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Abstract

Supervised learning involves collecting unlabeled data, defining features to represent an instance,
obtaining annotations for the unlabeled instances, and learning a classifier from the annotated data.
Each of these steps has an associated cost. In this thesis, our goal is to reduce the total cost for the
desired performance in supervised learning. Specifically, we focus on reducing the cost of feature
engineering and the total annotation cost.
An instance in supervised learning is represented by a feature vector. For a text instance, a

bag-of-words feature representation is commonly used, since word segmentation is straightforward
in most languages, and word features have been found to provide good performance for several
learning tasks. However, words are limited in the information they provide about the meaning of
a text. Hand-crafted structured features based on linguistic annotations, such as parts of speech,
semantic roles, syntactic parse trees, etc., have been found to improve performance beyond bag-
of-words features. However, such manually engineered features require substantial e↵ort from
the expert. In this work, we propose a generic annotation graph representation for linguistic
annotations, and use a frequent subgraph mining algorithm to automatically extract structured
features from the annotation graphs. For a sentiment classification task and a protein-protein
interaction extraction task, we show that these automatically extracted structured features provide
a significant improvement in performance over bag-of-words features.
Training a classifier involves learning a function of the features to approximate the target variable.

To learn a good approximation, several labeled instances are needed. Labeling an instance may
require substantial annotation e↵ort, called the annotation cost. In order to reduce the total
annotation cost for the desired performance, in addition to labeling the instances, the user could
provide information about the features directly. Direct feedback on features has been shown to
reduce the total number of labeled instances required to achieve the desired performance. However,
such feedback is restricted to simple features, such as words. Linguistic features, hand-crafted or
automatically extracted, are often di�cult to visualize and present to the user for feedback. To
represent an image, features such as pixel values are commonly used. The user may not be familiar
with such features to give feedback on them. An alternative is for the user to indicate parts of
an instance that are rationales for its class label. For example, what sentences in a document,
segments in an image, and scenes in a video, are rationales for their class label. Rationales provide
indirect feature feedback, since features that overlap with the rationales should be important for the
classification task and this indication is only indirect. Annotating rationales may incur additional
cost, which may vary across annotators, instances, annotation tasks, user interface design, etc.
We compare the two annotation strategies of providing instance’s label only (LO) and instance’s
label together with rationales (LR), for di↵erent additional costs for annotating rationales. For
a sentiment classification task and an aviation incident cause identification task, we show that
rationales provide better performance for a given annotation cost, when annotating them incurs a
small extra cost.
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Annotation cost may vary across instances, annotators and annotation strategies. Annotation
cost is often not known a priori, but it can be estimated. An estimate of the annotation cost can be
used to selectively query the annotator, in order to directly minimize the total annotation cost for
the desired performance. We propose a supervised regression model that uses the characteristics
of an instance, annotator and annotation strategy for estimating the annotation cost in a multi-
annotator environment with indirect feature feedback through rationales. For data collected from
multiple annotators for a sentiment classification task, we show that an annotation cost estimate
from the proposed approach outperforms simpler estimates based on any one of these characteristics.
Each instance (with or without rationales) may provide di↵erent incremental value to the learning

algorithm. Annotation cost may also vary across instances and annotation strategies. We propose
a cost-sensitive active learning approach, where in each iteration an instance is actively selected for
a given strategy. We show that this strategy sensitive active instance selection approach for seek-
ing rationales performs better than seeking rationales for instances selected randomly or actively,
independent of the strategy. When the cost for annotating rationales is high, rationales may not be
beneficial for all instances, and we may want to selectively ask for rationales. We further extend the
proposed approach to jointly select the best instance and strategy in each iteration. For a sentiment
classification task and an aviation incident cause identification task, we show that the proposed
approach outperforms cost-sensitive and cost-insensitive instance selection for a fixed strategy, and
cost-insensitive joint selection of instance and strategy, considering di↵erent additional costs for
annotating rationales. While the best fixed strategy among LO and LR varies with the additional
cost for annotating rationales, we show that the proposed approach performs as well as or better
than the best fixed strategy, for di↵erent additional costs for annotating rationales.
The benefit from feature feedback (direct or indirect) may vary across learning problems. For two

sentiment classification tasks with di↵erent instance granularity and a webpage category classifica-
tion task, and several variations in the feature space, instance selection criteria, and signal to noise
ratio, we show how the maximum benefit from feature feedback varies with these characteristics
of a learning problem. We also show that measures for quantifying the complexity of a learning
problem have a significant correlation with the amount of benefit from feature feedback.
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Chapter 1

Introduction

An annotation is a property of an instance, for example, whether a given text expresses positive or
negative sentiment, an image contains an object of interest or not, etc. A target annotation is an
annotation that we wish to learn. In this thesis, we focus on supervised annotation learning, where
a domain expert labels a set of instances with the target annotations, and a model is learned from
these examples (instance and annotation pair). The learned model is used to predict annotations
for unlabeled instances. There are several costs associated with supervised annotation learning.
Turney (2000) provides a taxonomy of various costs in supervised learning, some of which we study
in this thesis. Figure 1.1 shows the main steps involved in supervised annotation learning. The
first step is to collect and prepare the unlabeled data. The associated cost for this step may not
be trivial. For example, when annotating clinical records, we may need to remove the personal
information contained in them, and the associated cost may be substantial. The second step is
to define the features for representing the instances, which may require substantial e↵ort from the
domain experts. The next step is to obtain the target annotations for the training instances, which
may require substantial annotation e↵ort from the experts. Lastly, we learn a model from the
annotated data. Apart from the developer’s e↵ort in designing the learner, this also often requires
substantial computation cost.
In this thesis, our goal is to reduce the total cost required to achieve the desired performance in

supervised annotation learning. Specifically, we focus on reducing the cost of feature engineering,
and the total annotation cost. To reduce the cost of feature engineering, we propose an automatic
approach to extract features from given properties of an instance. In order to reduce the total
annotation cost, we propose an alternate annotation strategy, where in addition to providing an
instance’s label, the user identifies parts of the instance that are rationales, i.e. key indicators, for its
class label. Annotation cost may vary across instances. Additional cost for rationales may also vary
across instances, annotators, annotation tasks, user interface designs, etc. Each instance (with or
without rationales) may provide di↵erent incremental value to the learning algorithm. We propose a
cost-sensitive active learning approach, where in each iteration, an instance and annotation strategy
(instance’s label with or without rationales) are jointly selected as those expected to provide the
maximum improvement in performance for the given annotation cost.
Figure 1.2 presents the proposed interactive annotation learning framework. In this framework,

features are automatically extracted from prior linguistic annotations (Steps 2 and 3). In each
iteration, instance and strategy are selected actively as those expected to bring the most benefit
to the model for the expected cost (Steps 4 to 6). This process is repeated until we exhaust our
budget or the desired performance is achieved.

1



Figure 1.1: Main steps in supervised annotation learning.

Next, we introduce the proposed approach for automatic feature engineering, additional feedback
through rationales, annotation cost estimation and cost-sensitive joint selection of instance and
annotation strategy.

1.1 Generalized Automatic Feature Extraction

In supervised learning, an instance is represented by a feature vector. For a text instance, often
words are used as features. This representation is called the bag-of-words representation, primarily
because it ignores the word ordering. Bag-of-words representation is commonly used for text
instances, since tokenization is most fundamental to Natural Language Processing (NLP). For most
languages, segmenting text into words is straightforward. Even for languages where tokenization is
harder (e.g. Chinese or Japanese), bag-of-words is still the simplest instance representation. It has
also been found to provide good performance for many learning tasks. However, word features are
limited in the information they can provide, and it is natural to believe that the relative ordering of
words in a sentence is important for many learning tasks. N-grams preserve the ordering between
words, and hence can provide more informative features. For example, bigram features, such as
“bad movie”, “good acting”, etc., and trigram features such as “movie was good”, etc. However,
longer n-grams are sparse, and shorter n-grams cannot capture long distance dependencies, such
as between “movie” and “bad” in the sentence, “the movie we saw yesterday was bad”. Other
annotations such as dependency parse trees can be used to capture such long distance dependencies
between words. For example, in the sentence “the movie we saw yesterday was bad”, ‘movie’ and
‘bad’ are in a ‘nsubj’ dependency relation. We refer to these annotations as prior annotations to
distinguish them from the new annotations that we wish to learn, and since we assume that they
are available a priori . We refer to the features derived from these prior linguistic annotations as
structured features, since they capture the linguistic structure of text, and they have a structure
of their own, described by nodes and edges (relations between the nodes). Another example of a
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Figure 1.2: Interactive Annotation Learning (IAL) framework.

structured feature is the path between the verb and its candidate argument in a syntactic parse
tree of a sentence, used for learning semantic roles (Pradhan et al., 2004). Similarly, in predicting
whether a given relation exists between two entities, features derived from syntactic and semantic
annotations have been found to be useful (GuoDong et al., 2005). Arora et al. (2009a) show that
deep syntactic scope features constructed from transitive closure of dependency relations give a
significant improvement over a bag-of-words model, when identifying types of claims in product
reviews. Gamon (2004) found that deep linguistic features, derived from phrase structure trees and
parts of speech annotations, give a significant improvement in performance over n-gram features,
for the task of predicting satisfaction ratings in customer feedback data. Wilson et al. (2004) use
syntactic clues derived from dependency parse trees as features for predicting the intensity of opinion
phrases. Joshi and Rosé (2009) show that a combination of dependency relations and parts of speech
annotations boosts the performance of a bag-of-words model for a sentiment classification task.
Thus, features that combine several linguistic annotations have been found to improve performance
of a bag-of-words model.
Often structured features, such as the ones described above, are defined by the domain ex-

perts based on their prior knowledge and data inspection, or through extensive experimentation.
However, experts are often expensive to hire, and data inspection and experimentation are time
consuming. This process does not generalize across domains or problems, and has to be repeated
in an ad hoc way for each learning problem. We propose a general approach for automatically
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deriving structured features from prior annotations with minimal human supervision1. We propose
an annotation graph representation for prior annotations and derive structured features automati-
cally as frequent subgraphs from the annotation graphs. For a sentiment classification task and a
protein-protein interaction extraction task, we show that these automatically extracted structured
features improve performance of a bag-of-words model.

1.2 Indirect Feature Feedback through Rationales

Training a classifier involves learning a function of the features to approximate the target variable
for the annotation we wish to learn. To learn a good approximation, several labeled instances are
needed. Annotating an instance may require substantial user e↵ort, called the annotation cost.
In order to reduce the total annotation cost, instead of labeling several instances, the annotator
could provide information about the features directly. While the annotator may not be able to
provide the exact weights for the features, they may be able to identify the relevant features and
indicate their class association. Feedback on features, in addition to annotating the instances, has
been shown to achieve the same performance with fewer examples (Godbole et al., 2004; Raghavan
and Allan, 2007; Druck et al., 2009; Melville and Sindhwani, 2009). However, most of the work
so far on feature feedback has focussed on direct feedback on simple features, such as words. It
is not clear how direct feature feedback can be extended to structured features that are often
hard to visualize. Direct feedback is often solicited without the context of an instance. For some
features, it may be di�cult to determine their relevance and class association without any context.
Instead, we propose an alternate annotation strategy, where in addition to providing an instance’s
label, the annotator indicates parts of the instance that are rationales for the indicated label.
Rationales provide indirect feedback on features, since features that overlap with rationales should
be important for the classification task, and this indication is only indirect. Zaidan et al. (2007)
define rationales as spans of text in a document that are key indicators of its class label. In this
work, we segment an instance into sub-instances, and the annotator identifies the sub-instances
that are rationales. For example, a document may be segmented into sentences and the annotator
identifies the sentences that are rationales for the document’s label. To annotate a span of text as a
rationale, the annotator must perform the cognitive task of identifying the appropriate boundaries
for the rationale, which may require more time than voting on a pre-segmented span of text.
Also, highlighting a span should require more user interface time than voting on a text segment.
Additionally, exact spans for the rationales may vary across users, while we can expect to see more
agreement between the users when they vote on sub-instances. Rationales, as sub-instances in an
instance, are not limited to a text instance. An image can be segmented into regions (Shi and
Malik, 2000; Estrada et al., 2004) and a video can be segmented into scenes (Grundmann et al.,
2010), and the annotator identifies the segments of an image or a video that are rationales for its
label. While direct feature feedback has been modeled as a separate task from labeling instances
in most prior work (Godbole et al., 2004; Raghavan and Allan, 2007; Druck et al., 2009; Melville
and Sindhwani, 2009), rationales are solicited together with the instance’s label. The annotator
perhaps already makes this distinction to determine the instance’s label. We ask them to provide
their reason for assigning the indicated label to an instance.
In this thesis, we consider two annotation strategies where the user provides: 1) instance’s label

(target annotation) only (LO), and 2) instance’s label, together with rationales in support of the
instance’s label (LR). Rationales provide additional information per instance. However, it may
take an annotator some extra time to annotate rationales in addition to providing an instance’s

1The expert still needs to decide what prior annotations to use.
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label. Since the annotators are often paid by the hour, we measure the annotation cost in terms
of the annotation time. In prior work (Zaidan et al., 2007; Arora and Nyberg, 2009; Abedin et al.,
2011; Donahue and Grauman, 2011), the additional cost for annotating rationales is not accounted
for, and the two annotation strategies are compared in terms of the performance for a given number
of instances. The additional cost for rationales may vary across users, instances, annotation tasks,
user interface design, etc. We compare the two annotation strategies of LO and LR for di↵erent
additional costs for annotating rationales. For a sentiment classification task and an aviation
incident cause identification task, we show that rationales can provide better performance for a
given annotation cost, when annotating them incurs a small extra cost.
The amount of benefit from feature feedback may vary across learning problems. With enough

labeled data, we may not benefit from feature feedback. The benefit from feature feedback may also
vary with the features used to represent the instances. If the feature space is large, we may need
several labeled instances to identify the relevant features, while relatively fewer labeled features may
help us quickly find these relevant features and achieve the desired performance. Apart from the
feature space size, it also matters what types of features are used. When hand-crafted features from
a domain expert are used (Pradhan et al., 2004), we expect to gain less from feature feedback, since
most of the features will be relevant. On the other hand, when features are extracted automatically
as patterns in the annotation graphs, as described above, feature feedback can help to identify the
relevant features in the large feature space. The benefit from feature feedback will also depend
on the strategy for selecting instances for annotation. In the case of indirect feature feedback
through rationales, instances selected will also determine what features receive feedback. Hence,
the instance selection strategy should a↵ect the amount of benefit from feature feedback. In text
classification, an instance often contains a large amount of text, and even a simple bag-of-words
representation will generate a lot of features. Often only a part of the text is relevant for the
classification task. For example, in movie reviews, often the reviewers talk about the plot and
characters in addition to providing their opinion about the movie. Often this extra information
is not relevant to the classification task and bloats the feature space without adding many useful
features. With feature feedback, we hope to filter out some of this noise and improve the model.
Thus, the amount of irrelevant information in the instance should also play an important role in
determining the benefit from feature feedback. We expect to see less of such noise when an instance
is more concise. For example, a movie review snippet (about a sentence length) tends to have less
irrelevant text than a full movie review (several sentences). In addition to analyzing document
instances with varying amount of noise, we also compare the benefit from feature feedback for
problems with di↵erent instance granularity. The amount of benefit from feature feedback will also
depend on how feedback is solicited from the annotator, and how it is incorporated back into the
model. Independent of these factors, we estimate the maximum benefit from feature feedback, and
show how it varies across learning problems. For two sentiment classification tasks with di↵erent
instance granularity and a webpage category classification task, we show what characteristics of a
learning problem have a significant e↵ect on the amount of benefit from feature feedback. We find
a significant correlation between measures proposed in the literature for quantifying the complexity
of the learning problems (Raghavan et al., 2007) and the maximum benefit from feature feedback.
We also suggest other measures for categorizing learning problems to understand the observed
di↵erences in the amount of benefit from feature feedback across learning problems.
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1.3 Annotation Cost Estimation

Annotation cost is the amount of time spent in providing the desired supervision for learning the
target concept. The annotation cost is often measured in terms of the number of instances, assuming
a uniform cost per instance. However, this assumption does not always hold, and annotation times
may vary across instances (Donmez and Carbonell, 2008b; Ringger et al., 2008; Settles et al., 2008a;
Arora et al., 2009b; Baldridge and Palmer, 2009). Longer sentences/documents require more time
to read and annotate than shorter ones. Ambiguous instances are more di�cult to annotate than
easier ones. Thus, instances may have di↵erent annotation costs. Annotation cost also varies
across annotators, and multiple annotators are often employed in annotation tasks. Non-native
speakers of a language may require more time than native speakers to understand and annotate a
text instance in that language. Also, the annotators may have di↵erent expertise at the annotation
task and familiarity with reading text online. Annotation cost will also depend on the annotation
strategy, i.e., the tasks performed in annotating an example. If the annotator provides feedback
on features in addition to the instance labels, more work is done per instance and the annotation
cost would be more. Annotation cost may be known a priori for some tasks, for example, medical
tests for diagnosis have a predetermined cost. However, for many annotation tasks, the annotation
cost is not known a priori, as it includes the time required to read and understand the text,
and the time to make the annotation decisions, which may vary with the instance, annotation
strategy, and the annotator. If the annotation cost can be reliably estimated, the estimate can be
used in active selection to directly minimize the annotation cost for the desired performance. An
annotation cost estimate can also be used for estimating the annotation budget and for comparing
several selective sampling strategies before selecting one to use for a real annotation task. In this
thesis, we propose a supervised regression model for estimating the annotation cost for an instance,
strategy and annotator in a multi-annotator environment with indirect feature feedback through
rationales. For data collected from multiple annotators for a sentiment classification task, we show
that the proposed approach that uses the characteristics of an instance, strategy and annotator,
outperforms simpler estimates based on a single characteristic.

1.4 Cost-Sensitive Active Selection of Instance and Strategy

Traditionally, in supervised annotation learning, unlabeled instances are labeled in the given order,
or are randomly selected for annotation, until the desired performance is reached. This approach
to supervised learning is often referred to as passive learning. However, instances may provide
di↵erent incremental value to the learning algorithm. In order to minimize the total annotation
cost for the desired performance, active learning selectively samples the instances to label in each
iteration, as those expected to bring the most benefit to the model. The annotator first labels a
small subset of the unlabeled data, and a supervised model is learned on this initial set. The learned
model is applied to the pool of unlabeled instances. From this pool, instances expected to improve
the model’s performance the most, are presented to the annotator. This procedure continues until
all instances have been labeled, the desired performance is achieved, or we exhaust our annotation
budget.
In this thesis, we consider two annotation strategies of instance’s label only (LO) and instance’s

label together with rationales (LR). We may not benefit equally from rationales for all instances.
Each instance (with or without rationales) may provide di↵erent incremental value to the learning
algorithm. The annotation cost may also vary across instances and annotation strategies. We
propose a cost-sensitive active learning approach, where in each iteration, an instance is actively
selected for the given strategy. For a sentiment classification task and an aviation incident cause
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identification task, we show that this strategy sensitive active instance selection outperforms random
or strategy independent active instance selection. When rationales are very expensive to annotate,
they may not be beneficial for all instances for the additional cost. We further extend the proposed
approach to selectively ask for rationales by jointly selecting an instance and strategy in each
iteration. While the best fixed strategy among LO and LR varies with the additional cost for
annotating rationales, we show that the proposed approach performs as well as or better than the
best fixed strategy at di↵erent additional costs for annotating rationales.

1.5 Thesis Contributions

We now summarize the main contributions of this thesis. In this thesis, our goal is to reduce the
total cost for the desired performance in supervised annotation learning. Specifically we focus on
reducing the cost of feature engineering and the total annotation cost. The main contributions of
the thesis towards this goal, are the following.

• Generalized Automatic Feature Extraction: We propose an annotation graph represen-
tation for instances based on words and other linguistic annotations. Structured features are
extracted automatically from the annotation graphs for instances using a subgraph mining al-
gorithm. The proposed approach provides a generic framework for finding structured features
automatically. For a sentiment classification task and a protein-protein interaction extrac-
tion task, we show that these automatically extracted structured features provide a significant
improvement in performance over the bag-of-words features.

• Active Annotation with Indirect Feature Feedback: In order to reduce the total anno-
tation cost for the desired performance, we propose an alternate annotation strategy, where
in addition to the instance’s label, the annotator provides rationales in support of the in-
stance’s label. We segment an instance into sub-instances, and the annotator identifies the
sub-instances that are rationales. The additional cost for rationales may vary across the an-
notators, instances, annotation tasks, user interface design, etc. For a sentiment classification
task and an aviation incident cause identification task, we show that rationales provide a sig-
nificant improvement in performance for a given annotation cost, when the additional cost
for annotating them is small. Each instance (with or without rationales) may provide di↵er-
ent incremental value to the learning algorithm. We propose a cost-sensitive active learning
framework, where in each iteration, an instance and strategy are jointly selected to minimize
the total annotation cost for the desired performance. We show that the proposed approach
outperforms cost-sensitive or cost-insensitive instance selection for a fixed strategy, and cost-
insensitive joint selection of instance and strategy, for di↵erent additional costs for annotating
rationales.

• Annotation Cost Estimation: We propose a supervised regression model for estimating the
annotation cost for a given instance, strategy and annotator, in a multi-annotator environment
with indirect feedback on features through rationales. We use the characteristics of the in-
stance, annotation strategy and annotator to estimate the annotation cost. For data collected
from multiple annotators for a sentiment classification task, we show that this estimate is more
accurate than simpler estimates based on a single characteristic.

• Assessment of the Benefit from Feature Feedback: For two sentiment classification
tasks with di↵erent instance granularity and a webpage category classification task, we analyze
how the maximum benefit from feature feedback varies across learning problems, and what
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characteristics of a learning problem have a significant e↵ect on the amount of benefit from
feature feedback. We also show that measures for quantifying the complexity of the learning
problems (Raghavan et al., 2007) have a significant correlation with the maximum benefit from
feature feedback. We also suggest other measures for categorizing learning problems and study
their relationship with the amount of benefit from feature feedback.

1.6 Thesis Outline

In this chapter, we presented an introduction to the main contributions of this research. The
remaining thesis is organized as follows:

• Chapter 2: Generalized Automatic Feature Extraction describes the proposed annotation graph
representation and the subgraph feature mining approach for automatically extracting struc-
tured features from annotation graphs.

• Chapter 3: Active Annotation with Indirect Feature Feedback presents a comparison of the two
annotation strategies of LO and LR at di↵erent additional costs for annotating rationales,
and for several instance selection strategies. It also presents the proposed approach for cost-
sensitive joint selection of instance and strategy in each iteration, and its comparison with
instance selection for a fixed strategy and other baselines.

• Chapter 4: Annotation Cost Estimation describes the supervised model for estimating the
annotation cost in a multi-annotator environment with indirect feature feedback through ra-
tionales.

• Chapter 5: Assessment of Benefit from Feature Feedback presents an analysis of how maximum
benefit from feature feedback varies across learning problems, and what characteristics of a
learning problem have a significant e↵ect on the amount of benefit from feature feedback.

• Finally, Chapter 6: Conclusions and Future Work presents the conclusions and directions for
the future work.
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Chapter 2

Generalized Automatic Feature
Extraction

An instance in supervised learning is represented by a feature vector. For example, a text instance
can be simply represented as a bag of words. However, this representation ignores the linguistic
relations between words, which should benefit most learning tasks. Features that capture the
linguistic structure in text by combining several linguistic annotations, such as parts of speech,
dependency relations, etc., have been shown to improve performance beyond bag-of-words features
for several learning tasks, such as semantic role labeling (Gildea and Jurafsky, 2000; Pradhan et
al., 2004), relation extraction (GuoDong et al., 2005), sentiment classification (Wilson et al., 2004;
Arora et al., 2009a; Gamon, 2004; Joshi and Rosé, 2009), etc.
Natural Language Processing (NLP) field has advanced to a stage that there are several linguistic

annotators available with acceptable accuracy. For example, tokenizers, parts of speech taggers,
dependency parsers, phrase structure tree parsers, semantic role labelers, named entity taggers, etc.
Stanford NLP group provides several of these annotators1. CMU provides a link grammar parser2

and a frame-semantic parser3. UIUC also provides a few NLP tools4. ASSERT5 is a semantic role
labeler freely available. OpenCalais6 is a web service that provides several semantic annotations,
such as named entities, events, facts, etc. There are also other tools available, such as WordNet7,
a large lexical database of nouns, verbs, adjectives and adverbs, grouped into sets of cognitive
synonyms (synsets), each expressing a distinct concept.
Often the text is processed through several linguistic annotators, and structured features that

capture the linguistic patterns, are often handcrafted by the domain experts after careful exam-
ination of the data. For example, as a preprocessing step in Reconcile (Stoyanov et al., 2009),
a research platform for coreference resolution8, all documents are passed through a series of lin-
guistic processors, such as tokenizers, parts of speech taggers, syntactic parsers, etc. Features are
constructed from these prior annotations as properties that characterize a pair of noun phrases.
For example, a feature might denote whether two noun phrases agree in number, or whether two

1http://nlp.stanford.edu/software/
2http://www.link.cs.cmu.edu/link/index.html
3http://www.ark.cs.cmu.edu/SEMAFOR/
4http://cogcomp.cs.illinois.edu/page/software
5http://cemantix.org/assert.html
6http://www.opencalais.com/about
7http://wordnet.princeton.edu/
8Coreference resolution is the task of identifying noun phrases in text that refer to the same entity.
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noun phrases share a word in common. The features used in Reconcile are fixed and defined by the
domain experts. However, the cost of such feature engineering is often ignored when accounting
for the cost of developing new annotators.
Hand-crafted features often do not generalize well across datasets and domains. Pradhan et al.

(2008), in their follow up experiments with Semantic Role Labeling, found that some features from
their list of handcrafted features (Pradhan et al., 2004) were specifically suited for one argument
class and tended to hurt performance for other arguments. They also found that di↵erent fea-
tures are useful for argument identification and argument classification9. Semantic features are
dominant in the argument classification task, and syntactic features are dominant in the argument
identification task. Furthermore, they found that feature usefulness varies with the genre. Features
designed for WSJ corpus gave similar performance on Brown corpus for the argument identifica-
tion task. However, for the argument classification task, the features designed for WSJ corpus
gave considerably lower performance for Brown corpus. Predicates and head words (or, words in
general) were found to be more useful features for a homogeneous corpus like WSJ, as opposed to a
heterogeneous collection like Brown corpus. Thus, hand-crafted features may not generalize across
domains/genres, and the expensive process of feature engineering has to be repeated for each new
task and domain.
The goal in this thesis is to reduce the cost of feature engineering by automatically extracting

features from prior linguistic annotations in text. We propose a generic annotation graph repre-
sentation (Arora and Nyberg, 2009), a formalism for representing several linguistic annotations
together on text. Instances are represented as annotation graphs, from which frequent subgraph
patterns are extracted and used as features for learning new annotations. We use an e�cient fre-
quent subgraph mining algorithm (gSpan) (Yan and Han, 2002a) to extract frequent subgraphs
from the annotation graphs. The annotation graph and subgraph mining algorithm provide us a
quick way to test several alternative linguistic representations of text. For a sentiment classification
task and a protein-protein interaction extraction task, we show that structured features automati-
cally extracted using the proposed approach provide a significant improvement in performance over
a bag-of-words model.
The work presented in this chapter is an exposition of the work presented in (Arora et al., 2010),

with some additional ideas, experiments and results. Figure 2.1 presents the details of the automatic
feature extraction in interactive annotation learning framework proposed in this thesis. The first
step is to decide what prior annotations are suitable for the learning task, and how nodes and edges
in the graph should be created from these annotations. The second step is to automatically extract
features as frequent subgraphs in these annotation graphs. The third step is to create a feature
representation for the instances, based on the selected subset of subgraph features.
For the remaining chapter, we first present a formal definition of the annotation graph represen-

tation, how it is constructed for an instance in di↵erent learning problems, and a few motivating
examples for subgraph features. We then present the frequent subgraph mining approach used to
extract subgraph features, followed by feature selection techniques we experiment with. After this,
we present our experiments and results, followed by the related work, conclusions and suggestions
for the future work.

9Argument identification is the task of identifying what constituents in a parse tree are arguments of a given
predicate. Argument classification is the task of classifying a given argument of a predicate into one of the argument
type classes.
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Figure 2.1: Automatic feature extraction in interactive annotation learning framework.

2.1 Annotation Graph Representation

We define the annotation graph as a quadruple: G = (N,E,⌃,�), where N is the set of nodes, E
is the set of edges s.t. E ⇢ N ⇥N , and ⌃ = ⌃N [⌃E is the set of labels for nodes and edges, and
� : N[E ! ⌃ is the labeling function (Arora and Nyberg, 2009). Examples of node labels (⌃N ) are
tokens (unigrams) and annotations such as parts of speech, polarity, etc. Examples of edge labels
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(⌃E) are leftOf, dependency type, etc. The leftOf relation is defined between two adjacent nodes,
for example, between two adjacent words in a sentence. The dependency type relation is defined
between a head word and its modifier, for example, an ‘amod’ relation between ‘movie’ (head) and
‘good’ (modifier) in the phrase “good movie”.
Annotations may be represented in an annotation graph in several ways. For example, a de-

pendency triple annotation ‘good amod movie’, may be represented as an edge with label d amod
between the nodes for the head or governor word ‘movie’ and its modifier or dependent word
‘good’, or as a node d amod with edges ParentOfGov and ParentOfDep to the nodes for the head
and modifier words, respectively. An example of an annotation graph is shown in Figure 2.2. It
describes a movie review comment, ‘interesting, but not compelling’. The words ‘interesting’ and
‘compelling’ both have positive prior polarity, however, the phrase expresses a negative sentiment
towards the movie. Heuristics for special handling of negation have been proposed in the literature.
For example, Pang et al. (2002) append every word following a negation, until a punctuation, with
a ‘NOT’. Applying a similar technique to our example gives us two sentiment bearing features, one
positive (‘interesting’ ) and one negative (‘NOT-compelling’ ), making the instance ambiguous.

 

U_interesting U_, U_but U_not U_compelling U_. 

D_conj-but 

D_neg 

L_POSITIVE L_POSITIVE 

polQ polQ 

posQ 

P_VBN 

posQ 

P_, 

posQ 

P_CC 

posQ 

P_RB 

posQ 

P_JJ 

posQ 

P_. 

Figure 2.2: Annotation graph for sentence ‘interesting, but not compelling.’ . Prefixes: ‘U’ for
unigrams (tokens), ‘L’ for polarity, ‘D’ for dependency relation and ‘P’ for parts of speech (POS).
Edges with no label encode the ‘leftOf’ relation between words. ‘posQ’ is short for ‘POSQualifies’
relation between a word and its POS.

Figure 2.3 shows three discriminating sub-graph features for this example phrase, derived from
the annotation graph in Figure 2.2. These subgraph features capture the negative sentiment in the
phrase. The first feature in Figure 2.3a captures the pattern using dependency relations between
words. A di↵erent review comment may use the same linguistic construction but with di↵erent
words, for example, ‘good, but not excellent’ This is the same linguistic pattern but with di↵erent
words, which the model may not have seen before, and hence may not classify this instance correctly.
This suggests that the feature in Figure 2.3a is too specific.
In order to mine general features that capture the linguistic structure in text, we may add prior

polarity annotations to the annotation graph, using a polarity lexicon (Wilson et al., 2005). Figure
2.3b shows the subgraph in Figure 2.3a with polarity annotations. If we want to generalize the
pattern in Figure 2.3a to any positive words, we may use the feature subgraph in Figure 2.3c with
a wild card (X) on words that are polar. This feature subgraph captures the negative sentiment in
both phrases ‘interesting, but not compelling’ and ‘good, but not excellent’. Similar generalization
using wild cards on words may be applied with other annotations, such as parts of speech. By
choosing where to put the wild card, we can get features similar to, but more powerful than, the
dependency back-o↵ features in (Joshi and Rosé, 2009).
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Figure 2.3: Subgraph features from the annotation graph in Figure 2.2.

Dolphins win wild one over Chiefs
Ravens defeat Giants
Dolphins outgun patriots
Ravens defeat Giants
Giants defeat Vikings
Colts dump Jaguars
Colts improve perfect NFL start to 11-0 by stomping Steelers
Colts stretch perfect NFL start as doom tolls for ”Big Ben”
Steelers edge Ravens
Steelers edge Chargers
Broncos ride roughshod over Chiefs
Steelers edge Jets and Falcons rout Rams
Steelers edge Jets
Eagles rout Dallas
Titans dump Miami
Jets snap Titans’ six-game NFL win streak
Bledsoe leads Patriots past Steelers
Packers end 49ers’ NFL reign
Giants outlast Cardinals in cellar fight
Cowboys crushed by 49ers
San Diego ousts Miami
49ers rip Bears

Table 2.1: Example of NFL news headlines. The task here is to identify who won the game.

As another motivating example for annotation graph representation and automatically extracting
structured features from the annotation graphs, consider the task of identifying the winning team in
a game from NFL sports news headlines. Table 2.1 shows a few examples of headings from a sports
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news corpus10. The classification task here is to classify for each team mentioned in the heading,
whether that team won the game. A simple bag-of-words approach will fail for this task on half
of the data, as both the teams will have the same bag-of-words features. Features that capture
the immediate context, such as the words to the left or right of the team name will be helpful in
identifying the winner for many instances. To capture the longer context, dependency relations
can be used. For example, the winner is often the subject of the main verb as can be seen from
examples in Table 2.1. However, such features will not be able to di↵erentiate between “Cowboys
crushed by 49ers” and “Cowboys crushed 49ers”. ‘Cowboys’ is the winner in the second instance,
but not in the first one. However, in both instance, ‘Cowboys’ has the same context, and is also
the subject (‘nsubj’ dependency relation) of the verb ‘crushed’. The di↵erence between the two
instances is that first one uses a passive voice, and the second one uses an active voice. Semantic
roles (Gildea and Jurafsky, 2000) can distinguish between active and passive voice, and can correctly
identify the agent (or the argument ‘ARG0’) in both cases. Figure 2.4 shows the semantic roles
(and dependency relations) for the two sentences in our example. As can be seen, the team that is
the ‘ARG0’ of the main verb, is the winner. If we observe carefully, for all instances in Table 2.1,
the winner is the ‘ARG0’ or agent of the main verb of the sentence. In other words, when reporting
a winner of a game, they are often referred to as the agent or the causer of something. As we can
see from the examples in Table 2.1, many di↵erent verbs are used to report the winner of the game.
Many of these verbs are similar in their meaning, and can be generalized to a common class of
verbs, say the ‘winner-verbs’ in this case. The winner could then be described as the ‘ARG0’ of a
‘winner-verb’.

Verb

ARG1 ARG0

Cowboys 49erscrushed by

Dep:nsubj

(a)

Verb

ARG0
ARG1

Cowboys 49erscrushed

Dep:nsubj

(b)

Figure 2.4: Dependency relations and Semantic Role Annotations for NFL winner examples in
Table 2.1.

In this simple example, we went through three levels of prior annotations, in increasing order of
complexity, in order to determine the right set of features to use. When building a classifier, much
more work is required. With an automatic approach for feature extraction from linguistic annota-
tion graphs, our goal is to reduce this e↵ort for feature engineering in building new annotators.

2.1.1 Instance Representation

An instance in the proposed approach is represented by an annotation graph. For a sentence
classification task, the representation is straightforward. A sentence is a common unit of input to
a linguistic annotator, such as parser. Each sentence is run through a linguistic annotator, and the

10Simplified headings from a NFL News Corpus from DARPA’s Machine Reading program.
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output annotations are used to create an annotation graph, by mapping the annotations to nodes
and edges in the graph. If the classification unit is a document, like in a document categorization
task, then either a single annotation graph can be constructed for the whole document, or a
document can be considered as a collection of graphs. However, an instance might also be a word
or a phrase in a sentence, like in semantic role labeling. An instance might also be a pair of
phrases/words, like in relation detection or coreference resolution. In such cases, a simple approach
is to use the annotation graph for the full sentence. Another approach is to define the annotation
graph from only the local context of the phrase(s) to be classified. There are many heuristics for
defining the annotation graph from the local context. One approach is to only use annotations
that include the word, phrase or pair of phrases to be classified. An alternative approach when
classifying a pair of phrases is to only consider the shortest path that connects the two phrases in the
annotation graph. For example, consider the protein-protein interaction classification task (Erkan
et al., 2007), where the goal is to identify mentions of protein pair interactions in the biomedical
literature. A given sentence may contain several protein mentions, and the task is to detect for
each pair of protein mentions, whether the sentence suggests that they interact. In this case, if we
consider the complete annotation graph for the sentence as is, then for each pair of proteins we will
have the same annotation graph, same features and hence the same classification. A simple approach
to di↵erentiate between multiple instances in a sentence, is to create a copy of the sentence for each
instance, and mark the protein pair to be classified in each, by giving them a special name or adding
an annotation on them. For example, in (Erkan et al., 2007), a sentence with n proteins is replicated
for each pair of proteins, generating

�
n
2

�
instances per sentence. For example, the sentence,“The

results demonstrated that KaiC interacts rhythmically with KaiA, KaiB, and SasA”, has 3 proteins
and 6 (

�4
2

�
) instances, 3 of which are the following: 1) The results demonstrated that PROTX1

interacts rhythmically with PROTX2, PROTX0, and PROTX0; 2) The results demonstrated that
PROTX1 interacts rhythmically with PROTX0, PROTX2, and PROTX0; and 3) The results
demonstrated that PROTX0 interacts rhythmically with PROTX0, PROTX1, and PROTX2. Here,
PROTX1 and PROTX2 represent the protein pair under consideration, and PROTX0 is used for
all other proteins. These labels (e.g. PROTX1) are used to reduce the data sparseness due to
specific protein names, as in the data shared by Erkan et al. (2007). With these labels for proteins,
the annotation graph will be di↵erent for each instance. Figure 2.5 shows an annotation graph with
the protein pair to be classified marked with the labels PROTX1 and PROTX2. The annotation
graph here was constructed from the dependency relation annotations from the Stanford Parser
(Klein and Manning, 2003). A dependency relation such as ‘interaction prep-of PROTX2’, has a
governor node (‘interaction’), a relation node (‘prep-of’) and a dependent node (‘PROTX2’). In the
annotation graph, we add a directed edge (GovToRel) from the governor node to the dependency
relation node, and a directed edge (RelToDep) from the relation node to the dependent node.
The entire sentence and its annotation graph may not be required for classifying a pair of proteins.

It has also been widely acknowledged in the literature that the local context of a protein pair is
likely to carry the important information regarding their relationship. For example, Bunescu and
Mooney (2005a) consider only the sequence of words before, between and after the protein pair in a
sentence, with a restricted total number of words in the context. Erkan et al. (2007), Bunescu and
Mooney (2005b) and Fayruzov et al. (2009) only consider the shortest path between the protein
pair in a dependency parse tree. However in some cases, the information about interaction of two
proteins might be outside the shortest path. Figure 2.6 shows two instances in a sentence where
the shortest path between the two proteins under consideration, is the same, while one is a positive
instance and the other is negative. Airola et al. (2008) thus consider all paths between protein
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Figure 2.5: Annotation graph for the sentence “We further demonstrated that PROTX0 and E3
but not PROTX1 can decrease the fusogenic activity of PROTX2 ( 29 - 42 ) via a direct interaction
.”. The task is to judge if the sentence suggests interaction between PROTX1 and PROTX2. For
each dependency triple annotation, a directed edge (GovToRel) is added from the governor node
to the dependency relation node, and another directed edge (RelToDep) is added from the relation
node to the dependent node.
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Figure 2.6: Pruned annotation graphs for sentences “We further demonstrated that PROTX1
and E3 but not PROTX0 can decrease the fusogenic activity of PROTX2 ( 29 - 42 ) via a direct
interaction .” and “We further demonstrated that PROTX0 and E3 but not PROTX1 can decrease
the fusogenic activity of PROTX2 ( 29 - 42 ) via a direct interaction .”. The shortest path from
PROTX1 to PROTX2 is marked with dotted arrows.

pairs in a dependency graph, giving more weight to the shortest path.
In most of the work discussed above, words/tokens or dependency parse trees/graphs are used

as prior annotations. With a few annotations, considering sequence and/or paths in a tree or a
graph might be su�cient. However, with the annotation graph representation, where we may have
several annotations, important information may not be captured by paths alone, and we may need
to consider additional branches from the path. Also, all the information on a path might not be
important, and we may want to consider only parts of the path, which can be represented as a
disconnected graph. Thus, we suggest a pruned annotation graph representation for each protein
pair in a sentence, where only nodes and edges thought to be relevant for classifying the protein
pair are used. We now describe an approach to construct such a pruned annotation graph by
selecting a subset of the nodes and edges from the annotation graph based on the local context of
the protein pair. Assuming directed edges in the annotation graph, a node and the corresponding
edge is added to the pruned graph only if it has a path to reach one of the nodes in the protein pair
to be classified (referred to as the target nodes). The hypothesis is that a node has an influence on
a target node, only if it has a way to reach it in the graph. Algorithm 1 describes this procedure
for constructing a pruned annotation graph, given a pair of target nodes. In the protein-protein
interaction task, the target nodes are the protein pair to be classified, marked as PROTX1 and
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PROTX2, as mentioned before.

Algorithm 1 Algorithm for deriving pruned annotation graph. Edges are directed, from the
parent to the child node.

Mark the target nodes and add all their edges to an inspection list
while there are edges in the inspection list, and there are new nodes marked do

for each edge in the inspection list do
if child is marked then

if parent is marked then
Add the edge to the pruned graph, and remove it from the inspection list

else
Mark the parent
Add the parent node and the edge to the pruned graph, and remove it from the inspec-
tion list
Add all other edges of the parent node to the inspection list

end if
else if child is a terminal child, i.e. it has no children, and hence it would never be marked
then

Remove the edge from the inspection list
end if

end for
end while

Figure 2.7 shows pruned annotation graphs for the three proteins pairs in the sentence, “The
study supports the interaction of PROTX2 with PROTX0 and PROTX1.” Figure 2.6 shows
the pruned annotation graph for a positive and a negative instance in the sentence “We further
demonstrated that PROTX1 and E3 but not PROTX0 can decrease the fusogenic activity of
PROTX2 ( 29 - 42 ) via a direct interaction .”. Note that the pruned annotation graph captures
more information than the shortest path, which is same for the two instances in this sentence. The
complete annotation graph for this sentence is shown in Figure 2.5.
Thus, an instance may be represented by the complete annotation graph or a pruned annotation

graph. There can be many heuristics for creating the pruned annotation graph. We presented
one such algorithm above. Note that the shortest path can be considered as a pruned annotation
graph, with the heuristic of selecting only the nodes and edges on the shortest path between the two
nodes in a graph. After we have constructed the annotation graphs (pruned or complete) for the
instances, we derive features as subgraphs from these annotation graphs. In the next subsection,
we describe the subgraph mining and matching algorithms we use in this work.

2.2 Subgraph Mining and Subgraph Matching Algorithms

In the previous section, we demonstrated that the subgraphs from the annotation graphs can be
used to capture the linguistic patterns useful for learning the target annotations. Subgraph patterns
that are frequent will generalize better to new instances. Hence, we use a frequent subgraph mining
algorithm to find frequent subgraph patterns in annotation graphs for the training instances, which
we use as features in a supervised learning algorithm. At test time, we need to know what subgraph
features are present in a test instance. This requires searching for these subgraphs in the annotation
graphs for the test instances. We call this the subgraph matching procedure. We now describe the
algorithms and packages we use for frequent subgraph mining and subgraph matching.
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Figure 2.7: Pruned annotation graph for three proteins pairs in a sentence. The red arrow denotes
a GovToRel relation and the blue arrow denotes a RelToDep relation. (+) is used to indicate a
positive instance i.e. a sentence that suggests interaction between PROTX1 and PROTX2 protein
mentions.
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Figure 2.8: Subgraph Search Space: DFS Code Tree from (Yan and Han, 2002a).

2.2.1 Frequent Subgraph Mining

The goal in frequent subgraph mining is to find frequent subgraphs in a collection of graphs. A graph
G0 is a subgraph of another graph G if there exists a subgraph isomorphism11 from G0 to G, denoted
by G0 v G. Earlier approaches in frequent subgraph mining (Inokuchi et al., 2000; Kuramochi and
Karypis, 2002) used a two-step approach of first generating the candidate subgraphs, and then
testing their frequency in a graph database. The second step involves a subgraph isomorphism
test, which is NP-complete. Although e�cient algorithms have been developed for isomorphism
testing, with lots of candidate subgraphs to test it can still be very expensive for real applications.
gSpan (Yan and Han, 2002a) uses a pattern growth based approach to frequent subgraph mining.

For each discovered subgraph G0, new edges are added recursively until all frequent supergraphs
of G0 have been discovered. Figure 2.8, taken from Yan and Han (2002a), shows the search space
for gSpan algorithm which finds frequent subgraphs one by one, from small to large. Each node
in this search space represents a n-edge subgraph that grows from an (n-1)-edge subgraph. Each
node is assigned a lexicographic label. Smaller the lexicographic label for a subgraph, earlier it is
discovered in the search space. Note that two nodes in the search space may represent the same
subgraph. gSpan determines duplicate subgraphs in the search space based on a unique canonical
label for a graph, which we now describe.
gSpan uses depth first search (DFS) for frequent subgraph mining. A graph can have several

di↵erent DFS trees, depending on where you start the search. Depth first discovery of nodes in a
graph forms a linear order. Nodes are labeled with subscripts based on this order. Yan and Han
(2002a) define a linear order for edges in a graph based on the linear order of the nodes. This
linear oder is used to define an edge sequence, called the DFS code, to represent a given DFS tree
for a graph. Yan and Han (2002a) also define a lexicographic order for DFS codes (for DFS trees
of a graph), which is used to define the Minimum DFS code for a graph. The minimum DFS
codes for two graphs are equivalent, if the graphs are isomorphic. Thus, mining frequent connected
subgraphs is equivalent to mining their minimum DFS codes.
A DFS Code Tree (Figure 2.8) is defined to model the relationship among subgraphs, where a

node in the tree represents the DFS code for a subgraph. Given a DFS code ↵ = {a1, a2, ...., am}12,
11http://en.wikipedia.org/wiki/Subgraph_isomorphism_problem
12ai and b are edges used to define the DFS code. An edge is defined in terms its label, and labels and subscripts
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any valid DFS code of the form � = {a1, a2, ...., am, b} is called its child in the DFS code tree. For
� to be a valid DFS code, b must be an edge that grows from the vertices on the rightmost path in
the graph with code ↵. With a depth first search of the DFS code tree, all minimum DFS codes
for the frequent subgraphs can be discovered, that is all frequent subgrahs can be discovered.
To avoid unnecessary computation of duplicate subgraphs and their descendants, gSpan performs

pre-pruning using the minimum DFS code check. Any subgraph whose DFS code is not the same
as the minimum DFS code for that subgraph, is pruned. From the lexicographic ordering followed
in the subgraph search, we know that a subgraph with DFS code other than the minimum code
has already been discovered.
If measured in terms of the subgraph and/or graph isomorphism tests, the runtime of gSpan

is bound by O(kFS + rF ) (Yan and Han, 2002b), where k is the maximum number of subgraph
isomorphisms existing between a frequent subgraph and a graph in the dataset, F is the number
of frequent subgraphs, S is the dataset size, and r is the maximum number of duplicate DFS codes
of a frequent subgraph that grows from other minimum codes. kFS is the bound for the number
of isomorphism tests that should be done in order to find frequent supergraphs from discovered
frequent subgraphs, and rF is the bound for the maximum number of minimum DFS code checks.
k is usually small for sparse graphs with diverse labels. In the worst case, with two complete graphs
with no labels, k (the possible subgraph isomorphisms between them) can be Pn

m (P represents the
Permutation), where m and n are the number of vertices in the two graphs (m  n). For any
subgraph G, the number of duplicates that grow from other minimum DFS code, is bound by the
product of the number of vertices and edges (Theorem 6 in (Yan and Han, 2002b)). Thus, r is
bounded by the maximum product of the number of edges and vertices that a frequent subgraph
has. Because of the pre-pruning based on the minimum DFS code in gSpan, r is usually much
smaller than that.
With several implementations available13, gSpan has been commonly used for mining frequent

subgraph patterns from graphs (Kudo et al., 2004; Deshpande et al., 2005). In this work, we use
gSpan to mine frequent subgraphs from the annotation graphs. At the end of Section 2.4, we
present a performance analysis of gSpan algorithm for mining frequent subgraphs from annotation
graphs of varying complexity, and varying minimum frequency for subgraphs, called the minimum
support threshold. Next we discuss the subgraph matching algorithm we use for finding a given
frequent subgraph in the annotation graph for a test instance.

2.2.2 Subgraph Matching

Given a set of frequent subgraphs from the training data, we need to find their occurrences in
the annotation graph of a test instance. This requires a subgraph isomorphism test between a
frequent subgraph and the test annotation graph. We used the code developed by Lei Zhao14

for subgraph matching, which uses the VFLIB library15. VFLIB provides three algorithms for
subgraph matching - UL (Ullmann, 1976), VF (Cordella et al., 1999) and VF2 (Cordella et al.,
2001). Ullman’s algorithm (Ullmann, 1976), although quite old, is still the most commonly used
algorithm for graph matching. It is based on a backtracking procedure with an e↵ective look ahead
to reduce the search space. Cordella et al. (1999) proposed a faster graph match algorithm called
V F algorithm, with the worst case complexity better than Ullman’s algorithm. VF algorithm
uses a set of feasibility rules based on syntax and semantics of the graph to foresee if a state in

(defined based on their order of discovery in depth first search) of its vertices.
13http://www.cs.ucsb.edu/~xyan/software/gSpan.htm, http://www.kyb.mpg.de/bs/people/nowozin/gboost/
14a student of Dr. Xifeng Yan - the author of gSpan
15http://amalfi.dis.unina.it/graph/db/vflib-2.0/doc/vflib.html
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(D advmod) Edge ParentOfDep (U too)
U too
U bad
U movie
(D amod) Edge ParentOfDep (U bad)

Table 2.2: Top unigram and subgraph features for Movie Snippets dataset based on �2 score.

the search space has no coherent successors after a certain number of steps (k-lookahead). As
reported in (Cordella et al., 1999), the worst case complexity of the Ullman algorithm for matching
two graphs with N nodes is O(N !N3), compared to O(N !N) for the V F algorithm. The V F2
algorithm proposed by Cordella et al. (2001) is an enhancement of the V F algorithm that reduces
the memory requirement by reorganizing the exploration of the search space. The worst case
memory requirement of V F2 algorithm is O(N), a substantial improvement over O(N2) for V F
algorithm. The memory requirement of Ullman algorithm is O(N3).
We found the computation time for V F and V F2 algorithm to be quite similar for our annotation

graphs. Thus, we selected one of them (V F ) for subgraph matching. We didn’t face any memory
issues with V F algorithm for the annotation graphs for our datasets. At the end of Section 2.4, we
present a performance analysis of the subgraph matching algorithm for subgraphs with di↵erent
minimum support threshold, and annotation graphs of varying complexity.

2.3 Feature Selection

A challenge to overcome when using an automatic feature extraction approach is the large feature
space size. Among the large set of subgraph features discovered through frequent subgraph mining,
many are not predictive, or are very weak predictors, and only a few carry novel information that
improves classification performance. Hence, directly adding many complex features to the model
may not improve performance, or may even worsen performance in some cases, as the feature
space’s signal is drowned out by the noise.
Feature selection based on class association scores, such as information gain, �2 score, etc., are

quite popular in the NLP community, and have been shown to work well for several NLP tasks
(Yang and Pedersen, 1997). However, in our feature space, several top ranked features (ranked
based on the �2 score) may be highly correlated. For example, the top 5 features based on �2 score
in one of our experiments, are shown in Table 2.2; it is immediately obvious that the features are
highly redundant.
Rilo↵ et al. (2006) propose a feature subsumption approach to selectively add complex/structured

features to the model. They define a hierarchy for features based on the information they represent.
A complex feature is only added to the model if its discriminative power, measured in terms of its
information gain, is a delta above the discriminative power of all its simpler forms.
Another approach to feature selection is a correlation based filter, where structured features

highly correlated in their occurrence with their simpler forms are not added to the model.
Genetic Programming (Koza, 1992) has also been used for selecting most beneficial feature com-

binations. A genetic programming based approach evaluates interactions between features and
evolves complex features from them. The advantage of a genetic programing based approach over
other feature selection methods described above is that it allows us to evaluate a feature using
multiple criteria. In Genetic Programming (GP), potential solutions are represented as trees con-

22



sisting of functions (non-leaf nodes in the tree, which perform an action given their child nodes as
input) and terminals (leaf nodes in the tree, often variables or constants in an equation). A tree
(an individual) can be interpreted as a program to be executed, and the output of that program
can be measured for fitness (a measurement of the program’s quality). High-fitness individuals
are selected for reproduction into a new generation of candidate individuals through a breeding
process, where parts of each parent are combined to form a new individual.
Mayfield and Rosé (2010) apply this design to a language processing task at the stage of feature

construction - given many weakly predictive features, they are combined to produce a more pre-
dictive feature. They show that genetic programming based feature construction is e↵ective when
using unigram features as input for constructing complex features, for a sentiment classification
task. For the functions, boolean statements, such as AND and XOR, are used, while terminals are
selected randomly from the feature set. Each leaf’s value, when applied to an instance, is equal to 1
if that feature is present in the instance and 0 otherwise. For the fitness function, they use precision
and recall of an individual feature in predicting the class. A penalty is added to avoid trees from
becoming overly complex, and another penalty is added based on correlation with the unigram
features, from which the feature combinations are generated. In the next section, we present our
experiments and results, using subgraph features from annotation graphs, and some of the feature
selection methods discussed above.

2.4 Experiments and Results

We evaluate our approach on two tasks: a sentiment classification task, where the goal is to classify
a movie review sentence as expressing positive or negative sentiment towards the movie, and a
protein-protein interaction extraction task, where the goal is to classify a sentence as suggesting
that a protein pair mentioned in it interacts.

2.4.1 Data and Experimental Setup

For the sentiment classification task, we used one of the movie review datasets shared by Pang
and Lee (2005)16. This dataset consists of 10662 snippets/sentences from the Rotten Tomatoes
website17, with an equal number of positive and negative sentences (5331 each). This dataset is
di↵erent from the more common movie review dataset by Pang and Lee (2004), which consists
of document length movie reviews. The snippets dataset was created and used by Pang and Lee
(2005) to train a classifier for identifying sentences with positive sentiment in a full length review.
The reason for not using the full movie review dataset, and instead using the movie snippets data
was to simplify the annotation graph representation for our first experiment, as snippets are much
shorter (about 1 sentence) than the movie review documents (on average 32 sentences). We use the
first 8000 (4000 positive, 4000 negative) sentences as training data, and evaluate on the remaining
2662 (1331 positive, 1331 negative) sentences. We added parts of speech and dependency triple
annotations to this data using the Stanford parser (Klein and Manning, 2003).
Annotation Graph: For the annotation graph representation, we used Unigrams (U), Parts of

Speech (P) and Dependency Relation Type (D) as labels for the nodes, and ParentOfGov and
ParentOfDep as labels for the edges. Following the work in (Matsumoto et al., 2005), we filter
the unigrams that occur only once in the training data. We also use stop word lists for unigrams,
parts of speech (POS), and dependency relations. For unigrams, we used the stop-word list from

16http://www.cs.cornell.edu/people/pabo/movie-review-data/rt-polaritydata.tar.gz
17http://www.rottentomatoes.com/
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Figure 2.9: Annotation graph and a feature subgraph for dependency triple annotation
“amod good camera”. (c) shows an alternative representation with wild cards.

(Manning et al., 2008) (with one modification: removed ‘will’, added ‘this’18). For POS, we used the
stop word list from (Matsumoto et al., 2005) (with one modification: removed IN). For dependency
relations, we used a small stop-word list, consisting of the following relations: {det, predet, preconj,
prt, aux, auxpas, cc, punct, complm, mark, rel, ref, expl}, most of these are relations associated
with stop words or punctuations.
For a dependency triple such as “amod good movie” and parts of speech for words ‘good’ and

‘movie’, five nodes are added to the annotation graph, as shown in Figure 2.9a. ParentOfGov and
ParentOfDep edges are added from the dependency relation node D amod to the unigram nodes
U good and U movie. These edges are also added for the parts of speech nodes that correspond
to the two unigrams in the dependency relation, as shown in Figure 2.9a. This allows the algo-
rithm to find general patterns, such as dependency relation between two parts of speech nodes, two
unigram nodes or a combination of the two. For example, a subgraph in Figure 2.9b captures a
general pattern where the word good modifies a noun. This feature exists in “amod good movie”,
“amod good camera” and other similar dependency triples. These features are similar to the de-
pendency back-o↵ features proposed in (Joshi and Rosé, 2009). The extra edges are an alternative
to putting wild cards on the words, suggested in an example in Section 2.1 (Figure 2.3). Putting
a wild card on every word in the annotation graph for our example (Figure 2.9c), will only give
features based on dependency relations between parts of speech annotations, and not between
words. Thus, the wild card based approach is more restrictive than adding more edges. However,
with many edges, the complexity of the annotation graph increases, which in turn increases the
computation time for subgraph mining algorithm.

18The stop-word list from (Manning et al., 2008) contains the word ‘that’ but not ‘this’, so we added it. Also, the
word ‘will’ may be associated with sentiment (e.g. I will go and see the movie again), hence we removed it from the
stop-word list.
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V E
Average # 61 51
Max # 178 156
Min # 2 0
STDEV # 28 25
Labels # 18748 2

Table 2.3: Statistics of the annotation graphs (average, maximum, minimum and standard deviation
for the number of vertices (V) and edges (E), and the total number of labels for the vertices and
edges) for Movie Review sentences (10662 sentences).

Table 2.3 shows some statistics about the complexity of our annotation graphs. Comparing our
graphs to other biological datasets, where gSpan based algorithms have been used (Thoma et al.,
2009), we have a larger label set for our nodes. This suggests that our graphs are sparse, and
hence we may need to use a lower minimum frequency threshold. This also suggests that the gSpan
algorithm should run faster on our annotation graphs, based on the complexity analysis of gSpan
presented in Section 2.2.
Classifier: For our experiments we use Support Vector Machines (SVMs) with a linear kernel.

We use the SVM-light19 implementation with default settings.
Parameters: The gSpan algorithm requires setting the minimum support threshold (minSup)

for the subgraph patterns to extract. Support for a subgraph is the number of graphs in a dataset
that contain that subgraph. We experimented with several values for minimum support. We report
the results for minSup = 3 and minSup = 5.
Feature Configurations: The dataset we used for our experiments was created and used by Pang

and Lee (2005), to train a sentence level sentiment classifier for identifying positive sentences in
movie review documents. They did not report any performance results for the sentence classifier.
To the best of our knowledge, there is no other supervised machine learning result published on
this dataset. We compare the following feature configurations in our experiments:

1. Unigram-only: In sentiment classification, unigram features (bag-of-words) are a strong base-
line (Pang et al., 2002; Pang and Lee, 2004). As for constructing the annotation graphs, we
use unigrams that occur in at least two instances in the training data, and filter out stop words
using a small stop word list20.

For our training data, after filtering infrequent unigrams and stop words, we get 8424 features.
Adding subgraph features increases the total number of features to 575, 200 (for minSup = 5),
a factor of 68 increase in size. Feature selection can be used to reduce this size by selecting
the most discriminative features. Following configurations combine unigram and subgraph
features, and uses one of the feature selection methods discussed in Section 2.3:

2. Genetic Programming (GP) based feature combinations: We extend the genetic programming
approach in (Mayfield and Rosé, 2010) to our subgraph features. For our functions we use the
same boolean statements (AND and XOR) as in their work, while our terminals are selected

19http://svmlight.joachims.org/
20http://nlp.stanford.edu/IR-book/html/htmledition/dropping-common-terms-stop-words-1.html (with

one modification: removed ‘will’, added ‘this’)
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Figure 2.10: A tree constructed using subgraph features and GP (Simplified for illustrative pur-
poses).

randomly from the set of unigram and subgraph features. For feature construction, we divide
our training data in half, and train our GP features on one half of this data. This is to avoid
overfitting the final SVMmodel to the training data. In a single GP run, we produce one feature
for each class. For the sentiment classification task, a feature is evolved to be predictive of the
positive instances, and another feature is evolved to be predictive of the negative instances.
We repeat this procedure a total of 15 times (using di↵erent seeds for random selection of
features), producing a total of 30 new features. We use the same fitness function for feature
evolution as (Mayfield and Rosé, 2010):

Fitness = F� + PP + CC (2.1)

where F is the F-score defined based on precision and recall of the feature for the positive
and negative class. � is the relative weight on recall over precision. PP is the parsimony
pressure penalty to avoid overly large and complex trees. CC is a correlation21 penalty which
penalizes correlation between the feature being constructed, and the subgraphs and unigrams
it is constructed from. The correlation is measured between the vectors for feature occurrences
in the training set. The correlation penalty (CC) for a constructed feature is the maximum
correlation of that feature with any of the features it is constructed from, minus a correlation
threshold.

The tree in Figure 2.10 is a simplified example of our evolved features. It combines three
features, a unigram feature ‘too’ (centre node) and two subgraph features: 1) the subgraph
in the leftmost node occurs in collocations containing “more than” (e.g., “nothing more than”
or “little more than”), 2) the subgraph in the rightmost node occurs in negative phrases such
as “opportunism at its most glaring” (JJS is a superlative adjective and PRP$ is a possessive
pronoun). A single feature combining these weak indicators can be more predictive than any
one of them.

For genetic programming based feature construction, we use the ECJ toolkit22. We use the

21Measured in terms of the Pearson’s product-moment (http://en.wikipedia.org/wiki/Pearson_
product-moment_correlation_coefficient).

22http://cs.gmu.edu/~eclab/projects/ecj/
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same parameter settings as described in (Mayfield and Rosé, 2010)23, which were tuned on a
di↵erent dataset24 than the one used in this work, although it is from the same movie review
domain. The parsimony pressure penalty (PP ) is set to 0.005 per node, and threshold for
correlation penalty is set to 0.5. That is, the correlation penalty (CC) for a feature with
maximum correlation of 0.8 with features it is constructed from, is 0.3. Mayfield and Rosé
(2010) set the � ratio for F -measure to 1

6 , which gives 6 times more weight to precision.
Since we only create 30 new GP feature combinations from all the subgraph and unigram
features, we believe that a stricter constraint must be placed to find a precise subset of feature
combinations. We tried a few other values of the � parameter, and � = 1

15 gave us the best
performance.

3. �2 feature selection: �2 feature selection (Yang and Pedersen, 1997) is commonly used in the
literature. We compare two methods of feature selection with �2, one that selects features
with �2 score significant at 0.05 level, and second that selects the top N features to match the
size of our feature space with GP based feature selection.

4. Feature Subsumption (FS): Following the idea in (Rilo↵ et al., 2006), a complex feature C is
discarded if IG(S) � IG(C)� �, where IG is the Information Gain, and S is a simple feature
that representationally subsumes C, i.e. the text spans that match S are a superset of the text
spans that match C. In our work, complex features are subgraph features and simple features
are unigram features contained in them. For example, (D amod) Edge ParentOfDep (U bad)
is a complex feature for which U bad is a simple feature. We tried the same values for � 2
{0.002, 0.001, 0.0005}, as Rilo↵ et al. (2006). Since all values gave us the same number of
features, we only report one result for feature subsumption.

5. Correlation (Corr) based feature selection: As mentioned earlier, some of the subgraph features
are highly correlated with unigram features and do not provide new information. A correlation
based filter for subgraph features can be used to discard a complex feature C, if its absolute
correlation (measured between the feature occurrence vectors) with its simpler feature S (un-
igram feature) is more than a certain threshold. We use the same threshold (0.5) as used in
the GP criterion, but as a hard filter instead of a penalty.

We also evaluate the proposed approach for a Protein-Protein Interaction (PPI) extraction task,
where the goal is to judge whether a given sentence suggests that a pair of proteins mentioned
interact. A sentence may mention more than two proteins. As described in Section 2.1.1, a
sentence is replicated for each protein pair mentioned. That is, there are multiple instances per
sentence, one for each pair of proteins. As mentioned before, to reduce sparsity, PROTX1 and
PROTX2 are used to represent the protein pair under consideration, and PROTX0 is used to
represent all other proteins mentioned in the sentence. For our experiments we use the AIMED
dataset (Erkan et al., 2007). This dataset consists of 951 positive, and 3075 negative instances of
protein-protein interaction. We report results for ten fold cross validation. Since we may have more
than one instance per sentence, instances from the same sentence are put in the same fold. That
is, we group the instances from the same sentence together, and create folds over these groups. We
create the folds such that there is a similar ratio of positive to negative instances in each fold. We
construct the annotation graphs using unigram and dependency triple annotations, using the same
annotation packages as the Movie Review data. However, for this dataset, we did not filter any stop

23We thank Elijah Mayfield, for his help with running the GP experiments.
24Full movie review data (Pang and Lee, 2004)
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SNo. Settings minSup #Features Acc. �
1 Uni - 8424 75.66 -
2 Uni + Sub 5 575,200 66.08 -9.58
3 Uni + Sub 3 7,019,792 64.58 -11.08
4 Uni + Sub, �2 sig. 5 172,338 68.82 -6.84
5 Uni + Sub, �2 sig. 3 2,828,488 68.52 -7.14
6 Uni + Sub, �2 size 5 8454 68.44 -7.22
7 Uni + Sub, (FS) 5 25,895 71.04 -4.62
8 Uni + Sub, (Corr) 5 482,073 64.65 -11.01
9 Uni + GP (U) ‡ - 8454 75.96 0.36
10 Uni + GP (U) † - 8454 76.11 0.45
11 Uni + GP (U+S) ‡ 5 8454 76 0.34
12 Uni + GP (U+S) † 5 8454 76.6 0.94
13 Uni + GP (U+S) ‡ 3 8454 76.07 0.41
14 Uni + GP (U+S) † 3 8454 76.82 1.16

Table 2.4: Experimental results for feature spaces with unigrams and subgraph features. Feature
selection with 1) fixed significance level (�2 sig.), 2) fixed feature space size (�2 size), 3) Feature
Subsumption (FS) and 4) Correlation based feature filtering (Corr)). GP features for unigrams
only {GP(U)}, or both unigrams and subgraph features {GP(U+S)}. Both the settings from
Mayfield and Rosé (2010) (‡) and more weight on precision (� = 1

15) (†) are reported. #Features
is the number of features in the training data. minSup is the minimum support threshold for
frequent subgraph mining. Acc is the accuracy, and � is the di↵erence in accuracy from unigram-
only baseline. Best performing feature configuration is highlighted in bold which is marginally
significantly better than unigram based on 90% confidence interval calculated using one-way anova.

words or annotations. We normalize the instance feature vectors to unit length. Doing the same
for the sentiment classification task, did not give us any improvements. We use SVMs with linear
kernel for learning, like for the sentiment classification task. We set the C parameter in SVMs (the
cost for miss satisfying the margin constraints) to a commonly used value of 1, and minSup = 5.
We found that compared to the movie review dataset, relatively many more subgraphs are found
for this dataset for minSup = 5, and many of these subgraphs are large. Very large subgraphs
may not generalize across many instances, and thus we limit the maximum subgraph size (L) to
7 nodes, when mining for frequent subgraphs. As mentioned in Section 2.1.1, for PPI task, there
are many ways to construct the annotation graph for instances in a sentence. We experiment with
complete annotation graphs and pruned annotation graphs constructed from the local context of
the protein pair in a sentence, as described in Algorithm 1. For PPI task, we use F-score to measure
performance, since the number of positive and negative instances are not equal in the test set, and
F-score is commonly used for evaluation in this task (Erkan et al., 2007). For both datasets, we
use binary feature occurrence vectors for instance representation.

28



Movie Review Snippet Class (POS/NEG)

the importance of being earnest , so thick with wit it plays like a reading
from bartlett’s familiar quotations

POS

the events of the film are just so weird that I honestly never knew what
the hell was coming next

POS

in the poor remake of such a well loved classic, parker exposes the limi-
tations of his skill and the basic flaws in his vision

NEG

initial strangeness inexorably gives way to rote sentimentality and mys-
tical tenderness becomes narrative expedience

NEG

starts o↵ witty and sophisticated and you want to love it – but filmmaker
yvan attal quickly writes himself into a corner

NEG

Table 2.5: Some di�cult examples from movie review domain where a model fails at posi-
tive/negative sentiment classification.

2.4.2 Results and Discussion

In Table 2.4, we present our results25 for the sentiment classification. In sentiment classification,
bag-of-words has been a very strong baseline (Pang et al., 2002; Pang and Lee, 2004), and linguistic
features have been found to provide little benefit over the unigrams. We believe one reason for this
is sparsity. Movie reviews are written by reviewers with di↵erent backgrounds, who may have
di↵erent writing styles. Also, movie reviews are very informal, reviewers use incomplete sentences,
sarcastic language, etc. Table 2.5 presents some of the hard examples for an algorithm to classify
correctly. To learn accurate weights for a feature, it must be repeated in the data at least a
few times, and be associated with one class more than the others. Lexical patterns (based on
word/tokens relations) are sparse. With linguistic annotations on text, we hope to discover more
general patterns that capture the linguistic structure in text, and are more frequent. Note that
the goal of this research is not to show that the subgraph features outperform unigram features
on a given sentiment classification task. Instead the goal is to demonstrate that linguistic patterns
relevant for a classification task, that were undiscovered earlier or were handcrafted, can now be
automatically discovered as subgraphs from the annotation graphs, without the additional human
e↵ort, and they improve performance of a bag-of-words model.
Automatically extracting subgraph features generates a large number of features especially when

the minimum support threshold (minSup) is low. As can be seen from Table 2.4, there are about
500, 000 features forminSup = 5 (row 2), and about 7 million features forminSup = 3 (row 3). Our
first strategy was to use all these features in an SVM model, which is known to be robust to a large
feature space. As can be seen, subgraph features when added to the unigrams without any feature
selection decrease performance substantially (second and third rows in Table 2.4). This is possibly
because of the increased feature space size with many redundant features among subgraphs.
Our next approach was to use a popular feature selection strategy based on class association

scores, such as �2, to select the most relevant features. We tried two versions of �2 based feature

25These results are a revision of the results published in (Arora et al., 2010). A problem was discovered in
the frequent subgraph mining package (gSpan). It gives inaccurate results for directed graphs. We recreated our
annotation graphs as undirected graphs and reran the experiments. However, the best performance is only 0.11 lower
than what was reported in the paper (76.93). Note that that the node and edge labels we use here encode the same
information whether we represent them as directed or undirected graphs.
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selection, as described in Section 2.4.1, one based on significance and other based on fixed feature
space size. The performance improves (compare rows 2 and 3 with rows 4, 5 and 6), but it is
still lower than unigram-only features. We also tried other feature selection methods discussed in
Section 2.4.1. Feature subsumption improves the performance substantially, but the performance
is still lower than the unigram-only approach (compare row 7 with rows 1 and 2). Even with a
correlation-based filter (row 8), the performance of unigram+subgraph features is much lower than
the unigram-only features26.
With GP-based feature construction, we create a few (30) most useful combination of features

from the set of all unigram and subgraph features. When these GP feature combinations are added
to the unigram features, we get a gain in performance over unigrams for both minSup = 5 (row
11) and minSup = 3 (row 13). The performance improves further when we give more weight to
precision than in prior work (Mayfield and Rosé, 2010) (compare † and ‡). For minSup = 3,
with more weight on precision (row 14), we observe a marginally significant gain (p < 0.1) in
performance over unigrams alone27. GP-based feature construction can also be applied to unigram
features only (Rows 9 and 10), like in (Mayfield and Rosé, 2010). However, as can be seen, GP-
based feature construction with unigram and subgraph features (Rows 11-14) outperforms GP-based
feature construction with only unigram features (Rows 9-10). The improvement over unigram-only
features is marginally significant only when subgraph features are used in addition to the unigram
features, for constructing more complex feature combinations using GP (compare rows 9-10 and
11-14 to row 1, in Table 2.4).
A problem that we see with �2 feature selection, as also discussed in Section 2.3, is that several

top-ranked features may be highly correlated. With GP-based feature construction, we can consider
this relationship between features, and construct new features as a combination of selected unigram
and subgraph features. With the correlation penalty in the evolution process, we are able to build
combinations of features that provide new information to the model beyond unigram features.
So far, we have only varied the � parameter in GP configuration. Further improvement may be
achieved by varying the other parameters and constructing more features using GP.
Figure 2.11 shows the results for the PPI task. As can be seen, using the complete annotation

graphs for extracting subgraph features performs significantly better than using pruned annotation
graphs. Note that the computation time for frequent subgraph mining and subgraph matching
algorithms would be more when using complete annotation graphs instead of the pruned annotation
graphs. However, creating pruned annotation graphs from complete annotation graphs would also
consume some time. As can also be seen from Figure 2.11, subgraph features by themselves (without
unigram features) significantly outperform unigram-only features, with a substantial gain of more
than 10 points in F-score. We tried three simple feature selection techniques: 1) discard the
subgraph features with stop words ‘a’ and ‘the’ (S-filter(a,the)), 2) only keep subgraph features
that contain both the proteins under consideration (mustP1&P2 ), and 3) only keep subgraph
features that contain at least one of the proteins under consideration (mustP1orP2 ). Since a
sentence may contain more than one pair of proteins, the last two techniques for feature selection
aim at selecting a subset of features relevant for the protein pair under consideration. We find

26We only have results for �2 � size, feature subsumption and correlation based feature selection for minSup = 5.
We weren’t able to run these feature selection methods for minSup = 3 with the hardware we had, as it required
scoring and ranking 7 million features. Given that they didn’t make a lot of di↵erence in performance for minSup = 5
(performance is still much lower than unigram-only features), we don’t expect the result to be very di↵erent for
minSup = 3.

27Assuming a normal distribution and computing a one-sided confidence interval, as in Section 5.2 of (Witten and
Frank, 2005)
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Annotations Instance 
Representation 

Feature 
Selection 

F-score 

U - - 26.23 

SF(U+Dep) Pruned AG - 23.35 

SF(U+Dep ) Complete AG - 38.35 

SF(U+Dep) Complete AG S-filter(a,the) 38.5 

SF(U+Dep) Complete AG mustP1&P2 12.52 

SF(U+Dep) Complete AG mustP1orP2 28.18 

U+SF(U+Dep) Complete AG - 41.2 

Figure 2.11: Comparison of structured features with unigram features for Protein-Protein Inter-
action task. Solid lines show pairs of significant di↵erences (p < 0.05), determined using two-tailed
paired t-test. The dashed lines show the di↵erences that are not statistically significant.

that using S-filter(a,the) does not make a significant di↵erence in performance. Restricting the
features to only those with one or both the protein names, is significantly worse than not using
any feature selection technique. This suggests that clues for interaction between proteins may not
be necessarily mentioned close to where the protein names are mentioned. Our initial experiments
with �2 based feature selection and GP based feature construction suggested that there is little
benefit in using these feature selection methods for this task. The performance was either worse or
not significantly di↵erent from using all subgraph features from the complete annotation graphs.
However, here we used the GP configuration similar to the Movie Review dataset. There are other
variations one could try to the GP fitness function. Adding unigram features to subgraph features
improves performance by 2.85 points (rows 3 and 7), although this di↵erence is not significant.
Thus, the improvement in performance with subgraph features over unigram-only features is

substantially more for PPI task than sentiment classification task. As mentioned before, movie
reviews are written by reviewers from di↵erent backgrounds, about di↵erent kinds of movie, the
language is informal (there are often spelling mistakes, and short forms are often used), and there
are a variety of ways to express sentiment. Thus, we may need a very large dataset to discover useful
patterns. In PPI task, the goal is to extract mentions of protein-protein interactions in scientific
articles, where the language is formal, and as we also found in our experiments, frequent patterns
are larger and more frequent for this task. Thus, we see more gain from structured features for
PPI task, than sentiment classification task. Figure 2.12 shows an example of a frequent subgraph
feature for PPI task. Linguistic patterns like this are expected to be beneficial for identifying
protein-protein interaction mentions in text.
We cannot directly compare our work with Erkan et al. (2007), as their folds were not created

such that all instances from a sentence are in the same fold. They randomly shu✏ed the instances
before creating the folds, so the distribution of positive and negative instances in each fold should be
roughly the same. We explicitly create the folds such that the distribution of positive and negative
instances is similar in each fold. Erkan et al. (2007) use the shortest path in the dependency tree,
to represent the instance for a protein pair in a sentence. They propose two kernels, based on the
cosine similarity (SVM-cos) and edit distance (SVM-edit). They report an F-score of 55.61 for
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Figure 2.12: An example of a frequent subgraph feature for Protein-Protein Interaction (PPI)
extraction task.

SVM-edit, and an F-score of 58.09 for SVM-cos kernels. A kernel based on cosine similarity, as
described in their work, measures the number of nodes and edges in common between paths for
two instances. In our approach, we use a linear kernel with subgraph features, which measures the
number of frequent subgraph features (with minimum support of 5 (minSup = 5) and maximum
size of 7 nodes (L = 7)) in common between the full annotation graphs. A next step would be
to experiment with the shortest path as the pruned annotation graph, and to try other values of
minSup and L. Note that with the shortest path as the pruned annotation graph, and minSup = 1
and L = 1, our approach is similar to theirs. Cosine similarity, as described in their work, normalizes
the kernel for paths of di↵erent length. For this dataset, we normalize the instance feature vectors
to unit length28, before computing the kernel, which has a similar e↵ect. Erkan et al. (2007) do
not report the value they use for the C parameter in SVMs (the cost for miss satisfying the margin
constraints). We fix the C parameter to a commonly used default value of 1. One could also
experiment with other values for the C parameter.
In addition to our work, Rink et al. (2010) use a similar approach for learning causal relations

between event mentions in text. They define the annotation graph with syntactic and semantic
annotations, such as parts of speech, syntactic parse tree, dependency parse tree, word sense,
semantic roles and manually annotated temporal links. The features are extracted automatically
as frequent subgraphs in the annotation graphs, using the gSpan algorithm, like in our work. They
show that the automatically extracted subgraph features outperform the state of the art method
for identifying causal relations between event mentions in the given dataset. We describe their
work in more detail in Section 2.5, where we discuss the related work.
Thus, our experiments with automatically extracted structured features for sentiment classifica-

tion and protein-protein interaction extraction, together with Rink et al. (2010)’s work on iden-
tifying causal relations between event mentions, show the potential of the proposed approach for
reducing the cost of feature engineering. Next, we present an analysis of the computational perfor-
mance of the frequent subgraph mining and matching algorithm, as we increase the complexity of
the annotation graphs.

2.4.3 Performance Analysis for Subgraph Features

In the experiments and results presented above, we demonstrate that structured features can be
used to boost the performance of a unigram-only model for a sentiment classification task and a
protein-protein interaction extraction task. Apart from the well known SVM learning algorithm, the
proposed approach involves a frequent subgraph mining algorithm for finding frequent subgraphs
in the training data, a subgraph matching algorithm for finding the frequent subgraphs in the
test annotation graphs, and a Genetic Programming approach to construct feature combinations

28Doing the same for the sentiment classification task, did not give us any improvements.
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from unigram+subgraph features. For the movie review dataset, we present an analysis of the
performance and computation time (run time) for these algorithms as we increase the complexity
of the annotation graphs and reduce the minimum frequency threshold for finding the subgraphs.
The runtimes are reported on a server (running LINUX OS) with 4 cores (Intel CPUs with 2.66GHz
speed each) and a total of 16GB of RAM.

minSup # SG Features Acc.

10 98,137 76.22
5 566,776 76.6
3 7,011,368 76.82

Table 2.6: Experimental results with unigram features and GP based features (constructed from
unigrams and subgraph features) as we decrease the minimum support threshold for subgraph
features. The parameter setting for GP and annotations used are same as for the results presented
in Table 2.4.

Figure 2.13: Number of subgraphs and minimum support threshold.

In the proposed approach, the features are derived as frequent subgraphs from the annotation
graphs. As we lower the minimum support threshold (i.e. minimum frequency) for finding the
frequent subgraph features, the number of subgraphs increase and GP algorithm is able to find
good feature combinations that improve performance, as can be seen in Table 2.6. This supports
our belief about the sparseness issue of features in the movie review domain. As can be seen from
Figure 2.13, the number of subgraphs grow approximately exponentially as we reduce the minimum
support threshold. Also, as we lower the minimum support threshold, the computation time of the
subgraph mining algorithm (Figure 2.14) and the subgraph matching algorithm (Figure 2.15) grows
approximately exponentially as we reduce the minimum support threshold. Thus, the improvement
in performance comes with more computation cost.
We also wanted to study the e↵ect of the number of annotations on the accuracy of the model

and the computation cost. In order to do this, we compare two types of annotation graphs, one
with tokens and dependency relations, and other with additional parts of speech (POS) annotations
and extra edges, as discussed in Section 2.4.1 and Figure 2.9. As can be seen from Table 2.7, the
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Figure 2.14: Time in seconds for frequent subgraph mining algorithm (gSpan) vs. minimum
support threshold.

Figure 2.15: Time in seconds for subgraph matching algorithm vs. minimum support threshold.

model’s accuracy improves as we add the POS annotations, but with additional annotations the
graphs become more complex (average number of vertices and edges roughly doubles) and the
computation times increase substantially. The number of frequent subgraphs (for minSup = 5)
increases by approximately 50 times, and the computation time increases by approximately 500
times.
The computation time for training an SVM model, also increases as the number of features

increase. Although the computation time for SVM has been found to increase only linearly with
the average number of non-zero features per instance29, we found it to be very slow with 7 million
features for minSup = 3. When using GP based feature combinations for unigram and subgraph
features, we only add 30 features to the unigram feature set, and hence the total feature set for
training SVMs does not increase by much (8454).
With an increase in the total number of subgraph features, the search space for GP algorithm

increases, and hence its computation time. Thus, we also analyze the computational time of

29http://nlp.stanford.edu/IR-book/html/htmledition/soft-margin-classification-1.html
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Annotations maxV(avgV) maxE(avgE) #SG Accuracy FSGMTm SGMTm

uni+dep 112(38) 78(25) 11,974 76.07 3 300
uni+dep+pos 178(61) 156(51) 566,776 76.6 1601 24778

Table 2.7: Comparison of computation time and accuracy as annotation graph complexity increases
with annotations. Accuracy reported is for the best parameter setting in Table 2.4 (� = 1

6) and
minSup = 5. The computation time is reported in seconds. FSGMTm: Time for frequent subgraph
mining algorithm, SGMTm: Subgraph matching time. Annotations: uni - unigrams/tokens, dep -
dependency, pos - parts of speech annotations.

minSup Annotations # Features Accuracy GP-Time

5 uni+dep 20,398 76.07 1569
5 uni+dep+pos 575,200 76.6 19984
10 uni+dep+pos 106,561 76.22 6890

Table 2.8: Comparison of computation time of the GP algorithm and accuracy as annotation graph
complexity increases with annotations and minimum frequency threshold decreases. Accuracy
reported is for the best parameter setting in Table 2.4 (� = 1

6). The computation time is reported
in seconds.

GP, as the annotation graph complexity increases and the minimum support threshold decreases.
Table 2.8 compares the computation time for GP when we lower the minimum support threshold
from 10 to 5, and when we add POS annotations to unigram and dependency annotations. As
expected, the performance improves as we add more annotations and decrease the minimum support
threshold. However, the computation time for GP also increases substantially with an increase in
the complexity of the annotation graphs, and decrease in the minimum support threshold.
To conclude, from the performance analysis presented here, we see that as we lower the minimum

frequency threshold, a lot of subgraph features are generated and performance improves, but it
also increases the computation cost. The computation bottleneck is in finding these features in the
training dataset, matching the discovered patterns with the test set, GP based feature construction
on the large feature space and learning with SVMs on a large feature set (when not using GP
based feature construction). A future direction is to find ways to reduce the computation cost for
learning with annotation graphs. To reduce the search space for GP, we can use one of the feature
selection methods discussed in Section 2.3 to reduce the total number of features, and use only
the selected subset of features in GP. Feature selection can also be incorporated into the frequent
subgraph mining algorithm (gSpan) to find the discriminative frequent subgraphs directly (Thoma
et al., 2009; Tsuda, 2007). Another future direction is to use these extensions of gSpan to find
frequent and discriminative subgraph features.

2.5 Related Work

Supervised annotation learning methods (for illustration in Relation Extraction30) can be broadly
divided into two categories (Bach and Badaskar, 2007): 1) Feature based methods, for example,

30Relation extraction is often modeled as a binary classification task of determining whether two given entities
participate in a given relation.
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(Kambhatla, 2004; GuoDong et al., 2005) and 2) Kernel based methods, for example, (Bunescu
and Mooney, 2005a; Culotta and Sorensen, 2004; Nguyen et al., 2009). In feature based methods,
features are pre-defined, based on the prior knowledge, through manual inspection of the data or ex-
tensive experimentation. In kernel based methods, exact features are not defined, only a similarity
score is computed between a pair of instances. Feature based methods are computationally simple
but require the manual e↵ort of defining the features. Kernel based methods do not require defining
the features explicitly, and compute the similarity between instances implicitly over a much larger
feature space. Feature based methods provide us patterns (as the top ranked features) commonly
used to express the target annotation in text, and hence give us more insight into the problem.
Kernel based methods are abstract and do not tell us much about the patterns associated with a
classification task. Our approach is a feature based approach, however our features are automati-
cally derived, thus we get the benefit of the expressive power of the feature based methods, without
the need for extensive manual feature engineering. While the feature based approach is generic,
kernel based approach can only be used with specific learning algorithms, such as SVMs.
For a kernel based learning algorithm, such as SVMs, the label of a new instance is determined

based on its similarity to the labeled training instances, calculated using a kernel function. An
instance may be represented as a vector of features, where features may be words in the text,
or structured features defined using prior annotations. A simple kernel function is the linear
kernel, that computes the similarity as the dot product of the instance feature vectors. For binary
occurrence features, this kernel function returns the number of features in common between the
instances. In our approach, an annotation graph is constructed for each instance, and frequent
subgraphs in a set of annotation graphs, are used to represent an instance. A linear kernel computes
the similarity between two instances as the number of common subgraphs between their annotation
graphs. Instead of considering all subgraphs, we only use subgraphs that are frequent in a set of
graphs, similar to a bag-of-words representation, where often only frequent words are used, since
they are expected to generalize to new unseen instances.
An alternative kernel based approach may compute the similarity directly over the annotation

graphs for the instances. Many kernels have been studied for computing the similarity between
structured representation for instances. A convolution kernel (Haussler, 1999) defines the similarity
between two structures as the sum of similarity between their substructures. String kernels (Lodhi
et al., 2000) compute the similarity between two strings as the number of common subsequences
between the two strings. Similarly, tree kernels compute the similarity between two trees, such as
shallow parse trees or dependency trees, as the number of common subtrees (Vishwanathan and
Smola, 2002), subset trees (Collins and Du↵y, 2002) or partial trees (Moschitti, 2006). Nguyen et
al. (2009) combine several convolution kernels defined for constituent trees, dependency trees, and
sequential structures, for a relation extraction task. Airola et al. (2008) propose an all-path kernel
for graphs constructed from the dependency graphs and word sequences, for a protein-protein
interaction extraction task. The all-path kernel computes the similarity between two instances
as the number of common weighted paths between a protein pair to be classified in the graphs.
However, not all interesting patterns can be captured as paths in the graphs. Substructures, such
as sub-trees or sub-graphs, are often used (Culotta and Sorensen, 2004; Zelenko et al., 2003). More
powerful graph kernels, based on walks (Kashima et al., 2003), limited size subgraphs (Shervashidze
et al., 2009), subtree patterns (Shervashidze and Borgwardt, 2009) have also been proposed in the
literature.
A limitation of the kernel based methods discussed above is that the kernel function is computed

for two instances in isolation, that is without evaluating these substructures over other training in-
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stances available. In our feature based approach, we too count the common sub-structures between
structures for instances, when computing the similarity using a linear kernel. However, we only
consider the frequent (and discriminative) sub-structures, that are expected to generalize to new
instances and are also relevant for the classification task. Kernel based methods on the other hand
have an advantage of being computationally less expensive, since at a time only two structures are
compared, whereas feature based methods require analyzing the graphs for all training instances
together, and hence are computationally more expensive.
In this work, we use an e�cient subgraph mining algorithm (gSpan (Yan and Han, 2002a)) to find

frequent subgraphs in the annotation graphs, and use these as features in our model. gSpan and its
several extensions (Thoma et al., 2009; Tsuda, 2007) have been used in the literature for defining
features for classifying graph structures. Most of these applications have focussed on classifying
chemical compound structures (Thoma et al., 2009; Yan and Han, 2002a; Tsuda, 2007), protein
structures (Thoma et al., 2009) or XML document structures (Tsuda, 2007). In this work, we use
subgraph features derived from the annotation graphs for learning new annotations, a substantially
di↵erent task and a novel approach to annotation learning.
The most closely related work in the literature is by Matsumoto et al. (2005), where they use

frequent sub-sequence and sub-tree mining algorithms (Asai et al., 2002; Pei et al., 2004) to derive
structured features, such as word sub-sequences and dependency sub-trees automatically. They
show that these features outperform bag-of-words features for a sentiment classification task, on a
commonly-used movie review dataset (Pang et al., 2002). However, their features are limited to
sequences or tree annotations. Often, features that combine several annotations capture interesting
characteristics of the text, and have been shown to improve performance (Gamon, 2004; Wilson et
al., 2004; Joshi and Rosé, 2009). Combining several annotations together would often result in a
graph representation.
In this work, we used gSpan to derive frequent subgraphs from the annotation graphs, which

we use as features in a supervised learning algorithm. This approach generates a lot of features,
many of which may be redundant, and may not discriminate between the classes of interest. We
evaluated several feature selection methods that find a subset of discriminative features from the
set of all frequent subgraphs. Instead of an after step, feature selection can also be integrated into
the frequent subgraph mining algorithm. Thoma et al. (2009) and Tsuda (2007) propose extensions
to gSpan, where they mine frequent discriminative subgraphs from a set of graphs, and use those
as features in a supervised learning algorithm. Tsuda (2007) modify the gSpan search algorithm
to introduce a search tree pruning condition based on LARS feature selection criteria (Efron et al.,
2004), for e�cient discovery of optimal patterns. Thoma et al. (2009) propose a greedy feature
selection approach that integrates a sub-modular quality criterion into the gSpan algorithm for
e�cient discovery of frequent discriminative subgraphs. Embedding feature selection in the gSpan
algorithm reduces the search space considerably. The advantage of applying feature selection after
mining frequent subgraphs is that it can be applied to any set of features, not necessarily subgraph
features. If we want to add the subgraph features to an existing set of features, to evaluate the gain
in performance from the subgraph features, we can apply feature selection after joining all feature
sets together, like we did in this work.
In parallel to our work (Arora et al., 2010), Rink et al. (2010) used a similar approach for learning

causal relations between event mentions in text. Like in our work, they use a graph representation
for sentences to encode the lexical, syntactic, and semantic information; and use frequent subgraphs
among graphs for training instances (extracted using gSpan) as features in a binary SVM classifier.
They also used an extension to gSpan (Thoma et al., 2009) to find discriminative subgraphs. They
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show that with automatically extracted subgraph features their approach outperforms the prior
work on predicting causal relations between event mentions in text.
Annotation graphs have also been proposed to represent the information need in information

retrieval for question answering (Bilotti et al., 2010). Linguistic annotations such as Named Entities,
Semantic Roles, etc., are used to represent the information need in the question as an annotation
graph. Annotation graphs are also constructed for the candidate passages. An instance (question
and passage pair) is represented using subgraph features, such as semantic role patterns, that occur
in the annotation graphs for the question and the passage. A rank learning algorithm (Committee
Perceptron) is used to learn a passage ranking model. Subgraph features with a maximum size of
three relations are automatically extracted. Additionally, they use longer path features between
keywords in the annotation graph. A set of rules based on prior knowledge about the linguistic
annotations are defined to avoid redundant or sparsely predictive features. An alternative approach
based on our work would use the subgraph mining algorithm (gSpan) to find all common subgraphs
between the annotation graphs for a question and passage. In order to find features that generalize
well, we could also restrict our feature set to frequent subgraphs in the annotation graphs for
questions and passages in the dataset.
Most of the work discussed above represents an instance as a vector of subgraph features, ex-

tracted using gSpan or one of its extensions, and learns a model using a supervised learning al-
gorithm, such as SVMs. Kudo et al. (2004) propose an alternative approach, where they define a
decision stump for each subgraph extracted using gSpan, and use a Boosting algorithm (Schapire
and Singer, 2000) with subgraph based decision stumps as weak learners. They also discuss the
analogy between their approach and SVMs with convolution kernels. They test their boosting
based approach with subgraph features on a cell-phone review classification task and a chemical
compound classification task. For the review classification task, they show that for a boosting based
approach subgraph features outperform bag-of-words features. They also show that their boosting
based approach with subgraph features is significantly better than a bag-of-words kernel and not
significantly di↵erent from a tree-kernel (Collins and Du↵y, 2001; Kashima and Koyanagi, 2002) in
SVMs.
Dependency relations capture long-distance relationships between words. Lexical patterns are

often sparse, that is, they match only a few instances. In order to find general patterns with
dependency relations, in our experiments, we added extra edges between a dependency relation
and parts of speech for the head and modifier words (Figure 2.9a). We expect the patterns with
parts of speech to match more instances. An alternative method for finding general patterns is to
search for patterns with wild cards on one or more nodes. A node with a wild card can match any
node in the annotation graph for an instance. Ren and Zhao (2010) provide an extension to gSpan to
find frequent subgraph patterns with wild cards (up to a specified number of maximum wild cards in
a subgraph). This approach would allow us to find general patterns such as an adjective modifying
a noun, as illustrated in Figure 2.9c. However, for a subgraph in an annotation graph to match a
pattern with wild cards, all wild card nodes should match with some node in the subgraph. For
example, “I truly loved the movie” and “I absolutely loved the movie” match the following pattern
with wildcard: “I X loved the movie”, where ‘X’ is a wild card. However, “I for once truly loved the
movie” would not match the above pattern. Instead, it would match the following pattern with wild
cards “I X X X loved the movie”. A regular expression like pattern “I [X]+ loved the movie” would
match all three sentences above, where “[X]+” implies 0 or more contiguous wild cards. In a recent
work, Gianfortoni et al. (2011) propose an approach to find general sequence patterns that allow for
gaps of arbitrary length within a pattern. They call these the ‘stretchy patterns’. These patterns
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can contain a mix of words or categories for words (tags for words such as parts of speech). They
show that stretchy patterns provide a significant improvement in performance over unigram and
n-gram features, for a gender based text classification task. Similar idea can be applied to subgraph
features with wild cards. As a post processing step, all patterns with contiguous wild cards can
be collapsed into a single pattern with a regular expression of ‘[X]+’. The features proposed in
(Gianfortoni et al., 2011) are sequence based features, while in our work we mine subgraph features
of varying complexity.
Thus, features derived from prior linguistic annotations are crucial for several learning problems.

In this chapter, we presented a feature-based approach for automatically extracting features from
annotation graphs for instances, defined in terms of the prior linguistic annotations.

2.6 Summary and Future Work

Features that capture the linguistic structure in text have been shown to be useful for several
learning tasks (Gildea and Jurafsky, 2000; Pradhan et al., 2004; Wilson et al., 2004; Arora et al.,
2009a; Gamon, 2004; Joshi and Rosé, 2009; GuoDong et al., 2005). However, often these features
are hand-crafted by the domain experts. In this chapter, we proposed an automatic approach for
extracting structured features from available linguistic annotations. With a feature construction
technique that uses genetic programming to combine these complex features without the redun-
dancy, our approach outperforms a strong unigram-only baseline for a sentiment classification task.
The improvement in performance is small, but given that in sentiment domain, specifically re-
views, structured features have shown little improvement if any (Joshi and Rosé, 2009; Arora et al.,
2009a), this result is notable. For the protein-protein interaction extraction task, the proposed ap-
proach gives a substantial and significant improvement over unigram features, without any feature
selection. In the literature, Rink et al. (2010) show that an approach similar to ours outperforms
the state of the art work in identifying causal relations between events. So far we have only used
dependency parse and parts of speech tags as prior annotations in the annotation graph representa-
tion. A future direction is to use other annotators such as semantic role labelers (e.g. ASSERT31),
named entity taggers (e.g. Stanford NE tagger32), and Wordnet33, etc., to derive richer features.
Automatically extracting features from annotation graphs gives us a very large feature space.

Feature selection may play an important role in identifying the important features from this large
pool of features. In the work so far, we experimented with several feature selection techniques
based on genetic programming, chi-square statistics, correlation, and feature subsumption. Genetic
programming gave us the best performance for a sentiment classification task. There is additional
refinement that can be performed on the genetic programming fitness function, to improve the
quality of our features. Our feature extraction approach is not tied to any specific feature selection
technique or to the SVM learning algorithm. Other methods to try are the L1/L2 regularization
based learning algorithms that embed feature selection in the learning algorithm itself. For example,
Joshi et al. (2010) successfully applied the LARS�EN based learning algorithm (Zou and Hastie,
2005) to the sentiment domain, where they used some features derived from prior annotations. In
the work presented here, feature selection is decoupled from the subgraph mining algorithm. As
mentioned before, there has been some recent work that mines discriminative frequent subgraphs
from a dataset of labeled graphs (Tsuda, 2007; Thoma et al., 2009). A future direction is to use
these enhancements to gSpan algorithm for finding frequent discriminative subgraphs from the

31http://cemantix.org/assert.html
32http://nlp.stanford.edu/software/CRF-NER.shtml
33http://wordnet.princeton.edu/
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annotation graphs, and use these subgraphs as features.
The performance of structured features derived from prior linguistic annotations (automatically

or with the help of a domain expert) is dependent on the accuracy of these linguistic annotators.
While many high quality linguistic annotators such as parts of speech, syntactic parsers, etc. are
now available, as we move up the annotation hierarchy, the performance of available annotators
decreases. For example, ASSERT (Pradhan et al., 2004), a semantic role labeler, trained on WSJ
corpus with syntactic parses from the Charniak Parser (Charniak and Johnson, 2005) has an F-
score of 73.4 for the joint task of argument identification and classification on a WSJ test set (Row
A in Table 15 in (Pradhan et al., 2008))34. However, we often would not have gold annotations
in the target domain to retrain a semantic role labeler. Pradhan et al. (2008) found that when
ASSERT trained on WSJ corpus is applied to the Brown corpus, performance for the joint task
of argument identification and classification drops to 59.1 (Row B in Table 15 in (Pradhan et al.,
2008)). A direction for future work is to analyze the e↵ect of the quality of prior annotations, from
which the structured features are derived, on the performance of the final task.
For frequent subgraph mining algorithm, there are two parameters: 1) minimum support thresh-

old (minSup), where support for a subgraph is the number of annotation graphs that contain the
subgraph, and 2) maximum subgraph size (maxSGsize), based on the number of nodes in a sub-
graph. In this work, we determined the values for these parameters heuristically. For a new learning
task, the optimal values for these parameters should be determined using a grid search based on
performance on a development set. For each member in the Cartesian product of possible values for
the two parameters, we would train a classifier on the training data and test its performance on the
development set. We would then select the combination of values for the two parameters that gives
us the best performance on the development set, to build our final model. Instead of evaluating
all combinations of values in the grid, we could use a hill-climbing procedure (as also followed in
(Zaidan et al., 2007)). For example, we could start with an initial guess for each parameter, say
{3,7} for minSup and maxSGsize, respectively. We can compare performance on development set
for minSup 2 {2, 3, 4}, i.e., we look in either direction of the current value, keeping maxSGsize
fixed at 7. If minSup = 4 gives better performance than other values, we follow that direction and
evaluate performance for minSup = 5. We continue this process until we find a value for minSup
which is better than both its left and right neighbors. We then fix that value for the minSup
parameter, and repeat the process for the maxSGsize parameter. In Section 2.4.3, we showed that
for a movie review classification task with GP based feature combination, a lower value for the
minSup parameter gives a better performance. However, this improvement in performance comes
with a high computation cost. Thus, resource constraints, if any, may also influence our choice for
values for these parameters.
To conclude this chapter, we presented a novel approach for extracting features automatically

from prior linguistic annotations, in order to reduce the cost of feature engineering. We show that
the proposed features improve performance beyond a simple bag-of-words model, for a sentiment
classification task and protein-protein interaction extraction task. A similar work in the literature
(Rink et al., 2010) has also demonstrated the potential of this approach for identifying causal
relationship between event mentions in text.

34If trained with features from the corrected Treebank parse trees, then the F-score is 80 with automatic parse
trees for the test set (Table 4 in (Pradhan et al., 2008)).
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Chapter 3

Active Annotation with Indirect
Feature Feedback

In supervised learning, an instance is represented by a feature vector, and training a classifier
involves learning a function of these features to approximate the target variable. To learn a good
approximation, several labeled instances are needed. Labeling an instance may require substantial
annotation e↵ort, called the annotation cost. In order to reduce the total annotation cost for the
desired performance, in addition to labeling instances, the annotator could provide information
about the features directly. While the annotator may not be able to provide exact weights for
the features, they could identify the relevant features and the class they support. Direct feedback
on features in addition to labeling the instances has been shown to reduce the total number of
labeled instances required to achieve the desired performance (Godbole et al., 2004; Raghavan
and Allan, 2007; Druck et al., 2009; Melville and Sindhwani, 2009). However, such feedback is
restricted to simple features, such as words. Often linguistic features, such as dependency triples,
parts of speech, semantic roles, etc., are used to represent a text instance (Gamon, 2004; Pradhan
et al., 2004; Joshi and Rosé, 2009). For image datasets, features such as pixel and texture values
are commonly used (Settles et al., 2008b; Vijayanarasimhan and Grauman, 2011; Donahue and
Grauman, 2011). The annotator may not be familiar with such features to give feedback on them.
An alternative is for the annotator to provide indirect feedback on features by indicating parts of
an instance that are rationales for the instance’s label.
Di↵erent parts of an instance may be strong or weak indicators of the instance’s label. For

example, a movie review often consists of a plot summary, in addition to the reviewer’s sentiment
about the movie, which may only be a weak indicator of the reviewer’s sentiment. An aviation
safety report often consists of a description of the flight, beyond the cause of the aviation problem.
Similarly, when classifying an image of a scene, such as a kitchen, parts of the image that show
the sink, stove, etc., are strong indicators, while the part that shows the floor may only be a weak
indicator. Thus, in this work, we propose an alternate annotation strategy where the annotator
indicates parts of an instance that are rationales, i.e. key indicators, for the instance’s label, for
example, sentences in a document, segments in an image or a video, that are key indicators of the
instance’s label. In order to determine the label for an instance, the annotator perhaps already
makes this distinction. We ask them to provide their reason to assign the indicated label to an
instance, in form of rationales. Rationales provide indirect feedback on features, since the features
that overlap with rationales should be important for the classification task and this indication is
only indirect. While direct feature feedback has been modeled as a separate task from labeling
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instances in most prior work (Godbole et al., 2004; Raghavan and Allan, 2007; Druck et al., 2009;
Melville and Sindhwani, 2009), rationales are solicited together with the instance’s label. Figure
3.1 shows an example of a rationale sentence in a document.

As#we#cleared#runway#8r;#3#aircra2#were#being#cleared#to#cross#runway#8l#in#French.##
The$tower$controller$spoke$in$a$French$accent$in$rapid$fashion$to$us$and$we$heard$
cleared$to$cross$and$contact$ground$on$121.97.$$
We#read#back#the#crossing#clearance#we#heard#and#got#a#reply#confirming#our#readback.##
As#we#cleared#runway#8l#a#new#voice#which#spoke#in#clear#English#that#told#us#that#we#
had#not#been#cleared#to#cross#the#runway.##
We#apologized#but#the#new#voice#stated#that#a#report#would#be#filed.##
We#never#heard#hold#short#or#negaBve#from#the#controller#at#any#Bme.##
There#was#an#aircra2#in#posiBon#on#runway#8l#but#he#had#not#been#cleared#for#takeoff.##
We#had#been#in#posiBon#during#the#Bme#that#the#3#aircra2#had#crossed#runway#8l.#
Supplemental$informa=on$from$ACN$591582:$a$clearance$to$cross$runway$8l$and$
contact$ground$on$121.97$he$spoke$with$a$heavy$accent$and$very$fast.$$
I#read#back#cleared#to#cross#and#contact#ground.#he#read#back#what#we#thought#was#a#
confirmaBon#of#cleared#to#cross.#he#did#not#say#negaBve#ever#and#did#not#say#hold#short#
in#a#way#that#was#understandable.##
Supplemental#informaBon#from#ACN#591581:#there#was#an#airplane#holding#for#takeoff#
during#this#Bme#but#had#not#began#takeoff#roll.#

Figure 3.1: An example of rationale sentences (in bold) in an aviation safety report (Abedin et al.,
2011) with incident cause factor as ‘Communication Environment’.

Zaidan et al. (2007) define rationales as spans of text in a document that are key indicators of its
class label. In this work, we segment an instance into sub-instances, and the annotator identifies
the sub-instances that are rationales. To annotate a span of text as rationale, the annotator must
perform the cognitive task of identifying the appropriate boundaries for the rationale, which may
require more time than voting on a pre-segmented span of text in a document. Also, highlighting
a span should require more user interface time than voting on a pre-highlighted text segment.
Additionally, exact spans for rationales may vary across annotators, while we can expect to see
more agreement between the annotators when they vote on sub-instances. In this work, we consider
two annotation strategies where the annotator provides : 1) instance’s label only (LO), and 2)
instance’s label, together with rationales in support of the instance’s label (LR). Rationales provide
additional information per instance, but they may come with an additional cost. In prior work,
the additional cost for annotating rationales (as spans of text) is not accounted for, and the two
annotation strategies are compared in terms of the performance for a given number of instances
(Zaidan et al., 2007; Arora and Nyberg, 2009). The additional cost for rationales may vary with the
annotators, instances, annotation tasks, user interface design, etc. We compare the two strategies
for di↵erent additional costs for annotating rationales. For a sentiment classification task and an
aviation incident cause identification task, we show that rationales (as votes on sub-instances in an
instance) can provide better performance for a given annotation cost, when the additional cost for
annotating them is small.
Each instance (with or without rationales) may provide di↵erent incremental value to the learning

algorithm. Annotation cost may also vary across instances and annotation strategies. We propose
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a cost-sensitive active learning approach, where in each iteration an instance is actively selected
for a given strategy. We show that this strategy sensitive instance selection approach for seeking
rationales performs better than seeking rationales for instances selected randomly or actively, in-
dependent of the strategy. When the cost for annotating rationales is high, rationales may not be
beneficial for all instances, and we may want to selectively ask for rationales. We further extend
the proposed approach to jointly select the best instance and strategy in each iteration. The best
fixed strategy (LO or LR) varies with the additional cost for rationales. For di↵erent costs for
rationales, we show that the proposed approach follows the best fixed strategy, and in some cases
it is better than both strategies. That is, selectively asking for rationales performs better than
rationales for all instances or rationales for none. We evaluate several models for incorporating cost
in the active selection criteria. We show that the proposed approach outperforms cost-sensitive and
cost-insensitive instance selection for a fixed strategy, and cost-insensitive joint selection of instance
and strategy.
For the rest of the chapter, we first discuss di↵erent methods proposed in the literature for seeking

feedback on features. Next, we discuss methods for incorporating information about rationales in
learning. After this, we present our cost-sensitive active learning approach. We then present our
experiments and results, followed by the related work, conclusions and suggestions for the future
work. The work presented here is an exposition of the work presented in (Arora et al., 2012), with
some additional experiments and analysis.

3.1 Seeking Feedback on Features

Di↵erent methods to seek feedback on features from the annotator can be broadly divided into two
categories: direct and indirect feedback. Seeking direct feedback on features may involve showing
the annotator a list of features, and asking them to identify the relevant features among them,
and indicate the class they support. Direct supervision for simple features has been explored in
the literature. Raghavan et al. (2006) seek feedback from the annotator on unigram, bigram and
trigram features for document classification tasks. Druck et al. (2008) and Settles (2011) seek
feedback on word features for document classification tasks. Druck et al. (2009) seek feedback
on words, regular expressions, etc., for a sequence labeling task. Settles (2011) also allows the
annotator to specify relevant words in a text box, whether or not they are currently in the model’s
vocabulary.
Among the set of all features, a decision needs to be made about what features to present to the

annotator. Raghavan et al. (2006) rank features by information gain1 on labeled data, select the
top 20 features, mix them randomly with features much lower in the list, and show one feature at
a time to the annotator. The annotator indicates whether a given feature is relevant or not. A
feature is relevant if it helps to discriminate between the target classes. Druck et al. (2008) use
topic models to select the most representative features to present to the annotator for feedback. An
alternative to this passive approach to pre-select the features for feedback is to selectively sample
the features in an iterative procedure (active learning), where in each iteration the features expected
to benefit the current model the most are presented to the annotator. Godbole et al. (2004) select
features for feedback in each iteration as those expected to reduce the current model’s uncertainty
on unlabeled data the most. Raghavan and Allan (2007) select features based on their co-occurance
with the top ranked features from the current model. Druck et al. (2009) evaluate features in terms
of the model’s uncertainty about them, calculated as the sum of the marginal entropies at the
positions where the feature occurs, scaled by the frequency (log count) of the candidate feature in

1http://nlp.stanford.edu/IR-book/html/htmledition/mutual-information-1.html

43

http://nlp.stanford.edu/IR-book/html/htmledition/mutual-information-1.html


the corpus. Settles (2011) organizes the features by the class label, and ranks them by information
gain computed using the labeled data and probabilistically-labeled unlabeled data to reflect the
model’s beliefs about the features. To organize features into classes, a feature is posed in a class
with which it occurs at least 75% as often.
When asking for feature feedback, we may only ask the annotator to di↵erentiate between relevant

and non-relevant features as in (Raghavan et al., 2006), or the annotator may also be asked to
provide class association for the features as in (Raghavan and Allan, 2007) and (Druck et al.,
2008).
An important question to answer about feature feedback from the annotators is whether they are

able to provide useful feedback on features. In other words, are they able to identify features that are
relevant for the learning task. A large amount of labeled data (often referred to as ‘oracle’) can be
used to determine what features are relevant by using class association scores, such as information
gain. Raghavan et al. (2006) and Raghavan and Allan (2007) compare feature feedback from the
annotators with that obtained from the oracle. Raghavan et al. (2006) evaluate the precision and
recall of the features labeled by annotators against the top 20 features as ranked by the oracle.
On average (over a few document classification tasks), the annotator scores a precision of 0.58 and
a recall of 0.65. Druck et al. (2008), in their user experiments to label 100 features for a binary
classification task, observed that on average the user labeled features have a precision of 0.62 and
a recall of 0.96, when compared against the oracle. The user labeled features that did not match
the oracle labeled features were also found to be moderately relevant when inspected manually.
Direct feature feedback methods discussed so far ask the annotators to identify globally relevant

features, but certain features are di�cult to vote on without the context of an instance, and may
take on very di↵erent meanings in di↵erent contexts. Druck et al. (2009) use a grid interface to
seek feedback on features in context. Features that appear in similar contexts are grouped together
and presented in a box. This interface is expected to be useful, as features in a group are expected
to receive the same label from the annotator. Features in a box are sorted by model’s uncertainty
and the annotator labels a single feature at a time. The annotator is shown model’s current belief
about the features, and occurrences of the selected features in context.
Direct feature feedback methods discussed above are limited to simple features like unigrams.

Complex linguistic features are often di�cult to visualize, and the annotator may not be familiar
with such features to give feedback on them. In image datasets, often features such as pixel
values, color and texture values, etc. are used, the annotator may not be able to comprehend such
features, and give feedback on them. Also, in most of the work discussed above, feature feedback
is a separate task from labeling instances. An alternative approach is to seek indirect feedback
on features by asking the annotator to highlight spans of text as rationales (Zaidan et al., 2007)
for the instance’s label. This task is not separate from the original task of labeling an instance.
In addition to providing the instance’s label, the annotator provides rationales for the indicated
label. The annotator perhaps already makes this distinction in order to determine the label for an
instance. In order to leverage from the annotator’s expertise about the task, it is perhaps better
to have them identify the parts of an instance that are meaningful to them, rather than having
them vote on features chosen by the system. Rationales provide indirect feature feedback, since
features that overlap with the rationales should be important for the classification task, and this
indication is only indirect. As we will see in the next chapter, information about rationales is used
to indirectly influence the weights that are learnt for these features.
Figure 3.2 shows an example of a rationale for a movie review document, from the data shared

by Zaidan et al. (2007). The annotation task here is to label a movie review as expressing positive
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or negative sentiment towards the movie. The annotator additionally provides rationales for their
decision to label a review as positive or negative. Abedin et al. (2011) adopt a similar approach to
seek rationales for aviation safety reports. The annotation task here is to label a report with the
causes (from a list of 14 classes) of the aviation problem. Additionally, the annotator highlights
spans of text as rationales for the instance’s label. Figure 3.3 shows an example of a rationale for
an aviation safety report, from the data shared by Abedin et al. (2011). Rationales are not limited
to text instances. Donahue and Grauman (2011) adopt a similar approach for a scene classification
task. In addition to labeling a image with one of the 15 scene categories, the annotator uses
a polygon drawing tool to highlight the regions most indicative of their label for the image. For
example, in an image of a kitchen, regions that correspond to a sink and fridge are strong indicators
of the kitchen. Figure 3.4 shows an example from (Donahue and Grauman, 2011) of an image of a
scene labeled with rationales.

Figure 3.2: A sentence from a movie review, with a rationale highlighted, from the data shared
by Zaidan et al. (2007), where the annotation task is to label a review as expressing positive or
negative opinion towards the movie, and highlight spans of text as rationales.

Figure 3.3: A sentence from Aviation Safety Reports data (Abedin et al., 2011), with a rationale
highlighted. The annotation task is to label a document with causes of aviation safety problem,
and highlight spans of text as rationales. In this example, one of the cause factors is Resource
Deficiency, and the corresponding rationale string is highlighted.

Rationales, as defined by Zaidan et al. (2007) (spans of text in a document), leave the annotator
with a lot of flexibility on how they may annotate rationales. This raises a concern that rationales
may be specific to an annotator. In order to verify the consistency of rationales across annotators,
Zaidan et al. (2007) calculate the agreement between rationales from four annotators, on a subset
of the data (about 100 documents with equal distribution of the two classes). A rationale from
annotator Ai is considered to have been also annotated by Aj , if at least one of Aj ’s rationales
overlaps with it. They calculate pairwise annotator agreement between all annotators. The per-
centage of rationales for a given annotator that were also annotated by another annotator was
found to be between 75 � 91% for four annotators. This suggests that there is a fair amount of
agreement between the annotators about the rationales. However, Zaidan et al. (2007) did not
evaluate the extent of overlap between rationales that match across annotators. Since the entire
span of text annotated as rationale is used to incorporate information about rationales, di↵erent
spans for rationales may give us a di↵erent result. In this thesis, we propose a modification to
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Figure 3.4: An image from Scene classification dataset (Donahue and Grauman (2011)), with few
rationales marked in color. The annotation task is to label an image with one of the 15 scene
categories (bedroom in this case), and use a polygon drawing tool to mark the rationales.

Zaidan et al. (2007)’s definition of rationales. We segment an instance into sub-instances, and
the annotator indicates the sub-instances that are rationales. For example, a document may be
segmented into sentences or phrases (using a syntactic parse tree), and the annotator indicates the
sentences/phrases in a document that are rationales for the document’s label. There are three main
advantages of this approach :

1. Voting on a pre-highlighted text segment should require less user interface time than highlight-
ing a span of text. Additionally, the annotator would require some extra time to decide the
appropriate span for a rationale.

2. Rationales from di↵erent annotators would have the same span, unlike when they decide the
span for the rationale themselves.

3. In this thesis, we propose a cost-sensitive active learning approach that jointly selects the
instance and strategy in each iteration. As we present later, in order to estimate the benefit
to the model from rationales, we need to calculate the expected risk over possible rationales.
If rationales can be arbitrary spans of text, the set of possible rationales is very large, and
it is computationally infeasible to consider all possible spans for rationales. However, when
rationales are constrained to be sub-instances in an instance, the set of possible choices are
relatively much smaller.

In this thesis, we only study rationales (as sub-instances in an instance) for text classification
tasks. However, the ideas are general and can be applied to other non-text classification tasks. For
example, an image can be segmented into regions, and a video can be segmented into frames; and
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the annotator indicates the regions/frames that are rationales. As mentioned before, Donahue and
Grauman (2011) seek rationales as sub-regions in an image. The annotator uses a polygon drawing
tool to highlight the regions most indicative of their label for the image. The exact regions for
rationales annotated this way may vary across annotators. As in text classification, highlighting a
region in an image would require more user interface time than voting on a pre-segmented region.
Image segmentation algorithms (e.g. (Shi and Malik, 2000; Estrada et al., 2004)) can be used to
segment an image into regions. The annotator then identifies regions that are rationales for the
image’s label. Similarly, a video can be segmented into spatio-temporal regions (e.g. (Grundmann
et al., 2010)) and the annotator indicates the regions that are rationales for the video’s label.
Rationales as sub-instances in an instance are less precise than spans of text. However, in a recent

work, Yessenalina et al. (2010) found that extending rationale sub-strings to sentence boundaries
did not have a significant e↵ect on performance, for a movie review dataset (Zaidan et al., 2007).
In this work, we evaluate whether rationales as sub-instances in an instance are useful for four
text classification tasks in two datasets, and propose a cost-sensitive active learning approach to
selectively ask for rationales. In the next section, we describe how information about rationales is
incorporated into learning.

3.2 Incorporating Feedback on Features

We use SVMs to learn a binary classifier (L = {+1,�1}), and adopt the approach in (Zaidan et
al., 2007) for incorporating information about rationales in learning. Their approach has also been
adopted in other work with rationales (Abedin et al., 2011; Donahue and Grauman, 2011). Let
Xi be an instance with Ni sub-instances (Xi = {xi,1, xi,2, ..., xi,Ni}), and Yi 2 L be its label. A
sub-instance (xi,j) may be a rationale for the instance’s label (yi,j = R) or not (yi,j = NR). As
discussed in (Zaidan et al., 2007), for each rationale (xi,j), a contrast instance (ci,j) is created, which
is the original instance (Xi) with the rationale masked. In addition to the standard constraints in a
linear hard-margin SVM (w ·Xi ·Yi � 1), contrast constraints (w ·Xi ·Yi�w ·ci,j ·Yi � µ) are added
to the model based on the intuition that the correct model should be less sure of its classification
of the contrast instance, than its classification of the original instance, since it lacks the important
information present in the rationale. In other words, the contrast instance should be closer to
the decision hyperplane than the original instance. µ � 0 controls the size of the desired margin
between the original and the contrast instance. For a soft-margin linear SVM, these constraints
are modified as follows :

8i, j w · (Xi � ci,j) · Yi � µ(1� ⇠i,j) (3.1)

where ⇠i,j is the slack variable associated with the contrast constraints. A di↵erent C parameter
(Ccontrast) is used to control for the importance of satisfying the contrast constraints. Dividing
both sides of Equation 3.1 by µ, we get :

8i, j w · (ri,j) · Yi � 1� ⇠i,j (3.2)

where ri,j = Xi�ci,j
µ is a pseudo instance. Since Equation 3.2 takes the same form as the soft-

margin SVM constraint for instance Xi (w ·Xi · Yi � 1� ⇠i), we can simply add the pair (ri,j , Yi)
to the training set, weighted by Ccontrast instead of C. To allow a biased hyperplane, each instance
feature vector (original or contrast) is prepended with a 1, as in (Zaidan et al., 2007). This means,
however, that we must prepend a 0 element to the feature vector for each pseudo-instance (ri,j),

since ri,j =
Xi�ci,j

µ .
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If binary occurrence features are used, a contrast instance defined by masking a rationale in the
original instance (as in (Zaidan et al., 2007)), will only di↵er from the original instance in features
that are present in the rationale, but are not present in another rationale or anywhere else in the
document. We refer to this approach as CIMask. This means that features that occur in a given
rationale, and are also present in another rationale, or somewhere else in the document, will also
be present in the contrast instance. If rationales share a lot of features, contrast instances may not
be much di↵erent from the original instance. An alternative is to define the contrast instance such
that only features present in the document, but not present in the corresponding rationale have

value 1. That is, ci,j = Xi � xi,j , and hence ri,j =
(Xi�ci,j)

µ = xi,j

µ , where xi,j is one of the rationale
sub-instance in instance Xi. We refer to this approach as CISub. In this work, we compare both
these approaches. Note that for numeric features, such as feature counts in text and pixel values
in images, both these approaches are equivalent.
In a follow up work, Zaidan and Eisner (2008) propose an alternate approach for incorporating

information about rationales in learning. In addition to the sentiment classification model for
the reviews, they introduce a rationale model to explain the annotator’s behavior when he/she
annotates the rationales. The parameters for the classification model and the rationale model are
chosen to maximize the likelihood of the observed classifications and the rationales. They categorize
the rationale model as a noisy channel model, where a ‘channel model’ verifies that rationales
faithfully signal the features that strongly support the classification, and a ‘language model’ ensures
that rationales are well-formed. A log-linear model is used for classifying the documents, and a
Conditional Random Fields (CRFs) is used for modeling the rationales. The emission features in
CRFs capture the channel model, and the transition features capture the language model. However,
the generative approach in (Zaidan and Eisner, 2008) did not give a substantial improvement2 over
the contrast instance approach in (Zaidan et al., 2007). Since SVMs are known to perform well for
text classification, we adopt their contrast instance approach (Zaidan et al., 2007).
In addition to the contrast instances, Abedin et al. (2011) use rationales to construct residue

instances. A residue instance contains only the features extracted from the rationale. Abedin et
al. (2011) suggest that a residue instance contains less relevant information for classification than
the original instance, and hence the SVM model should be less sure of its classification of a residue
instance than its classification of the original instance. If there are several rationales in an instance,
a residue instance would contain only part of the information indicative of the instance’s label, and
hence the model should be less sure of its classification of the residue instance than its classification
of the original instance. Residue constraints capture this intuition. Abedin et al. (2011) found
that adding residue constraints to the model improves performance on their dataset. Abedin et al.
(2011) report overall performance (for all classes combined). For some of their classes, we found
that there are on average less than 2 rationale sub-instances per instance (Table 3.2 in Section
3.4.1). Residue constraints may not be as helpful for these classes.
Another alternative to construct contrast instances is to construct a single contrast instance,

by masking out all rationales at once. Contrast instance created this way would lack most of the
relevant information and would be substantially di↵erent from the original instance. In this thesis,
we only experiment with incorporating information about rationales through contrast constraints
(as in (Zaidan et al., 2007)) with two variants for constructing contrast instances : CIMask and
CISub. We focus on evaluating rationales as sub-instances in an instance, at di↵erent additional
costs for annotating rationales. We also propose and evaluate a cost-sensitive active learning
approach for joint selection of instance and strategy.

2About 1-2 points improvement at few points in the learning curve.
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Figure 3.5: Cost-sensitive active learning in interactive annotation learning framework.

3.3 Cost-Sensitive Active Learning

Each instance with or without rationales may provide di↵erent incremental value to the model.
Annotation cost may also vary across instances and strategies. Thus, we propose a cost-sensitive
active selection criteria to select an instance for the given strategy. When rationales are very
expensive to annotate, we may want to selectively ask for rationales. The proposed approach can
also be used to jointly select an instance and annotation strategy (LO or LR), in each iteration.
Figure 3.5 presents the details of the cost-sensitive active learner in interactive annotation learning
framework proposed in this thesis. Each candidate (instance and strategy pair) is assigned a
score, called the Value of Information (V OI). In each iteration, the instance and strategy pair
with maximum V OI is selected for next annotation. Steps 4 to 6 are repeated until the desired
performance is reached or we run out of budget. We evaluate several models for calculating V OI
for a candidate.
Let X t

u and X t
l be the pool of unlabeled and labeled instances, at time t. We define the Value
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of Information (V OI) for a candidate instance Xi 2 X t
u, and a candidate strategy s 2 S = {LO,

LR}, as a function of its expected utility (Û(Xi, s)), and expected annotation cost (Ĉ(Xi, s)):,

V OI(Xi 2 X t
u, s 2 S) = f(Û(Xi, s), Ĉ((Xi, s)) (3.3)

The first approach we explore for defining V OI is similar to the decision theoretic approach
proposed in (Kapoor et al., 2007). This approach was used recently in a setting similar to ours,
for actively selecting among di↵erent annotation types (with di↵erent costs) in multiple instance
learning (Vijayanarasimhan and Grauman, 2011). The value of information is defined as the reduc-
tion in the total expected cost of the use of the classifier minus the cost of obtaining the candidate
annotation. We pay a cost for misclassifying an instance every time the classifier is used. We
calculate the expected cost of the use of the classifier (called the misclassification risk) on the
remaining unlabeled data. Kapoor et al. (2007) calculate the misclassification risk on both labeled
and unlabeled data. Since our goal is to select an instance that improves the model’s performance
on an unseen test instance, we only consider the model’s risk on unlabeled data. Thus, V OI is
defined as follows:

V OI-RTC(Xi 2 X t
u, s 2 S) = R̂R(Xi, s)� Ĉ(Xi, s) (3.4)

where R̂R(Xi, s) is the expected reduction in model’s total misclassification risk after obtaining
annotation for instance Xi labeled with strategy s, and Ĉ(Xi, s) is the cost of annotating instance
Xi with strategy s. Model’s total misclassification risk at any given point is the expected cost to
label the remaining unlabeled data. The V OI approach then evaluates by how much a candidate
reduces this total cost (RTC). Reduction in total risk (R̂R(Xi, s)) is calculated as follows:

R̂R(Xi, s) = (R̂X t
l
(X t

u)� R̂X t+1
l ((Xi,Yi),s)

(X t+1
u (Xi)) (3.5)

where R̂X t
l
(X t

u) is the model’s total misclassification risk at time t. It is the expected risk on the

unlabeled data (X t
u), of the model trained on labeled data available at time t (X t

l ), calculated as
follows:

R̂X t
l
(X t

u) =
X

Xk2X t
u

X

h2L
rh(1� p(Yk = h|Xk))p̄(Yk = h|Xk) (3.6)

where p̄(Yk = h|Xk) is the true probability that instance Xk has label h 2 L. (1 � p(Yk = h|Xk))
is the probability that the model will not assign this label to the instance, and rh is the cost of
misclassifying an instance with label h. We assume an equal penalty for misclassifying all instances,
and set rh equal to the average cost of labeling an instance without rationales3. Since p̄(Yk = h|Xk)
is unknown, we use an estimate for it from the current classifier (i.e. p(Yk = h|Xk))), by fitting a
sigmoid function to SVM’s output. Next, we estimate the model’s risk after learning on instance
Xi annotated with strategy s (i.e. R̂X t+1

l ((Xi,Yi),s)
(X t+1

u (Xi)) in Eq. 3.5). Since we don’t know the

true annotation for the candidate instance and strategy, we compute an expected value of this risk.
For LO strategy, this expectation is calculated as follows:

3For some tasks, penalty may be di↵erent for misclassifying instances of di↵erent classes, and rh can be set
accordingly.
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E[R̂X t+1
l ((Xi,Yi),LO)(X

t+1
u (Xi))] =

X

b2L
p(Yi = b|Xi)R̂X t+1

l ((Xi,b),LO)(X
t+1
u (Xi)) (3.7)

where X t+1
u (Xi) = X t

u\Xi, X t+1
l ((Xi, b), LO)= X t

l [ (Xi, b), and R̂X t+1
l ((Xi,b),LO)(X

t+1
u (Xi)) is cal-

culated as in Equation 3.6. For LR strategy, to calculate the expected risk, we would need to take
an expectation over all possible rationale label sets for sub-instances in an instance. For an instance
with Ni sub-instances, there are 2Ni possible label sets. Computing the risk for all label sets can
be computationally very expensive. Instead, we compute an approximation of the expected risk.
For each class, from the data annotated so far, we train a classifier to predict what sub-instances
in an instance are rationales. We use this classifier’s prediction for what sub-instances in a candi-
date instance are rationales, and use Equation 3.7 to calculate an approximation of the expected
risk. We set X t+1

l ((Xi, b), LR) = X t
l [ (Xi, b) [((r̂i,1, b)...(r̂i,R̂i

, b)), where (r̂i,1, ..., r̂i,R̂i
) are pseudo

instances for sub-instances predicted to be rationales in instance Xi.
In the above formulation for V OI, we use the model’s total risk on unlabeled data as the expected

cost to label the remaining unlabeled data. The V OI approach then evaluates by how much does
a candidate reduce this cost. However, this means that risk, and hence V OI, will be di↵erent for
a smaller or a larger unlabeled set, given the same distribution (i.e. same mean and variance)
of the reduction in risk scores in the set. The size of the unlabeled set may influence the weight
on reduction in risk over cost. An alternative approach is to treat reduction in risk and cost
as two independent scores for evaluating the candidates, and standardize the scores (SS) before
subtracting them (suggested in (Donmez and Carbonell, 2008b)):

V OI-SS(Xi 2 X t
u, s 2 S) = R̂Rs

(Xi, s)� Ĉs (Xi, s) (3.8)

where R̂Rs
and Ĉs are the standardized4 scores. Standardized scores can be compared directly.

This allows us to combine any two scores for ranking the candidates. For example, Tomanek and
Hahn (2010) combine the ranks for the candidates based on the uncertainty of the model on the
candidate instance, and its annotation cost. However, their approach ignores the actual scores.
The di↵erence between the scores for candidates with same ranks based on the two criteria, may be
quite di↵erent. This di↵erence is not taken into account when combining the ranks. Standardized
scores capture the relative di↵erence between the scores for the candidates.
Ultimately, our goal is to reduce the error of the model on an unseen test instance, i.e. the gener-

alization error of the model. An alternative V OI formulation is to select a candidate that reduces
the model’s expected risk on an unseen instance (expected risk for short) the most. Assuming a
uniform distribution for instances, that is all instances are equally likely, a simple estimate of this
risk is the average risk on a large set. We estimate the model’s expected risk in each iteration on
the remaining unlabeled data. That is, utility, as reduction in model’s expected risk, is calculated
as follows:

R̂Re(Xi, s) =
R̂X t

l
(X t

u)

N
�

R̂X t+1
l ((Xi,Yi),s)

(X t+1
u (Xi)) + 0

N
(3.9)

where R̂Re(Xi, s) is the reduction in model’s expected risk. R̂X t
l
(X t

u) and R̂X t+1
l ((Xi,Yi),s)

(X t+1
u (Xi))

are calculated as described before in Eq. 3.6 and 3.7 respectively. N is the size of the unlabeled
set X t

u. Risk on the candidate instance after training on it is assumed to be 0.
4Subtract the sample mean and divide by the sample standard deviation, where the sample is the candidate set.
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If we subtract the cost from reduction in expected (or average) risk (as in V OI-RPC), cost will
be the dominant factor, and LR strategy may never be selected. V OI computed using standardized
scores for cost and reduction in risk (V OI-SS) is the same whether we use total or average risk.
A third approach is to calculate V OI as reduction in risk per unit annotation cost (RPC). That
is, V OI is calculated as follows:

V OI-RPC(Xi 2 X t
u, s 2 S) =

R̂Re(Xi, s)

Ĉ(Xi, s)
(3.10)

In other words, here we are evaluating which candidate reduces the expected risk of the model the
most, per unit cost. If we were to plot reduction in risk vs. annotation cost in a graph, this method
would correspond to selecting the candidate that is expected to result in the largest slope for the
next iteration. This approach of defining V OI as utility per unit cost has been used in the active
learning literature with di↵erent measures of utility (Melville et al., 2005; Donmez and Carbonell,
2008b; Haertel et al., 2008; Tomanek and Hahn, 2010). In Table 3.1, we present a hypothetical
example with three candidates. Here, the three approaches described above will select a di↵erent
candidate.

Cand. R̂R Ĉ R̂Rs Ĉs V OI-RTC V OI-SS V OI-RPC
1 21 15 -0.0798 -0.0867 6 0.0069 0.467
2 10 5 -0.9577 -0.9538 5 -0.0039 0.667

3 35 28 1.0375 1.0405 7 -0.0030 0.417
Avg. 22 16
Stdev. 12.530 11.533

Table 3.1: Toy example for di↵erent ways to compute VOI. In bold is the score for instance selected
by the given V OI criterion.

To summarize, in this work, we consider the following three methods for computing V OI: 1)
Reduction in total cost of the use of the classifier (V OI-RTC), 2) Subtracting standardized scores
for cost and reduction in risk (V OI-SS), 3) Reduction in the model’s expected risk on an unseen
instance per unit cost (V OI-RPC).
We now describe how we estimate the annotation cost for an instanceXi and strategy s (Ĉ(Xi, s)).

Annotation cost may vary across instances (Donmez and Carbonell, 2008b; Ringger et al., 2008;
Settles et al., 2008a; Arora et al., 2009b; Baldridge and Palmer, 2009). Longer documents require
more time to read and annotate than shorter ones. Ambiguous instances require more time to label
than simpler ones. Annotation cost is more when annotating rationales in addition to providing an
instance’s label. Zaidan et al. (2007), found that it takes twice as much time to annotate a movie
review with rationales, in addition to providing the review’s label. In most cases, annotation cost is
not known a priori. Hence, to calculate V OI, we use an estimate for the annotation cost. We use a
simple estimate based on an instance’s length, which has been found to be a good indicator of the
annotation cost (Ringger et al., 2008; Arora et al., 2009b). Arora et al. (2009b)5 observed a linear
correlation between document length and annotation cost, across multiple annotators. Whether
providing rationales or not, we expect the annotation cost to vary with the length of an instance.

5This work is also presented in Chapter 4.
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Thus, we use a simple cost model where annotation cost is a linear function of the length of an
instance. Let L(x) be the length of an instance x, and let CF (s) be the cost factor for strategy s.
The cost for annotating an instance x with strategy s is given by:

Ĉ(x, s) = CF (s) ⇤ L(x) (3.11)

where the factor CF (s) depends on the annotation strategy s. Arora et al. (2009b) also found
a significant linear correlation between the number of rationales and annotation cost. Hence, we
assume a linear relationship between the costs for the two annotation strategies of LO and LR.
That is, CF (LR) = CF (LO) ⇤ ↵. We set CF (LR) = 1, and hence CF (LO) = 1

↵ . The actual
value of CF (LR) should not a↵ect the relative di↵erence between the candidates, and hence their
ranking. This is so because risk has a factor for the cost of misclassifying an instance, set equal
to the average cost of labeling an instance without rationales. Thus, both reduction in risk and
cost in V OI include this factor. We measure an instance’s length (L(x)) in terms of the number
of sub-instances. For the LR strategy, the annotator identifies which sub-instances are rationales.
Thus, the annotation cost for LR strategy should be proportional to the number of sub-instances
in an instance. Length of a sub-instance and other properties of an instance such as ambiguity
etc. may also e↵ect the annotation time. For the current work, we use a simple model based on
instance length as the number of sub-instances in an instance.
Based on the V OI selective sampling criterion described above, the algorithm for joint selective

sampling of instance and strategy is described in Algorithm 2.

Algorithm 2 Selective Sampling of an Instance and Strategy {Xi, s} with a total annotation
budget of B

Budget spent so far: b = 0
while b < B do

for all Xi 2 X t
u, s 2 S = {LO,LR} do

Calculate VOI for {Xi, s} (Eq. 3.3)
end for
(X⇤

i , s
⇤) = argmaxXi2X t

u,s2S V OI(Xi, s)
if s⇤ = LR then
X t+1
l = X t

l [ (X⇤
i , Yi) [

PRi
j (ri,j , Yi),

else
X t+1
l = X t

l [ (X⇤
i , Yi)

end if
Update model with X t+1

l

X t+1
u = X t

u \ X⇤
i

b = b+ C(X⇤
i , s

⇤), t = t+ 1
end while

3.4 Experiments and Results

In this section, we describe the datasets we use for our experiments and the experimental setup,
followed by results and discussion.
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3.4.1 Data and Experimental Setup

To the best of our knowledge, there are only two text datasets available with rationales annotated
as sub-strings. The first dataset (MR) is a collection of movie reviews annotated with rationales
(Zaidan et al., 2007). The goal here is to classify a movie review as expressing positive or negative
sentiment (P vs. N) towards the movie. We use unigram6 features that occur more than 3 times
in the whole set, and normalize the features for an instance and contrast instance as in (Zaidan et
al., 2007). We divide the dataset (900 positive, 900 negative) into 10 folds with equal numbers of
positive and negative instances. One fold forms our development set, for estimating the parameters.
We evaluate our models on one of the other folds, and run active learning experiments on the
remaining folds.
The second dataset is the Aviation Safety Reports (ASR) data annotated with rationales by

Abedin et al. (2011). The task here is to identify which of the 14 cause factors were the cause of
the problem described in a given report. We evaluate our approach on 3 pair-wise classification
tasks for three cause factors: {Communication Environment (CE), Proficiency (PR), Resource
Deficiency (RD)}7. Table 3.2 summarizes some statistics about the two datasets. As can be seen,
aviation safety reports are shorter in length than movie reviews. There are also fewer rationales
per instance for ASR dataset than MR dataset. The percentage of rationales per instance for
RD class is comparable to the MR dataset. However, for CE and PR classes, the percentage of
rationales is much smaller. As mentioned before, the annotation cost was found to increase linearly
with the number of rationales (Chapter 4). Thus, we expect a lower rationale cost factor (↵) for
ASR dataset than MR dataset. Since ASR dataset is small, we use unigram features without any
filtering and average results over three random splits of the data into 5 folds. In order to make a
comparison across di↵erent learning problems in this dataset, we use the same amount of data for
each class. As for the MR dataset, we split the data into folds such that there is an equal number
of positive and negative instances in each fold. In the end, we have 21 instances per class in each
fold.

#I Avg.
#SI/I

Avg.
#RSI/I

Avg.
%RSI/I

Avg. SI
CharLen

Avg. RSI
CharLen

Avg. %
RatText

CE 141 15.7 1.50 12.4 108.2 114.9 13.0
PR 268 14.0 1.40 13.5 105.8 123.8 15.7
RD 509 13.7 3.22 28.0 98.8 116.9 32.5
MR 1800 32.6 8.00 26.8 120.2 129.1 28.5

Table 3.2: Data statistics for ASR (CE, PR, RD), and MR datasets. #SI/I = number of sub-
instances per instance; #RSI/I = number of rationale sub-instances per instance; %RSI/I = per-
centage of rationale sub-instances per instance; SI CharLen = character length of a sub-instance in
an instance; RSI CharLen = character length of a rationale sub-instance in an instance; % RatText
= percentage of text in an instance that is covered by rationales.

6Extracted using the tokenizer in Stanford Parser (Klein and Manning, 2003) (http://nlp.stanford.edu/
software/lex-parser.shtml).

7We only use part of the data (training set) that is annotated with rationales. Only 6 out of 14 classes have more
than 100 positive instances. So far, we have evaluated our approach for 3 of them. For each pairwise classification
task, we exclude the instances that belong to both the classes.
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We use MxTerminator (Reynar and Ratnaparkhi, 1997)8 to segment a document into sentences,
which constitute our sub-instances. For the two datasets, we extend the rationale sub-strings in
a document to sentence boundaries, to get the rationale sub-instances. Yessenalina et al. (2010)
found that this does not have a significant e↵ect on performance, for MR dataset. As mentioned
in Section 3.3, we have a second classifier that predicts whether a sub-instance is a rationale or not
(R vs. NR). For each rationale sub-instance, a pseudo-instance is added to the main classifier, as
described in Section 3.2. The same instance is also added to the R vs. NR classifier with the label
R. Pseudo-instances are also constructed for the non-rationale sub-instances, and these are added
to the R vs. NR classifier with the label NR. Since ASR dataset is small and has fewer rationales,
R vs. NR classifier may not predict any rationales for an instance. Since we assume that there is
at least one rationale in each instance, if no rationales are predicted for an instance, we select the
most likely one as the rationale. In this rationale predictor we make a simplifying assumption that
labels for sub-instances in an instance are independent of each other, given the instance’s label. A
more sophisticated model that relaxes this assumption may improve the performance further.
We set the parameters for the cost of dissatisfying the margin constraints in SVMs (C) and

contrast constraints (Ccontrast) in (Zaidan et al., 2007) to the default value of 1. We select the µ
parameter based on performance on the development set, averaged over folds, for random instance
selection and fixed strategy of LR.
Risk estimation (for calculating V OI) is an expensive operation, as it requires learning and

unlearning for every possible label for each candidate instance and its expected rationales. We de-
veloped an e�cient implementation in Java of an online incremental/decremental SVM algorithm
proposed by Cauwenberghs and Poggio (2000), based on the C++ implementation in (Vijaya-
narasimhan and Grauman, 2011). To speed up the selection process further, we apply V OI based
selection to a subset of instances (set to 50 for our experiments). We select these instances using
a common active selection criteria of uncertainty sampling, which selects instances the model is
least certain about (i.e. closest to the hyperplane in SVMs). Since the ASR dataset is relatively
small, we select an instance using V OI from the complete unlabeled pool. On a server with 6 cores
(2.4GHz) and a total of 24GB of RAM (program only requires maximum of 8GB RAM for MR
and 1GB for ASR dataset), using a sequential algorithm, it takes on average 0.1 seconds to select
an instance and strategy for ASR dataset. Since MR dataset is larger with more rationales, it
takes on average 44 seconds to select a candidate. This can be improved further by parallelizing
the algorithm.
We compare di↵erent methods in terms of performance for given annotation cost. Ideally, for

evaluation, one should use the clock time for annotation cost. However, since we do not have the
annotation times for every instance and strategy pair, we use the same estimate for annotation cost
based on instance’s length described in Section 3.3. In the literature, length of a text instance (e.g.
in terms of the number of words) has been used as an estimate for annotation cost for comparing
di↵erent active learning methods (Engelson and Dagan, 1996; Tomanek et al., 2007). Also, as
mentioned before, a linear correlation between annotation time and length of a text instance has
been observed in the literature (Ringger et al., 2008; Arora et al., 2009b).
For MR data, we run the active learning experiments up to a total annotation cost of 10, 000

units9. We measure performance, in terms of the accuracy, for every 500 annotation cost units
spent. We call this a cost milestone. The results are plotted with accuracy averaged over 10 folds
at a given cost milestone. We measure significance using a two-tailed paired t-test and represent

8http://web.mit.edu/course/6/6.863/tools/jmx/MXTERMINATOR.html
9About 400 � 450 instances for LR strategy. For LO strategy, number of instances depend on the value of ↵

(about 750 instances for ↵ = 2).
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the results using a character string, one character for each milestone. I denotes an insignificant, S
denotes a significant (p < 0.05), and M denotes a marginally significant (p < 0.1) di↵erence. For
example, a significance string of ‘SSSSMSSSSSIISSSSSIMI’ indicates that the di↵erence is marginally
significant at 2500 and 9500, insignificant at 5500, 6000, 9000 and 10000, and significant at all other
cost milestones from 500 to 10000 (at every 500 cost milestone). For calculating the risk, we estimate
probabilities from raw SVM scores. We use the development set to estimate these probabilities, by
fitting a sigmoid function to SVM’s output (Platt, 1999). We repeat this process at each increment
of 500 in total cost.
For ASR data, we show results up to a total cost of 700. That is when we run out of instances

for LO strategy at ↵ = 2, for some classes. Since this dataset is small, we fit the sigmoid after each
iteration. We report performance and significance results at every 100 cost milestone.

3.4.2 Results and Discussion

We first compare the fixed strategies of LO and LR, that is, we evaluate whether annotating ratio-
nales in addition to the instance’s label is useful. Then, we compare strategy selection to the fixed
strategies, for variants of V OI discussed above. Following this, we present an analysis of the e↵ect
of number of rationales on model’s performance.

Comparison of Annotation Strategies: LO vs. LR

We first make this comparison for ↵ = 1, that is, there is no extra cost for annotating rationales.
This is to understand if rationales as sub-instances in an instance are useful. For LR strategy, we
also compare the two variants for constructing contrast instances (CISub and CIMask), discussed
in Section 3.2. We compare the two fixed strategies of LO and LR for random, and one of the
V OI based instance selection (V OI-RPC) methods. We start with an initial training set of one
instance per class, and in each iteration an instance is selected randomly, or actively for the given
strategy.
Figure 3.6 and Figure 3.7 summarize the results for MR dataset and ASR dataset respectively.

As can be seen, for MR dataset, CISub outperforms CIMask significantly, for both random and
V OI based instance selection. For ASR dataset, except for CE vs. RD task with random instance
selection (in some parts of the learning curve), CISub outperforms CIMask significantly for all
other cases. As mentioned in Section 3.2, if rationales share a lot of features with each other or
with other parts of the document, a contrast instance constructed using CIMask approach may
not be much di↵erent from the original instance, and contrast constraints may not provide much
additional information to the model. Thus, going forward, we use CISub approach for constructing
contrast instances.
From Figure 3.6 we see that annotating rationales in addition to providing the instance’s la-

bel improves performance significantly, for both random and V OI based instance selection. The
di↵erence between Random(x,LR)-CISub and Random(x,LO) is statistically significant at all cost
milestones. The di↵erence between VOI-RPC(x,LR)-CISub and VOI-RPC(x,LO) is significant at
several cost milestones. The benefit from rationales decreases as learning progresses. This is ex-
pected, as the model matures, the extra information that rationales provide may not be as helpful
as in the beginning. However, even later on in learning, rationales do not hurt the model and
there is significant benefit from them. The benefit from rationales seems more for random instance
selection than V OI based instance selection. However, note that V OI based instance selection
even without rationales outperforms random instance selection with rationales (the di↵erence is
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Figure 3.6: Comparison of the two strategies of LO (solid lines) and LR (dotted or dashed lines) for
↵ = 1, for MR dataset. Triangles for V OI and circles for random instance selection. Significance
strings summarize results from 500 to 10000 (at every 500) cost milestone.

marginally significant at a few points in the beginning). We see that rationales provide further
benefit to the model when the instances are actively selected as those expected to bring the most
benefit from rationales. From Figure 3.6 we also see that for the fixed strategies of LO and LR,
V OI based instance selection outperforms random instance selection. This di↵erence is significant
at almost all cost milestones.
We observe similar results for ASR dataset (Figure 3.7). The fixed strategy of LR significantly

outperforms the fixed strategy of LO for all three tasks, for both random and V OI based instance
selection. As can be seen, for a given annotation cost, we are able to achieve much higher accuracy
(with or without rationales) for CE vs. RD task than the other two tasks. This suggests that
distinguishing PR class from the other two classes is a harder problem, i.e., it requires more
supervision to achieve the same performance. However, we see more benefit from rationales for
CE vs. PR and PR vs. RD tasks, than CE vs. RD task. This suggests that rationales are
more useful for PR class than CE and RD classes. One caveat is that Abedin et al. (2011) did not
retain rationales inline and every occurrence of a rationale sub-string is considered a rationale. This
however may not be true, specifically for short rationale strings. Figure 3.8 shows a table of most
frequent rationales for each cause factor, taken from (Abedin et al., 2011). It is clear that some
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Figure 3.7: Comparison of the two strategies of LO (solid lines) and LR (dotted or dashed lines)
for ↵ = 1, for three classification tasks in ASR dataset. Triangles for V OI and circles for random
instance selection. Significance strings summarize results from 100 to 700 (at every 100) cost
milestone.

rationale strings, such as ‘o↵’ for resource deficiency (RD), may not be a rationale in every context.
For example, the occurrence of ‘o↵’ in “just prior to outer marker we were handed o↵ to tower.”
is not a rationale. On the other hand, top rationales for proficiency (PR) (e.g. training, mistake,
etc.) seem like they may be rationales in most of the contexts. This noise in rationale annotations,
which may be more or less for di↵erent classes, may explain the di↵erences we observe in benefit
from rationales for di↵erent classification tasks. Additionally, for some classes, unigram features
may be ambiguous and longer n-grams or other linguistic features may be needed. However, such
features are often rare and may require a larger dataset than what we have. From Figure 3.7 we
also see that V OI based instance selection outperforms random instance selection significantly for
both strategies of LO and LR.
In the results above, in each iteration the most suitable instance for a fixed strategy of LO or LR

is selected using V OI. We saw that with this strategy sensitive instance selection, fixed strategy
of LR significantly outperforms the fixed strategy of LO. We also compare the two fixed strategies

58



Figure 3.8: Example of five most frequent rationale strings (with their frequency) for each cause
factor as in (Abedin et al., 2011).
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Figure 3.9: Comparison of strategy sensitive (dashed) and strategy independent (dotted) instance
selection with LR, with reference of LO strategy (solid line) for ↵ = 1, for MR dataset.

for same instance selection criteria. An instance is selected as the one expected to bring the most
benefit to the model for the instance’s label. That is, in each iteration an instance is selected for the
LO strategy and we compare the fixed strategies of LO and LR for this instance selection procedure
(i.e. V OI-RPC(x, LO)-LR vs. V OI-RPC(x, LO)). Since strategy sensitive instance selection for
LR strategy computes an approximation of the expected risk using a rationale predictor (Section
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3.3), it is also important to evaluate it against a simpler approach of using instances selected for
LO strategy. As can be seen from Figure 3.9, there is significant benefit from rationales, even when
a simpler instance selection procedure of selecting instances for LO strategy is used. However, the
benefit from rationales is more when instances are actively selected for the LR strategy. That is,
strategy sensitive instance selection for a fixed strategy of LR (V OI-RPC(x, LR)) is better than
seeking rationales for instances selected for LO strategy (V OI-RPC(x, LO)-LR). This di↵erence
is significant or marginally significant at a few points in the learning curve. This supports our
intuition that rationales may not be equally useful for all instances, actively selecting the instances
as those expected to bring the most benefit from rationales is useful.
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Figure 3.10: Comparison of strategy sensitive (dashed) and strategy independent (dotted) instance
selection with LR, with reference of LO strategy (solid line) for ↵ = 1, for MR dataset.

Figure 3.10 presents the results for comparison of strategy sensitive and strategy insensitive
instance selection for LR strategy, for ASR dataset. As can be seen, strategy-sensitive instance
selection is better than using the same instance selection criteria as LO strategy, for a few points
in the learning curve. However, this di↵erence is not significant. Note that strategy-sensitive
instance selection for LR strategy uses a classifier that is trained on the data annotated so far to
predict rationales. Since the ASR dataset is small and has fewer rationales, the rationale classifier
is a weak classifier and hence risk estimate may not be as accurate, especially in the beginning.
Nonetheless, it performs better than using the same instance selection criteria as that for the
LO strategy. Also, we see a significant benefit from rationales (LO vs. LR) for more milestones
with strategy sensitive instance selection. Thus, going forward we use strategy sensitive instance
selection criteria for LO and LR strategies. Note that for PR vs. RD task, towards the end of the
learning curve, strategy sensitive instance selection is marginally worse than strategy independent
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instance selection, although it performs better at few points in the beginning. Since this dataset
is small, towards the end of the learning curve we are left with very little unlabeled data for risk
estimation and hence risk estimation may not be as accurate.
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Figure 3.11: Comparison of V OI with uncertainty based instance selection for two strategies of
LO (solid lines) and LR (dashed lines) for ↵ = 1, for MR dataset. Triangles for V OI and circles
for uncertainty based instance selection. Significance strings represent results from 500 to 10000
(at every 500) cost milestone for MR dataset.

Uncertainty sampling is a common active selection criteria used in active learning. In each itera-
tion, an instance the model is least certain about (i.e. closest to the hyperplane in SVMs) is selected
for annotation. We compare the proposed V OI approach to uncertainty based instance selection,
for the two strategies (LO and LR). For MR dataset, since we only apply V OI criterion to a subset
of instances selected using uncertainty, it is important to compare against it to see whether V OI
provides any additional benefit. Figure 3.11 compares V OI based instance selection to uncertainty
based instance selection for fixed strategies of LO and LR, for MR dataset. Figure 3.12 presents
this comparison for classification tasks in ASR dataset. As can be seen, V OI based instance selec-
tion significantly outperforms uncertainty based instance selection for both fixed strategies. Note
that both random and uncertainty criteria do not consider cost in instance selection, and cost does
vary across instances, even for a fixed strategy. Additionally, V OI actively selects an instance for
the given strategy, while uncertainty criterion selects an instance independent of the strategy.
From the discussion above, we see that rationales are helpful, i.e., they provide better performance

for the same annotation cost, when there is no extra cost for annotating them. This can be true in
the following scenarios:
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Figure 3.12: Comparison of V OI with uncertainty based instance selection for two strategies of
LO (solid lines) and LR (dashed lines) for ↵ = 1, for ASR dataset. Triangles for V OI and circles
for uncertainty based instance selection. Significance strings represent results from 100 to 700 (at
every 100) cost milestone.

1. Rationales are gathered implicitly, for example, via eye tracking. Recently, eye tracking has
been used to understand the relevance of a document to user’s query in text retrieval (Buscher
et al., 2012).

2. The user interface time for annotating rationales is negligible. For example, when annotating
rationales as sub-instances in an instance, rationales could be solicited from the annotator via
a single click anywhere in the sentence. This should be considerably faster than highlighting
spans of text, which may involve extra user actions, such as multiple clicks and dragging with
mouse, etc.

3. Annotating rationales helps the annotator in making a decision about the instance’s label. In
this case, the extra user interface time for annotating rationales may be compensated for by
the reduction in time for providing the instance’s label.

However, the cost for annotating rationales may be higher, and it may vary with the annotation
task, annotator, user interface design, etc. Next, we consider di↵erent costs for annotating ratio-
nales, and evaluate when rationales are beneficial for the extra cost. In Section 3.3, we discussed
our cost model, where ↵ is the cost factor for annotating rationales. Zaidan et al. (2007) observed
that annotating rationales as sub-strings, in addition to providing the instance’s label, took twice
as much time as providing the instance’s label only (i.e. ↵ = 2). In our work, we seek rationales as
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votes on sub-instances in an instance. As mentioned before, voting on sub-instances in an instance
should require less time than highlighting sub-strings of text. Thus, we expect ↵ to be less than
2 in our case. Thus, we study the benefit from rationales for ↵ 2 {1.1, 1.25, 1.5, 2}, that is {10%,
25%, 50%, 100%} extra time for annotating rationales.
Figure 3.13a compares fixed strategies of LO and LR for random instance selection and di↵erent

values of ↵ for MR dataset. As can be seen, when ↵ is small, that is, the cost for annotating
rationales is small, we see a significant improvement in performance with rationales, for a given
annotation cost. The benefit from rationales is more initially in the learning curve. As the model
matures, we may not benefit as much from the additional information that rationales provide. As
↵ increases, the gap between LR and LO strategy decreases. There is significant benefit from
rationales up to ↵ = 1.5. At ↵ = 2, LR strategy is worse than LO strategy, at a few cost
milestones in the second half of the learning curve. This di↵erence is significant for a few cost
milestones. Figure 3.13b shows a similar comparison as above for V OI based instance selection.
We see a similar trend here. The benefit from rationales decreases as ↵ increases. The benefit is
more earlier on in the learning curve. There is significant benefit from rationales up to a rationale
cost factor of ↵ = 1.5. For ↵ = 2, the two strategies are not di↵erent for the most part of the
learning curve, except that LO strategy is marginally significantly better than LR strategy at a
few points.
Next we compare the two fixed strategies of LO and LR for random and V OI based instance

selection, for three classification tasks in ASR dataset: 1) PR vs. RD (Figure 3.14), 2) CE vs. PR
(Figure 3.15), and 3) CE vs. RD (Figure 3.16). As for MR dataset, the benefit from rationales
decreases as the cost for annotating them increases. For PR vs. RD and CE vs. PR tasks, there is
some significant benefit from rationales earlier on in learning, even at ↵ = 2. For CE vs. RD task,
rationales do not provide any significant improvement in performance for additional cost (i.e. for
↵ > 1). For higher values of ↵, LO strategy is significantly better than LR. As mentioned before,
this may be due to noise in rationale annotations for some classes in ASR dataset. Additionally,
features beyond unigrams may be needed to capture the relevant information present in rationales.
Thus, whether rationales are helpful may vary depending on the additional cost for annotating

rationales and the annotation task. The benefit from rationales may also vary across instances. We
saw that strategy sensitive instance selection was better than strategy insensitive instance selection
for LR strategy. However, when the additional cost for annotating rationales is high, it may not be
beneficial to seek rationales for all instances. The proposed cost-sensitive active selection approach
can be used to jointly select an instance and strategy in each iteration. For a given rationale cost
factor, the proposed approach automatically determines in each iteration which instance to query
and whether to ask for rationales. Next, we compare strategy selection with fixed strategies of LO
and LR. We also compare the three variants for computing V OI discussed in Section 3.3.
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(b) VOI Instance Selection. Significance results: (↵=1.1):
SSSSSSISSIIISSSSSMII, (↵=1.25): SSSSMIIIIIIISSIIIIII, (↵=1.5):
ISIIIIIIIIIIIIIIIIII, (↵=2): IIIIIIIIMIIIIIIIIIMI

Figure 3.13: Comparison of LO (solid lines) and LR (dashed lines) strategies for ↵ 2
{1.1, 1.25, 1.5, 2}, for MR dataset. Significance strings report results from 500 to 10000 (at ev-
ery 500) cost milestone.
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(a) Random Instance Selection. Significance results: (↵=1.1): SSSSIII, (↵=1.25):
IMSSIII, (↵=1.5): ISIIIII, (↵=2): ISIIISS.

100 200 300 400 500 600 700

0.
55

0.
60

0.
65

Total Annotation Cost

Ac
cu

ra
cy

VOI−RPC(x,LO)
VOI−RPC(x,LR)

α = 1.1

100 200 300 400 500 600 700

0.
55

0.
60

0.
65

Total Annotation Cost

Ac
cu

ra
cy

VOI−RPC(x,LO)
VOI−RPC(x,LR)

α = 1.25

100 200 300 400 500 600 700

0.
55

0.
60

0.
65

Total Annotation Cost

Ac
cu

ra
cy

VOI−RPC(x,LO)
VOI−RPC(x,LR)

α = 1.5

100 200 300 400 500 600 700

0.
55

0.
60

0.
65

Total Annotation Cost

Ac
cu

ra
cy

VOI−RPC(x,LO)
VOI−RPC(x,LR)

α = 2

(b) VOI Instance Selection. Significance results: (↵=1.1): ISSSSII, (↵=1.25): ISSSSII,
(↵=1.5): ISISISI, (↵=2): ISIIIII.

Figure 3.14: Comparison of LO (solid lines) and LR (dashed lines) strategies for ↵ 2
{1.1, 1.25, 1.5, 2}, for PR vs. RD task in ASR dataset. Significance strings summarize results
from 100 to 700 (at every 100) cost milestone.
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(a) Random Instance Selection. Significance results: (↵=1.1): IMSSSMS, (↵=1.25):
ISSSSIS, (↵=1.5): ISSMIIM, (↵=2): ISIIISI.
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(b) VOI Instance Selection. Significance results: (↵=1.1): SIIIIIS, (↵=1.25): SISMIMI,
(↵=1.5): SIMIIII, (↵=2): IIIIIII.

Figure 3.15: Comparison of LO (solid lines) and LR (dashed lines) strategies for ↵ 2
{1.1, 1.25, 1.5, 2}, for CE vs. PR task in ASR dataset. Significance strings summarize results
from 100 to 700 (at every 100) cost milestone.
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(a) Random Instance Selection. Significance results: (↵=1.1): IIIISII, (↵=1.25):
IIISSII, (↵=1.5): IISSSII, (↵=2): IISSSIM
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(b) VOI Instance Selection. Significance results: (↵=1.1): IIIIIII, (↵=1.25):
MIIIIII, (↵=1.5): SSIIIII, (↵=2): SSSIMII.

Figure 3.16: Comparison of LO (solid lines) and LR (dashed lines) strategies for ↵ 2
{1.1, 1.25, 1.5, 2}, for CE vs. RD task in ASR dataset. Significance strings summarize results
from 100 to 700 (at every 100) cost milestone.

67



Comparison of Strategy Selection with Fixed Strategies for Variants of V OI

As mentioned before, we may not benefit equally from rationales for all instances. For a fixed
strategy of LR, i.e. rationales for all instances, V OI approach selects instances that are expected
to bring the most benefit from rationales. However, when rationales are very expensive, rationales
may not be beneficial for all instances, for the extra cost. Thus, we propose an approach for joint
selection of instance and strategy, to seek rationales on only selected instances. When the rationale
cost factor (↵) is high, that is rationales are expensive, we expect this active learning approach
to seek rationales for a few instances, based on the benefit to cost tradeo↵. When rationales are
cheap, we expect to seek rationales on several instances.
We first compare strategy selection (using variants of V OI discussed in Section 3.3) with a fixed

strategy for two scenarios: 1) Rationales come for a small extra cost (↵ = 1.25), and 2) Rationales
are very expensive to annotate (↵ = 3). We consider these two extremes, as we expect LR strategy
to perform better than LO strategy, for ↵ = 1.25, and the opposite for ↵ = 3. We choose ↵ = 3
and not ↵ = 2 for this comparison, since for ↵ = 2 (Figure 3.13b) we saw a little di↵erence between
the two strategies of LO and LR. For ↵ = 3, we expect LO strategy to significantly outperform
LR strategy at most cost milestones. We evaluate whether joint selection of instance and strategy
is able to follow the better strategy for each rationale cost factor, and if it is better than both fixed
strategies. We compare di↵erent variants of V OI discussed in Section 3.3 for MR dataset only.
This is because, risk estimation is integral to V OI. For an accurate estimate of the model’s risk,
a reasonably sized unlabeled set is needed. Since ASR dataset is relatively small, a comparison
of di↵erent V OI methods on this dataset may be misleading. Nonetheless, we later present a
comparison of strategy selection (using the most appropriate V OI method) with fixed strategies
for several values of ↵  2, for both MR and ASR datasets.
As discussed in Section 3.3, we have a second classifier (R vs. NR) that predicts what sub-

instances in an instance are rationales. This classifier’s prediction is used to estimate the expected
reduction in risk with LR strategy, and it is trained on the data annotated so far. To allow the
model to make appropriate strategy selection from the start, we initialize the classifiers (P vs.
N and R vs. NR) with 20 instances per class labeled with rationales (for MR dataset). Note
that it is particularly important to start with some initial set labeled with rationales for strategy
selection (than strategy sensitive instance selection for LR strategy), otherwise without a reasonable
classifier for rationales we may underestimate the utility of the LR strategy and may not select the
LR strategy as often, especially for a higher value of ↵. If the LR strategy is not selected, the R vs.
NR classifier is not updated. This suggests that we may want to also consider the uncertainty of the
R vs. NR classifier when selecting the instance and strategy. We leave this extension to the future
work. In Section 3.6, we suggest some ideas for how we may extend the current V OI framework
to account for the uncertainty of the R vs. NR classifier. Using a very large initial set defeats the
purpose for using active learning to save annotation cost. Thus, we choose to use 20 instances per
class, which is about 2% of the whole dataset (1800 instances). We use the same initial set for all
methods we compare. As before, we measure significance at every 500 cost milestones up to a total
annotation cost of 10, 000.
Figure 3.17 shows the results for comparison of strategy selection and fixed strategies for variants

of V OI. As expected, for ↵ = 1.25, the fixed strategy of LR is better than LO, for three ways to
compute V OI: RTC, SS, and RPC. The di↵erence is significant for several cost milestones in the
first half of the learning curve. Table 3.3 shows the complete significance results for the comparisons
discussed here. For all variants of V OI, joint selection of instance and strategy performs better
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Figure 3.17: Strategy selection vs. fixed strategies for variants of V OI, for MR dataset. Red
and solid lines represent joint selection of instance and strategy. Blue and dotted lines represent
instance selection for fixed strategy of LO. Green and dashed lines represent instance selection for
fixed strategy of LR.
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1.25 (x,LO) (x,LR) (x,s)
(x,LO) - SIISSSSSSIIIIIIIII SIISSSSIIIIIIIMIII

(x,LR) SIISSSSSSIIIIIIIII - IIIIIIIIIIIIIISSII

(x,s) SIISSSSIIIIIIIMIII IIIIIIIIIIIIIISSII -

3 (x,LO) (x,LR) (x,s)
(x,LO) - IIIIIISSSSSSSSSSSS IIIIIIIIIIIIIMIIII

(x,LR) IIIIIISSSSSSSSSSSS - IIIIIIIMSMSSSSSSSS

(x,s) IIIIIIIIIIIIIMIIII IIIIIIIMSMSSSSSSSS -

(a) VOI-RTC

1.25 (x,LO) (x,LR) (x,s)
(x,LO) - IIMISSSSSSIIIIIIII IISSSSIMMIIIIIIIII

(x,LR) IIMISSSSSSIIIIIIII - IIIIIIIIIIIIIIIIII

(x,s) IISSSSIMMIIIIIIIII IIIIIIIIIIIIIIIIII -

3 (x,LO) (x,LR) (x,s)
(x,LO) - IIIMISISSSSSSSSSMS IIISISSSSSSIIIIIII

(x,LR) IIIMISISSSSSSSSSMS - IIIIIISIIIIIIIMIIM

(x,s) IIISISSSSSSIIIIIII IIIIIISIIIIIIIMIIM -

(b) VOI-SS

1.25 (x,LO) (x,LR) (x,s)
(x,LO) - ISIIMIISIIIIIIIIII IIIISISSISMSIIIIII

(x,LR) ISIIMIISIIIIIIIIII - IMIIIISIIIIIIIIIII

(x,s) IIIISISSISMSIIIIII IMIIIISIIIIIIIIIII -

3 (x,LO) (x,LR) (x,s)
(x,LO) - IIMMISSSSSSSSSSSSS IIIIIIIIIIIIIIIIII

(x,LR) IIMMISSSSSSSSSSSSS - IIIMISSSSSSSSSSSSS

(x,s) IIIIIIIIIIIIIIIIII IIIMISSSSSSSSSSSSS -

(c) VOI-RPC

Table 3.3: Significance results from 1500 to 10000 (at every 500) cost milestone for a comparison
of strategy selection and fixed strategies of LR and LO for variants of V OI, for MR dataset.

than the fixed strategy of LO, for ↵ = 1.25. This di↵erence is significant for a few cost milestones
in the first half of the learning curve. Actively selecting the strategy jointly with the instance
follows the fixed strategy of LR for the most part. For RTC, joint selection of instance and
strategy is significantly better than LR strategy towards the end of the learning curve. For RPC,
joint selection is marginally significantly worse than LR strategy at one point in the beginning,
although it is significantly better than LR at about half way in the learning curve. Thus, for a
small rationale cost factor, the fixed strategy of LR is better than the fixed strategy of LO. V OI
based joint selection of instance and strategy follows the best fixed strategy in performance, and it
is even better than both fixed strategies, at some points for some V OI models (RTC and RPC).
As can be seen from Figure 3.17, for ↵ = 3, when rationales are expensive to annotate, the fixed

strategy of LO performs better than the fixed strategy of LR, for all three ways of computing V OI.
The di↵erence is significant at most cost milestones in the second half of the learning curve. For all
V OI methods except SS, joint selection of instance and strategy performs significantly better than
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1.25 VOI-SS VOI-RTC VOI-RPC
VOI-SS - IIMIIIIIIIIIIIIIIM IIIIIIIIIIIIIIIIII

VOI-RTC IIMIIIIIIIIIIIIIIM - SISIIIIIIIIIIIIIIS

VOI-RPC IIIIIIIIIIIIIIIIII SISIIIIIIIIIIIIIIS -

3 VOI-SS VOI-RTC VOI-RPC
VOI-SS - IIIIIISIIIIMIIIIII IIIIIIIMIMIIIIIIII

VOI-RTC IIIIIISIIIIMIIIIII - IIIIIIIIIIIIIISIII

VOI-RPC IIIIIIIMIMIIIIIIII IIIIIIIIIIIIIISIII -

(a) Fixed Strategy of LO

1.25 VOI-SS VOI-RTC VOI-RPC
VOI-SS - MIIIIIIIIIIIMIIMII ISIIIISIIIIIIIIIII

VOI-RTC MIIIIIIIIIIIMIIMII - ISIIISSIIIIIIISIII

VOI-RPC ISIIIISIIIIIIIIIII ISIIISSIIIIIIISIII -

3 VOI-SS VOI-RTC VOI-RPC
VOI-SS - IIIIIIIIIIIIIIIIII ISIIIISIIIIIIIIIII

VOI-RTC IIIIIIIIIIIIIIIIII - IIIIIIIIIIIIIIIIII

VOI-RPC ISIIIISIIIIIIIIIII IIIIIIIIIIIIIIIIII -

(b) Fixed Strategy of LR

1.25 VOI-SS VOI-RTC VOI-RPC
VOI-SS - SIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIII

VOI-RTC SIIIIIIIIIIIIIIIII - IIIIIIMIIIIIIIIIII

VOI-RPC IIIIIIIIIIIIIIIIII IIIIIIMIIIIIIIIIII -

3 VOI-SS VOI-RTC VOI-RPC
VOI-SS - IIIIIISSSSSSSSIIII IIIIISSSSSSIIIIIII

VOI-RTC IIIIIISSSSSSSSIIII - IIIIIIIMIIIMIMIIII

VOI-RPC IIIIISSSSSSIIIIIII IIIIIIIMIIIMIMIIII -

(c) Strategy Selection

Table 3.4: Significance results from 1500 to 10000 (at every 500) cost milestone for a comparison
between variants of V OI for fixed strategy and joint selection of instance and strategy, for MR
dataset.

the fixed strategy of LR at most cost milestones10, and it is not significantly di↵erent from the fixed
strategy of LO, except that RTC(x, s) is marginally significantly better than RTC(x, LO) at 8000.
For SS, joint selection is marginally significantly better than LR in the second half, however it is
significantly worse than LR at one point in the middle of the learning curve. It is also significantly
worse than LO at several cost milestones in the middle of the learning curve. Thus, V OI-SS fails
to select the appropriate strategy for a high rationale cost factor.
Figure 3.18 compares the variants of V OI for a fixed or actively selected strategy. Table 3.4

shows the significance results. For the fixed strategies of LO and LR, the three approaches for
computing V OI are quite similar, with only a few significant di↵erences. However, there is no one
clear winner among the variants of V OI for a fixed strategy. For joint selection of instance and
strategy, for ↵ = 1.25, there is little significant di↵erence between the three V OI variants (Only

10For joint selection of instance and strategy, LR strategy is selected for a few instances, even for ↵ = 3.
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Figure 3.18: Comparison of V OI approaches for a fixed strategy (LR or LO) and joint selection of
instance and strategy, for MR dataset.
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significant di↵erence between RTC and SS at 1500 and marginally significant di↵erence between
RPC and RTC at 4500). However, for ↵ = 3, there are some significant di↵erences between the
variants of V OI. SS is significantly worse than RPC and RTC, for several cost milestones in the
middle. V OI-SS treats utility and cost as two independent terms for ranking the candidates, and
combines their standardized scores. An alternative to consider is to learn the weights for the utility
and cost terms in V OI-SS, similar to (Tomanek and Hahn, 2010), where they use a weighted linear
combination of the ranks based on utility and cost scores. Overall, RPC seems to be the best V OI
approach. It assumes a large enough unlabeled set for accurate estimation of model’s expected
risk, however it is not sensitive to the actual size of the data (like RTC). It also has an intuitive
reasoning behind it, of selecting the instance and strategy with maximum reduction in expected
risk per unit cost. Thus, going forward we use RPC for computing V OI.

Comparison with other baselines: RiskOnly and CostOnly

V OI considers both reduction in model’s risk and cost in active selection. We compare it with
risk-only and cost-only selection criteria, to understand the value in using a combined criterion.
Figures 3.19 and 3.20 present the results. For the fixed strategy of LO, V OI-RPC always performs
better than RiskOnly, for both rationale cost factors. This di↵erence is significant at several cost
milestones. For the fixed strategy of LR, except for the cost milestone of 7500 where RiskOnly is
marginally significantly better than V OI, V OI is better than RiskOnly at most cost milestones
(significantly at a few cost milestones). For joint selection of instance and strategy, V OI-RPC
performs better than RiskOnly for both rationale cost factors. This di↵erence is significant at
several cost milestones for ↵ = 3, and significant for a few cost milestones, for ↵ = 1.25. This
suggests that considering cost together with risk in active selection is important, especially when the
rationale cost factor is high. V OI based joint selection of instance and strategy is also significantly
better than RiskOnly criterion for instance selection for a fixed strategy of LO or LR.
For a fixed strategy of LO, V OI-RPC is significantly better than CostOnly at a few cost mile-

stones, and CostOnly is significantly better than V OI-RPC at a few other cost milestones, for
both values of ↵. For LR strategy, there isn’t much di↵erence between CostOnly and V OI-RPC,
except that V OI-RPC is significantly better than CostOnly at a few milestones in the beginning.
For joint selection of instance and strategy, CostOnly criterion will always select the LO strategy
for ↵ > 1, and hence it is the same as CostOnly(x,LO). Note that although there isn’t much dif-
ference between V OI-RPC and CostOnly for a fixed strategy, the best fixed strategy for CostOnly
criterion changes from ↵ = 1.25 to ↵ = 3, like for the V OI criterion. We see that joint selection of
instance and strategy is able to follow the best fixed strategy for both values of ↵. For ↵ = 1.25,
it is even significantly better than both fixed strategies (CostOnly(x,LO) and CostOnly(x,LR)), at
a few cost milestones. For ↵ = 3, except for two milestones in the first half of the learning curve
and one milestone towards the end of the learning curve, where CostOnly(x,LO) is better than
V OI-RPC(x, s) (significant at one and marginally significant at the other two points), V OI based
joint selection of instance and strategy performs as well as or better than both CostOnly(x,LO)
and CostOnly(x,LR).
Thus, a combined criterion in V OI is better than RiskOnly and CostOnly criteria for both fixed

strategies of LO and LR, and joint selection of instance and strategy, when both rationale cost
factors are considered.
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Figure 3.19: Comparison of V OI with RiskOnly criteria for instance selection for a fixed strategy
(LR or LO) and joint selection of instance and strategy, for MR dataset. Red and solid lines
represent joint selection of instance and strategy. Blue and dotted lines represent instance selection
for fixed strategy of LO. Green and dashed lines represent instance selection for fixed strategy of
LR. Significance strings represent results from 1500 to 10000 (at every 500) cost milestone.

74



2000 4000 6000 8000 10000

0.
70

0.
75

0.
80

0.
85

Total Annotation Cost

Ac
cu

ra
cy

●

●

●

●

●

●
●

●

●

●
●

●

●

●
● ●

●

●

●

●

●

●
●

●

●
● ●

●

●

●

●
●

● ●
●

●

α = 1.25

o
o

VOI−RPC(x,LO)
VOI−RPC(x,LR)
VOI−RPC(x,s)
CostOnly(x,LO)
CostOnly(x,LR)

2000 4000 6000 8000 10000

0.
70

0.
75

0.
80

0.
85

Total Annotation Cost

Ac
cu

ra
cy

●

●

●

●

●
●

● ●

● ● ●
●

●

● ●

●
●

●

●

●

●

●
●

●

●
● ●

●

●

●

●
●

● ●
●

●

α = 3

o
o

VOI−RPC(x,LO)
VOI−RPC(x,LR)
VOI−RPC(x,s)
CostOnly(x,LO)
CostOnly(x,LR)

CostOnly(x,LO)
VOI-RPC(x,LO) SMIIIIIIIMIMIIIIII

VOI-RPC(x,s) MISIIISIIIIIIIIIII

CostOnly(x,LR)
VOI-RPC(x,LR) SSIIIIIIIIIIIIIIII

VOI-RPC(x,s) IIMIIISIIIIIIIIIII

(a) ↵ = 1.25

CostOnly(x,LO)
VOI-RPC(x,LO) IIMISIISIIIIIIMSII

VOI-RPC(x,s) IISIMIISIIIIIIIMII

CostOnly(x,LR)
VOI-RPC(x,LR) SSIIIIIIIIIIIIIIII

VOI-RPC(x,s) SSSIMMSSSSSSSMMSSS

(b) ↵ = 3

Figure 3.20: Comparison of V OI with CostOnly criteria for instance selection for a fixed strategy
(LR or LO) and joint selection of instance and strategy, for MR dataset. Red and solid lines
represent joint selection of instance and strategy. Blue and dotted lines represent instance selection
for fixed strategy of LO. Green and dashed lines represent instance selection for fixed strategy of
LR. Note that CostOnly(x,s) is same as CostOnly(x,LO) for ↵ > 1, that is the expensive strategy
of LR will never be selected. Significance strings represent results from 1500 to 10000 (at every
500) cost milestone.
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Comparison of Strategy Selection vs. Fixed Strategies for Additional Values of ↵ for
MR dataset

So far, we have only compared strategy selection with fixed strategies for two values of ↵ 2 {1.25, 3}.
Figure 3.21 compares strategy selection with fixed strategies for several values of ↵  2. Specifi-
cally, we consider ↵ 2 {1.1, 1.25, 1.5, 2}, that is {10%, 25%, 50%, 100%} extra cost for annotating
rationales. Like before, we initialize the classifiers with 20 instances labeled with rationales.
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Figure 3.21: Comparison of the two strategies of LO (blue and dotted lines) and LR (green and
dashed lines), and strategy selection (red and solid line) for ↵ 2 {1.1, 1.25, 1.5, 2}, for MR dataset.
Significance strings summarize results from 1500 to 10000 (at every 500) cost milestone.

As can be seen from Figure 3.21, the best strategy among LO and LR changes as ↵ increases.
As observed before, when the additional cost for rationales is 50% or less, getting rationales for all
instances (LR) is significantly better than not getting rationales for any (LO). At 100% additional
cost, not getting rationales at all is significantly better than getting rationales for all instances, at
several points in the learning curve. However, there is significant benefit from rationales, earlier
in the learning curve, even at 100% extra cost. Joint selection of instance and strategy is able to
follow the best fixed strategy among LO and LR almost always (except at two cost milestones for
↵ = 2, where it is marginally worse than LO strategy, although it is significantly better than LR
strategy). Joint selection of instance and strategy is worse than fixed strategy of LR at one point
in the beginning. This di↵erence is significant for ↵ = 2. For selecting LR strategy over LO at
↵ = 2, the reduction in model’s risk with LR strategy should be more than double that with LO
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strategy. As mentioned before, the rationale predictor may not be as accurate in the beginning.
Also, risk estimation relies on model’s estimate of probability, which may not be accurate in the
beginning, after training on only a few labeled instances. Hence, we may underestimate the benefit
from rationales in the initial few iterations. Joint selection of instance and strategy performs sig-
nificantly better than both fixed strategies of LO and LR for ↵ = 1.1 and ↵ = 1.25, at about half
way in the learning curve. This suggests that selectively asking for rationales performs better than
asking for rationales for all instances (even with strategy sensitive instance selection) or none.

Comparison of Strategy Selection and Fixed Strategy for ASR dataset

For ASR dataset, since the total dataset is small, we initialize the classifiers with five instances per
class, labeled with rationales. Figures 3.22, 3.23 and 3.24 summarize the results for comparison of
strategy selection and fixed strategies of LO and LR for three classification tasks in ASR dataset,
for ↵ 2 {1.1, 1.25, 1.5, 2}.
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Figure 3.22: Comparison of the two strategies of LO (blue and dotted lines) and LR (green and
dashed lines), and strategy selection (red and solid line) for ↵ 2 {1.1, 1.25, 1.5, 2}, for ASR dataset
(PR vs. RD). Significance strings summarize results from 200 to 700 (at every 100) cost milestone.

For PR vs. RD task (Figure 3.22), the fixed strategy of LR is significantly better than LO for up
to an additional cost of 25%. At 50% additional cost, the two fixed strategies are not significantly
di↵erent, and at 100% additional cost, LO is marginally significantly better than LR towards the
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end of the learning curve. Joint selection of instance and strategy is significantly better than the
fixed strategy of instance’s label only (LO), when the additional cost for rationales (↵) is low.
For higher values of ↵, it is not di↵erent from LO, which is better than LR. Joint selection of
instance and strategy is better than fixed strategy of instance’s label and rationales (LR), when
the cost annotating rationales is high. However, for lower values of ↵, it is worse at a few points
in the beginning. As mentioned before, in the initial few iterations, the rationale classifier may
not have seen enough examples of rationales in order to accurately predict rationales. Hence, we
may be underestimating the benefit from rationales, and may not select the LR strategy. For
ASR dataset, particularly for PR and CE classes, the percentage of rationales per instance is
smaller than the movie review dataset (Table 3.2), that is there is a higher class imbalance for R
vs. NR classifier. One may try to under sample the negative class when training the R vs. NR
classifier. Another alternative is to start with a larger initial set labeled with rationales. However,
since the total dataset we have for this task is small, starting with a larger initial set would leave
us with a shorter learning curve for evaluation. As also mentioned before, we expect some noise
in rationale annotations for this dataset. Abedin et al. (2011) did not retain rationales inline,
and every occurrence of a rationale sub-string is considered a rationale in the ASR dataset. This,
however, may not be true, specifically for short rationale strings. This noise in rationale annotations
may also e↵ect the performance of the R vs. NR classifier.
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Figure 3.23: Comparison of the two strategies of LO (blue and dotted lines) and LR (green and
dashed lines), and strategy selection (red and solid line) for ↵ 2 {1.1, 1.25, 1.5, 2}, for ASR dataset
(CE vs. PR).
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For CE vs. PR task (Figure 3.23), fixed strategy of LR is marginally significantly better than
LO at 10% additional cost. The two strategies are not significantly di↵erent at 25% and 50%
additional cost. At 100% additional cost, LO is marginally significantly better than LR for both
tasks. Joint selection approach is able to follow the best strategy in most cases. For ↵ = 1.1,
it follows the best strategy initially, but later on it fails to select the appropriate strategy. This
may be because accurately estimating the model’s risk (in V OI) assumes a large enough unlabeled
set. With a small dataset, after several iterations, we are left with a small unlabeled set, and risk
estimated on this set may not be an accurate estimate of the model’s misclassification risk. For
↵ = 1.25, strategy selection is not significantly di↵erent from the fixed strategies of LO and LR,
except at 400 and 600, where it is marginally worse than the LO and LR respectively. For the
other values of ↵, strategy selection works as well as the best fixed strategy.
For CE vs. RD task (Figure 3.24), as observed before, there is little benefit from rationales.

Only significant (or marginally significant) benefit from rationales is for ↵ = 1.1 and ↵ = 1.25 at
the last point in the learning curve. For higher values of ↵ (� 1.25), LO is significantly better than
LR. Joint selection of instance and strategy follows the LO strategy for the most part.
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Figure 3.24: Comparison of the two strategies of LO (blue and dotted lines) and LR (green and
dashed lines), and strategy selection (red and solid line) for ↵ 2 {1.1, 1.25, 1.5, 2}, for ASR dataset
(CE vs. RD). Significance strings summarize results from 200 to 700 (at every 100) cost milestone.

Thus, for ASR dataset, we see a similar trend as MR dataset. Fixed strategy of LR is better
than LO when the cost for annotating rationales is small, and the opposite is true when the cost
for annotating rationales is high. Joint selection of instance and strategy follows the best fixed
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strategy for the most part.

Key Observations: To summarize the results, the key observations are as follows:

• Obtaining rationales for all instances (i.e. fixed strategy of LR) is significantly better than not
obtaining rationales at all (i.e. fixed strategy of LO), when the additional cost for annotating
rationales is small (up to 50% extra cost). At higher costs for rationales, the fixed strategy of
LO is significantly better than the fixed strategy of LR. In other words, the best fixed strategy
among LO and LR depends on the cost for annotating rationales, which we call the rationale
cost factor (↵).

• For the fixed strategy of LR, strategy sensitive instance selection, i.e. selecting an instance for
which rationales are expected to bring the most benefit to the model, performs significantly
better than strategy independent (random or active) instance selection.

• At high cost for annotating rationales, seeking rationales for all instances performs worse than
seeking rationales for none. Cost-sensitive joint selection of instance and strategy automatically
determines in each iteration which instance to query and whether to ask for rationales. We
find that joint selection of instance and strategy, i.e. selectively asking for rationales, performs
as well as or better than the best fixed strategy for a given additional cost for annotating
rationales (↵), except for a few points in the beginning or towards the end of the learning
curve (11 out of 144 points of comparison between strategy selection and best fixed strategy,
for two datasets and ↵ 2 {1.1, 1.25, 1.5, 2}, where joint selection is marginally worse than the
best fixed strategy at 7 points and significantly worse at 4 points). At a few points it is even
significantly better than both fixed strategies. The additional cost for annotating rationales
(i.e. ↵) may vary with the annotator, annotation task, user interface design, etc. We show
that in most cases the proposed approach is able to select the appropriate strategy for each
scenario, with a given rationale cost factor (↵).

• V OI based instance selection is significantly better than the random baseline and common
active selection method of uncertainty sampling. V OI criteria that combines reduction in risk
and cost together outperforms selection criteria based on one of these scores.

E↵ect of Number of Rationales

So far, we have only considered two annotation strategies where the annotator provides: 1) in-
stance’s label only (LO) or 2) instance’s label together with rationales (LR). For LR strategy,
it is assumed that the annotator provides almost all rationales (as in (Zaidan et al., 2007)). In
this section, we evaluate how the benefit from rationales varies with the number of rationales.
To understand the e↵ect of number of rationales on the model’s performance, we consider several
variations of the LR strategy. LR(N) denotes a strategy where we seek N rationales per instance.
There can be many ways to ask the annotators for N rationales. We may ask them to provide any
N rationales, the first ones they spot. Alternatively, we may ask the annotator to provide the top
N rationales. Annotating each rationale would require some user interface time. Thus, the anno-
tation time should be more when we ask for more rationales. However, if we ask the annotators to
provide top N rationales, the annotation time may not be less than providing all rationales. This
is because the annotators would spend some extra time ranking the rationales by importance in
their minds and selecting the top N . The annotation cost may not be a linear function of N when
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asking for top N rationales. Thus, whether asking for a fixed number of rationales allows us to save
any time over almost all rationale strategy would depend on the type of annotations we seek from
the annotator, that is, whether we ask for any N rationales or top N rationales, and the value of
N .
To understand how the annotation cost varies with the number of rationales, when the number

is pre-specified, one should conduct a user study with several annotators, di↵erent ways to seek
N rationales (any N or top N) and for di↵erent values of N . In this thesis, we present an initial
investigation of the e↵ect of number of rationales on model’s performance. We consider the scenario
of any N rationales and run several simulation experiments. We consider several variants of LR(N)
strategy where N 2 {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. We also compare these variants of fixed number of
rationales, with LO (i.e. no rationales) and LR strategies (i.e. almost all rationales). We assume
a fixed cost for all strategies because how cost varies with N when asking for a fixed number of
rationales needs to be understood through a user experiment. Our goal with this experiment is to
answer the following question: Assuming no di↵erence in cost, how does the benefit to the model
change with di↵erent number of rationales ? We run this evaluation for random instance selection
only, since to select an instance using V OI for a strategy with fixed number of rationales, we would
need to modify the R vs. NR classifier which currently assumes that all rationales in an instance
are annotated. We suggest some ideas for this extension towards the end of this discussion. For
LR(N) strategy, we select the rationales to reveal to the model randomly, to simulate the ‘label
any N rationales’ scenario. We average results over three random selections of rationales (with
3 random seeds for selecting among given rationales in an instance). For an instance that may
not have N rationales, we select all the rationales that exist. This is a more realistic scenario as
we may not want the annotator to annotate more rationales than there are in an instance. Thus,
LR(N) strategy asks the annotator to provide up to N rationales in an instance. Note that, we
may choose N based on the number of sub-instances in an instance. That is, we may ask the
annotator to provide rationales up to 10% or 20% of the sub-instances in an instance. In our initial
investigation, we use the same N for all instances. We run this experiment on MR dataset, since
there are very few rationales for ASR dataset (Table 3.2). Similar to the comparison of LO and
LR strategies in Figure 3.6, we initialize the model with one instance per class.
Figure 3.25 presents the results. As can be seen, we get better performance with more rationales.

We see a clear advantage from each additional rationale up to 6 rationales per instance. Strategies
LR(7) to LR(10) are indistinguishable in the graph. We get the best performance when we use all
rationales available for an instance. Table 3.6, at the end of this chapter, presents the significance
results. To evaluate the significance of the observed di↵erences, we fit a standard least squares model
(using JMP software11) with fold as a random e↵ect and strategy as a fixed e↵ect. As mentioned
before, we select N rationales to reveal randomly from the given rationales in an instance. We
run three experiments with three di↵erent seeds for random selection of rationales to reveal. Thus,
we have three results per fold per strategy (for LR(N)). We add a variable to uniquely identify
a fold and strategy pair. This variable is added as a random e↵ect nested under strategy, since
the two are correlated. We use Tukey HSD (Tukey, 1953) to measure significance of pairwise
comparisons between multiple strategies. Tukey method is recommended over Student’s T method
when making multiple comparisons (SasInstitute and SASPublishing, 2008). Tukey’s HSD test
sets the experiment-wise error rate to the error rate for the collection of all pairwise comparisons.
That is, the probability of making one error (observing a significant di↵erence by chance) in the
set of pairwise comparisons is equal to 0.05. In other words, the test is adjusted for the number of

11http://www.jmp.com/software/
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Figure 3.25: Comparison of di↵erent number of rationales for random instance selection, for MR
dataset.

comparisons made. If we only care to compare two strategies, say LO and LR(1), then we should
do a single pairwise t-test.
From Table 3.6, we see that seeking all rationales almost always performs the best and it is never

significantly worse than fewer rationales. The performance often increases with more rationales.
However, there is no additional significant benefit from more rationales beyond 8 rationales per
instance. This may also be because there are on average about 8 rationales per instance in MR
dataset (Table 3.2). We found that the median for number of rationales is 7. That is, half of the
instances have 7 or fewer rationales. However, we found that the maximum number of rationales
in an instance is 30 (in an instance with 67 total sub-instances). Thus, assuming each additional
rationale comes with an additional cost, we may want to ask for at most 8 rationales per instance.
At higher cost milestones, i.e. later in the learning curve, there is no additional significant benefit
from getting more rationales beyond 4 per instance. Thus, we may want to seek more rationales
per instance in the beginning and fewer rationales per instance as learning progresses.
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Here, we studied the e↵ect of di↵erent number of rationales, when the annotator is asked to
provide any N rationales. Similar simulation experiments can be done for a scenario where the
annotator provides the top most important rationales. An oracle, a model trained on rationale and
not-rationale annotations on a large set, can be used to rank rationales (by the model’s confidence)
and the top N rationales can be revealed for LRtop(N) strategy.
The optimum number of rationales per instance may also vary across instances. The current VOI

framework can be extended to jointly select an instance and strategy, where we choose the strategy
from a set of strategies, one each for a fixed number of rationales. As mentioned in Section 3.3, we
estimate the risk after training on instance Xi annotated with strategy LR(all) using predictions for
rationales in instance Xi from a model trained (on the data annotated so far) to predict rationales.
To estimate the risk after training on instance Xi annotated with strategy LRtop(N), i.e. with top
N rationales, we may use the top N sub-instances predicted to be rationales (ranked by model’s
confidence). If instead the annotator is asked to provide any N rationales (LRany(N)), we may
estimate the expected risk as the average risk for k random samples for N rationales, from the
sub-instances in an instance predicted to be rationales. However, there is one caveat here. In the
current V OI framework with almost all rationales strategy, the rationale classifier (R vs. NR)
is trained on instances annotated with rationales. Sub-instances in an instance not marked as
rationale are considered as not-rationale (NR). However, if all the rationales are not annotated in
an instance (for LR(N) strategy), then we cannot treat all sub-instances not annotated as rationale
as NR. One simple approach to address this issue is to use the current model’s belief about which
remaining sub-instances (those that are not marked as rationale) in an instance are likely to be
not-rationale and train the classifier with only those labeled as NR.

3.5 Related Work

Alternate forms of feedback from the annotator, in addition to the instance’s label, have been
explored in the literature. One such form of feedback is direct feedback on features (discussed in
detail in Section 3.1), that is, indicating whether a given feature is relevant for the classification
task, and what class it supports. However, such feedback is restricted to simple features, such as
words, and is often solicited without the context of an instance. Often linguistic features based
on dependency triples, parts of speech, etc., are used to represent a text instance (Gamon, 2004;
Pradhan et al., 2004; Joshi and Rosé, 2009). Additionally, it may be di�cult to judge the relevance
of a feature without the context of an instance.
In this thesis, we consider an alternate annotation strategy where the annotator identifies the

parts of an instance that are rationales for the instance’s label. Rationales have been shown to
reduce the total number of labeled instances required to achieve the desired performance for both
text and image classification tasks (Zaidan et al., 2007; Arora and Nyberg, 2009; Abedin et al.,
2011; Donahue and Grauman, 2011). However, rationales would usually come with an extra cost.
The additional cost for annotating rationales is not accounted for in prior work. The additional
cost for annotating rationales may vary across instances, annotators, user interface design, etc.
We evaluate the benefit from rationales at di↵erent additional costs for annotating them. We also
propose a cost-sensitive active learning approach for joint selection of instance and strategy. We
show that the proposed approach is able to select the appropriate strategy for each annotator
and/or user interface, with a given rationale cost factor (↵).
Yessenalina et al. (2010) found that rationale sentences automatically generated using a sentiment

lexicon or an o↵-the-shelf opinion analysis tool performed as well as human annotated rationales
on the movie review dataset. However, such resources are also developed by human experts and
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are not available for all domains, for example, aviation safety reports.
Fine-grained annotations have been found to be helpful in learning coarse-grained annotations.

For example, Bennett and Carbonell (2005) found that for classifying an email as containing an
action-item or not, a sentence classifier trained to predict sentence labels that are then agglomerated
to predict the email label, outperforms an email classifier. Settles et al. (2008b) show that instance
(sentence) labels in addition to bag (document) labels can be used to improve performance of a
multiple instance learner (performance on bags/documents). However, in above scenarios, sentence
annotations are assumed to be independent of the document. That is, if a sentence occurs in a
di↵erent document, it will still have the same label. On the other hand, rationale annotations are
specific to an instance. A sub-instance may not be a rationale for every instance it occurs in.
Cost-sensitive active learning with multiple annotation strategies has received recent attention

in the literature. Vijayanarasimhan and Grauman (2011) use the V OI criterion in (Kapoor et al.,
2007) that considers the model’s risk on both labeled and unlabeled data, to select between bag
and instance annotations for a multiple-instance learning task. Attenberg et al. (2010) use utility
per unit cost to select between instance and feature annotation. The utility is measured in terms
of the log gain, defined as the sum of model’s confidence on true label for the training instances.
Since our goal is to improve the model’s accuracy at predicting the label for an unseen test instance,
reduction in risk on unlabeled data is a more relevant criterion for active selection. Apart from
the reduction in risk, other measures of generalization error may be used in the V OI framework,
for example, 0/1 loss or log loss (Roy and Mccallum, 2001). To the best of our knowledge, ours is
the first work where the model actively decides which instances to query and whether to ask for
rationales.
In the literature (Melville et al., 2005; Kapoor et al., 2007; Donmez and Carbonell, 2008b;

Haertel et al., 2008; Vijayanarasimhan and Grauman, 2011), one of the V OI definitions presented
in Section 3.3 has been used to combine utility and cost scores for active learning. To the best of
our knowledge, no prior work except (Tomanek and Hahn, 2010) has tried to compare more than
one way to combine utility and cost scores. In their work, they consider two approaches: 1) Benefit
to Cost Ratio (BCR), where benefit is a measure of model’s uncertainty on the candidate instance,
and cost is the cost of labeling that instance12, and 2) Linear Combination of Ranks (LRK) for
the candidates based on the uncertainty and cost scores. The task in their work is Named Entity
Recognition, and they consider two ways to infer the model’s uncertainty for a sentence, based
on the confidence of the model on the classification of tokens in the sentence. For one of them,
they find that LRK and BCR are not di↵erent. For the other one, they find that LRK is better
than BCR, although the di↵erence seems small and they do not report significance results. As
mentioned before, the di↵erence between scores for candidates with the same ranks based on the
two criteria, may be quite di↵erent. This di↵erence is not accounted for when combining the
ranks, as in (Tomanek and Hahn, 2010). Nonetheless, a future direction is to compare V OI based
approach with combinations of ranks approach, where ranks are determined based on utility and
cost measures used in this work.
In this work, we measure the utility of a candidate in terms of the reduction in model’s mis-

classification risk. An alternative is to measure the utility in terms of model’s uncertainty on the
candidate instance, as in (Donmez and Carbonell, 2008b; Tomanek and Hahn, 2010). Another
alternative is to measure the utility of a candidate instance in terms of how representative it is
of other instances. For example, Donmez and Carbonell (2008a) use a density-based sampling
approach, where an instance representative of a cluster of similar instances is selected. However,

12BCR is similar to RPC function with di↵erent measures for utility and cost.
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note that these measures of utility cannot distinguish between the two strategies. If we combine
them directly with cost, then LR strategy will never be selected for ↵ > 1. In our results, we
demonstrated that V OI based instance selection performs better than uncertainty based instance
selection for a fixed strategy of LO and LR.

3.6 Summary and Future Work

In order to reduce the total annotation cost for the desired performance, alternative forms of
feedback, such as feedback on features, in addition to the instance’s label have been proposed in
the literature. However, direct feedback is limited to simple features, such as unigrams. In this
Chapter, we proposed an alternate annotation strategy where in addition to the instance’s label, the
annotator indicates parts of an instance that are rationales for its label. In order to determine the
label for an instance, the annotator perhaps already makes this distinction. We ask them to provide
their reason to assign the indicated label to an instance, in form of rationales. Rationales provide
indirect feedback on features, since features that overlap with rationales should be important for
the classification task and this indication is only indirect. While direct feature feedback has been
modeled in prior work as a separate task from labeling instances, rationales are solicited together
with the instance’s label.
Zaidan et al. (2007) seek rationales as spans of text in a document. In this work, we seek

rationales as votes on sub-instances in an instance. Highlighting spans of text as rationales should
require more annotation time than voting on sub-instances. Additionally, exact spans for rationales
may vary across annotators, while we can expect to see more agreement between the annotators
for rationales as sub-instances in an instance. Zaidan et al. (2007) found that it takes twice as
much time to annotate rationales as spans of text in addition to providing the instance’s label. We
expect a lower cost for voting on sub-instances in an instance as rationales. The additional cost
for rationales may depend on several factors, such as the user interface design, annotation task,
annotator, etc. Thus, we compare the two strategies of instance’s label only (LO) and instance’s
label together with rationales (LR) at several additional costs for annotating rationales. Note that
in prior work, the additional cost for annotating rationales is not accounted for when comparing
the two strategies of LO and LR (Zaidan et al., 2007; Arora and Nyberg, 2009; Abedin et al., 2011;
Donahue and Grauman, 2011). From the results presented in this chapter, we can conclude that
rationales (as sub-instances in an instance) in addition to the instance’s label provide a significant
improvement in performance for a given annotation cost, when the cost for annotating rationales
is small (up to 50% extra cost for annotating rationales in addition to the instance’s label).
Instances (with or without rationales) may provide di↵erent incremental value to the learning

algorithm. Thus, we propose a cost-sensitive active selection criteria for actively selecting an
instance for a given strategy. We showed that strategy sensitive instance selection performs better
than strategy insensitive instance selection. That is, seeking rationales for instances expected to
bring the most benefit to the model from rationale annotations, performs better than seeking
rationales for instances selected randomly or actively (using V OI or uncertainty) independent of
the strategy. When the cost for annotating rationales is high, rationales may not be useful for all
instances, and we may want to selectively ask for rationales. We further enhance the proposed
approach to jointly select the best instance and strategy in each iteration. While the best fixed
strategy among LO and LR varies with the cost for annotating rationales, we showed that except
for a few cases, the proposed approach performs as well as or better than the best fixed strategy
for a given cost for annotating rationales. We also showed that the proposed approach performs
better than cost-sensitive (V OI) and cost-insensitive (random, uncertainty and risk-only) instance
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selection for a fixed strategy, and cost-insensitive (risk-only) joint selection of instance and strategy.
We studied three variants for incorporating cost in the active selection criteria (V OI), inspired

by the prior work in the literature: 1) A decision theoretic framework proposed in (Kapoor et al.,
2007), and applied to a similar scenario as ours in active learning (Vijayanarasimhan and Grauman,
2011), where V OI is computed as the reduction in total cost of the use of the classifier minus the
annotation cost for the candidate (V OI-RTC), 2) Di↵erence in standardized scores for reduction
in model’s risk and annotation cost (V OI-SS), and 3) Reduction in model’s expected risk on
an unseen instance per unit annotation cost (V OI-RPC). For a fixed strategy, we found little
di↵erence between the variants of V OI. For joint selection of instance and strategy, we found that
for a high rationale cost factor (↵ = 3), di↵erence in standardized scores for reduction in risk and
cost is significantly worse than the other two approaches, and it also performs worse than the best
fixed strategy among LR and LO. A future direction is to consider a weighted combination of the
standardized scores.
In this work, we used the contrast constraint approach in (Zaidan et al., 2007) for incorpo-

rating information about rationales in the learning algorithm. We proposed a modification to
their approach for constructing contrast instances, which provided us a significant improvement
in performance. In Section 3.2, we suggested other ways to improve on their approach, such as
constructing a single contrast instance from all rationales together, or constructing several from a
subset of rationales. The proposed active learning approach is general and can also be applied to
other methods for incorporating information about rationales.
Next, we discuss the following two points: 1) how to choose an appropriate granularity for

rationales for a new learning task, and 2) for what learning problems we expect rationales to be
useful.
Rationale Granularity: There are several choices for granularity of rationales for an annotation

task. For a text instance of document length, rationales may be annotated as highlighted sub-strings
(as in (Zaidan et al., 2007)), or as votes on sentences in a document (as in this work). Rationales
may also be annotated as votes on phrases in a sentence. We can determine the phrases in a
sentence using a syntactic parser. Alternatively, in a long document, rationales may be annotated
as votes on paragraphs. The appropriate granularity for rationales for a learning task will depend
on several factors. There are two main factors to consider:

• Votability: As already discussed earlier in this chapter, there are several advantages of anno-
tating rationales as votes on sub-instances in an instance over rationales as highlighted spans or
regions. However, even when rationales are annotated as votes on sub-instances in an instance,
there are several choices for rationale granularity. For example, in a document, a rationale can
be a phrase, sentence, or a paragraph. For a given domain and classification task, an important
factor to consider in deciding the appropriate granularity for rationales is that is should be
votable. That is, the annotator should be able to determine whether the given segment of text
(phrase, sentence or paragraph) by itself is a rationale or not. In some cases, a phrase may
not be a rationale by itself without the context of the sentence it is part of. In this case, a
sentence would be a more appropriate unit of rationale. While sentences can be thought of
as independent units of judgement for rationales, in some domains it may be the case that a
sentence is a rationale only in context of the paragraph it is part of. In this case, a paragraph
may be a more appropriate unit of rationale. Thus, depending on the domain and text instance
length, we should decide an appropriate granularity for rationales, based on its votability.

• Value: Another factor to consider in deciding the granularity for rationales is the value they
provide to the model. Allowing the annotators to determine the span for rationales would
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provide us more precise rationales. The entire span of a rationale is used when incorporat-
ing information about rationales into the model, at least in the contrast constraint approach
(Zaidan et al., 2007) that we adopt in this work. If the spans for rationales are predetermined
as phrases, sentences, or paragraphs, then rationales would be less precise. As mentioned
before, rationales provide indirect feedback on features. Features that overlap with rationales
should be important for the classification task and this indication is only indirect. The con-
trast constraint approach (Zaidan et al., 2007) also indirectly influences the weights that are
learned for the features present in rationales. If rationales are less precise, we may be putting
unnecessary emphasize on some of the features. Preciseness of a given granularity for rationales
may vary across learning tasks. For the movie review classification task (Zaidan et al., 2007)
with unigram features, Yessenalina et al. (2010) found that there is no significant di↵erence
in performance between rationales as sub-strings or sentences in a document (by extending
sub-string rationales to sentence boundary). However, this may not be true for all tasks and
all feature sets. Also, this may not be true for a di↵erent approach to incorporate information
about rationales.

Thus, for a new learning task, we must take into account the above factors when deciding the
granularity for rationales. One approach to determine the appropriate granularity for rationales
for a new task is to conduct a pilot user study to evaluate di↵erent granularities for rationales in
terms of their votability, and analyze their e↵ect on model’s performance to evaluate their value.
In the current approach, all information in a rationale is treated equally. As mentioned before,

when rationales are annotated as votes on pre-segmented spans of text, such as sentences, the
rationale information is not precise. We may want to treat parts of a rationale (e.g. phrases in a
sentence) di↵erently when incorporating information about rationales. For a sentiment classification
task, adjective phrases may be more relevant than noun phrases or verb phrases. These phrases
can be determined using a syntactic parser. For the contrast constraint approach for incorporating
information about rationales (Zaidan et al., 2007), we may use only parts of a rationale that
we expect to be most relevant, to construct a contrast instance. For example, for a sentiment
classification task with rationales as sentences in a document, we may construct a contrast instance
only from the adjective phrases in a sentence.
Benefit from Rationales: We expect rationales to be useful when some parts of an instance

are strong indicators and others are weak indicators of the instance’s label. For example, in a
movie review, the reviewer often talks about the movie plot, actors, etc., which may not be strong
indicators of the reviewer’s sentiment, and hence may not be relevant for classifying the review as
expressing positive or negative sentiment. Similarly when classifying the scene in an image as that
of a kitchen, parts of the image that show a sink, fridge etc., might be key indicators, and parts
that show the floor, may not be indicative of the kitchen. On the other hand, product reviews are
often shorter than movie reviews, and are often more concise. We expect rationales to be relatively
less useful when classifying the sentiment of a product review, compared to a movie review.
In this work, we saw that there is more benefit from rationales earlier on in learning. This is

intuitive, as the model matures we may not benefit as much from additional supervision. If labels
for a large number of instances can be obtained relatively fast and for cheap, for example, through
crowd sourcing sites, such as Amazon’s Mechanical Turk13, then rationales may not be as useful,
since we saw a little benefit from rationales when we have a large amount of labeled data. However,
annotators in such crowd sourcing sites are non-experts, and annotations are often noisy. For tasks,
such as aviation safety report classification, or clinical document and image classification, we may

13https://www.mturk.com/mturk/welcome
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require annotations from domain experts who are often expensive to hire. For certain tasks in a
medical domain, it may be costly to even obtain unlabeled data, as it may require several pre-
processing steps, such as anonymizing the data, or there may only be a limited amount of data
that matches a given criteria. Rationale annotations are expected to be useful for such tasks.
In this thesis, we defined rationales as votes on sub-instances in an instance. Text, image and

video instances can be segmented into sub-instances, such as sentences, regions, frames, etc. How-
ever, if the span to classify is considerably smaller (e.g. a small text phrase) and there are only a
few sub-instances in an instance, most of which are relevant, then rationales may not provide much
additional information. For example, when classifying movie review snippets (about a sentence
length), in comparison to movie review documents, we can expect rationales to be less useful as
snippets are more concise and there would only be one or two sub-instances in an instance, most
of which would be relevant. In Chapter 2, we studied the problem of classifying sentences as sug-
gesting that two proteins mentioned in it interact. Rationales as sentences will not be useful here,
since an instance contains only a single sentence. Even if we consider rationales as phrases in a
sentence, there would only be a few phrases in a sentence, most of which would be relevant. On the
other hand, if we were classifying biomedical abstracts or papers as suggesting whether two proteins
mentioned in them interact, then most likely this information would be indicated by one or two
sentences in the whole abstract or document. Information about what sentences among many are
indicators of the protein-protein interaction should certainly be helpful to the model. In Chapter
5, we study the e↵ect of instance granularity and the amount of non-rationale (or irrelevant) text
on the benefit from rationales.
Figure 3.26 shows some example learning problems (most of which we have studied in this thesis)

in a 3D space of amount of irrelevant text (called slack), annotator expertise required for the
annotation task, and the benefit from rationales. Overall, we expect more benefit from rationales
for learning problems that have more irrelevant text in its instances and require annotation from
experts that are expensive to hire.
In the work presented in this chapter, we only experimented with the unigram features. We expect

the benefit from rationales to be more when the features are not hand-crafted and the feature space
is large, for example, when other linguistic features are used in addition to the unigram features.
Rationales provide indirect feedback on features. However, the above intuition about which learning
problems may benefit from rationales, can also be applied to direct feedback on features in context
of the instance. In Chapter 5, we present a formal analysis of how benefit from feature feedback
varies across di↵erent learning problems, and what characteristics of a learning problem have a
significant e↵ect on the benefit from feature feedback. We also study measures that can be used to
categorize learning problems, and that have a strong correlation with the amount of benefit from
feature feedback.
There are several ways in which the work presented in this chapter can be extended. We suggest

some of the extensions here:

• Multiple annotation strategies with di↵erent number of rationales: In this work and
prior work with rationales, it is assumed that the annotator provides almost all rationales for
an instance. We may not need all rationales for every instance. Instead, we may ask the
annotators to provide a fixed number of rationales. There can be many di↵erent ways to ask
the annotators for a fixed number of rationales per instance. For example, we may ask them to
provide any N rationales or the top most important N rationales. While the annotation cost
should be less for smaller N when asking for any N rationales, it is not clear if annotating top
N rationales would require less time than annotating almost all rationales. This is because
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Figure 3.26: Notional problem space illustrating what problems are expected to benefit more
or less from rationales. X-axis represents the slack, i.e., the average amount of irrelevant text
in an instance; Y-axis represents the annotator expertise required for the annotation task; Z-
axis represents the benefit from rationales. Learning Problems: MRS - Movie Review Snippets,
MR - Movie Reviews, PR - Product Reviews, ASR - Aviation Safety Reports, PPIS - Protein-
Protein Interaction extraction from Sentences, PPID - Protein-Protein Interaction extraction from
Documents (e.g. research papers). The numbers on the axes do not indicate actual values. The
values shown represent the relative ranks of problems in each dimension.

to determine the top N rationales, the annotators would need to rank the rationales (in their
minds) in the order of importance. How annotation time varies across strategies with pre-
defined number of rationales requires further investigation through user experiments. In this
chapter, we presented an initial investigation of how the benefit to the model varies with the
number of rationales (for any N rationales strategy), assuming the same cost for all strategies.
For a movie review classification task, for random instance selection, we find that performance
usually increases with more rationales. However, there is no additional significant benefit from
more rationales beyond 8 rationales per instance. Thus, if each additional rationale comes
with an additional cost, we may want to ask for fewer rationales. As learning progresses, we
may want to ask for fewer rationales, since we found little significant benefit from getting more
rationales later in the learning curve. The optimum number of rationales may also vary across
instances. In Section 3.4.2, we suggested how we may extend the proposed cost-sensitive active
learning framework to select from multiple annotation strategies, where in addition to deciding
whether or not to seek rationales, it also determines how many rationales to ask for in a given
instance.
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• Annotation cost estimation: For cost-sensitive active selection, we assumed that the ad-
ditional cost for annotating rationales (i.e. the rationale cost factor) is known and fixed. The
rationale cost factor may be estimated for a given annotator and user interface design from a
small sample of data labeled with both strategies. This sample can be the same as the initial
set that is used to bootstrap the active learner. The estimate for rationale cost factor can
also be updated as we collect more labeled data with annotation time. If the labeled data col-
lected in each iteration is also used to update the annotation cost model, and the annotation
cost estimate is used for cost-sensitive active selection, then we should select the instance and
strategy that also improves our cost model in addition to our model for the target annotations.
That is, we may want to also consider the reduction in risk of our annotation cost estimator,
in addition to the model for the target annotations, when selecting the next candidate for
annotation. We discuss this extension to our framework in further detail in Chapter 6.

In this chapter, we used a simple estimate of annotation cost based on instance length and
strategy. Annotation cost may also depend on other characteristics of the instance, annotation
strategy, and annotator. For example, the cost would be more when more rationales are anno-
tated. In our current cost model, the absolute di↵erence between the costs for two strategies is
more for a longer document, than a shorter one. For example, consider two instances Xi and
Xj with 4 and 8 sub-instances respectively. The cost for two strategies for these two instances
are C(Xi, LR) = 4, C(Xj , LR) = 8, C(Xi, LO) = 2, and C(Xj , LO) = 4. Since a longer
document is expected to contain more relations, we take into account the e↵ect of number of
rationales on annotation time to some extent. However, as we will see Chapter 4, number of
rationales only has a low correlation (0.24) with the length of a document. Two documents
with same length may contain di↵erent number of rationales, and hence the cost for annotating
them would be di↵erent. In Chapter 4, we propose a more sophisticated supervised regression
model for estimating the annotation cost in a multiple annotator environment with rationale
annotations. One of the characteristics of the annotation strategy that we use as a feature
in our model is the number of rationales. However, when calculating V OI for LR strategy
with almost all rationales, we would not know a priori how many rationales will be annotated.
However, we may use an estimate for it from the current R vs. NR classifier.

Annotation cost may also vary across annotators, based on whether or not they are native
speaker of the language for annotation, their experience with the annotation task, etc. In
Chapter 4, for data collected from multiple annotators with rationale annotations, we analyze
how the annotation time varies across annotators. We use annotator nativeness as one of
the features in our model for annotation cost estimation, and we found that it provides an
improvement in performance. Annotation cost may also vary over time. As the annotator
becomes familiar with the task, their annotation speed may increase. On the other hand, after
labeling several instances, their annotation speed may decrease due to fatigue. In Chapter 4,
we suggest some features to include in the estimator to model the e↵ect of time.

For a new learning task, we should conduct a pilot user study with multiple annotators and in-
stances with di↵erent characteristics to understand which of the above factors have a significant
e↵ect on the annotation time. In Chapter 4, we present a similar analysis for a movie review
classification task with data collected from multiple annotators with rationale annotations.

• Enhancement to the utility estimate: In this work, we only considered one way to ap-
proximately calculate the expected risk of the model after labeling an instance with rationales.
As discussed in Section 3.3, we used the predictions for rationales from a rationale vs. not-
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rationale (R vs. NR) classifier for sub-instances. For this model, we used unigram features
to represent a sub-instance. For the movie reviews, we observed that there were often more
rationales at the end of a review than in the beginning. A reviewer would often start o↵ with
a discussion about the movie plot, ending the review with his/her opinion. Position of a sub-
instance in an instance may be used as a feature in the rationale classifier. In our model, we
made an assumption that labels for sub-instances in an instance are independent of each other,
given the instance’s label. An alternative approach is to model it as a sequence labeling task,
where the label for a sub-instance is predicted taking into account its context in the instance.
Vijayanarasimhan and Grauman (2011) use a Gibbs sampling approach for estimating the risk
with predicted labels for instances in a bag, for a multiple instance learner. Label for an in-
stance in a bag is sampled from the conditional distribution of one instance’s label, given the
rest. In Gibbs Sampling, for each sample, the classifier is retrained with the given labels for the
remaining instances and a label is drawn for the instance under consideration. The expected
risk is calculated as the average risk for a large number of samples. This method relaxes the
independence assumption we make, however it requires several learn/unlearn operations, and
increases the computation cost of the model substantially.

There are also other ways to use the output of the rationale classifier. Since we expect the
classifier to be less accurate in the beginning when it has only been trained on rationales for a
few instances, instead of using the predictions from the R vs. NR classifier as is, we may sample
a label for a sub-instance from the model’s probability distribution for the sub-instance’s label.
That is, if pri,j is the model’s confidence that a sub-instance xi,j is a rationale in an instance
xi, we may sample a label for xi,j from bernoulli(pri,j) distribution.

Accurate estimation of the risk for LR strategy relies on the accuracy of the R vs. NR classifier,
which is trained on the data annotated so far. For active strategy selection, if the reduction
in risk for LR strategy is underestimated, it may not be selected. If the LR strategy is not
selected, the rationale classifier is not updated. Thus, we may want to take into account the
uncertainty of the R vs. NR classifier when computing V OI for strategy selection. One simple
approach to do this is the following. Instead of using the predictions from R vs. NR classifier
as is, we instead sample a label (R or NR) for a sub-instance from the model’s probability
distribution for the sub-instance’s label, as suggested above. However, instead of sampling
once, we may draw several samples for labels for sub-instances in an instance, and calculate
the expected risk for each sample. From the expected risk for these samples, we can calculate
the mean and standard deviation of the expected risk, and use the lower confidence interval of
the risk in V OI estimation, calculated as follows:

LI(R̂X t+1
l ((Xi,Yi),LR)(X

t+1
u (Xi))) =

m(R̂X t+1
l ((Xi,Yi),LR)(X

t+1
u (Xi)))� tn�1

↵/2

s(R̂X t+1
l ((Xi,Yi),LR)(X

t+1
u (Xi)))

p
n

(3.12)

where R̂X t+1
l ((Xi,Yi),LR)(X

t+1
u (Xi)) is an estimate for the risk after training on instance Xi

annotated with strategy LR (as discussed in Section 3.3), m(.) and s(.) are the sample mean
and standard deviation of the risk for the given samples. n is the number of samples for
rationales in an instance, and tn�1

↵/2 is the critical value for the Student’s t-distribution with

n� 1 degrees of freedom, at ↵/2 confidence level. Using the lower confidence interval for risk
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for LR strategy, we may select LR strategy over LO when it has lower average risk or when
there is high uncertainty in its risk estimate, due to uncertainty of the rationale classifier.
This idea is inspired by the work in (Donmez et al., 2009), where the authors use the upper
confidence interval as an estimate for annotator’s accuracy to select the annotators with high
reliability or high uncertainty in their reliability estimate.

Cost Strategy Significance Accuracy Cost Strategy Significance Accuracy

500

R(x,LR(All)) A 0.510

1000

R(x,LR(All)) A 0.584
R(x,LR(10)) A B 0.507 R(x,LR(9)) A B 0.578
R(x,LR(8)) A B C 0.507 R(x,LR(10)) A B 0.578
R(x,LR(9)) A B C 0.506 R(x,LR(8)) A B C 0.573
R(x,LR(6)) A B C 0.503 R(x,LR(7)) A B C D 0.567
R(x,LR(7)) B C 0.502 R(x,LR(6)) A B C D 0.566
R(x,LR(5)) B C 0.501 R(x,LR(5)) A B C D 0.559
R(x,LR(3)) B C 0.501 R(x,LR(4)) B C D E 0.551
R(x,LR(4)) B C 0.501 R(x,LR(3)) C D E 0.546
R(x,LR(2)) C 0.500 R(x,LR(2)) D E 0.540
R(x,LR(1)) C 0.500 R(x,LR(1)) E 0.525
R(x,LO) B C 0.500 R(x,LO) E 0.520

1500

R(x,LR(All)) A 0.648

2000

R(x,LR(8)) A 0.672
R(x,LR(10)) A 0.640 R(x,LR(10)) A 0.670
R(x,LR(9)) A 0.639 R(x,LR(9)) A 0.670
R(x,LR(8)) A 0.633 R(x,LR(7)) A 0.669
R(x,LR(7)) A 0.629 R(x,LR(All)) A 0.668
R(x,LR(6)) A B 0.620 R(x,LR(6)) A 0.666
R(x,LR(5)) A B 0.610 R(x,LR(5)) A 0.661
R(x,LR(4)) B C 0.591 R(x,LR(4)) A B 0.648
R(x,LR(3)) C D 0.567 R(x,LR(3)) A B C 0.636
R(x,LR(2)) D E 0.552 R(x,LR(2)) B C 0.622
R(x,LR(1)) D E 0.533 R(x,LR(1)) C D 0.597
R(x,LO) E 0.520 R(x,LO) D 0.577

2500

R(x,LR(10)) A 0.702

3000

R(x,LR(9)) A 0.705
R(x,LR(7)) A 0.700 R(x,LR(10)) A 0.704
R(x,LR(8)) A B 0.699 R(x,LR(8)) A 0.703
R(x,LR(9)) A B 0.698 R(x,LR(All)) A B 0.703
R(x,LR(All)) A B 0.698 R(x,LR(7)) A B 0.702
R(x,LR(6)) A B 0.691 R(x,LR(6)) A B 0.699
R(x,LR(5)) A B 0.682 R(x,LR(5)) A B 0.694
R(x,LR(4)) A B C 0.668 R(x,LR(4)) A B 0.683
R(x,LR(3)) B C D 0.657 R(x,LR(3)) B C 0.665
R(x,LR(2)) C D E 0.639 R(x,LR(2)) C D 0.641
R(x,LR(1)) D E 0.617 R(x,LR(1)) D E 0.617
R(x,LO) E 0.602 R(x,LO) E 0.592

Continued on next page
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Table 3.5 – continued from previous page
Cost Strategy Significance Accuracy Cost Strategy Significance Accuracy

3500

R(x,LR(All)) A 0.722

4000

R(x,LR(10)) A 0.736
R(x,LR(8)) A 0.720 R(x,LR(All)) A B 0.734
R(x,LR(10)) A 0.717 R(x,LR(6)) A B 0.729
R(x,LR(9)) A 0.717 R(x,LR(9)) A B 0.729
R(x,LR(6)) A 0.717 R(x,LR(7)) A B 0.728
R(x,LR(7)) A 0.716 R(x,LR(8)) A B 0.727
R(x,LR(5)) A 0.711 R(x,LR(5)) A B 0.726
R(x,LR(4)) A 0.706 R(x,LR(4)) A B C 0.718
R(x,LR(3)) A B 0.685 R(x,LR(3)) A B C 0.707
R(x,LR(2)) B C 0.664 R(x,LR(2)) B C D 0.697
R(x,LR(1)) C D 0.640 R(x,LR(1)) C D 0.684
R(x,LO) D 0.611 R(x,LO) D 0.663

4500

R(x,LR(10)) A 0.755

5000

R(x,LR(All)) A 0.769
R(x,LR(All)) A 0.754 R(x,LR(10)) A 0.764
R(x,LR(9)) A 0.754 R(x,LR(9)) A B 0.760
R(x,LR(8)) A 0.750 R(x,LR(7)) A B 0.75
R(x,LR(7)) A 0.749 R(x,LR(8)) A B 0.758
R(x,LR(6)) A 0.748 R(x,LR(6)) A B 0.755
R(x,LR(5)) A B 0.744 R(x,LR(5)) A B 0.751
R(x,LR(4)) A B 0.741 R(x,LR(4)) A B C 0.747
R(x,LR(3)) A B C 0.728 R(x,LR(3)) A B C D 0.739
R(x,LR(2)) A B C 0.724 R(x,LR(2)) B C D 0.734
R(x,LR(1)) B C 0.711 R(x,LR(1)) C D 0.723
R(x,LO) C 0.696 R(x,LO) D 0.713

5500

R(x,LR(All)) A 0.781

6000

R(x,LR(All)) A 0.788
R(x,LR(10)) A 0.777 R(x,LR(10)) A B 0.780
R(x,LR(7)) A B 0.773 R(x,LR(9)) A B 0.779
R(x,LR(8)) A B 0.771 R(x,LR(8)) A B 0.775
R(x,LR(9)) A B 0.770 R(x,LR(7)) A B C 0.771
R(x,LR(6)) A B 0.769 R(x,LR(6)) A B C D 0.769
R(x,LR(5)) A B 0.766 R(x,LR(5)) A B C D 0.767
R(x,LR(3)) A B C 0.762 R(x,LR(4)) A B C D 0.760
R(x,LR(4)) A B C D 0.759 R(x,LR(3)) A B C D 0.757
R(x,LR(2)) B C D 0.753 R(x,LR(2)) B C D 0.754
R(x,LR(1)) C D 0.743 R(x,LR(1)) D 0.744
R(x,LO) D 0.733 R(x,LO) C D 0.742

6500

R(x,LR(All)) A 0.793

7000

R(x,LR(All)) A 0.795
R(x,LR(10)) A 0.788 R(x,LR(10)) A 0.790
R(x,LR(9)) A 0.786 R(x,LR(9)) A B 0.787
R(x,LR(8)) A 0.784 R(x,LR(8)) A B 0.786
R(x,LR(6)) A 0.784 R(x,LR(7)) A B 0.784
R(x,LR(7)) A B 0.780 R(x,LR(6)) A B 0.784
R(x,LR(5)) A B 0.776 R(x,LR(5)) A B C 0.778
R(x,LR(4)) A B 0.774 R(x,LR(4)) A B C D 0.777
R(x,LR(3)) A B C 0.765 R(x,LR(3)) B C D 0.767
R(x,LR(2)) B C 0.757 R(x,LR(2)) C D 0.762
R(x,LR(1)) C 0.746 R(x,LR(1)) D 0.757
R(x,LO) C 0.742 R(x,LO) C D 0.754

Continued on next page
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Table 3.5 – continued from previous page
Cost Strategy Significance Accuracy Cost Strategy Significance Accuracy

7500

R(x,LR(All)) A 0.793

8000

R(x,LR(All)) A 0.802
R(x,LR(10)) A 0.790 R(x,LR(9)) A 0.798
R(x,LR(7)) A 0.787 R(x,LR(8)) A 0.800
R(x,LR(9)) A 0.786 R(x,LR(10)) A 0.799
R(x,LR(8)) A 0.785 R(x,LR(7)) A 0.797
R(x,LR(6)) A B 0.781 R(x,LR(6)) A B 0.792
R(x,LR(5)) A B 0.778 R(x,LR(5)) A B C 0.788
R(x,LR(4)) A B C 0.777 R(x,LR(4)) A B C 0.786
R(x,LR(3)) A B C 0.774 R(x,LR(3)) A B C 0.779
R(x,LR(2)) B C D 0.764 R(x,LR(2)) B C 0.773
R(x,LR(1)) D 0.754 R(x,LR(1)) C 0.770
R(x,LO) C D 0.753 R(x,LO) B C 0.767

8500

R(x,LR(All)) A 0.814

9000

R(x,LR(All)) A B 0.812
R(x,LR(8)) A 0.807 R(x,LR(10)) A 0.810
R(x,LR(10)) A B 0.804 R(x,LR(9)) A B 0.806
R(x,LR(9)) A B 0.803 R(x,LR(8)) A B C 0.8052
R(x,LR(7)) A B 0.803 R(x,LR(7)) A B C 0.804
R(x,LR(6)) A B C 0.800 R(x,LR(5)) A B C 0.802
R(x,LR(4)) A B C 0.797 R(x,LR(6)) A B C D 0.801
R(x,LR(5)) A B C 0.796 R(x,LR(4)) A B C D 0.795
R(x,LR(3)) A B C 0.788 R(x,LR(3)) B C D 0.791
R(x,LR(2)) C 0.780 R(x,LR(2)) C D 0.787
R(x,LR(1)) C 0.780 R(x,LO) B C D 0.784
R(x,LO) B C 0.778 R(x,LR(1)) D 0.783

9500

R(x,LR(8)) A 0.812

10000

R(x,LR(All)) A 0.819
R(x,LR(All)) A B C 0.811 R(x,LR(10)) A 0.815
R(x,LR(7)) A 0.811 R(x,LR(7)) A 0.814
R(x,LR(10)) A B 0.809 R(x,LR(8)) A 0.814
R(x,LR(9)) A B 0.808 R(x,LR(9)) A B 0.813
R(x,LR(6)) A B C 0.802 R(x,LR(5)) A B C 0.806
R(x,LR(5)) A B C D 0.800 R(x,LR(6)) A B C 0.805
R(x,LR(4)) A B C D 0.799 R(x,LR(4)) A B C 0.804
R(x,LR(3)) B C D 0.793 R(x,LR(3)) A B C 0.798
R(x,LR(2)) C D 0.788 R(x,LR(1)) C 0.793
R(x,LO) C D 0.785 R(x,LR(2)) C 0.792
R(x,LR(1)) D 0.784 R(x,LO) B C 0.792

Table 3.5: E↵ect of di↵erent number of rationales (0 to all) for Random (R) instance selection and
↵ = 1, for MR dataset. Results are reported from 500 to 10000 (at every 500) cost milestone.
Strategies are listed in the decreasing order of accuracy.
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Chapter 4

Annotation Cost Estimation

Annotation Cost in interactive annotation learning is the time it takes the annotator to provide
the desired annotations. An annotation task often consists of several subtasks, such as perceiving
and understanding the instance, making a decision about the number of annotations to add and
their spans, and the user interface actions for adding the annotations to the instance. Annotation
cost may vary across instances. Longer documents take longer to read, and hence require more
time to annotate. With alternate annotation strategies, such as labeling features (Godbole et al.,
2004; Raghavan and Allan, 2007; Druck et al., 2008; Melville and Sindhwani, 2009) or providing
rationales (Zaidan et al., 2007), the annotator does more work per instance and the annotation
cost would be more. Annotation cost also varies across annotators, and multiple annotators are
often employed in annotation tasks. Non-native speakers of English were found to require more
time than native speakers to annotate parts of speech (Ringger et al., 2008).
In some domains, the annotation cost is known a priori or can be calculated exactly. For

example, in biological experiments, the cost might be calculable from the cost of the equipment
and the material used (King et al., 2004). In annotation learning, usually the annotation cost is not
known a priori and often cannot be calculated exactly. It can however be estimated. An estimate
for the annotation cost can be used to plan a budget for the annotation tasks. Comparing active
selection strategies in terms of the real annotation cost savings may require conducting several user
studies (one for each sequence of instances selected by di↵erent selection strategies), which is often
infeasible. An estimate for the annotation cost can be used instead to compare several selection
strategies, before deciding which one to use for a real user experiment. Annotation cost estimate can
also be used as a criterion in active selection to directly minimize the annotation cost. In Chapter
3, for cost-sensitive active selection, we used a simple estimate for the annotation cost based on
instance length, which has been found to correlate strongly with the annotation time (Ringger et
al., 2008; Arora et al., 2009b). We also considered di↵erent costs for the two annotation strategies
of providing instance’s label with or without rationales. However, the annotation cost may also
depend on other factors, such as the number of rationales annotated, annotator characteristics
in a multi-annotator scenario and other instance characteristics beyond instance length. Other
simplifying assumptions that are often made for estimating the annotation cost are the following:

• annotation cost = length/size of an instance (Kapoor et al., 2007; Tomanek et al., 2007). It
is true that longer sentences take more time to read and understand. However, two sentences
of similar length and with similar meaning, may have the grammatical structure of varying
complexity that may make one harder to interpret than the other. For example, “Town where
I grew up is in the United States” and “I grew up in a town in the United States” are two
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sentences of the same length and convey similar information with varying amount of linguistic
complexity. The first one is more complex, since it contains an independent and a dependent
clause. The second one is simpler, since it contains a single independent clause.

• annotation cost = number of user interface (UI) actions, such as the number of clicks or the
number of brackets added (Kristjansson et al., 2004; Hwa, 2000). This implies that for a
document classification task, the annotation cost is the same for all documents. However,
some documents may be longer and/or more di�cult to categorize, and hence may require
more annotation time.

• annotation cost = confidence of a learned model (class posterior) (Donmez and Carbonell,
2008b). It is reasonable to assume that instances that are di�cult for a model are also hard
for the human annotator to annotate. However, some instances, specifically documents, might
be easy to classify, but they may be long, and hence may take longer for the annotator to read
and annotate.

All of the above factors are important for annotation cost estimation. In addition to the above
factors, the annotation cost for a given instance may also vary across annotators. In this chapter,
we propose a supervised regression model for estimating the annotation cost with the characteristics
of the instance, annotator and annotation strategy as features. We collected the annotated data
with annotation time from multiple annotators for a fixed strategy of providing the instance’s label
with rationales. We train and test the supervised regression model on this data. In the literature,
most of the work on annotation cost estimation has focused on training and testing for the same
annotator (Settles et al., 2008a). However, this requires that we first collect some annotated data
with annotation time from each new annotator, in order to build an annotation cost estimator
for him/her. Other work in the literature has focused on training and testing with annotation
time averaged over multiple annotators (Vijayanarasimhan and Grauman, 2011), or have assumed
a similar mix of annotators in train and test set, and do not include annotator characteristics in
annotation cost estimation (Ringger et al., 2008). However, annotation times may vary significantly
across annotators, and average annotation time may not be a good estimate. In this work, we train
and test an annotation cost estimator on di↵erent annotators, and use the annotator characteristics
as features in our model to represent an annotator. This is important, since we may not always know
all our annotators before building the model, and training an estimator for each new annotator can
be costly. For a sentiment classification task, we show that an annotation cost estimate from the
proposed model based on the characteristics of an instance, strategy and annotator outperforms
simpler estimates based on any one of these characteristics.
For the rest of the chapter, we first present our supervised regression model for annotation cost

estimation. We then present the experiments and results, followed by the related work, conclusions
and suggestions for the future work. The work presented here is an exposition of the work presented
in (Arora et al., 2009b).

4.1 Proposed Approach for Annotation Cost Estimation

In this work, we estimate the annotation cost for a movie review classification task (Zaidan et al.,
2007), in a multi-annotator environment. Given a movie review, the annotator votes positive if
the review expresses a positive opinion about the movie, and suggests watching the movie. The
annotator votes negative if the review expresses a negative opinion about the movie, and suggests
not watching the movie. In addition to the vote, the annotator provides rationales (Zaidan et
al., 2007), spans of text in support of his/her vote. The rationales provide indirect feedback on
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features. Prior work in the literature has demonstrated that with rationales same performance
can be achieved with less annotated data (Arora and Nyberg, 2009; Zaidan et al., 2007; Zaidan
and Eisner, 2008; Abedin et al., 2011). In Chapter 3, we showed that rationales (as votes on sub-
instances in an instance) provide a significant improvement in performance for a given annotation
cost, when the cost for annotating them is small. In this work, we follow the same annotation
guidelines as Zaidan et al. (2007) for collecting the annotated data. That is, rationales are annotated
as sub-strings in text1.
We formally describe the annotation cost estimation problem as estimating the cost C(xi, sj , ak)

for annotator ak annotating instance xi with strategy sj . We use a supervised regression model for
annotation cost estimation and investigate the following three broad categories of features for this
model:

• Instance Characteristics: Characteristics of the instance to be annotated, such as the char-
acter length, average sentence length, readability, instance’s di�culty (measured in terms of
the learned model’s uncertainty), etc., are important for estimating the annotation time, as
also suggested in the literature (Kapoor et al., 2007; Tomanek et al., 2007; Donmez and Car-
bonell, 2008b; Ringger et al., 2008; Settles et al., 2008a). Table 4.1 describes the instance
characteristics we use in this work, and the intuition behind them.

Feature Definition Intuition

Character Length (CL) Length of a review in terms
of the number of characters

Longer documents take
longer to read and annotate

Polar word Count (PC) Number of words that are
polar (strong subjective
words from the lexicon
(Wilson et al., 2005))

High subjectivity in text sug-
gests that the annotator may
need more time to determine
the sentiment of a review

Stop word Percent (SP) Percentage of words that are
stop words

A high percentage of stop
words suggests that the text
may not be very complex and
hence easier to read

Average Sentence
Length (SL)

Average of the character
length of sentences in the re-
view

Long sentences in a review
may make it harder to read

Table 4.1: Instance characteristics used as features in the supervised model for annotation cost
estimation.

• Annotator Characteristics: Annotator characteristics, such as their fluency with the language,
familiarity with the annotation task, annotation experience, familiarity with reading online
text, etc., should e↵ect the annotation time. In this work, we use the annotator nativeness as
a feature, which has been found to have a significant e↵ect on annotation time (Ringger et al.,
2008). The reviews to be annotated in our annotation task are in English. A nativeness score
is assigned to each annotator as follows.

1This work was done prior to the work in Chapter 3, where we consider rationales as votes on sub-instances in an
instance.
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– A score of 3 is assigned to an annotator whose first language is English.

– A score of 2 is assigned to an annotator whose first language is not English, but who has
done most of his/her education in English, or who has been in the United States or an
English speaking country for several years.

– A score of 1 is assigned to all other annotators.

• Annotation Task/Strategy Characteristics: These characteristics may be fixed beforehand or
are captured during or after the annotation task is done. For example, number of rationales
(NR), number of named entity annotations, etc. Such characteristics are not always known a
priori. When calculating the annotation cost savings from active learning, they are known a
priori, as the annotations exist. For selective sampling or annotation budget planning, they
may be unknown. For certain annotation tasks, the number of annotations per instance is
fixed, for example in a document classification task, there is only one annotation per instance.
The rationale annotation strategy may also fix the number of rationales the annotator provides.
In such cases, we know the number of annotations a priori. However, in certain annotation
tasks, such as named entity annotation, the number of entities per sentence or document may
vary. The rationale annotation strategy may also leave it to the annotator to decide how many
rationales should be annotated (Zaidan et al., 2007). However, we could estimate the number
of rationales that an annotator may annotate for a given instance by building a rationale
model for each annotator from the instances labeled so far, like the one used in Chapter 3 for
estimating the risk. Similarly, we could use the model trained on data annotated so far to
estimate the expected number of named entities in an unlabeled instance. In this work, we
use the number of rationales as an annotation task characteristic. If the number of rationales
is not fixed and unknown at the time of annotation cost estimation, we can use the expected
number of rationales.

We use the above characteristics as features in the supervised model. Our hypothesis is that
all three categories of features are important for estimating the annotation cost accurately. We
show that an annotation cost estimate from a model based on features from all three categories
outperforms a simpler estimate based on any one of them.

4.2 Experiments and Results

In this section, we first describe our data collection process, and an analysis of the data we collected.
Following this, we present our experiments and results for annotation cost estimation on this data,
as presented in (Arora et al., 2009b).

4.2.1 Data Collection and Analysis

The data we use was collected as part of a graduate course. Twenty annotators (students and
instructors) were grouped into five groups of four each. The groups were created such that each
group had a similar variance in annotator characteristics, such as the department, educational
experience, programming experience, etc. We used the first 200 movie reviews (100 positive and
100 negative) from the dataset shared by Zaidan et al. (2007). Each group annotated 25 movie
reviews, randomly selected from the 200 reviews. All annotators in each group annotated all 25
reviews. The data has been made available for research purposes2. Figure 4.1 shows a screenshot
of the GUI used. We performed an analysis similar to Settles et al. (2008a) on the data collected,
where we answer the following questions:

2www.cs.cmu.edu/~shilpaa/datasets/ial/ial-uee-mr-v0.1.zip
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Figure 4.1: The GUI used for the annotation task. The annotator selects the review (segment)
to annotate from the list in the right panel. The review text is displayed in the left panel. The
annotator votes positive or negative using the radio buttons. Rationales are added by selecting a
span of text and right clicking to select the rationale tag. The start/stop button can be used to
pause the current task.

• How do the annotation times vary across instances? If instances take similar time to annotate,
then the number of instances can be used as an approximation for the annotation cost. Figure
4.2 shows the histogram for average annotation time per instance (averaged over 4 annotators
in a group). As can be seen from the mean (µ = 165 sec) and the standard deviation (� = 68.85
sec), there is a meaningful variance in the annotation times across instances (standard deviation
is close to half of the mean).

• How do the annotation times vary across annotators? The box plot in Figure 4.3 shows the
distribution of annotation times across annotators. As can be seen, some annotators take in
general much longer than others (comparing the annotation time of an annotator to the average
annotation time), and the distribution of times is very di↵erent across annotators. For some
annotators, the annotation time varies a lot across instances (large box and long whiskers),
but not so much for the others.

4.2.2 Experimental Setup

We learn an annotation cost estimator using the Linear Regression and SMO Regression (Smola
and Scholkopf, 1998) learners from the Weka machine learning toolkit (Witten and Frank, 2005).
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Figure 4.2: Distribution of average annotation time across instances (averaged over 4 annotators).

As mentioned earlier, we have 5 sets of 25 documents each, and each set was annotated by four
annotators. The results reported are averaged over the five folds (where each fold is one of the
five sets), and the two algorithms (Linear Regression and SMO Regression). Varying the algorithm
helps us find the most predictive feature combinations across di↵erent algorithms. Each fold/set
was annotated by a di↵erent group of annotators. That is, we train and test on the data from
di↵erent annotators. We use JMP3 and Minitab4 statistical tools for our analysis. We use an
ANOVA model with Standard Least Squares fitting to compare the di↵erent experimental condi-
tions. For significance results reported, we used a two-tailed paired T-test, considering (p < 0.05)
as significant. Next, we suggest two types of metrics for evaluating an annotation cost estimate.

4.2.3 Evaluation Metrics

We suggest the following two types of metrics for evaluating an annotation cost estimate.

• Type A: This type of metric measures the amount by which the estimate di↵ers from the true
value. For example, Root Mean Square error (RMS), Mean Absolute Error (MAE), etc. The
lower the value of this score, the better the estimate.

• Type B: This type of metric measures the strength and direction of the relationship between
the estimate and the true value. For example, Pearson’s Correlation Coe�cient (CRCoef).
The higher the value of this score, the better the estimate.

Depending on the objective for estimating the annotation cost, we may prefer one evaluation
metric over the other. For example, when estimating the annotation cost for budget planning,
Type A metric is more suitable as it measures the absolute di↵erence between the estimate and
the true value, which can be directly interpreted in terms of dollars. On the other hand, if the

3
http://www.jmp.com/software/

4
http://www.minitab.com/
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Figure 4.3: Box plot shows the annotation time (in sec) distribution (y-axis) for an annotator
(x-axis) for a set of 25 documents. g0-a1 represents annotator 1 of group 0 and g0-avg represents
the average annotation time. A box represents the middle 50% of annotation times, with the
line representing the median. Whiskers on either side span the 1st and 4th quartiles and asterisks
indicate the outliers.

estimated annotation cost is to be used for ranking and selecting among candidates for annotation,
it is important that the estimate correlates well with the true annotation cost, and hence Type
B metric is more suitable for evaluation. In our experiments, we use RMS error (Type A) and
CRCoef (Type B) metrics for evaluation.
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4.2.4 Results and Discussion

We first evaluate the instance characteristics individually. Table 4.2 presents the results. As can
be seen, among the four instance characteristics in Table 4.1, Character Length (CL) performs the
best. This result is consistent with the earlier results in the literature (Tomanek et al., 2007; Haertel
et al., 2008). However, CL is not significantly better than Polar Word Count (PC). We found that
a combination of CL and PC is not significantly di↵erent from CL. However, this combination is
significantly better than polar word count alone in CRCoef, although the two are not significantly
di↵erent in RMS. This suggests that the instance length is a strong instance characteristic for
annotation cost estimation, and polar word count is a potential feature to consider for annotation
cost estimation in a sentiment classification task.

Feature CR-Coef RMS

CL 0.358 104.51

PC 0.337 105.92
SP -0.041* 114.34*
SL 0.042* 114.50*

Table 4.2: Results for Character Length (CL), Polar word Count (PC), Stop word Percent (SP)
and average Sentence Length (SL) as features in a supervised regression model for annotation cost
estimation. The best performance is highlighted in bold. ⇤ marks the results significantly worse
than the best. CR-Coef: Correlation Coe�cient and RMS: Root Mean Squared error.

We now analyze the performance of combinations of features from the three categories, choosing
the best feature from each category. As can be seen from the results in Table 4.3, using features
from all three categories performs better than using any subset of them. This result is promising,
since character length is often used as an approximation for annotation cost, and we show that a
combination of character length with annotator and annotation task characteristics, significantly
outperforms character length alone. Even the combination of number of rationales and annotator
nativeness, without character length, significantly outperforms character length alone in CRCoef.
This suggests that the number of rationales we expect or require in a review and the annotator
characteristics are important factors to consider in annotation cost estimation.
The e↵ect of annotator nativeness feature is somewhat mixed. As can be seen from Table 4.3, it

always improves the correlation coe�cient when added to a feature combination. However, it only
improves RMS when added to the feature combination of (CL+NR), although this di↵erence is not
significant. To investigate this further, we evaluate our assumption that the native speakers take
less time to annotate. We found that the annotators with nativeness value of 3 (i.e. annotators
with first language as English) took on average less time than those with nativeness value of 2 or 1.
Between annotators with nativeness value of 2 and 1, sometimes annotators with value 1 took less
time than annotators with value 2. An alternative is to consider two levels of significance instead
of three. We may also consider other ways to measure the nativeness of an annotator, such as
their GRE or TOEFL scores. We may also want to consider other annotator characteristics beyond
nativeness, for example annotation experience, etc. In Table 4.3, we also present the weights learnt
for these features using a linear regression model trained on all the data (not just the training set).
We publish these to facilitate others to use our model in a similar setting.
We also analyze how the characteristics correlate with each other and with the annotation time.

As can be seen from Table 4.4, all features have a significant correlation with the annotation
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CL NR AN Const. CR-Coef RMS

-29.33 220.77 0.135⇤ 123.93⇤

17.59 82.81 0.486 95.29
0.027 61.53 0.357⇤ 104.51⇤

19.11 -40.78 153.21 0.550+ 96.04
0.028 -32.79 120.18 0.397⇤ 109.85⇤

0.02 15.15 17.57 0.553+ 90.27+

0.021 16.64 -41.84 88.09 0.626+ 88.44+

Table 4.3: Results for seven feature combinations of Character Length (CL), Number of Rationales
(NR) and Annotator Nativeness (AN). The values in feature and ‘Const.’ columns are weights and
constant for the linear regression model trained on all the data. A missing weight for a feature
indicates that it wasnt used in that feature combination. The numbers in bold are the results
for the best feature combination. ⇤ marks the results significantly worse than the best. + marks
the results significantly better than CL. CR-Coef: Correlation Coe�cient and RMS: Root Mean
Squared error.

time, except Stop-word Percent (SP) and average Sentence Length (SL). Number of rationales
(NR) has a higher correlation with annotation time (R = 0.529) than Character Length (CL)
(R = 0.417), which suggests that the number of rationales has more influence on annotation time
than character length. A low correlation between Number of Rationales (NR) and Character Length
(CL) (R = 0.238) implies that the longer documents do not necessarily contain more rationales.
Polar word Count (PC) has similar correlation with Annotation Time (AT) as Character Length
(CL). Strong correlation between CL and PC (R = 0.89) is expected, since reviews are essentially
people’s opinions, longer documents are expected to have more polar words. Due to a strong
correlation between character length and polar word count, we only used one of them in our
combined model with annotator and annotation task characteristics. Since character length gave
us better performance than polar word count, as shown in Table 4.2, we used the character length
as the instance characteristic in the combined model. Nonetheless, we evaluated adding polar word
count feature to the best feature combination in Table 4.3. However, it did not make a significant
di↵erence in performance.
In Section 4.2.3, we proposed two types of metrics for evaluating annotation cost estimates. As

can be seen in Table 4.5, the ranking of feature combinations based on performance is di↵erent for
the two metrics. As discussed in Section 4.2.3, the two metrics evaluate an estimate from di↵erent
perspectives. Hence, the best estimator should be chosen based on the evaluation metric suitable
for the given objective.
To the best of our knowledge, there is no previous work in the literature on estimating the

annotation cost for the movie review dataset we use in this work. The most similar to our annotation
task is the task of classifying text as speculative or definite studied in (Settles et al., 2008a),
since both tasks involve subjective language and require classifying the text into one of the two
classes. However, our task also involves annotating rationales, and we consider multiple annotators.
Although the results are not directly comparable, our model accounts for 39% of the variance in the
model (R2 = 0.39, where R is the correlation (0.626))5, compared to 34% (R2 = 0.34, R = 0.587)

5The percentage of variance accounted for by a model is obtained by squaring the correlation coe�cient to get
what is called the Coe�cient of Determination(http://en.wikipedia.org/wiki/Coefficient_of_determination)
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AT CL NR AN PC SP SL

AT 1
CL 0.42 1
NR 0.53 0.24 1
AN -0.22 0.06 0.15 1
PC 0.4 0.89 0.28 0.11 1
SP 0.03 0.06 0.14 0.03 0.04 1
SL 0.08 0.15 0.01 -0.01 0.14 -0.13 1

Table 4.4: Correlation coe�cient between Character Length (CL), Number of Rationales (NR),
Annotator Nativeness (AN), Polar word Count (PC), Stop word Percent (SP), average Sentence
Length (SL) and Annotation Time (AT), calculated over all documents (125) and all annotators
(20). Significant correlations are highlighted in bold.

Rank CR-Coef RMS

1 (CL+NR+AN) (CL+NR+AN)
2 (CL+NR) (CL+NR)
3 (NR+AN) (NR)
4 (NR) (NR+AN)
5 (CL+AN) (CL)
6 (CL) (CL+AN)
7 (AN) (AN)

Table 4.5: Ranking of feature combinations based on two metrics: Correlation Coe�cient (CRCoef)
and Root Mean Squared (RMS) error.

in (Settles et al., 2008a) for speculative text classification task.

4.3 Related Work

There has been some recent research e↵ort in using supervised learning for annotation cost esti-
mation (Settles et al., 2008a; Ringger et al., 2008; Wallace et al., 2010; Vijayanarasimhan and
Grauman, 2011). Settles et al. (2008a) present a detailed analysis of the annotation cost for four
learning tasks: named entity recognition, image retrieval, speculative vs. definite distinction, and
information extraction. They study the e↵ect of domain, annotator, etc., on the annotation cost.
Similar to our work, they found a significant variance in annotation time across instances and
annotators for a given task. For supervised annotation cost estimation, Settles et al. (2008a) use
the SMO algorithm (Smola and Schölkopf, 2004) for Support Vector Regression. They used only
instance level characteristics, such as instance length, bag-of-words, number of ASCII characters,
number of entities, model’s confidence about the instance’s label, etc., as features for annotation
cost estimation. For three of their tasks, the correlation between the estimated and actual an-
notation times was in the range (R = 0.587 to 0.852). Settles et al. (2008a) train and test their
estimator on data from the same annotator. Thus, in order to use their model for a new annotator,
we would need to first collect the data with annotation times for that annotator, and train a model.
In our work, we estimate the annotation cost for an unseen annotator. The model is trained on
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data from several annotators and we represent an annotator by his/her characteristics.
Ringger et al. (2008) use a linear regression model for estimating the annotation cost for tagging

parts of speech. In their annotation task, the annotator is provided with the model’s predictions and
he/she corrects the mistakes the model makes, and also provides any missing annotations. About
30 annotators annotated 36 di↵erent instances each. The authors present about 13 characteristics
of an instance, annotator and annotation task. However, they only use the number of tokens in
a sentence and the number of corrections needed as features in their model. They report that
the other variables didn’t have a significant e↵ect when evaluated using a Bayesian Information
Criterion (from the R package6). Ringger et al. (2008) noticed that nativeness of the annotator
e↵ects the annotation time, but they chose not to include that feature in their model, as they
expected to have a similar mix of skills and background for annotators in their test set, as in their
training data. A low adjusted correlation value for their model (R2 = 0.181) indicates that there
is only a weak correlation between annotation time and a linear combination of the length of an
instance and the number of corrections.
Annotation cost may also vary with time. It should be more in the beginning and gradually

decrease as the annotator becomes familiar with the task. Settles et al. (2008a) and Wallace et al.
(2010) in their user experiments observed that the annotation time per instance decreases as the
annotator labels more data and becomes familiar with the task. To model this observation, Wallace
et al. (2010) use a linear spline regression model with the length of an instance and number of in-
stances labeled so far as predictive variables. The spline function with a knot captures the behavior
that the learning rate increases rapidly in the beginning and slowly thereafter. The parameters for
this model are estimated online as more data is collected in active learning. They show that using
the predicted annotation time in active selection criterion provides better performance for the same
annotation cost.
In a more recent work, Vijayanarasimhan and Grauman (2011) estimate the cost for annotating

an image with the objects it contains. They use features based on image characteristics, such as a
histogram of oriented gradients, a gray-scale histogram, features based on the edge density and color
uniformity, etc., to train a Support Vector Regression model. They show that using an estimate
of the annotation cost in the active learning criterion can help to reduce the total annotation cost
for the desired performance, in comparison to using a fixed annotation cost for all instances and
annotations. They collect the data from multiple annotators and use the average annotation time
for an image and its annotation. They observed a strong linear correlation between the predicted
and actual annotation times, and a root mean square error of 11.1 seconds (Vijayanarasimhan and
Grauman, 2011).
In our work, we use a supervised model for estimating the annotation cost for a given instance,

annotator, and annotation strategy. As described above, in the literature, it has been shown that
annotation times for instances can be used to train a model, and predict annotation cost for an
unseen instance. However, the annotation times for the annotators in the training set, has not been
used to predict the annotation time for a new annotator. This is one of the novel contributions of
our work. Additionally, we consider a new annotation scenario of providing rationales in addition
to the instance label, when estimating the annotation cost.

4.4 Summary and Future Work

In this section, we presented our work on annotation cost estimation using a supervised regression
model. An annotation cost estimate is useful for three purposes: 1) evaluating active selection

6http://www.r-project.org/
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strategies, 2) selecting among candidates for annotation, to directly minimize the total annotation
cost for the desired performance, and 3) planning a budget for an annotation task.
We presented a detailed investigation of annotation cost estimation for active learning in a

multi-annotator environment with indirect feature feedback through rationales. We showed that a
combination of characteristics from the three categories of instance, annotation task and annotator
characteristics, performs better than any subset of them. In this work, we evaluated a few char-
acteristics from each category. There are many more characteristics to explore, we suggest a few
below:

• Instance Characteristics: Readability scores such as Flesch score (Flesch, 1948), bag-of-words
and other linguistic features, model’s confidence on instance’s label, etc.

• Annotator Characteristics: Other methods for assessing nativeness of an annotator, such as
GRE/TOEFL score, etc. Other characteristics such as annotation experience, experience
reading online text, etc. We may also use a questionnaire to assess the annotators and assign
them a score.

• Annotation Task Characteristics: Features such as length of rationales, distance between ra-
tionales, vote, etc.

Some of the instance based features we used for annotation cost estimation in this work are
domain independent, e.g. character length, average sentence length, and percentage of stop words.
In a heterogenous corpus, instances from two di↵erent genres may have same length and other
domain independent characteristics, however, they may require di↵erent annotation time. Some of
the instance based features suggested above, such as readability score, bag-of-words, etc., may help
to distinguish among instances from di↵erent genres. Some of the other instance features we used
for annotation cost estimation, such as polar word count, are domain specific. We found that the
polar word count is predictive of the annotation cost for a sentiment classification task. However, it
may not be relevant for a topic classification task. We may have similar domain specific features for
each task. The features to include in a linear annotation cost estimation model can be determined
by evaluating their correlation with the annotation time on a small sample of data collected with
annotation time. This would allow us to make a well-reasoned decision about whether or not to
include domain-specific features in a model for annotation cost estimation .
In our experiments, we found that annotation time varies across annotators, and annotator na-

tiveness is an important factor to consider in annotation cost estimation. In the work on annotation
cost estimation in this chapter, rationales were annotated as sub-strings of text. As mentioned in
Chapter 3, for annotating rationales as sub-strings, the annotator needs to perform the cognitive
task of identifying the appropriate boundaries for a rationale. If an annotator tends to highlight
longer rationales, we would expect annotation time to be more for him/her, since it would require
dragging the mouse for a longer time. The time to determine the appropriate boundaries for the
rationales may also vary across annotators. If rationales are instead annotated as votes on sentences
in a document (as in Chapter 3), we may find that the annotation time does not vary as much
across annotators, since they don’t need to determine the appropriate spans for the rationales. A
future user experiment should analyze the variation in time across annotators when rationales are
annotated as votes on sentences in a document, instead of sub-strings in a document.
Annotation cost may also vary over time. As the annotators become familiar with the task, their

annotation speed may increase. On the other hand, annotation speed may decrease after labeling
several instances, due to fatigue. Similar to Wallace et al. (2010), we may capture this intuition by
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adding a feature to the model for the number of instances labeled so far. We may also use a spline
regression model like in their work (also described in Section 4.3), with two knots instead of one,
to capture the increase in annotation speed with familiarity and decrease in annotation speed due
to fatigue.
For evaluating the performance of an annotation cost estimator, we used two evaluation metrics:

Root Mean Squared (RMS) error and Correlation Coe�cient (CRCoef). Depending on the goal for
estimating the annotation cost, appropriate evaluation measure should be used. When estimating
the annotation cost for budget planning, RMS is more suitable. When the estimated annotation is
used in active selection, CRCoef is more suitable.
As mentioned before, an annotation task consists of the following sub-tasks: 1) reading the

instance, 2) making a decision about the annotations, and 3) adding the annotations to the instance
using the interface. Di↵erent characteristics may be useful for estimating the annotation time for
these sub-tasks. A possible direction for future work is to model each of these sub-tasks separately
in annotation cost estimation.
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Chapter 5

Assessment of Benefit from Feature
Feedback

Direct and indirect feature feedback have been shown to reduce the total number of instances
required to achieve the desired performance (Raghavan et al., 2006; Druck et al., 2008; Druck et
al., 2009; Zaidan et al., 2007; Abedin et al., 2011; Donahue and Grauman, 2011). However, feature
feedback comes with an additional cost. In Chapter 3, we showed that indirect feature feedback
through rationales, in addition to the instance’s label, provides better performance for a given
annotation cost, when the additional cost for annotating them is small. The cost for annotating
rationales may vary across instances, annotators, annotation tasks, user interface design, etc. For
di↵erent additional costs for annotating rationales, we showed that selectively asking for rationales
for a few instances performs as well as or better than the best fixed strategy of annotating instance’s
label only or instance’s label with rationales.
Learning problems may benefit di↵erently from feature feedback (direct or indirect). In Chapter

3, we evaluated the benefit from indirect feature feedback through rationales for two datasets and
four classification tasks. We observed some di↵erences in the benefit from rationales across di↵erent
tasks. In this chapter, we formally analyze how benefit from feature feedback varies across learning
problems. It is intuitive that after the model has been trained on several labeled instances, feature
feedback may not provide much benefit. If the feature space is large, we may need several labeled
instances to identify the relevant features, while relatively fewer labeled features may help us quickly
find these relevant features. When hand crafted features from a domain expert are used (Pradhan et
al., 2004), we expect to gain less from feature feedback, as most of the features will be relevant. On
the other hand, when features are extracted automatically as patterns in the annotation graphs, like
the approach discussed in Chapter 2, feature feedback can help to identify a few relevant features
from the large feature space. In active learning, instances to be labeled are selectively sampled
in each iteration. The benefit from feature feedback will depend on the instances that are used
to train the model in each iteration. In the case of indirect feature feedback through rationales
or direct feature feedback in context, instances selected will also determine what features receive
feedback. Hence, instance selection strategy should a↵ect the benefit from feature feedback. In
text classification, an instance, such as a document, may contain a large amount of text, and even
a simple unigram representation will generate a lot of features. Often only a part of the text is
relevant for the classification task. For example, in movie reviews, often the reviewers talk about
the plot and characters, in addition to providing their opinion about the movie. Often this extra
information is not relevant to the classification task, and bloats the feature space without adding
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many useful features. With feature feedback, we hope to filter out some of this noise and improve
the model. Thus, the amount of irrelevant information in an instance should play an important
role in determining the benefit from feature feedback. We expect to see less of such noise when the
text instance is more concise. For example, a movie review snippet (about a sentence length) tends
to have less irrelevant text than a full movie review (several sentences). In addition to analyzing
document instances with varying amount of noise, we also compare the benefit from feature feedback
for problems at di↵erent instance granularity. Instance granularity for a learning problem can be
defined in terms of the average amount of text in its instances.
Formally, we define a learning problem (P = {D, G, F , L, I, S}) as a tuple of the domain

(D), instance granularity (G), feature representation (F ), amount of labeled data (L), amount
of irrelevant text (I) and instance selection strategy (S); and analyze how benefit from feature
feedback varies with these characteristics. The benefit from feature feedback will also depend
on how the feedback is solicited from the user, and how it is incorporated back into the model.
Independent of these factors, we estimate the maximum benefit from feature feedback, and analyze
how it varies across problems. Thus, our analysis is not specific to any particular approach for
seeking and incorporating feature feedback. We also study measures proposed in the literature and
propose some new ones for categorizing learning problems, and evaluate their correlation with the
maximum benefit from feature feedback. We present this analysis for two sentiment classification
tasks with di↵erent instance granularity, and a webpage category classification task.
For the remaining chapter, we first discuss measures for categorizing learning problems and how

we estimate the maximum benefit from feature feedback. We then discuss our experimental setup
and analysis, as presented in (Arora and Nyberg, 2011), followed by the related work, conclusions
and suggestions for the future work.

5.1 Measures for Categorizing Learning Problems

There has been little work in the literature on categorizing learning problems and analyzing how
the benefit from feature feedback varies with them. To the best of our knowledge there is only one
work in this area by Raghavan et al. (2007). They categorize problems in terms of their feature
complexity. Feature complexity is defined in terms of the minimum number of features required to
learn a good classifier (close to the maximum performance). If the concept can be described by a
weighted combination of a few well-selected features, it is considered to be of low complexity.
In this estimate of complexity, an assumption is made that the best performance is achieved

when the learner has access to all available features, and not for any subset of the features. This is
a reasonable assumption for text classification problems with robust learners like SVMs, together
with appropriate regularization and/or su�cient training data. It is also assumed that there is
ample amount of training data available to achieve an acceptable level of performance (of above
75% Maximum F1) using a linear SVM.
Evaluating all possible combinations of features to determine the minimum number of features

required to achieve close to the best performance can be computationally very expensive. Instead,
the feature complexity is estimated using an intelligent ranking of the features. This ranking is
based on the discriminative ability of the features, determined using a large amount of labeled
data (referred to as oracle), and a feature selection criterion such as Information Gain (Rijsbergen,
1979).
It is intuitive that the rate of learning, i.e. the rate at which the performance improves as we

add more features to the model is also associated with the problem complexity. Raghavan et al.
(2007) define another feature complexity measure called the feature learning convergence profile
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(pfl) as the normalized area under the feature learning curve (performance vs. log of the number
of features (t)), given by:

pfl =

Plog2N
t=1 F1(M, 2t)

log2N ⇥ F1(M,N)
(5.1)

where F1(M, 2t) is the F1 score on the test data, when using all M instances for training, with top
ranked 2t features. F1(M,N) is the F1 score when using all N features. The feature learning curve
is plotted using the performance of the classifier with k top-ranked features (based on information
gain score from the oracle), at exponentially increasing intervals of k to emphasize the relative
increase in the feature space size1. The three feature complexity measures proposed by Raghavan
et al. (2007) are the following: 1) Feature size complexity (Nf ): Logarithm (base 2) of the number of
features needed to achieve 95% of the best performance (when all instances are available), 2) Feature
profile complexity (Fpc), given by (Fpc = 1 � pfl), where pfl is the feature learning convergence
profile (Equation 5.1), and 3) Combined feature complexity (Cf ) , Cf = Fpc ⇤ nf , which combines
both the learning profile and the number of features required.
The feature complexity measures discussed above assume that we have a large amount of labeled

data already available. Hence, these measures cannot be applied to new annotation tasks where
labeled data does not exist. Thus, these measures are good for understanding when feature feedback
helps, but not for predicting if feature feedback will be helpful for a new annotation task for which
we are actively collecting annotations. We suggest some measures that do not assume a large
amount of labeled data. The benefit from feature feedback at any given point in learning will
depend on the uncertainty of the current model on its predictions, since it suggests uncertainty on
the features, and hence the scope for benefit from feature feedback. We use the probability of the
predicted label from the model as an estimate of the model’s uncertainty. We evaluate how the
benefit from feature feedback varies with summary statistics such as mean, median and maximum
probability from the model on labels for instances in a held out dataset.

5.2 Estimating the Maximum Benefit

As mentioned before, the benefit from feature feedback will depend on how the feedback is solicited
and how it is incorporated back into the model. In this work we analyze the expected maximum
benefit to a learning problem from feature feedback, independent of the feedback solicitation and
incorporation approach. Annotating instances with or without feature feedback may incur di↵er-
ent annotation time/cost. It is only fair to compare di↵erent annotation strategies at the same
annotation cost. Raghavan et al. (2006) found that on average labeling an instance takes the same
amount of time as direct feedback on 5 features. Zaidan et al. (2007) found that on average it
takes twice as much time to annotate an instance with rationales than to annotate one without
rationales. In our analysis, we focus on feedback on features in context of the instance, i.e., indirect
feature feedback through rationales or direct feedback on features that occur in the instance being
labeled. Thus, based on the findings in Zaidan et al. (2007), we assume that on average annotating
an instance with feature feedback takes twice as much time as annotating an instance without
feature feedback. We define a currency for annotation cost as Annotation cost Units (AUs). For an
annotation budget of a AUs, we compare the two annotation strategies of annotating a instances
without feature feedback or a

2 instances with feature feedback.

1Adding 50 features to a total 50 features, will give a significantly higher boost in performance, than adding 50
features to a total of 1000 features.
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In this work, we only focus on using feature feedback as an alternative to the labeled data, i.e.,
to provide evidence about features in terms of their relevance and class association. Thus, the best
feature feedback can do is provide as much evidence about features as evidence from a large amount
of labeled data (oracle). Let F1(k,Nm) be the F1 score of a model trained with features that occur
in m training instances (Nm) and evidence for these features from k instances (k � m). For an
annotation budget of a AUs, we define the maximum improvement in performance with feature
feedback (IPa) as the di↵erence in performance with feature feedback from oracle on a

2 training
instances and performance with a training instances without feature feedback.

IPa = F1(o,Na
2
)� F1(a,Na) (5.2)

where o is the number of instances in the oracle dataset (o >> a). We also compare the two
annotation strategies of instance label with or without feature feedback in terms of the maximum
improvement in the learning rate. For an annotation budget of a AUs, we define the maximum
improvement in learning rate from 0 to a AUs (ILR0�a) as follows.

ILR0�a = pcp
wFF � pcp

woFF (5.3)

where pcpwFF and pcpwoFF are the convergence profiles with and without feature feedback at given
annotation cost. The convergence profile, defined similar to the feature convergence profile in
Equation 5.1, is calculated as follows2.

pcp
wFF =

Plog2
a
2

t=1 F1(o,N2t)

log2
a
2 ⇥ F1(o,Na

2
)

(5.4)

pcp
woFF =

Plog2a
t=2 F1(2t, N2t)

(log2a� 1)⇥ F1(a,Na)
(5.5)

where 2t denotes the training data size in iteration t. We increase the training data size exponen-
tially to emphasize the relative increase, since adding a few labeled instances earlier in learning
would give a significantly more improvement in performance than adding the same number of in-
stances later on. For example, as illustrated in (Raghavan et al., 2007), adding 50 instances to a
total of 50 training instances, will give a significantly higher boost in performance, than adding 50
instances to a total of 1000 training instances.
In the literature (Raghavan et al., 2007), the benefit from feature feedback is evaluated only

in terms of the gain in learning speed. However, the learning rate does not tell us how much
improvement we get in performance at a given stage in learning. In fact, even if at every point in
the learning curve, the performance with feature feedback is lower than the performance without
feature feedback, the rate of convergence to the corresponding maximum performance may still be
higher, when using feature feedback. Thus, in this work, in addition to evaluating the improvement
in the learning speed, we also evaluate the improvement in the absolute performance, at any given
point in learning.

5.3 Experiments and Results

In this section, we describe our experimental setup, followed by the results.

2(log2a � 1) in Eq. 5.5 is because for the same annotation cost, we start with two instances when not seeking
rationales (log22 = 1), and one instance when seeking rationales (log21 = 0).
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5.3.1 Data and Experimental Setup

In this set of experiments, we analyze three datasets: 1) Movie reviews with rationale annotations
by Zaidan et al. (2007), where the task is to classify the sentiment (positive/negative) of a review,
2) Movie review snippets from Rotten Tomatoes (Pang and Lee, 2005), and 3) WebKB dataset
with the task of classifying whether or not a webpage is a faculty member’s homepage.
As mentioned before, we formally define a learning problem in terms of its domain, instance

granularity, feature representation, amount of labeled data, amount of irrelevant text, and instance
selection strategy. Table 5.1 presents these variables and their values in our experiments. We
make a distinction for instance granularity based on whether an instance in a learning problem is a
document (several sentences) or a single sentence. The labeled data is composed of instances and
their class labels, with or without feature feedback. As discussed in Section 5.2, we assume that
annotating an instance with feature feedback takes on average twice as much time as annotating
an instance without feature feedback, based on the findings in prior work (Zaidan et al., 2007).
We measure the labeled data observed by the model so far in terms of the number of annotation
cost units spent, which may mean di↵erent number of labeled instances based on the annotation
strategy (with or without feature feedback). We use two feature configurations of “unigram only”
and “unigram+dependency triples”. The unigram and dependency annotations are derived from
the Stanford Dependency Parser (Klein and Manning, 2003).
Rationales, as defined by Zaidan et al. (2007), are spans of text in a review that convey the senti-

ment of the reviewer. Hence, they are the parts of the document most relevant for the classification
task. In order to vary the amount of irrelevant text in an instance, we vary the amount of text
(measured in terms of the number of characters) around the rationales in an instance. We call this
the slack around rationales. When using the rationales with or without the slack, only features
that overlap with the rationales (and the slack) are used to represent an instance. 1 slack means
all the text in an instance is used for feature representation, like in the original document. Since
we only have rationales for the movie review documents, we only studied the e↵ect of varying the
amount of irrelevant text on this dataset.

Variable Possible Values

Domain (D) {Movie Review classification (MR), Webpage classifi-
cation (WebKB)}

Instance Granularity (G) {document (doc), sentence (sent)}
Feature Space (F ) {unigram only (u), unigram+dependency (u+d)}
Labeled Data (#AUs) (L) {64, 128, 256, 512, 1024}
Irrelevant Text (I) {0, 200, 400, 600, 1 }
Instance Selection Strategy (S)) {deterministic (deter), uncertainty (uncert)}

Table 5.1: Experiment space for analysis of learning problems (P = {D,G,F, L, I, S})

For all our experiments, we used Support Vector Machines (SVMs) with linear kernel for learning
(libSVM (Chang and Lin, 2001) in Minorthird (Cohen, 2004)). For identifying the discriminative
features for computing the feature complexity measures, we used the information gain score. For
all datasets we used 1800 total instances with equal number of positive and negative instances.
We held out 10% of the data for estimating the model’s uncertainty, as explained in Section 5.1.
The results we present are averaged over 10 cross validation folds on the remaining 90% of the
data (1620 instances). For cross validation fold, one fold is used for testing (162 instances), and
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all of the remaining 1458 instances are used as the ‘oracle’ for calculating the feature complexity
measures and estimating the maximum benefit from feature feedback as discussed in Sections 5.1
and 5.2 respectively. The training data size is varied from 64 to 1024 instances (from the total of
1458 instances for training in a fold), based on the annotation cost budget. Instances with their
label are added to the training set either in the original order they existed in the dataset, i.e.
no selective sampling (deterministic), or in the decreasing order of current model’s uncertainty on
them. Uncertainty sampling in SVMs (Tong and Koller, 2000) selects the instances closest to the
decision hyperplane, since the model is expected to be most uncertain about these instances. In
each slice of the data, we ensured that there is an equal distribution of the positive and negative
class. SVMs do not yield a probabilistic output, but a decision hyperplane. We use the common
practice of fitting a sigmoid curve to the decision values from SVMs (distance from the decision
hyperplane), to estimate the probability of the predicted class (Platt, 1999).

5.3.2 Results and Discussion

To determine the e↵ect of various factors on benefit from feature feedback, we did an ANOVA
analysis with Generalized Linear Model, using a 95% confidence interval. The top part of Table 5.2
shows the overall average F1 score for the two annotation strategies. As can be seen, on average
with feature feedback, we get a significant improvement in performance.
Next we analyze the e↵ect of various problem characteristics discussed above, on benefit from

feature feedback, measured in terms of the improvement in performance (IP ) at a given annotation
cost and the improvement in learning rate (ILR). As discussed in Section 5.2, the improvement
in learning rate with feature feedback is calculated by comparing the learning profile for the two
annotation strategies with increasing amount of labeled data, up to a maximum annotation cost of
1024 AUs.
As can be seen from the second part of Table 5.2, most of the factors have a significant e↵ect on

the benefit from feature feedback. The benefit is significantly higher for the webpage classification
task than the sentiment classification task. We found that the average feature complexity for the
webpage classification task (Nf = 3.07) is lower than the average feature complexity for the senti-
ment classification task (Nf = 5.18), for 1024 training examples. Lower feature complexity suggests
that the webpage classification concept can be expressed with a few keywords such as professor,
faculty, etc., and with feature feedback we can quickly identify these features. Sentiment on the
other hand can be expressed in a variety of ways, which explains the higher feature complexity.
The benefit is more for document granularity than sentence granularity, which is intuitive as

the feature space will be substantially larger for documents, and we expect to gain more from the
user’s feedback on which features are important. This di↵erence is significant for the improvement
in the learning rate and marginally significant for the improvement in performance. Note that here
we are comparing all documents (with or without rationale slack, and from both domains) and
sentences. However, documents with low rationale slack should have a similar amount of noise as
a sentence. Also, a significant di↵erence between the domains suggests that documents in WebKB
domain might be quite di↵erent from those in Movie Review domain. This may explain the marginal
significant di↵erence between absolute improvement in performance for documents and sentences.
To understand the e↵ect of granularity alone, we compared the benefit from feature feedback for
documents (without removing any noise, i.e. 1 slack) and sentences, in movie review domain
only. However, we found that this di↵erence is not significant. Thus, contrary to our intuition,
sentences and documents seem to benefit equally from feature feedback, when measured in terms
of the absolute improvement in performance.
The benefit is more when the feature space is larger and more diverse, i.e., when dependency
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features are used in addition to the unigram features. We found that on average adding dependency
features to unigram features increases the feature space by approximately 10 times. With larger
feature space, feature feedback can help to identify a few relevant features. As can also be seen,
feature feedback is more helpful when there is more irrelevant text, i.e., there is noise that feature
feedback can help to filter out. Unlike the improvement in performance, the improvement in
learning rate does not decrease monotonically as the amount of rationale slack decreases. This
supports our belief that improvement in performance does not imply improvement in the learning
rate and vice versa. We saw a similar result when comparing the benefit from feature feedback at
di↵erent instance granularities. The di↵erence in the improvement in learning rate for problems
with di↵erent granularity was statistically significant. However, the di↵erence in the improvement
in performance at given annotation cost was not significant. Thus, both metrics should be used
when evaluating the benefit from feature feedback.
We also observe that when training instances are selectively sampled as the most uncertain

instances, we gain more from feature feedback than without selective sampling. This is intuitive,
since the instances the model is most uncertain about are likely to contain features it is uncertain
about, and hence the model should benefit more from feedback on features in these instances.
Next we evaluate how well the measures for categorizing learning problem discussed in Section
5.1 correlate with the improvement in performance and improvement in learning rate with feature
feedback.

V ar. V alues AvgF1 Group

Strat.
wFF 78.2 A
woFF 68.2 B

V ar. V alues AvgIP GrpIP AvgILR GrpILR

D
WebKB 11.9 A 0.32 A
MR 8.0 B 0.20 B

G
Doc 10.9 A 0.30 A
Sent 9.0 A 0.22 B

F
u+d 12.1 A 0.30 A
u 7.8 B 0.22 B

I

1 12.8 A 0.34 A
600 11.2 A B 0.23 B
400 11.1 A B 0.26 A B
200 9.8 B 0.26 A B
0 4.8 C 0.21 B

S
Uncer. 12.7 A 0.32 A
Deter. 7.1 B 0.20 B

Table 5.2: E↵ect of variables defined in Table 5.1 on the maximum benefit from feature feedback.
AvgIP is the average (over 10 folds) increase in performance (F1) and AvgILR is the average increase
in the learning rate. Di↵erent letters in GrpIP and GrpILR indicate significantly di↵erent results.

For a given problem with an annotation cost budget of a AUs, we calculate the benefit from
feature feedback by comparing the performance with feature feedback on a

2 instances and the
performance without feature feedback on a instances, as described in Section 5.2. The feature
complexity measures are calculated using a

2 instances, since it should be the characteristics of these
a
2 training instances that determine whether we would benefit from feature feedback on these a

2
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instances, or from labeling new a
2 instances. As can be seen from Table 5.3, the correlation of feature

complexity measures with both measures of benefit from feature feedback, is strong, negative and
significant. This suggests that problems with low feature complexity, i.e., concepts that can be
expressed with a few well-selected features, benefit more from feature feedback.
We expect the benefit from feature feedback to decrease as the amount of labeled data increases.

We found a significant negative correlation (�0.574) between annotation budget (number of AUs),
and the improvement in performance with feature feedback. However, note that this correlation
is not very strong, which supports our belief that factors other than the amount of labeled data
a↵ect the benefit from feature feedback.

Measure R(IP ) R(ILR)

Nf -0.625 -0.615
Fpc -0.575 -0.735
Cf -0.603 -0.629

Table 5.3: Correlation coe�cient (R) for feature size complexity (Nf ), feature profile complexity
(Fpc) and combined feature complexity (Cf ) with improvement in performance (IP ) and improve-
ment in learning rate (ILR). All results are statistically significant (p < 0.05)

As mentioned before, the feature complexity measures from (Raghavan et al., 2007) require an
‘oracle’, simulated using a large amount of labeled data, which is not available a priori for new
annotation tasks. Thus, these measures are good for understanding why feature feedback helps more
for certain learning problems, and not so much for the others. However, these measures cannot
be used for predicting whether and how much benefit there would be from feature feedback, for a
new annotation task. In Section 5.1, we proposed a simple measure based on model’s uncertainty,
that does not require an oracle. We calculate the mean, maximum and median of the probability
of the predicted class from the learned model, for instances in the held out dataset. We found a
significant but low negative correlation of these measures with the improvement in performance
with feature feedback (maxProb = �0.384, meanProb = �0.256, medianProb = �0.242). The
low correlation here may seem counterintuitive. However, note that when the training data is very
small, the model might be quite certain about its predictions, even when it is wrong, and feature
feedback may help by correcting the model’s beliefs. We observed that these probability measures
have only a medium positive correlation (around 0.5) with training datasize. Also, the held out
dataset we used may not be representative of the whole set, and using a larger dataset may give us
a more accurate estimate of the model’s uncertainty.

5.4 Related Work

There is little work in the literature that analyzes how the benefit from feature feedback varies
across learning problems. To the best of our knowledge there is only one work in this area by
Raghavan et al. (2007). They categorize learning problems in terms of their feature complexity, as
discussed in Section 5.1. In order to evaluate the benefit from feature feedback, Raghavan et al.
(2007) use their tandem learning approach of interleaving instance and feature feedback (Raghavan
et al., 2006), referred to as interactive feature selection (ifs). The features are labeled as ‘relevant’
(feature discriminates well among the classes), or ‘not-relevant/don’t know’. The labeled features
are incorporated into learning by scaling the value of the relevant features by a constant factor in
all instances. The benefit from feature feedback is measured in terms of the gain in the learning
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speed. The learning speed measures the rate of performance improvement with increasing amount
of supervision. It is defined in terms of the convergence profile similar to the feature learning
convergence profile in Equation 5.1, except in terms of the number of labeled units instead of the
number of features. A labeled unit is either a labeled instance or an equivalent set of labeled
features, with the same annotation cost. The benefit from feature feedback is then measured as
the di↵erence in the convergence profile with interactive feature selection (pifs) and with labeled
instances only (pal).
Raghavan et al. (2007) analysed 9 corpora and 358 binary classification tasks. Most of these

corpora, such as Reuters (Lewis, 1995), 20-newsgroup (Lang, 1995), etc., have topic-based category
labels. They observed a negative correlation (r = �0.65) between the benefit from feature feedback
and combined feature complexity measure (Cf ), described in Section 5.1. That is, feature feedback
accelerates active learning by an amount that is inversely proportional to the feature complexity of
the problem. In other words, if a concept can be expressed using a few well-selected features from
a large feature space, we stand to benefit more from feature feedback, since a few labeled features
can provide this information. On the other hand, if learning a concept requires all or most of the
features in the feature space, there is little knowledge that feature feedback can provide.
Most of the datasets analyzed by Raghavan et al. (2007) were topic classification datasets. They

found that the webpage classification task among all has low feature complexity, and benefited
the most from feature feedback. We presented our results on this task, and a new domain of
sentiment classification. Raghavan et al. (2007) only varied the domain among di↵erent problems
they analyzed, i.e, only the variable D in our problem definition (P = {D,G, F, L, I, S}). However,
we found that other characteristics such as feature representation, amount of labeled data, amount
of irrelevant text and instance selection strategy, have a significant e↵ect on the maximum benefit
from feature feedback. We applied the feature complexity measures proposed in (Raghavan et al.,
2007) to problems that di↵er in these characteristics, in addition to the domain. In agreement with
their results, we found that the feature complexity measures have a strong negative correlation
with the benefit from feature feedback.
Analysis in (Raghavan et al., 2007) is specific to their approach for incorporating feature feedback

into the model, which may not work well for all domains and datasets, as also mentioned in their
work (Section 6.1 in (Raghavan et al., 2007)). It is not clear how their results can be extended to
alternate methods for seeking and incorporating feature feedback. Thus, in this work, we analyzed
how the expected maximum benefit from feature feedback varies across learning problems.
Raghavan et al. (2007) analyze benefit from feature feedback at a fixed training data size of 42

labeled units. However, the di↵erence between learning problems may vary with the amount of
labeled data. Some problems may benefit significantly from feature feedback even at relatively
larger amount of labeled data. On the other hand, with very large training set, the benefit from
feature feedback can be expected to be small and not significant for all problems. Thus, we evaluated
the benefit from feature feedback at di↵erent amount of labeled data ({64, 128, 256, 512, 1024}).
For all classification tasks, Raghavan et al. (2007) used a simple and fixed feature space, contain-

ing only unigram features (n-gram features were added where it seemed to improve performance).
In this work, we also evaluated the benefit from feature feedback for features extracted from the
dependency parse trees, in addition to the unigram features.
Raghavan et al. (2007) evaluate the benefit from feature feedback in terms of the gain in learning

speed. However, as mentioned before, the learning rate does not tell us how much improvement we
get in performance at a given stage in learning. In fact, even if at every point in the learning curve,
the performance with feature feedback is lower than the performance without feature feedback, the
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rate of convergence to the corresponding maximum performance may still be higher, when using
feature feedback. Thus, in this work, in addition to evaluating the improvement in the learning
speed with feature feedback, we also evaluated the improvement in the absolute performance at
several points in the learning curve.

5.5 Summary and Future Work

In this work, we presented an analysis of how the maximum benefit from feature feedback varies
across learning problems. The maximum benefit is estimated using an oracle, simulated using a
large amount of labeled data. We categorize a learning problem in terms of its domain, instance
granularity, feature representation, amount of labeled data, amount of irrelevant text, and instance
selection strategy. We show that most of these characteristics have a significant e↵ect on benefit
from feature feedback, measured in terms of the absolute improvement in performance, and im-
provement in the learning rate. The benefit from feature feedback is more for a simpler task of
webpage classification, than sentiment classification. The benefit is more when structured features
are used in addition to simple unigram features. Also, the benefit is more when there is more
irrelevant text in the instances, and when instances for annotation are selected based on model’s
uncertainty.
We evaluate the feature complexity measures proposed by Raghavan et al. (2007) on problems

that vary in the above characteristics. We find a significant negative correlation of their measures
with the two measures of maximum benefit from feature feedback, proposed in this work. Their
measures require an oracle, which is not available for new annotation tasks. We suggest simple
measures based on model’s uncertainty, which do not require an oracle. We find a significant but low
correlation of these measures with the maximum benefit from feature feedback. It is intuitive that
a metric that measures the uncertainty of the model on parameter estimates should also correlate
strongly with the benefit from feature feedback. Variance in parameter estimates is one measure of
model’s uncertainty on them. The Bootstrap or Jacknife method (Efron and Tibshirani, 1994) of
resampling from the training data is one way of estimating the variance in parameter estimates. In
Chapter 3, we proposed a V OI based active selection criteria based on the expected reduction in
model’s misclassification risk with indirect feature feedback from rationales and the expected cost
for annotating rationales, to automatically determine when it is beneficial to ask for rationales.
So far only a linear relationship of the measures for categorizing learning problems with benefit

from feature feedback has been considered. However, some of these relationships may not be linear
or a combination of several measures together may be stronger indicators of the benefit from feature
feedback. A future direction is to consider these alternate relationships.
We only considered one selective sampling strategy based on model’s uncertainty which we found

to provide more benefit from feature feedback than deterministic sampling. It will be interesting
to study how the benefit from feature feedback varies with other selective sampling strategies. For
example, density-based sampling (Donmez and Carbonell, 2008a) selects the instances that are
representative of a cluster of similar instances, and may facilitate more e↵ective feedback on a
diverse set of features. Other alternatives to study are random instance selection and V OI based
instance selection proposed in Chapter 3.
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Chapter 6

Conclusions and Future Work

In this chapter, we summarize the main contributions of the thesis, and suggest directions for the
future work.

6.1 Contributions of the Thesis

There are several costs associated with supervised annotation learning, such as the cost of obtaining
unlabeled data, cost of feature engineering, the cost of expert annotation, etc. In this thesis, our
goal is to reduce the total cost of supervised annotation learning. Specifically, we focus on reducing
the cost of feature engineering and the total annotation cost for the desired performance. The novel
contributions of this thesis, discussed in previous chapters, are as follows:

• Generalized Automatic Feature Extraction: In supervised annotation learning, features
based on prior linguistic annotations, such as parts of speech, dependency relations, etc., have
been shown to improve performance beyond bag-of-words features (Gildea and Jurafsky, 2000;
Pradhan et al., 2004; GuoDong et al., 2005; Wilson et al., 2004; Arora et al., 2009a; Gamon,
2004; Joshi and Rosé, 2009). Often these features are hand-crafted by the domain experts,
who are expensive to hire, and the process has to be repeated for new domains and tasks.
In Chapter 2, we proposed a generic annotation graph representation for instances based on
the prior annotations, and an automatic approach for extracting features as patterns from
the annotation graphs. For a sentiment classification task and a protein-protein interaction
extraction task, we showed that automatically extracted structured features using the proposed
approach provide a significant improvement in performance over the bag-of-words features.

• Indirect Feature Feedback Through Rationales: To reduce the total annotation cost for
the desired performance, alternate forms of feedback from the annotator beyond instance’s label
can be used, for example, feedback on features. Direct feedback on features (Godbole et al.,
2004; Raghavan and Allan, 2007; Druck et al., 2009; Melville and Sindhwani, 2009) is limited
to simple features, such as words. Instead, we seek indirect feedback on features by asking
the annotator to indicate parts of an instance that are rationales, i.e. key indicators, for the
instance’s label. The additional cost for annotating rationales may vary with the annotation
task, annotator, user interface design, etc. In Chapter 3, for a sentiment classification task and
an aviation incident cause identification task, we showed that rationales provide a significant
improvement in performance for a given annotation cost, when the cost for annotating them
is small (up to 50% additional cost).
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• Cost-sensitive Active Learning Framework: In this thesis, we studied two annotation
strategies, where the annotator provides instance’s label only (LO), or instance’s label together
with rationales (LR). The annotation cost may vary across instances and strategies. Each
instance (with or without rationales) may provide di↵erent incremental value to the learning
algorithm. In Chapter 3, we proposed a cost-sensitive active learning approach that selects
an instance for a given strategy. For a sentiment classification task and an aviation incident
cause identification task, we showed that this strategy sensitive instance selection for seeking
rationales performs better than random or active instance selection independent of the strategy.
When rationales are expensive to annotate, a fixed strategy of rationales for all instances (LR),
performs worse than rationales for none (LO). We use the proposed approach to selectively
ask for rationales by jointly selecting an instance and annotation strategy in each iteration.
While the best fixed strategy among LO and LR varies with the cost for annotating rationales,
we showed that cost-sensitive joint selection of instance and strategy performs as well as or
better than the best fixed strategy, for several additional costs for annotating rationales. It also
performs better than cost-sensitive and cost-insensitive instance selection for a fixed annotation
strategy, and cost-insensitive joint selection of instance and strategy.

• Annotation Cost Estimation: In order to directly minimize the total annotation cost for
the desired performance, an estimate of the annotation cost can be used in the active selection
criteria. Annotation cost may vary with the instance, annotator and annotation strategy. In
Chapter 3, for cost-sensitive joint selection of instance and strategy, we used a simple estimate
of annotation cost based on the instance length and annotation strategy. However, the an-
notation cost may also depend on other factors, such as the number of rationales annotated,
annotator characteristics in a multi-annotator scenario, etc. In Chapter 4, we proposed a
supervised regression model for estimating the annotation cost in a multi-annotator scenario
with indirect feedback on features through rationales. For data collected from multiple anno-
tators for a sentiment classification task, we showed that an annotation cost estimate from a
model based on the characteristics of an instance, annotation task and annotator outperforms
a simpler estimate based on any one of them. In an active learning scenario, this supervised
regression model can be trained on the data annotated so far and can be updated with the
new data collected in each iteration.

• Assessment of the Benefit from Feature Feedback: The benefit from feature feedback
(direct or indirect) may vary across learning problems. In Chapter 5, we formally defined a
learning problem in terms of the domain, instance granularity, feature representation, amount
of labeled data, amount of irrelevant text, and the instance selection strategy. For two sen-
timent classification tasks with di↵erent instance granularity and a webpage category classi-
fication task, we showed that all characteristics except instance granularity have a significant
e↵ect on the maximum benefit from feature feedback. The benefit from feature feedback is
more when there is more irrelevant text in the instances, the feature space is large, and when
instances are selected as those the model is uncertain about, compared to a fixed order of
instances. Instances at di↵erent granularity (document vs. sentences) seem to benefit equally
from feature feedback. We also showed that the measures for quantifying the feature com-
plexity of learning problems (Raghavan et al., 2007) correlate strongly and negatively with the
expected maximum benefit from feature feedback. That is, learning problems with low feature
complexity benefit more from feature feedback, since a few well selected features are able to
capture the target concept.
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Figure 1.1 in Chapter 1 presented a traditional supervised learning scenario and the associated
costs. As mentioned before, in this thesis, our goal is to reduce the total cost of supervised an-
notation learning. Specifically, we focus on reducing the cost of feature engineering, and the total
annotation cost for the desired performance. Figure 6.1 presents an improved interactive learning
framework with reduced total costs, due to the proposed enhancements in this thesis. In the tra-
ditional approach, an expert defines complex linguistic features by hand and/or through extensive
experimentation. In the proposed approach, we reduce this cost by automatically deriving these
features from prior linguistic annotations (Steps 3.1 to 3.3). The expert specifies the annotation
graph representation for instances based on the prior annotations suitable for the domain. The
features are extracted as frequent subgraphs from the annotation graphs for the instances.
In traditional supervised annotation learning, there is a single annotation strategy of providing

instance’s label only. In this thesis, we propose an alternate strategy where in addition to providing
the instance’s label, the annotator indicates parts of an instance that are rationales for the instance’s
label. In order to reduce the total annotation cost for the desired performance, instance and strategy
for next annotation are actively selected in each iteration. The annotated instance is added to the
pool of labeled data, and the classifier is updated. Steps 4 to 6 are repeated until the desired
performance is reached, or we exhaust our budget.

6.2 Future Work

There are several directions in which the work in this thesis can be extended. We discuss some of
them here.

6.2.1 Interactive Learning System

In this thesis, we proposed several ways to reduce the total cost for supervised annotation learn-
ing. Figure 6.1, discussed above, presents the workflow of an interactive learning system. In this
thesis, we have developed several components for such an interactive learning system. Building a
functional interactive learning system would require integrating these components together. Figure
6.2, presents a sequence diagram that suggests an interaction protocol between components of an
Interactive Annotation Learning (IAL) System. The functions in this sequence diagram would be
part of the abstract interfaces for these components. The four main components are the following:

1. Graphical User Interface (GUI): The user interface for seeking annotations.

2. Cost Sensitive Multi-Strategy Active Learner (CSMSAL): Active learner for selecting the in-
stance and strategy to be annotated in each iteration.

3. Annotation Cost Estimator (ACE): Annotation cost estimator for a given instance, strategy
and annotator.

4. DBManager: Database manager for storing and retrieving the data and annotations from the
database.

In each iteration, the GUI queries CSMSAL for the next annotation task for a given annotator.
CSMSAL retrieves the unlabeled data from the database, and queries ACE for an annotation cost
estimate for all instances and strategies for the given annotator. CSMSAL then calculates V OI
and selects the best instance and strategy pair for the given annotator. The GUI fetches the
selected instance and presents it to the annotator for annotation with the selected strategy. When
done annotating the instance, the annotator triggers a save action. The GUI writes the annotated
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Figure 6.1: Interactive annotation learning with reduced total cost for supervised learning.
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instance and annotation time information to the database. It updates the total budget spent, and
triggers CSMSAL and ACE to update their models with information about the annotated instance.
These steps are repeated until we exhaust our annotation budget.

:GUI :CSMSAL :ACE :DBManager

(i,j) = GetNextAnnotationTask(A_k)
GetNextAnnotationTask(A_k)*

AC[] = GetAnnotationCostPredictions(X, A_k)

ComputeVOIAnd
SelectBest()*

SaveAnnotations(X'_i, A_k)* WriteAnnotationsAndAnnTime(X'_i,A_k,S_j,AT)*

X_i =FetchInstance(i)*

TriggerUpdate(i,A_k,S_j)

TriggerUpdate(i,A_k,S_j)

X'_i = FetchAnnotations(i,A_k,S_j)

(X'_i, AT) = 
FetchAnnotationsAndAnn
otationTime(i,A_k,S_j)

UpdateModel()*

UpdateModel()*

X = GetUnlabeledData()

DisplayAnnotationTask(X_i,s_j)*

loop! [TotalCost < Budget]!

UpdateTotalCost(AT)

Figure 6.2: Sequence Diagram for an Interactive Annotation Learning (IAL) System. GUI: Graphi-
cal User Interface, CSMSAL: Cost Sensitive Multi-Strategy Active Learner, ACE: Annotation Cost
Estimator, DBManager: Database Manager. A k: Annotator, X i: Selected instance, S j: Selected
strategy, X: Unlabeled data, AC[]: Annotation cost estimates for instance and strategy pairs for a
given annotator, X’ i: Annotated instance, AT: Annotation Time. Functions marked with an as-
terisk are already implemented in the current implementations of the abstract interfaces for these
components.

For this thesis, we have implemented the four abstract interfaces in Figure 6.2 in Java. For a
practical interactive learning system, it is important to use an incremental algorithm to update
the classifier in each iteration. A batch learning algorithm, used in traditional supervised learning
framework, would train a new model from scratch in each iteration. This can be very slow in practice
for an interactive learning system. Additionally, the proposed V OI approach for active selection of
instance and strategy requires estimating the reduction in risk by learning and unlearning for each
candidate instance and strategy, which can be computationally very expensive with a batch learning
algorithm. We have implemented an incremental and decremental SVM algorithm (Cauwenberghs
and Poggio, 2000) in Java, based on a C++ implementation by Vijayanarasimhan and Grauman
(2011). This can be integrated with our user interface in Java (used in Chapter 4 for data collection)
and annotation cost estimator (ACE) in Java (developed for experiments in Chapter 4), to build
an interactive learning system. We also have a database manager in Java, with which the user
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interface communicates to fetch and store data and annotations.
In Figure 6.2, functions marked with an asterisk are already implemented in the current imple-

mentations of the abstract interfaces. The GUI does not currently display the annotation strategy
to use, although this can be easily added. CSMSAL does not currently interact with the DBMan-
ager to fetch the data. It instead loads the data in memory for active selection. In the current
implementation, CSMSAL estimates the annotation cost for a given instance and strategy itself,
and uses a simple estimate described in Chapter 3. ACE estimates the annotation cost for a given
instance and annotator for a fixed strategy of LR (as described in Chapter 4). It uses the number
of rationales as a feature. An estimate for the number of rationales can be used from the R vs. NR
classifier in CSMSAL (for LO strategy we would use 0 rationales). ACE currently uses a batch re-
gression (linear regression or SVM regression) model. We may want to use an incremental learning
algorithm (e.g. http://onlinesvr.altervista.org/) for a faster model update. Communication
between CSMSAL and DBManager and ACE and DBManager would also need to be added. To
build an end-to-end interactive learning system from current implementations, we anticipate that
it would take about 2-3 months.
One of the challenges for a real-time interactive learning system is the amount of time the user

must wait while the model is updated and the next instance (and strategy) is selected. As mentioned
in Chapter 3, with our current implementation of the V OI framework, it takes on average 44 seconds
to select an instance and strategy for the movie review dataset. For the aviation safety reports data,
which is considerably smaller, it takes only 0.1 seconds. The time for active selection is less in the
initial iterations, since model updates are faster when the model is simpler. As the model becomes
more complex, the model updates require more time. Annotator wait-time should be taken into
account when calculating the annotation cost savings with an interactive learning system.
One way to reduce the time for instance selection is to parallelize the algorithms for model

update and candidate scoring procedures. There has been some recent work in parallelizing machine
learning algorithms, for example, GraphLab (Low et al., 2010). Another alternative is to score only
a subset of instances in each iteration, like in our work and other work in the literature (Roy and
Mccallum, 2001; Haertel et al., 2010). However, if the candidate set is too small, then we may not
benefit much from active learning. Another approach is to allow some staleness in scores for some
candidates (Haertel et al., 2010). In the work so far, the active learner selects a single annotation
task (instance and strategy) in each iteration. To reduce the overall wait time, we may consider
selecting a small batch of annotation tasks in each iteration. However, this would require evaluating
all subsets of candidates of a given batch size, which can be computationally very expensive. A
simple heuristic is to select the top N ranked candidates from a single ranking of the candidates
in each iteration, although this approach is sub-optimal. There has been work in the literature on
selecting optimal batch of queries in each iteration, for example, (Vijayanarasimhan et al., 2010).

6.2.2 Multiple Strategies with Di↵erent Number of Rationales

In this thesis, we only considered the two annotation strategies of providing instance’s label only and
instance’s label with almost all rationales. In Chapter 3, we presented an initial investigation of the
e↵ect of number of rationales on the model’s performance. There can be at least two ways to ask for
a fixed number of rationales per instance. The annotator can be asked to provide any N rationales
or the top N most important rationales. Considering the any N rationale strategy, we found that
for random instance selection the performance usually improves with more rationales, although
there is no significant benefit from more than 8 rationales per instance As learning progresses,
we found that there is no significant benefit from more than 4 rationales per instance. Thus,
if each additional rationale comes with an extra cost, we may want to ask for no more than 8
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rationales per instance, and as learning progresses, we may want to ask for fewer rationales. The
optimum number of rationales may vary across instances. In Chapter 3, we suggested how the
current V OI framework may be extended to multiple annotation strategies with di↵erent number
of rationales. It is not clear how the annotation cost would vary with N when asked to provide top
N rationales, since the annotator would spend some time ranking the rationales (in their minds)
in the order of importance. However, the annotation cost should increase with more rationales
when asked to provide any N rationales. The cost estimator proposed in Chapter 4 can be used to
estimate the annotation cost for an annotation strategy with any N rationales, since it considers
the number of rationales in annotation cost estimation. As also discussed in Chapter 3, for each
strategy with a fixed number of rationales, we can estimate the utility as the expected reduction
in model’s risk with the given number of rationales. To estimate the expected risk after training
on instance Xi annotated with top N rationales, we may use the top N sub-instances predicted
to be rationales (ranked by the model’s confidence). If instead the annotator is asked to provide
any N rationales, we may estimate the expected risk as the average risk for k random samples
for N rationales from the sub-instances predicted as rationales. As also pointed out in Chapter
3, we would need to modify the current rationale classifier (R vs. NR), used for estimating the
risk for LR strategy, when multiple strategies with a fixed number of rationales are used. With
almost all rationale strategy, the current rationale classifier treats a sub-instance in an instance
not marked as rationale, as not-rationale (NR). However, if all the rationales are not annotated
in an instance, then we cannot treat all remaining sub-instances (not annotated as rationale) as
NR. One approach to address this issue is to use the current model’s belief about which remaining
sub-instances (those that are not marked as rationale) in an instance are likely to be not-rationale
and train the classifier with only those labeled as NR.

6.2.3 Multi-Annotator Scenarios

In Chapter 3, we showed that the proposed approach for joint selection of instance and strategy
performs as well as or better than the best fixed strategy, for several additional costs for annotating
rationales. The di↵erence between the annotation costs for the two strategies (called the rationale
cost factor) may vary across annotators. In this thesis, we focused on selecting the appropriate
annotation task (instance and strategy) for a given annotator, and showed that the proposed active
learning approach is able to select the appropriate instance and strategy pair for an annotator with
a given rationale cost factor. We did not consider a scenario where we may select an annotator
from a pool of annotators with di↵erent characteristics, and a limited budget per annotator. There
are several multi-annotator scenarios with annotator selection to which the current framework can
be extended. We discuss some of these here and suggest how we may extend the current active
learning framework for these scenarios:

1. Reliable annotators with known annotation cost: If all annotators are experts and re-
liable (i.e. provide accurate annotations), and their annotation cost for di↵erent strategies
is known or can be estimated reliably from a small sample of annotated data, then the cur-
rent framework can be applied straightforwardly to a multi-annotator scenario with annotator
selection. The annotation task can be assigned to the annotators in a round robin manner,
selecting the annotator with lowest annotation cost for a given strategy.

2. Annotators with di↵erent reliability: Annotators may have di↵erent expertise and may
not provide accurate annotations. If the annotators are unreliable, we would not want to
use annotations from a single annotator for an instance, as it may not be correct. If each
annotator’s accuracy is > 0.5, i.e. better than random, we can use annotations from multiple
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annotators to determine the final label for an instance as the majority label (Donmez et al.,
2009), since it is unlikely that all annotators will make a labeling mistake at the same time.
Similarly, we may determine the final label (rationale or not) for a sub-instance in an instance
as the majority label based on rationale annotations from the annotators in agreement with the
majority label for the instance. Donmez et al. (2009) propose an approach to identify the most
reliable annotators and only query these selected annotators instead of querying everyone. The
annotator accuracy may not be known beforehand. However, it may be estimated from the
data annotated so far. A simple estimate for annotator’s accuracy is the mean reward, where
an annotator is assigned a reward for each correct answer (when annotator’s label matches the
majority) (Donmez et al., 2009). Estimating the annotator accuracy from the data labeled so
far and using this estimate to select the annotators for future annotation requires balancing
between exploitation of the current best known annotators, and exploration of new annotators
we may be uncertain about. To address this exploration vs. exploitation tradeo↵, Donmez et
al. (2009) use the mean and standard deviation of the rewards received so far to calculate the
upper confidence interval (UI) for the reliability for each annotator, given by:

UI(a) = m(a) + tn�1
↵/2

s(a)p
n

(6.1)

where m(a) and s(a) are the sample mean and standard deviation of the rewards for annotator
a. n is the number of samples observed from a, and tn�1

↵/2 is the critical value for the Student’s

t-distribution with n � 1 degrees of freedom, at ↵/2 confidence level. An annotator has a
high value for the upper confidence interval when the expected reward (the mean value) is
high and/or there is a lot of uncertainty in the reward (when the standard deviation is high).
The uncertainty may be more when we don’t have enough labeled data for this annotator,
i.e., the annotator hasn’t been selected enough times to give a reliable estimate. Selecting an
annotator with a high expected reward performs exploitation, and selecting an annotator with
a high uncertainty performs exploration. Using the upper confidence interval value instead of
the mean as an estimate for the annotator accuracy, allows us to select an annotator with high
expected accuracy, and/or with high variance in his/her estimate.

For the scenario where the annotators may provide rationales in addition to the instance’s
label, we may estimate an annotator’s accuracy only from the labels for instances, or we may
also consider how well their rationales match with the rationales from other annotators.

The probability of obtaining the true label for an instance from an annotator, i.e. annotator
reliability, may also vary across instances, for example, based on the di�culty of an instance
(Whitehill et al., 2009). We may want to take this into account when estimating the annotator
reliability. Annotator accuracy may also vary over time (Donmez et al., 2010). The annotator
may produce more reliable annotations after some experience with the task, or may become
careless due to fatigue after labeling several instances. We may also want to take into account
the e↵ect of time when estimating the annotator accuracy.

In the works discussed above, the set of annotators expected to be most reliable is chosen
in each iteration. An alternative approach is to select a single annotator at a time. In each
iteration, we have a choice between querying another annotator for label for an instance whose
final label we are uncertain about and querying a label for a new instance. This has recently
been explored in the literature (Yan et al., 2012).
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When we have a large pool of annotators, for example, at a crowd sourcing site, we may spend
substantial budget in exploring new annotators, until we have a fair idea about their reliability.
To address this issue, we may pre-select a subset of annotators based on their known reliability
on other tasks they have participated in at the crowd sourcing site, for example, approval
rating of a Turker on Amazon’s Mechanical Turk1.

3. Reliable annotators with di↵erent and unknown cost: Annotation cost may also vary
across annotators. It may be unknown and may not be reliably estimated beforehand from a
small sample of annotated data. In Chapter 4, we proposed a supervised regression model for
estimating the annotation cost in a multi-annotator scenario. This model can be updated as
more data is annotated and the annotation time is collected. If the annotation cost estimator
is trained on the data annotated so far and the annotation cost estimate is used in active
selection of the next annotation task, we face a similar exploration vs. exploitation tradeo↵ as
discussed above for estimating the annotator reliability. A similar idea as above can be applied
to the cost estimate for a strategy and annotator. However, we would use the lower confidence
interval value in this case, since we would like to select the candidate with the lowest cost.
If we use a simple annotation cost estimate as the mean annotation cost for a given strategy
and annotator, then the lower confidence interval can be defined similar to Equation 6.1, as
follows:

LIC(s, a) = m(C(s, a))� tn�1
↵/2

s(C(s, a))p
n

(6.2)

where m(C(s, a)) and s(C(s, a)) are the sample mean and standard deviation of the annotation
cost for a given strategy and annotator. n is the number of samples observed for strategy s
and annotator a. We note that in this simple estimate, the annotation cost does not vary
across instances. We may group the instances into categories, for example, based on the
instance length, to estimate the mean annotation cost for a category of instances. If we
use a supervised regression model to estimate the annotation cost, like in Chapter 4, then
we may use the confidence interval for the predicted values from the regression model2. In
V OI computation, we would use the lower confidence interval value instead of the predicted
annotation cost to select a candidate with low expected annotation cost or one with high
uncertainty in its estimate. Alternatively, we may use an additional utility term in V OI to
consider the uncertainty of the cost estimator, when selecting a candidate for annotation.
Settles (2012) discusses several criteria that have been used for active selection for a regression
model.

6.2.4 User Studies and Experiments

In this thesis, we proposed an alternate annotation strategy of providing rationales in addition to
the instance’s label. We also proposed a cost-sensitive active learning approach that selects the
appropriate instance and strategy pair for a given annotator, user interface and annotation task
with a given additional cost for annotating rationales. For future research in this area, we suggest
the following user studies:

1. Annotation Cost Variance: For a given user interface, we may conduct user studies with
several annotators and for several classification tasks to understand how the additional cost

1https://www.mturk.com/mturk/welcome
2http://www.weibull.com/DOEWeb/confidence_intervals_in_simple_linear_regression.htm
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for rationales (as sub-instances in an instance) varies across annotators and annotation tasks.
Through a pilot user study, we may first evaluate di↵erent user interface actions for annotating
rationales to understand how the cost for annotating rationales can be reduced.

2. Annotation Cost and Number of Rationales: As discussed in Chapter 3, in addition to
the two strategies of no rationales and almost all rationales, there can be other strategies in the
middle that ask the annotator for fewer rationales. As mentioned before, there can be di↵erent
ways to ask the annotators for N rationales per instance. We may ask them to provide any N
rationales or top most important N rationales. As we observed for annotation strategies with
any N rationales, after certain number of rationales there is no additional significant benefit
from more rationales. However, we only compared the performance of di↵erent annotation
strategies for the same annotation cost. The annotation cost would also vary across annotation
strategies. While we can expect the annotation cost to increase with more rationales, when
the annotator is asked to provide any N rationales (i.e. up to a maximum of N rationales), it
is not clear how the annotation cost may vary when we ask the annotator to provide the top
most important N rationales. The annotation cost in this case may not increase linearly with
N and it may not be less than the cost for annotating all rationales. This is because providing
top N rationales requires the annotator to rank the rationales (in their minds) in the order
of importance, which may require more time than providing all rationales. A user study with
multiple annotators is needed to understand how the annotation cost varies across di↵erent
annotation strategies with a fixed number of rationales.

3. User Experiments with IAL: As mentioned before, for a real-time interactive annotation
learning (IAL) system, there are practical concerns such as annotator wait-time while the
system updates the model and selects the next instance. User experiments with an end-to-end
system are needed to evaluate the amount of wait-time and its impact. To evaluate the savings
in annotation time with IAL, user-in-the-loop experiments with multiple annotators should be
conducted for both active and passive annotation task selection.

Note that unless we dictate an order in which the annotator provides instance’s label and ra-
tionales, we cannot obtain the annotation time for multiple annotation strategies from the same
annotator for a given instance. Thus, we may need several annotators with similar characteristics
to provide us annotation time for di↵erent strategies on the same instance. Dictating an order for
annotation, such as providing instance’s label first and then providing rationales, may unnecessarily
increase the annotation time for rationales as it may require the annotator to read an instance more
than once.

6.2.5 Enhancements to Joint Active Selection of Instance and Strategy

In Chapter 3, we proposed a V OI approach to automatically determine when to ask for rationales
based on the expected benefit and cost for annotating rationales. In Chapter 5, we presented an
empirical analysis of how benefit from feature feedback varies across learning problems and what
characteristics of a learning problem have a significant e↵ect on benefit from feature feedback. A
direction for future work would be to use the insights from the analysis in Chapter 5 to improve on
the V OI approach. Knowledge about the characteristics of a learning problem and their association
with the benefit from feature feedback can be used to improve our estimate for expected reduction
in model’s risk with rationales. For example, knowledge about the expected amount of irrelevant
text in an instance can be used as a prior for the R vs. NR (rationale vs. not-rationale) classifier.
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So far, in active learning, we have considered a scenario where we have a pre-defined budget for
learning, and we must use all of it. However, if the performance has reached a plateau for an active
selection approach, we should stop and not spend more annotation budget. On the other hand, if
the performance is still improving when we have exhausted our annotation budget, we may want
to ask for an increase in the annotation budget. The measure for learning rate used in Chapter 5
(based on the area under the learning curve) can be used to determine whether an approach has
reached a plateau or if it is continuing to improve performance.
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claims in online customer reviews. In Proceedings of NAACL-HLT 2009.

[Arora et al.2009b] Shilpa Arora, Eric Nyberg, and Carolyn Penstein Rosé. 2009b. Estimating annotation
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