Investigating Virtual Teams in Massive Open Online Courses: Deliberation-based Virtual Team Formation, Discussion Mining and Support
Miaomiao Wen
CMU-LTI-16-015
September 27, 2016

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

Thesis Committee:
Carolyn P. Rosé (Carnegie Mellon University), Chair
James Herbsleb (Carnegie Mellon University)
Steven Dow (University of California, San Diego)
Anne Trumbore (Wharton Online Learning Initiatives)
Candace Thille (Stanford University)

Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy.

Copyright © 2016 Miaomiao Wen
Keywords: Massive Open Online Course, MOOC, virtual team, transactivity, online learning, team-based learning
For my parents
Abstract

To help learners foster collaboration and communication practices, Massive Open Online Courses (MOOCs) have begun to incorporate a collaborative team-based learning component. However, most researchers agree that simply placing students in small groups does not guarantee that learning will occur. In previous work, team formation in MOOCs has been shown to occur through personal messaging early in a course and is typically based on demographics. Since MOOC students have diverse backgrounds and motivations, self-selected or randomly assigned MOOC teams show limited success. Being part of an ineffective or dysfunctional team may be inferior to independent study in promoting learning, which can lead to frustration. This dissertation studies how to coordinate team-based learning in MOOCs with a learning science concept, Transactivity. A transactive discussion is one where participants elaborate, build on, question or argue against previously presented ideas [20]. It has long been established that transactive discussion is an important process that correlates with students’ increased learning, and results in collaborative knowledge integration.

The center piece of this dissertation is a process for introducing online students into teams for effective group work. The key idea is that students should have the opportunity to interact meaningfully with the community before they are assigned to teams. That discussion not only provides evidence of which students would work well together, but also provides students with significant insight into alternative task-relevant perspectives prior to collaboration.

The team formation process begins with individual work. Students post their individual work to a discussion forum for community-wide deliberation. The resulting data trace informs automated guidance for team formation, which groups students who exchanged transactive reasoning during deliberation. Our experimental results indicate that teams that are formed based on students’ transactive discussion after the community deliberation collaborate better than randomly formed teams. Beyond team formation, this dissertation explores how to support teams after they have been formed. At this stage, in order to further increase transactive communication during team work, we use an automated conversational agent to support team members’ collaborative discussion through an extension of previously published facilitation techniques. To conclude the dissertation, the paradigm for team formation validated in Amazon’s Mechanical Turk is tested for external validity using two real MOOCs with different team-based learning settings. The results demonstrated the effectiveness of our team formation process.

This thesis provides a theoretical foundation, a hypothesis driven investigation of both corpus studies and controlled experiments, and finally a demonstration of external validation. It’s contribution to MOOC practitioners includes both practical design advice as well as coordination tools for team-based MOOCs.
Acknowledgments

I am grateful to my advisor, Carolyn Rose, for guiding me in my research, helping me to develop strong research skills, and encouraging me to become a better person overall. I enjoyed many stimulating research discussions with Carolyn, as well as casual chats about life in the US. She has been my greatest guide and support.

I am also very grateful to the other members of my thesis committee, James Herbsleb, Steven Dow, Anne Trumbore and Candace Thille, for their advice and guidance throughout the dissertation process. Their invaluable comments, guidance and encouragement dramatically helped me clarify my thesis, refine my approach, and broaden my vision. Seeing their work and accomplishments inspired me to become a more rigorous researcher.

I greatly appreciate the guidance and assistance of my mentors Adam Kalai at Microsoft Research and Jacquie Moen at the Smithsonian Institution during my internships at their institutions.

I would also like to thank all my collaborators and friends for their help and support during my five years at CMU: Robert Kraut, Xu Wang, Sreecharan Sankaranarayanan, Gahgene Gweon, Ioanna Lykourentzou, Ben Towne, Diyi Yang, Iris Howley, Yi-Chia Wang, Haiyi Zhu, Oliver Ferschke, Hyeju Jang, Anna Kasunic, Keith Maki, Tanmay Sinha, Gaurav Tomar, Yohan Jo, Leah Nicolich-Henkin, William Yang Wang, Zi Yang, Zhou Yu, Justin Chiu and Kenneth Huang.

Finally, my wholehearted gratitude goes to my husband, Zeyu Zheng. I am incredibly lucky to have met you in CMU. I love you. The devoted love from my parents is always with me, no matter how far I am away from them. I dedicate this dissertation to them, for their continuous love and support.
Contents

1 Introduction 1

2 Background 5

2.1 Why Team-based Learning in MOOCs? 5

2.1.1 Lack of social interactions in MOOCs 5

2.1.2 Positive effects of social interaction on commitment 5

2.1.3 Positive effects of social interaction on learning 6

2.1.4 Desirability of team-based learning in MOOCs 7

2.2 What Makes Successful Team-based Learning? 7

2.3 Technology for Supporting Team-based Learning 8

2.3.1 Supporting online team formation 8

2.3.2 Supporting team process 12

2.4 Chapter Discussion 14

3 Research Methodology 15

3.1 Corpus Analysis Methods 15

3.1.1 Text Classification 15

3.1.2 Statistical Analysis 17

3.2 Crowdsourced Studies 18

3.2.1 Crowdsourced Experimental Design 19

3.2.2 Collaborative Crowdsourcing 19

3.2.3 Crowdworkers vs. MOOC Students 20

3.3 Deployment Studies 20

3.3.1 How MOOCs Differ from MTurk 20

3.4 Constraint Satisfaction Algorithms 21

3.4.1 Minimal Cost Max Network Flow Algorithm 21

4 Factors that Correlated with Student Commitment in Massive Open Online Courses: Study 1 23

4.1 Introduction 23

4.2 Coursera dataset 25

4.3 Methods 25

4.3.1 Learner Motivation 25

4.3.2 Predicting Learner Motivation 25
4.3.3 Level of Cognitive Reasoning .. 30
4.4 Validation Experiments .. 31
 4.4.1 Survival Model Design ... 32
 4.4.2 Survival Model Results .. 32
4.5 Chapter Discussion .. 35

5 Virtual Teams in Massive Open Online Courses: Study 2 37
 5.1 MOOC Datasets .. 38
 5.2 Study Groups in xMOOC Discussion Forums 39
 5.2.1 Effects of Joining Study Groups in xMOOCs 39
 5.3 Virtual Teams in NovoEd MOOCs 41
 5.3.1 The Nature of NovoEd Teams 41
 5.3.2 Effects of Teammate Dropout 42
 5.4 Predictive Factors of Team Performance 43
 5.4.1 Team Activity ... 44
 5.4.2 Engagement Cues .. 45
 5.4.3 Leadership Behaviors ... 45
 5.4.4 Results .. 47
 5.5 Chapter Discussion ... 48

6 Online Team Formation through a Deliberative Process in Crowdsourcing Environments: Study 3 and 4 49
 6.1 Introduction ... 49
 6.2 Method ... 51
 6.2.1 Experimental Paradigm .. 51
 6.3 Study 3. Group Transition Timing: Before Deliberation vs. After Deliberation 56
 6.3.1 Participants ... 57
 6.3.2 Results .. 57
 6.4 Study 4. Grouping Criteria: Random vs. Transactivity Maximization 58
 6.4.1 Participants ... 59
 6.4.2 Results .. 59
 6.5 Chapter Discussion ... 62
 6.5.1 Underlying Mechanisms of the Transactivity Maximization Team Formation 62
 6.5.2 Implications for team-based MOOCs 62
 6.5.3 Implications for Crowd Work 62
 6.5.4 Conclusions .. 63

7 Team Collaboration Communication Support: Study 5 65
 7.1 Bazaar Framework ... 65
 7.1.1 Bazaar Prompts ... 66
 7.2 Method ... 68
 7.2.1 Experiment Design ... 68
 7.2.2 Measuring Learning Gain 68
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Thesis overview</td>
<td>3</td>
</tr>
<tr>
<td>4.1</td>
<td>Study 1 Hypothesis</td>
<td>24</td>
</tr>
<tr>
<td>4.2</td>
<td>Annotated motivation score distribution</td>
<td>27</td>
</tr>
<tr>
<td>4.3</td>
<td>Survival curves for students with different levels of engagement in the Accountable Talk course</td>
<td>33</td>
</tr>
<tr>
<td>4.4</td>
<td>Survival curves for students with different levels of engagement in the Fantasy and Science Fiction course</td>
<td>34</td>
</tr>
<tr>
<td>4.5</td>
<td>Survival curves for students with different levels of engagement in the Learn to Program course</td>
<td>34</td>
</tr>
<tr>
<td>5.1</td>
<td>Chapter hypothesis</td>
<td>38</td>
</tr>
<tr>
<td>5.2</td>
<td>Screen shot of a study group subforum in a Coursera MOOC</td>
<td>39</td>
</tr>
<tr>
<td>5.3</td>
<td>Homepage of a NovoEd team. 1: Team name, logo and description. 2: A team blog. 3: Blog comments. 4: Team membership roster</td>
<td>41</td>
</tr>
<tr>
<td>5.4</td>
<td>Survival plots illustrating team influence in NovoEd</td>
<td>43</td>
</tr>
<tr>
<td>5.5</td>
<td>Statistics of team size, average team score and average overall activity Gini coefficient</td>
<td>44</td>
</tr>
<tr>
<td>5.6</td>
<td>Structural equation model with maximum likelihood estimates (standardized). All the significance level $p<0.001$</td>
<td>47</td>
</tr>
<tr>
<td>6.1</td>
<td>Chapter hypothesis</td>
<td>51</td>
</tr>
<tr>
<td>6.2</td>
<td>Collaboration task description</td>
<td>52</td>
</tr>
<tr>
<td>6.3</td>
<td>Illustration of experimental procedure and worker synchronization for our experiment</td>
<td>54</td>
</tr>
<tr>
<td>6.4</td>
<td>Workflow diagrams for Study 3</td>
<td>56</td>
</tr>
<tr>
<td>6.5</td>
<td>Workflow diagrams for Study 4</td>
<td>58</td>
</tr>
<tr>
<td>7.1</td>
<td>Chapter hypothesis</td>
<td>66</td>
</tr>
<tr>
<td>7.2</td>
<td>Bazaar agent in the small team collaboration</td>
<td>69</td>
</tr>
<tr>
<td>7.3</td>
<td>Instructions for Pre and Post-test Task</td>
<td>69</td>
</tr>
<tr>
<td>7.4</td>
<td>Learning gain across experimental conditions</td>
<td>72</td>
</tr>
<tr>
<td>8.1</td>
<td>Team space in edX</td>
<td>77</td>
</tr>
<tr>
<td>8.2</td>
<td>Instructions for Course Community Discussion and Team Formation</td>
<td>78</td>
</tr>
<tr>
<td>8.3</td>
<td>Initial post in the team space</td>
<td>79</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>8.4</td>
<td>Instructions for the final team project.</td>
<td>80</td>
</tr>
<tr>
<td>8.5</td>
<td>One superhero team picture.</td>
<td>81</td>
</tr>
<tr>
<td>8.6</td>
<td>Picture included in the comment.</td>
<td>82</td>
</tr>
<tr>
<td>9.1</td>
<td>Initial Post.</td>
<td>89</td>
</tr>
<tr>
<td>9.2</td>
<td>Team communication frequency survey.</td>
<td>90</td>
</tr>
<tr>
<td>9.3</td>
<td>Self introductions.</td>
<td>90</td>
</tr>
<tr>
<td>9.4</td>
<td>A brainstorming post.</td>
<td>91</td>
</tr>
<tr>
<td>9.5</td>
<td>Team space list.</td>
<td>95</td>
</tr>
<tr>
<td>9.6</td>
<td>A to-do list.</td>
<td>96</td>
</tr>
<tr>
<td>9.7</td>
<td>Voting for a team leader.</td>
<td>97</td>
</tr>
</tbody>
</table>
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Features for predicting learner motivation. A binomial test is used to measure the feature distribution difference between the motivated and unmotivated post sets(**: p < 0.01, ***: p < 0.001).</td>
<td>28</td>
</tr>
<tr>
<td>4.2</td>
<td>Accuracies of our three classifiers for the Accountable Talk course (Accountable) and the Fantasy and Science Fiction course (Fantasy), for in-domain and cross-domain settings. The random baseline performance is 50%</td>
<td>30</td>
</tr>
<tr>
<td>4.3</td>
<td>Results of the survival analysis.</td>
<td>32</td>
</tr>
<tr>
<td>5.1</td>
<td>Statistics of the three Coursera MOOCs.</td>
<td>38</td>
</tr>
<tr>
<td>5.2</td>
<td>Statistics two NovoEd MOOCs.</td>
<td>38</td>
</tr>
<tr>
<td>5.3</td>
<td>Survival Analysis Results.</td>
<td>40</td>
</tr>
<tr>
<td>5.4</td>
<td>Survival analysis results.</td>
<td>43</td>
</tr>
<tr>
<td>5.5</td>
<td>Three different types of leadership behaviors.</td>
<td>46</td>
</tr>
<tr>
<td>6.1</td>
<td>Transactive vs. Non-transactive Discussions during Team Collaboration.</td>
<td>60</td>
</tr>
<tr>
<td>7.1</td>
<td>Number of teams in each experimental condition.</td>
<td>70</td>
</tr>
<tr>
<td>7.2</td>
<td>Number of teams in each experimental condition.</td>
<td>71</td>
</tr>
<tr>
<td>8.1</td>
<td>Student course completion across tracks.</td>
<td>81</td>
</tr>
<tr>
<td>8.2</td>
<td>Sample creative track projects.</td>
<td>83</td>
</tr>
<tr>
<td>8.3</td>
<td>Sample Team Track projects.</td>
<td>84</td>
</tr>
<tr>
<td>9.1</td>
<td>Average number of transactive exchanges within Transactivity-maximized teams and Randomly-formed teams in the course community deliberation.</td>
<td>89</td>
</tr>
<tr>
<td>9.2</td>
<td>Finish status of the team projects.</td>
<td>92</td>
</tr>
<tr>
<td>11.1</td>
<td>Energy source X Requirement</td>
<td>105</td>
</tr>
<tr>
<td>11.2</td>
<td>Energy X Energy Comparison</td>
<td>106</td>
</tr>
<tr>
<td>11.3</td>
<td>Address additional valid requirements.</td>
<td>106</td>
</tr>
<tr>
<td>11.4</td>
<td>Address additional valid requirements.</td>
<td>107</td>
</tr>
</tbody>
</table>
Chapter 1

Introduction

Since the introduction of Massive Online Open Courses (MOOCs), many practitioners and platforms have tried to implement team-based learning, a social learning approach where students collaborate in a small teams to accomplish a course project. However, little collaborative success has been reported [211]. This thesis addresses team-based learning challenges in MOOCs with a learning science concept of transactivity. A transactive discussion is, simply, a discussion that contains reasoning that “operates on the reasoning of another” [20]. Transactive discussion is also known as argumentative knowledge construction [195], consensus building, transactive knowledge exchange, or even productive agency.

The theoretical link between transactive reasoning and collaborative knowledge integration is based on Piaget’s proposal (1932/1965) that, when students operate on each other’s reasoning, they become aware of contradictions between their own reasoning and that of their partner. The neo-Piagetian perspective on learning shows that optimal learning occurs when students respect both their own ideas and those of their interactants [51]. Thus, transactive discussion is an important process that reflects beneficial social dynamics in a group. In other words, transactive discussion is at the heart of what makes collaborative learning discussions valuable, and leads to increased learning and collaborative knowledge integration [79].

Against this model, contemporary MOOCs (xMOOCs) are online learning environments where instructional design is based on a purely instructivist approach. In this approach, primary learning activities such as video lectures, quizzes, assignments, and exams lack the beneficial group dynamics. Often students’ social interaction is limited to discussion forums, where communication is slow and participation is low in general [122]. Consequently, social isolation is the norm in the current generation of MOOCs.

To improve students’ interaction and engagement, several MOOC platforms and recent researchers have investigated how to introduce interactive peer learning. For example, a smaller team-based MOOC platform, NovoEd (https://novoed.com/), features a team-based, collaborative, and project-based approach. EdX is preparing to release its new team-based MOOC interface, which can be optionally incorporated into an instructivist MOOC. However, dropping the team-based learning platform into a MOOC does not ensure team success [106]. The percentage of active or successful teams is usually low across the team-based MOOCs.

Recently, researchers have expressed interest in designing short interventions with peer interaction in MOOCs [41, 67, 106]. In these studies, participants are briefly grouped together (e.g.
20 minutes) and asked to discuss an assigned topic or answer a multiple choice question through synchronous text-based chat or Google Hangout. These studies have demonstrated lower attrition immediately following the intervention or better performance in course assessments. Compared to these short-term, light-weight social interaction interventions, team-based learning offers an experience that promotes intense discussion among students. Team-based learning also provides students a unique opportunity to collaborate on course projects, which should show greater long-term benefits. However, coordinating team-based learning is more difficult, especially online, and unless it is incorporated into the formal curriculum, most teams fail. This thesis designs and develops automated support for incorporating learning teams in a MOOC.

There are two main challenges associated with coordinating team-based MOOCs: forming teams and supporting formed teams. To form teams, students either self-select or are grouped by an algorithm. Although the self-selection approach has become the norm, it can be difficult and inefficient. As few students complete an online profile, they typically do not know each other and cannot select appropriate team members. This thesis also provides evidence that many self-selected teams fail because of student’s low activity level from the beginning. Algorithm-based teams also suffer from low activity. Recent work in applied clustering algorithms has found that teams formed based on survey demographic information did not collaborate more than randomly formed teams [211].

The second challenge is how to coordinate team collaboration once the teams are formed. Students in the virtual learning teams usually have diverse backgrounds, a successful collaboration requires team members respect each other’s perspective and integrate each member’s unique knowledge. Owing to extremely skewed ratios of students to instructional staff, it can be prohibitively time-consuming for the instructional staff to manually coordinate all the formed teams. Therefore the second challenge of coordinating team-based learning in MOOCs is how to automatically support teams that are already formed.

To leverage team-based learning, we need to address several problems that are associated with small team collaboration in MOOCs. Small teams often lose critical mass through attrition. The second danger of small teams is that students tend to depend too much on their team, lose intellectual connection with the community. Finally, since students rarely fill in their profiles or submit surveys, we have scant information of which students will work well together. To address these team formation challenges, we propose a deliberation-based team formation procedure, with transactive discussion as an integral part of the procedure, to improve the team initiation and selection process. Deliberation, or rational discourse that marshals evidence and arguments, can be effective for engaging groups of diverse individuals to achieve rich insight into complex problems [29]. In our team formation procedure, participants hold discussions in preparation for the collaboration task. We automatically assign teams in a way that maximizes average observed pairwise transactive discussion exchange within teams. By forming teams later, i.e. after community deliberation, we can avoid assigning students who are already dropping out into teams. By providing teams with the opportunity to join community deliberation before team collaboration, students may maintain the community connection. Moreover, we can leverage students’ transactive discussion evidence during the deliberation and group students who display successful team processes, i.e. transactive reasoning, in the deliberation. Based on the theoretical framing of the concept of transactivity and prior empirical work related to that construct, we hypothesize that we can form more successful teams using students’ transactive discussion as
To support teams that are already formed, we study whether using collaboration communication support, i.e. conversational agent, can boost students’ transactive discussion during collaboration and enhance learning and collaboration product in online learning contexts. Conversational agents or dialogue systems are programs that converse with humans in natural language. Previous research has demonstrated that conversational agents can positively impact team-based learning through facilitating synchronous discussion [109]. In previous work on conversational agents, usually the agent facilitated discussion is a separate step before the collaboration step. We explore if we can combine these two steps, and support collaborative discussion while the students are working on the collaborative task.

Factors
Support
Timing
Composition
Activity Level
Outcomes
Interventions
Process Measures
Team Formation
Timing
Composition
Collaboration Communication Support
Leadership Behaviors
Activity Level
Engagement Cues
Reasoning
Transactivity
Commitment
Learning Gain
Collaborative Product

Figure 1.1: Thesis overview.

To sum up, Figure 1.1 presents a diagrammatic summary of our research hypotheses in this thesis. Given the importance of community deliberation in the MOOC context, we hypothesize that teams that formed after they engage in a large community forum deliberation process achieve better collaboration product than teams that instead perform an analogous deliberation within their small team. Based on the theories of transactive reasoning, we hypothesize that we can utilize transactive discussion as evidence to form teams that have more transactive reasoning during collaboration discussion ((7) in Figure 1.1), and thus have better collaborative product in team-based MOOCs ((8) in Figure 1.1). After teams are formed, we hypothesize that collaboration communication support can also lead to more transactive discussion during team collaboration ((5) in Figure 1.1), and thus lead to improved collaboration product ((8) in Figure 1.1).

This thesis provides an empirical foundation for proposing best practices in team-based learning in MOOCs. In the following chapters I start with surveying related work on how to support online learning and improve the collaboration product of online teams (Chapter 2). After the background chapter, I describe the research methodology of this thesis (Chapter 3). I begin with corpus analyses to form hypotheses (Chapter 4 and 5), then run controlled studies to confirm hypotheses (Chapter 6 and 7), and finally to apply the findings in two real MOOCs (Chapter 8 and 9).
This thesis presents four studies. Study 1 and 2 are corpus analyses with the goal of hypothesis formation. For any learning or collaboration to happen in the MOOC context, students need to stay engaged in the course. In the field of online communities, the committed status is when a relationship between a person and an online community is established and the person gets fully involved with the community. In this thesis, commitment refers to whether a student stay active in a MOOC instead of dropping out. People who stay in a MOOC longer are more likely to receive whatever benefits it provides. In Study 1: Factors that are correlated with student commitment in xMOOCs (Chapter 4), we focused on predictive factors of commitment, which is the precondition to learning and collaboration. We found that students’ activity level in the course forum were correlated with student commitment ((1) in Figure [I.1]). We extracted linguistic features that indicate students’ explicitly articulated reasoning from their discussion forum posts, and use survival models to validate that these features are associated with enhanced commitment in the course. ((2) in Figure [I.1]).

In Study 2: Behaviors that contribute to collaboration product in team-based MOOCs (Chapter 5), we switch to study team-based MOOCs, where a team-based learning component is in the centre of a MOOC design. In particular, we study the collaborative interactions, i.e. asynchronous communication during virtual team collaboration, in team-based MOOC platform. Similar to Study 1, the activity level in a team, such as the number of messages sent between the team members each week, was positively correlated with team member commitment and collaboration product ((3) in Figure [I.1]). We found that leadership behaviors in a MOOC virtual team were correlated with higher individual/group activity level and collaborative product quality ((4) and (5) in Figure [I.1]). Results from Study 1 and 2 suggest that in order to improve collaborative product in team-based MOOCs, it might be essential to focus on increasing activity level and the amount of reasoning discussion. We tackle this problem from two types of interventions: team formation and automatic collaboration discussion support for formed teams.

In Study 3 and 4: Deliberation-based team formation support (Chapter 6), we ran controlled intervention studies in a crowdsourcing environment to confirm our team formation hypotheses. In Study 3, we confirmed the advantages of experiencing community wide transactive discussion prior to assignment into teams. In Study 4, we confirmed that selection of teams in such a way as to maximize transactive reasoning based on observed interactions during the preparation task increases transactive reasoning during collaboration discussion and team success in terms of the quality of the collaborative product ((6) and (7) in Figure [I.1]).

In Study 5: Collaboration communication support (Chapter 7), we ran controlled intervention studies in the crowdsourcing environment using the same paradigm as Study 3 and 4. We study whether using collaboration communication support, i.e. a conversational agent, can boost transactive reasoning during collaboration and enhance the collaborative product and the participants’ learning gains ((8) in Figure [I.1]).

The corpus analysis studies and crowdsourced experiments provide sufficient support for further investigation of team-based learning in a field study. Study 6 and 7: Deployment of the team formation support in real MOOCs (Chapter 8 and 9) offers practical insights and experiences for how to incorporate a team-based learning component in a typical xMOOC.

I have provided the ground work for supporting teams in MOOCs. This work has touched upon several topics of potential interest and suggests future research directions. The final chapter provides a general discussion of the results, limitations of the work, and a vision for future work.
Chapter 2

Background

In this chapter, we review background in three areas: positive effects of team-based learning in MOOCs, elements of successful team-based learning, and efforts to support team-based learning.

2.1 Why Team-based Learning in MOOCs?

Currently most MOOC participants experience MOOCs as solitary learning experiences. We think the main reasons why MOOCs might benefit from a team-based learning module include both positive effects of social learning on students’ commitment and learning.

2.1.1 Lack of social interactions in MOOCs

The current generation of MOOCs offer limited peer visibility and awareness. In most MOOCs, the only place that social interaction among students happens is in the course discussion forum. On the other hand, research on positive effects of collaboration on learning is a well-established field [215]. Many of the educationally valuable social interactions identified in this research are lost in MOOCs: online learners are “alone together” [183]. Analyses of attrition and learning in MOOCs both point to the importance of social engagement for motivational support and overcoming difficulties with material and course procedures. Recently, a major research effort has been started to explore the different aspects of social interaction amongst course participants [102]. The range of the examined options includes importing existing friend connections from social networks such as Facebook or Google+, adding social network features within the course platform, but also collaboration features such as discussion or learning groups and group exercises [164]. While this research has shown some initial benefits of incorporating more short term social interactions in MOOCs, less work has explored long term social interaction such as team-based learning.

2.1.2 Positive effects of social interaction on commitment

The precondition of learning is students staying in the MOOC – students who drop out do not have the chance to learn from material that appears later in the course. Since MOOCs were in-
introduced in 2011, there has been criticism of low student retention rates. While many factors contribute to attrition, high dropout rates are often attributed to feelings of isolation and lack of interactivity [40, 94] reasons directly relating to missing social engagement. One of the most consistent problems associated with distance learning environments is a sense of isolation due to lack of interaction [19, 82]. This sense of isolation is linked with attrition, instructional ineffectiveness, failing academic achievement, and negative attitudes and overall dissatisfaction with the learning experience [23]. A strong sense of community has been identified as important for avoiding attrition [179]. In most current online classes, students’ opportunities for discussions with diverse peers are limited to threaded discussion forums. Such asynchronous text channels in their current instantiation inhibit trust formation [145]. Attachment to sub-groups can build loyalty to the group or community as a whole [175]. Commitment is promoted when more intensive peer interaction is promoted [84].

More recent MOOCs try to incorporate scheduled and synchronous group discussion sessions where students are randomly assigned to groups [6, 67, 106]. Results show that having experienced a collaborative chat is associated with a slow down in the rate of attrition over time by a factor of two [181]. These studies indicate that small study groups or project teams in a bigger MOOC may help alleviate attrition.

2.1.3 Positive effects of social interaction on learning

Peer learning is an educational practice in which students interact with other students to attain educational goals [51]. As Stahl and others note [163], Vygotsky argued that learning through interaction external to a learner precedes the internalization of knowledge. That interaction with the outside world can be situated within social interaction. So collaboration potentially provides the kind of interactive environment that precedes knowledge internalization. While peer learning in an online context has been studied in the field of Computer Supported Collaborative Learning (CSCL), less is known about the effects of team-based learning in MOOCs and how to support it.

There have been mixed effects reported by previous work on introducing social learning into MOOCs. Overall high satisfaction with co-located MOOC study groups that watch and study MOOC videos together has been reported [116]. Students who worked offline with someone during the course are reported to have learned 3 points more on average [26]. Coetzee et al. [42] tried encouraging unstructured discussion such as real-time chat room in a MOOC, but they did not find an improvement in students’ retention rate or academic achievement. Using the number of clicks on videos and the participation in discussion forums as control variables, Ferschke et al. [68] found that the participation in chats lowers the risk of dropout by approximately 50%. More recent research suggest the most positive impact when experiencing a chat with exactly one partner rather than more or less in a MOOC [180]. The effect depends on how well the peer learning activities were incorporated into the curriculum. The effect depends also on whether sufficient support was offered to the groups.
2.1.4 Desirability of team-based learning in MOOCs

There has been interest in incorporating a collaborative team-based learning component in MOOCs ever since the beginning. Benefits of group collaboration have been established by social constructivism [188] and connectivism [155]. Much prior work demonstrates the advantages of group learning over individual learning, both in terms of cognitive benefits as well as social benefits [14, 167]. The advantages of team-based Learning include improved attendance, increased pre-class preparation, better academic performance, and the development of interpersonal and team skills. Team-based learning is one of the few ways to achieve higher-level cognitive skills in large classes [127]. Social interactions amongst peers improves conceptual understanding and engagement, in turn increasing course performance [48, 158] and completion rates [142]. NovoEd, a small MOOC platform, is designed specifically to support collaboration and project-based learning in MOOCs, through mechanisms such as participant reputational ranking, team formation, and non-anonymous peer reviews. The term GROOC has recently been defined, by Professor Mintzberg of McGill University (https://www.mcgill.ca/desautels/programs/grooc), to describe group-oriented MOOCs, based on one he has developed on social activism. edX is also releasing its new team-based MOOC interface, which can be optionally incorporated into an instructivist MOOC. Limited success has been reported in these team-based MOOCs. Inspired by these prior work on team-based MOOC, in the next chapter we discuss what makes team-based learning successful, especially in online environments.

2.2 What Makes Successful Team-based Learning?

Although online students are “hungry for social interaction”, peer-based learning will not happen naturally without support [99]. In early MOOCs, discussion forums featured self-introductions from around the world, and students banded together for in-person meet-ups. Yet, when peer learning opportunities are provided, students don’t always participate in pro-social ways; they may neglect to review their peers’ work, or fail to attend a discussion session that they signed up for; they may drop out from their team as they drop out from the course [99]. Learners have reported experiencing more frustrations in online groups than in face-to-face learning [157]. Many instructors assumed that a peer system would behave like an already-popular social networking service like Facebook where people come en masse at their own will. However, peer learning systems may need more active integration, otherwise, students can hardly benefit from them [164]. Providing the communication technological means is by far not sufficient. Social interaction cannot be taken for granted. E.g. in one MOOC that offers learning groups, only about 300 out of a total of 7,350 course participants joined one of the twelve learning groups [102]. The value of educational experiences is not immediately apparent to students, and those that are worthwhile need to be signaled as important in order to achieve adoption. Previous work found that offering even minimal course credit powerfully spurs initial participation [102].

The outcomes of small group collaborative activities are dependent upon the quality of collaborative processes that occur during the activity [16, 103, 162]. Specifically, lack of common ground between group members can hinder effective knowledge sharing and collective knowledge building [79], leading to process losses [165] and a lack of perspective taking [104, 149].
Transactivity is a property identified by many as an essential component to effective collaborative learning. It is akin to discourse strategies identified within the organizational communication literature for solidarity building in work settings as well as rhetorical strategies associated with showing openness. The idea is part of the neo-Piagetian perspective on learning where it is understood that optimal learning between students occurs when students respect both their own ideas and those of the peers that they interact with, which is grounded in a balance of power within a social setting. Transactivity is known to be higher within groups where there is mutual respect and a desire to build common ground. High transactivity groups are associated with higher learning, higher knowledge transfer, and better problem solving.

Automatic annotation of transactivity is not a new direction in the CSCL community. For example, several researchers have applied machine learning to predicting transactivity in discussion in various contexts, such as newsgroup style interactions, chat data, and transcripts of whole group discussions. Previous work in this research mostly study how to identify transactivity and its correlation with team process and success. This thesis, on the other hand, explores using identified transactivity as evidence for team formation.

2.3 Technology for Supporting Team-based Learning

To support team-based learning in MOOCs, we can learn about effective support for social learning from the literature on Computer Supported Collaborative Learning. In a classroom, an instructor’s role in promoting small group collaboration includes (1) preparing students for collaborative work, (2) forming groups, (3) structuring the group-work task, and (4) influencing the student interaction process through teacher facilitation of group interaction. In an online setting, some or all of this support may come through automated interventions. In this section, we survey the research on forming groups and facilitation of group interaction.

This chapter reviews technologies for supporting team formation and team process.

2.3.1 Supporting online team formation

The existing research in team-based learning, building from a massive research base in traditional group work theory, has identified that group formation and maintenance require considerable extra planning and support. A group formation method is an important component for enhancing team member participation in small groups. The three most common types of group forming methods are self selection, random assignment, and facilitator assignment.

Self-selection based team formation

Self selection, the most prevalent form of online grouping, is considered better for interaction but difficult to implement in a short time since in this case participants typically do not know each other and lack the face-to-face contact to “feel out” potential group members. For this reason, student teams in E-learning contexts are usually assigned by instructors, often randomly. Most current research supports instructor-formed teams over self-selected teams, although
some authors disagree [13]. Self-selection has been recommended by some because it may offer higher initial cohesion [168], and cohesion has been linked to student team performance [73, 90, 203]. Self-selection in classrooms may have several pitfalls: (1) Team formation around pre-existing friendships, which hampers the exchange of different ideas; (2) The tendency of learners with similar abilities to flock together, so strong and weak learners do not mix, thus limiting interactions and preventing weaker learners to learn how stronger learners would tackle problems. The stronger learners would also not benefit from the possibilities to teach their peers, and (3) Self-selection can also pose a problem for under-represented minorities. When an at-risk student is isolated in a group, this isolation can contribute to a larger sense of feeling alone. This can then lead to non-participation or purely passive roles [136].

Algorithm-based team formation

Many team-formation problems are motivated by the following simply-stated, yet significant question: “Given a fixed population, how should one create a team (or teams) of individuals to achieve the optimal performance?”[3]. An algorithm-based team formation needs two components: a team formation criteria and a team formation algorithm that optimizes that criteria.

Team formation criteria: Most of the algorithm-based groups are formed based on information in learner’s profile. The fixed information may include: gender and culture. The information that require assessment include: expertise and learning styles [7, 50], knowledge about the content, personality, attributes [74], the current (and previous) learner’s goals [138], knowledge and skills [76], the roles and strategies used by learners to interact among themselves and teacher’s preferences (See [138] for an overview). Because mixed-gender groups consisting of students with different cognitive styles would establish a community with different ideas, so that students could see and design their products from different angles and provide solutions from different perspectives, which might help them to achieve better performance during CSCL. However, the results varied when it comes to whether to form a heterogeneous or homogeneous group. Several attempts have been made to analyze the effects of gender grouping on students’ group performance in CSCL, but the findings to date have been varied [209]. Founded on the Piagetian theory of equilibrium, Doise and Mugny understand the socio-cognitive conflict as a social interaction induced by a confrontation of divergent solutions from the participant subjects. From that interaction the individuals can reach higher states of knowledge [58]. Paredes et al. [139] shows that heterogeneous groups regarding learning styles tend to perform better than groups formed by students with similar characteristics. For example, by combining students according to two learning style dimensions: active/reflective and sequential/global, the heterogeneous groups have more interaction during collaboration [55]. While homogeneous groups are better at achieving specific aims, heterogeneous groups are better in a broader range of tasks when the members are balanced in terms of diversity based on functional roles or personality differences [135]. It’s not the heterogeneous vs. homogeneous distinction that leads to the different results, it’s the interaction happens among teams which can also be influenced by other factors like whether instructors have designed activities that suit the teams, language, culture, interests, individual personalities [77]. Recent work shows that balancing for personality leads to significantly better performance on a collaborative task [120]. Since students in MOOC have much more diverse background and motivation compared with traditional classroom, we think a more useful criteria for team
formation is evidence of how well they are already interacting or working with each other in the course. Besides leveraging the static information from student profiles, recent research tries to include dynamic inputs from the environment to form teams, such as the availability of specific tools and learning materials [201], or emotional parameters of learners [216], learner context information such as location, time, and availability [66, 131]. Isotani et al. [89] proposed a team formation strategy to first understand students’ needs (individual goals) and then select a theory (and also group goals) to form a group and design activities that satisfy the needs of all students within a group. It is less studied how to form teams without learner profile or previously existed links between participants. In MOOCs, there is very limited student profile information. Recently, Zheng et al. [211] shows that teams that were formed based on simple demographic information collected from surveys did not demonstrate more satisfactory collaboration compared to randomly formed teams. To form effective teams in environments where participants have no history of communication or collaboration before, Lykourentzou et al. explores a strategy for “team dating”, a self-organized crowd team formation approach where workers try out and rate different candidate partners. They find that team dating affects the way that people select partners and how they evaluate them [121]. The proposed team formation strategy in this thesis tries to group students based on dynamic evidence extracted from students’ interaction.

Team formation algorithms: Cluster algorithms constitute the most applied techniques for automatic group formation (e.g. [9, 194]). Methods such as C-Means, K-means and EM have all demonstrated success [38]. The clustering is usually done based on students’ knowledge or errors observed in an individual task (e.g., [194]). Heterogeneous and homogeneous groups can be formed after clustering. Most of the algorithms were evaluated.

Team formation can also be formulated as a constraint satisfaction problem. Given a task T, a pool of individuals X with different skills, and a social network G that captures the compatibility among these individuals, Lappas et al. [111] studies the problem of finding a subset of X (X’), to perform the task. The requirement is that members of X’ not only meet the skill requirements of the task, but can also work effectively together as a team. The existence of an edge (or the shortest path) between two nodes in G indicates that the corresponding persons can collaborate effectively. Anagnostopoulos et al. [8] proposes an algorithm to form online teams for a certain team given the social network information. (1) Each team possesses all skills required by the task, (2) each team has small communication overhead, and (3) the workload of performing the tasks is balanced among people in the fairest possible way. Group fitness is a measure of the quality of a group with respect to the group formation criteria, and partition fitness is a measure of the quality of the entire partition. Many team formation algorithms are evaluated on generated or simulated data from different distributions [3].

Ikeda et al. [86] proposed an “opportunistic group formation”. Opportunistic Group Formation is the function to form a collaborative learning group dynamically. When it detects the situation for a learner to shift from individual learning mode to collaborative learning mode, it forms a learning group each of whose members is assigned a reasonable learning goal and a social role which are consistent with the goal for the whole group. Unfortunately, there is little literature on the architecture of the developed systems or their evaluation. Following this work, opportunistic collaboration, in which groups form, break up, and recombine as part of an emerging process, with all participants aware of and helping to advance the structure of the whole [210]. Once the opportunistic group formation model finds that the situation of a learner is the
right timing to shift the learning mode from individual learning to the collaborative learning, the system taking charge of the learner proposes other systems to begin the negotiation for form the learning group formation. The opportunistic group formation system, called I-MINDS, was evaluated against the performance of the teams, measured based on the teams’ outcomes and their responses to a series of questionnaires that evaluates team-based efficacy, peer rating, and individual evaluation [160]. The results showed that students using I-MINDS performed (and outperformed in some aspects) as well as students in face-to-face settings.

Group formation in social networks

Because students in MOOCs typically do not have existing ties prior to group formation, team formation in MOOCs is similar to group formation in social networks, especially online creative communities where participants form teams to accomplish projects. The processes by which communities and online groups come together, attract new members, and develop over time is a central research issue in the social sciences [45]. Previous work study how the evolution of these communities relates to properties such as the structure of the underlying social networks (e.g. friendship link [12], co-authorship link [153]). The findings include the tendency of an individual to join a community or group is influenced not just by the number of friends he or she has within the community, but also crucially by how those friends are connected to one another. In addition to communication, shared interests and status within the group are key predictors of whether two individuals will decide to work together. Theories on social exchange help lay a foundation for how communication affect people’s desire to collaborate as well as their ultimate success [62]. Research suggests that communication plays a key role in how online relationships form and function. In a study of online newsgroups, McKenna et al. [126] found communication frequency to be a significant factor in how relationships develop, and in whether these relationships persist years later. Communication not only helps relationships to form, but it improves working relationships in existing teams as well. For example, rich communication helps to support idea generation [171], creation of shared mental models [70], and critique exchange [151] in design teams. Based on this research, it is reasonable to believe that participants who showed substantial discussion with each other may develop better collaborative relationship in small team.

Given a complex task requiring a specific set of skills, it is useful to form a team of experts who work in a collaborative manner against time and many different costs. For example, we need to find a suitable team to answer community-based questions and collaboratively develop software. Or to find a team of well-known experts to review a paper. This team formation problem needs to consider factors like communication overhead and load balancing. Wang et al. [190] surveyed the state-of-the-art team formation algorithms. The algorithms were evaluated on datasets such as DBLP, IMDB, Bibsonomy and StackOverflow based on different metrics such as communication cost. Unfortunately, these algorithms were rarely evaluated in real team formation and team collaboration tasks.
2.3.2 Supporting team process

Team process support is important for the well functioning of the team once it is formed. A conceptual framework for team process support referred to as the Collaboration Management Cycle is studied in [161]. This foundational work was influential in forming a vision for work on dynamic support for collaborative learning. In this work, Soller and colleagues provided an ontology for types of support for collaborative learning. They illustrated the central role of the assessment of group processes underlying the support approaches, including (1) mirroring tools that reflect the state of the collaboration directly to groups, (2) meta-cognitive tools that engage groups in the process of comparing the state of their collaboration to an idealized state in order to trigger reflection and planning for improvement of group processes, and finally, (3) guiding systems that offer advice and guidance to groups. At the time, guiding systems were in their infancy and all of the systems reviewed were research prototypes, mostly not evaluated in realistic learning environments.

Collaboration support systems

There are in general three types of collaboration support systems. Mirroring systems, which display basic actions to collaborators. For example, chat awareness tools such as Chat Circles [185], can help users keep track of ongoing conversations. Metacognitive tools, which represent the state of interaction via a set of key indicators. Talavera and Gaudioso [173] apply data mining and machine learning methods to analyze student messages in asynchronous forum discussions. Their aim is to identify the variables that characterize the behaviour of students and groups by discovering clusters of students with similar behaviours. A teacher might use this kind of information to develop student profiles and form groups. Anaya et al. [9] classify and cluster students based on their collaboration level during collaboration and show this information to both teachers and students. Coaching systems, which offer advice based on an interpretation of those indicators. OXEnTCHE [186] is an example of a sentence opener-based tool integrated with an automatic dialogue classifier that analyses on-line interaction and provides just-in-time feedback (e.g. productive or non-productive) to both teachers and learners. Fundamentally, these three approaches rely on the same model of interaction regulation, in that first data is collected, then indicators are computed to build a model of interaction that represents the current state, and finally, some decisions are made about how to proceed based on a comparison of the current state with some desired state. Using social visualizations to improve group dynamics is a powerful approach to supporting teamwork [18]. Another technique has been to use specifically crafted instructions to change group dynamics [125]. Previous work monitors the communication pattern in discussion groups with real-time language feedback [174]. The difference between the three approaches above lies in the locus of processing. Systems that collect interaction data and construct visualizations of this data place the locus of processing at the user level, whereas systems that offer advice process this information, taking over the diagnosis of the situation and offering guidance as the output. In the latter case, the locus of processing is entirely on the system side. Less research studied coordinating longitudinal virtual teams, we investigate how students collaborate through a longer duration of an entire MOOC in NovoEd, where small group collaborations are required. We also explore how to support teams where team collaboration is
optional in xMOOCs.

Collaboration discussion process support

The field of CSCL has a rich history extending for over two decades, covering a broad spectrum of research related to facilitation collaborative discussion and learning in groups, especially in computer mediated environments. A detailed history is beyond the scope of this thesis, but interested readers can refer to Stahl’s well known history of the field [162]. An important goal of this line of research is to develop environments with affordances that support successful collaboration discussion. And a successful collaborative discussion is where team members show respect to each other’s perspective and operate on each other’s reasoning.

Gweon et al. [79] identified five different group processes that instructors believe are important in accomplishing successful group work. The processes are goal setting, progress, knowledge co-construction, participation, and teamwork. They also automatically monitors group processes using natural language processing and machine learning. Walker [189] and Kumar & Ros [107] were the first to develop full-fledged “guiding systems” that have been evaluated in large scale studies in real classrooms. While there are many technical differences between the Walker [189] and Kumar et al. [107] architectures, what they have in common is the application of machine learning to the assessment of group processes. This thesis also utilize machine learning models to automatically identify transactive discussions from students’ deliberation.

Alternative perspectives during collaboration discussion can stimulate students’ reflection [51]. Therefore students can benefit to some extent from working with another student, even in the absence of scaffolding [80, 109]. Research in Computer-Supported Collaborative Learning has demonstrated that conversational computer agents can serve as effective automated facilitators of synchronous collaborative learning [60]. Conversational agent technology is a paradigm for creating a social environment in online groups that is conducive to effective teamwork. Kumar and Rose [108] has demonstrated advantages in terms of learning gains and satisfaction scores when groups learning together online have been supported by conversational agents that employ Balesian social strategies. Previous work also shows that context sensitive support for collaboration is more effective than static support [109]. Personalized agents further increase supportiveness and help exchange between students [109]. Students are sensitive to agent rhetorical strategies such as displayed bias, displayed openness to alternative perspectives [107], and targeted elicitation [85]. Accountable talk agents were designed to intensify transactive knowledge construction, in support of group knowledge integration and consensus building [195,196]. Adamson [1] investigates the use of adaptable conversational agents to scaffold online collaborative learning discussions through an approach called Academically Productive Talk, or Accountable Talk. Their results demonstrate that APT based support for collaborative learning can significantly increase learning, but that the effect of specific APT facilitation strategies is context-specific. Rosé and Ferschke studies supporting discussion-based learning at scale in MOOCs with Bazaar Collaborative Reflection, making synchronous collaboration opportunities available to students in a MOOC context. Using the number of clicks on videos and the participation in discussion forums as control variables, they found that the participation in chats lowers the risk of dropout by approximately 50% [67].
2.4 Chapter Discussion

There are many potential ways to enhance MOOC students’ learning and positively influence student interactions, the first section of this chapter shows that it is desirable to incorporate team-based learning in the MOOC context. Students in MOOCs typically do not have existing ties prior to group formation. Most previous team formation work will not work in the context of MOOCs. Based on previous team formation research, we propose a forum deliberation process into the team formation process. We hypothesize that the communication in the forum deliberation can be utilized as evidence for group formation. Informed by the research on transactivity, we study whether teams composed of individuals with a history of engaging in more transactive communication during a pre-collaboration deliberation achieve more effective collaboration in their teams. MOOC students often have various backgrounds and perspectives, we leverage a conversational agent to encourage students’ overt reasoning of conflict perspectives and further boost the transactive discussion during team discussion. Building on the paradigm for dynamic support for team process that has proven effective for improving interaction and learning in a series of online group learning studies, our conversational agent uses some Accountable talk moves to encourage students to reason from different perspectives during discussion as it unfolds [2, 109, 110].
Chapter 3

Research Methodology

In order for the research to practically solve real problems in MOOCs, this thesis utilized three types of research methods: corpus data analysis, crowdsourced study and field deployment study. To form hypotheses, we first performed corpus analysis on data collected in previous MOOCs. Corpus analysis is good for establishing correlational relationships between variables. Section 3.1 described the main methods we used in corpus analysis. To test our hypotheses, we ran controlled studies in a crowdsourced environment. In crowdsourced studies, Mechanical Turk workers take the role of students. Crowdsourced experiment is similar to lab study. But since it is much easier and faster to recruit workers in crowdsourced environments, crowdsourced experiment enables us to quickly iterate on the experimental design and draw causal relationships between variables. Section 3.2 described the methods we used in the crowdsourced experiments. Finally, to understand other contextual factors that may play an important role, we apply our designs in real MOOC deployment studies. Section 3.3 described the methods we used in our deployment studies.

3.1 Corpus Analysis Methods

In this thesis, we used corpus analysis models different forms of social interactions across several online environments. In this section, we describe how we apply text classification to social interaction analysis in Study 1 and 2, where we adopt a content analysis approach to analyze students’ social interactions in MOOCs.

3.1.1 Text Classification

Text classification is an application of machine learning technology to a structured representation of text. Studies in this thesis utilize text classification to automatically annotate each discussion forum post, message or conversational turn with a certain measure, such as transactivity. Machine learning algorithms can learn mappings between a set of input features and a set of output categories. They do this by examining a set of hand coded “training examples” that exemplify each of the target categories. The goal of the algorithm is to learn rules by generalizing from these examples in such a way that the rules can be applied effectively to new examples. With a
small hand-annotated sample, a machine learning model enables us to apply the mapping to the entire corpus.

Social interaction analysis in MOOCs

The process-oriented research on collaborative learning is faced with an enormous amount of data. Applications of machine learning to automatic collaborative-learning process analysis are growing in popularity within the computer-supported collaborative learning (CSCL) community [81]. Previous work has analyzed content of student dialogues in tutoring and computer-supported collaborative learning environments. Chi [31] pointed out the importance of verbal analysis, which is a way to indirectly view student cognitive activity. De Wever [52] further demonstrated that content analysis has the potential to reveal deep insights about psychological processes that are not situated at the surface of internalized collaboration scripts. Previous work in the field of CSCL has demonstrated that discussion can facilitate learning in traditional contexts such as classrooms, and intelligent tutoring systems [33]. In most current xMOOCs, the only social interactions between students are threaded discussions in course forums. Unlike traditional education settings, discussions in xMOOCs are large-scaled and asynchronous in nature, and thereby more difficult to control. Many student behaviors have been observed in discussion forums, e.g., question answering, self-introduction, complaining about difficulties and corresponding exchange of social support. A very coarse grained distinction in posts could be on vs. off topic.

In Study 1, significant connection that has been discovered between linguistic markers extracted from discussion posts in MOOC forums and student commitment. In Study 2, we identified the leadership behaviors from the communications among team members in NovoEd MOOCs. These behaviors were found to be correlated with team final task performance. In Study 3 and 4, we reveal the potential of utilizing transactivity analysis for forming effective crowd worker or student teams. Since transactivity is a sign of common ground and team cohesiveness building, in Study 3, we predict transactivity based on hand-code data based on a well-established framework from earlier research [81] in an attempt to capture crowd workers’ discussion behaviors. We used the simplest text classification method to predict transactivity since the variance of crowd workers’ discussion posts was low. Few of the posts were off-topic. In the instructions, we specifically asked the Turkers to give feedback transactively. More than 70% of the posts turned out to be transactive, which is much higher than a typical forum discussion. For a different domain or context, more complicated models and features might be necessary to achieve a reasonable performance.

Collaborative learning process analysis

It has been long acknowledged that conversation is a significant way for students to construct knowledge and learn. Previous studies on learning and tutoring systems have provided evidence that students’ participation in discussion is correlated with their learning gains [15, 35, 44]. Social interactions are meaningful to learning from two aspects:

1. The cognitive aspects such as the reasoning that is involved in the discussion. Students’ cognitively relevant behaviors, which are associated with important cognitive processes that pre-
cede learning may be found in discussion. Research has consistently found that the cognitive processes involved in higher-order thinking lead to better knowledge acquisition [32] [34] [75]. Previous work has investigated students’ cognitive reasoning in both face-to-face [46] and computer mediated communication (CMC) environments [71] [213].

(2) The social aspects. During social interactions, students pay attention to each other which is important for building common ground and team cohesiveness later in their team collaboration. The social modes of transactivity describe to what extent learners refer to contributions of their learning partners, which has been found to be related to knowledge acquisition [69] [176].

There are a variety of subtly different definitions of transactivity in the literature, however, they frequently share these two aspects: the cognitive aspect which requires reasoning to be explicitly displayed in some form, and the social aspect which requires connections to be made between the perspective of one student and that of another. In order to tie these two aspects together, we use the measure of transactivity to evaluate the value associated with social interactions.

The area of automatic collaborative process analysis has focused on discussion processes associated with knowledge integration, where interaction processes are examined in detail. The analysis is typically undertaken by assigning coding categories and counting pre-defined features. Some of the research focus on counting the frequency of specific speech acts. However, speech acts may not well represent relevant cognitive processes of learning. Frameworks for analysis of group knowledge building are plentiful and include examples such as Transactivity [20] [176] [195] Intersubjective Meaning Making [170], and Productive Agency [152]. Despite differences in orientation between the cognitive and socio-cultural learning communities, the conversational behaviors that have been identified as valuable are very similar. Schwartz and colleagues [152] and de Lisi and Golbeck [51] make very similar arguments for the significance of these behaviors from the Vygotskian and Piagetian theoretical frameworks respectively.

In this thesis we are focusing specifically on transactivity. More specifically, our operationalization of transactivity is defined as the process of building on an idea expressed earlier in a conversation using a reasoning statement. Research has shown that such knowledge integration processes provide opportunities for cognitive conflict to be triggered within group interactions, which may eventually result in cognitive restructuring and learning [51]. While the value of this general class of processes in the learning sciences has largely been argued from a cognitive perspective, these processes undoubtedly have a social component. From the cognitive perspective, transactivity has been shown to positively correlates with students’ increased learning, since transactive discussion provide opportunities for cognitive conflict to be triggered [11] [51]. It has also been shown to be result in collaborative knowledge integration [79], since optimal learning between students occurs when students both respect their own ideas and those of others’ [51]. From the social perspective, transactivity demonstrates good social dynamics in a group [177].

3.1.2 Statistical Analysis

This section introduce the main statistical models we used in this thesis: survival models and structural equation models. In Study 1 and 2, survival models were mainly adopted to analyze the effects of various factors on the retention rate of MOOC students. In Study 2, structural equation models were used to explore the influence of latent factors on team performance.
Survival models

Survival models can be regarded as a type of regression model, which captures influences on time-related outcomes, such as whether or when an event occurs. In our case, we are investigating our engagement measures’ influence on when a course participant drops out of the course forum. More specifically, our goal is to understand whether our automatic measures of student engagement can predict her length of participation in the course forum. Survival analysis is known to provide less biased estimates than simpler techniques (e.g., standard least squares linear regression) that do not take into account the potentially truncated nature of time-to-event data (e.g., users who had not yet left the community at the time of the analysis but might at some point subsequently). From a more technical perspective, a survival model is a form of proportional odds logistic regression, where a prediction about the likelihood of a failure occurring is made at each time point based on the presence of some set of predictors. The estimated weights on the predictors are referred to as hazard ratios. The hazard ratio of a predictor indicates how the relative likelihood of the failure occurring increases or decreases with an increase or decrease in the associated predictor. We use the statistical software package Stata \[47\]. We assume a Weibull distribution of survival times, which is generally appropriate for modeling survival. Effects are reported in terms of the hazard ratio, which is the effect of an explanatory variable on the risk or probability of participants drop out from the course forum. Because the Activity variable has been standardized, the hazard rate here is the predicted change in the probability of dropout from the course forum for a unit increase in the predictor variable (i.e., binary variable changing from 0 to 1 or the continuous variable increasing by a standard deviation when all the other variables are at their mean levels).

In Study 1, we use survival models to understand how attrition happens along the way as students participate in a course. This approach has been applied to online medical support communities to quantify the impact of receipt of emotional and informational support on user commitment to the community \[192\]. Yang et al. \[205\] and Rose et al. \[147\] have also used survival models to measure the influence of social positioning factors on drop out of a MOOC. Study 1 belongs to this body of work.

Structural equation models

A Structural Equation Model (SEM) \[22\], is a statistical technique for testing and estimating correlational (and sometimes causal) relations in cross sectional datasets. In Study 2, to explore the influence of various latent factors, we take advantage of SEM to formalize the conceptual structure in order to measure what contributes to team collaboration product quality.

3.2 Crowdsourced Studies

This section introduced the methods we used in our crowdsourced experiments, including general and collaborative MTurk experimental design methods.
3.2.1 Crowdsourced Experimental Design

Instructors may be reluctant to deploy new instructional tools that students dislike. Rather than trying out untested designs on real live courses, we have prototyped and tested the approach using a crowdsourcing service, Amazon Mechanical Turk, (MTurk). Crowdsourcing is a way to quickly access a large user pool or collect data at a low cost [97]. The power and the generality of the findings obtained through empirical studies are bounded by the number and type of participating subjects. In MTurk, it is easier to do large scale studies. Researchers in other fields, such as visualization design, have used crowdsourcing to evaluate their designs [83].

MTurk provides a convenient labor pool and deployment mechanism for conducting formal experiments. For a factorial design, each cell of the experiment can be published as an individual HIT and the number of responses per cell can be controlled by throttling the number of assignments. Qualification tasks may optionally be used to enforce practice trials and careful reading of experimental procedures. The standard MTurk interface provides a markup language supporting the presentation of text, images, movies, and form-based responses; however, experimenters can include interactive stimuli by serving up their own web pages that are then presented on the MTurk site within an embedded frame.

As with any experimental setting, operating within an infrastructure like Mechanical Turk poses some constraints that must be clearly understood and mitigated. For example, one of such constraints is for the study to be broken into a series of tasks. Even then, our study uses tasks that are much more complex and time consuming (our task takes about an hour) than those recommended by the Mechanical Turk guidelines. Other constraints are the ability to capture the context under which the participants completed the tasks, which can be a powerful factor in the results, and the ability to collect certain metrics for the tasks being performed by participants, most specifically the time to completion. While time to completion is reported by Mechanical Turk in the result sets, it may not accurately measure the task time in part because we do not get a sense for how much time the user spent on the task and how much time the task was simply open in the browser. However, we note that many of the design limitations can be mitigated by using Mechanical Turk as a front end to recruit users and manage payment, while implementing the actual study at a third-party site and including a pointer to that site within a Mechanical Turk HIT. Once the user finishes the activity at the site, they could collect a token and provide it to Mechanical Turk to complete a HIT. Clearly, this involves additional effort since some of the support services of the infrastructure are not used, but the access to the large pool of users to crowdsourcethe study still remains.

3.2.2 Collaborative Crowdsourcing

Collaborative crowdsourcing, i.e. the type of crowdsourcing that relies on teamwork, is often used for tasks like product design, idea brainstorming or knowledge development. Study 3-5 in this thesis experimented with synchronous collaborative crowdsourcing. MTurk does not provide a mechanism to bring several workers to a collaboration task at the same time. Prior systems have shown that multiple workers can be recruited for synchronous collaboration by having workers wait until a sufficient number of workers have arrived [36,120,187]. We built on earlier investigations that described procedures for assembling multiple crowd workers on
online platforms to form synchronous on-demand teams. Our approach was to start the synchronous step at fixed times, announcing them ahead of time in the task description and allowing workers to wait before the synchronous step. A countdown timer in the task window displayed the remaining time until the synchronous step began, and a pop-up window notification was used to alert all participants when the waiting period had elapsed.

3.2.3 Crowdworkers vs. MOOC Students

Crowdworkers likely have different motivation compared with MOOC students. Some concerns, such as subject motivation and expertise, apply to any study and have been previously investigated. Heer and Bostock has replicated prior laboratory studies on spatial data encodings in MTurk. Kittur et al. used MTurk for collecting quality judgments of Wikipedia articles. Turker ratings correlated with those of Wikipedia administrators. As a step toward effective team-based learning in MOOCs, in Study 3-5, we explore the team-formation process and team collaboration support in an experimental study conducted in an online setting that enables effective isolation of variables, namely Amazon’s Mechanical Turk (MTurk). While crowd workers likely have different motivations from MOOC students, their remote individual work setting without peer contact resembles today’s MOOC setting where most students learn in isolation. The crowdsourced environment enables us to quickly iterate on our experimental design. This allows us to test the causal connection between variables in order to identify principles that later we will test in an actual MOOC. A similar approach was taken in prior work to inform design of MOOC interventions for online group learning. Rather than trying out untested designs on real live courses, we think it is necessary to prototype and test the approach first using the crowdsourcing environment. When designing deployment studies in real MOOCs, there will likely be constraints and other factors that are hard to control. By doing controlled crowdsourced study, we will be able to directly answer our research questions.

3.3 Deployment Studies

To evaluate our team formation designs and study how applicable the results may be to MOOCs, we did deployment study in Study 6 and 7. The field study method inherently lacks the control and precision that could be attained in a controlled setting. There is also a sampling bias given that all of our participants self-selected into our team track or team-based MOOCs. The way the data was collected affects its interpretation and there may be alternative explanations.

3.3.1 How MOOCs Differ from MTurk

There are three key differences between MOOC students and MTurk workers. First, crowd workers likely have different motivations from MOOC students. The dropout rate of MOOC students and MTurk workers probably have different meaning. The same experimental design likely have different impact on MOOC students and MTurk workers’ dropout. It’s important to study the intervention’s impact on students’ dropout in a real MOOC deployment study. It is
less interesting to study the effect on dropout in MTurk. Second, instructors may be reluctant to deploy new instructional tools that students dislike. Only a deployment study can answer questions like: how many students are interested in adopting the intervention design? Whether the intervention design is enjoyable or not? Third, an MTurk task usually lasts less than an hour. For our team formation intervention, the team collaboration can be is several weeks. A deployment study will help us understand what support is needed during this longer period of time. Due to these difference, the designs and methods need to be adapted to the content of the course. Before our actual deployment study in the MOOC, we customize our design around the need of the MOOC instructors and students.

3.4 Constraint Satisfaction Algorithms

Our team formation method can be regarded as a constraint satisfaction algorithm. In particular, we utilized a minimal cost max network flow algorithm.

3.4.1 Minimal Cost Max Network Flow Algorithm

In our Transactivity Maximization team formation method, teams were formed so that (1) the Jigsaw condition is satisfied (2) the amount of transactive discussion among the team members was maximized. A Minimal Cost Max Network Flow algorithm (Algorithm 1) was used to perform this constraint satisfaction process. This standard network flow algorithm tackles resource allocation problems with constraints. In our case, the constraint was that each group should contain four people who have read about different energies (i.e. a Jigsaw group). At the same time, the minimal cost part of the algorithm maximized the transactive communication that was observed among the group members during Deliberation step. The algorithm finds an approximately optimal grouping within $O(N^3)$ ($N =$ number of workers) time complexity. A
brute force search algorithm, which has an $O(N!)$ time complexity, would take too long to finish since the algorithm needs to operate in real time. Except for the grouping algorithm, all the steps and instructions were identical for the two conditions.
Chapter 4

Factors that Correlated with Student Commitment in Massive Open Online Courses: Study 1

For any learning or collaboration to happen in the MOOC context, students need to stay engaged in the course. Wang et al. find that reasoning discussion in course forum is correlated with student’s learning gain [191]. In this chapter, we explored what factors are correlated with student commitment, which is the precondition for learning and collaboration product. Students’ activity level in the course, e.g. the number of videos a student watches each week, is correlated with student’s commitment. Learner engagement cues automatically extracted from the text of forum posts, including motivational cues and overt reasoning behaviors, are also correlated with student’s commitment. We validate these factors using survival models that evaluate the predictive validity of these variables in connection with attrition over time. We conduct this evaluation in three MOOCs focusing on very different types of learning materials.

Previous studies on learning and tutoring systems have provided evidence that students’ participation in discussion [17, 35, 44] is correlated with their learning gains in other instructional contexts. Brinton et al. [27] demonstrates that participation in the discussion forums at all is a strong indicator of student commitment. We hypothesize that engagement cues extracted from discussion behaviors in MOOC forums are correlated with student commitment and learning. Figure 4.1 presents our hypotheses in this chapter.

4.1 Introduction

High attrition rate has been a major criticism of MOOCs. Only 5% students who enroll in MOOCs actually finish [101]. In order to understand students’ commitment, especially given the varied backgrounds and motivations of students who choose to enroll in a MOOC, [53], we gauge a student’s engagement using linguistic analysis applied to the student’s forum posts.

\footnote{The contents of this chapter are modified from three published papers: [198], [199] and [197].}
within the MOOC course. Based on the learning sciences literature, we extracted two kinds of engagement cues from students’ discussion forum posts: (1) displayed level of motivation to continue with the course and (2) the level of cognitive reasoning with the learning material. Student motivation to continue is important—without it, it is impossible for a student to regulate him or her effort to move forward productively in the course. Nevertheless, for learning it is necessary for the student to process the course content in a meaningful way. In other words, cognitive reasoning is critical. Ultimately it is this grappling with the course content over time that will be the vehicle through which the student achieves the desired learning outcomes.

Conversation in the course forum is replete with terms that imply learner motivation. These terms may include those suggested by the literature on learner motivation or simply from our everyday language. E.g. “I tried very hard to follow the course schedule” and “I couldn’t even finish the second lecture.” In this chapter, we attempt to automatically measure learner motivation based on such markers found in posts on the course discussion forums. Our analysis offers new insights into the relation between language use and underlying learner motivation in a MOOC context.

Besides student motivational state, the level of cognitive reasoning is another important aspect of student participation [28]. For example, “This week’s video lecture is interesting, the boy in the middle seemed tired, yawning and so on.” and “The video shows a classroom culture where the kids clearly understand the rules of conversation and acknowledge each others contribution.” These two posts comment on the same video lecture, but the first post is more descriptive at a surface level while the second one is more interpretive, and displays more reflection. We measure this difference in cognitive reasoning with an estimated level of language abstraction. We find that users whose posts show a higher level of cognitive reasoning are more likely to continue participating in the forum discussion.

In this chapter, we test the generality of our measures in three Coursera MOOCs focusing on distinct subjects. We demonstrate that our measures of engagement are consistently predicative of student dropout from the course forum across the three courses.
4.2 Coursera dataset

In preparation for a partnership with an instructor team for a Coursera MOOC that was launched in Fall of 2013, we were given permission by Coursera to crawl and study a small number of other courses. Our dataset consists of three courses: one social science course, “Accountable Talk: Conversation that works”, offered in October 2013, which has 1,146 active users (active users refer to those who post at least one post in a course forum) and 5,107 forum posts; one literature course, “Fantasy and Science Fiction: the human mind, our modern world”, offered in June 2013, which has 771 active users who have posted 6,520 posts in the course forum; one programming course, “Learn to Program: The Fundamentals”, offered in August 2013, which has 3,590 active users and 24,963 forum posts. All three courses are officially seven weeks long. Each course has seven week specific subforums and a separate general subforum for more general discussion about the course. Our analysis is limited to behavior within the discussion forums.

4.3 Methods

4.3.1 Learner Motivation

Most of the recent research on learner motivation in MOOCs is based on surveys and relatively small samples of hand-coded user-stated goals or reasons for dropout. Poellhuber et al. find that user goals specified in the pre-course survey were the strongest predictors of later learning behaviors. Motivation is identified as an important determinant of engagement in MOOCs in the Milligan et al. study. However, different courses design different enrollment motivational questionnaire items, which makes it difficult to generalize the conclusions from course to course. Another drawback is that learner motivation is volatile. In particular, distant learners can lose interest very fast even if they had been progressing well in the past. It is important to monitor learner motivation and how it varies along the course weeks. We automatically measure learner motivation based on linguistic cues in the forum posts.

4.3.2 Predicting Learner Motivation

The level of a student’s motivation strongly influences the intensity of the student’s participation in the course. Previous research has shown that it is possible to categorize learner motivation based on a student’s description of planned learning actions. The identified motivation categorization has a substantial relationship to both learning behavior and learning outcomes. But the lab-based experimental techniques used in this prior work are impractical for the ever-growing size of MOOCs. It is difficult for instructors to personally identify students who lack motivation based on their own personal inspection in MOOCs given the high student to instructor ratio. To overcome these challenges, we build machine learning models to automatically identify

4 https://www.coursera.org/course/accountabletalk
5 https://www.coursera.org/course/fantasysf
6 https://www.coursera.org/course/programming1
level of learner motivation based on posts to the course forum. We validate our measure in a
domain general way by not only testing on data from the same course, but also by training on one
course and then testing one other in order to uncover course independent motivation cues. The
linguistic features that are predicative of learner motivation provide insights into what motivates
the learners.

Creating the human-coded dataset: MTurk

We used Amazon’s Mechanical Turk (MTurk) to make it practical to construct a reliable anno-
tated corpus for developing our automated measure of student motivation. Amazon’s Mechanical
Turk is an online marketplace for crowdsourcing. It allows requesters to post jobs and workers to
choose jobs they would like to complete. Jobs are defined and paid in units of so-called Human
Intelligence Tasks (HITs). Snow et al. [159] has shown that the combined judgments of a small
number (about 5) of naive annotators on MTurk leads to ratings of texts that are very similar to
those of experts. This applies for content such as the emotions expressed, the relative timing of
events referred to in the text, word similarity, word sense disambiguation, and linguistic entail-
ment or implication. As we show below, MTurk workers’ judgments of learner motivation are
also similar to coders who are familiar with the course content.

We randomly sampled 514 posts from the Accountable Talk course forums and 534 posts
from the Fantasy and Science Fiction course forums. The non-English posts were manually fil-
tered out. In order to construct a hand-coded dataset for training machine learning models later,
we employed MTurk workers to rate each message with the level of learner motivation towards
the course the corresponding post had. We provided them with explicit definitions to use in mak-
ing their judgment. For each post, the annotator had to indicate how motivated she perceived the
post author to be towards the course by a 1-7 Likert scale ranging from “Extremely unmotivated”
to “Extremely motivated”. Each request was labeled by six different annotators. We paid $0.06
for rating each post. To encourage workers to take the numeric rating task seriously, we also
asked them to highlight words and phrases in the post that provided evidence for their ratings. To
further control the annotation quality, we required that all workers have a United States location
and have 98% or more of their previous submissions accepted. We monitored the annotation job
and manually filtered out annotators who submitted uniform or seemingly random annotations.

We define the motivation score of a post as the average of the six scores assigned by the
annotators. The distributions of resulting motivation scores are shown in Figure 4.2. The fol-
lowing two examples from our final hand-coded dataset of the Accountable Talk class illustrate
the scale. One shows high motivation, and the other demonstrates low motivation. The example
posts shown in this chapter are lightly disguised and shortened to protect user privacy.

- Learner Motivation = 7.0 (Extremely motivated)
 Referring to the last video on IRE impacts in our learning environments, I have to confess
that I have been a victim of IRE and I can recall the silence followed by an exact and
final received from a bright student.... Many ESL classes are like the cemetery of optional
responses let alone engineering discussions. The Singing Man class is like a dream for
many ESL teachers or even students if they have a chance to see the video! ...Lets practice
this in our classrooms to share the feedback later!
• Learner Motivation = 1.0 (Extremely unmotivated)
 I have taken several coursera courses, and while I am willing to give every course a chance, I was underwhelmed by the presentation. I would strongly suggest you looking at other courses and ramping up the lectures. I’m sure the content is worthy, I am just not motivated to endure a bland presentation to get to it. All the best, XX.

Figure 4.2: Annotated motivation score distribution.

Inter-annotator agreement
To evaluate the reliability of the annotations we calculate the intra-class correlation coefficient for the motivation annotation. Intra-class correlation [100] is appropriate to assess the consistency of quantitative measurements when all objects are not rated by the same judges. The intra-class
correlation coefficient for learner motivation is 0.74 for the Accountable Talk class and 0.72 for the Fantasy and Science Fiction course.

To assess the validity of their ratings, we also had the workers code 30 Accountable Talk forum posts which had been previously coded by experts. The correlation of MTurkers’ average ratings and the experts’ average ratings was moderate ($r = .74$) for level of learner motivation.

We acknowledge that the perception of motivation is highly subjective and annotators may have inconsistent scales. In an attempt to mitigate this risk, instead of using the raw motivational score from MTurk, for each course, we break the set of annotated posts into two balanced groups based on the motivation scores: “motivated” posts and “unmotivated” posts.

Linguistic markers of learner motivation

In this section, we work to find domain-independent motivation cues so that a machine learning model is able to capture motivation expressed in posts reliably across different MOOCs. Building on the literature of learner motivation, we design five linguistic features and describe them below. The features are binary indicators of whether certain words appeared in the post or not. Table 4.1 describes the distribution of the motivational markers in our Accountable Talk annotated dataset. We do not include the Fantasy and Science Fiction dataset in this analysis, because they will serve as a test domain dataset for our prediction task in the next section.

<table>
<thead>
<tr>
<th>Feature</th>
<th>In Motivated post set</th>
<th>In Unmotivated post set</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apply**</td>
<td>57%</td>
<td>42%</td>
</tr>
<tr>
<td>Need**</td>
<td>54%</td>
<td>37%</td>
</tr>
<tr>
<td>LIWC</td>
<td>56%</td>
<td>38%</td>
</tr>
<tr>
<td>-cognitive**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1st Person***</td>
<td>98%</td>
<td>86%</td>
</tr>
<tr>
<td>Positive***</td>
<td>91%</td>
<td>77%</td>
</tr>
</tbody>
</table>

Table 4.1: Features for predicting learner motivation. A binomial test is used to measure the feature distribution difference between the motivated and unmotivated post sets(**: $p < 0.01$, ***: $p < 0.001$).

Apply words (Table 4.1 line 1): previous research on E-learning has found that motivation to learn can be expressed as the attention and effort required to complete a learning task and then apply the new material to the work site or life [63]. Actively relating learning to potential application is a sign of a motivated learner [130]. So we hypothesize that words that indicate application of new knowledge can be cues of learner motivation.

The Apply lexicon we use consists of words that are synonyms of “apply” or “use”: “apply”, “try”, “utilize”, “employ”, “practice”, “use”, “help”, “exploit” and “implement”.

Need words (Table 4.1 line 2) show the participant’s need, plan and goals: “hope”, “want”, “need”, “will”, “would like”, “plan”, “aim” and “goal”. Previous research has shown that learners could be encouraged to identify and articulate clear aims and goals for the course to increase motivation [118, 129].
LIWC-cognitive words (Table 4.1, line 3): The cognitive mechanism dictionary in LIWC [140] includes such terms as “thinking”, “realized”, “understand”, “insight” and “comprehend”.

First person pronouns (Table 4.1, line 4): using more first person pronouns may indicate the user can relate the discussion to self effectively.

Positive words (Table 4.1, line 5) from the sentiment lexicon [117] are also indicators of learner motivation. Learners with positive attitudes have been demonstrated to be more motivated in E-learning settings [130]. Note that negative words are not necessarily indicative of unmotivated posts, because an engaged learner may also post negative comments. This has also been reported in earlier work by Ramesh et al. [143].

The features we use here are mostly indicators of high user motivation. The features that are indicative of low user motivation do not appear as frequently as we expected from the literature. This may be partly due to the fact that students who post in the forum have higher learner motivation in general.

Experimental setup

To evaluate the robustness and domain-independence of the analysis from the previous section, we set up our motivation prediction experiments on the two courses. We treat Accountable Talk as a “development domain” since we use it for developing and identifying linguistic features. Fantasy and Science Fiction is thus our “test domain” since it was not used for identifying the features.

For each post, we classify it as “motivated” or “unmotivated”. The amount of data from the two courses is balanced within each category. In particular, each category contains 257 posts from the Accountable Talk course and 267 posts for the Fantasy and Science Fiction course.

We compare three different feature sets: a unigram feature representation as a baseline feature set, a linguistic classifier (Ling.) using only the linguistic features described in the previous section, and a combined feature set (Unigram+Ling.). We use logistic regression for our binary classification task. We employ liblinear [65] in Weka [202] to build the linear models. In order to prevent overfitting we use Ridge (L2) regularization.

Motivation prediction

We now show how our feature based analysis can be used in a machine learning model for automatically classifying forum posts according to learner motivation.

To ensure we capture the course-independent learner motivation markers, we evaluate the classifiers both in an in-domain setting, with a 10-fold cross validation, and in a cross-domain setting, where we train on one course’s data and test on the other (Table 4.2). For both our development (Accountable Talk) and our test (Fantasy and Science Fiction) domains, and in both the in-domain and cross-domain settings, the linguistic features give 1-3% absolute improvement over the unigram model.

The experiments in this section confirm that our theory-inspired features are indeed effective in practice, and generalize well to new domains. The bag-of-words model is hard to be applied to different course posts due to the different content of the courses. For example, many motivational posts in the Accountable Talk course discuss about teaching strategies. So words such as
<table>
<thead>
<tr>
<th>Train Test</th>
<th>In-domain</th>
<th></th>
<th>Cross-domain</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Accountable</td>
<td>Fantasy</td>
<td>Accountable</td>
<td>Fantasy</td>
</tr>
<tr>
<td>Unigram</td>
<td>71.1%</td>
<td>64.0%</td>
<td>61.0%</td>
<td>61.3%</td>
</tr>
<tr>
<td>Ling.</td>
<td>65.2%</td>
<td>60.1%</td>
<td>61.4%</td>
<td>60.8%</td>
</tr>
<tr>
<td>Unigram+Ling.</td>
<td>72.3%</td>
<td>66.7%</td>
<td>63.3%</td>
<td>63.7%</td>
</tr>
</tbody>
</table>

Table 4.2: Accuracies of our three classifiers for the Accountable Talk course (Accountable) and the Fantasy and Science Fiction course (Fantasy), for in-domain and cross-domain settings. The random baseline performance is 50%.

“student” and “classroom” have high feature weight in the model. This is not necessarily true for the other courses whose content has nothing to do with teaching.

In this section, we examine learner motivation where it can be perceived by a human. However, it is naive to assume that every forum post of a user can be regarded as a motivational statement. Many posts do not contain markers of learner motivation. In the next section, we measure the cognitive reasoning level of a student based on her posts, which may be detectable more broadly.

4.3.3 Level of Cognitive Reasoning

Level of cognitive reasoning captures the attention and effort in interpreting, analyzing and reasoning about the course material that is visible in discussion posts [166]. Previous work uses manual content analysis to examine students’ cognitive reasoning in computer-mediated communication (CMC) [64, 213]. In the MOOC forums, some of the posts are more descriptive of a particular scenario. Some of the posts contain more higher-order thinking, such as deeper interpretations of the course material. Whether the post is more descriptive or interpretive may reflect different levels of cognitive reasoning of the post author. Recent work shows that level of language abstraction reflects level of cognitive inferences [21]. In this section, we measure the level of cognitive reasoning of a MOOC user with the level of language abstraction of her forum posts.

Measuring level of language abstraction

Concrete words refer to things, events, and properties that we can perceive directly with our senses, such as “trees”, “walking”, and “red”. Abstract words refer to ideas and concepts that are distant from immediate perception, such as “sense”, “analysis”, and “disputable” [184].

Previous work measures level of language abstraction with Linguistic Inquiry and Word Count (LIWC) word categories [21, 140]. For a broader word coverage, we use the automatically generated abstractness dictionary from Turney et al. [184] which is publicly available. This dictionary contains 114,501 words. They automatically calculate a numerical rating of the degree of abstractness of a word on a scale from 0 (highly concrete) to 1 (highly abstract) based on generated feature vectors from the contexts the word has been found in.
The mean level of abstraction was computed for each post by adding the abstractness score of each word in the post and dividing that by the total number of words. The following are two example posts from the Accountable Talk course Week 2 subforum, one with high level of abstraction and one with low level of abstraction. Based on the abstraction dictionary, abstract words are in italic and concrete words are underlined.

- Level of abstraction = 0.85 (top 10%)
 I agree. Probably what you just have to keep in mind is that you are there to help them learn by giving them opportunities to REASON out. In that case, you will not just accept the student’s answer but let them explain how they arrived towards it. Keep in mind to appreciate and challenge their answers.

- Level of abstraction = 0.13 (bottom 10%)
 I teach science to gifted middle school students. The students learned to have conversations with me as a class and with the expert her wrote Chapter 8 of a text published in 2000. They are trying to design erosion control features for the building of a basketball court at the bottom of a hill in rainy Oregon.

We believe that level of language abstraction reflects the understanding that goes into using those abstract words when creating the post. In the Learn to Program course forums, many discussion threads are solving actual programming problems, which is very different from the other two courses where more subjective reflections of the course contents are shared. Higher level of language abstraction reflects the understanding of a broader problem. More concrete words are used when describing a particular bug a student encounters. Below are two examples.

- Level of abstraction = 0.65 (top 10%)
 I have the same problems here. Make sure that your variable names match exactly. Remember that under-bars connect words together. I know something to do with the read_board(board_file) function, but still need someone to explain more clearly.

- Level of abstraction = 0.30 (bottom 10%)
 >>> print(python, is)('python', 'is') >>> print('like', 'the', 'instructors', 'python') It leaves the 'quotes' and commas, when the instructor does the same type of print in the example she gets not parenthesis, quotes, or commas. Does anyone know why?

4.4 Validation Experiments

We use survival analysis (Explained in Chapter 3) to validate that participants with higher measured level of engagement will stay active in the forums longer, controlling for other forum behaviors such as how many posts the user contributes. We apply our linguistic measures described in Section 4 to quantify student engagement. We use the in-domain learner motivation classifiers with both linguistic and unigram features (Section 4.1.5) for the Accountable Talk class and the Fantasy and Science Fiction class. We use the classifier trained on the Accountable Talk dataset to assign motivated/unmotivated labels to the posts in the Learn to Program course.
4.4.1 Survival Model Design

For each of our three courses, we include all the active students, i.e. who contributed one or more posts to the course forums. We define the time intervals as student participation weeks. We considered the timestamp of the first post by each student as the starting date for that student’s participation in the course discussion forums and the date of the last post as the end of participation unless it is the last course week.

Dependent Variable:

In our model, the dependent measure is **Dropout**, which is 1 on a student’s last week of active participation unless it is the last course week (i.e. the seventh course week), and 0 on other weeks.

Control Variables:

Cohort1: This is a binary indicator that describes whether a user had ever posted in the first course week (1) or not (0). Members who join the course in earlier weeks are more likely than others to continue participating in discussion forums [205].

PostCountByUser: This is the number of messages a member posts in the forums in a week, which is a basic measure of activity level of a student.

CommentCount: This is the number of comments a user’s posts receive in the forums in a week. Since this variable is highly correlated with PostCountByUser ($r > .70$ for all three courses). In order to avoid multicollinearity problems, we only include PostCountByUser in the final models.

Independent variables:

AvgMotivation is the percentage of an individual’s posts in that week that are predicted as “motivated” using our model with both unigram and linguistic features (Section 4.1.4).

AvgCogEngagement: This variable measures the average abstractness score per post each week. We note that AvgMotivation and AvgCogEngagement are not correlated with PostCountByUser ($r < .20$ for all three courses). So they are orthogonal to the simpler measure of student engagement. AvgMotivation is not correlated with AvgAbstractness ($r < .10$ for all three courses). Thus, it is acceptable to include these variables together in the same model.

4.4.2 Survival Model Results

<table>
<thead>
<tr>
<th>Control/Indep. Variable</th>
<th>Accountable Talk</th>
<th>Fantasy and Science Fiction</th>
<th>Learn to Program</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>p</td>
<td>Std. Err.</td>
<td>HR</td>
</tr>
<tr>
<td>Cohort1</td>
<td>.68</td>
<td>.00</td>
<td>.82</td>
</tr>
<tr>
<td>PostCountByUser</td>
<td>.86</td>
<td>.00</td>
<td>.90</td>
</tr>
<tr>
<td>AvgMotivation</td>
<td>.58</td>
<td>.13</td>
<td>.82</td>
</tr>
<tr>
<td>AvgCogReasoning</td>
<td>.94</td>
<td>.02</td>
<td>.92</td>
</tr>
</tbody>
</table>

Table 4.3: Results of the survival analysis.

Table 4.3 reports the estimates from the survival models for the control and independent variables entered into the survival regression.

Effects are reported in terms of the hazard ratio (HR), which is the effect of an explanatory variable on the risk or probability of participants drop out from the course forum. Because all
the explanatory variables except Cohort1 have been standardized, the hazard rate here is the predicted change in the probability of dropout from the course forum for a unit increase in the predictor variable (i.e., Cohort1 changing from 0 to 1 or the continuous variable increasing by a standard deviation when all the other variables are at their mean levels).

Our variables show similar effects across our three courses (Table 4.3). Here we explain the results on the Accountable Talk course. The hazard ratio value for Cohort1 means that members survival in the group is 32% higher for those who have posted in the first course week. Students’ activity level measure is correlated with student’s commitment. The hazard ratio for PostCountByUser indicates that survival rates are 14% higher for those who posted a standard deviation more posts than average. This shows that students’ activity level positively correlates with student’s commitment.

Controlling for when the participants started to post in the forum and the total number of posts published each week, both learner motivation and average level of abstraction significantly influenced the dropout rates in the same direction. Those whose posts expressed an average of one standard deviation more learner motivation (AvgMotivation) are 42% more likely to continue posting in the course forum. Those whose posts have an average of one standard deviation higher cognitive reasoning level (AvgCogReasoning) are 6% more likely to continue posting in the course forum. AvgMotivation is relatively more predicative of user dropout than AvgCogReasoning for the Accountable Talk course and the Fantasy and Science Fiction course, while AvgCogReasoning is more predicative of user dropout in the Learn to Program course. This may be due to that in the Learn to Program course more technical problems are discussed.
Figure 4.4: Survival curves for students with different levels of engagement in the Fantasy and Science Fiction course.

Figure 4.5: Survival curves for students with different levels of engagement in the Learn to Program course.
and less posts contain motivation markers.

Figure 4.3-4.5 illustrate these results graphically, showing three survival curves for each course. The solid curve shows survival with the number of posts, motivation, and cognitive reasoning at their mean level. The top curve shows survival when the number of posts is at its mean level, and average learner motivation and level of cognitive reasoning in the posts are both one standard deviation above the mean, and the bottom curve shows survival when the number of posts is at its mean, and the average expressed learner motivation and level of cognitive reasoning in the posts are one standard deviation below the average.

4.5 Chapter Discussion

The goal of this thesis is to improve students’ commitment and collaboration product in the MOOC context. To this end, in Study 1 we first investigate which process measures are related to these outcomes. In xMOOCs, we see that students’ activity level in the discussion forum and engagement cues extracted from students’ forum posts were correlated with student commitment. We identify two new measures that quantify engagement and validate the measures on three Coursera courses with diverse content. We automatically identify the extent to which posts in course forums express learner motivation and cognitive reasoning. The survival analysis results validate that the more motivation the learner expresses, the lower the risk of dropout. Similarly, the more personal interpretation a participant shows in her posts, the lower the rate of student dropout from the course forums.
Chapter 5

Virtual Teams in Massive Open Online Courses: Study 2

In Study 1, we identified what factors were correlated with student’s commitment in xMOOCs. Team-based learning, as realized in MOOCs have many factors that may positively or negatively impact students’ commitment and collaboration product. In order to support team-based MOOCs, in this chapter, we study which process measures are correlated with commitment and team collaboration product in team-based MOOCs.

Most current MOOCs have scant affordances for social interaction, and arguably, that social interaction is not a major part of the participation experience of the majority of participants. We first explore properties of virtual team’s social interaction in a small sample of xMOOCs where groups are spontaneously formed and more social-focused NovoEd MOOCs where team-based learning is an integral part of the course design. We show that without affordances to sustain group engagement, students who joined study groups in xMOOC forum does not have a higher commitment to the course.

Less popular, emerging platforms like NovoEd\footnote{https://novoed.com/} are designed differently, with team-based learning or social interaction at center stage. In NovoEd MOOCs where students work together in virtual teams, similar to our findings in Study 1, activity level and engagement cues extracted from team communication are both correlated with team collaboration product quality. Team leader’s leadership behaviours, which is one type of collaboration communication support, play a critical role in supporting team collaboration discussions. The students’ eventual disengagement affect team member’s commitment and the composition of teams, and make team management more complex and challenging. Figure \ref{fig:5.1} presents our hypotheses in this chapter.

\footnote{The contents of this chapter are modified from a published paper: [200]}
5.1 MOOC Datasets

Our xMOOC dataset consists of three Coursera MOOCs, one about virtual instruction, one that is an algebra course, and a third that is about personal financial planning. These MOOCs were offered in 2013. The statistics are shown in Table 5.1.

<table>
<thead>
<tr>
<th>MOOC</th>
<th>#Forum Users</th>
<th>#Users in Study Group(%)</th>
<th>#Groups</th>
<th>#Course Weeks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Financial Planning</td>
<td>5,305</td>
<td>1,294(24%)</td>
<td>121</td>
<td>7</td>
</tr>
<tr>
<td>Virtual Instruction</td>
<td>1,641</td>
<td>278(17%)</td>
<td>22</td>
<td>5</td>
</tr>
<tr>
<td>Algebra</td>
<td>2,125</td>
<td>126(6%)</td>
<td>23</td>
<td>10</td>
</tr>
</tbody>
</table>

Table 5.1: Statistics of the three Coursera MOOCs.

Our NovoEd dataset consists of two NovoEd MOOCs. Both courses are teacher professional development courses about Constructive Classroom Conversations, in elementary and secondary education. They were offered simultaneously in 2014. The statistics are shown in Table 5.2.

<table>
<thead>
<tr>
<th>NovoEd</th>
<th>#Registered Users</th>
<th>#Users successfully joined a group</th>
<th>#Teams</th>
<th># Course Weeks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elementary</td>
<td>2,817</td>
<td>262</td>
<td>101</td>
<td>12</td>
</tr>
<tr>
<td>Secondary</td>
<td>1,924</td>
<td>161</td>
<td>76</td>
<td>12</td>
</tr>
</tbody>
</table>

Table 5.2: Statistics two NovoEd MOOCs.

4https://www.coursera.org/
5.2 Study Groups in xMOOC Discussion Forums

To understand students’ social need in state-of-the-art xMOOCs, we studied the ad hoc study groups formed in xMOOC course discussion forums. We show that many students indicate high interest in social learning in the study group subforums. However, there is little sustained communication in these study groups. Our longitudinal analysis results suggest that without affordances to sustain group engagement, groups quickly lose momentum, and therefore members in the group does not show higher retention rate.

In this section, we briefly introduce study groups as they exist in xMOOCs. In the default Coursera MOOC discussion forums, there is a “Study Groups” subforum where students form study groups through asynchronous threaded discussion. The study groups can be organized around social media sites, languages, districts or countries (Figure 5.2), and generally become associated with a single thread. Across our three xMOOCs, around 6-24% forum users post in the study group forums, indicating need for social learning (Table 5.1). More than 80% of students who post in some study group thread post there only one or two times. They usually just introduce themselves without further interacting with the group members in the study group thread, then the thread dies. More than 75% of the posts in the study group thread are posted in the first two weeks of the course.

![Figure 5.2: Screen shot of a study group subforum in a Coursera MOOC.](image)

5.2.1 Effects of Joining Study Groups in xMOOCs

In this section, we examine the effects of joining study groups on students’ drop out rate in xMOOCs with survival modeling. Survival models can be regarded as a type of regression model, which captures influences on time-related outcomes, such as whether or when an event occurs. In our case, we are investigating the influence of participation in study groups on the time when a course participant drops out of the course forum. More specifically, our goal is to understand whether our automatic measures of student engagement can predict her length of participation in the course forum. Survival analysis is known to provide less biased estimates than simpler techniques (e.g., standard least squares linear regression) that do not take into account the potentially truncated nature of time-to-event data (e.g., users who had not yet left the community at the time of the analysis but might at some point subsequently). From a more technical perspective, a survival model is a form of proportional odds logistic regression, where a prediction about the likelihood of a failure occurring is made at each time point based on the presence of some
set of predictors. The estimated weights on the predictors are referred to as hazard ratios. The hazard ratio of a predictor indicates how the relative likelihood of the failure occurring increases or decreases with an increase or decrease in the associated predictor. We use the statistical software package Stata5. We assume a Weibull distribution of survival times, which is generally appropriate for modeling survival156.

For each of our three courses, we include all the students, who contributed one or more posts to the course forums in the survival analysis. We define the time intervals as student participation weeks. We considered the timestamp of the first post by each student as the starting date for that student’s participation in the course discussion forums and the date of the last post as the end of participation unless it is the last course week.

Dependent Variable:
In our model, the dependent measure is **Dropout**, which is 1 on a student’s last week of active participation unless it is the last course week, and 0 on other weeks.

Control Variables:
Cohort1 is a binary indicator that describes whether a user had ever posted in the first course week (1) or not (0). Members who join the course in earlier weeks are more likely than others to continue participating in discussion forums198.

PostCountByUser is the number of messages a member posts in the forums in a week, which is a basic effort measure of engagement of a student.

Independent variable:
JoinedStudyGroup is a binary indicator that describes whether a user had ever posted in a study group thread(1) or not(0). We assume that students who have posted in a study group thread are members in a study group.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Financial Planning</th>
<th></th>
<th>Virtual Instruction</th>
<th></th>
<th>Algebra</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Haz. Ratio</td>
<td>Std. Err.</td>
<td>(P ></td>
<td>z</td>
<td>)</td>
<td>Haz. Ratio</td>
</tr>
<tr>
<td>PostCountByUser</td>
<td>0.69</td>
<td>0.035</td>
<td>0.000</td>
<td>0.65</td>
<td>0.024</td>
<td>0.000</td>
</tr>
<tr>
<td>Cohort1</td>
<td>0.74</td>
<td>0.021</td>
<td>0.000</td>
<td>0.66</td>
<td>0.067</td>
<td>0.000</td>
</tr>
<tr>
<td>JoinedStudyGroup</td>
<td>1.16</td>
<td>0.123</td>
<td>0.640</td>
<td>0.368</td>
<td>0.027</td>
<td>0.810</td>
</tr>
</tbody>
</table>

Table 5.3: Survival Analysis Results.

Survival analysis results
Table 5.3 reports the estimates from the survival models for the control and the independent variable entered into the survival model. **JoinedStudyGroup** makes no significant prediction about student survival in this course. Across all the three Coursera MOOCs, the results indicate that students who join study groups in MOOC do not stay significantly longer in the course than the other students who posted at least once in the forum in any other area of the forum.

Current xMOOC users tend to join study groups in the course forums especially in the first several weeks of the course. However, we did not observe the benefit or influence of the study groups on commitment to the course. Since most students only post in the study group thread only once or twice in the beginning of the course, when students come back to the study group thread to ask for help later in the course, they cannot get the support from their teammates as the

\footnote{http://www.stata.com/}
thread has been inactive. The substantial amount of students posting in the study group threads demonstrate students’ intention to “get through the course together” and the need for team-based learning interventions. As is widely criticized, the current xMOOC platforms fail to provide the social infrastructure to support sustained communication in study groups.

5.3 Virtual Teams in NovoEd MOOCs

In this section, we describe the experience of virtual teams in NovoEd, where team-based learning is in the central of the course design. Then we demonstrate the teammate’s major influence on a student’s dropout through survival modeling.

5.3.1 The Nature of NovoEd Teams

Students in a NovoEd MOOC have to initiate or join a team in the beginning of the course. The student who creates the team will be the team leader. The homepage of a NovoEd team displays the stream of blog posts, events, files and other content shared with the group as well as the activate members (Figure 5.3). All the teams are public, with their content visible to anyone in the current NovoEd MOOC. Students can also communicate through private messages. In our NovoEd MOOCs, 35% of students posted at least one team blog or blog comment. 68% of students sent at least one private message. Only 4% of students posted in the general course discussion forums. Most students only interact with their teammates and TAs.

![Figure 5.3: Homepage of a NovoEd team. 1: Team name, logo and description. 2: A team blog. 3: Blog comments. 4: Team membership roster.](image)

When a group is created, its founder chooses its name and optionally provides additional description and a team logo to represent the group. The founder of a team automatically becomes the team leader. The leader can also select classmates based on their profiles and send them invitation messages to join the team. The invitation message contains a link to join the group. Subsequently, new members may request to join and receive approval from the team leader. Only team leader can add a member to the team or delete the team.
Throughout the course, team work is a central part of the learning experience. In our NovoEd courses, instructors assign small tasks (“Housekeeping tasks”, which will not be graded) such as “introduce yourself to the team” early on in the course. They also encourage students to collaborate with team members on non-collective assignments as well. Individual performance in a group is peer rated so as to encourage participation and contribution. Collaborations among students are centered on the final team assignment, which accounts for 20% of the final score.

Compared to study groups in an xMOOC, the virtual team leader has a much bigger impact on its members in a NovoEd MOOC. In our dataset, when the team leader drops out, 71 out of 84 teams did not submit the final team assignment.

5.3.2 Effects of Teammate Dropout

In this section, we use survival analysis to validate that when team leader or teammates drop out, the team member is more prone to dropout, but the effect of losing the team leader is stronger.

Dependent Variable:
We consider a student to drop out if the current week is his/her last week of active participation unless it is the last course week (i.e. the twelfth course week).

Control Variables:
- **Activity**: total number of activities (team blogs, blog comments or messages) a student participated in that week, which is a basic effort measure of engagement of a student.
- **GroupActivity**: total number of activities the whole team participated in that course week. Since it is correlated with Activity ($r > .50$). In order to avoid multicollinearity problems, we only include Activity in the final survival models.

Independent variables:
- **TeamLeaderDropout**: 1 if the team leader dropped out in previous weeks, 0 otherwise.
- **TeammateDropout**: 1 if at least one of the teammates (besides the team leader) dropped out in the current week, 0 otherwise.
- **RandomTeammateDropout**: to control for the effect that students in the MOOC may dropout at around the same time[206], we randomly sample a group of classmates for each student (“random team”), analogous to “nominal groups” in studies of process losses in the group work literature. The random team is the same size as the student’s team. 1 if at least one of the students in the random team dropped out in the current week, 0 otherwise.

Survival analysis results

Since the survival analysis results are similar for the two NovoEd courses, we include all the 423 users who successfully joined a team for the two courses. Table 5.4 reports the estimates from the survival models for the control and independent variables entered into the survival regression. Effects are reported in terms of the hazard ratio, which is the effect of an explanatory variable on the risk or probability of participants drop out from the course forum. Students are 35% times less likely to dropout if they have one standard deviation more activities. Model 1 reports when controlling for team activity, a student is more than three times more likely to drop out if his/her team leader has dropped out. A student is more than two times more likely to drop out if his/her team leader drops out that week. Figure 5.4 illustrates our results graphically. The
solid curve shows survival with user Activity at its mean level. The curve in the middle shows survival when user Activity is at its mean level and at least one of the teammates drop out in the current week. The curve in the middle shows survival when user Activity is at its mean level and team leader drops out in the current week. **Model 2** shows when controlling for team activity, “random teammates” (randomly sampled classmates) dropout does not have a significant effect on a student’s dropout.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Model 1</th>
<th></th>
<th></th>
<th>Model 2</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Activity</td>
<td>0.654</td>
<td>0.091</td>
<td>0.002</td>
<td>0.637</td>
<td>0.085</td>
<td>0.001</td>
</tr>
<tr>
<td>TeamLeaderDropout</td>
<td>3.420</td>
<td>0.738</td>
<td>0.000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TeammateDropout</td>
<td>2.338</td>
<td>0.576</td>
<td>0.001</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RandomTeammateDropout</td>
<td></td>
<td></td>
<td></td>
<td>1.019</td>
<td>0.273</td>
<td>0.945</td>
</tr>
</tbody>
</table>

Table 5.4: Survival analysis results.

If we compare the experience of social interaction between a typical xMOOC where groups are ad hoc course addons and a NovoEd course where they are an integral part of the course design, we see that making the teamwork a central part of the design of the curriculum encourages students to make that social interaction a priority. With teammates’ activities more visible, students are more influenced by their teammates’ activities. Teammates especially team leader behavior has a big impact on a student’s engagement in the course.

5.4 Predictive Factors of Team Performance

In the previous section, we demonstrate the importance of a team leader’s leadership behaviors. Not all team leaders are equally successful in their role. In this section, we model the relative importance of different team leader behaviors we are able to detect. Analysis of what distin-
guishes successful and non-successful teams shows the important, central role of a team leader who coordinates team collaboration and discussion. In this section, we describe how much each behavior contributes to team success.

Despite the importance of team performance and functioning in many workplaces, relatively little is known about effective and unobtrusive indicators of team performance and processes [25]. Drawing from previous research we design three latent factors we referred to as Team Activity, Communication Language and Leadership Behavior, that we hypothesis are predicative of team performance. In this section, we further formalize these latent factors by specifying associated sets of observed variables that will ultimately enable us to evaluate our conceptual model.

The performance measure we use is the final Team Score, which was based on the quality of the final team project submission. The score can take value of 0, 20 or 40.

5.4.1 Team Activity

In this section, we describe the variables that account for variation in the level of activity across teams.

The control variables for volume of communication-related factors: MemberCnt is the number of members in the team. Group size is an important predictor of group success. BlogCnt is the number of team blogs that are posted. BlogCommentCnt is the number of team blog comments that are made. MessageCnt is the number of messages that are sent among the team. Equal Participation is the degree to which all group members are equally involved, can enable everyone in the group to benefit from the team. In consistent with Borge et al. [24], we measure equal participation with Gini coefficient. In our dataset, unequal participation is severer in larger teams and actually indicates high quality work [96].
5.4.2 Engagement Cues

Groups that work well together typically exchange more knowledge and establish good social relationships, which is reflected in the way that they use words\[125\]. We first include three engagement cues that are predictive of team performance in previous work\[174\]. **Positivity** is the percentage of posts that contain at least one positive word in LIWC dictionary\[140\]. It measures the degree to which group members encourage one another by offering supportive behaviors that enhance interpersonal relationships and motivate individuals to work harder\[114\]. Since negative words tend not to be used, they are also not significant predictors of team performance, and thus we did not include a measure of them in the final model. **Information exchange** is commonly measured by word count\[154, 174\]. **Engagement** is the degree to which group members are paying attention and connecting with each other. It can enhance group cohesion. Engagement is reflected in the degree to which group members tend to converge in the way they talk, which is called Linguistic Style Matching (LSM)\[88, 134\]. We measure LSM using asynchronous communication (messages) as the input\[132\]. We excluded automated emails generated from NovoEd. For consistency with prior work, we employed the nine LIWC-derived categories\[134\]. Our nine markers are thus: articles, auxiliary verbs, negations, conjunctions, high-frequency adverbs, impersonal pronouns, personal pronouns, prepositions, and quantifiers. For each of the nine categories c, the percentage of an individual n’s total words ($p_{c,n}$) was calculated, as well as the percentage of the group’s total words ($p_{G,c}$). This allows the calculation of an individual’s similarity against the group, per word category, as

$$LSM_{c,n} = 1 - \frac{|p_{c,n} - p_{G,c}|}{p_{c,n} + p_{G,c}}$$

The group G’s average for category c is the average of the individual scores:

$$LSM_{G,c} = \frac{\sum_{n \in G} LSM_{c,n}}{|G|}$$

And the team LSM is the average across the nine categories:

$$LSM_{G} = \frac{\sum_{c=1,2,...,9} LSM_{G,c}}{9}$$

We design three new language indicators. **1st Person Pronouns** is the proportion of first-person singular pronouns can suggest self-focused topics. **Tool** is the percentage of blogs or messages that mention a communication/collaboration tool, such as Google Doc/Hangout, Skype or Powerpoint. **Politeness** is the average of the automatically predicted politeness scores of the blog posts, comments and messages\[49\]. This factor captures how polite or friendly the team communication is, based on features like mentions of “thanks”, “please”, etc.

5.4.3 Leadership Behaviors

Leaders are important for the smooth functioning of teams, but their effect on team performance is less well understood\[61\]. We identified three main leadership behaviors based on the messages
sent by team leaders (Table 5.5). These behaviors are mainly coordinating virtual team collaboration and discussion. A message will be coded as “other” if it contains none of the behaviors listed in Table 5.5. 30 messages sent by team leaders are randomly sampled and then coded by two experts. Inter-rater reliability was Kappa = .76, indicating substantial inter-rater reliability. Then one of the experts code all the 855 leader messages in the two NovoEd MOOCs into these three categories.

<table>
<thead>
<tr>
<th>Type</th>
<th>Behaviors</th>
<th>Example Team Leader Message</th>
</tr>
</thead>
<tbody>
<tr>
<td>Team Building</td>
<td>Invite or accept users to join the group</td>
<td>Lauren, We would love to have you. Jill and I are both ESL specialists in Boston.</td>
</tr>
<tr>
<td>Initiating Structure</td>
<td>Initiate a task or assign subtask to a team member</td>
<td>Housekeeping Task #3 is optional but below are the questions I can summarize and submit for our team.</td>
</tr>
<tr>
<td>Collaboration</td>
<td>Collaborate with teammates, provide help or feedback</td>
<td>I figured out how to use the Google Docs. Let’s use it to share our lesson plans.</td>
</tr>
</tbody>
</table>

Table 5.5: Three different types of leadership behaviors.

Thus we design three variables to characterize team leader’s coordination behavior. **Team Building** is the number of Team Building messages sent by the team leader. Team Building behavior is critical for NovoEd teams since only the team leader can add new members to the team. **Initiating Structure** is the number of Initiating Structure messages sent by the team leader. Initiating structure is a typical task-oriented leadership behavior. Previous research has demonstrated that in comparison to relational-oriented or passive leader behavior, task-oriented leader behavior makes a stronger prediction about task performance [56]. Initiating Structure is also an important leadership behavior in virtual teams. When the team is initially formed, usually the team leader needs to break the ice to start to introduce him/herself. When assignment deadlines are coming up, usually team leaders need to call that to the attention of team members to start working on it. **Collaboration** is the number of Collaboration messages sent by the team leader. Different from previous research where the team leader mainly focuses on managing the team, leaders in virtual teams usually take on important tasks in the team project as well, which is reflected in Collaboration behaviors.

Another variable, **Early Decision**, is designed to control for a team leader’s early decisions. In addition to choosing a name, which all groups must have, leaders can optionally write a description that elaborates on the purpose of the group, and 82% did so. They can upload a photo as team logo that will appear with the group’s name on its team page and in the course group lists, and 54% did so. The team leader should add a team avatar to attract more team members. Since these are optional, we construct the variable 0 if the team does none. 0.5 if one is done. 1 if both are done.

We include three control variables to control for team leader’s amount of activity: **LeaderBlogCnt** is the number of team blogs that are posted that course week. **LeaderBlogCommentCnt** is the
number of team blogs comments that are made that course week. \textbf{LeaderMessageCnt} is the number of messages that are sent among the team during that course week.

5.4.4 Results

In Section 5.4.1 - 5.4.3, we described three latent factors we hypothesize are important in distinguishing successful and unsuccessful teams along with sets of associated observed variables. In this section, we validate the influence of each latent factor on team performance using a generalized Structural Equation Model (SEM) in Stata. Experiments are conducted on all the 177 NovoEd MOOC teams.

Figure [5.6] shows the influence of each observed variable on its corresponding latent variable, and in turn the latent variable on team performance. The weights on each directed edge represent the standard estimated parameter for measuring the influence. Based on Figure [5.6], firstly, Leader Behaviors and Engagement Cues contribute similarly to team performance, with a standard estimated parameter of 0.42. Among the three leadership behaviors, Team Building is the strongest predictor of team performance. Since the number of Team Building messages significantly correlates with the total number of members in the team ($r = 0.62^{***}$), consistent with prior work[105], team leader who recruits a larger group can increase the group’s chances of success.

![Figure 5.6: Structural equation model with maximum likelihood estimates (standardized). All the significance level $p<0.001$.](image)

Among the engagement cues indicators, Engagement and the use of communication Tool are the most predictive. This demonstrates the importance of communication for virtual team performance. Utilizing various communication tool is an indicator of team communication. Different from previous work on longer-duration project teams[132], our results support that linguistic style matching is correlated with team performance. Team Activity is a comparatively weaker predictor of team performance. This is partly due to that some successful teams communicate through emails and have smaller amount of activities in the NovoEd site.
5.5 Chapter Discussion

In this chapter, we examined virtual teams in typical xMOOCs where groups are ad hoc course add-ons and NovoEd MOOCs where they are an integral part of the course design. The study groups in xMOOCs demonstrate high interest in social learning. The analysis results indicate that without the social environment that is conducive to sustained group engagement, members do not have the opportunity to benefit from these study groups. Students in NovoEd virtual teams have a more collaborative MOOC experience. Despite the fact that instructors and TAs tried hard to support these teams, half of the teams in our two NoveEd MOOCs were not able to submit a team project at the end of the course. Our longitudinal survival analysis shows that leader’s dropout is correlated with much higher team member dropout. This result suggests that leaders can also be a potential point of failure in these virtual teams since they concentrate too much responsibility in themselves, e.g. only the leader can add new members to the team. Given the generally high dropout rate in MOOCs and the importance of the leadership behaviors, these findings suggest that to support virtual teams in NovoEd teams, we need to better support or manage collaborative communication.

Study 2 results indicate that we need to either support the collaboration communication or improve group formation to improve team collaboration product quality. Since many teams do not have any activities after the team is formed, indicating that the current self selection based team formation might have some problems. Thus we believe supporting group formation has more potential value. We hypothesis that we can support efficient team formation through asynchronous online deliberation. Besides this, our dataset in Study 2 has little to help us answer questions about how the teams should be formed and how to support that team formation process in MOOCs. In Study 3 and 4, we address this question by testing our team formation hypothesis in a crowdsourcing environment. Since leaders’ role is mainly to facilitate collaboration communication, we will further investigate incorporating discussion facilitation agent in team collaboration in Study 5.
Chapter 6
Online Team Formation through a Deliberative Process in Crowdsourcing Environments: Study 3 and 4

In Study 1 and 2, I studied the factors (activity level and engagement cues) that positively correlate with the outcome measures (e.g. retention rate, performance). Through these analyses, we conclude that one of the potential areas of impact is to support the online team formation process. Rather than trying out untested designs on real live courses, we first prototype and test our group formation procedure using a crowd-sourcing service, Amazon Mechanical Turk (MTurk), on a collaboration task. Previous work demonstrates that it is challenging to form groups either through self-selection or designation while ensuring high-quality and satisfactory collaboration [105, 169, 211]. We look to see if the positive group learning results that have been found in in-person classes and Computer-Supported Collaborative Learning (CSCL) contexts can be successfully replicated and extended in a more impersonal online context. Studies 3 and 4 in this chapter will serve as pilot studies for the team formation intervention studies, namely Studies 6 and 7.

6.1 Introduction

One potential danger in small group formation is that the small groups lose contact with intellectual resources that the broader community provides if the team becomes purely inwardly focused. This is especially true where participants join teams very early in their engagement with the community and then focus most of their social energy on their group, as is the norm in current team-based MOOCs [146]. Building on research in the learning sciences, we design a deliberation-based team formation strategy where students participate in a deliberation forum before working within a team on a collaborative learning assignment. The key idea of our team formation method is that students should have the opportunity to interact meaningfully with the community before assignment into teams. That discussion provides students with a wealth of insight into alternative task-relevant perspectives to take with them into the collaboration [29]. To understand the effects of a deliberation approach to team formation, we ran a series of stud-
ies in MTurk \[41\]. The team formation process begins with individual work where participants learned about one of four different energy types, then participated in an open discussion, and then worked with three other teammates (using a Jigsaw learning configuration \[10\]) to solve an energy-related challenge. We assessed team success based on the quality of the produced team proposal.

Study 3 tests the extent to which teams that engage in a large community forum deliberation process prior to team formation achieve better group task outcomes than teams that instead perform an analogous deliberation within their team. Simply stated, our first hypothesis is:

\[H1. \text{Exposure to large community discussions can lead to more successful small group collaborations. Here we compare teams that formed before community discussions with teams that formed after community discussions.} \]

Second, a group formation method has been identified as an important factor for enhancing small group outcomes \[87\]. Most of the previous research on small group formation focuses on issues related to group composition, for example, assigning participants based on expertise or experience \[78\]. This information may not be readily available in MOOCs. To address the disadvantage that small groups formed with limited prior communication might lack the synergy to work effectively together, our research further explores the hypothesis that participants’ interactions during community deliberations may provide evidence of which students would work well together \[91\]. Our team formation process matches students with whom they have displayed successful team processes, i.e., where transactive discussion has been exchanged during the deliberation. A transactive discussion is one where participants “elaborate, build upon, question or argue against previously presented ideas” \[20\]. This concept has also been referred to as intersubjective meaning making \[170\], productive agency \[152\], argumentative knowledge construction \[195\], idea co-construction \[79\]. It has long been established that transactive discussion is an important process that reflects good social dynamics in a group \[177\] and results in collaborative knowledge integration \[51\]. We leverage learning sciences findings that students who show signs of a good collaborative process form more effective teams \[104, 149, 150\]. In Study 4, we look for evidence of participants transactively reasoning with each other during community-wide deliberation and use it as input into a team formation algorithm. Simply stated, our second hypothesis is:

\[H2. \text{Evidence of transactive discussion during deliberation can inform the formation of more successful teams compared to randomly formed teams.} \]

Figure 6.1 presents our hypotheses in this chapter.

To enable us to test the causal connection between variables in order to identify principles that later we will test in an actual MOOC, we validate our hypotheses underlying potential team formation strategies using a collaborative proposal-writing task hosted on the Amazon Mechanical Turk crowdsourcing platform (MTurk). The crowdsourcing environment offers a context in which we are able to study how the process of team formation influences the effectiveness with which the teams accomplish a short term task. While crowd workers likely have some different motivations from MOOC participants, the remote individual work setting without peer contact resembles the experience in many online settings. Since affordances for forum deliberation are routinely available in most online communities, we explore a deliberation-based team formation strategy that forms worker teams based on their interaction in a discussion forum where they engage in a discussion on a topic related to the upcoming team collaboration task.
Our results show that teams that form after community deliberation have better team performance than those that form before deliberation. Teams that have more transactive communication during deliberation have better team performance. Based on these positive results we design a community-level deliberative process for team formation that contributes towards effective team formation both in terms of preparing team members for effective team engagement, and for enabling effective team assignment.

6.2 Method

6.2.1 Experimental Paradigm

Collaboration task description

We designed a highly-interdependent collaboration task that requires negotiation in order to create a context in which effective group collaboration would be necessary for success. In particular, we used a Jigsaw paradigm, which has been demonstrated as an effective way to achieve a positive group composition and is associated with positive group outcomes [10]. In a Jigsaw task, each participant is given a portion of the knowledge or resources needed to solve the problem, but no one has enough to complete the task alone.

Specifically, we designed a constraint satisfaction proposal writing task where the constraints came from multiple different perspectives, each of which were represented by a different team member. The goal was to require each team member to represent their own assigned perspective, but to consider how it related to the perspectives of others within the group. However, since a short task duration was required in order for the task to be feasible in the MTurk environment, it was necessary to keep the complexity of the task relatively low. In order to meet these requirements, the selected task asked teams to consider municipal energy plan alternatives that involved combinations of four energy sources (coal, wind, nuclear and hydro power) each paired with specific advantages and disadvantages. Following the Jigsaw paradigm, each member of the team
In this final step, you will work together with other Turkers to recommend a way of distributing resources across energy types for the administration of City B. City B requires 12,000,000 MWh electricity a year from four types of energy sources: coal power, wind power, nuclear power and hydro power. We have provided 4 different plans to choose from, each of which emphasizes one energy source as primary. Specifically the plans describe how much energy should be generated from each of the four energy sources, listed in the table below. Your team needs to negotiate which plan is the best way of meeting your assigned goals, given the city’s requirements and information below.

City B’s requirements and information:
1. City B has a tight yearly energy budget of $900,000K. Coal power costs $40/MWh. Nuclear power costs $100/MWh. Wind power costs $70/MWh. Hydro power costs $100/MWh.
2. The city is concerned with chemical waste. If the main energy source releases toxic chemical waste, there is a waste disposal cost of $2/MWh.
3. The city is a famous tourist city for its natural bird and fish habitats.
4. The city is trying to reduce greenhouse gas emissions. If the main energy source release greenhouse gases, there will be a “Carbon tax” of $10/MWh of electricity.
5. The city has several large hospitals that need a stable and reliable energy source.
6. The city prefers renewable energy. If renewable energies generate more than 30% of the electricity, there will be a renewable tax credit of $1/MWh for the electricity that is generated by renewable energies.
7. The city prefers energy sources whose cost is stable.
8. The city is concerned with water pollution.

<table>
<thead>
<tr>
<th>Energy Plan</th>
<th>Cost</th>
<th>Waste disposal cost</th>
<th>Carbon tax</th>
<th>Renewable tax</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coal Wind Nuclear Hydro</td>
<td>$840,000K</td>
<td>$14,400K</td>
<td>$48,000K</td>
<td>$9,600K</td>
<td>$892,800K</td>
</tr>
<tr>
<td>Plan 1</td>
<td>$912,000K</td>
<td>$0</td>
<td>$0</td>
<td>$11,000K</td>
<td>$901,000K</td>
</tr>
<tr>
<td>Plan 3</td>
<td>$984,000K</td>
<td>$14,400K</td>
<td>$0</td>
<td>$9,600K</td>
<td>$988,800K</td>
</tr>
<tr>
<td>Plan 4</td>
<td>$984,000K</td>
<td>$0</td>
<td>$0</td>
<td>$11,000K</td>
<td>$973,600K</td>
</tr>
</tbody>
</table>

Figure 6.2: Collaboration task description.
was given special knowledge of one of the four energy sources, and was instructed to represent
the values associated with their energy source in contrast to the rest, e.g. coal energy was paired
with an economical energy perspective. The team collaborative task was to select a single energy
plan and then write a proposal arguing in favor of their decision with respect to the trade-offs. n
other words, the team members needed to negotiate a prioritization among the city requirements
with respect to the advantages and disadvantages they were cumulatively aware of. The set of
potential energy plans was constructed to reflect different trade-offs among the requirements,
with no plan satisfying all of them perfectly. This ambiguity created an opportunity for intensive
exchange of perspectives. The collaboration task is shown in Figure 6.2.

Experimental procedure

We designed a four-step experiment (Figure 6.3):

- **Step 1. Preparation**
 In this step, each worker was asked to provide a nickname, which would be used in the
deliberation and collaboration phases. To prepare for the Jigsaw task, each worker was
randomly assigned to read an instructional article about the pros and cons of a single energy
source. Each article was approximately 500 words, and covered one of four energy sources
(coal, wind, nuclear and hydro power). To strengthen their learning and prepare them for
the proposal writing, we asked them to complete a quiz reinforcing the content of their
assigned article. The quiz was 8 single-choice questions, and feedback including correct
answers and explanations was provided along with the quiz.

- **Step 2. Pre-task**
 In this step, we asked each worker to write a proposal to recommend one of the four energy
sources (coal, wind, nuclear and hydro power) for a city given its five requirements, e.g.
“The city prefers a stable energy”. After each worker finished this step, their proposal
was automatically posted in a forum as the start of a thread with the title “[Nickname]’s
Proposal”.

- **Step 3. Deliberation**
 In this step, workers joined a threaded forum discussion akin to those available in many
online environments. Each proposal written by the workers in the Pre-task (Step 2) was
displayed for workers to read and comment on. Each worker was required to write at
least five replies to the proposals posted by the other workers. To encourage the workers
to discuss transactively, the task instruction included ”when replying to a post, “please
elaborate, build upon, question or argue against the ideas presented in that post, drawing
from the argumentation in your own proposal where appropriate.” The workers were not
aware that they will be grouped based on their discussion.

- **Step 4. Collaboration**
 In the collaboration step, team members in a group were first synchronized and then di-
rected to a shared Etherpad\(^1\) to write a proposal together to recommend one of four sug-
gested energy plans based on a city’s eight requirements (Figure 8.4). Etherpad-lite is an

\(^1\)http://etherpad.org/
open-source collaborative editor [214], meaning workers in the same team were able to see each other’s edits in real-time. They were able to communicate with each other using a synchronous chat utility on the right sidebar. The collaborative task was designed to contain richer information than the individual proposal writing task in Pre-task (Step 2). Workers were also required to fill out a survey measuring their perceived group outcomes after collaboration.

Figure 6.3: Illustration of experimental procedure and worker synchronization for our experiment

Outcome Measures
Both of our research questions made claims about team success. We evaluated this success using two types of outcomes, namely objective success through quantitative task performance and process measures as well as subjective success through a group satisfaction survey.

The quantitative task performance measure was an evaluation of the quality of the proposal produced by the team. In particular, the scoring rubric (APPENDIX A) defined how to identify the following elements for a proposal:

1. Which requirements were considered (e.g., “Windfarms may be negative for the bird population”)
2. Which comparisons or trade-offs were made (e.g., “It is much more expensive to build a hydro plant than it is to run a windfarm”)
3. Which additional valid desiderata were considered beyond stated requirements (e.g., “Hydro plants also require a large body of water with a strong current”)
4. Which incorrect statements were made about requirements (e.g., “Hydro does not affect animal life around it”)

Positive points were awarded to each proposal for correct requirements considered, comparisons made, and additional valid desiderata. Negative points were awarded for incorrect statements and irrelevant material. We measured Team Performance by the total points assigned to the team proposal. Two PhD students who were blind to the conditions applied the rubric to five
proposals (a total of 78 sentences) and the inter-rater reliability was good (Kappa = 0.74). The
two raters then coded all the proposals.

We used the number of transactive contributions during team collaboration discussion in the
Collaboration step as a measure of **Team Process**.

Group Experience Satisfaction was measured using a four item group experience survey
administered to each participant after the Collaboration step. The survey was based on items
used in prior work [41] [72] [119]. In particular, the survey instrument included items related to:
1. Satisfaction with team experience
2. Satisfaction with proposal quality
3. Satisfaction with the communication within the group
4. Perceived learning through the group experience

Each of the items was measured on a 1-7 Likert scale.

Individual Performance Measure

A score was assigned to each worker to measure their **Individual Performance** during the Col-
laboration step. The Individual Performance score was based on the contributions they made
to their group’s proposal. Similar to team proposal score, a worker received positive points for
correct requirements considered, comparisons/trade-offs made, and additional valid desiderata;
and negative points for incorrect statements and irrelevant material.

Control Variables

Intuitively, workers who display more effort in the Pre-task might perform better in the collabora-
tion task. We used the **average group member’s Pre-task proposal length** as a control variable
for group performance. We used the worker’s **individual Pre-task proposal length** as a control
variable for Individual Performance.

Transactivity Annotation, Prediction and Measurement

To enable us to use counts of transactive contributions as evidence to inform an automated group
assignment procedure, we needed to automatically judge whether a reply post in the Delibera-
tion step was transactive or not using machine learning. Using a validated and reliable coding
manual for transactivity from prior work [81], an annotator previously trained to apply that cod-
ing manual annotated 426 reply posts collected in pilot studies we conducted in preparation for
the studies reported in this chapter. Each of those posts was annotated as either “transactive” or
“non-transactive”. 70% of them were transactive.

A transactive contribution displays the author’s reasoning and connects that reasoning to
material communicated earlier. Two example posts illustrating the contrast are shown below:

Transactive: “Nuclear energy, as it is efficient, it is not sustainable. Also, think of the
disaster probabilities”.

Non-transactive: “I agree that nuclear power would be the best solution”.

Automatic annotation of transactivity has been reported in the Computer Supported Collabora-
tive Learning literature. For example, researchers have applied machine learning using text,
such as chat data [92] and transcripts of whole group discussions [5]. We trained a Logistic
Regression model with L2 regularization using a set of features, which included unigrams (i.e.,
single word features) as well as a feature indicating the post length [65]. We evaluated our classi-
 fier with a 10-fold cross validation and achieved an accuracy of 0.843 and a 0.615 Kappa. Given
the adequate performance of the model, we used it to predict whether each reply post in the
Deliberation step was transactive or not.

To measure the amount of transactive communication between two participants in the Deliberation step, we counted the number of times both their posts in a same discussion thread were transactive; or one of them was thread starter and the other participant’s reply was transactive.

6.3 Study 3. Group Transition Timing: Before Deliberation vs. After Deliberation

This experiment (Figure 6.4) assessed whether a measurable improvement would occur if team members transition into groups after community-level deliberation. We manipulated the step in which workers began to work within their small group. To control for timing of synchronization and grouping, in both conditions, workers were synchronized and assigned into small groups based on a Jigsaw paradigm after the Pre-task. The only difference was that for the After Deliberation condition, in the Deliberation step workers could potentially interact with workers both inside and outside their group (40 - 50 workers). Workers were not told that they had been assigned into groups until the Collaboration step (Step 4). In the Before Deliberation condition, each team was given a separate forum in which to interact with their teammates. The Before Deliberation condition is similar to the current team-based MOOCs where teams are formed early in the contest or course and only interact with their teammates. By comparing these two conditions, we test our hypothesis that exposure to deliberation within a larger community will improve group performance.

Mechanical Turk does not provide a mechanism to bring several workers to a collaborative task at the same time. We built on earlier investigations that described procedures for assembling multiple crowd workers on online platforms to form synchronous on-demand teams [41, 112]. Our approach was to start the synchronous step at fixed times, announcing them ahead of time in the task description and allowing workers to wait before the synchronous step. A countdown timer in the task window displayed the remaining time until the synchronous step began, and a pop-up window notification was used to alert all participants when the waiting period had elapsed.
6.3.1 Participants

Participants were recruited on MTurk with the qualifications of having a 95% acceptance rate on 1000 tasks or more. Each worker was only allowed to participate once. A total of 252 workers participated in Study 3, the workers who were not assigned into groups or did not successfully complete the group satisfaction survey were excluded from our analysis. Worker sessions lasted on average 34.8 minutes. Each worker was paid $4. To motivate participation during Collaboration step, workers were awarded a bonus based on their level of interaction with their groups ($0.1 - $0.5), while an extra bonus was given to workers whose group submitted a high quality proposal ($0.5). We included only teams of 4 workers in our analysis, there were in total 22 Before Deliberation groups and 20 After Deliberation groups.

A chi-squared test revealed no significant difference in worker attrition between the two conditions. We considered a worker as having “dropped out” from their team if they were assigned into a team but did not edit the proposal in the Collaboration step. There was no significance difference in the dropout rate of workers between the two conditions ($\chi^2(1) = 0.08, p = 0.78$). The dropout rate for workers in Before Deliberation groups was 30%. The dropout rate for workers in After Deliberation groups was 28%.

6.3.2 Results

Teams exposed to community deliberation prior to group work demonstrate better team performance.

We built an ANOVA model with Group Transition Timing (Before Deliberation, After Deliberation) as the independent variable and Team Performance as the dependent variable. In order to control for differences in average verbosity across teams, we included as a covariate for each group the Pre-task proposal length averaged across team members. There was a significant main effect of Group Transition Timing on Team Performance ($F(1,40) = 5.16, p < 0.05$) such that After Deliberation groups had a significantly better performance ($M = 9.25, SD = 0.87$) than the Before Deliberation groups ($M = 6.68, SD = 0.83$), with an effect size of 2.95 standard deviations.

We also tested whether the differences in teamwork process between conditions was visible in the extent of the length of chat discussion. We built an ANOVA model with Group Transition Timing (Before Deliberation, After Deliberation) as the independent variable. In this case, there was no significant effect. Thus, teams in the After Deliberation condition were able to achieve better performance in their team product without requiring more discussion.

Workers exposed to community deliberation prior to group work demonstrate higher-quality individual contributions.

In addition to evaluating the overall quality of the team performance, we also assigned an Individual Performance score to each worker based on their own contribution to the team proposal. There was a significant correlation between the Individual Performance and the corresponding Team Performance ($r = 0.35, p < 0.001$), suggesting that the improvements in After Deliberation team product quality were at least in part explained by benefits individual workers gained through their exposure to the community during the deliberation phase. To assess that benefit directly, we built an ANOVA model with Group Transition Timing (Before Deliberation, After Deliberation) as the independent variable and Individual Performance as the dependent variable.
TeamID and assigned energy condition (Coal, Wind, Hydro, Nuclear) were included as control variables nested within condition. Additionally, Individual Pre-task proposal length was included as a covariate. There was no significant main effect of Group Transition Timing (F(1,86) = 2.4, p = 0.12) on Individual Performance, although there was a trend such that workers in the Before Deliberation condition (M = 1.05, SD = 0.21) contributed less than the workers in the After Deliberation condition (M = 1.75, SD = 0.23). There was only a marginal effect of individual Pre-task proposal length (F = 3.41, p = 0.06) on Individual Performance, again suggesting that the advantage to team product quality was at least in part explained by the benefits individual workers gained by their exposure to the community during the deliberation, though the strong and clear effect appears to be at the team level. There was no significant effect of assigned energy.

Survey results

In addition to assessing group and individual performance using our scoring rubric, we assessed the subjective experience of workers using the group experience survey discussed earlier. For each of the four aspects of the survey, we built an ANOVA model with Group Transition Timing (Before Deliberation, After Deliberation) as the independent variable and the survey outcome as the dependent variable. TeamID and assigned energy condition (Coal, Wind, Hydro, Nuclear) were included as control variables nested within condition. There were no significant effects on any of the subjective measures in this experiment.

Figure 6.5: Workflow diagrams for Study 4.

6.4 Study 4. Grouping Criteria: Random vs. Transactivity Maximization

While in Study 3 we investigated the impact of exposure to community resources prior to team-work on team performance, in Study 4 we investigated how the nature of the experience in that context may inform effective team formation, leading to further benefits from that community experience on team performance. This time teams in both conditions were grouped after experiencing the deliberation step in the community context. In Study 3, workers were randomly grouped based on the Jigsaw paradigm. In Study 4 (Figure 6.5), we again made use of the Jigsaw paradigm, but in the experimental condition, which we termed the Transactivity Maximization
condition, we additionally applied a constraint that preferred to maximize the extent to which workers assigned to the same team had participated in transactive exchanges in the deliberation. In the control condition, which we termed the Random condition, teams were formed by random assignment. In this way we tested the hypothesis that observed transactivity is an indicator of potential for effective team collaboration.

From a technical perspective in Study 4 we manipulated how the teams were assigned. For the Transactivity Maximization condition, teams were formed so that the amount of transactive discussion among the team members was maximized. A Minimal Cost Max Network Flow algorithm was used to perform this constraint satisfaction process [4]. This standard network flow algorithm tackles resource allocation problems with constraints. In our case, the constraint was that each group should contain four people who have read about different energies (i.e. a Jigsaw group). At the same time, the minimal cost part of the algorithm maximized the transactive communication that was observed among the group members during Deliberation step. The algorithm finds an approximately optimal grouping within $O(N^3)$ ($N =$ number of workers) time complexity. A brute force search algorithm, which has an $O(N!)$ time complexity, would take too long to finish since the algorithm needs to operate in real time. Except for the grouping algorithm, all the steps and instructions were identical for the two conditions.

6.4.1 Participants

A total of 246 workers participated in Study 4, the workers who were not assigned into groups or did not complete the group satisfaction survey were excluded from our analysis. Worker sessions lasted on average 35.9 minutes. We included only teams of 4 workers in our analysis. There were in total 27 Transactive Maximization teams and 27 Random teams, with no significant difference in attrition between conditions ($\chi^2(1) = 1.46$, $p = 0.23$). The dropout rate of workers in Random groups was 27%. The dropout rate of workers in Transactivity Maximization groups was 19%.

6.4.2 Results

As a manipulation check, we compared the average amount of transactivity observed among teammates during the deliberation between the two conditions using a t-test. The groups in the Transactive Maximization condition ($M = 12.85$, $SD = 1.34$) were observed to have had significantly more transactive communication during the deliberation than those in the Random condition ($M = 7.00$, $SD = 1.52$) ($p < 0.01$), with an effect size of 3.85 standard deviations, demonstrating that the maximization was successful in manipulating the average experienced transactive exchange within teams between conditions.

Teams that experienced more transactive communication during deliberation demonstrate better team performance.

To assess whether the Transactivity Maximization condition resulted in more effective teams, we tested for a difference between group formation conditions on Team Performance. We built an ANOVA model with Grouping Criteria (Random, Transactivity Maximization) as the independent variable and Team Performance as the dependent variable. Average team member Pre-task proposal length was again the covariate. There was a significant main effect of Grouping Criteria ($F(1,52) = 6.13$, $p < 0.05$) on Team Performance such that Transactivity Maximization teams (M
= 11.74, SD = 0.67) demonstrated significantly better performance than the Random groups (M = 9.37, SD = 0.67) (p < 0.05), with an effect size of 3.54 standard deviations, which is a large effect.

Across the two conditions, observed transactive communication during deliberation was significantly correlated with Team Performance (r = 0.26, p < 0.05). This also indicated teams that experienced more transactive communication during deliberation demonstrated better team performance.

Teams that experienced more transactive communication during deliberation demonstrate more intensive interaction within their teams.

In Study 4, workers were assigned to teams based on observed transactive communication during the deliberation step. Assuming that individuals that were able to engage in positive collaborative behaviors together during the deliberation would continue to do so once in their teams, we would expect to see evidence of this reflected in their observed team process, whereas we did not see such an effect in Study 3 where teams were assigned randomly in all conditions. Group processes have been demonstrated to be strongly related to group outcomes in face-to-face problem solving settings [204]. Thus, we should consider evidence of a positive effect on group processes as an additional positive outcome of the experimental manipulation.

In order to test whether such an effect occurred in Study 4, we built an ANOVA model with Grouping Criteria (Random, Transactivity Maximization) as the independent variable and length of chat discussion during teamwork as the dependent variable. There was a significant effect of Grouping Criteria on length of discussion (F(1,45) = 9.26, p < 0.005). Random groups (M = 20.00, SD = 3.58) demonstrated significantly shorter discussions than Transactive Maximization groups (M = 34.52, SD = 3.16), with an effect size of 4.06 standard deviations.

<table>
<thead>
<tr>
<th>A transactive discussion example</th>
<th>A non-transactive discussion example</th>
</tr>
</thead>
<tbody>
<tr>
<td>A: based on plan 1 and 2 I am thinking 2 only because it reduces greenhouse gases</td>
<td>A: My two picks are Plan 1 and Plan 2</td>
</tr>
<tr>
<td>B: Yeah so if we go with 2, we will need to trade off the water pollution and greenhouse gas</td>
<td>B: Alright, let’s take a vote. Type either Plan 1 or Plan 2 in chat.</td>
</tr>
<tr>
<td>C: BUT we run into the issue of budget... so where do we say the extra almost $100k comes from?</td>
<td>B: Plan 2</td>
</tr>
<tr>
<td></td>
<td>C: Plan 1</td>
</tr>
<tr>
<td></td>
<td>D: plan 2.</td>
</tr>
<tr>
<td></td>
<td>B: That settles it, it’s plan 2.</td>
</tr>
</tbody>
</table>

Table 6.1: Transactive vs. Non-transactive Discussions during Team Collaboration.

Table 6.1 shows one transactive and one non-transactive collaboration discussion. The transactive discussion contained reasoning about the pros and cons of the energy plans, which can easily translate into the team proposal. The non-transactive collaborative discussion came to a quick consensus without discussing each participant’s rationale behind choosing an energy plan. Then team members need to come up and organize their reasons of choosing the plan. For participants who initially did not pick the chosen energy plan, without the transactive discussion process, it might be difficult for them to integrate their knowledge and perspective into the team proposal.
Workers whose groups formed based on transactive communication during the deliberation process demonstrate better individual contributions to the team product.

In Study 4, again we were interested in the contribution of individual performance effect to group performance effect. There was a significant correlation between Individual Performance and the corresponding Team Performance ($r = 0.34, p < 0.001$), suggesting again that the advantage to team product quality was at least in part explained by the synergistic benefit individual workers gained by working with team members they had previously engaged during the community deliberation.

To assess that benefit directly, we built an ANOVA model with Grouping Criteria (Random, Transactivity Maximization) as the independent variable and Individual Performance as the dependent variable. TeamID and assigned energy condition (Coal, Wind, Hydro, Nuclear) were included as control variables nested within condition. Additionally, individual Pre-task proposal length was included as a covariate. There was a marginal main effect of Grouping Criteria ($F(1,166) = 3.70, p = 0.06$) on Individual Performance, such that workers in the Random condition ($M = 1.64, SD = 0.21$) contributed less than the workers in the Transactivity Maximization condition ($M = 2.32, SD = 0.20$), with effect size 3.24 standard deviations. There was a significant effect of individual Pre-task proposal length ($F = 7.86, p = 0.0005$) on Individual Performance, again suggesting that the advantage to team product quality was at least in part explained by the benefit individual workers gained by working together with the peers they had engaged during the deliberation phase, though the strong and clear effect appears to be at the team performance level. There was no significant effect of assigned energy.

Transactivity maximization groups reported higher communication satisfaction.

For each of the four aspects of the group experience survey, we built an ANOVA model with Grouping Criteria (Random, Transactivity Maximization) as the independent variable and the survey outcome as the dependent variable. TeamID and assigned energy condition (Coal, Wind, Hydro, Nuclear) were included as control variables nested within condition. There were no significant effects on Satisfaction with team experience or with proposal quality. However, there was a significant effect of condition on Satisfaction with communication within the group ($F(1,112) = 4.83, p < 0.05$), such that workers in the Random teams ($M = 5.12, SD = 1.7$) rated the communication significantly lower than those in the Transactivity Maximization teams ($M = 5.69, SD = 1.51$), with effect size .38 standard deviations. Additionally, there was a marginal effect of condition on Perceived learning ($F(1,112) = 2.72, p = 0.1$), such that workers in the Random teams ($M = 5.25, SD = 1.42$) rated the perceived benefit to their understanding they received from the group work lower than workers in the Transactivity Maximization teams ($M = 5.55, SD = 1.27$), with effect size 0.21 standard deviations. Thus, with respect to subjective experience, we see advantages for the Transactivity Maximization condition in terms of satisfaction of the team communication and perceived learning, but the results are weaker than those observed for the objective measures. Nevertheless, these results are consistent with prior work where objectively measured learning benefits are observed in high transactivity teams [51].
6.5 Chapter Discussion

6.5.1 Underlying Mechanisms of the Transactivity Maximization Team Formation

There are three underlying mechanisms that make the transactivity maximization team formation work. The first is that the evidence that participants can transactively discuss with each other shows that they respect each other’s perspective. This process indicates they can effectively collaborate with each other in a knowledge integration task. The second mechanism is the effect that the students have read each other’s individual work. In our experiments, the individual task is similar to the collaboration task. This helps the two participants understand each other’s knowledge and perspective. Thirdly, the community deliberation process is also a self-selection process. Participants tend to comment on posts they find more interesting. This may also contribute to their future collaboration.

6.5.2 Implications for team-based MOOCs

Since introduction in 2011, MOOCs have attracted millions of learners. However, social isolation is still the norm for current generation MOOCs. Team-based learning can be a beneficial component in online learning [128]; how to do that in the context of MOOCs is an open question. Two major constraints, in the context of MOOCs, are that it can be technically difficult to mediate and support large-scale conversations, and the global learner population from various time zones is a challenge to synchronous communication [115]. Group projects require that learners be present on a particular schedule, reducing the flexibility and convenience factor in online study and possibly causing anxiety and/or resentment, particularly if the purpose of the group work is not clear and the group experience is not positive. It is important to consider, however, that it may be more difficult to coordinate students in MOOCs than in crowd work because of the desire to align every student with a group, as opposed to grouping whichever subset of workers happens to be available at a given time. Instructors will most likely have to encourage students to arrive within pre-stated time periods and it may be necessary to modify MOOC pages to alert students to upcoming group activities. One method of ensuring learner participation in online collaboration is to demonstrate the value of group learning by assessing (defined here as assignment of a grade) both the product and process of group work [172].

6.5.3 Implications for Crowd Work

Most commercial crowdsourcing applications nowadays are based on micro-tasks, which are given to independent workers and do not require cooperation. Recent research explores using crowdsourcing for more complex tasks, which are often interdependent, of subjective nature and based on worker cooperation [95, 120, 121, 214]. The studies in this chapter explore an interdependent task that involves workers interacting with each other, each representing a different piece of knowledge and perspective. Based on the collaborative learning literature, we propose a practical way of forming efficient crowd worker groups to perform interdependent tasks.
6.5.4 Conclusions

In this chapter we present two studies to address two related research questions. The first question was whether participation in deliberation within a community is more valuable as preparation for teamwork than participation in deliberation within the team itself. Here we found that deliberation within a community has advantages in terms of the quality of the product produced by the teams. There is evidence that individuals may also contribute higher quality individual contributions to their teams as a further result, though this effect is only suggestive. We see no effect on subjective survey measures.

The second related question was the extent to which additional benefit from participation in the deliberation in a community context to teams could be achieved by using evidence of potential successful team interactions from observed transactive exchanges during the deliberation. Here we found that teams formed such that observed transactive interactions between team members in the deliberation was maximized produced objectively higher quality team products than teams assigned randomly. There was also suggestive evidence of a positive effect of transactivity maximization on individual contribution quality. On subjective measures we see a significant positive impact of transactivity maximization on perceived communication quality and a marginal impact perceived enhanced understanding, both of which are consistent with what we would expect from the literature on transactivity where high transactivity teams have been demonstrated to produce higher quality outcomes and greater learning [92, 177]. These results provide positive evidence in favor of a design for a team formation strategy in two stages: Individuals first participate in a pre-teamwork deliberation activity where they explore the space of issues in a context that provides beneficial exposure to a wide range of perspectives. Individuals are then grouped automatically through a transactivity detection and maximization procedure that uses communication patterns arising naturally from community processes to inform group formation with an aim for successful collaboration.
Chapter 7

Team Collaboration Communication Support: Study 5

The NovoEd MOOC corpus analysis in Study 2 indicates we can either support the collaboration communication or improve group formation to enhance team collaboration. In Study 3 and 4, we explored supporting online team formation with a deliberation-based process. In Study 5, we study how to support online synchronous collaboration communication with a conversational agent.

MOOCs are online spaces meant to provide opportunities for learning. It’s worth studying whether a team formation or support method can improve a student’s individual learning. Study 4 results indicated that a transactivity maximization team formation method can lead to improved overall team performance. Since transactive discussion has been shown to positively correlate with students’ learning [79], in Study 5, we first test the hypothesis that a transactive-based team formation can improve learning compared to random team formation:

\[H3. \text{Students in teams formed on the basis of evidence of transactive discussions during community deliberation learn than students in randomly formed teams.} \]

One challenge of team-based learning in MOOCs is to support virtual team collaboration communication. A conversational agent can support this large scale, remote collaboration. To understand whether communication collaboration support, i.e. a discussion facilitation agent, has further benefits in an online collaborative context, we focus investigate a revised version of the conversation agent Bazaar in MTurk environment [1]. We test the following hypotheses:

\[H4. \text{Groups that are supported by a communication facilitation agent are more active, engage in better collaborative discussions, and perform better.} \]

\[H5. \text{Students in conversational agent supported teams learn more than those without agent support.} \]

Figure 7.1 presents our hypotheses in this chapter.

7.1 Bazaar Framework

Bazaar is a publicly available conversational agent that can automatically facilitate synchronous collaborative learning [1]. Bazaar’s architecture easily integrates a wide variety of discussion
facilitation behaviors. During team collaboration, the agent assumes the role of a teacher and facilitates moves. Introduction of such technology in a classroom setting has consistently led to significant improvements in student learning [1], and has shown to positively impact the classroom environment outside of collaborative activities [39].

To provide minimal, micro-level script-based support for the collaboration, the conversational agent facilitator in our design tracked students in the chat room and each prompt that had been provided to them. It also tracked which plans the student mentioned. This tracking was completed to ensure each student could engage with various reflection prompts exercise and no student saw the same prompt question twice.

7.1.1 Bazaar Prompts

Bazaar prompts ask group members to elaborate on their ideas to intensify the interaction between members with different perspectives. We assume that by providing conversational support in synchronous discussion, we will observe better group processes and better knowledge acquisition for individual students. Bazaar analyzes the event stream in search of triggers for supportive interventions. After each student enters one chat line, Bazaar automatically identifies whether the turn contains reasoning. The prompts are shown in Algorithm [2].

In the Preparation step, each participant is assigned an energy and is instructed to represent a perspective associated with that energy. The perspectives for each energy are as follows:

- **Coal**: most economical
- **Wind**: most environmentally friendly and with lowest startup costs
- **Nuclear**: most economically feasible in the long run
- **Hydro**: environmentally friendly and reliable
Algorithm 2 Bazaar prompts.

while there’s more than five minutes left do
 if collaboration starts then
 Bazaar prompt = “Use this space to discuss the relative merits and demerits of each plan from your assigned perspective in step 2. That was the step where you were asked to write an individual proposal and post it to the discussion forum. Work towards a consensus on which plan you think is the best as a group. Wherever possible, supplement plan suggestions, agreements and disagreements with reasons, and try to refer to or build upon your teammates’ ideas. I will support you in the process.”
 end
 if NAME mentioned a plan && didn’t show reasoning then
 Bazaar prompt = “Hey (NAME), can you elaborate on the reason you chose plan (N) from your perspective of what would be (NAME’s PERSPECTIVE)?”
 Bazaar prompt = “Hey (NAME), can you be more specific about why you chose plan (N) from your perspective of (NAME’s PERSPECTIVE)?”
 Bazaar prompt = “Hey (NAME), what do you think are the pros and cons of plan (N) from your perspective of (NAME’s PERSPECTIVE)?”
 Bazaar prompt = “Hey (NAME1), you have proposed plan (N), and (NAME2) has proposed plan (N). What do you think are the most important tradeoffs between the two plans in terms of your perspective of (NAME’s PERSPECTIVE)?”
 ▶ Ask the participant to elaborate on the plan from his perspective that was assigned in the preparation step, or ask the participant to compare the plan with another plan that hasn’t been fully discussed (i.e., elaborate the pros and cons).
 end
 if NAME mentioned a plan && showed reasoning then
 Bazaar prompt = “Hey (NAME), you have proposed plan (N), and (NAME1) has proposed plan (N). Can you compare the two plans from your perspective of (NAME’s PERSPECTIVE)?”
 Bazaar prompt = “Hey (NAME1), can you evaluate (NAME)’s plan from your perspective of (NAME1’s PERSPECTIVE)?”
 Bazaar prompt = “Hey (NAME1), how do you like (NAME)’s plan from your perspective of NAME1’s PERSPECTIVE?”
 Bazaar prompt = “(NAME1), would you recommend (NAME)’s plan from your perspective of NAME1’s PERSPECTIVE?”
 ▶ Ask someone else to evaluate the proposed plan
 end
 if there’s no talking in the chat for five minutes && NAME hasn’t been prompted before then
 Bazaar prompt = “Hey (NAME), which of the plans seems to be the best from your perspective of (NAME’s PERSPECTIVE)?”
 Bazaar prompt = “Hey (NAME), which plan do you recommend from your perspective of (NAME’s PERSPECTIVE)”
 end
end
Bazaar prompt = “Thank you for participating in the discussion. You now have just 5 minutes to finalize a joint argument in favor of one plan and complete your proposal on the left. Keep in mind that you will be evaluated solely based on the quality of your proposal (i.e., the thoroughness of the reasoning displayed).”
Algorithm 2 shows examples of the prompts provided by Bazaar. If a student proposes a plan without providing reasoning, Bazaar will prompt the student with “Hey [name], can you elaborate on the reason you chose plan 2 from your perspective of what would be most economical?” On the other hand, if a group member proposes a plan with reasoning, and a second group member proposes a different plan, Bazaar will prompt the second team member to compare the two plans, e.g., “Hey [student 2], you have proposed plan 1, and [student 1] has proposed plan 3, can you compare the two plans from your perspective of environmental friendliness and reliability?”

7.2 Method

In this study, we will examine the effect of conversational agent support on group performance and individual learning, and further investigate whether the effect of the support differs between high transactivity groups and low transactivity groups. We adopted a 2 (Transactive Grouping vs. Random Grouping) X 2 (Bazaar Support vs. Without Bazaar Support) experimental design. The first experimental manipulation is whether the students are assigned to groups based on the transactivity optimization algorithm or are randomly assigned. Assignment type indicates either high or low transactivity groups. The second experimental manipulation is whether students receive scripted support from a conversational agent in their group collaboration discussion or whether the group must collaborate without support. We consider this MTurk experiment with conversational agent support as a starting point to support synchronous discussion in team-based MOOCs.

7.2.1 Experiment Design

In Study 5, we use the same MTurk experimental workflow and collaboration task as in Study 3 and Study 4. In the collaboration task, ideally group members need to articulate the tradeoff between plans/energies from their perspective in the discussion. In the control condition, workers collaborate within an Etherpad, as in Study 3 and Study 4. For the experimental condition, we replace the synchronous chat tool in Etherpad with the Bazaar agent (Figure 7.2). The purpose of the conversation agent is to intensify interaction between participants and encourage them to elaborate on their argument from their own perspective.

7.2.2 Measuring Learning Gain

In addition to participants’ collective performance on the group task, we are testing whether the experiment setting would influence students’ individual domain-specific knowledge acquisition, i.e. learning gain. In order to capture students’ individual learning of domain-specific knowledge, we added a pre-test and post-test to the front and end of the experimental workflow. The task in the pre- and post-test is similar to the collaborative task: students must design an energy plan for a city based on its requirements. The task description of the pre- and post-test is the same, as shown in Figure 7.3. The energy proposals in the pre- and post-test were scored according to the same coding manual (APPENDIX A).
Complete the following task with your best knowledge:

Read the following instructions carefully, and write a proposal based on your best knowledge. You are not allowed to refer to external resources in this task.

Diamond City is a city undergoing rapid economic growth, and thus is in need of large volume of reliable energy. It is a busy city with a high volume of traffic and a growing population. It is home to a famous tech-oriented university, which means the city has access to a sophisticated workforce. The city is in a windy area, and is rich in natural resources, including fossil fuels and water. However, based on the city’s commitment to development, it has a limited budget for financing energy.

Please write a 80-120-word energy proposal for Diamond City. You need to choose from four types of energy: A. coal energy B. wind energy C. nuclear energy D. hydroelectric energy. You can either choose one or any combination of the four. Please be specific about your reasons. Explain your arguments well, and demonstrate awareness of differing priorities and the pros and cons of the different sources in relation to the characteristics of the city. Your proposal will be evaluated on its thoughtfulness and comprehensiveness. You will get $0.5 bonus if your proposal achieves a top ranking score.

Figure 7.3: Instructions for Pre and Post Task.

7.3 Participants

Participants were recruited on MTurk with the qualifications of having a 95% acceptance rate on 1000 tasks or more. Workers were only allowed to participate once and were compensated $8. We included only teams of 4 workers in our analysis. To motivate participation during the collaboration step, workers were awarded a bonus based on their level of interaction with their groups ($0.1 - $0.5), while an extra bonus was given to workers whose group submitted a high
quality proposal ($0.5).

Similar to Study 3 and Study 4, we manipulated the grouping method by running the experiment in batches. Each batch was either a transactivity maximization grouping or random grouping. Within one batch, the teams are randomly assigned to two Bazaar conditions (With Bazaar support or Without Bazaar support).

We ran 14 batches in total from June to August 2016. Because 3 of the batches generated fewer than 3 teams, we removed them from the dataset. This guaranteed that at least two teams were generated in each bazaar condition in each batch. The remaining 11 batches resulted in 4 batches of random grouping and 7 batches of transactivity grouping, or 63 teams in total. The distribution among conditions is displayed in Table 7.1.

<table>
<thead>
<tr>
<th>Communication Support</th>
<th>Random Without Support</th>
<th>14</th>
<th>Transactivity Maximization With Support</th>
<th>18</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 7.1: Number of teams in each experimental condition.

7.4 Results

7.4.1 Manipulation Check

We first ran a manipulation check to ensure viability of our transactivity grouping. We used one-way ANOVA to compare the average transactivity score within teams during deliberation between random condition groups and transactivity condition groups. The transactivity groups show significantly higher transactivity during deliberation (13.28 discussions) than the random groups (8.56 discussions) (p=0.006).

We also checked the random assignment of the experiment by measuring the total length of each group member’s proposal in the Individual Task. We recoded the two condition factors into a condition variable with four values to indicate the combination of the two factors (Transactivity Maximization and Bazaar). We ran a one-way ANOVA to compare the average length of individual proposals across the four experimental conditions. No significant difference in the average length of individual proposal across the four conditions was found. The results indicate random condition assignment.

7.4.2 Team Collaboration Process and Performance

To examine the main effect and the interaction effect of our two experimental factors on the group proposal score, we first ran a linear regression to check the main effect and the interaction effect between our two factors (Transactivity Grouping and Bazaar). The total length of individual proposals in each group was used as a covariate.

We observed a significant interaction between collaboration discussion support and team formation method (F = 5.240, p = 0.026, see Table 7.2). To compare the group proposal score
across the four conditions, we ran a one-way ANOVA with post-hoc tests. The average score of Transactivity Grouping X Bazaar condition is significantly higher than the other three conditions (p=0.015, 0.001, and 0.043 respectively). No significant difference in the average score between the other three conditions was observed.

<table>
<thead>
<tr>
<th>Source</th>
<th>df</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corrected Model</td>
<td>4</td>
<td>4.46</td>
<td>0.003</td>
</tr>
<tr>
<td>Intercept</td>
<td>1</td>
<td>12.25</td>
<td>0.001</td>
</tr>
<tr>
<td>Avg. Individual Proposal Length</td>
<td>1</td>
<td>1.78</td>
<td>0.188</td>
</tr>
<tr>
<td>Transactivity Grouping</td>
<td>1</td>
<td>7.75</td>
<td>0.007</td>
</tr>
<tr>
<td>Bazaar Support</td>
<td>1</td>
<td>.575</td>
<td>0.451</td>
</tr>
<tr>
<td>Transactivity Grouping X Bazaar Support</td>
<td>1</td>
<td>5.24</td>
<td>0.026</td>
</tr>
</tbody>
</table>

Table 7.2: Number of teams in each experimental condition.

A linear regression model similar to the number of transactive turns during collaboration discussion as the dependent variable also showed a significant interaction effect of the team formation method and team collaboration support on the number of transactive turns during collaboration discussion (F(1,62) = 5.76, p = 0.02).

7.4.3 Learning Gains

To determine learning gains, we completed mixed-modeling, using GroupID as a random effect, to control for the fact that students’ learning in the same group may be correlated. We built a linear regression model, where the dependent variable was represented by a worker’s post-test score and independent variables were represented by Transactivity Grouping and Bazaar. The model also included an interaction effect. A worker’s pre-test score was included as a covariate. Workers that did not write a post-test proposal were excluded from this model. The results show that Transactivity Grouping and Bazaar do not significantly effect learning gains. Therefore, H1 was not supported.

Next, we compared the learning gains across the four conditions. Figure 7.4 shows the pre-test-corrected post-test score in each condition. Though the difference was not significant, the trend was consistent with our hypothesis. Students’ post-test scores were significantly higher than their pre-test scores (p < 0.001). This indicates that our task as a whole was a learning task. In future work, we may increase the collaboration task time to determine if we can observe a significant effect on learning gains from our interventions.

In our proposal coding manual, we separately annotated the requirements team members have considered for the plans and the tradeoff or comparisons the team members made in the proposal. We built a linear regression model to see whether the experimental factors effected learning gain measured by the tradeoff points made in the post-test compared with the pre-test. We used a similar setup, with the correct tradeoff points in the post-test as the dependent variable, Transactivity Grouping and Bazaar as independent variables, the correct tradeoff points in the pre-test as a covariate. GroupID was included as a random intercept. The results show that Bazaar significantly effected correct tradeoff points in the post-test (p = 0.026). Workers facilitated by the
Bazaar agent during collaboration included significantly more tradeoff in the post-test proposal compared to those that were not facilitated by Bazaar. Therefore, H2 was supported.

7.5 Chapter Discussion

7.5.1 High Transactivity Groups Benefit More from Bazaar Communication Support

We expected that randomly formed teams, i.e. teams with low transactive discussion during deliberation, would benefit more from the Bazaar communication support. However, in this study, we observed a significant interaction effect between collaboration discussion support and the team formation method. This suggests that high transactivity teams benefit more from Bazaar communication support that teams without such support.

Arguably randomly formed teams need the most support for collaboration discussion and would benefit more from Bazaar than the Transactivity maximization teams. Instead, the results indicate the opposite. For non-transactivity groups, we found Bazaar groups use more words,
reasoning and transactivity logs in chat, though the difference is not significant. We also found that Bazaar groups had a marginally larger percentage of reasoning log in chat (p = 0.056).

We think for non-transactivity groups, Bazaar helped the students to chat more, which led to more displayed reasoning. However, students who spent more time in the chat may not have incorporated the discussion contents in the group proposal. By qualitatively looking at the team proposals, we found some groups did not include all of the requirements/tradeoffs they mentioned in the chat into their proposals.

7.5.2 Effect of Team Formation and Collaboration Support on Learning

In our experiments, teams with a history of high transactivity demonstrated better collaboration processes. In other words, the teams engaged in more transactive turns during collaboration discussion, which led to a better product. However, better collaboration did not increase personal learning gain. This indicates that the benefit of grouping is more salient on group level collaboration. When annotating an energy proposal, requirement consideration relates mostly to rote memory during reading and collaboration. Transactive discussion may not improve memorization.

Learning during collaboration is not only due to the act of generating ideas, but also to exposure to other perspectives. This operationalization of learning was referred to as multi-perspective learning [?]. The tradeoffs made in an energy proposal demonstrate students’ multi-perspective learning. The results indicate that the Bazaar agent may increase students’ multi-perspective learning by intensifying collaboration discussion, e.g. prompting participants to comment on each other from different perspectives.

7.6 Conclusion

Through Study 5, we see that teams that were formed through the transactivity maximization method and supported by the conversational agent, Bazaar, performed best on all four conditions. The results indicate that by intensifying discussion during collaboration, a conversational agent likely had some added benefits to the transactivity-based team formation process, especially in terms of participants’ learning gain.

To determine if the results from our controlled MTurk studies can achieve practical value, in the next two studies we test the team formation method in a real MOOC.
Chapter 8

Team Formation Intervention Study in a MOOC: Study 6

The results from the crowdsourced experiments in Study 3 and Study 4 accord with our hypothesis, which demonstrated the internal validity of our team formation hypothesis. Although the results are promising, the differences between an MTurk task and an actual MOOC make it difficult to extrapolate the team formation hypothesis. In other words, an MTurk task is usually short (typically less than an hour), whereas virtual team collaboration in a MOOC can last several weeks. Also, crowd workers and MOOC students likely have different motivations. To better test our hypothesis, we developed a deployment study to help us identify how to better support long-term MOOC team collaboration. A deployment study will help us answer questions like: how many students in a MOOC will actually participate and enjoy the team collaboration? The deployment studies in Study 6 and Study 7 address this question. Specifically, we would like to know (1) whether the team formation process will work in a real MOOC environment, and (2) if we can see evidence of the benefit of our team formation method. In this chapter, we present our first team formation intervention study in a real MOOC, where we added an optional Team Track to the original MOOC.

8.1 The Superhero MOOC

The MOOC at the heart of this study is called “The Rise of Superheroes and Their Impact On Pop Culture.” Offered by the Smithsonian Institution, the course runs six weeks and is offered on the edX platform. The first offering of the course enrolled more than 40,000 students. The goal of this MOOC is for students to learn how comic book creators build a character and draw inspiration both from the real world and their own ideas about storytelling. The teaching goal of the course is to understand how the genre of superheroes can be used to reflect the hopes and fears that are salient during periods of American history. In this MOOC, students either design a superhero of their own or write an biography of an existing superhero. On the one hand, we chose this MOOC because it is a social science course, where it is easier to design deliberation and collaboration tasks similar to those in the crowdsourced experiments. The original course project was also a design task where there was no correct or incorrect answer. Based on the
original course project, we created a collaborative design task that requires students to respect each other’s different perspectives and combine all team members’ original designs or stories (similar to the collaborative energy proposal design task in Study 3-5). On the other hand, in post-course surveys from previous iterations of this MOOC, many students expressed that they needed more feedback on their superhero design. We think a small team collaboration would allow team members to provide feedback to each other.

Starting from the second offering of the course, there were two tracks of study: Creative track and Historical track. Students in the Creative Track submit a “superhero sketchpad” project to finish the MOOC. The project contains five elements:

- Create your superhero’s superpowers and weaknesses.
- Detail your superhero biography by telling your superhero’s origin story.
- Design a supervillain and explain your rationale for choosing him/her.
- Construct a story that includes three components: build up, conflict and resolution.
- Build three original comic panels that bring your story to life.

Students in the Historical Track analyze an existing superhero of their choice.

8.1.1 Team Track

Since it was the first time to run this MOOC with a team collaboration component, the instructors were hesitant to make drastic changes to the course. We decided to add an optional Team Track, where students collaborate in small teams to design a superhero team. To enable us to meaningfully compare the collaborative track with the individual tracks, the Team Track project shares the same components. Each team submits a Google Doc as their final team project. In the project, they will discuss three questions:

1. What archetype(s) does your superhero fit into?
2. Will your superhero team support government control or personal freedom?
3. What current social issue will your superhero team take on?

8.1.2 Data Collection

In Study 6, we collected students’ course community discussion data, team project submissions, team discussion traces and post-course survey data. To see what benefits students gain from joining a team collaboration, we compare the core components in the Creative Track and Team Track student project submissions. To understand how students are collaborating in these teams, we qualitatively analyzed the discussion posts in the team space.

8.2 Adapting our Team Formation Paradigm to the MOOC

To prepare for the deployment study, we worked with the course instructors and staff to design the Team Track for the third offering of the superhero MOOC. We customized our team formation
paradigm around the existing course requirements. In the MOOC, I worked as a course staff and was responsible for grouping students, sending out team assignment emails, replying to emails and creating course forum posts related to the Team Track. I served as the “data czar” for SmithsonianX, for which I received weekly course data from edX (including enrollment information, click data and discussion posts).

Similar to the workflow in our crowdsourced experiments, students in the Team Track completed three steps to finish the course: Individual Work, Course Community Deliberation, and Team Formation and Collaboration.

8.2.1 Step 1. Individual Work

Step 1 is designed to ensure that students have enough time to complete individual work. By the end of Week 3, they either join the Team Track or remain in an individual track. In Week 1 and Week 2, students who wish to participate in the Team Track either (1) to design a superhero origin story and superpower, as students in the Creative Track, or (2) select an existing superhero and analyze his or her origin story and superpower, as students in the Historical Track.

8.2.2 Step 2. Course Community Deliberation

Similar to the deliberation step in our crowdsourced study, students who want to join the Team Track are required to post their individual work to the discussion board and provide feedback to each other. Because we cannot assume that everyone in a real MOOC will participate in the team track, we ask students to post their work to the course discussion board as a sign-up process for the team track. Since providing feedback is naturally transactive, we provided discussion instructions to encourage students to complete this task, as shown in Figure 8.2.

8.2.3 Step 3. Team Formation and Collaboration

At first, we planned to use the same transactive maximization algorithm from the prior studies to form teams based on their forum discussions. Similar to the energy conditions in our crowd-
This week, we will put you into teams of 2-4 students. These will be your teams for the remainder of the course. As a team, you will work together in week 4 to discuss your individual work and in weeks 5 and 6 to complete a team final project in which you will create a superhero team.

In order to form the teams, we need to ask you to each post the work you’ve done in your Superhero Sketchpad or Superhero Dossier to one of the Team Track Week 3 Activity pinned threads in the Discussion Board.

After everyone has responded to at least 3 postings, we will place each student who posted into a team. You will receive an email from us with a link to your team discussion space here on edX during Week 4.

Instructions for posting in the Team Track Week 3 Activity thread

Here are the instructions for posting your work and giving feedback to your classmates so that we can match you into teams:

1. Post the work you’ve done in your Superhero Sketchpad or Superhero Dossier in one of the Team Track Week 3 Activity threads on the Discussion Board. Be sure to mark whether your work is HISTORICAL or CREATIVE in the first line of your post. e.g. Superman Dossier: Historical Track

 History students: post your Superhero Biography. Be sure to write the name of your superhero and HISTORICAL in the first line of your post.

 Creative students: post your original Superhero and Alter Ego slides. If you post a link, make sure the link you share is “can view” and not “can edit”. Be sure to write the name of your superhero and CREATIVE in the first line of your post.

2. Respond to the posts of at least 3 of your classmates from the opposite track of study. Be sure to answer the following questions in your response:

 I’m on the History Track, responding to posts from Creative Track students:

 How broadly appealing and compelling are the stories that have been created? How might these stories and characters be improved in order to be as popular as the most successful and long-lasting superheroes?

 I’m on the Creative Track, responding to posts from History Track students:

 How well connected are the values of the chosen superhero and the underlying social issue(s) discussed in the selected news article? How could the chosen superhero be further developed in order to connect better with contemporary social issues?

3. Check your own post to see what feedback you’ve received.

Figure 8.2: Instructions for Course Community Discussion and Team Formation.
sourced studies, we planned to use the original two tracks of study as our Jigsaw conditions. However, since too few students participated in the Team Track, we decided to form teams randomly. In total we formed 6 teams, four 3-people teams and two 2-people teams.

Each team was assigned a team space, as shown in Figure 8.1. Since students might hesitate to post in an empty space, we created an initial post to encourage students to discuss their projects with one another (see Figure 8.3). We also provided each team with a url link to a dedicated, synchronous chat space.

![Welcome to your Team 2 Team Space](image)

Figure 8.3: Initial post in the team space.

8.3 Results

In this section, we describe the course completion results and the qualitative students’ communication and project analysis results.

8.3.1 Course completion

In total, 6,485 students enrolled in the MOOC, 145 of them were verified. After the initial three weeks, less than 940 students were active in a given week. At the end of Week 4, only 16 students posted and commented in the team formation threads (94 posts in 3 threads). Only one of these students were from the Historical Track. At the end of the course, 4 of the 6 teams submitted final team projects (Table 9.2).

8.3.2 Team collaboration communication

In this MOOC, 6 teams were formed based on the order of when they posted to the team track threads. In two of the teams that were formed in Week 5, both students chose the Creative Track
Team Task Description

In the final two weeks of the course, students collaboratively work on the team project. The team task was split into two parts.

Course Week 5: Part I Instructions

For your final project on Track 3: Team Track, you will work in your assigned teams to create a superhero team. To help you do this, we have created the Superhero Team Secret Files. Over the next two weeks, you will work together in your teams to combine your existing superheroes into one team. You’ll negotiate the dynamics of the team, create a story involving your team, and write an analysis report explaining your team’s actions. We have created the Superhero Team Secret Files to guide you through this work.

Course Week 6: Part II Instructions

Last week, you created your team of superheroes by combining your existing superheroes and original superheroes, determining their archetypes, negotiating the team’s position on government control vs. personal freedom, and determining the social issue your team will take on. This week, you’ll pull together the work you did last week to create your final project.

Your team final project has two parts:

Craft a story that will have your superhero team fighting the social issue you selected, but working within the constraints set by the position that your team took in terms of government control vs. personal freedom. In addition to writing a story, you’re also welcome to create two panels as visuals to bring your story to life.

Write a report detailing why your superhero team’s selected stance on government control vs. personal freedom is justified considering the characteristic of your superheroes, including the pros and cons of the issue from your superhero team’s point of view. Discuss how the team’s position about government control vs. personal freedom impacts the team’s ability to address the social issue selected.

Figure 8.4: Instructions for the final team project.
and only one student joined their team in the team space. Overall, there was little collaborative activity.

![Figure 8.5: One superhero team picture.](image)

In the other three teams, we did not observe problems with collaboration. Two teams agreed to communicate via the Facebook messaging function; the third team communicated in the dedicated team space. Although most teams at least tried the synchronous chat tool at the beginning of the collaboration, they did not find it useful if the team had not set up a meeting time beforehand since it is rare that students log into the chat at the same time.

Members of Team 3 learned to work in the dedicated team space. There they shared their individual work, commented on each other’s work, and then brainstormed about characteristics the superheroes have in common (e.g. they found all three superheroes were females with a goal to help others). Based on their findings, the students exchanged ideas about which social issue the superhero team would fight. They chose a team name and modified their archetypes to match each superhero’s role in the team.

In another thread, members of Team 3 collaboratively designed a team picture using Google Docs (Figure 8.5). Based on each students’ original ideas in their individual work, the artist in the team drew several drafts of the team picture. Team members then offered their preferences and suggestions.

<table>
<thead>
<tr>
<th></th>
<th>Creative + Historical</th>
<th>Team Track</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active in Week 3</td>
<td>1195 (99%)</td>
<td>16 (1%)</td>
</tr>
<tr>
<td>Submitted Final Project</td>
<td>180 (94%)</td>
<td>11 (6%)</td>
</tr>
<tr>
<td>Awarded Certificates</td>
<td>82 (88%)</td>
<td>11 (12%)</td>
</tr>
</tbody>
</table>

Table 8.1: Student course completion across tracks.
The team also created a discussion thread about the team story. Based on one student’s initial idea, they designed the three required parts: build-up, conflict and resolution. Finally they were able to finish their project and submit. One student even commented “art has been uploaded, and submitted, great work team!” with a superhero high-five picture (Figure 8.6).

Overall, the team members seemed to enjoy collaborating. We therefore have reason to expect this team collaboration task will work in our future team-based learning deployment study in this MOOC.

![Figure 8.6: Picture included in the comment.](image)

8.3.3 Final project submissions

Compared with working alone, what benefit can MOOC students potentially gain from collaborating in teams? In this section, we qualitatively compare the Team Track submissions to the individual track submissions. We randomly picked five submissions from each track. Using those selections, we summarized and compared each of the main components of the project: (1) social issue and archetype; (2) the three components of the superhero or superhero team story; and (3) build-up, conflict and resolution.

To help students structure their superhero story, the project instruction asked students to pick one social issue that the superhero or the superhero team fights for. We find that individual superheroes focus more on personal issues (e.g. depression and family relationship, Table 8.2). whereas superhero teams focus on bigger societal issues (e.g. equality and nuclear weapons, Table 8.3). Therefore, we believe that working in a team might raise students’ awareness of wider societal problems.

In the project, student selected one or more archetypes for their superhero. The archetypes selected most often in the individual track submissions were Hero and Guardian angel (Table 8.2). In team submissions, the archetypes usually complemented each other, which made the
story more interesting, versatile and rich. For example, superhero teams typically included a Leader, but may also include a Healer, Mentor or Anti-hero.

In addition to a wider variety of characters, the superhero team stories were usually more complicated and included more dialogue between the characters. In the story build-up, students described how these superheroes formed the team; some even explained where the team got its name. Because more people (superheroes) were involved in the story, the team stories included more conversation *between* superheroes than did the individual stories.

The team project submissions also included more detailed descriptions, such as dialogue about how the superheroes met and formed a team or decided to oppose a villain together. To endow each superhero with a personality, students typically included scenes where the superheroes express different opinions or don’t agree with each other. To bring out these personalities, they incorporated more or humor, especially for the Trickster superhero archetype.

<table>
<thead>
<tr>
<th>Proj. 1</th>
<th>Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Social Issue</td>
<td>Social relations and family issues concerning contact or, lack of it between a parent and a child</td>
</tr>
<tr>
<td>Archetypes</td>
<td>Guardian, Angel, Guadian Angel</td>
</tr>
<tr>
<td>Build-up</td>
<td>NA</td>
</tr>
<tr>
<td>Conflict</td>
<td>a man’s ex girlfriend run away with his kid</td>
</tr>
<tr>
<td>Resolution</td>
<td>superhero saved the kid though the telegraph</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Proj. 2</th>
<th>Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Social Issue</td>
<td>the rising numbers in mental illness</td>
</tr>
<tr>
<td>Archetypes</td>
<td>Healer, Protector</td>
</tr>
<tr>
<td>Build-up</td>
<td>villain tries to perform something to make the audience mentally ill</td>
</tr>
<tr>
<td>Conflict</td>
<td>superman tries to stop the villain who’s on the stage performing</td>
</tr>
<tr>
<td>Resolution</td>
<td>superhero saved the audience</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Proj. 3</th>
<th>Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Social Issue</td>
<td>stress and associated mental health issues</td>
</tr>
<tr>
<td>Archetypes</td>
<td>Killer, Witch</td>
</tr>
<tr>
<td>Build-up</td>
<td>superman found a victim, the villain sended the victim to fetch some files while setting up an explosion</td>
</tr>
<tr>
<td>Conflict</td>
<td>superhero investigates and confront the villain. But if superhero unmake the villain, he’ll also unmake himself</td>
</tr>
<tr>
<td>Resolution</td>
<td>superhero defeat the villain by passing the victim’s pain to the villain</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Proj. 4</th>
<th>Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Social Issue</td>
<td>Human trafficking</td>
</tr>
<tr>
<td>Archetypes</td>
<td>Hero, Detective</td>
</tr>
<tr>
<td>Build-up</td>
<td>superman investigates international human traffic. a victim has escaped from the ring which the superman was investigating</td>
</tr>
<tr>
<td>Conflict</td>
<td>superman goes to the ring, calls police and confront the criminal</td>
</tr>
<tr>
<td>Resolution</td>
<td>superhero saved the victims</td>
</tr>
</tbody>
</table>

Table 8.2: Sample creative track projects.
<table>
<thead>
<tr>
<th>Proj. 1</th>
<th>Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Social Issue</td>
<td>Mass murder/violence</td>
</tr>
<tr>
<td>Archetypes</td>
<td>Leader + Mentor + Glory-hound + Maverik</td>
</tr>
<tr>
<td>Build-up</td>
<td>four supermen found mass murder in separate cities, done by the same villain</td>
</tr>
<tr>
<td>Conflict</td>
<td>a story of how four heroes met and combine their information</td>
</tr>
<tr>
<td>Resolution</td>
<td>superhero team saved the victims</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Proj. 2</th>
<th>Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Social Issue</td>
<td>defend equality</td>
</tr>
<tr>
<td>Archetypes</td>
<td>Leader + Magician + Anti-hero/alien + Action hero+rebel/demi-god</td>
</tr>
<tr>
<td>Build-up</td>
<td>Captain Kirk try to recruit his crew members, Great Grandmaster Wizu assigned three members to the team. The mission was to save the Felinans from oppression from DAWG. A process about how each member is on board with the mission, except Hanu.</td>
</tr>
<tr>
<td>Conflict</td>
<td>While entering the orbit of the farthest moon of Felinan, the team is surrounded by Felinans, team members fight against the dogs.</td>
</tr>
<tr>
<td>Resolution</td>
<td>The superhero team attacked villain together and saved the victims</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Proj. 3</th>
<th>Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Social Issue</td>
<td>kidnapping</td>
</tr>
<tr>
<td>Archetypes</td>
<td>Cheerleader + Helper/Magician + the Intelligent One</td>
</tr>
<tr>
<td>Build-up</td>
<td>During an interview, Catalyst found the CEO of a child welfare agency might be actually kidnapping. the team started to track the villain</td>
</tr>
<tr>
<td>Conflict</td>
<td>the team collaboratively track and locate the villain</td>
</tr>
<tr>
<td>Resolution</td>
<td>Catalyst decloak and teleport all the kids out. The team collected more clue about the villain and decided on their next target</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Proj. 4</th>
<th>Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Social Issue</td>
<td>Fighting against discrimination and oppression of the weak or less fortunate</td>
</tr>
<tr>
<td>Archetypes</td>
<td>Leader + Inquisitive + Mentor + Shapeshifter</td>
</tr>
<tr>
<td>Build-up</td>
<td>Three girls went missing. Clockwork tracks a villain to a bar by a candy shop</td>
</tr>
<tr>
<td>Conflict</td>
<td>Clockwork confronted four burly men and got injured. Siren rushes to distract the villains with his superpower and saved clockwork out. Samsara helped them out. Three superheros introduced each other.</td>
</tr>
<tr>
<td>Resolution</td>
<td>The team realized that the woman that they were trying to save was the villain.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Proj. 5</th>
<th>Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Social Issue</td>
<td>ruin the governmental plans to possess a very powerful nuclear weapon</td>
</tr>
<tr>
<td>Archetypes</td>
<td>Trickster + Warrior + Magician</td>
</tr>
<tr>
<td>Build-up</td>
<td>In one of the small boom towns in California,people live self sufficiently. In recent years there is a multi-year drought, the local farmers have come under increasing pressure to sell their land to a factory farm belonging to a multinational agri-business.</td>
</tr>
<tr>
<td>Conflict</td>
<td>Poison Ivy has been trying to fight the company but was not successful. Jacque and Lightfoot were tracking some gene-mutated animals. They teamed up and found that the company is doing genetic mutation on animals.</td>
</tr>
<tr>
<td>Resolution</td>
<td>Found the company was actually doing genetic mutation on animals.</td>
</tr>
</tbody>
</table>

Table 8.3: Sample Team Track projects.

8.3.4 Post-course Survey

The post-course survey (Appendix B) examined how team collaboration impacted students’ course experiences, commitment and satisfaction. As only 16 students participated in the team track, we asked students why they chose not to participate in the team track. The main reasons they listed were:
1. Lack of time, will not be reliable enough for a team.
2. Prefer to write a solo story of his/her superhero.
3. Worry about the coordination that will be needed for the team track.

The students who participated in the team track reported that they were satisfied with their team experience and final project submission (4.3 on average, 1-5 range). They stated that the difficulties of working in a team include initial communication, time zone issues, team members dropping out or dropping in too late and getting everyone on the same page. Many participants stated that they would like a better communication tool for the team.

8.4 Discussion

In this study, we were able to adapt our team formation paradigm in the superhero MOOC. We also gained insights into how to organize the team collaboration in a MOOC. We see that students can collaborate using the beta version of edX team space. Since few students participated in the team track, there is no clear evidence for the benefits of our team formation algorithm.

Previous work has shown that merely forming teams will not significantly improve student engagement and success [212]. Moreover, we cannot assume that students will naturally populate the team-based learning platforms in MOOCs, as they don’t yet know why or how they should take advantage of peer learning opportunities. To encourage participation, researchers have suggested that instructors take a reinforcing approach online by integrating required team-based learning systems into the core curriculum, or offering extra-credit for participation, rather than merely providing optional “hang-out” rooms. In our study, we also observe students are reluctant to participate in the optional team track since it requires more coordination and work. Therefore, in an educational setting like MOOC, we suggest that both carrots and sticks are needed to encourage collaborative communication [102].

An important step of our team formation paradigm is for the students to first finish individual work before team collaboration, which helps to build momentum for the team collaboration. However, MOOC students may not keep up with the course schedule. Indeed, most students procrastinate and finish the entire course project in the last week of the course. In this course, only 83 students finished the individual assignments in Week 1 and Week 2 by the end of Week 3. Therefore, most students did not finish their individual work on time to post in the course forum, even if they intended to join the team track. This might be another factor that contributed to the low participation rate in the team track.

186 students responded to our optional, anonymous post-course survey. In response to the survey question “I would take this course again to...”, 31% of students indicated that they might take the MOOC again to try the team track. This was the third most frequent reason for taking the MOOC again. Therefore, in the second intervention experiment, we design a team-based
MOOC as an extension for alumni students who have taken the superhero MOOCs before.
Chapter 9

Study 7. Team Collaboration as an Extension of the MOOC

In the first intervention experiment (Study 6), only 16 students participated in the optional team track. However, in the post-course survey, 31% of the students indicated that they would like to take the MOOC again to try the team track. This was the third most stated reason for wanting to re-take the MOOC. In Study 7, we design a three week team-based MOOC for alumni of the superhero MOOCs. That is, the students in Study 7 had previously finished a superhero design or analysis as part of the original MOOC. To finish this course, all students are required to collaborate on a team project to design a superhero team using the superheroes they designed or analyzed in the individual track.

9.1 Research Questions

Our crowdsourced studies have demonstrated that teams that are formed based on transactivity evidence performed better as a team, i.e. demonstrated better knowledge integration. In Study 6, too few students participated in the transactivity maximization team formation algorithm, so our data could not support definitive comparisons between work produced by teams formed through the team formation algorithm as compared to random team formation. In Study 7, we attempt to answer the same research questions: (1) Does our team formation process will work in a real MOOC environment? (2) Can we see evidence of the benefit of our team formation method? Although we did not run an A/B comparison where some teams were formed randomly and others were formed based on the algorithm, our initial analysis shows natural variation in the level of transactive discussion among team members during deliberation. Therefore, the level of transactive discussion during deliberation correlates to team performance, which indicates that the team formation method is successful.

Based on the results of our crowdsourced team formation studies (Study 3 and 4), we hypothesize that teams that engage in more transactive discussions during community deliberation will work better as a team and produce better work than would teams that engage in little transactive discussions. To measure team performance, we evaluate how complete the final project is. To evaluate team participation and process, we measure (1) how many students participated in
the team project, (2) how well the superhero team stories are integrated, and (3) if one student (superhero) dominates the story. In particular, we check if each of the heroes interact with each other in the story.

9.2 Adapting Our Team Formation Paradigm to This MOOC

During the MOOC, my role as facilitator follows that of Study 6. In Study 7 I again worked as course staff and was responsible for grouping students, sending out team assignment emails, replying to emails and creating course forum posts related to team formation and team collaboration. I also served as the “data czar” for SmithsonianX, for which I received weekly course data from edX, including enrollment information and discussion posts. This MOOC ran for three weeks. In Week 1 and Week 2, instructors prepared new videos and reading material about how to design the essential elements of a superhero team. No new instructional material was created for Week 3.

We slightly modified our team formation paradigm for this extension MOOC. Students completed two steps to finish the course: Course Community Deliberation (Week 1) and Team Collaboration (Week 2 and 3). Since all enrolled students previously finished a superhero MOOC project, this MOOC did not dedicate course weeks to students’ individual work.

9.2.1 Step 1. Course Community Deliberation

In Week 1, students participated in community deliberation, which took place in the entire course forum rather than dedicated team forums. In this step, students first post their superhero design or analysis from the original course as a new thread then comment on at least three other superheroes. To encourage students to provide feedback transactively, we suggested that they comment on one element of the hero that was successful and on one element that could be improved. In total 208 students posted their previous superhero sketchpad or analysis.

We randomly sampled 300 comment posts from the community deliberation. Each post was then annotated as transactive or non-transactive. Although we did not explicitly ask for transactive discussions, 60% of the posts displayed transactivity. This demonstrates that with little discussion scaffolding, the level of transactivity during MOOC forum discussions compares favorably to the level in our MTurk experiments.

Team formation

In this study, we completed the transactive maximization team formation at the end of Week 1. First, we hand-annotated 300 randomly-sampled reply posts. Based on those results, we then trained a logistic regression model to predict whether a comment post is transactive or non-transactive. Although we planned to use whether a student had designed or analyzed a superhero as the Jigsaw grouping conditions, too few students (10) had previously done so. Thus, we did not include a Jigsaw grouping.

Students were assigned to teams of four in the beginning of Week 2. To ensure that teams were comprised of students at a similar motivation level, we did not group verified and unverified
students into the same teams. That is, we assumed that paying for the verified certificate may indicate that the student is more motivated to finish the MOOC. In total, we formed 38 unverified teams and 14 verified teams. In a manipulation check, we verified that the maximization successfully increased the average within the team transactive exchange over what would have been present from random selection. Table 9.1 shows the average number of transactive exchanges in the formed teams and what we would observe in randomly formed teams. On average, verified teams displayed more transactive exchanges during course community deliberation compared to unverified teams.

<table>
<thead>
<tr>
<th>Transactivity Maximization</th>
<th>Unverified Teams</th>
<th>Verified Teams</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random</td>
<td>7.81</td>
<td>9.92</td>
</tr>
<tr>
<td></td>
<td>0.35</td>
<td>2.08</td>
</tr>
</tbody>
</table>

Table 9.1: Average number of transactive exchanges within Transactivity-maximized teams and Randomly-formed teams in the course community deliberation.

9.2.2 Step 2. Team Collaboration

In Week 2 and Week 3, the teams collaborated on designing a superhero team. As in Study 6, we created an initial post in each team space (see Figure 9.1). In this post, we encouraged team members to discuss their project using the team space. We also encouraged them to schedule a synchronous meeting. Since students in Study 6 reported that the synchronous chat tool was not useful, we did not provide the tool for teams in Study 7.

Figure 9.1: Initial Post.

9.3 Team Collaboration and Communication

In the post-course survey, almost half of the students indicated that they communicated about once a day with their team, as shown in Figure 9.2.

Team collaboration in the team space typically followed three stages.
9.3.1 Stage 1. Self-introductions

Most teams began their collaboration by introducing themselves and their superheroes. They usually posted their superhero and gave each other further feedback (see Figure 9.3).

![Figure 9.3: Self introductions.](image)

9.3.2 Stage 2. Collaborating on the Team Google Doc

The project submission of this MOOC is in the form of a Google Doc. Each team shared their superhero team Google Doc in the team space.

Most teams started a thread to brainstorm their superhero team name and story line. An example is shown in Figure 9.4. Here the team demonstrated a process where each team member built on the previous team member’s contribution. In the thread starter, one student (S1) proposed a rough initial idea, “maybe someone should die saving the others. or something like that.”
Then, a second student (S2) added a more concrete story: “I think it makes sense for one of the detectives/police characters to assemble the team by seeing a pattern and discovering that with the criminal behavior, there has also been a pattern of vigilante (good) behavior by our heroes in their respective regions.” Based on S2’s idea, the third student (S3) wrote four stories, in each story, one of the four heroes assembles the team. Then S2 further built on S3’s four possible story lines, and argued for one of the stories: “I was thinking maybe Water Witch could be the one recruiting everyone? I think she’s been around more. Jade would be too busy dealing with the chaos as a police and superhero-ing within her city...”. Through transactive discussion, the students continued to improve on each other’s story. This process demonstrates the importance for team members to respect each other’s ideas during the collaborative story telling task.

9.3.3 Stage 3. Wrap Up

At the end of the course, many teams post the team project to the community forum and asked for final edits and opinions before they clicked the “Mark as Complete” button. Many team members thanked each other and exchanged personal contact information.
9.4 Results

9.4.1 High completion rate in the team-based MOOC

In total, 770 students enrolled in the extension team-based MOOC. 106 of them paid for the verified track. By the end of Week 1, 208 students had posted their previous superhero story or analysis. From that group, we formed 52 teams of four, each of which submitted their team project. Of all the 208 students who were assigned to teams, 182 students (87.5%) actively collaborated in their teams and finished the course.

The completion rate in a typical MOOC is around 5\% [101]. We think there are several factors that contributed to the high retention rate observed in our team-based MOOC. First, in our study, all enrolled students were alumni from previous offerings of this MOOC, i.e. students who had demonstrated willingness to finish a MOOC on a similar topic. Second, our team formation process only groups students who have posted their individual work in the course discussion forum. This screening process ensures that students who are assigned to teams intend to work in a virtual team. Third, the extension MOOC is short (only three weeks) compared to a typical (5-6 week) MOOC. Finally, the carefully designed team-based learning experience may have contributed to students’ commitment. Therefore, it is not surprising that the retention and completion rates in the formed teams is significantly higher than for typical MOOC students. Further experimentation is required to fully understand the effect of team-based learning on student commitment in MOOCs.

9.4.2 Teams that experienced more transactive communication during deliberation had more complete team projects

A SmithsonianX staff evaluated the team projects with a 4-point scale where 4 = Finished all the components, 3 = Only missing panels, 2 = Only missing story and panels, and 1 = Missing more than story or panels. 40 teams (77%) finished all required components. The average team project score was 3.60 (SD = 0.80). Table 9.2 shows the number of teams according to score earned.

<table>
<thead>
<tr>
<th>Score</th>
<th>Total Teams</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>40</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 9.2: Finish status of the team projects.

Teams were formed with the transactivity maximization algorithm. But since levels of transactive discussions vary during deliberation, we examine the relationship between the number of transactive discussions among team members during deliberation and our measures of team process/performance. The number of transactive contributions among team members during the community deliberation marginally associated with the team project score ($F(1, 50) = 2.97, p < 0.1$). The verified status of the team and whether one student in the team completed a superhero analysis had no significant association with the the team project score. Since our team formation maximized teams’ average amount of transactive communications, this suggestive evidence indicates that our team formation method may improve overall team performance, even in the noisy learning environment.
real MOOC context.

9.4.3 Teams that experienced more transactive communication during deliberation demonstrated better collaboration participation

To examine the effect of grouping on team collaboration participation, we counted how many students actually participated in the team project. For a student to count as having participated, their hero needed to appear in the story. The number of transactive exchanges among team members during community deliberation significantly associated with how many students participated in the collaboration (\(F(1,50) = 5.85, p < 0.05\)). Whether team members were verified or not and whether there was one student in the team who did a superhero analysis had no significant association with how many students participated in the collaboration.

To determine if students in the team interacted, we checked if each superhero in the story interacted. Overall, in 44 superhero team stories (85%) at least one scene involved all four superheroes interacting with each other. Controlling for whether the team members were verified students, the number of transactive exchanges during community deliberation marginally effected whether or not all the superheroes interacted (\(F(2,49) = 4.38, p < 0.1\)). Superheroes in a verified team were significantly more likely to interact compared superheroes from unverified teams (\(p < 0.05\)). These findings indicate that teams that experience more transactive discussion have better team collaboration participation.

There were 15 teams where one student (superhero) dominated the team story. The number of transactive communications during community deliberation did not significantly effect whether one superhero dominated the story (\(F(3,41) = 1.50, p < 0.1\)), nor did the verified status of the team significantly effect whether all superheroes interacted (\(p = 0.59\)). A mixed team where there was one student from the Historical Track was significantly more likely to have one superhero that dominates the story (\(p < 0.05\)).

9.4.4 Observations on the effects of transactivity maximization team formation

The transactivity maximization team formation tends to assign students with a history of transactive discussion into teams. Many posts in the team spaces suggested that students recognized their former team members: “I’ve already read your story in week 1”, “I am happy to see that my team members had characters that I was familiar with.” “Sup Ron, first of all; thanks for your comments on Soldier Zeta”. Having a previously established working relationship created a friendly start for the team. Some students even indicated that they already had idea about how to collaborate: “I can already see Osseus and the Soul Rider bonding over the fact your character had a serious illness and The Soul Rider brother was mentally handicapped”, “We’ve already exchanged some ideas last week, I think we can have some really fun dynamics with our crew of heroes!”.
9.4.5 Satisfaction with the team experience

In total, 138 students (66%) responded to our optional, anonymous post-course survey. Satisfaction with the team experience and the final team project was rated on a scale from 1-5 with 5 being very satisfied. On average, the students reported satisfaction with the team experience at 4.20/5 (SD = 1.22). Satisfaction with the project was reported at 3.96/5 (SD = 1.06). Overall, students reported being satisfied with their team experience and project submission.

In response to the survey question “What was the biggest benefit of participation in the team?”, students’ top three answers were “The MOOC is more social” (41%), “Get feedback or help” (25%) and “Take on a more challenging project” (24%).

9.5 Discussion

9.5.1 Permission control for the team space

The teams relied primarily on the team space as their management and communication tool. The list of teams and the discussion threads in the team space were visible to all students who enrolled in the MOOC (Figure 9.5). After teams were formed, we listed the members’ edX usernames in the team description in the team space. We also emailed each student with the url to their team space.

Because it is still in beta version, the team space does not allow instructors to limit who can join the team; anyone can join a team that is not yet full. Consequently, three students who had not posted their individual work to the forum on time joined a team and took the spot of others. In these cases, the original team members emailed us for help. We contacted the students and asked them to join a new team. This problem can be easily solved by adding a verification to the team space so that only assigned team members can join the team.

Another limitation to the current version of team space is that instructors can only set one size (i.e. number of students who can join) for all the teams. Future versions should allow instructors to set the size of each team as they are created.

Team collaboration communication technologies

Since there was no support for synchronous communication and personal messaging functions in edX, most of the teams communicated asynchronously over the chat and comment functions in the team space or Google Doc. 10 teams scheduled synchronous meetings over Skype/Google Hangout in the team space. At least 6 teams communicated using Facebook groups. In the post-course survey, 20% of students indicated that they emailed their team members directly.

Many students felt that the team discussion space was difficult to use as messages were buried and students were not notified when a new message was posted in their team space. This made it difficult to keep up with the discussion unless students remembered to check for and sort through messages every day. We think a well-integrated team synchronous communication and a messaging tool would benefit the team space design.

One of the survey questions asked “What was most difficult about working in your team?” 30 (21.9%) students mentioned that it was very difficult to communicate with their teammates.
Coordinating team collaboration

In this deployment study, our main intervention was team formation. We did not provide structured team collaboration support. One course staff checked each team space daily and provided feedback when needed. In the course announcement, we offered Skype/Google Hangout team mentoring to students who had struggled to get their team going or who experienced difficult working in their team. During the MOOC, two teams emailed us about conflicts and asked for Skype/Google Hangout meetings. After consultations with our staff, however, the students refused to continue working together. In the end, we decided to split two of the problematic teams into two teams.

When tension builds in a team, team members may become more reluctant to meet with each other and resolve the issue. The problems these teams encountered were mostly related to students’ varied pace in the course. Students who joined teams late found it difficult to contribute meaningfully to the group. In other instances, team members refused to incorporate the latecomers’ edits or suggestions into the group work. We think that offering clearer guidelines about working in a MOOC team at the beginning of the course may help these teams.

How to best coordinate teams of students who have their own schedules is an open question. We think it is important to have a “kick-off” meeting at the beginning of the team collaboration, which may help synchronize team members and establish a team collaboration schedule. Another option is to split the team task into modules and send out reminders before the expected deadline. A few teams used to-do lists to split the project into smaller, more manageable tasks, as shown
in Figure 9.6. To-do lists seem to be an effective way of coordinating virtual team members (cf. 98).

![Figure 9.6: A to-do list.](image)

Team leader role

Six of the 52 teams chose a leader at the beginning of their collaboration (see Figure 9.7). Whereas students who initiated the teams automatically become the team leader in NovoEd MOOCs, the superhero MOOC teams relied on voluntary leaders. In both cases, team leaders demonstrate similar leadership behaviors in terms of initiating and coordinating the tasks. However, unlike leaders in NovoEd MOOCs, leaders in the superhero MOOC did not need to recruit new members. Notably, each of the 6 voluntary student-led teams completed all of the project components. Usually the team leaders took the lead by posting the shared team Google Doc to the Team Space.

Benefit of community deliberation in a MOOC

One benefit of course community deliberation is students can receive feedback and support from all students in the course. In Week 1, 208 students posted more than one thousand posts and comments about their superhero designs in the discussion forum. Although we did not require students to discuss transactively, 60% of comments fell in this category. This discussion itself is a beneficial learning experience for students. At the end of the course, 44 of the 52 teams
voluntarily posted their superhero team story to the forum for further community feedback. Furthermore, discussion and feedback in the course forum continued even after the course ended. We think this demonstrates the benefit of having course community discussion before small team collaboration.

Compared to the NovoEd MOOCs analyzed in Study 2, the superhero MOOCs showed very little activity in the course discussion forum. We attribute this discrepancy to our deliberation-based team formation method, which provided students with the benefit of big community feedback.

Team collaboration as an extension MOOC

In Study 6, we explored one possible setting of team-based learning in a MOOC, i.e., provide an optional team track of study. Unfortunately, few students chose to participate in the team track. Conversely, in Study 7, many students successfully finished an extension team-based MOOC where all students worked in small teams to finish the course. From our two deployment studies, we see that more students participated in the team-based MOOC setting, where team collaboration is mandatory and better incorporated into the MOOC. We also received emails from students inquiring about when the team extension MOOC will be offered again. Due to the popularity of this extension MOOC, SmithsonianX plans to offer it again.

There are many reasons why a team-based MOOC may be more popular than an optional team track. First, compared to an individual track, the team track study requires more work and coordination. Students need more incentives to participate in team collaboration if it is not required to pass the course. Second, in a team-based MOOC, the instructional materials may better adapt to the team project and team collaboration. In Study 7, for example, the video lectures were designed to teach students how to design a superhero team. In an optional team-track MOOC, on the other hand, instructional materials may be less appropriate or helpful to the team collaboration project. Finally, our team formation paradigm required students to finish individual work before small team collaboration. Fewer MOOC students were able to finish their individual work and post it by the team formation deadline.
Different tracks

Across the two deployment studies, the majority of participants in the team collaboration were students from the Creative Track. Out of the 208 people who participated in team collaboration in this MOOC, only 10 of them were from the Historical Track. We formed 10 mixed groups which consisted of three Creative Track students and one Historical Track student. We did not observe that the inclusion of a Historical Track student significantly impacted project completion status, i.e. whether all superheroes interacted in the team story and number of students who participated. However, teams with a Historical Track team member were significantly more likely to have one student (superhero) dominate the story.

9.5.2 Team Member Dropout

A key challenge in coordinating team-based MOOCs is team member dropout. Although in this deployment study each team had at least two active members who finished the course, we received two emails from students early in the MOOC who stated that no other team members were active; those members did re-join them later in the course. In the post-course survey, 7 people mentioned that team members’ disengagement or dropout was the most difficult aspect about working in their team. If there was only one active student in a team, we need to either re-group students (if all other members drop out) or the course needs to design an individual version (so the student could finish the course independently).

9.5.3 The Role of Social Learning in MOOCs

Online learning should have a social component. How to do that in the context of Massive Open Online Courses (MOOCs) is an open question. This research addresses the question of how to improve the online learning experience in contexts in which students can collaborate with a small team in a MOOC. Forums are pervasive in MOOCs and have been characterized as “an essential ingredient of an effective online course [122], but early investigations of MOOC forums show struggles to retain users over time. As an alternative form of engagement, informal groups associated with MOOC courses have sprung up around the world. Students use social media to organize groups or meet in a physical location to take the course together.

In classrooms, team-based learning has been widely used in the natural sciences, such as math or chemistry, as well as in the social sciences [178]. In fact, the “Talkabout” MOOC group video discussion tool has been popular in the social sciences [1]. We think that social science MOOCs would benefit more from having a team-based learning component.

9.6 Conclusion

In Study 7, we were able to adapt our team formation paradigm in a three-week extension MOOC. Similar to Study 6, we see that most teams can collaborate and finish their team project

1https://talkabout.stanford.edu/welcome
using the beta version of edX team space. We also better understand how to coordinate and support team collaboration in a MOOC.

Despite the contextual factors that might influence the results, we see that the teams that had higher levels of transactivity during deliberation had more students who participated in the team project and better team performance. This correlational result combined with the causal results in the controlled MTurk studies demonstrate the effectiveness of our team formation process. In the future, A/B testing on the team formation method could be used to compare algorithm-assigned teams with self-selected teams.
Chapter 10

Conclusions

The main goal of my dissertation is to explore how to support team-based learning, especially in MOOC environments where students come from different backgrounds and perspectives. I started by investigating which process measures are predicative of student commitment (Study 1) and team performance in NovoEd MOOCs (Study 2).

Based on the corpus analyses in Study 1 and Study 2, we designed a deliberation-based team formation where students hold a course community deliberation before small group collaboration. The key idea is that students should have the opportunity to interact meaningfully with the community before assigning teams. That discussion not only provides evidence of which students would work well together, but it also provides students with insight into alternative task-relevant perspectives to take with them into the collaboration. Then we formed teams that already demonstrate good team processes, i.e. transactive discussions, during course community deliberation. Next, in Study 3 and Study 4, we evaluated this virtual team formation process in crowdsourced environments using the team process and performance as success measures. In Study 5, we explored how to automatically support virtual team collaboration discussion in MTurk environment. Given our initial success in the crowdsourced experiments, the final two studies examined the external validity within two real MOOCs with different team-based learning settings. Ultimately, my vision was to automatically support team-based learning in MOOCs. In this dissertation, I have presented methods for automatically support team formation and team collaboration discussion.

10.1 Reflections on the use of MTurk as a proxy for MOOCs

Rather than trying out untested designs on real live courses, we have prototyped and tested the approach using a crowdsourcing service, Amazon Mechanical Turk. MTurk is extremely useful for piloting designs: it is much faster to run MTurk experiments than lab studies or deployment studies, which enables researchers to quickly iterate designs.

Another advantage to MTurk is its recruiting base. In our crowdsourced studies, we have experimented with over 200 teams composed of more than 800 individual Turkers. It is very difficult to recruit such a big crowd for lab studies.

Like lab studies, crowdsourced environments are appropriate for running controlled experi-
ments. A MOOC environment is noisy, i.e. many factors can influence the outcomes. Under the course or instructor’s constraints, it can be difficult to do A/B testing in real MOOCs.

While crowd workers likely have different motivations than MOOC students, their remote individual work setting without peer contact resembles today’s MOOC setting where most students learn in isolation [41]. With adaptation, we were able to use the same team formation process in our MTurk experiments as in real MOOCs. Therefore, we think MTurk experiments are appropriate for testing team collaboration/communication support designs as a proxy for real-world settings where participants communicate with each other online, such as online communities.

Crowdsourced experiments may not represent how MOOC students will adopt or enjoy the designs. Since crowd workers work for pay, compensation is the main factor that affects their participation rates. This is obviously not the case for MOOC students.

It is crucial to understand how many students will actually adopt or enjoy the designs by doing deployment studies. This thesis examined the effects of the grouping process within these diverse populations in order to explore general principles that can help form online collaborative teams. The deployment studies will also shed light on what support is still needed in addition to the current designs.

10.2 Contributions

My dissertation makes contributions to the fields of collaborative crowdsourcing, online learning, Computer-Supported Collaborative Learning and MOOC research. The contributions span theoretical, methodological, and practical areas.

Collaborative crowdsourcing, i.e. the type of crowdsourcing that relies on teamwork, is often used for tasks like product design, idea brainstorming or knowledge development. Although an effective team formation method may enable crowds to do more complex and creative work, forming teams in a way that optimizes outcomes is a comparably new area for research [120]. Based on the collaborative learning literature, this thesis proposed a practical way of forming efficient crowd worker groups to perform interdependent tasks.

For the field of Computer-Supported Collaborative Learning, we extended a learning science concept of Transactivity and designed and validated a team formation and communication support for team-based learning in MOOCs. We demonstrated that findings from collaboration in one context (i.e., students interacting in a whole class discussion forum) make predictions about how students will collaborate in small group. Therefore, we can group students into effective teams automatically based on their discussion trace during a course community deliberation.

Previous work has highlighted MOOC students’ need for social learning [57]. Cooperative learning techniques like Lightweight Teams [113] provide social, collaborative learning opportunities to students in flipped classrooms. But extending these techniques to distance learning settings is not straightforward. Keeping distributed students engaged and encouraging collaborative peer learning in distance environments is challenging. Our work demonstrate that it is possible to coordinate team-based learning in MOOCs which currently exhibit low retention rates.

For MOOC practitioners, my thesis includes practical design advice for how to incorporate team-based learning into a MOOC. Our team formation process can be adapted to future team-
based MOOCs.

10.3 Future Directions

This thesis opens several avenues of exploration for many features of team-based learning or team collaboration that are being adapted to online contexts. Specifically, this thesis suggests that future work should examine different types of individual work or deliberation tasks to prepare participants for team collaboration, ways of supporting online community deliberation, and support for synchronous/asynchronous team communication and collaboration. The problems we observed in the deployment studies indicate directions of how to better coordinate team collaboration and support virtual team communication to avoid tension build-up.

This thesis may also lead to future studies that explore additional ways that evidence of future collaboration potential could be gathered from large group activities.

10.3.1 MTurk vs. MOOC environment

This thesis demonstrates how the MTurk environment can be useful for MOOC and CSCL research. Our deployment studies show that team formation results from controlled experiments of teamwork in MTurk experiments can transfer to teamwork in MOOCs. Future experiments can compare the different populations. In our future work, we want to deploy our synchronous team communication support, which has been tested in the MTurk environment, into MOOCs.

CSCL research has previously relied on lab studies or student participants. Our study results indicate that we can do MTurk experiments that involve a collaborative learning task and measure learning gain.

10.3.2 Compared with self-selection based team formation

In this thesis, we have compared transactivity-based team formation with random team formation in crowdsourced environment. Part of the effect of transactivity-based team formation comes from participants’ self-selection during a community-wide deliberation. A natural next-step is to compare our team formation method with self-selection based team formation, both in the crowdsourced environment and in real MOOCs.

10.3.3 Virtual Team Collaboration Support

In our deployment study, several teams had conflicts during collaboration. They may benefit from team collaboration support that helps the team members stay on the same page. Many teams found it difficult to communicate due to their different time zones. In future work, we would like to explore how to better support virtual team collaboration, especially in future MOOC deployment studies.
10.3.4 Community Deliberation Support

In our deployment study, the number of transactive discussions between team members positively correlated with team performance. In future work, we can better scaffold transactivity during community deliberation to help improve team collaboration. In both our MTurk and deployment studies, in order to encourage participants to discuss transactively, we designed discussion instructions as scaffolding for community deliberation. In future work, we would like to explore ways to provide dynamic support during deliberation. For example, we can provide real-time feedback to encourage the student to comment transactively.

When there are too many participants in the community deliberation (e.g. more than 1,000), navigability may become another challenge for participants’ online community deliberation [182]. It is challenging for students to browse through hundreds or even thousands of threads. It may be useful to recommend threads to a participant when he or she joins the community deliberation based on his or her individual work.

10.3.5 Team-based Learning for Science MOOCs

The team formation process in this thesis was tested within a social science MOOC. Whether it will work for a programming or math MOOC requires further research. As many researchers and instructors have found, topics like physics that seemingly don’t benefit from collaboration may still benefit from group discussions [124]. For example, a programming MOOC may also benefit from having a course project where student teams collaborate on a software design. In that case, the course community deliberation might include brainstorming about the design and implementation of the software.

10.4 Design Recommendations for Team-based MOOCs

In pursuing an understanding of how team formation processes and collaboration communication support can improve team performance in team-based MOOCs, we have generated design recommendations for improving online courses. Our recommendations are as follows: (1) Enable course instructors to assign students as members of a team, so that the other students cannot join the team without the instructor’s permission. (2) Provide a private messaging function so that students receive new message notifications when they log in to the platform. The messaging system should also enable course instructors to send private messages to teams. (3) Provide an optional team to-do list function so that students can break down the team project into smaller tasks. (4) Provide a “Doodle” poll function so team members can easily schedule synchronous meetings. (5) Provide a space in the team space which designated to sharing a team Google Doc so that students can easily locate their project.

Design recommendations for team-based MOOC instructors include: (1) Adapt the team formation process to the contents of the course. (2) Consider how time zones may affect team formation.
Chapter 11

APPENDIX A: Final group outcome evaluation for Study 4

We evaluate the final group outcome based on the scoring rubrics shown in Table 11.1-11.4.

<table>
<thead>
<tr>
<th>Score</th>
<th>Energy source X Requirement</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>The sentence explicitly, correctly considers at least one of the eight requirements.</td>
<td>(1) While windfarms may be negative for the bird population, we will have to have environmental studies done to determine the impact.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2) Hydro power is an acceptable solution to sustainable energy but the costs may outweigh the benefits.</td>
</tr>
<tr>
<td>0</td>
<td>The sentence does not explicitly consider at least one of the eight requirements.</td>
<td>(1) Hydro does not release any chemicals into the water.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reason: this does not release any chemicals into the water.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2) Nuclear power other than safety</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reason: this statement is wrong since nuclear power does not meet all the other requirements.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3) I agree, wind power is the way to go.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reason: this statement is wrong since wind power does not meet all the other requirements.</td>
</tr>
</tbody>
</table>

Table 11.1: Energy source X Requirement

Next week, you’ll pull all your work on these ideas together in an original story and a final report. Before you can do either, you need to do the analysis. When you’re ready begin answering the three questions above, turn to the next page.
<table>
<thead>
<tr>
<th>Score</th>
<th>Energy X Energy Comparison</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>The sentence explicitly, compares two energy resources.</td>
<td>It is much more expensive to build a hydro power plant than it is to run a windfarm and and the city has a tight energy budget. Reason: this statement compares hydro power and wind power.</td>
</tr>
<tr>
<td>0</td>
<td>The sentence does not explicitly compares two energy resources.</td>
<td>The drawback is that wind may not be reliable and the city would need to save up for a better source Reason: this statement only refers to one energy source.</td>
</tr>
</tbody>
</table>

Table 11.2: Energy X Energy Comparison

<table>
<thead>
<tr>
<th>Score</th>
<th>Address additional valid requirements</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>The statement correctly considers one or more requirement that is not one of the eight requirements.</td>
<td>(1)Hydro plants also require a large body of water with a strong current which may and the city has a tight energy budget. not be available in the city. Reason: this statement considers a requirement of a large body of water for hydro power to work for this city. But this requirement is not one of the eight requirements. (2) Coal - Abundant, cheap, versatile Reason: Abundant and versatile are extra requirements.</td>
</tr>
<tr>
<td>0</td>
<td>The sentence does not consider an extra requirement or the statement is wrong.</td>
<td>(1)The wind farm could be placed on the large amounts of farmland, as there is adequate space there. Reason: farmland is one of the requirements energy source.</td>
</tr>
</tbody>
</table>

Table 11.3: Address additional valid requirements.
Table 11.4: Address additional valid requirements.

<table>
<thead>
<tr>
<th>Score</th>
<th>Incorrect requirement statements</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>The sentence contains wrong statement or the sentence is overly conclusive.</td>
<td>(1) Hydro does not affect animal life around it. Reason: hydro power has a big impact on the natural environment nearby. not be available in the city. Reason: this statement considers a requirement of a large body of water for hydro power to work for this city. But this requirement is not one of the eight requirements. (2) Coal - Abundant, cheap, versatile Reason: Abundant and versatile are extra requirements.</td>
</tr>
<tr>
<td>0</td>
<td>The statement in the sentence is mostly correct.</td>
<td>(1) Hydro does not affect animal life around it. Reason: hydro power has a big impact on the natural environment nearby.</td>
</tr>
</tbody>
</table>
Chapter 12

APPENDIX B. Survey for Team Track Students

1. What did you expect to gain from joining a team?
 A. Get feedback or help
 B. Make the course more social
 C. Take on a more challenging project
 D. Other, please specify:

2. How satisfied were you with your team’s experience overall?
 Not at all satisfied - Very satisfied

3. How satisfied were you with the project your team turned in if any?
 Not at all satisfied - Very satisfied

4. What was the biggest benefit of participation in the team?
 A. Get feedback or help
 B. Make the course more social
 C. Take on a more challenging project
 D. Other, please specify:

5. What was missing most from your team experience?
 A. Get feedback or help
 B. Make the course more social
 C. Take on a more challenging project
 D. Other, please specify:

6. How often did you communicate with your team?
 A. About once a day
 B. About once a week
 C. Only a couple of times
 D. We did not communicate at all
7. What technologies did you use for your team work? Please check all that apply.
 a. EdX team space
 b. EdX messages
 c. EdX discussion board
 d. Chat tool
 e. Email
 f. Smithsonian discussion board
 g. Skype or Google Hangout
 h. Phone call
 i. Other tool, please specify:

8. What was most difficult about working in your team?

9. Which aspects would you have preferred to be managed differently (for example, how and when teams were assignment, the software infrastructure for coordinating team work, tools for communication?) Please make specific suggestions.

10. If you take another MOOC in the future with a team track option, would you choose to take the team track? Why or why not?
Bibliography

[12] Lars Backstrom, Dan Huttenlocher, Jon Kleinberg, and Xiangyang Lan. Group formation

[21] Camiel J Beukeboom, Martin Tanis, and Ivar E Vermeulen. The language of extraversion extraverted people talk more abstractly, introverts are more concrete. Journal of Language and Social Psychology, 32(2):191–201, 2013. [4.3.3] [4.3.3]

[26] Christopher G Brinton, Mung Chiang, Shaili Jain, Henry Lam, Zhenming Liu, and Felix

[41] D Coetzee, Seongtaek Lim, Armando Fox, Björn Hartmann, and Marti A Hearst. Structuring interactions for large-scale synchronous peer learning. In CSCW, 2015. 1, 3.2.2, 3.2.3, 6.1, 6.2.1, 6.3, 10.1

[47] Stata Corp. Stata Statistical Software: Statistics; Data Management; Graphics. Stata Press, 1997. 3.1.2

[49] Cristian Danescu-Niculescu-Mizil, Moritz Sudhof, Dan Jurafsky, Jure Leskovec, and Christopher Potts. A computational approach to politeness with application to social factors. ACL, 2013. 5.4.2

[50] Eustáquio São José de Faria, Juan Manuel Adán-Coello, and Keiji Yamanaka. Forming groups for collaborative learning in introductory computer programming courses based on students’ programming styles: an empirical study. In Frontiers in Education Conference, 36th Annual, pages 6–11. IEEE, 2006. 2.3.1

[51] Richard De Lisi and Susan L Golbeck. Implications of piagetian theory for peer learning. 1999. 1, 2.1.3, 2.2, 2.3.2, 3.1.1, 6.1, 6.4.2

[54] Ronald Decker. Management team formation for large scale simulations. Developments in Business Simulation and Experiential Learning, 22, 1995. 2.3.1

[58] Willem Doise, Gabriel Mugny, A St James, Nicholas Emler, and D Mackie. *The social development of the intellect*, volume 10. Elsevier, 2013. 2.3.1

[67] Oliver Ferschke, Iris Howley, Gaurav Tomar, Diyi Yang, and Carolyn Penstein Rosé. Fostering discussion across communication media in massive open online courses. In *CSCL*, 2015. 1.2.1.2, 2.3.2

[77] Bonnie Grossen. How should we group to achieve excellence with equity?. 1996. [2.3.1]

[84] Khe Foon Hew. Promoting engagement in online courses: What strategies can we learn...
from three highly rated moocs. *British Journal of Educational Technology*, 2015. [2.1.2]

[85] Iris Howley, Elijah Mayfield, and Carolyn Penstein Rosé. Linguistic analysis methods for studying small groups. *The International Handbook of Collaborative Learning*. [2.3.2]

[99] René F Kizilcec and Emily Schneider. Motivation as a lens to understand online learners: Toward data-driven design with the olei scale. *ACM Transactions on Computer-Human Interaction (TOCHI)*, 22(2):6, 2015. [2.2]

[114] Linda Lebie, Jonathan A Rhoades, and Joseph E McGrath. Interaction process in computer-mediated and face-to-face groups. Computer Supported Cooperative Work

[122] Sui Mak, Roy Williams, and Jenny Mackness. Blogs and forums as communication and learning tools in a mooc. 2010.

[140] James W Pennebaker and Laura A King. Linguistic styles: language use as an individual difference. *Journal of personality and social psychology*, 77(6):1296, 1999. 4.3.2 4.3.3 5.4.2

[141] Normand Roy Ibtihel Bouchoucha Jacques Raynauld Jean Talbot Poellhuber, Bruno. and Terry Anderson. The relations between mooc’s participants motivational profiles, engagement profile and persistence. In *MRI Conference, Arlington*, 2013. 4.3.1

[147] Carolyn Rosé, Ryan Carlson, Diyi Yang, Miaomiao Wen, Lauren Resnick, Pam Goldman, and Jennifer Sheerer. Social factors that contribute to attrition in moocs. In *ACM Learning at Scale*, 2014. 3.1.2

[159] Rion Snow, Brendan O’Connor, Daniel Jurafsky, and Andrew Y Ng. Cheap and fast—but

[166] Sue Stoney and Ron Oliver. Can higher order thinking and cognitive engagement be enhanced with multimedia. Interactive Multimedia Electronic Journal of Computer-Enhanced Learning, 1(2), 1999. [4.3.3]

[173] Luis Talavera and Elena Gaudioso. Mining student data to characterize similar behavior groups in unstructured collaboration spaces. In Workshop on artificial intelligence in CSCL. 16th European conference on artificial intelligence, pages 17–23, 2004. [2.3.2]

[183] Sherry Turkle. *Alone together: Why we expect more from technology and less from each other*. Basic books, 2012. 2.1.1

[188] Lev S Vygotsky. *Mind in society: The development of higher psychological processes*. 123

[202] Ian H Witten and Eibe Frank. Data Mining: Practical machine learning tools and tech-
niques. Morgan Kaufmann, 2005. 4.3.2

Developments in Business Simulation and Experiential Learning, 14, 1987. 2.3.1

[204] Anita Williams Woolley, Christopher F Chabris, Alex Pentland, Nada Hashmi, and
Thomas W Malone. Evidence for a collective intelligence factor in the performance of
human groups. science, 330(6004):686–688, 2010. 6.4.2

[205] Diyi Yang, Tanmay Sinha, David Adamson, and Carolyn Penstein Rosé. Turn on, tune in,
drop out: Anticipating student dropouts in massive open online courses. In Workshop on
5.1.2 4.4.1

[206] Diyi Yang, Miaomiao Wen, and Carolyn Rose. Peer influence on attrition in massive open
online courses. In Proceedings of Educational Data Mining, 2014. 5.3.2

[207] Robert K Yin. The case study method as a tool for doing evaluation. Current Sociology,
40(1):121–137, 1992. 3.3

[208] Robert K Yin. Applications of case study research. Sage, 2011. 3.3

[209] Zehui Zhan, Patrick SW Fong, Hu Mei, and Ting Liang. Effects of gender grouping on
students group performance, individual achievements and attitudes in computer-supported
collaborative learning. Computers in Human Behavior, 48:587–596, 2015. 2.3.1

collective cognitive responsibility in knowledge-building communities. The Journal of the
Learning Sciences, 18(1):7–44, 2009. 2.3.1

[211] Zhilin Zheng, Tim Vogelsang, and Niels Pinkwart. The impact of small learning group
composition on student engagement and success in a mooc. Proceedings of Educational
Data Mining, 7, 2014. [1] 2.3.1 6

[212] Zhilin Zheng, Tim Vogelsang, and Niels Pinkwart. The impact of small learning group
composition on student engagement and success in a mooc. Proceedings of Educational
Data Mining, 2014. 8.4

online discussions. Instructional Science, 34(6):451–480, 2006. 3.1.1 4.3.3

[214] Haiyi Zhu, Steven P Dow, Robert E Kraut, and Aniket Kittur. Reviewing versus doing:
Learning and performance in crowd assessment. In Proceedings of the 17th ACM con-
ference on Computer supported cooperative work & social computing, pages 1445–1455.
ACM, 2014. 6.2.1 6.5.3

of educational psychology, 81(3):329, 1989. 2.1.1

[216] Jörg Zumbach and Peter Reimann. Influence of feedback on distributed problem based
Springer, 2003. 2.3.1