcheggiani and Titov, 2020). In this work, our “HeadSyntax” decoder
incorporates syntax in a partial way, utilizing dependency trees to decide the head words in
training. This method indeed performs the best overall if only adopting static word embeddings.
However, the incorporation of BERT features diminishes the advantages. This indicates that
BERT may already cover much of the syntactic (surface) features of the input sentences, as
suggested by recent work on BERT interpretation (Goldberg, 2019; Hewitt and Manning, 2019;
Tenney et al., 2019; Clark et al., 2019).

In this section, we empirically compare several span extraction methods for SRL. Exten-
sive results show that in fully supervised settings, simple BIO-tagging is a robustly good option
when utilizing BERT features. We also analyze the accuracy-efficiency trade-offs for different
decoders; although methodologically more complex, two-step approaches are still efficient in
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decoding.

3.3 Conclusion
In this chapter, we provide an empirical investigation of the roles of structured output modeling
with two study cases. Specifically, we explore the normalization aspect in dependency parsing
with different structural constraints incorporated in the modeling and the factorization aspect in
semantic role labeling with different ways to perform span extraction. Generally, we find that
with powerful neural models that could capture the full input contexts, the benefits of better
output structured modeling become modest. Nevertheless, we still observe improvements when
evaluated on full-structure metrics and when utilizing less powerful but more efficient models.

The scenarios studied in this chapter are mainly fully-supervised, that is, we assume abundant
training instances. A natural question is what are the roles of structured modeling in resource-
limited scenarios and how does it interact with the amount of available resources? We will further
investigate this topic in the next chapter.
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Chapter 4

On the Interactions of Structural
Constraints and Data Resources for
Structured Prediction

In the previous chapter, we empirically investigate the costs and benefits of structured output
modeling in fully-supervised settings. A natural question to ask is what role it will play in low-
resource scenarios. In this chapter, we provide an analysis of the interactions of the effectiveness
of decoding with structural constraints and the amount of available training data for structured
prediction tasks in NLP.

4.1 Introduction

Recently, neural models, especially those based on pre-trained contextualized representations,
have brought impressive improvements for a variety of structured prediction tasks in NLP (Devlin
et al., 2019; Kulmizev et al., 2019; Shi and Lin, 2019; Li et al., 2020c). More interestingly,
the incorporation of powerful neural models seems to decrease the potential benefits brought
by more complex structured output modeling. For example, for sequence labeling, it has been
shown that reasonably good performance could be obtained even without any explicit modeling
of the interactions of the output tags (Tan et al., 2018; Devlin et al., 2019). For dependency
parsing, models that ignore tree constraints and cast the problem as head selections in training
can still obtain impressive results (Dozat and Manning, 2017). Most of these previous results are
obtained in fully supervised settings. While they show that with abundant training signals, better
input modeling and representation learning could shadow the benefits brought by more complex
structured modeling, it remains unclear for the cases where data resources are limited.

One of the most salient and important properties of structured prediction is that the output
objects should follow specific structural constraints. For example, the output of a syntactic parser
should be a well-formed tree and the output labels of an information extraction system need to
follow certain type restrictions. In this chapter, we focus on the facet of structural constraints and
explore their influence on structured prediction problems under scenarios with different amounts
of training data. On the one hand, since we know the target outputs should conform to certain
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constraints, explicitly enforcing these constraints will likely bring benefits and sometimes even
be a requirement. On the other hand, as neural models are developed to better represent input
contexts, they might already be able to implicitly capture the output constraints by learning from
the data. Especially, if given enough training data, it would be unsurprising that the model could
directly produce outputs that conform to the constraints without explicit enforcement since the
training instances are presented in such ways.

On the interactions of explicit incorporation of constraints and the amounts of training data,
we ask the following three research questions (RQ), which we aim to explore in this chapter:

RQ1: What is the influence of constraints with different amounts of training data?
With powerful neural networks and abundant training data, the model can be trained to implicitly
capture structural constraints even without explicit enforcement. Nevertheless, it still remains
unclear for the cases with limited data. We aim to explore how the incorporation of constraints
influences the outputs and how such influences change with different amounts of training data.

RQ2: What is the influence of constraints when using more efficient models?
Although neural models can obtain impressive results, one shortcoming is that they are usu-
ally computationally expensive. Recently, there has been work on improving model efficiency.
Knowledge distillation is one of the most widely-utilized methods, learning a smaller student
model from a larger teacher model (Kim and Rush, 2016; Sanh et al., 2019; Jiao et al., 2020).
An interesting question to explore is how these more efficient models interact with the explicit
incorporation of structural constraints.

RQ3: What is the influence of constraints for out-of-domain generalization?
We usually expect the model to be able to generalize to scenarios that can be different from
those represented by the training data, for example, to different domains or text genres. It will
be interesting to explore how the constraints influence predictions for these cases and especially
whether there are specific patterns with regard to the discrepancies between the source and the
target.

To answer these questions, we conduct extensive experiments on three typical structured pre-
diction tasks, including named entity recognition (NER), dependency parsing (DPAR), and an
information extraction task of event argument extraction (EAE). We find that models trained
with less training data tend to produce outputs that contain more structural violations when using
constraint-agnostic greedy decoding. Further applying constrained decoding brings consistent
performance improvements and the benefits are more prominent in fewer data scenarios (§4.3.2).
A similar trend can be found with regard to model sizes: smaller models tend to output more
violations with greedy decoding and benefit more from constrained decoding (§4.3.3). Finally,
in cross-genre settings, we find a weak pattern with regard to genre discrepancies: more struc-
tural violations tend to be made with greedy decoding when transferring to more distant genres
(§4.3.4).
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Figure 4.1: Examples of structural violations (marked in red).

4.2 Tasks and Models

4.2.1 Named Entity Recognition
Our first task is named entity recognition (NER), which aims to extract entity mentions from raw
texts and can be typically cast as a sequence labeling problem. We adopt a simple NER model
that utilizes a pre-trained BERT model as the encoder and a softmax layer to predict the output
tags. We adopt the typical BIO tagging scheme (Ramshaw and Marcus, 1995), specifying tags
for the Beginning, the Inside, and the Outside of an entity span.

More specifically, for an input sequence of words [w1, w2, · · · , wn], our model aims to assign
a sequence of BIO tags [t1, t2, · · · , tn] for them. The probability of each output tag is locally
normalized for each word:

p(ti|wi) =
exp score(ti|wi)∑
t′∈T exp score(t′|wi)

Here, the function of score is realized as a linear layer stacked upon the word representations1

and T denotes the output tag space.
With the BIO tagging scheme, there are hard constraints between tags of consecutive tokens:

the I tag must follow a B or I tag of the same entity type. For example, the tagging sequence of
“O I-MISC I-MISC O O” is erroneous because the transition of “O→ I-MISC” is illegal. One
solution to mitigate this problem is to forbid such illegal transitions in decoding. This can be
achieved by incorporating a transition matrix M ∈ R|T |×|T |, where the entries corresponding to
illegal tag transitions are filled with −∞ and the legal ones are filled with 0. For the decoding
process, we define the score of a tag sequence as:

s(t1, t2, · · · , tn) =
∑
i

log p(ti|wi) +
∑
i

Mti,ti+1

In this way, the highest-scored tag sequence will not contain transition violations. This decoding
problem can be solved by the Viterbi algorithm (Viterbi, 1967). If not enforcing these constraints,

1If a word is split into multiple tokens, we simply take its first sub-token.
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the second term of the sequence score can be dropped and the decoding will be greedily finding
the maximally-scored tag for each token individually.

Notice that this treatment resembles the conditional random field (CRF) based models (Laf-
ferty et al., 2001), whereas the main difference is that we utilize a locally normalized model,
and the transition matrix is manually specified to exclude illegal transitions. In our preliminary
experiments, we also tried CRF models but did not find obvious benefits compared with the local
models when adopting the same underlying pre-trained model.

4.2.2 Dependency Parsing
We further consider dependency parsing (DPAR) (Kübler et al., 2009), which aims to parse
the input sentence into well-formed tree structures. We adopt the widely utilized first-order
graph-based parser (McDonald et al., 2005a). Similar to NER, we adopt the pre-trained BERT
encoder to provide the contextualized representations for the input tokens and stack a biaffine
scorer Dozat and Manning (2017) to assign scores for the dependency edges. For training, we
adopt a local model which views the problem as a head-finding classification task for each input
token (Dozat and Manning, 2017; Zhang et al., 2017a). At testing time, we further consider tree
constraints with specific decoding algorithms. Since we are mainly interested in structural tree
constraints, we only perform unlabeled parsing.

More specifically, for an input sequence of words [w1, w2, · · · , wn], we aim to find the de-
pendency head words [h1, h2, · · · , hn] for the input word sequence. With local normalization,
this can be viewed as a head classification problem:

p(hi|wi) =
exp score(hi|wi)∑

h′∈{R,w1,w2,··· ,wn} exp score(h′|wi)

Here we add an artificial target R to the output space to cover the cases of the root nodes. The
score function is realized with a biaffine module that produces head-modifier scores for the input
pair of words.

We consider two constraints for the output structures. First, there should not be any cycles
in the output graphs, otherwise, they will not be trees. Moreover, we consider the projective
constraint2, which specifies that there are no edges that cross each other. We adopt Eisner’s
algorithm (Eisner, 1996) for the constrained decoding, which is a dynamic programming algo-
rithm that searches the highest-scored trees in the constrained output space. If not considering
any of these constraints, we greedily predict the head word for each token based on the head
classification probabilities.

4.2.3 Event Argument Extraction
Finally, we consider event argument extraction (EAE), an information extraction task that aims
to extract arguments for the event mentions from the texts (Ahn, 2006). For a pair of event trigger
and entity mention, this task aims to link them with an argument role indicating that the entity

2We only perform experiments on English, which is a highly projective language. Extensions to non-projective
languages are left to future work.
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can play such a role in the event frame. If no such role is possible, then no links are added. We
again adopt a pre-trained BERT encoder for encoding and further stack a task-specific predictor,
which is a biaffine scorer, similar to dependency parsing. The main difference is that here we
perform local normalization for each event-entity pair since there are no constraints on how many
other mentions that one mention can be linked to for event argument extraction. To better explore
real application scenarios, we train an extra sequence labeler to extract event and entity mentions
rather than using gold ones. This mention-detection model is the same as the one utilized in our
NER experiments.

More specifically, our model takes a pair of event trigger and entity mention (mt and me) and
assigns the probabilities of argument roles to them:

p(r|mt,me) =
exp score(r|mt,me)∑

r′∈R∪{ϵ} exp score(r′|mt,me)

Here, R denotes the role labeling space and we further include an option of ϵ to denote there
are no argument relations between the event trigger and entity mention. The score function is
realized with a biaffine module that produces argument scores for the input mention pair. Since
a mention may contain multiple words, we concatenate the word representations of the starting
and ending words to form the mention’s input vector.

In event extraction, there are constraints on the mention (event and entity) types and argu-
ment role labels. For example, the PERSON role of a MARRY event should have the entity type
of PER, while the DESTINATION or ORIGIN roles of a TRANSPORT should have entity types
denoting places (GPE, LOC or FAC). We adopt a simple method to incorporate such constraints
in decoding by ignoring (masking out) the roles that are not possible according to the event and
entity types. The role constraints are manually collected according to the event annotation guide-
line LDC (2005). If not considering these role constraints, we simply adopt greedy prediction
for each event-entity pair.

4.3 Experiments

4.3.1 Settings
Data. Our experiments are conducted on widely utilized English datasets. In our main experi-
ments, we adopt the CoNLL-2003 English dataset3 (Tjong Kim Sang and De Meulder, 2003) for
NER and the English Web Treebank (EWT) from Universal Dependencies4 v2.10 (Nivre et al.,
2020) for DPAR. In the genre transfer experiments for NER and DPAR, we utilize OntoNotes
5.0 dataset5 (Weischedel et al., 2013) and split the data according to text genres. For the event
task, we adopt the ACE05 dataset6 (Walker et al., 2006), using the scripts from Lin et al. (2020)
for the pre-processing.7 Table 4.1 shows the data statistics.

3https://www.clips.uantwerpen.be/conll2003/ner/
4https://universaldependencies.org/
5https://catalog.ldc.upenn.edu/LDC2013T19
6https://catalog.ldc.upenn.edu/LDC2006T06
7http://blender.cs.illinois.edu/software/oneie/
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Data Split #Sent. #Token #Event #Entity #Argument #Relation

CoNLL03
train 14.0K 203.6K - 23.5K - -
dev 3.3K 51.4K - 5.9K - -
test 3.5K 46.4K - 5.6K - -

UD-EWT
train 12.5K 204.6K - - - -
dev 2.0K 25.1K - - - -
test 2.1K 25.1K - - - -

ACE05
train 14.4K 215.2K 3.7K 38.0K 5.7K 6.2K
dev 2.5K 34.5K 0.5K 6.0K 0.7K 0.8K
test 4.0K 61.5K 1.1K 10.8K 1.7K 1.7K

Table 4.1: Data statistics of the datasets utilized in our main experiments.

Task Model 5K 20K 100K

NER
Local 84.270.8 88.910.6 91.240.3
Global 84.730.1 88.920.4 91.380.2

DPAR
Local 84.570.1 89.460.2 91.950.1
Global 82.650.3 88.920.3 91.650.2

Table 4.2: Comparisons between local and global models for NER (F1%) and DPAR (UAS%).

Model and training. Unless otherwise specified, we adopt the pre-trained BERTbase as the con-
textualized encoder for our models. The encoder is fined-tuned with the task-specific decoders
in all the experiments. The number of model parameters is around 110M. We follow common
practices for the settings of other hyper-parameters. Adam (Kingma and Ba, 2014) is utilized as
the optimizer. The learning rate is initially set to 1e-5 for NER and 2e-5 for DPAR and EAE.
It is further linearly decayed to 10% of the initial value throughout the training process. The
models are trained for 20K steps with a batch size of around 512 tokens. We pick final models
by the performance on the development set of each task. The original development sets are also
down-sampled accordingly to the training sets to simulate scenarios with different data amounts.
All the reported results are averaged over five runs with different random seeds.

Local normalization. In our main experiments, we choose locally normalized models instead
of more complex global models. Table 4.2 provides comparisons between the local and global
models for NER and DPAR. For the global models, we use standard linear-chain CRF (Lafferty
et al., 2001) for NER and tree-CRF (Paskin, 2001) for DPAR. For these results, constrained de-
coding is applied since it is found to be helpful for both local and global models. The results
show that there are no clear benefits of using global models over the simpler local models, prob-
ably due to the strong input context modeling capabilities of the underlying pre-trained encoders.
Therefore, we simply adopt local models in our main experiments.
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Evaluation. We adopt standard evaluation metrics for the tasks: labeled F1 score for NER,
unlabeled attachment score (UAS) for DPAR, labeled argument F1 score for EAE (Lin et al.,
2020).

4.3.2 RQ1: On Training Data
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Figure 4.2: Illustrations of constraint violations and related error rates.

We first investigate the effectiveness of incorporating constraints in decoding, plotting the
rates of structural violations and related errors in Figure 4.2. For all the predicted items (all non-
‘O’ tags for NER, all dependency edges for DPAR, and all predicted argument links for EAE),
we calculate the percentage of items that violate the structural constraints when using greedy
decoding (“Violation%”). For NER, we perform analysis at the tag level and count the illegal
tag transitions. For DPAR, we include the edges that are inside a loop (violating the acyclic
constraint) or go across another edge (violating the projective constraint). For EAE, we count
the argument links whose role does not comply with the types of the event and the entity that it
connects. We further calculate “Err%”, which denotes the percentage of the items that contain
violations in greedy decoding and are wrongly predicted at the same time. Such error rates are
calculated for both greedy (w/o cons.) and constrained (w/ cons.) modes, and the comparisons
between these two can illustrate the amount of error reduction that constrained decoding can
bring.

The overall trends are consistent on all the tasks. As we have more training data, there
are fewer structural violations without explicitly enforcing constraints, which indicates that the
model can implicitly learn the constraints if given enough training data. Moreover, although
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Figure 4.3: Test results with or without applying constraints against different training sizes.

constrained decoding can eliminate such violations, they do not always lead to the correct pre-
dictions; only a small portion of incorrect items can be corrected with constrained decoding, and
such improvements are more prominent with less training data.

We further show the main test results in Figure 4.3. The general trends are again similar for all
three tasks: constraints provide consistent benefits for the model performance, and such benefits
are larger as we have less training data. This corresponds well to the violation analysis in Fig-
ure 4.2: with enough training data, the model will implicitly learn the structural constraints from
the data and further enhancement of constrained decoding will make little difference; however,
with less training data, explicitly enforcing constraints can be more beneficial.

Takeaways: Without incorporating constraints, there are more constraint violations from the
predictions of the models trained with fewer data. By enforcing constraints in decoding, there
can be consistent benefits for model performance and such improvements are greater with models
learned with less training data.

4.3.3 RQ2: On Efficient Models

We further explore the influence of using more efficient models. We take the distilled versions of
the BERT models from Turc et al. (2019) and repeat our previous experiments. Specifically, we
consider five models (L=Layer Number, H=Dimension Size): Tiny (L=2, H=128), Mini (L=4,
H=256), Small (L=4, H=512), Medium (L=8, H=512), and Base (L=12, H=768). We plot “Vio-
lation%” and performance differences in Figure 4.4 and Figure 4.5, respectively.

First, if looking at the axis of the training data size, the overall trends are similar to what
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Figure 4.4: “Violation%” (percentages of predicted items that violates constraints with greedy
decoding) with different models and amounts of training data.
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Figure 4.5: Performance improvements brought by constrained decoding with different models
and amounts of training data.

we found previously: there are more violations with less training data, and enforcing constraints
helps more in the lower-resource scenarios. This trend is generally consistent across all the
underlying models. Moreover, comparing across the model axis brings more interesting find-
ings. Overall, the smaller models tend to output predictions with more violations if adopting
greedy decoding and incorporating constraints generally bring more performance improvements
for smaller models. The reason for this trend might be that smaller models contain fewer pa-
rameters to learn all the patterns in the training data and such under-parameterization may bring
difficulties in implicitly capturing the constraints.

Another interesting question is how decoding speed is influenced by the underlying model
and the decoding algorithm. Table 4.3 presents the time required to decode one sentence for
NER and DPAR. Here, we do not analyze the EAE task, since there are no complex algorithms
involved for our constrained decoding for EAE and we did not find obvious speed differences
between decoding methods with or without constraints. Generally, constrained decoding requires
more computational cost compared with the constraint-agnostic greedy methods. This is not
surprising since the constraint-agnostic decoding method simply predicts the locally maximally
scored items while constrained decoding needs to invoke algorithms with higher complexity.
With smaller models, constrained decoding brings relatively more cost because there are less
intense computational requirements for the underlying encoder. This trend is especially obvious
for the NER task, where constrained decoding costs nearly twice the time as greedy decoding
when using the Tiny model. When adopting larger models, the encoder starts to require more
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Tiny Mini Small Medium Base

NERw/o 0.29 0.32 0.36 0.53 1.19
NERw/ 0.56 0.59 0.64 0.80 1.45

DPARw/o 0.23 0.26 0.33 0.47 1.07
DPARw/ 0.28 0.31 0.36 0.50 1.10

Table 4.3: Decoding speed (ms per sentence) without (w/o) or with (w/) constraints.

computations, and thus the relative extra cost brought by constrained decoding takes a smaller
proportion.

Takeaways: When using smaller and more efficient models such as distilled versions of BERT,
they tend to output predictions with more structural violations with greedy decoding and con-
strained decoding generally brings more benefits.

4.3.4 RQ3: On Genre Transfer
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Figure 4.6: “Violation%” (percentages of predicted items that violates structural constraints) on
different testing genres with different amounts of source newswire training data.
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Figure 4.7: Performance improvements brought by constrained decoding on different testing
genres with different amounts of source training data.

Finally, we explore a transfer-learning scenario where there are discrepancies between the
training and testing data distributions. Specifically, we consider transferring across different text
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genres. For these experiments, we utilize OntoNotes for NER and DPAR, and ACE05 for EAE.
We take the newswire (nw) portion as the source for training and directly test the source-trained
model on the test sets of other genres (in a zero-shot transferring manner).

The results are shown in Figure 4.6 and 4.7, where the notations are similar to those in §4.3.3.
In these results, similar patterns along the data size axis can be found: incorporating constraints
is more helpful in the cases with less training data and such trends generally hold for out-of-
distribution testing scenarios (target genres that are not “nw”) as well.

One more interesting aspect to inspect is the patterns along the axis of genres. In the figures,
we sort the testing genres according to their similarities to the source (nw). To calculate the
similarities between genres, we simply utilize the overlapping rate of vocabularies since lexical
overlaps can be one important factor for the effectiveness of the transfer. Overall, there is a
weak trend that when transferring to more distant genres, greedy decoding tends to produce
outputs with more structural violations. However, this pattern is not consistent across all the
cases and one potential reason might be the instability of the model transfer. Moreover, there
can be more appropriate measurements than our simple lexicon-based similarity that may better
reflect how the predictions are influenced by constrained decoding across genres. We leave more
explorations to future work.

Takeaways: The previous patterns still generally hold for testing on out-of-domain instances
with genre discrepancies: models trained with fewer training data tend to make more violations
with greedy decoding and benefit more from constrained decoding. There is also a weak pattern
that when transferring to more distant genres, greedy decoding tends to produce more violations.

4.4 Related Work
For structured prediction tasks, one important property is that the prediction outputs are complex
objects with multiple interdependent variables. How to model such inter-dependencies is an
important question for traditional NLP research. Classical algorithms for decoding and learning
have been developed for various structured prediction tasks, including Viterbi algorithm (Viterbi,
1967) and forward-backward algorithm (Baum et al., 1970) for sequence labeling, maximum
spanning tree algorithm (Chu and Liu, 1965; Edmonds, 1967), Inside-Outside algorithm (Paskin,
2001) and Matrix-Tree Theorem (Koo et al., 2007; Smith and Smith, 2007; McDonald and Satta,
2007) for dependency parsing, as well as more complex algorithms for tasks involving more
complicated graph structures (Rush and Collins, 2012; Burkett and Klein, 2013; Martins et al.,
2015; Gormley and Eisner, 2015). Though recent developments of neural models and pre-trained
language models have boosted the performance of simple local models, better modeling of the
structured outputs have still been shown effective for various structured prediction tasks (Wang
et al., 2019c; Fonseca and Martins, 2020; Zhang et al., 2020b; Wei et al., 2021).

For the output modeling of structured prediction tasks, the hard structural constraint is a key
factor for the development of decoding and learning algorithms. To enhance general explicitly
stated constraints, Roth and Yih (2004) tackle the decoding problem with Integer Linear Pro-
gramming (ILP) and such paradigm has been applied to a range of structured NLP tasks (Denis
and Baldridge, 2007; Roth and Yih, 2007; Clarke and Lapata, 2008; Punyakanok et al., 2008). In
addition to enforcing well-formed output structures for decoding, constraints can be also incor-
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porated to enhance model learning (Chang et al., 2008; Li et al., 2020d; Pan et al., 2020; Wang
et al., 2020a, 2021a). While we mainly focus on simply applying constrained decoding with local
models trained with different amounts of data, it would be interesting to explore the influences
when further incorporating constraints at model training time.

4.5 Conclusion
In this chapter, we explore the interactions of constraint-based decoding algorithms and the
amounts of training data for typical structured prediction tasks in NLP. Specifically, we train
local models with different amounts of training data and analyze the influence of whether to
adopt constrained decoding or not. The results show that when the model is trained with less
data, the predictions contain more structural violations with greedy decoding and there are more
benefits to model performance by further applying constrained decoding. Such patterns also gen-
erally hold with more efficient models and when transferring across text genres, where there are
further interesting patterns with regard to model sizes and genre distances.

52



Part II

Transfer Learning
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Chapter 5

On Difficulties of Cross-Lingual Transfer
with Order Differences: A Case Study on
Dependency Parsing

Starting from this chapter, we examine transfer learning, that is, utilizing data resources from
related datasets to help the target task. In this chapter, we specifically investigate cross-lingual
transfer and study the influences of word order differences, taking dependency parsing as the
studying case.

5.1 Introduction
Cross-lingual transfer, which transfers models across languages, has tremendous practical value.
It reduces the requirement of annotated data for a target language and is especially useful when
the target language lacks resources. Recently, this technique has been applied to many NLP tasks
such as text categorization (Zhou et al., 2016a), tagging (Kim et al., 2017), dependency parsing
(Guo et al., 2015, 2016) and machine translation (Zoph et al., 2016). Despite the preliminary
success, transferring across languages is challenging as it requires understanding and handling
differences between languages at levels of morphology, syntax, and semantics. It is especially
difficult to learn invariant features that can robustly transfer to distant languages.

Prior work on cross-lingual transfer mainly focused on sharing word-level information by
leveraging multi-lingual word embeddings (Xiao and Guo, 2014; Guo et al., 2016; Sil et al.,
2018). However, words are not independent in sentences; their combinations form larger linguis-
tic units, known as context. Encoding context information is vital for many NLP tasks, and a
variety of approaches (e.g., convolutional neural networks and recurrent neural networks) have
been proposed to encode context as a high-level feature for downstream tasks. In this chapter,
we study how to transfer generic contextual information across languages.

For cross-language transfer, one of the key challenges is the variation in word order among
different languages. For example, the Verb-Object pattern in English can hardly be found in
Japanese. This challenge should be taken into consideration in model design. RNN is a prevalent
family of models for many NLP tasks and has demonstrated compelling performances (Mikolov
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et al., 2010; Sutskever et al., 2014; Peters et al., 2018). However, its sequential nature makes
it heavily reliant on word order information, which exposes it to the risk of encoding language-
specific order information that cannot generalize across languages. We characterize this as the
“order-sensitive” property. Another family of models known as “Transformer” uses self-attention
mechanisms to capture context and was shown to be effective in various NLP tasks (Vaswani
et al., 2017; Liu et al., 2018c; Kitaev and Klein, 2018). With modification in position representa-
tions, the self-attention mechanism can be more robust than RNNs to the change of word order.
We refer to this as the “order-free” property. We posit that order-free models have better trans-
ferability than order-sensitive models because they suffer less from overfitting language-specific
word order features. To test our hypothesis, we first quantify language distance in terms of word
order typology, and then systematically study the transferability of order-sensitive and order-free
neural architectures on cross-lingual dependency parsing.

We use dependency parsing as a test bed primarily because of the availability of unified
annotations across a broad spectrum of languages (Nivre et al., 2018b). Besides, word order
typology is found to influence dependency parsing (Naseem et al., 2012; Täckström et al., 2013b;
Zhang and Barzilay, 2015; Ammar et al., 2016; Aufrant et al., 2016). Moreover, parsing is
a low-level NLP task (Hashimoto et al., 2017) that can benefit many downstream applications
(McClosky et al., 2011; Gamallo et al., 2012; Jie et al., 2017).

We conduct evaluations on 31 languages across a broad spectrum of language families, as
shown in Table 5.1. Our empirical results show that order-free encoding and decoding models
generally perform better than the order-sensitive ones for cross-lingual transfer, especially when
the source and target languages are distant.

Language Families Languages
Afro-Asiatic Arabic (ar), Hebrew (he)
Austronesian Indonesian (id)

IE.Baltic Latvian (lv)
IE.Germanic Danish (da), Dutch (nl), English (en), German (de),

Norwegian (no), Swedish (sv)
IE.Indic Hindi (hi)
IE.Latin Latin (la)

IE.Romance Catalan (ca), French (fr), Italian (it), Portuguese
(pt), Romanian (ro), Spanish (es)

IE.Slavic Bulgarian (bg), Croatian (hr), Czech (cs), Polish
(pl), Russian (ru), Slovak (sk), Slovenian (sl),

Ukrainian (uk)
Japanese Japanese (ja)
Korean Korean (ko)

Sino-Tibetan Chinese (zh)
Uralic Estonian (et), Finnish (fi)

Table 5.1: The selected languages grouped by language families. “IE” is the abbreviation of
Indo-European.
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5.2 Quantifying Language Distance

We first verify that we can measure “language distance” based on word order since it is a signif-
icant distinctive feature to differentiate languages (Dryer, 2007). The World Atlas of Language
Structures (WALS) (Dryer and Haspelmath, 2013) provides a great reference for word order ty-
pology and can be used to construct feature vectors for languages (Littell et al., 2017). But since
we already have the universal dependency annotations, we take an empirical way and directly ex-
tract word order features using directed dependency relations (Liu, 2010). We conduct our study
using the Universal Dependencies (UD) Treebanks (v2.2) (Nivre et al., 2018b). As shown above
in Table 5.1, we select 31 languages for evaluation and analysis, with the selection criterion being
that the total token number in the treebanks of that language is over 100K.

We look at finer-grained dependency types than the 37 universal dependency labels1 in UD
v2 by augmenting the dependency labels with the universal part-of-speech (POS) tags of the head
and modifier nodes. Specifically, we use triples “(ModifierPOS, HeadPOS, DependencyLabel)”
as the augmented dependency types. With this, we can investigate language differences in a
fine-grained way by defining directions on these triples (i.e. modifier before head or modifier
after head). We conduct feature selection by filtering out rare types as they can be unstable. Our
filtering criterion is that the type’s frequency is larger than 0.1% and it appears in at least 20
languages. For each dependency type, we collect the statistics of directionality (Liu, 2010; Wang
and Eisner, 2017). Since there can be only two directions for an edge, for each dependency type,
we use the relative frequency of the left direction (modifier before head) as the directional feature.
By concatenating the directional features of all selected triples, we obtain a word-ordering feature
vector for each language. We calculate the word-ordering distance using these vectors. In this
chapter, we simply use the Manhattan distance, which we empirically find works well.

We perform hierarchical clustering based on the word-ordering vectors for the selected lan-
guages, following Östling (2015). As shown in Figure 5.1, the grouping of the ground truth
language families is almost recovered. The two outliers, German (de) and Dutch (nl), are indeed
different from English. For instance, German and Dutch adopt a larger portion of Object-Verb
order in embedded clauses. The above analysis shows that word order is an important feature to
characterize differences between languages. Therefore, it should be taken into consideration in
the model design.

5.3 Models

Our primary goal is to conduct the cross-lingual transfer of syntactic dependencies without pro-
viding any annotation in the target languages. The overall architecture of models that are studied
in this research is described as follows. The first layer is an input embedding layer, for which we
simply concatenate word and POS embeddings. The POS embeddings are trained from scratch,
while the word embeddings are fixed and initialized with the multilingual embeddings by Smith
et al. (2017). These inputs are fed to the encoder to get contextual representations, which are
further used by the decoder for predicting parse trees.

1http://universaldependencies.org/u/dep/index.html
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Figure 5.1: Hierarchical clustering (with the Nearest Point Algorithm) dendrogram of the lan-
guages by their word-ordering vectors.

For the cross-lingual transfer, we hypothesize that the models capturing less language-specific
information of the source language will have better transferability. We focus on the word order
information and explore different encoders and decoders that are considered as order-sensitive
and order-free, respectively.

5.3.1 Contextual Encoders

Considering the sequential nature of languages, RNN is a natural choice for the encoder. How-
ever, modeling sentences word by word in the sequence inevitably encodes word order infor-
mation, which may be specific to the source language. To alleviate this problem, we adopt the
self-attention-based encoder (Vaswani et al., 2017) for cross-lingual parsing. It can be less sen-
sitive to word order but not necessarily less potent at capturing contextual information, which
makes it suitable for our study.

RNNs Encoder Following prior work (Kiperwasser and Goldberg, 2016; Dozat and Manning,
2017), we employ k-layer bidirectional LSTMs (Hochreiter and Schmidhuber, 1997) on top of
the input vectors to obtain contextual representations. Since it explicitly depends on word order,
we will refer to it as an order-sensitive encoder.

Self-Attention Encoder The original self-attention encoder (Transformer) takes absolute posi-
tional embeddings as inputs, which capture much order information. To mitigate this, we utilize
relative position representations (Shaw et al., 2018), with a further simple modification to make it
order-agnostic: the original relative position representations discriminate left and right contexts
by adding signs to distances, while we discard the directional information.
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We directly base our descriptions on those in (Shaw et al., 2018). For the relative positional
self-attention encoder, each layer calculates multiple attention heads. In each head, the input
sequence of vectors x = (x1, . . . , xn) is transformed into the output sequence of vectors z =
(z1, . . . , zn), based on the self-attention mechanism:

zi =
n∑

j=1

αij(xjW
V + aVij) αij =

exp eij∑n
k=1 exp eik

eij =
xiW

Q(xjW
K + aKij )

T

√
dz

Here, aVij and aKij are relative positional representations for the two positions i and j. Similarly,
we clip the distance with a maximum threshold of k (which is empirically set to 10), but we do
not discriminate between positive and negative values. Instead, since we do not want the model
to be aware of directional information, we use the absolute values of the position differences:

aKij = wK
clip(|j−i|,k) aVij = wV

clip(|j−i|,k) clip(x, k) = min(|x|, k)

Therefore, the learnable relative postion representations have k + 1 types rather than 2k + 1: we
have wK = (wK

0 , . . . , wK
k ), and wV = (wV

0 , . . . , w
V
k ).

With this, the model knows only what words are surrounding but cannot tell the directions.
Since the self-attention encoder is less sensitive to word order, we refer to it as an order-free
encoder.

5.3.2 Structured Decoders
With the contextual representations from the encoder, the decoder predicts the output tree struc-
tures. We also investigate two types of decoders with different sensitivities to ordering informa-
tion.

Stack-Pointer Decoder Recently, Ma et al. (2018) proposed a top-down transition-based de-
coder and obtained state-of-the-art results. Thus, we select it as our transition-based decoder. To
be noted, in this Stack-Pointer decoder, RNN is utilized to record the decoding trajectory and
also can be sensitive to word order. Therefore, we will refer to it as an order-sensitive decoder.

Graph-based Decoder Graph-based decoders assume simple factorization and can search glob-
ally for the best structure. Recently, with a deep biaffine attentional scorer, Dozat and Manning
(2017) obtained state-of-the-art results with simple first-order factorization (Eisner, 1996; Mc-
Donald et al., 2005a). This method resembles the self-attention encoder and can be regarded as
a self-attention output layer. Since it does not depend on ordering information, we refer to it as
an order-free decoder.

5.4 Experiments and Analysis
In this section, we compare four architectures for cross-lingual transfer dependency parsing with
a different combination of order-free and order-sensitive encoder and decoder. We conduct sev-
eral detailed analyses showing the pros and cons of both types of models.
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5.4.1 Setup

Layer Hyper-Parameter Value

Input Word dimension 300
POS dimension 50

RNN

Encoder encoder layer 3
encoder size 300

MLP arc MLP size 512
label MLP size 128

Training

Dropout 0.33
optimizer Adam

learning rate 0.001
batch size 32

Self-Attention

Encoder
encoder layer 6

dmodel 350
dff 512

MLP arc MLP size 512
label MLP size 128

Training

Dropout 0.2
optimizer Adam

learning rate 0.0001
batch size 80

Table 5.2: Hyper-parameters in our experiments.

Settings In our main experiments (those except Section 5.4.3), we take English as the source
language and 30 other languages as target languages. We only use the source language for both
training and hyperparameter tuning. During testing, we directly apply the trained model to target
languages with the inputs from target languages passed through pre-trained multilingual embed-
dings that are projected into a common space as the source language. The projection is done by
the offline transformation method (Smith et al., 2017) with pre-trained 300d monolingual em-
beddings from FastText (Bojanowski et al., 2017). We freeze word embeddings since fine-tuning
them may disturb the multi-lingual alignments. We also adopt gold UPOS tags for the inputs.
Table 5.2 shows our main hyper-parameters, which are similar to the ones in the Biaffine Graph
Parser (Dozat and Manning, 2017) and the Stack-Pointer Parser (Ma et al., 2018). Throughout
our experiments, we adopted the language-independent UD labels and a sentence length thresh-
old of 140. The evaluation metrics are unlabeled attachment score (UAS) and labeled attachment
score (LAS) with punctuations excluded. We trained our cross-lingual models five times with
different initializations and reported average scores.

Systems As described before, we have an order-free (Self-Attention) and an order-sensitive
(BiLSTM-RNN) encoder, as well as an order-free (Biaffine Attention Graph-based) and an order-
sensitive (Stack-Pointer) decoder. The combination gives us four different models, named in the
format of “Encoder” plus “Decoder”. For clarity, we also mark models with their encoder-
decoder order sensitivity characteristics. For example, “SelfAtt-Graph (OF-OF)” refers to the

60



model with a self-attention order-free encoder and a graph-based order-free decoder. We bench-
mark our models with a baseline shift-reduce transition-based parser, which gave previous state-
of-the-art results for single-source zero-resource cross-lingual parsing (Guo et al., 2015). Since
they used older datasets, we also re-trained the model on our datasets with their implementation
and compared it with their results. We also list the supervised learning results using the “RNN-
Graph” model on each language as a reference of the upper bound for cross-lingual parsing.

5.4.2 Results

Lang
Dist. to SelfAtt-Graph RNN-Graph SelfAtt-Stack RNN-Stack Baseline Supervised
English (OF-OF) (OS-OF) (OF-OS) (OS-OS) (Guo et al., 2015) (RNN-Graph)

en 0.00 90.35/88.40 90.44/88.31 90.18/88.06 91.82†/89.89† 87.25/85.04 90.44/88.31
no 0.06 80.80/72.81 80.67/72.83 80.25/72.07 81.75†/73.30† 74.76/65.16 94.52/92.88
sv 0.07 80.98/73.17 81.23/73.49 80.56/72.77 82.57†/74.25† 71.84/63.52 89.79/86.60
fr 0.09 77.87/72.78 78.35†/73.46† 76.79/71.77 75.46/70.49 73.02/64.67 91.90/89.14
pt 0.09 76.61†/67.75 76.46/67.98 75.39/66.67 74.64/66.11 70.36/60.11 93.14/90.82
da 0.10 76.64/67.87 77.36/68.81 76.39/67.48 78.22†/68.83 71.34/61.45 87.16/84.23
es 0.12 74.49/66.44 74.92†/66.91† 73.15/65.14 73.11/64.81 68.75/59.59 93.17/90.80
it 0.12 80.80/75.82 81.10/76.23† 79.13/74.16 80.35/75.32 75.06/67.37 94.21/92.38
hr 0.13 61.91†/52.86† 60.09/50.67 60.58/51.07 60.80/51.12 52.92/42.19 89.66/83.81
ca 0.13 73.83/65.13 74.24†/65.57† 72.39/63.72 72.03/63.02 68.23/58.15 93.98/91.64
pl 0.13 74.56†/62.23† 71.89/58.59 73.46/60.49 72.09/59.75 66.74/53.40 94.96/90.68
uk 0.13 60.05/52.28† 58.49/51.14 57.43/49.66 59.67/51.85 54.10/45.26 85.98/82.21
sl 0.13 68.21†/56.54† 66.27/54.57 66.55/54.58 67.76/55.68 60.86/48.06 86.79/82.76
nl 0.14 68.55/60.26 67.88/60.11 67.88/59.46 69.55†/61.55† 63.31/53.79 90.59/87.52
bg 0.14 79.40†/68.21† 78.05/66.68 78.16/66.95 78.83/67.57 73.08/61.23 93.74/89.61
ru 0.14 60.63/51.63 59.99/50.81 59.36/50.25 60.87/51.96 55.03/45.09 94.11/92.56
de 0.14 71.34†/61.62† 69.49/59.31 69.94/60.09 69.58/59.64 65.14/54.13 88.58/83.68
he 0.14 55.29/48.00† 54.55/46.93 53.23/45.69 54.89/40.95 46.03/26.57 89.34/84.49
cs 0.14 63.10†/53.80† 61.88/52.80 61.26/51.86 62.26/52.32 56.15/44.77 94.03/91.87
ro 0.15 65.05†/54.10† 63.23/52.11 62.54/51.46 60.98/49.79 56.01/44.04 90.07/84.50
sk 0.17 66.65/58.15† 65.41/56.98 65.34/56.68 66.56/57.48 57.75/47.73 90.19/86.38
id 0.17 49.20†/43.52† 47.05/42.09 47.32/41.70 46.77/41.28 40.84/33.67 87.19/82.60
lv 0.18 70.78/49.30 71.43†/49.59 69.04/47.80 70.56/48.53 62.33/41.42 83.67/78.13
fi 0.20 66.27/48.69 66.36/48.74 64.82/47.50 66.25/48.28 58.51/38.65 88.04/85.04
et 0.20 65.72†/44.87† 65.25/44.40 64.12/43.26 64.30/43.50 56.13/34.86 86.76/83.28

zh* 0.23 42.48†/25.10† 41.53/24.32 40.56/23.32 40.92/23.45 40.03/20.97 73.62/67.67
ar 0.26 38.12†/28.04† 32.97/25.48 32.56/23.70 32.85/24.99 32.69/22.68 86.17/81.83
la 0.28 47.96†/35.21† 45.96/33.91 45.49/33.19 43.85/31.25 39.08/26.17 81.05/76.33
ko 0.33 34.48†/16.40† 33.66/15.40 32.75/15.04 33.11/14.25 31.39/12.70 85.05/80.76
hi 0.40 35.50†/26.52† 29.32/21.41 31.38/23.09 25.91/18.07 25.74/16.77 95.63/92.93
ja* 0.49 28.18†/20.91† 18.41/11.99 20.72/13.19 15.16/9.32 15.39/08.41 89.06/78.74

Average 0.17 64.06†/53.82† 62.71/52.63 62.22/52.00 62.37/51.89 57.09/45.41 89.44/85.62

Table 5.3: Main results (UAS%/LAS%) on the test sets.

The main results on the test sets are shown in Table 5.3. The languages are ordered by their
order typology distance to English, as shown in the second column. ‘*’ refers to the results of
delexicalized models, ‘†’ means that the best transfer model is statistically significantly better
(by paired bootstrap test, p < 0.05) than all other transfer models. Models are marked with their
encoder and decoder order sensitivity, OF denotes order-free and OS denotes order-sensitive. In
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preliminary experiments, we found our lexicalized models performed poorly on Chinese (zh) and
Japanese (ja). We found the main reason was that their embeddings were not well aligned with
English. Therefore, we use delexicalized models, where only POS tags are used as inputs. The
delexicalized results2 for Chinese and Japanese are listed in the rows marked with “*”.

Overall, the “SelfAtt-Graph” model performs the best in over half of the languages and beats
the runner-up “RNN-Graph” by around 1.3 in UAS and 1.2 in LAS on average. When compared
with “RNN-Stack” and “SelfAtt-Stack”, the average difference is larger than 1.5 points. This
shows that models that capture less word order information generally perform better at cross-
lingual parsing. Compared with the baseline, our superior results show the importance of the
contextual encoder. Compared with the supervised models, the cross-lingual results are still
lower by a large gap, indicating space for improvements. We also ran our models on Google
Universal Dependency Treebanks v2.0 McDonald et al. (2013), which is an older dataset that
was used by Guo et al. (2015). As shown in Table 5.4, our models perform better consistently.

Language SelfAtt-Graph RNN-Graph SelfAtt-Stack RNN-Stack (Guo et al., 2015)
German 65.03/55.03 64.60/54.57 63.63/54.40 65.51/55.82 60.35/51.54
French 74.45/63.28 76.75/65.20 73.63/62.76 75.13/64.44 72.93/63.12
Spanish 72.00/61.50 73.99/63.46 71.73/61.42 74.13/64.00 71.90/62.28

Table 5.4: Comparisons (UAS%/LAS%) on Google Universal Dependency Treebanks v2.0.

After taking a closer look, we find an interesting pattern in the results: while the model
performances on the source language (English) are similar, RNN-based models perform better
on languages that are closer to English (upper rows in the table), whereas for languages that are
“distant” from English, the “SelfAtt-Graph” performs much better. Such patterns correspond
well with our hypothesis, that is, the design of models considering word order information is
crucial in cross-lingual transfer. We conduct more thorough analyses in the next subsection.

5.4.3 Analysis
We further analyze how different modeling choices influence cross-lingual transfer. Since we
have not touched the training sets for languages other than English, in this subsection, we evalu-
ate and analyze the performance of target languages using training splits in UD. The performance
of English is evaluated on the test set. We verify that the trends observed in the test set are simi-
lar to those in the training sets. As mentioned in the previous section, the bilingual embeddings
for Chinese and Japanese do not align well with English. Therefore, we report the results with
delexicalizing.

Encoder Architecture

We assume models that are less sensitive to word order perform better when transfer to distant
languages. To empirically verify this point, we conduct controlled comparisons on various en-

2We found delexicalized models to be better only at zh and ja, for about 5 and 10 points respectively. For other
languages, they performed worse at about 2 to 5 points. We also tried models without POS and found them worse
by about 10 points on average.
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coders with the same graph-based decoder. Table 5.5 shows the average performances in all
languages.

Model UAS% LAS%
SelfAtt-Relative (Ours) 64.57 54.14
SelfAtt-Relative+Dir 63.93 53.62

RNN 63.25 52.94
SelfAtt-Absolute 61.76 51.71
SelfAtt-NoPosi 28.18 21.45

Table 5.5: Comparisons of different encoders (averaged results over all languages on the original
training sets).

To compare models with various degrees of sensitivity to word order, we include several
variations of self-attention models. The “SelfAtt-NoPosi” is the self-attention model without any
positional information. Although it is most insensitive to word order, it performs poorly possibly
because of the lack of access to the locality of contexts. The self-attention model with absolute
positional embeddings (“SelfAtt-Absolute”) also does not perform well. In the case of parsing,
relative positional representations may be more useful as indicated by the improvements brought
by the directional relative position representations (“SelfAtt-Relative+Dir”) (Shaw et al., 2018).
Interestingly, the RNN encoder ranks between “SelfAtt-Relative+Dir” and “SelfAtt-Absolute”;
all these three encoders explicitly capture word order information in some way. Finally, by
discarding the information of directions, our relative position representation (“SelfAtt-Relative”)
performs the best (significantly better at p < 0.05).

One crucial observation we have is that the patterns of breakdown performances for “SelfAtt-
Relative+Dir” are similar to those of RNN: in closer languages, the direction-aware model per-
forms better, while in distant languages the non-directional one generally obtains better results.
Since the only difference between our proposed “SelfAtt-Relative” model and the “SelfAtt-
Relative+Dir” model is the directional encoding, we believe the better performances should
credit to its effectiveness in capturing useful context information without depending too much
on the language-specific order information.

These results suggest that a model’s sensitivity to word order indeed affects its cross-lingual
transfer performances. In later sections, we stick to our “SelfAtt-Relative” variation of the self-
attentive encoder and focus on the comparisons among the four main models.

Performance v.s. Language Distance

We posit that order-free models can do better than order-sensitive ones on cross-lingual transfer
parsing when the target languages have different word orders than the source language. Now we
can analyze this with the word-ordering distance.

For each target language, we collect two types of distances when comparing it to English: one
is the word-ordering distance as described in Section 5.2, the other is the performance distance,
which is the gap of evaluation scores3 between the target language and English. The performance

3In the rest of this chapter, we simply average UAS and LAS for evaluation scores unless otherwise noted.
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distance can represent the general transferability from English to this language. We calculate the
correlation of these two distances on all the concerned languages, and the results turn out to be
quite high: the Pearson and Spearman correlations are around 0.90 and 0.87 respectively, using
the evaluations of any of our four cross-lingual transfer models. This suggests that word order
can be an important factor for cross-lingual transferability.
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Figure 5.2: Evaluation score differences between Order-Free (OF) and Order Sensitive (OS)
modules.

Furthermore, we individually analyze the encoders and decoders of the dependency parsers.
Since we have two architectures for each of the modules, when examining one, we take the high-
est scores obtained by any of the other modules. For example, when comparing RNN and Self-
Attention encoders, we take the best evaluation scores of “RNN-Graph” and “RNN-Stack” for
RNN and the best of “SelfAtt-Graph” and “SelfAtt-Stack” for Self-Attention. Figure 5.2 shows
the score differences of encoding and decoding architectures against the languages’ distances to
English. We show the results of both encoder (blue solid curve) and decoder (dashed red curve).
Languages are sorted by their word-ordering distances to English from left to right. The position
of English is marked with a green bar. For both the encoding and decoding modules, we observe
a similar overall pattern: the order-free models, in general, perform better than order-sensitive
ones in the languages that are distant from the source language English. On the other hand,
for some languages that are closer to English, order-sensitive models perform better, possibly
benefiting from being able to capture similar word-ordering information. The performance gaps
between order-free and order-sensitive models are positively correlated with language distance.

Performance Breakdown by Types

Moreover, we compare the results on specific dependency types using concrete examples. For
each type, we sort the languages by their relative frequencies of left direction (modifier before
head) and plot the performance differences for encoders and decoders. We highlight the source
language English in green. Figure 5.3 shows four typical example types: Adposition and Noun,
Adjective and Noun, Auxiliary and Verb, and Object and Verb. To save space, we merge the
curves of encoders and decoders into one figure. The blue and red curves and left y-axis rep-
resent the differences in evaluation scores, while the brown curve and right y-axis represent the
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(b) Adjective & Noun (ADJ, NOUN, amod)
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(c) Auxiliary & Verb (AUX, VERB, aux)
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Figure 5.3: Analysis on specific dependency types.

relative frequency of the left direction (modifier before head) on this type. The languages (x-axis)
are sorted by this relative frequency from high to low. In Figure 5.3a, we examine the “case”
dependency type between adpositions and nouns. The pattern is similar to the overall pattern.
For languages that mainly use prepositions as in English, different models perform similarly,
while for languages that use postpositions, order-free models get better results. The patterns of
adjective modifier (Figure 5.3b) and auxiliary (Figure 5.3c) are also similar.

On dependencies between verbs and object nouns, although in general order-free models per-
form better, the pattern diverges from what we expect. There can be several possible explanations
for this. Firstly, the tokens which are noun objects of verbs only take about 3.1% on average over
all tokens. Considering just this specific dependency type, the correlation between frequency
distances and performance differences is 0.64, which is far less than 0.9 when considering all
types. Therefore, although Verb-Object ordering is a typical example, we cannot take it as the
whole story of word order. Secondly, Verb-Object dependencies can often be difficult to decide.
They sometimes are long-ranged and have complex interactions with other words. Therefore,
merely reducing modeling order information can have complicated effects. Moreover, although
our relative-position self-attention encoder does not explicitly encode word positions, it may still
capture some positional information with relative distances. For example, the words in the mid-
dle of a sentence will have different distance patterns from those at the beginning or the end.
With this knowledge, the model can still prefer the pattern where a verb is in the middle as in En-
glish’s Subject-Verb-Object ordering and may find sentences in Subject-Object-Verb languages
strange. It will be interesting to explore more ways to weaken or remove this bias.

Analysis on Dependency Distances

We now look into dependency lengths and directions. Here, we combine dependency length
and direction into dependency distance d, by using negative signs for dependencies with left-
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direction (modifier before head) and positive for right-direction (head before modifier). We find
a seemingly strange pattern at dependency distances |d|=1: for all transfer models, evaluation
scores on d=-1 can reach about 80, but on d=1, the scores are only around 40. This may be
explained by the relative frequencies of dependency distances as shown in Table 5.6, where there
is a discrepancy between English and the average of other languages at d=1. About 80% of the
dependencies with |d|=1 in English is the left direction (modifier before head), while overall
other languages have more right directions at |d|=1. This suggests an interesting future direction
of training on more source languages with different dependency distance distributions.

d <-2 -2 -1 1 2 >2
English 14.36 15.45 31.55 7.51 9.84 21.29
Average 12.93 11.83 30.42 14.22 10.49 20.11

Table 5.6: Relative frequencies (%) of dependency distances.
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Figure 5.4: Evaluation differences of models on d=1 dependencies.

We further compare the four models on the d=1 dependencies and as shown in Figure 5.4.
Here, notations are the same as in Figure 5.3, languages are sorted by percentages (represented
by the brown curve and right y-axis) of d=1 dependencies. The order-free models perform better
at the languages which have more d=1 dependencies. Such a finding indicates that our model
design of reducing the ability to capture word order information can help with short-ranged
dependencies of different directions to the source language. However, the improvements are still
limited. One of the most challenging parts of unsupervised cross-lingual parsing is modeling
cross-lingually shareable and language-unspecific information. In other words, we want flexible
yet powerful models. Our exploration of the order-free self-attentive models is the first step.

Transfer between All Language Pairs

Finally, we investigate the transfer performance of all source-target language pairs.4 We first
generate a performance matrix A, where each entry (i, j) records the transfer performance from a

4Because the size of the training corpus for each language is different in UD, to compare among languages,
we train a parser on the first 4,000 sentences for each language and evaluate its transfer performance on all other
languages.
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Figure 5.5: Transfer performance of all source-target language pairs.

source language i to a target language j. We then report the following two aggregate performance
measures on A in Figure 5.5: 1) As-source reports the average over columns of A for each row
of the source language and 2) As-target reports the average over rows of A for each column of
the target language. As a reference, we also plot the average word-order distance between one
language to other languages. Results show that both As-source (blue line) and As-target (red line)
highly are anti-correlated (Pearson correlation coefficients are −0.90 and −0.87, respectively)
with average language distance (brown line).

5.5 Related Work
Cross-language transfer learning employing deep neural networks has widely been studied in the
areas of natural language processing (Ma and Xia, 2014; Guo et al., 2015; Kim et al., 2017; Kann
et al., 2017; Cotterell and Duh, 2017), speech recognition (Xu et al., 2014; Huang et al., 2013),
and information retrieval (Vulić and Moens, 2015; Sasaki et al., 2018; Litschko et al., 2018).
Learning the language structure (e.g., morphology, syntax) and transferring knowledge from the
source language to the target language is the main underneath challenge, and has been thor-
oughly investigated for a wide variety of NLP applications, including sequence tagging (Yang
et al., 2016; Buys and Botha, 2016), name entity recognition (Xie et al., 2018), dependency
parsing (Tiedemann, 2015; Agić et al., 2014), entity coreference resolution and linking (Kundu
et al., 2018; Sil et al., 2018), sentiment classification (Zhou et al., 2015b, 2016b), and question
answering (Joty et al., 2017).

Existing work on unsupervised cross-lingual dependency parsing, in general, trains a depen-
dency parser on the source language and then directly runs on the target languages. Training
of the monolingual parsers is often delexicalized, i.e., removing all lexical features from the
source treebank (Zeman and Resnik, 2008; McDonald et al., 2013), and the underlying feature
model is selected from a shared part-of-speech (POS) representation utilizing the Universal POS
Tagset (Petrov et al., 2012). Another pool of prior work improves the delexicalized approaches
by adapting the model to fit the target languages better. Cross-lingual approaches that facili-
tate the usage of lexical features include choosing the source language data points suitable for
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the target language (Søgaard, 2011; Täckström et al., 2013b), transferring from multiple sources
(McDonald et al., 2011; Guo et al., 2016; Täckström et al., 2013b), using cross-lingual word
clusters (Täckström et al., 2012) and lexicon mapping (Xiao and Guo, 2014; Guo et al., 2015).
In this chapter, we consider single-source transfer: train a parser on a single source language and
evaluate it on the target languages to test the transferability of neural architectures.

Multilingual transfer (Ammar et al., 2016; Naseem et al., 2012; Zhang and Barzilay, 2015) is
another broad category of techniques applied to parsing where knowledge from many languages
having a common linguistic typology is utilized. Recent work (Aufrant et al., 2016; Wang and
Eisner, 2018a,b) demonstrated the significance of explicitly extracting and modeling linguistic
properties of the target languages to improve cross-lingual dependency parsing.

5.6 Conclusion
In this chapter, we conduct a comprehensive study on how the design of neural architectures
affects cross-lingual transfer learning. We examine two notable families of neural architectures
(sequential RNN v.s. self-attention) using dependency parsing as the evaluation task. We show
that order-free models perform better than order-sensitive ones when there is a significant differ-
ence in the word order typology between the target and source languages.
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Chapter 6

On the Benefit of Syntactic Supervision for
Cross-lingual Transfer in Semantic Role
Labeling

In this chapter, we continue our study on cross-lingual transfer and further consider learning with
cross-task training signals. Specifically, we investigate the connections between syntax and SRL,
showing that syntactic supervision can help facilitate cross-lingual transfer in SRL when lacking
abundant direct target training data.

6.1 Introduction
The task of semantic role labeling (SRL) annotates predicate-argument structures in text and
is thus a desirable output of natural language processing (NLP) pipelines designed to extract
information from text (Gildea and Jurafsky, 2002; Palmer et al., 2010). Recent developments in
neural architectures (Vaswani et al., 2017) and pre-trained contextualized representations (Devlin
et al., 2019; Liu et al., 2019) have greatly improved the performance of SRL systems (Zhou
and Xu, 2015; He et al., 2017; Tan et al., 2018; Shi and Lin, 2019). However, most previous
work focuses on high-resource English SRL scenarios, and it remains a challenge to extend
these approaches, which require plentiful supervised examples, to other languages where training
resources may be limited.

A popular approach addressing this challenge is cross-lingual learning: leveraging the shared
structures across human languages to transfer knowledge from high-resource languages to low-
resource ones. Model transfer, where an SRL model is directly transferred across languages using
shared representations (Kozhevnikov and Titov, 2013, 2014; Fei et al., 2020b), is a particularly
promising approach thanks to recent developments in multilingual contextualized representations
(Lample and Conneau, 2019; Conneau et al., 2020), which have proven effective for cross-lingual
transfer (Wu and Dredze, 2019; Pires et al., 2019).

Another common strategy for improving SRL model performance in both high- and low-
resource scenarios is incorporating syntactic information. Syntactic analysis was until recently
considered a prerequisite for most SRL systems (Gildea and Palmer, 2002; Punyakanok et al.,
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2008) and has been shown to benefit recent neural models as well (Marcheggiani and Titov,
2017; He et al., 2018b; Swayamdipta et al., 2018; Strubell et al., 2018). Despite much work
exploring cross-lingual learning and incorporating syntactic information into SRL systems, most
such previous work explores these two avenues separately, though there are numerous reasons
that carefully incorporating syntax into a cross-lingual system for SRL could provide further
benefits: First, whereas SRL annotations are limited to only about a dozen languages, much
richer resources are available for syntax, thanks to the development of the Universal Depen-
dencies (UD) framework and accompanying corpora (Nivre et al., 2016b, 2020), which defines
syntactic annotations that are consistent across languages, with treebanks in over 100 languages
to date. Second, UD treebanks in particular have the potential to increase beneficial sharing of
information across languages by providing a unified syntactic structure to ground cross-lingual
representations.

Most previous work utilizing syntax for cross-lingual SRL has incorporated syntactic infor-
mation only as an input to the model, either as sparse features (Kozhevnikov and Titov, 2013;
Pražák and Konopı́k, 2017) or as structures for tree encoders (Fei et al., 2020b). These strategies
require syntactic pre-processing by an additional model and can suffer from error propagation.
In this chapter, we explore an alternative approach that has yet to be explored in the cross-lingual
setting: adopting syntactic annotations as auxiliary supervision and performing multitask learn-
ing (Caruana, 1997) together with SRL (Swayamdipta et al., 2018; Strubell et al., 2018; Cai and
Lapata, 2019).

To evaluate the extent to which syntactic supervision can help facilitate cross-lingual trans-
fer in SRL, we perform a comprehensive empirical analysis on three SRL benchmark datasets,
covering ten languages (in addition to English). We evaluate our models in both zero-shot and
semi-supervised scenarios and on both dependency- and span-based SRL. Highlights of our find-
ings include: 1) Training SRL models with syntactic supervision is consistently helpful in low-
resource SRL scenarios. (§6.3.2, §6.3.3, §6.3.4, §6.3.5); 2) When lacking direct syntactic anno-
tations for the target language, available treebanks from related languages can be used instead
to improve SRL performance (§6.3.4); 3) For span-based SRL, a syntax-aware SRL decoder
out-performs BIO-tagging when combined with syntactic training. (§6.3.5)

6.2 Model
We adopt the typical encoder-decoder paradigm for multi-task learning to perform syntactic de-
pendency parsing and SRL together in one model. A shared encoder gives the hidden repre-
sentations for the input words and each task has its own decoder that takes those shared repre-
sentations as inputs and predicts task-specific labels. We hypothesize that syntactic training can
provide helpful signals for SRL through the shared encoder.

6.2.1 Encoder
We adopt multilingual pre-trained contextualized models as our encoder, following previous
work reporting strong performance for SRL (Shi and Lin, 2019; He et al., 2019; Conia and
Navigli, 2020) and cross-lingual learning (Wu and Dredze, 2019; Pires et al., 2019). For an
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input sequence of words w1, . . . , wn, the encoder produces their contextualized representations
h1, . . . , hn. These pre-trained models take sub-word tokens as input, but our SRL and syntactic
data have word-level annotations, so we take the first sub-token of a word as its representation.
These representations are then provided to task-specific decoders.

6.2.2 Syntax Decoder
For the syntactic (dependency) parsing task, we ignore the single-head constraints in training and
view it as a pairwise labeling task into the space of dependency labelsRd:

p(rd|wH , wM) =
escorerd (hH ,hM )∑

r′∈Rd∪{ϵ} e
scorer′ (hH ,hM )

where p(rd|wH , wM) denotes the probability that the head wH has a dependency relation rd to the
modifier wM (or ϵ, which means no syntactic relation). Following Dozat and Manning (2017),
we use biaffine modules for the scoring (scorerd), which take the encoder representations and
produce relation scores. For training, we use cross-entropy as the objective. Notice that although
this type of pairwise formulation is not widely used for syntactic dependencies, it has been shown
effective for semantic dependency parsing (Dozat and Manning, 2018). Our main motivation1

to utilize it here is to make the syntactic task more similar to SRL. In our syntactic parsing
evaluation, we find that this method obtains similar results to the head-selection method.

6.2.3 SRL Decoder
We focus on the end-to-end SRL task, which extracts both the predicates and their arguments (i.e.
we do not assume gold predicates unless otherwise noted). For argument extraction, we explore
two categories of SRL formalism: dependency-based SRL, which only requires labeling the
syntactic head word of an argument, and span-based SRL, which requires labeling full argument
spans.

Predicate Identification

Predicate identification is cast as a binary classification task. We use a linear scorer over each
word’s encoded representations to judge whether it triggers a semantic frame.

Dependency-based SRL

For dependency-based SRL, the problem can be again formalized as a pairwise labeling task,
and we treat it in a similar way as in the syntax decoder:

p(rs|wP , wA) =
escorers (hP ,hA)∑

r′∈Rs∪{ϵ} e
scorer′ (hP ,hA)

1Another potential benefit is that certain parameters of the output layers may be shareable between syntactic and
SRL decoders. Though in preliminary experiments we did not find obvious improvements with a simple method of
stacking another task-specific classification layer and sharing the middle biaffine layers, this could be an interesting
direction to explore with better parameter-sharing schemes.
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Here p(rs|wP , wA) denotes the probability that a predicate wP takes wA as an argument with the
semantic role rs (or ϵ, which denotes no semantic relation). Again we use biaffine modules for
scoring and cross-entropy as the objective function.

Span-based SRL

Predicting argument spans is usually cast as a sequence labeling problem, with most recent neural
SRL models adopting a simple BIO-tagging decoder (Zhou and Xu, 2015; He et al., 2017; Tan
et al., 2018; Shi and Lin, 2019). In this chapter, we further consider the two-step syntax-aware
approach, as described in Chapter 3 (§3.2). In this method, the first step identifies the argument
head and the second step decides span boundaries given the head identified in the first step. Here,
the first step is exactly the task of dependency-based SRL and we use the same decoder. For the
second step, we adopt the span selection method from extractive question answering (Wang and
Jiang, 2016; Devlin et al., 2019) and use two classifiers to decide the start and end of the span
given the head word.

6.2.4 Training Scheme
To deal with the multi-task and multilingual scenarios, we adopt a simple training scheme. For
each training step, we first sample a task (parsing or SRL), and then a language (source or target).
Based on these, we sample a batch of instances from the corresponding dataset and train the
model on the selected task. In our experiments, we apply fixed sampling rates for the selection
of tasks and languages (1:2 for parsing vs. SRL and 1:1 for source vs. target). In preliminary
experiments, we also tried varying sampling rates but did not find obvious improvements.

6.3 Experimental Results

6.3.1 General Settings

Experiments Languages SRL Style Same Frames? Compatible Roles? Main Setting

EWT/UPB† (§6.3.2) de,fr,it,es,pt,fi dependency Yes Yes Zero-shot
EWT/FiPB (§6.3.3) fi dependency No Yes Semi-supervised

CoNLL-2009 (§6.3.4) cs,zh,es,ca dependency No No Semi-supervised
OntoNotes (§6.3.5) zh,ar span No Yes Semi-supervised

Table 6.1: An overview of our experiments.

We conduct comprehensive experiments with three groups of datasets: 1) English Web Tree-
bank (EWT) (Silveira et al., 2014), Universal Proposition Banks (UPB v1.0) (Akbik et al., 2015,
2016b) and Finnish PropBank (FiPB) (Haverinen et al., 2015); 2) CoNLL-2009 (Hajič et al.,
2009); and 3) OntoNotes v5.0 (Hovy et al., 2006; Weischedel et al., 2013). Table 6.1 gives an
overview of our main experimental settings. Here “Same Frames?” denotes whether different
languages utilize the same semantic frames, and “Compatible Roles?” denotes whether the roles
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labels are the same. (†UPB is created semi-automatically, while other datasets use directly or are
converted from manual annotations.)

We mainly take English as the source language and transfer to other target languages, unless
otherwise noted. For experiments on UPB and FiPB, we assemble the English SRL dataset with
EWT and its SRL annotations from PropBank v3. For CoNLL-2009 and OntoNotes, we utilize
the corresponding English sets. For evaluation, we calculate the labeled F1 score for arguments.
Conventionally, predicate senses are also evaluated for dependency-based SRL. However, cross-
lingual transfer of sense disambiguation provides a non-trivial challenge (Akbik et al., 2016a),
since it is lexicon-based and language-dependent. Moreover, argument labeling can be more
related to dependency syntax, while sense disambiguation is more on the semantic side and
semantic-oriented signals (like bilingual dictionaries or parallel corpora) may be more directly
effective to enhance cross-lingual transfer. Therefore, in this work, we focus on arguments and
do not perform or evaluate sense disambiguation, following the conventions of span-based SRL.

For syntactic resources, we use either UD treebanks or convert constituency trees to depen-
dencies using Stanford CoreNLP (Manning et al., 2014). In most of our settings, we assume
access to multilingual syntax annotations for both source and target languages. We regard this as
a practical setting since UD treebanks are available for a wide range of languages and syntactic
annotations may be easier to obtain than semantic ones.

We adopt pre-trained multilingual language models (multilingual BERT Devlin et al. (2019)
or XLM-R Conneau et al. (2020)) to initialize our encoders and fine-tune the full models. We
use the Adam optimizer Kingma and Ba (2014) with an initial learning rate of 2e-5. We train
the models for 100K steps with a batch size of around 1024 tokens for each step. All models are
trained and evaluated on one GTX 1080 Ti GPU, and training one model usually takes around
half a day.

6.3.2 UPB

UPB annotates2 target languages with English PropBank frames, which allows us to explore
zero-shot experiments without any target SRL training resources. We follow the setting of (Fei
et al., 2020a): training the models with English SRL annotations (EWT) and directly applying
them to the target languages. In this experiment only we assume predicates are given since UPB
is limited to verbal predicates, which leads to discrepancies between source and target predicate
annotations. For the syntactic resources, we take the corresponding treebanks (upon which UPB
is annotated) from UD v1.4 (Nivre et al., 2016a) and simply include them as additional training
data for syntactic supervision.

Comparisons

We first compare several strategies on the usage of syntax, and results on the development set
are shown in Table 6.2. Here we utilize multilingual BERT (mBERT) for the basic encoder. The
table is split into three groups:

2Notice that UPB is created in a semi-automatic way without fully manually validated test sets, but it provides a
test-bed for evaluating zero-shot cross-lingual transfer.
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Method DE FR IT ES PT FI AVG

NoSyn 57.85±0.34 51.41±0.18 55.79±0.42 50.08±0.16 52.53±0.40 43.78±0.57 51.91±0.17
EnSyn 57.78±0.43 51.64±0.16 54.90±0.68 50.15±0.36 52.65±0.22 44.41±0.76 51.92±0.31
TargetSyn 56.84±1.42 57.55±1.01 55.78±2.04 52.40±1.20 56.32±1.54 52.32±1.20 55.20±1.20
FullSyn 59.70±0.61 59.38±0.37 60.75±0.28 55.57±0.36 59.78±0.28 55.94±0.56 58.52±0.20

SEQ(MLM) 57.52±0.67 52.09±0.77 56.56±0.55 50.60±0.47 53.34±0.47 44.56±0.80 52.45±0.29
SEQ(Syn) 59.73±0.39 56.05±0.44 61.11±0.29 55.32±0.29 58.15±0.21 55.23±0.49 57.60±0.15

GCN(Gold) 63.78±0.50 56.44±0.40 61.96±0.73 56.77±0.36 59.79±0.28 55.29±0.33 59.01±0.30
GCN(Pred) 61.15±0.37 55.44±0.36 60.69±0.65 54.49±0.37 58.09±0.27 53.75±0.32 57.27±0.29

Table 6.2: UPB development Arg-F1(%) scores in the English-to-others zero-shot setting (with
mBERT).

• The first group varies which Syntactic resources are used. The four rows denote no syn-
tax (NoSyn), only source (English; EnSyn), only targets (other six languages; TargetSyn)
and full syntactic resources (English plus other six; FullSyn). Here, only adding source
syntax is not helpful, but target syntax information is generally beneficial. Furthermore,
combining both source and target syntax leads to the best results.

• The second group explores a SEQuential two-stage fine-tuning scheme (Phang et al., 2018;
Wang et al., 2019a): first training the model with an auxiliary task (syntax or others) in
an intermediate stage and then with the target task (SRL). Using syntactic parsing as the
intermediate task can bring clear improvements, but it is slightly worse than the MTL
scheme. Here, we also explore a masked language model (MLM) intermediate objective
(Devlin et al., 2019) as a baseline, using the raw texts of the UD treebanks. Though it can
slightly improve the results, the gains are much smaller than those brought by syntax.

• In the final group, we utilize syntax as inputs. We stack a Graph Convolutional Network
(GCN) (Kipf and Welling, 2017) between the encoder and the decoders to encode input
dependency trees. Specifically, we adopt the architecture of (Marcheggiani and Titov,
2017). Using gold trees in this setting out-performs the MTL strategy. However, when
using predicted syntax3, error propagation seems to drag the results down. In this way, the
MTL scheme is an attractive alternative strategy considering its competitive performance
and model simplicity.

Main Results

The test results are listed in Table 6.3. Similar to the trends in the development sets, includ-
ing syntactic signals brings clear improvements, especially for the more distant Finnish lan-
guage. Using XLM-R, which is pre-trained on more data than mBERT, is also helpful,4 upon
which syntax can still bring further benefits. We also compare with the results from (Fei et al.,
2020a), which translates and projects source SRL instances to target languages for training. The

3We obtain predicted syntax trees with our own BERT-based parsers, which achieve strong results (dev-LAS%):
89.6(de), 91.6(fr), 93.7(it), 89.7(es), 92.1(pt) and 93.2(fi).

4Due to better performance, XLM-R is used in the remaining experiments.
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Method DE FR IT ES PT FI

mBERT/NoSyn 55.0 49.9 53.1 49.7 51.0 44.7
mBERT/FullSyn 57.5 56.8 58.3 56.2 58.9 54.4

XLM-R/NoSyn 57.5 50.8 54.3 51.5 53.1 51.8
XLM-R/FullSyn 60.2 56.6 60.6 57.3 59.5 59.9

Fei et al. (2020a) 65.0 64.8 58.7 62.5 56.0 54.5

Table 6.3: UPB test Arg-F1(%) scores in the English-to-others zero-shot setting (averaged over
five runs).

translation-based method performs strongly for German, French and Spanish. Considering that
German and French are commonly used languages in machine translation research, availability
of high-quality translation systems may be one of the contributing factors. Our syntax-enhanced
models are generally competitive for other languages.

Varying Training Sizes
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Figure 6.1: Further results on UPB development sets.

We further vary the number of available syntax trees for the auxiliary parsing task, for which
Figure 6.1a shows the results. We randomly sample a fixed number of trees for each of the
languages (both source and target) and again include them in training. The results indicate that
we do not need the full treebanks to obtain good results. Especially with XLM-R, 1K trees from
each language can already lead to gains comparable to the 10K case.

We also experiment with semi-supervised settings on the UPB datasets. We still take English
as the source and randomly sample SRL training instances for target languages and train the
models alongside all these source examples. The results are shown in Figure 6.1b, where adding
target SRL annotations can bring obvious improvements. Nevertheless, including syntactic su-
pervision is still helpful, particularly in low-resource scenarios.
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6.3.3 FiPB
Similar5 to the experiments on UPB, we take English SRL annotations from EWT as the source.
FiPB adopts (almost) the same argument role set6 as the English ones and we use a shared
SRL decoder for both languages. In preliminary experiments, we find that this sharing strat-
egy performs better than using separate, language-specific decoders. For syntax, we again take
corresponding English and Finnish treebanks from UD v1.4.

Results and Analyses

EnSRL Syntax 0.1K 1K 10K
Dev Test Dev Test Dev Test

No No 43.25±0.50 44.76±0.82 69.02±0.32 70.29±0.54 82.51±0.40 82.91±0.35
No Yes 58.75±0.49 58.32±0.80 73.91±0.33 74.06±0.30 82.71±0.13 83.24±0.17
Yes No 60.76±0.56 60.42±0.89 73.23±0.37 73.67±0.68 82.92±0.30 83.35±0.27
Yes Yes 68.36±0.17 67.22±0.39 75.98±0.14 76.13±0.18 82.73±0.18 83.34±0.22

Table 6.4: FiPB Arg-F1(%) scores in English/Finnish settings (with different numbers of Finnish
SRL sentences).

The main results on FiPB are listed in Table 6.4. Here, “EnSRL” indicates whether using
English SRL, and “Syntax” denotes whether using syntactic annotations. In the lowest-resource
scenario (0.1K Finnish SRL sentences), both English SRL and syntax are quite helpful, and
combining them leads to further improvements. The trend is similar if given 1K target SRL
annotations, but the gaps decrease. Finally, when given enough target training instances as in
the 10K scenario, the gains due to extra resources (either English SRL or syntax) are negligible.
In this case, the model may have already learned most of the patterns from rich target SRL
annotations.

We further perform analysis on the development results in the 1K case, as shown in Table
6.5. Here, the first block denotes breakdowns on argument roles, the second denotes the syntactic
distance between predicate and argument words, and the third denotes the syntactic path between
them. The numbers in parentheses denote percentages. Bold and underlined numbers indicate
the best and second-best results respectively.

In the first group of role label breakdowns, adding syntax particularly helps core arguments
while adding English SRL helps more on non-core arguments. Finally, combining both leads
to the best results overall. In the second group, we break down arguments by their syntactic
distance to the predicates. The results show that syntactic supervision is still beneficial when the
predicate and the argument are two edges away (d=2). However, when syntax distance is larger,
direct syntactic supervision becomes less helpful.

In the third group, we look at the labeled syntactic paths between the arguments and the pred-
icates. For example, “ nmod←−−” denotes that the argument is a syntactic modifier of the predicate

5Starting from this experiment, we focus on the semi-supervised setting where varying amounts of target SRL
annotations are used during training.

6Except for two Finnish specific roles (ArgM-CSQ and ArgM-PRT) which only account for around 2% of labels.
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Base +Syntax +EnSRL +Both

ARG0 (12%) 75.72 81.08 80.11 82.94
ARG1 (36%) 77.21 83.26 81.29 84.24
ARG2 (14%) 65.85 70.41 69.93 71.84
ARGM (35%) 60.76 64.73 65.46 68.33

d=1 (84%) 75.62 78.45 78.05 80.35
d=2 (15%) 58.41 63.26 61.31 64.22
d>2 (1%) 24.07 25.84 28.61 25.39

nmod←−−− (23%) 61.01 62.95 64.69 66.80
nsubj←−−− (14%) 85.72 88.15 85.35 87.89
dobj←−− (13%) 90.10 93.37 91.20 93.25

advmod←−−−− (9%) 64.40 65.17 68.18 69.04
acl−→ (4%) 83.44 85.17 86.20 87.13
cop−−→ (4%) 91.63 97.79 94.24 96.63

xcomp←−−− (3%) 70.83 75.21 73.01 77.29
aux←−− (3%) 95.21 97.53 95.67 97.97

nsubj←−−− cop−−→ (3%) 95.75 98.37 94.94 98.60
advcl←−−− (3%) 51.80 57.83 68.64 70.31

Table 6.5: Analysis (F1% breakdown) on the FiPB development set (1K setting).

and the dependency relation is “nmod”, while “ acl−→” denotes the argument is the syntactic head
of the predicate with the dependency relation of “acl”. We show the results on top-ten frequent
paths, which cover around 80% of all the arguments. According to the breakdown results, syn-
tactic supervision helps more on the edges of subject, direct object and some functional relations
(like copula), while English SRL is more beneficial on the more semantic links, such as adverbial
words and clauses. This agrees with our analysis of the argument roles: the syntax helps more
on the core arguments, which are usually directly connected as subjects or objects, while English
SRL helps more on “ArgM”s, which tend to be adverbial.

Varying Training Sizes

We further vary both syntax and target-SRL training sizes, and the influence on model perfor-
mance is shown in Figure 6.2. Here, all the models are trained using all English SRL and varying
amounts of Finnish SRL sentences. The numbers in parentheses at the y-axis show the F1 scores
of baseline models without syntax. As expected, syntax is more helpful when we have less target-
SRL and more syntactic resources (towards the right corner of the figure). When we have more
target SRL annotations, syntactic resources become less helpful. Nevertheless, in low-resource
scenarios, even small quantities of syntactic annotation can bring clear improvements.
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Figure 6.2: Improvements (F1 scores on FiPB development set) over no-syntax baselines (shown
in parentheses at the y-axis) with various training sizes.

No Pre-trained Initialization

In the main experiments, we utilize pre-trained multilingual language models to initialize the
encoders. Here, we explore the case where no such initialization is performed. All other settings
are the same as the previous, except that the models are all randomly initialized. The training
scheme is slightly modified: we perform learning-rate warmup for the first 10K steps and in-
crease the maximum learning rate to 1e-4. The results on the development sets are shown in
Table 6.6. Here, “EnSRL” indicates whether using English SRL, and “Syntax” denotes whether
using syntax. There is no surprise that the scores are much lower than those with pre-trained
models. Interestingly, though both English SRL and syntax can provide improvements in both
low-resource and high-resource cases, syntax is much more helpful. A possible reason is that the
multilingual pre-training provides shared representations across languages, without which the
extra supervision from other languages may be much less effective.

EnSRL Syntax 0.1K 1K 10K

No No 3.03±0.82 13.58±0.59 44.11±0.40
No Yes 28.54±1.35 41.50±0.68 56.14±0.29
Yes No 5.81±0.18 20.29±0.42 48.57±0.21
Yes Yes 39.06±0.40 46.05±0.75 58.05±0.34

Table 6.6: FiPB development Arg-F1(%) scores in English/Finnish settings (with different num-
bers of Finnish SRL sentences) with randomly initialized encoders.

6.3.4 CoNLL-2009

The original SRL annotations of CoNLL-2009 are based on language-specific syntax, causing
the argument head words to disagree with UD conventions. We thus follow Pražák and Konopı́k
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(2017) and convert them to UD-based argument heads. We take five languages from CoNLL-
2009 where we can obtain corresponding UD trees for the source sentences. For English and
Chinese, we use Stanford CoreNLP to convert the constituency trees to dependencies, while for
Czech, Spanish, and Catalan, we assign dependency trees from corresponding UD v2.7 (Ze-
man et al., 2020) treebanks (PDT for Czech and AnCora for Spanish and Catalan). Moreover,
since role labels are not compatible across languages in CoNLL-2009, we utilize separate SRL
decoders for source and target languages.

UD-based Conversion

The SRL annotations of argument heads in CoNLL-2009 are based on Language-Specific De-
pendency (LSD) trees rather than Universal Dependencies (UD). To convert argument heads
between different syntactic formalisms, we adopt a simple path-based method. Assuming that a
predicate p has an argument whose head is a according to the original tree, the conversion aims
to find a new head according to the new tree:

1. In the new tree, find the lowest common ancestor c of the predicate p and the original
argument head a.

2. Go down from c to a in the new tree, locate the first word (except for the predicate p) that
is a descendant of a (or a itself) in the original tree, and make it the new head.

We will illustrate this procedure with the example in Figure 6.3. Here, the predicate is the verb
“ran” and it has an “ArgM-LOC” argument, whose full span is “in the park”. According to the
language-specific dependency tree, the word “in” is the direct child of the verb and thus becomes
the argument head. Nevertheless, according to UD, the content word “park” is the direct child
and we want to convert the argument head to it. Firstly, we find the lowest common ancestor of
“ran” (the predicate) and “in” (the old argument head) in the UD tree, which is “ran” itself. Then
we go down from this ancestor (“ran”) towards the old argument head (“in”): the visiting path
should be ran→ park → in. We find that “park” is the first word that is a descendant of “in” in
the original tree and therefore “park” is assigned as the new argument head.

He     ran       in      the      park    .

LOC

LSD

CASE

UD

PMOD

He     ran       in      the      park    .

OBL

P      ArgM-LOC

P                                        ArgM-LOC

Figure 6.3: An example for the conversion
between LSD and UD.

Language UAS% Agree% R-Agree%

English 50.88 72.27 99.05
Czech* 46.36 97.00 73.38
Chinese 60.02 81.94 99.87
Spanish 58.01 69.92 100.00
Catalan 58.99 72.61 100.00

Figure 6.4: Argument agreements between
LSD and UD.

In this work, we take five languages from CoNLL-2009: English, Czech, Chinese, Spanish,
and Catalan, for which we can obtain or convert to gold UD trees. For Chinese and English, we
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use CoreNLP to convert from constituencies to UD. For Czech, we use UD PDT, while for Span-
ish and Catalan, we use UD AnCora. Figure 6.4 gives some results on the agreements between
different syntactic formalisms. Here, “UAS” denotes the unlabeled attachment scores when com-
paring LSD and UD trees, “Agree” denotes the agreement rates on argument heads between orig-
inal argument heads and those converted to UD, while “R-Agree” denotes the agreement rates
with Round-trip styled conversions: first converting from LSD to UD and then converting back
to LSD. Note that Czech is a special case where the original argument heads seem to mostly
agree with UD. Although on overall syntactic attachments, LSD disagrees much with UD (the
highest UAS is 60% for Chinese), the argument head agreement rates are much higher (the low-
est argument agreement rate is around 70% for Spanish). If adopting our converting method,
a round-trip styled conversion (converting from LSD to UD and then back to LSD) can almost
recover all the arguments, showing the effectiveness of our method. Notice that Czech is an
exception where the original argument heads seem to already mostly follow the UD trees.

Results

0.1K 0.2K 0.5K 1K 2K 5K 10K
#Sents (Target-SRL)

60

70

80

F1
%

Czech

w/o Syn
w/ Syn

0

2

4

6

D
iff

Diff

0.1K 0.2K 0.5K 1K 2K 5K 10K
#Sents (Target-SRL)

50

60

70

80
F1

%
Chinese

w/o Syn
w/ Syn

0

5

10

15

D
iff

Diff

0.1K 0.2K 0.5K 1K 2K 5K 10K
#Sents (Target-SRL)

60

70

80

F1
%

Spanish

w/o Syn
w/ Syn

0

2

4

6

8

D
iff

Diff

0.1K 0.2K 0.5K 1K 2K 5K 10K
#Sents (Target-SRL)

60

70

80

F1
%

Catalan

w/o Syn
w/ Syn

0

2

4

6

8

D
iff

Diff

Figure 6.5: Test results of CoNLL-2009 semi-supervised experiments.

We again take English as the resource-rich source language and the other four as lower-
resource targets. We run experiments separately for each target language, which means all ex-
periments are bilingual (with the exception of XLM-R pretraining). For syntax, since different
languages have different treebank sizes, we randomly sample 10K trees for both source and tar-
get languages. The results are shown in Figure 6.5. Here the x-axis denotes the number (in log
scale) of target-SRL annotated sentences available for training. The results are averaged over
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three runs, and the shaded areas indicate the ranges of standard deviations. The patterns are
consistent among all languages and similar to previous experiments on FiPB: syntax is clearly
helpful in low-resource scenarios, but as we have access to more target SRL annotations, the
gaps decrease and finally diminish in the high-resource scenarios.

Using Other Treebanks

Syntax Spanish Catalan
LAS% ArgF1% LAS% ArgF1%

NoSyntax - 54.6±1.2 - 54.0±0.9

Spanish 86.9±0.1 63.6±0.7 67.9±7.1 59.0±0.9
Catalan 77.0±1.0 61.0±0.9 85.7±0.4 63.9±0.2

French 64.2±9.1 57.9±0.8 58.7±2.0 55.4±0.8
Italian 66.1±3.6 58.1±0.5 56.4±6.4 57.0±0.9

Portuguese 69.5±3.0 57.6±1.7 58.6±5.7 56.8±0.8

Table 6.7: Development results of Spanish and Catalan CoNLL-2009 semi-supervised experi-
ments (0.1K target-SRL) using syntax from different languages.

We further explore the scenarios where we do not directly have syntactic annotations for the
target language. Considering that the parsing task can also benefit from cross-lingual transfer,
we can utilize treebanks from nearby languages for syntactic supervision. We take Spanish and
Catalan (the 0.1K target SRL case) for this analysis and the results are shown in Table 6.7. We
further explore three Romance languages: French, Italian, and Portuguese. As expected, directly
using target-language syntax obtains the best results. Spanish and Catalan, which are closely
related languages, benefit each other the most. Nevertheless, compared with the NoSyntax base-
line, syntactic information from all these languages are helpful. This result is of practical interest
when transferring to a truly low-resource language where syntactic annotations may also be lim-
ited. Finding a related language with rich syntactic resources for auxiliary training signals is a
promising way to improve performance.

Similar to the analysis in Table 6.5, We further provide a breakdown analysis on syntactic
paths for the Spanish results, which is shown in Table 6.8. The trends are very similar to the
overall ones. Compared with the NoSyntax baseline, adding syntax supervision of either directly
target language Spanish or other related languages could bring improvements on most syntactic
paths. And there is no surprise that direct Spanish syntax is the best auxiliary signal, followed by
Catalan. One potential factor that influences the effectiveness of the transfer could be the word
order difference between different languages. To investigate this, we calculate the word order dif-
ferences for syntactic paths and calculate the correlations between them and SRL performance
differences. Unfortunately, we did not find clear correlations between these two. There may
be other factors that have more impacts on the transfer, for example, Catalan has more vocabu-
lary overlaps with Spanish than other languages, which can be one of the reasons why Catalan
supervision is more helpful for Spanish SRL.
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NoSyntax Spanish Catalan French Italian Portuguese

nsubj←−−− (29%) 68.96 75.41 74.61 72.74 71.57 71.24
obj←− (25%) 62.91 67.76 67.14 67.15 66.94 65.73
obl←− (17%) 36.20 44.85 45.31 38.63 39.46 39.07

advmod←−−−− (6%) 47.82 55.73 52.79 49.06 49.84 47.42
ccomp←−−− (4%) 63.28 76.29 70.45 64.30 63.61 66.08
cop−−→ (4%) 80.71 92.13 88.81 85.26 84.72 87.02
advcl←−−− (4%) 14.54 31.93 27.30 14.94 21.52 18.91

xcomp←−−− (3%) 53.36 63.36 58.79 56.31 52.66 57.57
nsubj←−−− cop−−→ (2%) 71.22 90.37 82.94 79.18 76.31 77.82

Table 6.8: Analysis (F1% breakdown) on the CoNLL-2009 Spanish development set.

6.3.5 OntoNotes
Finally, we turn to span-based SRL where the extraction of full argument spans is required. Uti-
lizing OntoNotes annotations, we still mainly take English as the source and Chinese or Arabic as
the target. Similar to FiPB, the argument roles are compatible with PropBank-style English roles
and we use a shared SRL decoder for both the source and target languages. We adopt the data
split from the CoNLL12 shared task (Pradhan et al., 2012). For English and Chinese, we convert
constituencies to dependencies with Stanford CoreNLP. For Arabic, we assign dependency trees
from Arabic-NYUAD (Taji et al., 2017) treebank of UD v2.7.

Results and Analyses

Method Syntax 0.1K 1K 10K
Dev Test Dev Test Dev Test

Chinese

BIO No 50.59±0.38 49.67±0.28 62.81±0.15 62.58±0.24 70.04±0.18 70.37±0.08
TwoStep No 49.26±0.44 48.53±0.67 63.08±0.05 63.22±0.12 70.43±0.12 70.80±0.12
BIO Yes 53.47±0.24 52.81±0.20 64.55±0.21 64.49±0.11 70.26±0.18 70.58±0.22
TwoStep Yes 56.16±0.14 55.52±0.23 65.36±0.22 65.65±0.15 70.66±0.13 71.04±0.12

Arabic

BIO No 46.14±0.73 44.87±1.10 59.72±0.51 58.80±0.26 69.67±0.12 67.87±0.42
TwoStep No 46.33±0.26 45.28±0.48 59.91±0.39 59.53±0.62 70.17±0.25 68.46±0.30
BIO Yes 49.23±0.27 49.13±0.31 61.36±0.23 60.89±0.21 70.02±0.25 67.92±0.22
TwoStep Yes 51.68±0.33 51.50±0.50 61.81±0.45 61.70±0.61 70.19±0.16 68.28±0.31

Table 6.9: OntoNotes Arg-F1(%) scores in English-sourced semi-supervised settings (with dif-
ferent numbers of target SRL training sentences).

In this experiment, we specifically compare two SRL decoders. The first one casts the task
as a BIO-based sequence labeling problem. We further add a standard linear-chain conditional
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random field (CRF) (Lafferty et al., 2001), which we found consistently helpful in preliminary
experiments. The other one is the two-step decoder described in §6.2.3. As shown in Table 6.9,
the trends are similar for both Chinese and Arabic. With regard to auxiliary syntactic supervision,
we find similar trends to previous experiments: in low-resource scenarios, syntactic supervision
is beneficial for both decoders, but as the availability of target SRL resources increases, the
gaps become smaller until diminished. The more interesting comparisons are between the two
decoders: when not using syntactic supervision, their performances are comparable; but when
trained with auxiliary signals from syntax, the syntax-aware two-step decoder performs better
than the BIO tagger, especially in low-resource cases.
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Figure 6.6: Error breakdowns of arguments on the OntoNotes Chinese development set.

We further perform error analysis on the Chinese development set in the 1K setting. The
error categories are similar to those in §3.2.2. As shown in Figure 6.6, syntactic supervision
and the syntax-aware TwoStep decoder make fewer errors related to phrasal attachments, span
boundaries, and predicate identification. Notice that the first two categories are closely related to
syntax, which may explain why syntax-informed models make fewer such errors. In particular,
the two-step model trained with syntactic supervision makes the fewest syntax-related errors.
Together with its generally better overall F1 scores, these demonstrate the benefits of utilizing
syntactic information alongside a suitable syntax-aware model.

Other Languages as Source

We further explore experiments taking Chinese or Arabic as the source and English as the target.
The development results are shown in Table 6.10. The general trends are very similar to those in
the English-as-source experiments, where syntax supervision is generally helpful, especially in
low-resource scenarios.

Syntax with Genre Mismatches

Since English and Chinese OntoNotes also annotate six different genres of text, we further ex-
plore scenarios where the syntax and SRL datasets have genre mismatches. We still take all En-
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Method Syntax 0.1K 1K 10K

Chinese→ English

BIO No 57.29±0.70 71.41±0.53 79.43±0.05
TwoStep No 57.17±1.17 72.64±0.09 79.95±0.09

BIO Yes 56.67±0.52 72.03±0.28 79.41±0.10
TwoStep Yes 60.42±0.27 73.53±0.14 79.77±0.06

Arabic→ English

BIO No 59.78±0.37 72.07±0.20 79.34±0.05
TwoStep No 59.71±0.71 72.58±0.22 79.61±0.21

BIO Yes 58.03±0.73 72.48±0.09 79.28±0.08
TwoStep Yes 60.92±0.14 73.23±0.10 79.66±0.24

Table 6.10: OntoNotes English development Arg-F1(%) scores in semi-supervised settings (with
different number of target SRL training sentences), using Chinese or Arabic as the source lan-
guage.

glish instances for multilingual training but split the Chinese corpus according to genres, includ-
ing broadcast conversation (bc), broadcast news (bn), magazine (mz), newswire (nw), telephone
conversation (tc) and web (wb). We focus on the low-resource scenario where 0.1K Chinese
SRL sentences on the target genre are available. The development results are shown in Fig-
ure 6.7. When the genre of syntactic supervision matches the target SRL, the improvements are
the largest. Nevertheless, even in the case of genre mismatches, syntax can still be beneficial, es-
pecially within similar genres. We further find a positive correlation (Pearson correlation is 0.73;
Spearman is 0.78) between these improvements and genre similarities calculated by the centroids
of mBERT representations (Aharoni and Goldberg, 2020). This may provide a mechanism for
selecting the most beneficial syntactically annotated instances.

6.4 Related Work
Recently there has been increasing interest in cross-lingual SRL, where SRL annotations from
high-resource languages are utilized to help low-resource ones. One straightforward method
is data transfer, using either annotation projection (Yarowsky and Ngai, 2001) or translation
(Tiedemann and Agić, 2016) to create SRL instances for target languages (Padó and Lapata,
2009; Akbik et al., 2015; Aminian et al., 2019; Fei et al., 2020a). A related idea is to utilize
parallel corpus to introduce cross-lingual signals (Daza and Frank, 2019, 2020; Cai and Lapata,
2020). Another method is model-transfer which we focus on in this work: directly applying the
model trained with source languages to target ones (Kozhevnikov and Titov, 2013, 2014; Fei
et al., 2020b). This method requires shared representations for different languages, which recent
multilingual pre-trained encoders (Devlin et al., 2019; Conneau et al., 2020) are good at (Wu and
Dredze, 2019; Pires et al., 2019). We take these multilingual encoders as the backbone of our
models since they have been shown effective for SRL across multiple languages (He et al., 2019;
Conia and Navigli, 2020). In the semi-supervised settings where some target SRL annotations
are available, the models are actually trained in a polyglot way (Mulcaire et al., 2018, 2019). Our
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Figure 6.7: Improvements (F1 scores on Chinese OntoNotes development set) over no-syntax
baselines (shown in parentheses at the y-axis) with syntactic supervision of different genres.

work differs in the focus on low-resource scenarios.
Cross-lingual SRL still remains challenging due to data scarcity and annotation heterogene-

ity. To create multilingual SRL data, Akbik et al. (2015) utilize parallel corpus to create target
SRL annotations with filtered projection, and Daza and Frank (2020) create the X-SRL dataset
through translation and projection with multilingual contextualized representations, offering a
multilingual parallel SRL corpus. Tripodi et al. (2021) create UniteD-SRL, providing a uni-
fied dataset for span- and dependency-based multilingual and cross-lingual SRL. To deal with
heterogeneous SRL formalism, Jindal et al. (2020) adopt an argument regularizer to encourage
cross-lingual argument matching, and Conia et al. (2021) introduce a unified model, which may
implicitly learn to align heterogeneous linguistic resources.

Even with recent developments in neural network modeling, with which syntax-agnostic
models have been shown to match linguistically-informed counterparts (Marcheggiani et al.,
2017; Cai et al., 2018), syntax has also been found helpful for SRL (Marcheggiani and Titov,
2017; Swayamdipta et al., 2018; Strubell et al., 2018; He et al., 2018b; Cai and Lapata, 2019;
Shi et al., 2020; Fei et al., 2021). In this work, we further explore the helpfulness of syntax
for cross-lingual SRL. While previous work on this topic mainly uses syntax as input features
(Kozhevnikov and Titov, 2013; Pražák and Konopı́k, 2017; Fei et al., 2020b), we adopt a simpler
strategy utilizing it as an auxiliary training signal via multitask learning (Caruana, 1997; Ruder,
2017), which has also been found beneficial for monolingual SRL (Swayamdipta et al., 2018;
Strubell et al., 2018; Cai and Lapata, 2019).

6.5 Conclusion
In this chapter, we provide a comprehensive empirical exploration of the helpfulness of syntactic
supervision for cross-lingual SRL. With extensive evaluations across a variety of datasets and
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settings, we show that auxiliary syntactic signals are generally beneficial, especially in low-
resource SRL cases. We hope that our investigation can shed some light on the relations between
syntax and SRL in cross-lingual scenarios.
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Chapter 7

Transfer Learning from Semantic Role
Labeling to Event Argument Extraction
with Template-based Slot Querying

In the previous chapter, we explore the relationship between syntax and SRL. In this chapter, we
further study transfer learning between related tasks and extend our method to the task of event
argument extraction in information extraction. We show that SRL annotations can be valuable
training resources for predicting event arguments.

7.1 Introduction
Event argument extraction (EAE) is a key component in the task of event extraction (Ahn, 2006)
that aims to identify the arguments that serve as roles for event frames. While recent devel-
opments in neural network models have enabled impressive improvements on this task in the
fully-supervised setting (Wang et al., 2019b; Pouran Ben Veyseh et al., 2020; Ma et al., 2020; Li
et al., 2021a), EAE remains challenging when abundant annotations are not available. In particu-
lar, event schemes are usually specific to the target scenarios. For example, events in biomedical
domains, like GENE-EXPRESSION in GENIA (Kim et al., 2008), can be quite different than the
ones in ACE (LDC, 2005), such as ATTACK and CONTACT. It is costly and inefficient to annotate
large amounts of data for every new application.

Compared with the specific schemes in EAE, semantic role labeling (SRL; Gildea and Ju-
rafsky, 2002; Palmer et al., 2010) extracts predicate-argument structures with more general and
broad-coverage frame ontologies. SRL also enjoys rich and carefully annotated resources, such
as PropBank (Palmer et al., 2005) and FrameNet (Baker et al., 1998b), covering a wide range
of semantic frame types. As shown in the example in Figure 7.1, SRL closely resembles EAE:
they both specify semantic frames triggered by predicate words and aim at finding arguments for
participating roles. Therefore, it is natural to consider applying transfer learning1 (Pan and Yang,

1Because of the similarities, EAE and SRL may be arguably viewed as two versions of the same task. Even
in this case, we can still view this as a special form of transductive transfer learning, if not inductive transfer on
different tasks.
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Figure 7.1: Example annotations with ACE events and PropBank semantic frames.

2009; Ruder et al., 2019) to enhance EAE with general SRL resources.
Notwithstanding the similarities, there are two main discrepancies between SRL and EAE

structures that should be managed in order to facilitate transfer between them. The first is
label mismatch. For example, ACE adopts role names with natural language words, such as
BUYER and PLACE, whereas PropBank utilizes generalized labels like ARG0 and ARGM-LOC.
PropBank also provides more specific role descriptions, but many are inconsistent and not well-
formed for direct use as role names. Although FrameNet also adopts natural language role
names, it is laborious and sometimes challenging to find all the direct mappings to the target
event frames. Moreover, SRL resources do not typically annotate distant arguments, where there
are no explicit syntactic encodings expressing the argument relation.2 For example, in the sen-
tence depicted in Figure 7.1, though it can be understood that the “store” is very likely to be the
place where the “buying” happens, SRL annotations do not include this semantically inferred
link, whereas it is considered an argument in event annotations.

Although there has been previous work utilizing SRL for argument linking (O’Gorman,
2019), it remains unclear how to best directly transfer from SRL to EAE, especially with recent
pre-trained models. In this chapter, we provide a comprehensive investigation of the transfer from
SRL to EAE. We view the tasks as a role querying problem within a unified framework, which
covers various different argument extraction methods, including classification-based methods
(Ouchi et al., 2018; Ebner et al., 2020), machine reading comprehension (MRC)-based methods
(Liu et al., 2020; Du and Cardie, 2020; Li et al., 2020b; Feng et al., 2020; Lyu et al., 2021; Liu
et al., 2021a) as well as sequence-to-sequence generation based ones (Li et al., 2021a; Hsu et al.,
2022; Lu et al., 2021). We further explore a template-based slot querying strategy, by querying
argument roles using contextualized representations of the corresponding role slots in the frame
template. We tackle the label-mismatch problem by forming the queries in templated natural lan-
guage, which allows for the same query representation to be shared across varied schemes. To
mitigate the lack of distant argument annotations in SRL, we apply two argument augmentation
techniques: Data augmentation by shuffling input texts, which reduces the model’s reliance on
local syntax, and knowledge distillation from question-answering (QA) data, which incorporates

2These are also known as implicit arguments (O’Gorman, 2019). While there are more fine-grained linguis-
tic criteria, we take a simplified approximate approach by checking the syntactic distances between triggers and
arguments.
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distant argument signals.
With experiments on the standard ACE and ERE English event benchmarks, we show that

SRL annotations are valuable resources for EAE. With the template-based querying strategy,
a model trained with SRL can reach nearly 80% of the fully-supervised F1 score in the zero-
shot scenario, and an intermediate-training scheme provides further benefits in the low-resource
setting. The model also obtains promising results in extensions to cross-domain and multi-lingual
scenarios, demonstrating its generalizability. Our results highlight the utility of SRL annotations
in the context of downstream applications with limited direct annotations.

7.2 Method

7.2.1 Querying Methods
For either semantic roles or event arguments, we can view the extraction task as a role querying
problem. Specifically, we are given a sequence of words s = {w1, ..., wn} as input contexts as
well as a predicate or event trigger word we and the semantic frame or event type t. Each type
is associated with a list of participating roles to be filled and the task is to extract arguments
from the input contexts for each role. We adopt one specific modeling simplification, that is, our
model only predicts the syntactic head word of an argument. For EAE, a heuristic method is
further adopted to expand from head words to spans: We simply include the head word’s child
that is linked with an MWE dependency relation3 and has an uppercase first letter. We find that
this heuristic works well in practice, expanding correctly to 95% of the argument spans in the
ACE and ERE event datasets. We take this approach to make it easier to transfer across different
schemes, which may have different annotation criteria on argument spans.

In this way, we can view both SRL and EAE as role querying problems over the input words
(all the queries depend on the predicates, which we assume are given and omit for brevity).
Specifically, the probability of a candidate word w to be the argument filling a role r is:

pr(w) =
exp(λhT

wqr)∑
w′∈s∪{ϵ} exp(λh

T
w′qr)

Here, hw denotes the representation vector of the word w, and qr indicates the querying vector
of the role r. We further include a scaling factor λ, which is fixed to 1√

d
, where d is the dimension

of h and q, following the attention calculation in Transformer (Vaswani et al., 2017). We specify
a dummy token ϵ to handle the cases where no arguments can be found for a role. This modeling
scheme is flexible and allows different argument extraction strategies to be viewed in a unified
way. In this chapter, we explore four strategies, as illustrated in Figure 7.2.

1) CLF. We start with querying based on traditional classification, which assigns to each role
a non-contextualized vector. To allow transfer to different role names, we initialize the role vec-
tors with average-pooled representations obtained by passing the role names individually to a
pre-trained language model. We call this strategy classification-based since the role vectors can

3Multi-word expressions: {“fixed”, “flat”, “compound”}.
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Figure 7.2: Illustrations of different role querying strategies.

be viewed as weights in a linear classifier. This corresponds to more traditional argument extrac-
tion methods (Ouchi et al., 2018; Ebner et al., 2020). One shortcoming of this strategy is that
the query vectors are constructed without access to input contexts, limiting their representation
ability.

2) MRC. Recently, the strategy of casting NLP tasks as machine reading comprehension prob-
lems (Rajpurkar et al., 2016, 2018) has been applied to EAE (Liu et al., 2020; Du and Cardie,
2020; Li et al., 2020b; Feng et al., 2020; Lyu et al., 2021; Liu et al., 2021a). In this strategy, each
role is queried with a contextualized question that is encoded together with the context. Unless
otherwise specified, we form the role questions using the templates of Liu et al. (2021a), which
can be automatically generated from the role names. Since each question queries only one role,
this strategy requires a full pass through the encoder for each role, raising concerns regarding its
computational efficiency, as compared to CLF.

3) GEN. More recently, many approaches extract arguments by sequence-to-sequence gener-
ation (Paolini et al., 2021; Li et al., 2021a; Hsu et al., 2022; Lu et al., 2021; Du et al., 2021b;
Huang et al., 2022). Specifically, Li et al. (2021a) and Hsu et al. (2022) adopt a template-based
generation strategy, which aggregates the queries of all roles for an event into one template sen-
tence (or bleached statement (Chen et al., 2020)). This strategy is promising since the template
can contain all roles and query them in one pass. Since arguments come from input contexts,
we further adopt a pointer network (Vinyals et al., 2015a) for argument selection rather than
generating through output vocabularies, fitting our unified querying framework. Because of the
auto-regressive decoding scheme, this strategy can also suffer lower efficiency compared to CLF.

4) TSQ. We further explore a strategy that fully exploits the representational power and query-
ing efficiency of templates. We do not fill the templates with actual words in the context but
simply keep the role names as placeholders. We concatenate this template with the context, then
pass the full sequence to the encoder for contextualization. Finally, the contextualized represen-
tations of the role slots in the template are adopted as role query vectors. We refer to this strategy
as Template-based Slot Querying (TSQ). This approach is similar to the contemporaneous work
of Ma et al. (2022). Our approach to template querying differs primarily in that: 1) We concate-

90



nate both the template and the context and feed them to the encoder, allowing for bidirectional
modeling, and; 2) Our models predict argument head words rather than spans to facilitate the
transfer since unlike Ma et al. (2022) our focus is transfer learning.

7.2.2 SRL Templates
We take PropBank4 (Palmer et al., 2005), NomBank5 (Meyers et al., 2004) and FrameNet6 (Baker
et al., 1998b) as our main SRL resources. Since many NomBank frames are derived from Prop-
Bank frames, we simply map them to the PropBank counterparts (by checking the “source”
attribute in a NomBank frame) and ignore the ones that do not have such mappings. We filter
event-related SRL frames by excluding the ones that do not have any verb realizations, which
are judged by the POS sets provided in the frame files. Moreover, we only consider a subset
of non-core or modifier roles that are related to the target EAE task, including ARGM-LOC in
PropBank and {PLACE, INSTRUMENT, WEAPON, VEHICLE} in FrameNet.

To allow transfer across different schemes, we need to specify extra information required by
the role querying strategies. In particular, templates are not included in SRL frame definitions
and it is infeasible to manually specify them for hundreds to thousands of SRL frames. We adopt
a semi-automatic method to construct the templates, with extra information collected from data
statistics:
• Role names. We directly take the role label names of FrameNet since they are already in

natural language forms. We further train7 a role label classifier8 with the FrameNet data and
apply it to the PropBank data. Then for each frame-specific role, the most frequently predicted
label will be its role name. For example, for the ARG0 role of the “buy.01” frame, its arguments
in the dataset are mostly predicted to the BUYER label, which is thus assigned as its role name.

• Role orders. We construct a template for an SRL frame by concatenating its predicate word
and role names. The main thing to specify is their ordering. We again take a statistical approach
and collect each role’s relative distance to the predicate. For example, in the “buy.01” frame
instance of “He bought a book in a store.”, ARG0 (He) gets a distance of -1, ARG1 (book) gets
a +1 and ARGM-LOC (store) gets a +2. Finally, the role orders in the templates are decided
by the roles’ average relative distances. We aim to obtain a canonical verb-styled ordering in
active voice, and thus we only consider frame instances that are realized by non-passive verbal
predicates.

• Preposition words. When realized in natural language sentences, many roles are accompanied
by prepositions. We count the frequency that a role is filled by an argument that utilizes a
preposition9 and keep the prepositions that appear more frequent than 25%. When there are

4https://github.com/propbank/propbank-frames/releases/tag/v3.1
5https://nlp.cs.nyu.edu/meyers/nombank/nombank.1.0/
6https://framenet.icsi.berkeley.edu/fndrupal/frameIndex
7Another option could be to use existing resources that connect PropBank and FrameNet, such as SemLink

(Palmer, 2009; Stowe et al., 2021). Nevertheless, their coverage is still slightly lacking and we thus take a data-
driven method, which could map every frame that has data.

8This classifier is similar to our CLF querying model except that no extraction is needed. Its accuracy on the
FrameNet dev set is around 0.7. Notice that even when the classifier does not hit the most suitable label, the predicted
ones may still be reasonable for our usage.

9The criterion is that the argument’s head word has a dependency relation of “case” to a child whose POS is
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Scheme Frame Template

PropBank
forbid.01 authority forbid protagonist action in place
rent.01 at lessor lessee rent goods from lessor for money in place

swim.01 from area self mover swim against area to goal in place

FrameNet
Abandonment agent abandon theme in place

Employing employer employ employee field position task in place
Mention communicator mention specified content message in medium in place

Table 7.1: Examples of the semi-automatically generated templates.

such prepositions, we add the preposition before the role name and put them together into the
slot. When there are multiple feasible prepositions, we randomly sample one in training and
utilize the most frequent one in testing.

With these three types of extra information, we construct the templates by concatenating all the
corresponding ordered pieces. For example, the “buy.01” PropBank frame gets a template of
“buyer buy goods for recipient from seller for money in place”. Most of the above heuristics are
decided by manually checking the generated outputs for the PropBank and FrameNet frames.

Notice that this semi-automatic approach is far from perfect and there can be noises and in-
consistencies, as shown in some of the examples in Table 7.1. Nevertheless, the above three
pieces provide complementary information for role specification: the role names provide seman-
tic information, the role orders include syntactic word order information, and the prepositions
give further hints. In practice, we find that most of the generated templates are reasonably close
to natural language. In this way, we are able to form similar queries for both SRL and EAE,
tackling the label mismatch problem between different frame schemes.

7.2.3 Argument Augmentation
In addition to label mismatch, another discrepancy between SRL and EAE is that arguments in
traditional SRL are syntactically constrained whereas event arguments can be extracted from any
place in the context. Therefore, SRL models will have difficulties in predicting syntactically
distant arguments. To mitigate this problem, we apply data augmentation (Feng et al., 2021) and
knowledge distillation (Hinton et al., 2015) to augment distant arguments for SRL instances.

Firstly, we apply a simple data augmentation method by shuffling the input contexts. Since
the SRL arguments are constrained by syntax, we hypothesize that by distorting syntax in some
way, the model can be trained to focus more on the semantic relations between the predicates and
arguments. This may allow it to predict more distant arguments. To distort syntax, we randomly
chunk the input sentence with sizes randomly chosen from one to three at each time. Then these
text chunks are shuffled, re-concatenated, and fed to the pre-trained model for contextualized
encoding. Since our model only selects argument head words, there is no change to the later
processing except for word position re-indexing. We only apply this procedure during training
and simply mix vanilla unshuffled data with the shuffled ones by a 1:1 ratio.

“ADP”.
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Moreover, we seek signals of distant arguments from question answering (QA)10 datasets,
such as SQuAD (Rajpurkar et al., 2016, 2018). In QA annotations, the answers are not con-
strained by syntax and can be freely picked from the full context, providing valuable resources
for distant arguments (Liu et al., 2021a). Motivated by this, we train a QA model with the MRC
strategy and predict the missing arguments for SRL instances. Instead of hard predictions, we
store a soft probabilistic distribution over the context words for each role and utilize these for
SRL training with a standard cross-entropy objective:

Ldistill(r) = −
∑

w∈s∪{ϵ}

pqa
r (w) log p

m
r (w)

Here, for the querying of each role r, pqa
r (w) denotes the argument probabilities among the con-

text words according to the QA model, while pm
r (w) indicates the current model’s outputs. To

avoid noise from the QA predictions, we adopt two filters. Firstly, we only apply distillation for
the unfilled roles according to SRL annotations. This is intuitive since the filled roles already
have gold annotations. Moreover, we apply distillation only when the prediction is confident
enough. We perform calibration to the QA model by temperature scaling (Guo et al., 2017) and
adopt a probability threshold of 0.5. In this way, we could borrow the signals of distant arguments
from the QA datasets to enhance SRL instances with potential missing distant arguments.

7.3 Experiments

7.3.1 Settings
We conduct our main experiments with English ACE11 (Walker et al., 2006) and ERE (LDC,
2015) event datasets. We adopt the preprocessing scripts12 from ONEIE (Lin et al., 2020). For
the target event frames, we manually specify extra information such as templates, adopting those
of Li et al. (2021a). Unless otherwise specified, we assume that gold event triggers are given and
focus on the extraction of event arguments. We evaluate arguments by labeled F1 scores, which
require both argument spans and roles to match the gold ones. We run with five random seeds
and report average results.

For external data, we take PropBank, NomBank 1.0, and FrameNet 1.7 as our main SRL
resources. We prepare the SRL templates by the semi-automatic process described in §7.2.2. For
QA datasets, we take SQuAD 2.0 (Rajpurkar et al., 2018), QA-SRL 2.1 (FitzGerald et al., 2018),
QANom (Klein et al., 2020) and QAMR (Michael et al., 2018). For the training of SRL or QA
models, we simply adopt the concatenation of all the corresponding datasets. Except for those
that have manual syntactic annotations, we utilize Stanza (Qi et al., 2020) to parse the texts to
obtain the syntactic head words of the arguments.

We adopt pre-trained language models for initialization and fine-tune the full models during
training. Specifically, we use RoBERTabase (Liu et al., 2019) for encoder-only models (CLF,

10Specifically we adopt the extractive QA-MRC data. To avoid confusion, we use “QA” when denoting data
resources while using “MRC” for the querying strategy.

11We adopt ACE05-E+ (Lin et al., 2020).
12http://blender.cs.illinois.edu/software/oneie/
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MRC, TSQ) and BARTbase (Lewis et al., 2020a) for encoder-decoder models (GEN).

7.3.2 Main Transfer Experiments
We conduct our main experiments with English ACE and ERE datasets. Thanks to the unified
querying framework, we can conduct experiments in a zero-shot setting (§7.3.2), where models
trained on external data are directly evaluated on EAE. We also investigate low-resource settings
where some amounts of EAE annotations are available for further fine-tuning (§7.3.2).

Zero-shot

In the zero-shot setting, we further compare with two methods in addition to SRL: 1) GPT-
3 (Brown et al., 2020), where we form prompts for each role and use GPT-3 to generate the
answers; 2) QA, where we train QA models13 with the QA datasets. We also provide the fully-
supervised results (Super.) as references.

Method
ACE ERE

P% R% F1% P% R% F1%

Super. 68.93±1.07 68.94±0.95 68.93±0.95 72.75±1.69 71.80±1.29 72.24±0.34

GPT-3 29.10 34.25 31.47 25.09 26.76 25.90
QA 32.77±3.70 47.43±1.17 38.62±2.58 32.68±2.78 48.13±4.08 38.74±2.09

SRLCLF 47.97±1.47 25.37±0.86 33.18±0.92 50.17±1.72 25.60±0.65 33.89±0.88
SRLMRC 58.27±0.75 39.54±1.60 47.08±0.89 62.02±1.15 45.31±1.74 52.32±0.83
SRLGEN 55.77±0.61 45.31±1.26 49.99±0.93 58.37±0.66 52.68±0.63 55.38±0.62

SRLTSQ 57.74±0.95 49.61±0.80 53.36±0.53 59.93±0.68 55.84±0.78 57.81±0.34
+shuf. 58.36±0.53 51.70±0.52 54.82±0.44 59.70±0.89 57.42±1.26 58.54±1.05
+distill 54.53±0.97 55.85±0.67 55.17±0.42 55.27±0.72 60.90±0.85 57.95±0.65
+both 55.68±1.26 57.04±0.93 56.35±1.07 56.63±0.78 61.48±0.18 58.96±0.48

Table 7.2: Zero-shot EAE results on event test sets.

Results The main results are shown in Table 7.2. Except for the one with the CLF strategy,
SRL models perform generally better than QA and GPT-3, showing the effectiveness of utilizing
SRL resources. Among the SRL models, the TSQ strategy generally performs the best, indicating
the effectiveness of this contextualized querying strategy. Further improvements can be obtained
with the argument augmentation techniques. Interestingly, if only using shuffling augmentation
(+shuf.), precision remains roughly the same while recall increases. If only using distillation
(+distill), recall increases but at the expense of precision. Finally, if both are utilized (+both),
precision and recall both improve relative to the distillation-only case. This leads to the overall
best F1 scores, reaching around 80% of the supervised results.

13Notice that we can only use the MRC strategy for QA models because of the task-specific format.
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Distance Analysis As shown in Figure 7.3, we further perform breakdowns on the syntactic
distances between triggers and arguments. We especially compare the QA model and the four
SRLTSQ models. Firstly, the QA model performs worse than SRL models except for the long dis-
tant ones (d ≥ 4). This is due to SRL annotations mainly capturing syntactically local arguments
while QA is not constrained by this. Within the SRL models, when adding shuffling (+shuf.) or
distillation (+distill), the middle-ranged arguments consistently obtain improvements. One inter-
esting pattern is that shuffling benefits d = 1 but hurts d ≥ 4, while distillation seems to have
the opposite effects. This may indicate that shuffling enhances more robust predictions of short-
and middle-ranged arguments while distillation encourages longer-ranged ones. Finally, when
combining these two techniques (+both), the model can reach a good balance, achieving the best
overall results. Due to its overall better performance, we use the “SRLTSQ+both” strategy for our
SRL models in the remainder of this chapter.

d=1(43.0%) d=2(29.2%) d=3(13.7%) d>=4(14.1%)
Trigger-Argument Syntactic Distance
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Figure 7.3: Breakdowns on trigger-argument syntactic distances.

Manual Analysis We further perform a manual error analysis to investigate what the main
error types are. We randomly take 100 event frames that contain prediction errors from the ACE
development set and categorize the errors. We perform this analysis for both our best zero-shot
SRL model and the supervised model to examine where the main gaps are. We specify eight
error categories:
• Ambiguous cases, where there are annotation errors or ambiguities, and the predictions could

be regarded as correct in some way.
• Coreference, where predicted and gold arguments are co-referenced in some way.
• Span mismatch, where the main contents are captured with non-crucial boundary mismatches.
• Head mismatch, where the main contents are roughly captured but not with the exact annotated

words. This happens mostly in appositions or noun modifiers with more specific content.
• Role misunderstanding, where the semantic meaning of a role is not correctly understood.
• Local inference, where correct predictions require semantic inference at the local clause.
• Global understanding, where correct predictions require a global understanding of the full

context.
• Others, where the error does not fall into any of the above categories.

95



Category Example SRL Super.

Correct — 194 (50.52%) 238 (63.47%)

Role Actually, they paidTransferMoney for [it]Beneficiary. 45 (11.72%) 22 (5.87%)

Local MyBuyer plan is to payTransferOwnership off my car. 40 (10.42%) 23 (6.13%)

Head They firedAttack mortars in the [direction]Target of the
7th CavalryTarget.

24 (6.25%) 8 (2.13%)

Global “We condemned the attackAttack,” he said, adding
that his messages to the terroristsAttacker is: Their ef-
forts will not be successful.

24 (6.25%) 17 (4.53%)

Others — 14 (3.65%) 10 (2.67%)

Ambiguous At least four [policeman]AttackerVictim were injured in
clashesAttack.

18 (4.69%) 20 (5.33%)

Span The 1st [Brigade]AttackerAttacker took Karbala with a
minimal fightAttack.

12 (3.12%) 14 (3.73%)

Coreference HeDefendant skipped bail during [his]Defendant
trialHearing.

13 (3.39%) 23 (6.13%)

Table 7.3: Examples of the categories and results of the manual error analysis.

Examples of these categories and the results are shown in Table 7.3. According to the statistics,
the main gaps between the SRL and supervised models are in the categories of role misunder-
standing, lacking semantic inference as well as head mismatches. Head mismatches are due to
the discrepancies between syntactic head and semantic core words, and might not cause severe
problems. The first two are more semantic errors that are related to the essence of the EAE task.
Role misunderstanding may be related to template mismatches, where roles in the SRL templates
are different than those in target event ones. Lacking semantic inference is mostly upon distant
arguments. Though the argument augmentation techniques recover certain distant arguments for
SRL frames, this problem is still far from being solved. Notice that these semantic errors reveal
the main difficulties of the EAE task, which even supervised systems have not yet fully tackled.
To solve these problems, a more comprehensive semantic understanding is required.

Low-resource

We further investigate scenarios where we have some amount of target EAE annotations. With
target data, we can directly train an EAE model (from pre-trained language models). We further
apply a simple intermediate-training scheme (Phang et al., 2018; Wang et al., 2019a) to transfer
the knowledge from SRL. We take the SRL-trained model and further fine-tune it on the target
event data. A similar scheme can also be adopted with the QA model. Figure 7.4 shows the
results with different amounts of training instances. Generally, SRL intermediate training is
beneficial, especially for middle- and low-resource cases, again showing that SRL annotations
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Figure 7.4: Model performance with direct or intermediate training.
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Figure 7.5: Argument F1(%) scores on ACE and ERE test sets with different amounts of training
data.

can be valuable transfer sources for the extraction of event arguments. Note that when using
full target data, the external SRL data is less helpful. We think this is probably because there is
already enough supervision to learn most of the target patterns, and there might be less further
information that SRL could provide beyond the already rich target resources.

Supervised Results

Although our main focus is on the transfer scenarios, we also conduct purely supervised ex-
periments on the target EAE datasets. We compare the four querying strategies with different
amounts of training data. The results are shown in Figure 7.5. The overall trend is similar in
both datasets. In high-resource scenarios, different querying strategies could obtain similar re-
sults. In low-resource cases, the methods that capture more contextual information in the queries
can generally perform better. The CLF strategy with non-contextualized queries obtains worse
results than the others, while TSQ is the overall best-performing strategy. This is also consistent
with the results in the zero-shot transfer scenarios.

Speed Comparisons

We also perform decoding speed comparisons to examine the efficiency of different querying
strategies. The results are shown in Table 7.4. There is no surprise that the simplest CLF strategy
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achieves the highest decoding speed since its input sequences are the shortest and there is no
further complex query encoding. TSQ is only around 10% slower, but still efficient compared
with the other two methods, where MRC suffers from multiple forwarding for different role
queries and GEN requires auto-regressive decoding at testing time.

Method Single-instance Batched

CLF 184 316
MRC 106 146
GEN 28 144
TSQ 167 281

Table 7.4: Decoding speed (instances per second) comparisons of different querying strategies.

Comparisons with ChatGPT

We also perform comparisons with the latest large language models, which have shown impres-
sive capabilities of text understanding and generation. Specifically, we take GPT-3.5-TURBO as
our studying target and compare it with our SRL model. We randomly sample 100 event frames
from the ACE05 development set and reuse our previous role questions to prompt the ChatGPT
model. Instead of only relying on automatic evaluation metrics based on strict matching, we
conduct manual analysis to better understand the real performance of the models.

For the manual analysis, we adopt an error categorization that is similar to those in Table 7.3,
but with certain adjustments in accordance with ChatGPT’s characteristics. Table 7.5 lists the
categories utilized in this experiment. More specifically, we have:
• Ambiguous cases, where there are annotation errors or ambiguities, and the predictions could

be regarded as correct in some way.
• Format problems, where ChatGPT’s generated answers can be regarded as correct, but do not

exactly match the original text.
• Coreference, where predicted and gold arguments are co-referenced in some way. This cate-

gory also includes the cases where the correct argument is a pronoun, which ChatGPT usually
does not extract.

• Span mismatch, where the main contents are captured with non-crucial boundary mismatches.
This category also includes head mismatch, where the main contents are roughly captured but
not with the exact annotated words.

• Role misunderstanding, where the semantic meaning of a role is not correctly understood.
• Others, where the error does not fall into any of the above categories, indicating that the model

probably needs a better contextual understanding of the inputs.
Notice that the first four categories are minor errors, which should not be penalized as the more
crucial errors in the last two categories. For instance, in the “Format” error example, the LM
generates “13 people” instead of “13”, which leads to a failure in text matching. But the answer
is correct since it can be inferred that in the original text, “13” indicates “13 people”.

The detailed results of our manual analysis are shown in Table 7.6. Here, we compare our
SRL-based model against the ChatGPT model (GPT-3.5-TURBO). Here, we order the error cat-
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Category Explanation Example

Ambiguous Ambiguous cases or annotation
errors.

At least four [policeman]AttackerVictim were injured in
clashesAttack.

Format Generation is correct but does
not match the original text.

The attack killed 5 people and injuredInjury 13Victim.
(Generation = [13 people]Victim)

Coref. Mismtaches related to pronouns
or coreference.

HeDefendant skipped bail during [his]Defendant
trialHearing.

Span Span boundary mismatches or
head word errors.

The group has pushed onwardTransport in the general
[direction]Destination of the cityDestination.

Role Role misunderstanding. The [group]ArtifactAgent has pushed onwardTransport
in the general direction of the city.

Others Other errors that require contex-
tual understanding.

MyBuyer plan is to payTransferOwnership off my car.

Table 7.5: Error categories and examples for the ChatGPT error analysis.

Categories
SRL ChatGPT

Count F1(%) Count F1(%)

Exact 200 57.47 102 37.64

Ambiguous 14 61.94 13 42.33
Format 0 61.94 22 53.70
Coref. 8 63.79 30 62.53
Span 37 74.29 20 70.25

Role 30 82.88 31 82.10
Others 59 100.00 53 100.00

Table 7.6: Error analysis results for the comparison between SRL- and ChatGPT-based models.

egories according to their severity and list error counts. We further include an F1 column, which
indicates the F1 score if we relax our evaluation by viewing the instances in the corresponding er-
ror category (as well as the less severe ones) as correct. First, if only calculating by exact matches
(both argument span and role predictions should be perfectly matched to the gold ones), Chat-
GPT performs much worse than the SRL model. Nevertheless, if further checking the specific
failure cases, we can see that many errors made by ChatGPT are caused by formatting problems
(correct answers not exactly matched to the original texts) and coreference/pronoun problems
(no extraction of pronouns or extracting coreferenced concrete mentions). If disregarding these
minor problems (many of them are actually not errors), ChatGPT can obtain very similar re-
sults to the SRL model. This indicates that we need better prompting, extraction, and evaluation
methods for utilizing LLMs for this task.
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Types QA SRL SRL+self Super.

Expression 70.71 76.66 77.59 80.90
Transcription 63.64 55.63 59.72 69.46
Catabolism 62.07 66.67 66.67 74.07
Phosphorylation 75.95 78.98 83.64 89.52
Localization 53.28 66.89 67.33 69.51
– Simple – 68.26 73.63 75.27 79.31

Binding 39.41 34.90 35.10 50.19

Regulation 33.80 38.95 38.52 45.90
Pos. regulation 31.85 38.96 39.95 49.41
Neg. regulation 36.62 44.84 44.51 47.17
– Complex – 33.36 40.44 40.88 48.32

– All – 47.42 51.95 52.76 60.22

Table 7.7: BioNLP-11 event extraction results (F1%).

7.3.3 Further Extensions
In the previous experiments, we take ACE and ERE as the targets, which are still relatively
similar to the SRL annotations. In this sub-section, we further investigate scenarios where there
are larger discrepancies between the source and the target. Specifically, we examine the transfer
from SRL to EAE in cross-domain (§7.3.3), multi-lingual (§7.3.3), and multi-sentence (§7.3.3)
cases.

Cross-domain

We first investigate the biomedical domain, utilizing the GENIA BioNLP-11 benchmark (Kim
et al., 2011). The GENIA events are quite different than general SRL frames and mainly describe
detailed bio-molecule behavior (Kim et al., 2008). Still focusing on the argument extraction step,
we take the event triggers predicted by the supervised system BEESL (Ramponi et al., 2020).
We perform zero-shot argument extraction and evaluate the QA and SRL models, with manually
compiled role questions and templates. We adopt the official evaluation metric of approximate
recursive matching.

Our main comparison is between the QA and SRL models, while we also include the super-
vised results of BEESL as references. We further adopt a self-training approach to adapt to the
target domain. Specifically, we take the texts from the original GENIA training set, ignore the
original labels, predict SRL frames on these texts with our SRL model, and train a final SRL
model with both these predicted structures and external SRL resources.

The results of the test set are shown in Table 7.7. SRL generally outperforms QA for most
of the types. This may be due to the difficulty of asking proper questions. For example, for the
“Regulation” event, we ask “What is regulated?” for the role of “Theme” and “What causes the
regulation?” for “Cause”. These questions may be unrelated to the actual contexts, while for the
SRL models, extra hints from the query templates may be helpful. This may also explain why
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QA is better on some of the types where it is relatively easy to ask questions. For example, for
“Transcription”, the question “What is transcribed?” would be accurate for most contexts. For
the SRL models, the self-training method is beneficial overall, showing the effectiveness of uti-
lizing unlabeled corpus from the target domain.14 Finally, our best zero-shot model could recover
more than 80% of the overall performance of the supervised model, showing that general SRL
resources can still be helpful in the biomedical domain. The main gaps between the zero-shot
and supervised systems are in the “Binding” and “Complex” events where there are complicated
and even nested structures. One future direction is to investigate ways to better handle these
complex structures.

Multi-lingual

We next explore a multi-lingual setting, taking ACE05 Arabic and Chinese datasets as our targets.
We follow Huang et al. (2022) and utilize their pre-precessing scripts15 for data preparation16.
We further include multi-lingual external resources. For SRL, we utilize Arabic and Chinese
PropBank annotations from OntoNotes (Hovy et al., 2006; Weischedel et al., 2013). For the
role names in SRL frames, we again adopt a statistical approach: predicting with a FrameNet
classifier based on a multilingual pre-trained encoder and adopting the mostly predicted label
for each role. Due to differences in word order and usage of prepositional words in non-English
languages, we exclude preposition words and simply order the roles by their ARG numbers.17

We also include QA datasets for the target languages, adopting CMRC-2018 (Cui et al., 2019)
for Chinese and the Arabic portion of TyDiQA (Clark et al., 2020) for Arabic. All our models in
this experiment are based on the pre-trained XLM-Rbase (Conneau et al., 2020).

The results are shown in Table 7.8. In the first group, we compare zero-shot performance
without any EAE training resources. Similar to the previous trends, SRL models are better than
QA models, while including annotations in the target language could provide further benefits. In
the second group, we assume access to English EAE training data. Similar to §7.3.2, we adopt an
intermediate-training scheme by further fine-tuning the QA or SRL model on the English EAE
data. Compared with the results of direct training in English, intermediate training with external
resources could bring improvements. Again we see that models enhanced with SRL resources
obtain the overall best results, which are quite promising when compared with the supervised
ones.

One interesting aspect of the multi-lingual scenario is how the predictions are influenced by
the word order difference between the source and target languages. We analyze the influence
by measuring the performance differences in different roles. We first calculate the directional
statistics for each role in each language, specifically: for a role in a language, what percentage of
its arguments appear after the trigger? For example, “Attacker” appears after the trigger 26.9%

14We also tried a masked-language-model objective but did not find obvious improvements.
15https://github.com/PlusLabNLP/X-Gear
16We further re-tokenize Chinese data with CoreNLP (Manning et al., 2014) to align with segmentation in

OntoNotes.
17The Arabic and Chinese frames adopt similar schemes as in English, specifying roles of {ARG0, ARG1, ...}.

We find it reasonable by simply ordering them by the role numbers and forming templates of “ARG0 V ARG1
ARG2 ...”.
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Model Arabic Chinese

Zero-shot results without any EAE annotations.

QAen 22.56±1.48 26.58±2.61
QAen+tgt 23.54±1.43 27.08±1.79
SRLen 37.75±0.52 39.37±1.45
SRLen+tgt 40.64±1.49 41.50±1.04

Multi-lingual results with English EAE annotations.

GATE† 44.5 49.2
X-Gear† 44.8 54.0
EnMRC 37.44±3.02 51.86±0.92
+QAen 39.06±2.86 53.36±1.06
+QAen+tgt 44.27±1.37 53.97±1.41

EnTSQ 37.64±1.96 53.54±0.65
+SRLen 41.86±0.92 53.96±0.85
+SRLen+tgt 51.51±1.32 58.90±0.76

Supervised results with target EAE annotations.

Super. 58.09±1.51 65.11±0.94

Table 7.8: Results (F1%) of ACE05 Arabic and Chinese.

of the time in English, while this percentage is 72.7% in Arabic. Then for each role, we have
a source-target order difference metric, which is the absolute value of the frequency difference.
We further calculate the performance differences between a transfer model trained with English
data and a supervised model directly trained on the target language. Finally, we measure the
correlation between the order differences and performance differences for the top-ten frequent
roles in each language. The results for the transfer model with or without (multi-lingual) SRL
intermediate training are shown in Table 7.9. Interestingly, if directly transferring from English
to the target languages, there are at least moderate correlations between the order differences
and performance gaps. While using SRL, the correlations decrease probably because of the extra
signals about the target language order in the SRL data. This shows that order differences may be
a major factor influencing the effectiveness of the cross-lingual transfer. Currently, our templates
are all English-styled and it would be an interesting future direction to explore the influences of
template specifications such as role orders.

Multi-sentence

Finally, we investigate multi-sentence event arguments, which are not constrained to the same
sentence of the event trigger but can come from the document-level contexts. To investigate this
phenomenon, we evaluate18 on the RAMS dataset (Ebner et al., 2020), which annotates event

18Since our head-expanding heuristic does not cover the argument span annotation conventions of RAMS, for
simplicity we only evaluate argument head words.
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Language Model Pearson Spearman

Arabic
w/o SRL 0.6050 0.6727
w/ SRL 0.5157 0.1394

Chinese
w/o SRL 0.6910 0.5636
w/ SRL 0.5025 0.2727

Table 7.9: Correlations between relative role order differences and performance gaps to super-
vised systems for multi-lingual EAE.

Model Overall Same-Sent. Cross-Sent.

QA 28.23±0.74 35.16±1.42 11.66±0.69
SRL 48.03±0.30 53.36±0.30 2.81±0.78
SRL+pseudo 48.00±0.14 53.50±0.16 11.17±1.88

Super. 57.38±0.84 63.45±0.86 25.52±1.31

Table 7.10: Argument head F1(%) on RAMS test set.

arguments within five-sentence windows around the triggers. We similarly extend contexts to
five-sentence windows if available in our training of QA and SRL models for this experiment.

The zero-shot results are shown in the first group of Table 7.10. Consistent with our previous
findings, SRL performs better than QA for same-sentence arguments. Nevertheless, it predicts
very few cross-sentence arguments. This is not surprising because there are no such signals in the
SRL training data. Inspired by previous work on coreference and anaphora resolution (Varkel and
Globerson, 2020; Konno et al., 2021), we create pseudo SRL data with cross-sentence arguments
by surface-string matching. Specifically, for each nominal argument in an SRL instance, we
search for words in nearby sentences that have the same lemma as the argument’s head word. If
there are, we delete the original true argument and add pseudo cross-sentence argument links to
those matched words. Although deletion may create ungrammatical instances, we find it better
than other schemes; such as replacing the original argument with a “[MASK]” token. With the
additional synthetic data, the model can recover certain cross-sentence arguments while keeping
similar same-sentence performance. Multi-sentence argument extraction is still a difficult task,
where even the supervised system can only obtain an F1 score of around 25%. This calls for
further exploration, and an investigation of how best to use auxiliary data (such as from SRL)
may be a promising direction.

7.4 Related Work

Utilizing shallow semantics for event-centric information extraction tasks has been explored pre-
viously. Liu et al. (2016) leverage FrameNet frames to enhance event detection. Wang et al.
(2021d) conduct contrastive pre-training with AMR structures to enhance event extraction. Pre-
vious work utilizes predicted shallow semantic structures as inputs to help low-resource event
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extraction (Peng et al., 2016; Huang et al., 2018; Lyu et al., 2021) and event schema induction
(Huang et al., 2016b). Moreover, SRL has been utilized for implicit argument linking or implicit
semantic role labeling (iSRL) in previous work (Chen et al., 2010; Laparra and Rigau, 2012,
2013; Feizabadi and Padó, 2015; O’Gorman, 2019). this chapter follows these directions and
shows that SRL can be a valuable direct training resource for EAE.

For the EAE task, most previous work adopts a classification-based strategy where each role
is assigned static querying parameters (Chen et al., 2015a; Nguyen et al., 2016; Wang et al.,
2019b; Pouran Ben Veyseh et al., 2020; Ma et al., 2020; Ebner et al., 2020). Recently, two
interesting alternative strategies have been explored to enable extraction in more flexible ways:
MRC-based methods cast the problem as answering role questions (Liu et al., 2020; Du and
Cardie, 2020; Li et al., 2020b; Feng et al., 2020; Lyu et al., 2021; Liu et al., 2021a), while
generation-based methods adopt sequence-to-sequence generation schemes (Paolini et al., 2021;
Li et al., 2021a; Hsu et al., 2022; Lu et al., 2021; Du et al., 2021b; Huang et al., 2022). We cover
all these strategies within a unified role querying framework and further explore a template-based
role querying strategy. This strategy is also related to prompt-based learning (Liu et al., 2021b;
Schick and Schütze, 2021; Li and Liang, 2021; Petroni et al., 2019), but differs in the extraction-
targeted paradigm. Concurrently, Ma et al. (2022) adopt a similar idea, while this chapter differs
mainly in our focus on transfer learning.

7.5 Conclusion
In this chapter, we explore transfer learning from semantic roles to event arguments. With unified
role querying strategies, we show that SRL annotations are a valuable resource for event argu-
ment extraction. The SRL model also obtains promising results when extended to new scenarios
with domain and language differences.
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Part III

Active Learning
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Chapter 8

A Survey of Active Learning for Natural
Language Processing

In previous chapters, we examine cases where the model is passively given a fixed training
dataset, either with direct target annotations or from related corpora. Many times, although
we might not be able to annotate large amounts of data for the target task, it is usually feasible to
create a small amount of annotation. In this case, how to select data instances to annotate would
be influential on the learning effectiveness. The idea of active learning is motivated in this way
and aims to learn with fewer labeled data by allowing the learner to actively select data instances.
In this chapter, we will start our investigation with a literature review of active learning, with a
specific focus on its application to NLP.

8.1 Introduction

The majority of modern natural language processing (NLP) systems are based on data-driven
machine learning models. The success of these models depends on the quality and quantity of
the available target training data. While these models can obtain impressive performance if given
enough supervision, it is usually expensive to collect large amounts of annotations, especially
considering that the labeling process can be laborious and challenging for NLP tasks (§8.3.2).
Active learning (AL), an approach that aims to achieve high accuracy with fewer training labels
by allowing a model to choose the data to be annotated and used for learning, is a widely-studied
approach to tackle this labeling bottleneck (Settles, 2009).

Active learning has been studied for more than twenty years (Lewis and Gale, 1994; Lewis
and Catlett, 1994; Cohn et al., 1994, 1996) and there have been several literature surveys on this
topic (Settles, 2009; Olsson, 2009; Fu et al., 2013; Aggarwal et al., 2014; Hino, 2020; Schröder
and Niekler, 2020; Ren et al., 2021; Zhan et al., 2022). Nevertheless, there is still a lack of an
AL survey for NLP that includes recent advances. Settles (2009) and Olsson (2009) provide
great surveys covering AL for NLP, but these surveys are now more than a decade old. In the
meantime, the field of NLP has been transformed by deep learning. While other more recent
surveys cover deep active learning, they are either too specific, focused only on text classification
(Schröder and Niekler, 2020), or too general, covering AI applications more broadly (Ren et al.,
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Figure 8.1: Counts of AL (left) and “neural” (right) papers in the ACL Anthology over the past
twenty years.

2021; Zhan et al., 2022). Moreover, applying AL to NLP tasks requires specific considerations,
e.g. handling complex output structures and trade-offs in text annotation cost (§8.3), which have
not been thoroughly discussed.

In order to provide an NLP-specific AL survey,1 we start by searching the ACL Anthology for
AL-related papers. We simply search for the keyword “active” in paper titles and then perform
manual filtering. We also gradually include relevant papers missed by keyword searches and
papers from other venues encountered by following reference links throughout the surveying
process. The distribution of AL-related papers in the ACL Anthology over the past twenty years
is shown in Figure 8.1, which also includes rough counts of papers concerning neural models
by searching for the word “neural” in titles. The overall trend is interesting. There is a peak
around the years 2009 and 2010, while the counts drop and fluctuate during the mid-2010s, which
corresponds to the time when neural models became prominent in NLP. We observe a renewed
interest in AL research in recent years, which is primarily focused on deep active learning (Ren
et al., 2021; Zhan et al., 2022).

8.1.1 Overview

We mainly examine the widely utilized pool-based scenario (Lewis and Gale, 1994), where a pool
of unlabeled data is available and instances are drawn from the pool to be annotated. Algorithm 1
illustrates a typical AL procedure, which consists of a loop of instance selection with the current
model and model training with updated annotations. The remainder of this survey is organized
corresponding to the main steps in this procedure:
• In §8.2, we discuss the core aspect of AL: Query strategies, with a fine-grained categorization

over informativeness (§8.2.1), representativeness (§8.2.2) and the combination of these two
(§8.2.3).

1The descriptions in this survey are mostly brief to provide more comprehensive coverage in a compact way. We
hope that this survey can serve as an index for related work.
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Algorithm 1 A typical active learning procedure.
Input: An unlabeled data pool U .
Output: The final labeled dataset L and trained modelM.

1: L, U ← seed(U) ▷ Start (§8.5.1)
2: M ← train(L, U) ▷ Model Learning (§8.4)
3: while not stop criterion() do ▷ Stop (§8.5.2)
4: I ← query(M, U) ▷ Query (§8.2, §8.3)
5: I ′ ← annotate(I) ▷ Annotate (§8.3)
6: U ← U − I; L ← L ∪ I ′
7: M ← train(L, U) ▷ Model Learning (§8.4)
8: return L, Mf

• In §8.3, we cover the two additional important topics of querying and annotating for NLP tasks:
AL for structured prediction tasks (§8.3.1) and the cost of annotation with AL (§8.3.2).

• In §8.4, we discuss model and learning: the query-successor model mismatch scenario (§8.4.1)
and AL with advanced learning techniques (§8.4.2).

• In §8.5, we examine methods for starting (§8.5.1) and stopping (§8.5.2) AL.
In §8.6, some other aspects of AL for NLP are discussed. In §8.7, we conclude with related and
future directions.

8.2 Query Strategies

8.2.1 Informativeness

Informativeness-based query strategies mostly assign an informative measure to each unlabeled
instance individually. The instance(s) with the highest measure will be selected.

Output Uncertainty

Uncertainty sampling (Lewis and Gale, 1994) is probably the simplest and the most commonly
utilized query strategy. It prefers the most uncertain instances judged by the model outputs. For
probabilistic models, entropy-based (Shannon, 1948), least-confidence (Culotta and McCallum,
2005) and margin-sampling (Scheffer et al., 2001; Schein and Ungar, 2007) are three typical
uncertainty sampling strategies (Settles, 2009). Schröder et al. (2022) revisit some of these
uncertainty-based strategies with Transformer-based models and provide empirical results for
text classification. For non-probabilistic models, similar ideas can be utilized, such as selecting
the instances that are close to the decision boundary in an SVM (Schohn and Cohn, 2000; Tong
and Koller, 2001).

Another way to measure output uncertainty is to check the divergence of a model’s predic-
tions with respect to an instance’s local region. If an instance is near the decision boundary, the
model’s outputs may be different within its local region. In this spirit, recent work examines dif-
ferent ways to check instances’ local divergence, such as nearest-neighbor searches (Margatina
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et al., 2021), adversarial perturbation (Zhang et al., 2022c) and data augmentation (Jiang et al.,
2020).

Disagreement

Uncertainty sampling usually considers the outputs of only one model. In contrast, disagreement-
based strategies utilize multiple models and select the instances that are most disagreed among
them. This is also a widely-adopted algorithm, of which the famous query-by-committee (QBC;
Seung et al., 1992) is an example. The disagreement can be measured by vote entropy (Engelson
and Dagan, 1996), KL-divergence (McCallum and Nigam, 1998) or variation ratio (Freeman,
1965).

To construct the model committee, one can train a group of distinct models. Moreover, taking
a Bayesian perspective over the model parameters is also applicable (Houlsby et al., 2011). Es-
pecially with neural models, (Gal and Ghahramani, 2016) show that dropout could approximate
inference and measure model uncertainty. This deep Bayesian method has been applied to AL
for computer vision (CV) tasks (Gal et al., 2017) as well as various NLP tasks (Siddhant and
Lipton, 2018; Shen et al., 2018; Shelmanov et al., 2021).

Gradient

Gradient information can be another signal for querying, with the motivation to choose the
instances that would most strongly impact the model. In this strategy, informativeness is usually
measured by the norm of the gradients. Since we do not know the gold labels for unlabeled
instances, the loss is usually calculated as the expectation over all labels. This leads to the
strategy of expected gradient length (EGL), introduced by Settles et al. (2007) and later applied
to sequence labeling (Settles and Craven, 2008) and speech recognition (Huang et al., 2016a).
Zhang et al. (2017b) explore a variation for neural networks where only the gradients of word
embeddings are considered and show its effectiveness for text classification.

Performance Prediction

Predicting performance can be another indicator for querying. Ideally, the selected instances
should be the ones that most reduce future errors if labeled and added to the training set.
This motivates the expected loss reduction (ELR) strategy (Roy and McCallum, 2001), which
chooses instances that lead to the least expected error if added to retrain a model. This strategy
can be computationally costly since retraining is needed for each candidate. Along this direction,
there have been several recent updates on the estimation metrics, for example, based on predicted
error decay on groups Chang et al. (2020), mean objective cost of uncertainty (Zhao et al., 2021a)
and strictly proper scoring rules (Tan et al., 2021).

Recently, methods have been proposed to learn another model to select instances that lead to
the fewest errors, usually measured on a held-out development set. Reinforcement learning and
imitation learning have been utilized to obtain the selection policy (Bachman et al., 2017; Fang
et al., 2017; Liu et al., 2018b,a; Zhang et al., 2022e). This learning-to-select strategy may have
some constraints. First, it requires labeled data (maybe from another domain) to train the policy.
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To mitigate this reliance, Vu et al. (2019) use the current task model as an imperfect annotator for
AL simulations. Moreover, the learning signals may be unstable for complex tasks, as Koshorek
et al. (2019) show for semantic tasks.

A similar and simpler idea is to select the most erroneous or ambiguous instances with re-
gard to the current task model, which can also be done with another performance-prediction
model. Yoo and Kweon (2019) directly train a smaller model to predict the instance losses for
CV tasks, which have been also adopted for NLP (Cai et al., 2021; Shen et al., 2021). In a similar
spirit, Wang et al. (2017) employ a neural model to judge the correctness of the model prediction
for SRL and Brantley et al. (2020) learn a policy to decide whether expert querying is required
for each state in sequence labeling. Inspired by data maps (Swayamdipta et al., 2020), Zhang
and Plank (2021) train a model to select ambiguous instances whose average correctness over the
training iterations is close to a pre-defined threshold. For machine translation (MT), special tech-
niques can be utilized to seek erroneous instances, such as using a backward translator to check
round-trip translations (Haffari et al., 2009; Zeng et al., 2019) or quality estimation (Logacheva
and Specia, 2014a,b; Chimoto and Bassett, 2022).

8.2.2 Representativeness
Only considering the informativeness of individual instances may have the drawback of sampling
bias Dasgupta (2011); Prabhu et al. (2019) and the selection of outliers (Roy and McCallum,
2001; Karamcheti et al., 2021). Therefore, representativeness, which measures how instances
correlate with each other, is another major factor to consider when designing AL query strategies.

Density

With the motivation to avoid outliers, density-based strategies prefer instances that are more
representative of the unlabeled set. Selecting by n-gram or word counts (Ambati et al., 2010a;
Zhao et al., 2020b) can be regarded as a simple way of density measurement. Generally, the
common measurement is an instance’s average similarity to all other instances (McCallum and
Nigam, 1998; Settles and Craven, 2008). While it may be costly to calculate similarities of all
instance pairs, considering only k-nearest neighbor instances has been proposed as an alternative
option (Zhu et al., 2008c, 2009).

Discriminative

Another direction2 is to select instances that are different from already labeled instances.
Again, for NLP tasks, simple feature-based metrics can be utilized for this purpose by preferring
instances with more unseen n-grams or out-of-vocabulary words (Eck et al., 2005; Bloodgood
and Callison-Burch, 2010; Erdmann et al., 2019). Generally, similarity scores can also be uti-
lized to select the instances that are less similar to the labeled set (Kim et al., 2006; Zhang et al.,
2018; Zeng et al., 2019). Another interesting idea is to train a model to discriminate the labeled
and unlabeled sets. Gissin and Shalev-Shwartz (2019) directly train a classifier for this purpose,

2Some work also uses the word “diversity,”, however, we specifically preserve this word for batch-diversity in
§8.2.2.
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while naturally adversarial training can be also adopted (Sinha et al., 2019; Deng et al., 2018).
In domain adaptation scenarios, the same motivation leads to the usage of a domain separator to
filter instances (Rai et al., 2010).

Batch Diversity

Ideally, only one most useful instance would be selected in each iteration. However, it is more
efficient and practical to adopt batch-mode AL (Settles, 2009), where each time a batch of
instances is selected. In this case, we need to consider the dissimilarities not only between
selected instances and labeled ones but also within the selected batch.

To select a batch of diverse instances, there are two common approaches. 1) Iterative se-
lection collects the batch in an iterative greedy way (Brinker, 2003; Shen et al., 2004). In each
iteration, an instance is selected by comparing it with previously chosen instances to avoid re-
dundancy. Some more advanced diversity-based criteria, like coreset (Geifman and El-Yaniv,
2017; Sener and Savarese, 2018) and determinantal point processes (Shi et al., 2021), can also be
approximated in a similar way. 2) Clustering-based methods partition the unlabeled data into
clusters and select instances among them (Tang et al., 2002; Xu et al., 2003; Shen et al., 2004;
Nguyen and Smeulders, 2004; Zhdanov, 2019; Yu et al., 2022; Maekawa et al., 2022). Since the
chosen instances come from different clusters, diversity can be achieved to some extent.

To calculate similarity, in addition to comparing the input features or intermediate representa-
tions, other methods are also investigated, such as utilizing model-based similarity (Hazra et al.,
2021), gradients (Ash et al., 2020; Kim, 2020), and masked LM surprisal embeddings (Yuan
et al., 2020).

8.2.3 Hybrid
There is no surprise that informativeness and representativeness can be combined for instance
querying, leading to hybrid strategies. A simple combination can be used to merge multiple
criteria into one. This can be achieved by a weighted sum (Kim et al., 2006; Chen et al., 2011)
or multiplication (Settles and Craven, 2008; Zhu et al., 2008c).

There are several strategies to naturally integrate multiple criteria. Examples include (un-
certainty) weighted clustering (Zhdanov, 2019), diverse gradient selection (Ash et al., 2020; Kim,
2020) where the gradients themselves contain uncertainty information (§8.2.1) and determinantal
point processes (DPP) with quality-diversity decomposition (Shi et al., 2021).

Moreover, multi-step querying, which applies multiple criteria in series, is another natural
hybrid method. For example, one can consider first filtering certain highly uncertain instances
and then performing clustering to select a diverse batch from them (Xu et al., 2003; Shen et al.,
2004; Mirroshandel et al., 2011). An alternative strategy of selecting the most uncertain instances
per cluster has also been utilized (Tang et al., 2002).

Instead of statically merging into one query strategy, dynamic combination may better fit
the AL learning process, since different strategies may excel at different AL phases. For ex-
ample, at the start of AL, uncertainty sampling may be unreliable due to little labeled data, and
representativeness-based methods could be preferable, whereas in later stages where we have
enough data and target finer-grained decision boundaries, uncertainty may be a suitable strategy.
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DUAL (Donmez et al., 2007) is such a dynamic strategy that can switch from a density-based
selector to an uncertainty-based one. Ambati et al. (2011b) further propose GraDUAL, which
gradually switches strategies within a switching range. Wu et al. (2017) adopt a similar idea with
a pre-defined monotonic function to control the combination weights.

8.3 Query and Annotation

8.3.1 AL for Structured Prediction

AL has been widely studied for classification tasks, while in NLP, many tasks involve structured
prediction. In these tasks, the system needs to output a structured object consisting of a group
of inter-dependent variables (Smith, 2011), such as a label sequence or a parse tree. Special care
needs to be taken when querying and annotating for these more complex tasks (Thompson et al.,
1999). One main decision is whether to annotate full structures for input instances (§8.3.1) or
allow the annotation of only partial structures (§8.3.1).

Full-structure AL

First, if we regard the full output structure of an instance as a whole and perform query and
annotation at the full-instance level, then AL for structured prediction tasks is not very different
than for simpler classification tasks. Nevertheless, considering that the output space is usually
exponentially large and infeasible to explicitly enumerate, querying may require further inspec-
tion.

Some uncertainty sampling strategies, such as entropy, need to consider the full output
space. Instead of the infeasible explicit enumeration, dynamic-programming algorithms that are
similar to the ones in decoding and inference processes can be utilized, such as algorithms for
tree-entropy (Hwa, 2000, 2004) and sequence-entropy (Mann and McCallum, 2007; Settles and
Craven, 2008).

Instead of considering the full output space, top-k approximation is a simpler alternative
that takes k-best predicted structures as a proxy. This is also a frequently utilized method (Tang
et al., 2002; Kim et al., 2006; Rocha and Sanchez, 2013).

For disagreement-based strategies, the measurement of partial disagreement may be re-
quired since full-match can be too strict for structured objects. Fine-grained evaluation scores
can be reasonable choices for this purpose, such as the F1 score for sequence labeling (Ngai and
Yarowsky, 2000).

Since longer instances usually have larger uncertainties and might be preferred, length nor-
malization is a commonly-used heuristic to avoid this bias (Tang et al., 2002; Hwa, 2000, 2004;
Shen et al., 2018). Yet, Settles and Craven (2008) argue that longer sequences should not be
discouraged and may contain more information.

Instead of directly specifying the full utility of an instance, aggregation is also often uti-
lized by gathering utilities of its sub-structures, usually along the factorization of the structured
modeling. For example, the sequence uncertainty can be obtained by summing or averaging the
uncertainties of all the tokens (Settles and Craven, 2008). Other aggregation methods are also
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applicable, such as weighted sum by word frequency (Ringger et al., 2007) or using only the
most uncertain (least probable) one (Myers and Palmer, 2021; Liu et al., 2022c).

Partial-structure AL

A structured object can be decomposed into smaller sub-structures with different training util-
ities. For example, in a dependency tree, functional relations are usually easier to judge while
prepositional attachment links may be more informative for the learning purpose. This natu-
rally leads to AL with partial structures, where querying and annotating can be performed at the
sub-structure level.

Factorizing full structures into the finest-grained sub-structures and regarding them as the
annotation units could be a natural choice. Typical examples include individual tokens for se-
quence labeling (Marcheggiani and Artières, 2014), word boundaries for segmentation (Neubig
et al., 2011; Li et al., 2012b), syntactic-unit pairs for dependency parsing (Sassano and Kuro-
hashi, 2010) and mention pairs for coreference (Gasperin, 2009; Miller et al., 2012; Sachan
et al., 2015). The querying strategy for the sub-structures can be similar to the classification
cases, though inferences are usually needed to calculate marginal probabilities. Moreover, if
full structures are desired as annotation outputs, semi-supervised techniques such as self-training
(§8.4.2) could be utilized to assign pseudo labels to the unannotated parts (Tomanek and Hahn,
2009a; Majidi and Crane, 2013).

At many times, choosing larger sub-structures is preferable, since partial annotation still
needs the understanding of larger contexts and frequently jumping among different contexts may
require more reading time (§8.3.2). Moreover, increasing the sampling granularity may mitigate
the missed class effect, where certain classes may be overlooked (Tomanek et al., 2009). Typical
examples of larger sub-structures include sub-sequences for sequence labeling (Shen et al., 2004;
Chaudhary et al., 2019; Radmard et al., 2021), word-wise head edges for dependency parsing
(Flannery and Mori, 2015; Li et al., 2016), neighborhood pools (Laws et al., 2012) or mention-
wise anaphoric links (Li et al., 2020a; Espeland et al., 2020) for coreference, and phrases for MT
(Bloodgood and Callison-Burch, 2010; Miura et al., 2016; Hu and Neubig, 2021). In addition to
increasing granularity, grouping queries can also help to make annotation easier, such as adopt-
ing a two-stage selection of choosing uncertain tokens from uncertain sentences (Mirroshandel
and Nasr, 2011; Flannery and Mori, 2015) and selecting nearby instances in a row (Miller et al.,
2012).

For AL with partial structures, output modeling is of particular interest since the model
needs to learn from partial annotations. If directly using local discriminative models where
each sub-structure is decided independently, learning with partial annotations is straightforward
since the annotations are already complete to the models (Neubig et al., 2011; Flannery and
Mori, 2015). For more complex models that consider interactions among output sub-structures,
such as global models, special algorithms are required to learn from incomplete annotations
(Scheffer et al., 2001; Wanvarie et al., 2011; Marcheggiani and Artières, 2014; Li et al., 2016).
One advantage of these more complex models is the interaction of the partial labels and the
remaining parts. For example, considering the output constraints for structured prediction tasks,
combining the annotated parts and the constraints may reduce the output space of other parts and
thus lower their uncertainties, leading to better queries (Roth and Small, 2006; Sassano and
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Kurohashi, 2010; Mirroshandel and Nasr, 2011). More generally, the annotation of one label can
intermediately influence others with cheap re-inference, which can help batch-mode selection
(Marcheggiani and Artières, 2014) and interactive correction (Culotta and McCallum, 2005).

In addition to classical structured-prediction tasks, classification tasks can also be cast as
structured predictions with partial labeling. Partial feedback is an example that is adopted to
make the annotating of classification tasks simpler, especially when there are a large number of
target labels. For example, annotators may find it much easier to answer yes/no questions (Hu
et al., 2019) or rule out negative classes (Lippincott and Van Durme, 2021) than to identify the
correct one.

8.3.2 Annotation Cost
AL mainly aims to reduce real annotation costs and we discuss several important topics on this
point.

Cost Measurement

Most AL work adopts simple measurements of unit cost, that is, assuming that annotating each
instance requires the same cost. Nevertheless, the annotation efforts for different instances may
vary (Settles et al., 2008). For example, longer sentences may cost more to annotate than shorter
ones. Because of this, many papers assume unit costs to tokens instead of sequences, which
may still be inaccurate. Especially, AL tends to select difficult and ambiguous instances, which
may require more annotation efforts (Hachey et al., 2005; Lynn et al., 2012). It is important to
properly measure annotation cost since the measurement directly affects the evaluation of AL
algorithms. The comparisons of query strategies may vary if adopting different cost measure-
ments (Haertel et al., 2008a; Bloodgood and Callison-Burch, 2010; Chen et al., 2015b).

Probably the best cost measurement is the actual annotation time (Baldridge and Palmer,
2009). Especially, when the cost comparisons are not that straightforward, such as comparing
annotating data against writing rules (Ngai and Yarowsky, 2000) or partial against full annota-
tions (§8.3.1; Flannery and Mori, 2015; Li et al., 2016, 2020a), time-based evaluation is an ideal
choice. This requires actual annotating exercises rather than simulations.

Since cost measurement can also be used for querying (§8.3.2), it would be helpful to be
able to predict the real cost before annotating. This can be cast as a regression problem, for
which some previous work learns a linear cost model based on input features (Settles et al.,
2008; Ringger et al., 2008; Haertel et al., 2008a; Arora et al., 2009).

Cost-sensitive Querying

Given the goal of reducing actual cost, the querying strategies should also take it into considera-
tion. That is, we want to select not only high-utility instances but also low-cost ones. A natural
cost-sensitive querying strategy is return-on-investment (ROI; Haertel et al., 2008b; Settles
et al., 2008; Donmez and Carbonell, 2008). In this strategy, instances with higher net benefit
per unit cost are preferred, which is equivalent to dividing the original querying utility by cost
measure. Tomanek and Hahn (2010) evaluate the effectiveness of ROI together with two other
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strategies, including constraining maximal cost budget per instance and weighted rank combina-
tion. Haertel et al. (2015) provide further analytic and empirical evaluation, showing that ROI
can reduce total cost.

In real AL scenarios, things can be much more complex. For example, there can be multiple
annotators with different expertise (Baldridge and Palmer, 2009; Huang et al., 2017; Cai et al.,
2020), and the annotators may refuse to answer or make mistakes (Donmez and Carbonell, 2008).
Being aware of these scenarios, Donmez and Carbonell (2008) propose proactive learning to
jointly select the optimal oracle and instance. Li et al. (2017) further extend proactive learning
to NER tasks.

Directly Reducing Cost

In addition to better query strategies, there are other ways of directly reducing annotation cost,
such as computer-assisted annotation. In AL, models and annotators usually interact in an indi-
rect way where models only query the instances to present to the annotators, while there could
be closer interactions.

Pre-annotation is such an idea, where not only the raw data instances but also the model’s
best or top-k predictions are sent to the annotators to help them make decisions. If the model’s
predictions are reasonable, the annotators can simply select or make a few corrections to obtain
the gold annotations rather than create them from scratch. This method has been shown effective
when combined with AL (Baldridge and Osborne, 2004; Vlachos, 2006; Ringger et al., 2008;
Skeppstedt, 2013; Cañizares-Dı́az et al., 2021). Post-editing for MT is also a typical example
(Dara et al., 2014).

Moreover, the models could provide help at real annotating time. For example, Culotta and
McCallum (2005) present an interactive AL system where the user’s corrections can propagate
to the model, which generates new predictions for the user to further refine. Interactive machine
translation (IMT) adopts a similar idea, where the annotator corrects the first erroneous character,
based on which the model reproduces the prediction. AL has also been combined with IMT to
further reduce manual efforts (González-Rubio et al., 2012; Peris and Casacuberta, 2018; Gupta
et al., 2021a).

Crowdsourcing is another way to reduce annotation costs and can be combined with AL. We
provide more discussions on this in §8.6.

Wait Time

In AL iterations, the annotators may need to wait for the training and querying steps (Line 7 and
4 in Algorithm 1). This wait time may bring some hidden costs, thus more efficient querying and
training would be preferable for faster turnarounds.

To speed up querying, sub-sampling is a simple method to deal with large unlabeled pools
(Roy and McCallum, 2001; Ertekin et al., 2007; Tsvigun et al., 2022; Maekawa et al., 2022).
For some querying strategies, pre-calculating and caching unchanging information can also help
to speed up (Ashrafi Asli et al., 2020; Citovsky et al., 2021). In addition, approximation with
k-nearest neighbors can also be utilized to calculate density (Zhu et al., 2009) or search for
instances after adversarial attacks (Ru et al., 2020).
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To reduce training time, a seemingly reasonable strategy is to apply incremental training
across AL iterations, that is, continuing training previous models on the new instances. However,
Ash and Adams (2020) show that this type of warm-start may lead to sub-optimal performance
for neural models and recent AL work usually trains models from scratch (Hu et al., 2019; Ein-
Dor et al., 2020). Another method is to use an efficient model for querying and a more powerful
model for final training. However, this might lead to sub-optimal results, which will be discussed
in §8.4.1.

Another idea to reduce wait time is to simply allow querying with stale information. Actu-
ally, batch-mode AL (§8.2.2) is such an example where instances in the same batch are queried
with the same model. Haertel et al. (2010) propose parallel AL, which maintains separate loops
of annotating, training, and scoring, and allows dynamic and parameterless instance selection at
any time.

8.4 Model and Learning

8.4.1 Model Mismatch
While it is natural to adopt the same best-performing model throughout the AL process, there
are cases where the query and final (successor) models can mismatch (Lewis and Catlett, 1994).
Firstly, more efficient models are preferable for querying to reduce wait time (§8.3.2). Moreover,
since data usually outlive models, re-using AL-base data to train another model would be desired
(Baldridge and Osborne, 2004; Tomanek et al., 2007). Previous work shows that model mis-
match may make the gains from AL negligible or even negative (Baldridge and Osborne, 2004;
Lowell et al., 2019; Shelmanov et al., 2021), which raises concerns about the utilization of AL
in practice.

For efficiency purposes, distillation can be utilized to improve querying efficiency while
keeping reasonable AL performance. Shelmanov et al. (2021) show that using a smaller dis-
tilled version of a pre-trained model for querying does not lead to too much performance drop.
Tsvigun et al. (2022) combine this idea with pseudo-labeling and sub-sampling to further reduce
computational cost. Similarly, Nguyen et al. (2022) keep a smaller proxy model for query and
synchronize the proxy with the main model by distillation.

8.4.2 Learning
AL can be combined with other advanced learning techniques to further reduce required annota-
tions.

Semi-supervised learning. Since AL usually assumes an unlabeled pool, semi-supervised
learning can be a natural fit. Combining these two is not a new idea: (McCallum and Nigam,
1998) adopt the EM algorithm to estimate the outputs of unlabeled data and utilize them for learn-
ing. This type of self-training or pseudo-labeling technique is often utilized in AL (Tomanek and
Hahn, 2009a; Majidi and Crane, 2013; Yu et al., 2022). With similar motivation, (Dasgupta and
Ng, 2009) use an unsupervised algorithm to identify the unambiguous instances to train an active
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learner. For the task of word alignment, which can be learned in an unsupervised manner, in-
corporating supervision with AL can bring further improvements in a data-efficient way (Ambati
et al., 2010b,c).

Transfer learning. AL can be easily combined with transfer learning, another technique to
reduce required annotations. Utilizing pre-trained models is already a good example (Ein-Dor
et al., 2020; Yuan et al., 2020; Tamkin et al., 2022) and continual training (Gururangan et al.,
2020) can also be applied (Hua and Wang, 2022; Margatina et al., 2022). Moreover, transductive
learning is commonly combined with AL by transferring learning signals from different domains
(Chan and Ng, 2007; Shi et al., 2008; Rai et al., 2010; Saha et al., 2011; Wu et al., 2017; Kasai
et al., 2019; Yuan et al., 2022) or languages (Qian et al., 2014; Fang and Cohn, 2017; Fang et al.,
2017; Chaudhary et al., 2019, 2021; Moniz et al., 2022). Initializing the model via meta-learning
has also been found helpful (Zhu et al., 2022). In addition to the task model, the model-based
query policy (§8.2.1) is also often obtained with transfer learning.

Weak supervision. AL can also be combined with weakly supervised learning. Examples
include learning from execution results for semantic parsing (Ni et al., 2020), labeling based
on structure vectors for entity representations (Qian et al., 2020), learning from gazetteers for
sequence labeling (Brantley et al., 2020) and interactively discovering labeling rules (Zhang
et al., 2022b).

Data augmentation. Augmentation is also applicable in AL and has been explored with iter-
ative back-translation (Zhao et al., 2020b), mixup for sequence labeling (Zhang et al., 2020a)
and phrase-to-sentence augmentation for MT (Hu and Neubig, 2021). As discussed in §8.2.1,
augmentation can also be helpful for instance querying (Jiang et al., 2020; Zhang et al., 2022c).
Another interesting scenario involving augmentation and AL is query synthesis, which directly
generates instances to be annotated instead of selecting existing unlabeled ones. Though synthe-
sizing texts is still a hard problem generally, there have been successful applications for simple
classification tasks (Schumann and Rehbein, 2019; Quteineh et al., 2020).

8.5 Starting and Stopping AL

8.5.1 Starting AL
While there are cases where there are already enough labeled data to train a reasonable model and
AL is utilized to provide further improvements (Bloodgood and Callison-Burch, 2010; Geifman
and El-Yaniv, 2017), at many times we are facing the cold-start problem, where instances need
to be selected without a reasonable model. Especially, how to select the seed data to start the
AL process is an interesting question, which may greatly influence the performance in initial AL
stages (Tomanek et al., 2009; Horbach and Palmer, 2016).

Random sampling is probably the most commonly utilized strategy, which is reasonable since
it preserves the original data distribution. Some representativeness-based querying strategies
(§8.2.2) can also be utilized, for example, selecting points near the clustering centroids is a way
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to obtain representative and diverse seeds (Kang et al., 2004; Zhu et al., 2008c; Hu et al., 2010).
Moreover, some advanced learning techniques (§8.4.2) can also be helpful here, such as transfer
learning (Wu et al., 2017) and unsupervised methods (Vlachos, 2006; Dasgupta and Ng, 2009).
In addition, the language model can be a useful tool, with which Dligach and Palmer (2011)
select low-probability words in the context of word sense disambiguation and Yuan et al. (2020)
choose cluster centers with surprisal embeddings by pre-trained contextualized LMs.

8.5.2 Stopping AL
When adopting AL in practice, it would be desirable to know the time to stop AL when the
model performance is already near the upper limits, before running out of all the budgets. For
this purpose, a stopping criterion is needed, which checks certain metrics satisfying certain con-
ditions. There can be simple heuristics. For example, AL can be stopped when all unlabeled
instances are no closer than any of the support vectors with an SVM (Schohn and Cohn, 2000;
Ertekin et al., 2007) or no new n-grams remain in the unlabeled set for MT (Bloodgood and
Callison-Burch, 2010). Nevertheless, these are not generic solutions. For the design of a general
stopping criterion, there are three main aspects to consider: metric, dataset, and condition.

For the metric, measuring performance on a development set seems a natural option. How-
ever, the results would be unstable if this set is too small and it would be impractical to assume
a large development set. Cross-validation on the training set also has problems since the labeled
data by AL is usually biased. In this case, metrics from the query strategies can be utilized.
Examples include uncertainty or confidence (Zhu and Hovy, 2007; Vlachos, 2008), disagree-
ment (Tomanek et al., 2007; Tomanek and Hahn, 2008; Olsson and Tomanek, 2009), estimated
performance (Laws and Schütze, 2008), expected error (Zhu et al., 2008a), confidence varia-
tion (Ghayoomi, 2010), as well as actual performance on the selected instances (Zhu and Hovy,
2007). Moreover, comparing the predictions between consecutive AL iterations is another rea-
sonable option (Zhu et al., 2008b; Bloodgood and Vijay-Shanker, 2009a).

The dataset to calculate the stopping metric requires careful choosing. The results could be
unstable if not adopting a proper set (Tomanek and Hahn, 2008). Many papers suggest that a
separate unlabeled dataset should be utilized (Tomanek and Hahn, 2008; Vlachos, 2008; Blood-
good and Vijay-Shanker, 2009a; Beatty et al., 2019; Kurlandski and Bloodgood, 2022). Since
the stopping metrics usually do not rely on gold labels, this dataset could potentially be very
large to provide more stable results, though wait time would be another factor to consider in this
case (§8.3.2).

The condition to stop AL is usually comparing the metrics to a pre-defined threshold. Earlier
work only looks at the metric at the current iteration, for example, stopping if the uncertainty or
the error is less than the threshold (Zhu and Hovy, 2007). In this case, the threshold is hard to
specify since it relies on the model and the task. (Zhu et al., 2008b) cascade multiple stopping
criteria to mitigate this reliance. A more stable option is to track the change of the metrics over
several AL iterations, such as stopping when the confidence consistently drops (Vlachos, 2008),
the changing rate flattens (Laws and Schütze, 2008) or the predictions stabilize across iterations
(Bloodgood and Vijay-Shanker, 2009a; Bloodgood and Grothendieck, 2013).

Pullar-Strecker et al. (2021) provide an empirical comparison over common stopping criteria
and would be a nice reference. Moreover, stopping AL can be closely related to performance
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prediction and early stopping. Especially, the latter can be of particular interest since learning in
early AL stages is a low-resource problem, and how to perform early stopping may also require
careful considerations.

8.6 Other Aspects

We describe some other aspects that are frequently seen when applying AL to NLP.

Crowdsourcing and Noise. Crowdsourcing is another way to reduce annotation costs by in-
cluding non-expert annotations (Snow et al., 2008). Naturally, AL and crowdsourcing may also
be combined with the hope to further reduce cost (Ambati et al., 2010a; Laws et al., 2011; Yan
et al., 2011; Fang et al., 2014; Zhao et al., 2020c). One specific factor to consider in this case is
the noises in the crowdsourced data, since noisy data may have a negative impact on the effec-
tiveness of AL (Rehbein and Ruppenhofer, 2011). Cost-sensitive querying strategies (§8.3.2) can
be utilized to select both annotators and instances by estimating labelers’ reliability (Yan et al.,
2011; Fang et al., 2014). Requiring multiple annotations per instance and then consolidating is
also applicable (Laws et al., 2011). Lin et al. (2019a) provide a framework that enables automatic
crowd consolidation for AL on the tasks of sequence labeling.

Multiple Targets. In many cases, we may want to consider multiple targets rather than only
one, for example, annotating instances in multiple domains (Xiao and Guo, 2013; He et al., 2021;
Longpre et al., 2022) or multiple languages (Haffari and Sarkar, 2009; Qian et al., 2014; Moniz
et al., 2022). Moreover, there may be multiple target tasks, where multi-task learning (MTL) can
interact with AL (Reichart et al., 2008; Ambati et al., 2011a; Rocha and Sanchez, 2013; Ikhwantri
et al., 2018; Zhu et al., 2020; Rotman and Reichart, 2022). In these scenarios with multiple
targets, naturally, strategies that consider all the targets are usually more preferable. Reichart
et al. (2008) show that a query strategy that considers all target tasks obtains the overall best
performance for MTL. Moniz et al. (2022) suggest that joint learning across multiple languages
using a single model outperforms other strategies such as equally dividing budgets or allocating
only for a high-resource language and then performing the transfer.

Data Imbalance. Imbalance is a frequently occurring phenomenon in NLP and AL can have
interesting interactions with it. On the one hand, as in plain learning scenarios, AL should
take data imbalance into consideration, with modifications to the model (Bloodgood and Vijay-
Shanker, 2009b), learning algorithm (Zhu and Hovy, 2007) and query strategies (Tomanek et al.,
2009; Escudeiro and Jorge, 2010; Li et al., 2012a). On the other hand, AL can be utilized to
address the data imbalance problem and build better data (Ertekin et al., 2007; Tomanek and
Hahn, 2009b; Attenberg and Ertekin, 2013; Mottaghi et al., 2020; Mussmann et al., 2020).
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8.7 Related Topics and Future Directions

8.7.1 Related Topics
There are many related topics that could be explored together with AL. Other data-efficient learn-
ing methods such as semi-supervised and transfer learning are naturally compatible with AL
(§8.4.2). Curriculum learning (Bengio et al., 2009), which arranges training instances in a mean-
ingful order, may also be integrated with AL (Platanios et al., 2019; Zhao et al., 2020a; Jafarpour
et al., 2021). Uncertainty (Gawlikowski et al., 2021), outlier detection (Hodge and Austin, 2004),
and performance prediction (Xia et al., 2020) can be related to instance querying. Crowdsourc-
ing can be adopted to further reduce annotation cost (§8.6). Model efficiency (Menghani, 2021)
would be crucial to reduce wait time (§8.3.2). AL is a typical type of human-in-the-loop frame-
work (Wang et al., 2021c), and it will be interesting to explore more human-computer interaction
techniques in AL.

8.7.2 Future Directions
Complex tasks. AL is mostly adopted for simple classification, while there are many more
complex tasks in NLP. For example, except for MT, generation tasks have been much less thor-
oughly explored with AL. Tasks with more complex inputs such as NLI and QA also require
extra care when using AL; obtaining unlabeled data is already non-trivial. Nevertheless, prelim-
inary work has shown that AL can be helpful for data collection for such tasks (Mussmann et al.,
2020).

Beyond direct target labeling. In addition to directly annotating target labels, AL can also be
utilized in other ways to help the target task, such as labeling features or rationales (Melville and
Sindhwani, 2009; Druck et al., 2009; Sharma et al., 2015), annotating explanations (Liang et al.,
2020), evaluation (Mohankumar and Khapra, 2022) and rule discovery (Zhang et al., 2022b).

AL in practice. Most AL work simulates annotations on an existing labeled dataset. Though
this method is convenient for algorithm development, it ignores several challenges of applying
AL in practice. As discussed in this survey, real annotation cost (§8.3.2), efficiency and wait
time (§8.3.2), data reuse (§8.4.1) and starting and stopping (§8.5) are all important practical
aspects which may not emerge in simulation. Moreover, since the AL process usually cannot be
repeated multiple times, how to select the query strategy and other hyper-parameters remains a
great challenge. It will be critical to address these issues to bring AL into practical use (Rehbein
et al., 2010; Attenberg and Provost, 2011; Settles, 2011; Lowell et al., 2019) and make it more
widely utilized (Tomanek and Olsson, 2009).
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Chapter 9

Data-efficient Active Learning for
Structured Prediction with Partial
Annotation and Self-Training

As discussed in the previous chapter, active learning is a promising way to battle the lacking
of annotation budgets and learn models with fewer labeled data instances. In this chapter, we
explore more efficient active learning for structure prediction in natural language processing. We
show that the combination of partial annotation and self-training using an adaptive selection ratio
reduces annotation cost over strong full annotation baselines under a fair comparison scheme that
takes reading time into consideration.

9.1 Introduction

Structured prediction (Smith, 2011) is a fundamental problem in NLP, wherein the label space
consists of complex structured outputs with groups of interdependent variables. It covers a wide
range of NLP tasks, including sequence labeling, syntactic parsing, and information extraction
(IE). Modern structured predictors are developed in a data-driven way, by training statistical
models with suitable annotated data. Recent developments in neural models and especially pre-
trained language models (Peters et al., 2018; Devlin et al., 2019; Liu et al., 2019; Yang et al.,
2019) have greatly improved system performance on these tasks. Nevertheless, the success of
these models still relies on the availability of sufficient manually annotated data, which is often
expensive and time-consuming to obtain.

To mitigate such data bottlenecks, active learning (AL), which allows the model to select the
most informative data instances to annotate, has been demonstrated to achieve good model ac-
curacy while requiring fewer labels (Settles, 2009). When applying AL to structured prediction,
one natural strategy is to perform full annotation (FA) for the output structures, for example, an-
notating a full sequence of labels or a full syntax tree. Due to its simplicity, FA has been widely
adopted in AL approaches for structured prediction tasks (Hwa, 2004; Settles and Craven, 2008;
Shen et al., 2018). Nevertheless, a structured object can usually be decomposed into smaller
sub-structures having non-uniform difficulty and informativeness. For example, as shown in
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He   saw   the   man   with   a   backpack

✔

✘

Annotation for 
Ambigious Parts

Model Prediction for 
Highly-confident Parts

Figure 9.1: Example partial annotation of a dependency tree.

Figure 9.1, in a dependency tree, edges such as functional relations are relatively easy to learn,
requiring fewer manual annotations, while prepositional attachment links may be more informa-
tive and thus more worthwhile to annotate.

The non-uniform distribution of informative sub-structures naturally suggests AL with partial
annotation (PA), where the annotation budgets can be preserved by only choosing a portion of
informative sub-structures to annotate rather than laboriously labeling entire sentence structures.
This idea has been explored in previous work, covering typical structured prediction tasks such as
sequence labeling (Shen et al., 2004; Marcheggiani and Artières, 2014; Chaudhary et al., 2019;
Radmard et al., 2021) and dependency parsing (Sassano and Kurohashi, 2010; Mirroshandel and
Nasr, 2011; Flannery and Mori, 2015; Li et al., 2016). Our work follows this direction and inves-
tigates the central question in AL with PA of how to decide which sub-structures to select. Most
previous work uses a pre-defined fixed selection criterion, such as a threshold or ratio, which
may be hard to decide in practice. In this chapter, we adopt a performance predictor to estimate
the error rate of the queried instances and decide the ratio of partial selection accordingly. In
this way, our approach can automatically and adaptively adjust the amount of partial selection
throughout the AL process.

Another interesting question for AL is how to better leverage unlabeled data. In this chapter,
we investigate a simple semi-supervised method, self-training (Yarowsky, 1995), which adopts
the model’s automatic predictions on the unlabeled data as extra training signals. Self-training
naturally complements AL in the typical pool-based setting where we assume access to a pool
of unlabeled data (Settles, 2009). It is particularly compatible with PA-based AL since the un-
selected sub-structures are typically also highly-confident under the current model and likely to
be predicted correctly without requiring additional annotation. We revisit this idea from previous
work (Tomanek and Hahn, 2009a; Majidi and Crane, 2013) and investigate its applicability with
modern neural models and our adaptive partial selection approach.

We perform a comprehensive empirical investigation on the effectiveness of different AL
strategies for typical structured prediction tasks. We perform fair comparisons that account for
the hidden cost of reading time by keeping the context size the same for all the strategies in each
AL cycle. With evaluations on four benchmark tasks for structured prediction (named entity
recognition, dependency parsing, event extraction, and relation extraction), we show that PA can
obtain roughly the same benefits as FA with the same reading cost but less sub-structure labeling
cost, leading to better data efficiency. We also demonstrate that the adaptive partial selection
scheme and self-training play crucial and complementary roles.
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Algorithm 2 AL Procedure.
Input: Seed dataset L0, dev datasetD, unlabeled pool U , total budget t, batch selection size b, annotation

strategy.
Output: Final labeled dataset L, trained modelM.

1: L ← L0 # Initialize
2: while t > 0 do # Until out of budget
3: M ← train(L, U) # Model training
4: S ← sentence-query(M, U) # Sentence selection
5: if strategy == “partial” then
6: r ← auto-ratio(S,D) # Decide adaptive ratio
7: partial-annotate(S, r) # Partial annotation
8: else
9: full-annotate(S) # Full annotation

10: U ← U − S; L ← L ∪ S; t ← t− b

11: M ← train(L, U) # Final model training
12: return L, M

9.2 Method

9.2.1 AL for Structured Prediction

We adopt the common pool-based AL setting, which iteratively selects and annotates instances
from an unlabeled pool. Please refer to Settles (2009) for the basics and details of AL; our main
illustration focuses more specifically on different AL strategies for structured prediction.

Algorithm 2 illustrates the overall AL process. We focus on sentence-level tasks. In FA, each
sentence is annotated with a full structured object (for example, a label sequence or a syntax
tree). In PA, annotation granularity is at the sub-structure level (for example, a sub-sequence
of labels or a partial tree). We adopt a two-step selection approach for all the strategies by first
choosing a batch of sentences and then annotating within this batch. This approach is natural for
FA since the original aim is to label full sentences, and it is also commonly adopted in previous
PA work (Mirroshandel and Nasr, 2011; Flannery and Mori, 2015; Li et al., 2016). Moreover,
this approach makes it easier to control the reading context size for fair comparisons of different
strategies as described in §9.3.2.

Without loss of generality, we take sequence labeling as an example here and illustrate several
key points in the AL process. While there are multiple options for each component or step in
AL, we focus on the comparison of AL strategies and use commonly adopted settings for other
aspects.
• Model. We adopt a standard BERT-based model with a CRF output layer for structured output

modeling (Lafferty et al., 2001), together with the BIO tagging scheme. With this model, we
can obtain the marginal probability distributions over the labels for each input token.

• Querying Strategy. We utilize the query-by-uncertainty strategy with the margin-based met-
ric, which has been shown effective in AL for structured prediction (Marcheggiani and Artières,
2014; Li et al., 2016). Specifically, each token obtains an uncertainty score with the difference
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between the (marginal) probabilities of the most and second most likely label. We also tried
several other strategies in preliminary experiments, such as maximum probability or entropy,
but did not find obvious benefits.

• Sentence selection. For both FA and PA, selecting a batch of uncertain sentences is the first
querying step. We use the number of total tokens to measure batch size since sentences may
have variant lengths. The sentence-level uncertainty is obtained by averaging the token-level
ones. This length normalization heuristic is commonly adopted to avoid biases towards longer
sentences (Hwa, 2004; Shen et al., 2018).

• Token selection. In PA, a subset of highly uncertain tokens is further chosen for annotation.
One important question is how many tokens to select. Instead of using a pre-defined fixed
selection criterion, we develop an adaptive strategy to decide the amount, as will be described
in §9.2.2.

• Annotation. Sequence labeling is usually adopted for tasks involving mention extraction,
where annotations are over spans rather than individual tokens. Previous work explores sub-
sequence querying (Chaudhary et al., 2019; Radmard et al., 2021), which brings further com-
plexities. Since we mainly explore tasks with short mention spans, we adopt a simple anno-
tation protocol: Labeling the full spans where any inside token is queried. Note that for an-
notation cost measurement, we also include the extra labeled tokens in addition to the queried
ones.

• Model learning. For FA, we adopt the standard log-likelihood as the training loss. For PA, we
follow previous work (Scheffer et al., 2001; Wanvarie et al., 2011; Marcheggiani and Artières,
2014) and adopt marginalized likelihood to learn from incomplete annotations (Tsuboi et al.,
2008; Greenberg et al., 2018).

9.2.2 Adaptive Partial Selection

PA adopts a second selection stage to choose highly uncertain sub-structures within the selected
sentences. One crucial question here is how many sub-structures to select. Typical solutions in
previous work include setting an uncertainty threshold (Tomanek and Hahn, 2009a) or specifying
a selection ratio (Li et al., 2016). The threshold or ratio is usually pre-defined with a fixed hyper-
parameter.

This fixed selection scheme might not be an ideal one. First, it is usually hard to specify such
fixed values in practice. If too many sub-structures are selected, there will be little difference
between FA and PA, whereas if too few, the annotation amount is insufficient to train good
models. Moreover, this scheme is not adaptive to the model. As the model is trained with
more data throughout the AL process, the informative sub-structures become less dense as the
model improves. Thus, the number of selected sub-structures should be adjusted accordingly. To
mitigate these shortcomings, we develop a dynamic strategy that can decide the selection in an
automatic and adaptive way.

We adopt the ratio-based strategy which enables straightforward control of the selected amount.
Specifically, we rank the sub-structures by the uncertainty score and choose those scoring highest
by the ratio. Our decision on the selecting ratio is based on the hypothesis that a reasonable ratio
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should roughly correspond to the current model’s error rate on all the candidates. The intuition
is that incorrectly predicted sub-structures are the most informative ones that can help to correct
the model’s mistakes.

Since the queried instances come from the unlabeled pool without annotations, the error rate
cannot be directly obtained, requiring estimation. We adopt a simple one-dimensional logistic
regression model for this purpose. The input to the model is the uncertainty score1 and the output
is a binary prediction of whether its prediction is confidently correct2 or not. The estimator is
trained using all the sub-structures together with their correctness on the development set3 and
then applied to the queried candidates. For each candidate sub-structure s, the estimator will
give it a correctness probability. We estimate the overall error rate as one minus the average
correctness probability over all the candidates in the query set Q, and set the selection ratio r as
this error rate:

r = 1− 1

n

∑
s∈Q

p(correct = 1|s)

In this way, the selection ratio can be set adaptively according to the current model’s perfor-
mance. If the model is weak and makes many mistakes, we will have a larger ratio which can
lead to more dense annotations and richer training signals. As the model is trained with more
data and makes fewer errors, the ratio will be tuned down correspondingly to avoid wasting anno-
tation budgets on already-correctly-predicted sub-structures. As we will see in later experiments,
this adaptive scheme is suitable for AL (§9.3.3).

9.2.3 Self-training
Better utilization of unlabeled data is a promising direction to further enhance model training in
AL since unlabeled data are usually freely available from the unlabeled pool. In this chapter, we
adopt self-training (Yarowsky, 1995) for this purpose.

The main idea of self-training is to enhance the model training with pseudo labels that are
predicted by the current model on the unlabeled data. It has been shown effective for various
NLP tasks (Yarowsky, 1995; McClosky et al., 2006; He et al., 2020; Du et al., 2021a). For the
training of AL models, self-training can be seamlessly incorporated. For FA, the application of
self-training is no different than that in the conventional scenarios by applying the current model
to all the unannotated instances in the unlabeled pool. The more interesting case is on the par-
tially annotated instances in the PA regime. The same motivation from the adaptive ratio scheme
(§9.2.2) also applies here: We select the highly-uncertain sub-structures that are error-prone and
the remaining un-selected parts are likely to be correctly predicted; therefore we can trust the
predictions on the un-selected sub-structures and include them for training. One more enhance-
ment to apply here is that we could further perform re-inference by incorporating the updated
annotations over the selected sub-structures, which can enhance the predictions of unannotated
sub-structures through output dependencies.

1We transform the input with a logarithm, which leads to better estimation according to preliminary experiments.
2The specific criterion is that the argmax prediction matches the gold one and its margin is greater than 0.5.

Since neural models are usually over-confident, it is hard to decide on a confidence threshold. Nevertheless, we find
0.5 a reasonable value for the ratio decision here.

3We re-use the development set for the task model training.

127



In this chapter, we adopt a soft version of self-training through knowledge distillation (KD;
Hinton et al., 2015). This choice is because we want to avoid the potential negative influences
of ambiguous predictions (mostly in completely unlabeled instances). One way to mitigate this
is to set an uncertainty threshold and only utilize the highly-confident sub-structures. However,
it is unclear how to set a proper value, similar to the scenarios in query selection. Therefore, we
take the model’s full output predictions as the training targets without further processing.

Specifically, our self-training objective function is the cross-entropy between the output dis-
tributions predicted by the previous model m′ before training and the current model m being
trained:

L = −
∑
y∈Y

pm′(y|x) log pm(y|x)

Several points are notable here: 1) The previous model is kept unchanged, and we can simply
cache its predictions before training; 2) Over the instances that have partial annotations, the pre-
dictions should reflect these annotations by incorporating corresponding constraints at inference
time; 3) For tasks with CRF based models, the output space Y is usually exponentially large and
infeasible to explicitly enumerate; we utilize special algorithms (Wang et al., 2021b) to deal with
this.

Finally, we find it beneficial to include both the pseudo labels and the real annotated gold
labels for the model training. With the gold data, the original training loss is adopted, while the
KD objective is utilized with the pseudo labels. We simply mix these two types of data with a
ratio of 1:1 in the training process, which we find works well.

9.3 Experiments

9.3.1 Main Settings
Tasks and data. Our experiments are conducted over four English tasks. The first two are
named entity recognition (NER) and dependency parsing (DPAR), which are representative
structured prediction tasks for predicting sequence and tree structures. We adopt the CoNLL-
2003 English dataset (Tjong Kim Sang and De Meulder, 2003) for NER and the English Web
Treebank (EWT) from Universal Dependencies v2.10 (Nivre et al., 2020) for DPAR. Moreover,
we explore two more complex IE tasks: Event extraction and relation extraction. Each task in-
volves two pipelined sub-tasks: The first aims to extract the event trigger and/or entity mentions,
and the second predicts links between these mentions as event arguments or entity relations. We
utilize the ACE05 dataset (Walker et al., 2006) for these IE tasks.

AL. For the AL procedure, we adopt settings following conventional practices. We use the
original training set as the unlabeled data pool to select instances. Unless otherwise noted, we set
the AL batch size (for sentence selection) to 4K tokens, which roughly corresponds to 2% of the
total pool size for most of the datasets we use. The initial seed training set and the development
set are randomly sampled (with FA) using this batch size. Unless otherwise noted, we run 14 AL
cycles for each experiment. Following most AL work, annotation is simulated by checking and
assigning the labels from the original dataset. In FA, we annotate all the sub-structures for the
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selected sentences. In PA, we first decide the selection ratio and apply it to the selected sentences.
We further adopt a heuristic that selects the union of sentence-wise uncertain sub-structures as
well as global ones since both may contain informative sub-structures. Finally, all the presented
results are averaged over five runs with different random seeds.

Model and training. For the models, we adopt standard architectures by stacking task-specific
structured predictors over pre-trained RoBERTabase (Liu et al., 2019) and the full models are
fine-tuned at each training iteration. After obtaining new annotations in each AL cycle, we first
train a model based on all the available full or partial annotations. When using self-training, we
further apply this newly trained model to assign pseudo soft labels to all unannotated instances
and combine them with the existing annotations to train another model. Compared to using the
old model from the last AL cycle, this strategy can give more accurate pseudo labels since the
newly updated model usually performs better by learning from more annotations. For PA, pseudo
soft labels are assigned to both un-selected sentences and the unannotated sub-structures in the
selected sentences.

9.3.2 Comparison Scheme

Since FA and PA annotate at different granularities, we need a common cost measurement to
compare their effectiveness properly. A reasonable metric is the number of the labeled sub-
structures; for instance, the number of labeled tokens for sequence labeling or edges for depen-
dency parsing. This metric is commonly adopted in previous PA work (Tomanek and Hahn,
2009a; Flannery and Mori, 2015; Li et al., 2016; Radmard et al., 2021).

Nevertheless, evaluating only by sub-structures ignores a crucial hidden cost: The reading
time of the contexts. For example, in sequence labeling with PA, although not every token in
the sentence needs to be tagged, the annotator may still need to read the whole sentence to
understand its meaning. Therefore, if performing comparisons only by the amount of annotated
sub-structures, it will be unfair for the FA baseline because more contexts must be read to carry
out PA.

In this chapter, we adopt a simple two-facet comparison scheme that considers both reading
and labeling costs. We first control the reading cost by choosing the same size of contexts in
the sentence selection step of each AL cycle (Line 4 in Algorithm 2). Then, we further compare
the sub-structure labeling cost, measured by the sub-structure annotation cost. If PA can roughly
reach the FA performance with the same reading cost but fewer sub-structures annotated, it would
be fair to say that PA can help reduce cost over FA. A better comparison scheme should evaluate
against a unified estimation of the real annotation costs (Settles et al., 2008). This usually requires
actual annotation exercises rather than simulations, which we leave to future work.

9.3.3 NER and DPAR

Settings. We compare primarily three strategies: FA, PA, and a baseline where randomly se-
lected sentences are fully annotated (Rand). We also include a supervised result (Super.) which
is obtained from a model trained with the full original training set. We measure reading cost by
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Figure 9.2: Comparisons according to reading and labeling cost.

the total number of tokens in the selected sentences. For labeling cost, we further adopt metrics
with practical considerations. In NER, lots of tokens, such as functional words, can be easily
judged as the ‘O’ (non-entity) tag. To avoid overestimating the costs of such easy tokens for FA,
we filter tokens by their part-of-speech (POS) tags and only count the ones that are likely to be
inside an entity mention.4 For PA, we still count every queried token. For the task of DPAR, sim-
ilarly, different dependency links can have variant annotation difficulties. We utilize the surface
distance between the head and modifier of the dependency edge as the measure of labeling cost,
considering that the decision of longer dependencies is usually harder.

Main Results. The main test results are shown in Figure 9.2, where the patterns on both tasks
are similar. First, AL brings clear improvements over the random baseline and can roughly
reach the fully supervised performance with only a small portion of data annotated (around 18%
for CoNLL-2003 and 30% for UD-EWT). Moreover, self-training (+ST) is helpful for all the
strategies, boosting performance without the need for extra manual annotations. Finally, with
the help of self-training, the PA strategy can roughly match the performance of FA with the
same amount of reading cost (according to the left figures) while labeling fewer sub-structures
(according to the right figures). This indicates that PA can help to further reduce annotation costs
over the strong FA baselines.

4The POS tags are assigned by Stanza (Qi et al., 2020). For CoNLL-2003, we filter by PROPN and ADJ, which
cover more than 95% of the entity tokens.
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Figure 9.3: Comparisons of different strategies to decide the partial ratio.

Ratio Analysis. We further analyze the effectiveness of our adaptive ratio scheme with DPAR
as the case study. We compare the adaptive scheme to schemes with fixed ratio r, and the
results5 are shown in Figure 9.3. For the fixed-ratio schemes, if the value is too small (such
as 0.1), although its improving speed is the fastest at the beginning, its performance lags behind
others with the same reading contexts due to fewer sub-structures annotated. If the value is too
large (such as 0.5), it grows slowly, probably because too many uninformative sub-structures are
annotated. The fixed scheme with r = 0.3 seems a good choice; however, it is unclear how to
find this sweet spot since we usually do not wish to tune such hyperparameters in realistic AL
processes. The adaptive scheme provides a reasonable solution by automatically deciding the
ratio according to the model performance.

Error and Uncertainty Analysis. We further analyze the error rates and uncertainties of the
queried sub-structures. We still take DPAR as a case study and Figure 9.4 shows the results
along the AL cycles in PA mode. Here, ‘pred’ denotes the predicted error rate, ‘error’ denotes
the actual error rate, and ‘margin’ denotes the uncertainty (margin) scores. For the suffixes, ‘(S)’
indicates partially selected sub-structures, and ‘(N)’ indicates non-selected ones. ‘Margin(N)’ is
omitted since it is always close to 1. First, though adopting a simple model, the performance pre-
dictor can give reasonable estimations for the overall error rates. Moreover, by further breaking
down the error rates into selected (S) and non-selected (N) groups, we can see that the selected
ones contain many errors, indicating the need for manual corrections. On the other hand, the
error rates on the non-selected sub-structures are much lower, verifying the effectiveness of us-
ing model-predicted pseudo labels on them in self-training. Finally, the overall margin of the
selected sentences keeps increasing towards 1, indicating that there are many non-ambiguous
sub-structures even in highly-uncertain sentences. The margins of the selected sub-structures are
much lower, suggesting that annotating them could provide more informative signals for model
training.

Domain-transfer Experiments. Previous experiments adopt a setting where we assume a sin-
gle data resource and start AL on it from scratch. In practice, there may be existing related data
resources that can be helpful by using transfer learning. We investigate a domain-transfer sce-

5Here, we use self-training (+ST) for all the strategies.
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Figure 9.4: Analyses of error rates and uncertainties (margins) of the DPAR sub-structures in the
queried sentences along the AL cycles (x-axis).

nario: in addition to unlabeled in-domain data, we assume abundant out-of-domain annotated
data and perform AL on the target domain. We adopt tweet texts as the target domain, using
Broad Twitter Corpus (BTC; Derczynski et al., 2016) for NER and Tweebank (Liu et al., 2018d)
for DPAR. We assume we have models trained from a richly-annotated source domain and con-
tinue performing AL on the target domain. The source domains are the datasets that we utilize in
our main experiments: CoNLL03 for NER and UD-EWT for DPAR. We adopt a simple model-
transfer approach by initializing the model from the one trained with the source data and further
fine-tuning it with the target data. Since the target data size is small, we reduce the AL batch sizes
for BTC and Tweebank to 2000 and 1000 tokens, respectively. The results for these experiments
are shown in Figure 9.5. In these experiments, we also include the no-transfer results, adopting
the “FA+ST” but without model transfer. For NER, without transfer learning, the results are
generally worse, especially in early AL stages, where there is a small amount of annotated data
to provide training signals. In these cases, knowledge learned from the source domain can pro-
vide extra information to boost the results. For DPAR, we can see even larger benefits of using
transfer learning; there are still clear gaps between transfer and no-transfer strategies when the
former already reaches the supervised performance. These results indicate that the benefits of
AL and transfer learning can be orthogonal, and combining them can lead to promising results.

9.3.4 Information Extraction
We further explore more complex IE tasks that involve multiple types of output. Specifically,
we investigate event extraction and relation extraction. We adopt a classical pipelined approach,
which splits the full task into two sub-tasks: the first performs mention extraction, while the
second examines mention pairs and predicts relations. While previous work has investigated
multi-task AL with FA (Reichart et al., 2008; Zhu et al., 2020; Rotman and Reichart, 2022), this
chapter is the first to explore PA in this challenging setting.

We extend our PA scheme to this multi-task scenario with several modifications. First, for the
sentence-selection stage, we obtain a sentence-wise uncertainty score UNC(x) with a weighted
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Figure 9.5: AL results in domain-transfer settings (CoNLL03 → BTC for NER and UD-EWT
→ Tweebank for DPAR).

combination of the two sub-tasks’ uncertainty scores:

UNC(x) = β · UNC-Mention(x)
+ (1− β) · UNC-Relation(x)

Following Rotman and Reichart (2022), we set β to a relatively large value (0.9), which is found
to be helpful for the second relational sub-task.

Moreover, for partial selection, we separately select sub-structures for the two sub-tasks ac-
cording to the adaptive selection scheme. Since the second relational sub-task depends on the
mentions extracted from the first sub-task, we utilize predicted mentions and view each feasi-
ble mention pair as a querying candidate. A special annotation protocol is adopted to deal with
the incorrectly predicted mentions. For each queried relation, we first examine its mentions and
perform corrections if there are mention errors that can be fixed by matching the gold ones. If
neither of the two mentions can be corrected, we discard6 this query.

Finally, to compensate for the influences of errors in mention extraction, we adopt further
heuristics of increasing the partial ratio by the estimated percentage of queries with incorrect
mentions, as well as including a second annotation stage with queries over newly annotated
mentions.

We show the results in Figure 9.6, where the overall trends are similar to those in NER and
DPAR. Here, labeling cost is simply measured as the number of candidate argument/relation
links. Overall, self-training is helpful for all AL strategies, indicating the benefits of making

6In preliminary experiments, we also tried including such items as negative examples but did not find benefits.
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Figure 9.6: Results of event argument extraction and relation extraction on ACE05.

better use of unlabeled data. If measured by the labeling cost, PA learns the fastest and costs
only around half of the annotated arguments of FA to reach the supervised result. On the other
hand, PA is also competitive concerning reading cost and can generally match the FA results in
later AL stages.

9.4 Explorations on the Utilization of Syntactic Information
In previous sections, we mainly treat structures as the predicting targets. It will be interesting to
explore whether structures, such as syntactic information, can be utilized to further help down-
stream tasks. In this section, we conduct two preliminary experiments in such settings, exploring
the helpfulness of syntactic path information for the target task of event argument extraction.

9.4.1 AL selection with Syntactic Diversity

In our main experiments, we perform AL selection based on uncertainty, which can help to
choose the instances where the model is most ambiguous. To allow practical model learning, we
usually adopt batch-mode AL (Settles, 2009), where each time a batch of instances is selected.
In this case, there can still be informative but redundant instances inside one selected batch.
Therefore, one promising direction for further improvements is to consider the diversity criterion
to mitigate redundancies.

We explore diversity-enhanced selection for the task of event argument extraction (on ACE05)
with a simplified setting. Specifically, we assume given trigger and entity mentions and adopt a
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fixed batch of 100 trigger-argument pairs in each AL cycle. These simplifications are adopted to
more clearly show the effects of the selecting criteria, excluding influences by other factors such
as error propagation brought by the automatic mention extraction process.

In this experiment, we adopt a simple signature-based diversity-enhanced selection proce-
dure. First, for each trigger-argument candidate pair, we assign it a signature. Then, we rank all
the candidates according to their uncertainty scores and perform selection according to this order
until running out of the overall budget. The main difference from plain uncertainty selection is
that we further specify a signature-based budget: at each selection step, we ignore the current
instance if there have been enough previously-selected instances that have the same signature.
In this way, we can obtain a set of informative instances that are also diverse according to the
signatures.

The main remaining question is how to specify the signature for the candidate instances. In
this experiment, we explore two types of signatures: syntactic path and event type. The former
captures syntactic information with the labeled dependency path between the event trigger and
the argument, while the latter captures semantic information for the event frame. For exam-
ple, considering a trigger-argument pair “went”-“store” in the following sentence: “He left the
store in the downtown area and went back home.” Here, the syntactic path signature is “[↑conj,
↓obj]”, that is, “went” is coordinated by “left”, which further governs the object “store”. The
event type feature is TRANSPORT triggered by the predicate “went”. Notice that these two types
of signatures capture different aspects of the argument candidate: the syntactic one reflects the
surface form structure, which can usually constrain the range of the possible argument roles,
while the event type contains semantic information which can provide important hints and con-
straints, directly specifying the target roles for the event frames. Considering the orthogonality
of the information that they can provide, we further adopt a combined signature of the syntactic
path and event type to capture more information.
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Figure 9.7: AL results (F1%) with different selecting strategies.

The main results are shown in Figure 9.7. The baseline without any diversity enhancement
(“NoDiv”) turns out to be a strong selecting strategy for this task. Encouraging diversity by using
only one type of information, either syntactic path (“Syn”) or event type (“Evt”), performs worse
than the uncertainty baseline. This indicates that for event argument extraction, uncertainty is
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still the most important criterion to consider for AL instance selection. By combining syntactic
information and event type, we can mitigate the gaps and obtain some slight improvements,
especially in the early AL iterations.
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Figure 9.8: Performance breakdowns on trigger-argument syntactic distances.

To further investigate the differences between strategies with (w/) or without (w/o) diversity
enhancement, we provide a breakdown analysis on the syntactic distance between the trigger and
the argument. The results are shown in Figure 9.8. Here, we adopt the “Syn+Evt” signature for
the diversity-enhanced strategy because of its better performance. The results show that for the
pairs with short syntactic distances (equaling one or two as shown in the left sub-figure), the two
strategies perform nearly the same. This also explains the similarity of their overall performance
since most of the valid event arguments are short-distant ones. If further checking the longer-
distant ones (larger than two in the right sub-figure), we can see that the diversity-enhanced
strategy can obtain slightly better and more consistent results.

9.4.2 Prompt Formulation with Syntactic Information
Recently, large language models (LLMs) have shown great capabilities in solving a wide range
of NLP tasks using simple prompting methods. In particular, LLMs show abilities of in-context
learning (Brown et al., 2020; Dong et al., 2022), that is, learning to map inputs to outputs with a
few in-context demonstration examples without any parameter updating. More specifically, for a
classification task that predicts a label y from an input x, we assume that we have a demonstration
set C, which contains a few pairs of (x, y) examples. This set can be viewed as the training set
in the traditional supervised learning paradigm. Nevertheless, in in-context learning, rather than
tuning model parameters with the demonstration examples, we simply form a prompt using the
labeled examples and the querying instance and directly feed the prompt to the LM to select the
highest-scored target y. Although clean and straightforward, this prompting-based method relies
much on the prompts and the performance can be greatly influenced by the prompts’ formats
(Zhao et al., 2021b; Min et al., 2022b). Therefore, prompt formulation is a key designing factor
for the effectiveness of in-context learning.

In this experiment, we explore how to form better prompts for an event argument classifica-
tion task by using syntactic information. We focus on simpler classification-based tasks since
full extraction is still a challenging task for in-context learning (Jimenez Gutierrez et al., 2022).
We consider the top-three frequent events from ACE05: ATTACK, TRANSPORT, DIE. For each
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event type, we further take the top-four frequent roles as the role prediction targets: {Attacker,
Target, Instrument, Place} for ATTACK, {Artifact, Vehicle, Origin, Destination} for TRANS-
PORT, {Agent, Victim, Place, Instrument} for DIE. Specifically, the input x for this task is a
context sentence together with a pair of an event trigger and an entity mention, while the output
y is the corresponding argument role of the entity mention.

Different from plain classification tasks, here, the input x contains extra specific structures,
that is, there are marked spans of trigger and entity mentions that we need to encode in the
prompts. We adopt a simple prompt template to include such information: ROLE is the role
that the entity “ENTITY” plays in the event “EVENT” for the following sentence: SENT. Here,
the slots of ROLE, ENTITY, EVENT and SENT can be filled in by the actual information of
the instance. Taking our previous example again, for the instance of “He left the store in the
downtown area and went back home.” (here “store” is the ORIGIN in the TRANSPORT event
triggered by “went”), the filled template will be: “Origin is the role that the entity “store” plays in
the event “went” for the following sentence: He left the store in the downtown area and went back
home.” Our template starts with the target roles since we adopt the channel scheme (Min et al.,
2022a), which estimates pLM(x|y) instead of directly pLM(y|x). In preliminary experiments, we
consistently found better and more stable results by adopting the channel prompting method.

In this sub-section, we explore how to better form the prompts for in-context learning on the
argument classification tasks. We mainly investigate two aspects: 1) demonstration selection,
which explores how to dynamically select demonstration examples according to the querying
instance; 2) context representation, which explores how to better represent the input context
for the target task. Although the experiments in this sub-section do not directly involve AL,
there are close connections between the two explored aspects and AL, with inspirations from
representative-based AL strategies:

• Demonstration Selection. Due to the sequence length limitation of LMs, we can only put
a few demonstrations in the in-context learning prompts. In many cases, we may have a
training set that contains more instances than the LM context limitations; therefore, we
need to perform instance selections to formulate the prompts. Liu et al. (2022a) show that
selecting demonstration examples that are similar to the querying instance can bring im-
provements. Specifically, for each testing example, we use a similarity measurement to
search its k-nearest neighbors in the demonstration pool. In this approach, the key factor
is the similarity metric, for which we explore four methods in this experiment, including
Random, BM25 (Robertson et al., 2009), sentence-bert (SBert) (Reimers and Gurevych,
2019) and syntactic path (SPath). For SBert, we simply adopt cosine similarity on sen-
tence embeddings, while for SPath, we utilize the negative of the edit distance between the
trigger-entity syntactic paths (the same as the ones specified in the previous experiment).

• Context Representations. Another interesting aspect is how to represent the input con-
text, especially considering that the inputs consist of two anchoring mentions in addition
to the context sentence. In this experiment, we explore various ways to represent the in-
put contexts, which are illustrated in Table 9.1 with our previous example sentence. Here,
“Full” denotes the original full sentence, “Mentions” only includes words in the event trig-
ger and the argument entity, and “Between” further includes all the words between the two
mentions. We further explore two syntax-based methods: “SPath” indicates that we only
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include the words on the syntactic path between the trigger and the argument; to make the
context representations more familiar to LMs, “SPath+” further adds the functional words
that are dependants of the “SPath” words.

Method Text

Full He left the store in the downtown area and went back home.
Mentions left went
Between left the store in the downtown area and went
SPath left store went
SPath+ left the store and went

Table 9.1: Illustrations of the example sentence for context representations.

Main Results. The main results are shown in Figure 9.9. For these results, we utilize gpt2-xl as
the underlying LM and set the demonstration pool size and in-context example number to 100 and
16, respectively. We randomly select the demonstration pool from the original ACE05 training
set and test on all corresponding instances from the test set. For the evaluation metric, we report
the Macro F1 scores over the argument roles since role distributions are skewed. All the results
are averaged over five runs with different random seeds. The left figure first shows the effects of
different demonstration selection methods. Compared with the random baseline, all similarity-
based methods can bring improvements. The syntax-based strategy can obtain similar results
to the BM25-based retrieval method, while “SBert” obtains the best results, probably because
the neural sentence representations can capture more semantic meanings. In the right figure, we
further show the influences of using different context representations (using the “SBert”-based
selection method). Compared with the full context baseline, other methods with more concise
representations can bring benefits. The reason might be that the more concise representations
can better present the models the positions of the trigger and entity mentions. Encouragingly, the
syntax-based “SPath+” method obtains the overall best results, showing that syntax can help to
better represent the essential information for this task.
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Figure 9.9: In-context learning results (F1%) with different methods.
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More Results. Figure 9.10 shows more results with variations in the underlying model, pool
size, and the number of demonstration examples. Overall, there are not too many surprises. We
can generally observe better results with larger models, larger pool sizes, and more demonstra-
tion examples. Nevertheless, there seem to be diminishing benefits of further scaling after certain
thresholds. For example, on the demonstration number, results with 4 examples can be very close
results to those with more examples, while further additions are restricted by the maximum se-
quence length that the underlying LM can accept. This is in contrast to the common phenomenon
that in low-resource scenarios more training data usually bring obviously better results. It will be
interesting to explore how to bring more improvements for in-context learning with the scaling of
the number of training instances, where performing inference with k-nearest neighbors retrieval
can be a promising direction (Xu et al., 2023).
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Figure 9.10: More results with variations on model, pool size, and demonstration number.

9.5 Related Work
Self-training. Self-training is a commonly utilized semi-supervised method to incorporate un-
labeled data. It has been shown effective for a variety of NLP tasks, including word sense disam-
biguation (Yarowsky, 1995), parsing (McClosky et al., 2006), named entity recognition (Meng
et al., 2021; Huang et al., 2021), text generation (He et al., 2020) as well as natural language un-
derstanding (Du et al., 2021a). Moreover, self-training can be especially helpful for low-resource
scenarios, such as in few-shot learning (Vu et al., 2021; Chen et al., 2021). Notice that the early
stages of AL also correspond to such scenarios, where self-training can be especially effective.

PA. Learning from incomplete annotations has been well-explored for structured prediction.
For CRF models, taking the marginal likelihood as the objective function has been one of the
most utilized techniques (Tsuboi et al., 2008; Täckström et al., 2013a; Yang and Vozila, 2014;
Greenberg et al., 2018). There are also other methods to deal with incomplete annotations, such
as adopting local models (Neubig and Mori, 2010; Flannery et al., 2011), max-margin objective
(Fernandes and Brefeld, 2011), learning with constraints (Ning et al., 2018, 2019; Mayhew et al.,
2019) and negative sampling (Li et al., 2022).

AL for structured prediction. AL has been investigated for various structured prediction tasks
in NLP, such as sequence labeling (Settles and Craven, 2008; Shen et al., 2018), parsing (Hwa,
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2004), semantic role labeling (Wang et al., 2017; Myers and Palmer, 2021) and machine trans-
lation (Haffari et al., 2009; Zeng et al., 2019). While most previous work adopts FA, that is, an-
notating full structured objects for the inputs, PA can help to further reduce the annotation cost.
Typical examples of PA sub-structures include tokens and subsequences for tagging (Marcheg-
giani and Artières, 2014; Chaudhary et al., 2019; Radmard et al., 2021), word-wise head edges
for dependency parsing (Flannery and Mori, 2015; Li et al., 2016) and mention links for coref-
erence resolution (Li et al., 2020a; Espeland et al., 2020).

9.6 Conclusion
In this chapter, we investigate better AL strategies for structured prediction problems in NLP. We
adopt a performance estimator to automatically decide suitable ratios for partial sub-structure
selection. We further utilize self-training to make better use of the available unlabeled data pool.
With comprehensive experiments on various tasks, we show that the combination of PA and
self-training can be more data-efficient than strong full AL baselines.
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Chapter 10

Conclusions and Future Directions

In this thesis, we investigate three directions to tackle the challenge of data resource limitation
for structured prediction in NLP. In Part I, we investigate the effectiveness of structured output
modeling and plan to further study its interactions with the amount of data resources, especially
in resource-limited scenarios. Moreover, in Part II, we study transfer learning with related data
resources from other languages (cross-lingual learning) and related tasks (multi-task learning).
We show that proper utilization of these related data resources could lead to performance gains
with proper model designs. Finally, in Part III, we plan to explore more efficient ways for data
creation with active learning. The implementations of all these studies are and will be publicly
available on https://github.com/zzsfornlp/zmsp. We hope that our explorations
could shed some light on the line of research toward building more effective and data-efficient
structured predictors. In addition to the topics discussed in this thesis, there are various future
directions that would be interesting to explore.

More complex tasks. In this thesis, we are mainly investigating traditional structured predic-
tion tasks such as parsing and semantic role labeling, while it would be interesting to explore
more complex ones. Especially, text generation tasks, such as machine translation, paraphrasing,
dialogue generation, and so on, are complex and important structured prediction applications.
Although recent work usually addresses generation tasks using sequence-to-sequence models
with auto-regressive local normalizations, it will still be important to investigate more on the
output structures for generation (Ranzato et al., 2015; Wiseman and Rush, 2016; Edunov et al.,
2018). Moreover, data availability is also a bottleneck for these tasks, and our studies may still
provide helpful methods to reduce the required annotations to achieve reasonable performance.

Modeling input structures. For NLP tasks, the inputs usually consist of sequences of tokens,
which are highly structured. In addition to explicit output modeling for structured prediction
tasks, how to better capture the structures in inputs may be an interesting question for a larger
range of NLP tasks. Recent neural-network-based models, especially the pre-trained ones, are
good at capturing inter-dependencies in the inputs. It would be interesting to explore how to fur-
ther enhance the input modeling, where one potential direction would be the infusion of explicit
structural information (Zhou et al., 2020; Bai et al., 2021; Li et al., 2021b; Wu et al., 2021).
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Model Efficiency. While recent neural models have shown strong performance, it usually
brings larger computational and thus environmental costs (Strubell et al., 2019), which calls for
research on more efficient models (Menghani, 2021). While there are various ways to improve
the efficiency of NLP models, considering structures might be a potential direction. In some way,
structured pruning can be an example, which removes groups of consecutive parameters and has
been shown effective to obtain compact NLP models (Wang et al., 2020b; Xia et al., 2022).

Model Interpretability. In addition, the neural models have been questioned for their opaque
nature (Lipton, 2018). While traditional feature-based linear models could be straightforward
to interpret, neural models hide their reasoning process inside the hidden layer computations.
Therefore, recent work has been devoted to the analysis and interpretation of neural models (Be-
linkov and Glass, 2019; Belinkov et al., 2020). Interpretability can have interesting connections
to language structures. For example, predicting linguistic structures have been utilized as target
tasks to understand neural models, where probing is a typical example to query structured lin-
guistic information encoded in the neural representations (Conneau et al., 2018; Tenney et al.,
2019; Hewitt and Manning, 2019). In addition, it would be interesting to explore whether models
that consider more explicit structures can lead to better interpretability.

Better Data Usage. In addition to transfer learning and active learning, there are other ways to
make better use of the available data resources, such as data augmentation by creating synthesis
data instances (Feng et al., 2021) or semi-supervised learning by incorporating useful information
from unlabeled data (Zhu, 2005). Exploring how to better combine these techniques would be an
interesting direction. Moreover, a better understanding of the data will also be a helpful way to
enhance model learning. For example, data maps derived from training dynamics can be utilized
to identify ambiguous data (Swayamdipta et al., 2020). An interesting direction will be exploring
the usage of data maps with unlabeled data. One challenge is that the creation of data maps
requires target labels, where using self-training-styled pseudo labels can be a feasible option.
This may be especially helpful in limited-resource scenarios, where better data understanding
can lead to effective ways to find a minimum collection of required resources to improve model
performance.

Representation Learning. Neural models capture meaning with implicit representations, while
the inputs and outputs of NLP tasks as well as most linguistic representations, such as labels and
trees, are explicitly represented as discrete items. Better connections between these two types
of representations can bring further benefits. One promising recent research direction to better
align them is prompting (Liu et al., 2023), which formalizes the target task as a template-filling
problem and solves it with pre-trained language models. My previous work (Zhang et al., 2022f)
also uses this idea by forming argument queries with templates. One open question for this di-
rection is how to design better templates in an automatic way, where analyzing the influences
of the templates’ structural properties will be an interesting idea. Another exciting research di-
rection to connect implicit and explicit representations is to inject knowledge into neural models
with external memory networks (Lewis et al., 2020b). Previous researches usually store all the
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instances in the memory in a flattened way, while exploring the structured organization of the
memory storage will be helpful for more effective and efficient instance querying.

Connections to Large Language Models. Recently, the field of NLP has been revolutionized
by the development of large language models (LLMs) (Brown et al., 2020; Chowdhery et al.,
2022; Scao et al., 2022; Zhang et al., 2022d; OpenAI, 2023; Touvron et al., 2023). Various studies
have shown that LLMs have the capability to handle a wide range of NLP tasks in a prompting
and text generation way (Jiao et al., 2023; Qin et al., 2023; Bang et al., 2023; Wei et al., 2023;
Bubeck et al., 2023). Moreover, the scaling of LLMs has surprisingly resulted in new emergent
capabilities (Wei et al., 2022a), such as in-context learning (Brown et al., 2020; Dong et al.,
2022), instruction following (Ouyang et al., 2022) and multi-step reasoning (Wei et al., 2022b;
Qiao et al., 2022). It will be interesting to explore the connections between LLMs and language
structures. On the one hand, LLMs can be utilized to build better-structured predictors. Recently,
there has been a trend casting NLP tasks as a unified text-to-text transformation problem (Raffel
et al., 2020), structured prediction tasks can be also tackled in a similar way (Vinyals et al.,
2015b; Paolini et al., 2021; He and Choi, 2023). The main question in this direction is how to
represent the target structured output, more specifically, how to linearize the structured outputs in
a text sequence format. While the LMs can directly predict a structured format, considering that
they are originally trained on language texts, representing structured outputs that are closer to
natural languages might reduce the discrepancies between LM training and target-task inference,
leading to easier adaptation and better results. The template-based method explored in Chapter
7 can be a promising method for this purpose. On the other hand, it will also be interesting to
explore the utilization of language structures for LM prompting. Although LLMs have shown
surprising abilities in NLP tasks, they are known to be sensitive to the utilized prompts (Zhao
et al., 2021b; Min et al., 2022b). Therefore, how to construct and organize better prompts would
be an important point, and exploring the structures of the prompts could be a promising direction
to better elicit the full power of LMs. Moreover, LLMs can be good few-shot or zero-shot
learners (Brown et al., 2020; Kojima et al., 2022). This is also related to the main topic of
this thesis exploring model improvements in resource-limited scenarios, and techniques that are
explored in this thesis, such as active learning and self-training, can have interesting interactions
with LLMs and may bring further enhancement.

We hope that with explorations in these directions, good structured representations can be ob-
tained without too many manual annotations, and they can lead to further advances in automatic
language understanding.
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Željko Agić, Jörg Tiedemann, Danijela Merkler, Simon Krek, Kaja Dobrovoljc, and Sara Može.
Cross-lingual dependency parsing of related languages with rich morphosyntactic tagsets. In
Proceedings of the EMNLP’2014 Workshop on Language Technology for Closely Related Lan-
guages and Language Variants, pages 13–24, Doha, Qatar, October 2014. Association for
Computational Linguistics. doi: 10.3115/v1/W14-4203. URL https://aclanthology.
org/W14-4203. 5.5

Roee Aharoni and Yoav Goldberg. Unsupervised domain clusters in pretrained language models.
In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics,
pages 7747–7763, Online, July 2020. Association for Computational Linguistics. doi: 10.
18653/v1/2020.acl-main.692. URL https://www.aclweb.org/anthology/2020.
acl-main.692. 6.3.5

David Ahn. The stages of event extraction. In Proceedings of the Workshop on Annotating and
Reasoning about Time and Events, pages 1–8, Sydney, Australia, July 2006. Association for
Computational Linguistics. URL https://aclanthology.org/W06-0901. 4.2.3, 7.1

Alfred V. Aho and Jeffrey D. Ullman. The Theory of Parsing, Translation and Compiling, vol-
ume 1. Prentice-Hall, Englewood Cliffs, NJ, 1972. 2.2

Alan Akbik, Laura Chiticariu, Marina Danilevsky, Yunyao Li, Shivakumar Vaithyanathan, and
Huaiyu Zhu. Generating high quality proposition Banks for multilingual semantic role label-
ing. In Proceedings of the 53rd Annual Meeting of the Association for Computational Linguis-
tics and the 7th International Joint Conference on Natural Language Processing (Volume 1:
Long Papers), pages 397–407, Beijing, China, July 2015. Association for Computational Lin-
guistics. doi: 10.3115/v1/P15-1039. URL https://www.aclweb.org/anthology/
P15-1039. 6.3.1, 6.4

Alan Akbik, Xinyu Guan, and Yunyao Li. Multilingual aliasing for auto-generating proposition
Banks. In Proceedings of COLING 2016, the 26th International Conference on Computational
Linguistics: Technical Papers, pages 3466–3474, Osaka, Japan, December 2016a. The COL-
ING 2016 Organizing Committee. URL https://aclanthology.org/C16-1327.
6.3.1

Alan Akbik, Vishwajeet Kumar, and Yunyao Li. Towards semi-automatic generation of propo-
sition Banks for low-resource languages. In Proceedings of the 2016 Conference on Em-

145

https://aclanthology.org/W14-4203
https://aclanthology.org/W14-4203
https://www.aclweb.org/anthology/2020.acl-main.692
https://www.aclweb.org/anthology/2020.acl-main.692
https://aclanthology.org/W06-0901
https://www.aclweb.org/anthology/P15-1039
https://www.aclweb.org/anthology/P15-1039
https://aclanthology.org/C16-1327


pirical Methods in Natural Language Processing, pages 993–998, Austin, Texas, Novem-
ber 2016b. Association for Computational Linguistics. doi: 10.18653/v1/D16-1102. URL
https://www.aclweb.org/anthology/D16-1102. 6.3.1

Vamshi Ambati, Stephan Vogel, and Jaime Carbonell. Active learning and crowd-sourcing for
machine translation. In Proceedings of the Seventh International Conference on Language
Resources and Evaluation (LREC’10), Valletta, Malta, May 2010a. European Language Re-
sources Association (ELRA). URL http://www.lrec-conf.org/proceedings/
lrec2010/pdf/244_Paper.pdf. 8.2.2, 8.6

Vamshi Ambati, Stephan Vogel, and Jaime Carbonell. Active learning-based elicitation for semi-
supervised word alignment. In Proceedings of the ACL 2010 Conference Short Papers, pages
365–370, Uppsala, Sweden, July 2010b. Association for Computational Linguistics. URL
https://aclanthology.org/P10-2067. 8.4.2

Vamshi Ambati, Stephan Vogel, and Jaime Carbonell. Active semi-supervised learning for
improving word alignment. In Proceedings of the NAACL HLT 2010 Workshop on Active
Learning for Natural Language Processing, pages 10–17, Los Angeles, California, June
2010c. Association for Computational Linguistics. URL https://aclanthology.org/
W10-0102. 8.4.2

Vamshi Ambati, Sanjika Hewavitharana, Stephan Vogel, and Jaime Carbonell. Active learning
with multiple annotations for comparable data classification task. In Proceedings of the 4th
Workshop on Building and Using Comparable Corpora: Comparable Corpora and the Web,
pages 69–77, Portland, Oregon, June 2011a. Association for Computational Linguistics. URL
https://aclanthology.org/W11-1210. 8.6

Vamshi Ambati, Stephan Vogel, and Jaime Carbonell. Multi-strategy approaches to active learn-
ing for statistical machine translation. In Proceedings of Machine Translation Summit XIII:
Papers, Xiamen, China, September 19-23 2011b. URL https://aclanthology.org/
2011.mtsummit-papers.12. 8.2.3

Maryam Aminian, Mohammad Sadegh Rasooli, and Mona Diab. Cross-lingual transfer of se-
mantic roles: From raw text to semantic roles. In Proceedings of the 13th International Con-
ference on Computational Semantics - Long Papers, pages 200–210, Gothenburg, Sweden,
May 2019. Association for Computational Linguistics. doi: 10.18653/v1/W19-0417. URL
https://www.aclweb.org/anthology/W19-0417. 6.4

Waleed Ammar, George Mulcaire, Miguel Ballesteros, Chris Dyer, and Noah A. Smith. Many
languages, one parser. Transactions of the Association for Computational Linguistics, 4:
431–444, 2016. doi: 10.1162/tacl a 00109. URL https://aclanthology.org/
Q16-1031. 5.1, 5.5

Daniel Andor, Chris Alberti, David Weiss, Aliaksei Severyn, Alessandro Presta, Kuzman
Ganchev, Slav Petrov, and Michael Collins. Globally normalized transition-based neu-
ral networks. In Proceedings of the 54th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers), pages 2442–2452, Berlin, Germany, Au-
gust 2016. Association for Computational Linguistics. doi: 10.18653/v1/P16-1231. URL
https://aclanthology.org/P16-1231. 2.2, 3.1

146

https://www.aclweb.org/anthology/D16-1102
http://www.lrec-conf.org/proceedings/lrec2010/pdf/244_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2010/pdf/244_Paper.pdf
https://aclanthology.org/P10-2067
https://aclanthology.org/W10-0102
https://aclanthology.org/W10-0102
https://aclanthology.org/W11-1210
https://aclanthology.org/2011.mtsummit-papers.12
https://aclanthology.org/2011.mtsummit-papers.12
https://www.aclweb.org/anthology/W19-0417
https://aclanthology.org/Q16-1031
https://aclanthology.org/Q16-1031
https://aclanthology.org/P16-1231
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Suchin Gururangan, Ana Marasović, Swabha Swayamdipta, Kyle Lo, Iz Beltagy, Doug Downey,
and Noah A. Smith. Don’t stop pretraining: Adapt language models to domains and
tasks. In Proceedings of the 58th Annual Meeting of the Association for Computational
Linguistics, pages 8342–8360, Online, July 2020. Association for Computational Linguis-
tics. doi: 10.18653/v1/2020.acl-main.740. URL https://aclanthology.org/2020.
acl-main.740. 8.4.2

Ben Hachey, Beatrice Alex, and Markus Becker. Investigating the effects of selective sampling
on the annotation task. In Proceedings of the Ninth Conference on Computational Natural
Language Learning (CoNLL-2005), pages 144–151, Ann Arbor, Michigan, June 2005. Associ-
ation for Computational Linguistics. URL https://aclanthology.org/W05-0619.
8.3.2

Robbie Haertel, Eric Ringger, Kevin Seppi, James Carroll, and Peter McClanahan. Assessing
the costs of sampling methods in active learning for annotation. In Proceedings of ACL-08:
HLT, Short Papers, pages 65–68, Columbus, Ohio, June 2008a. Association for Computational
Linguistics. URL https://aclanthology.org/P08-2017. 8.3.2

Robbie Haertel, Paul Felt, Eric K. Ringger, and Kevin Seppi. Parallel active learning: Eliminating
wait time with minimal staleness. In Proceedings of the NAACL HLT 2010 Workshop on
Active Learning for Natural Language Processing, pages 33–41, Los Angeles, California,
June 2010. Association for Computational Linguistics. URL https://aclanthology.
org/W10-0105. 8.3.2

Robbie Haertel, Eric Ringger, Kevin Seppi, and Paul Felt. An analytic and empirical evaluation
of return-on-investment-based active learning. In Proceedings of The 9th Linguistic Annota-
tion Workshop, pages 11–20, Denver, Colorado, USA, June 2015. Association for Computa-
tional Linguistics. doi: 10.3115/v1/W15-1602. URL https://aclanthology.org/
W15-1602. 8.3.2

Robbie A Haertel, Kevin D Seppi, Eric K Ringger, and James L Carroll. Return on investment for
active learning. In Proceedings of the NIPS workshop on cost-sensitive learning, volume 72,
2008b. 8.3.2

Gholamreza Haffari and Anoop Sarkar. Active learning for multilingual statistical machine trans-
lation. In Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the
4th International Joint Conference on Natural Language Processing of the AFNLP, pages
181–189, Suntec, Singapore, August 2009. Association for Computational Linguistics. URL
https://aclanthology.org/P09-1021. 8.6

Gholamreza Haffari, Maxim Roy, and Anoop Sarkar. Active learning for statistical phrase-based

163

https://aclanthology.org/2021.mtsummit-research.2
https://aclanthology.org/2021.mtsummit-research.2
https://aclanthology.org/2021.mtsummit-research.2
https://aclanthology.org/2021.naacl-main.240
https://aclanthology.org/2021.naacl-main.240
https://aclanthology.org/2020.acl-main.740
https://aclanthology.org/2020.acl-main.740
https://aclanthology.org/W05-0619
https://aclanthology.org/P08-2017
https://aclanthology.org/W10-0105
https://aclanthology.org/W10-0105
https://aclanthology.org/W15-1602
https://aclanthology.org/W15-1602
https://aclanthology.org/P09-1021


machine translation. In Proceedings of Human Language Technologies: The 2009 Annual
Conference of the North American Chapter of the Association for Computational Linguistics,
pages 415–423, Boulder, Colorado, June 2009. Association for Computational Linguistics.
URL https://aclanthology.org/N09-1047. 8.2.1, 9.5
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Sandra Kübler, Ryan McDonald, and Joakim Nivre. Dependency parsing. Synthesis lectures on
human language technologies, 1(1):1–127, 2009. 1, 2.2, 2.2, 3.1.1, 4.2.2
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Oscar Täckström, Dipanjan Das, Slav Petrov, Ryan McDonald, and Joakim Nivre. Token and
type constraints for cross-lingual part-of-speech tagging. Transactions of the Association for
Computational Linguistics, 1:1–12, 2013a. doi: 10.1162/tacl a 00205. URL https://
aclanthology.org/Q13-1001. 9.5
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