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Abstract

Humans inherently learn from and interact with multiple views of information, be it various
modalities or languages. So, the expectations from contemporary and 21st-century technol-
ogy are a testimony for the increasing need to model these multiview contexts better. Nat-
ural language generation plays a pivotal role in communicating these contexts in human-
understandable languages. This thesis brings together both of these transformative technolo-
gies to make strides towards a longstanding dream of human-like multiview narrative gener-
ation. The critical challenge is identifying the natural-sounding properties of long-form texts
and modeling them in tandem with visual contexts. This thesis presents anchors for ground-
ing three such properties including content (relevance), structure (coherence), and surface form
realization (expression), and anchors them with relevant visual contexts. These anchors also
provide us with human interpretable handles for controlling these properties. lllustrating the
effectiveness of the anchors for each of the three properties, I present:

Starting with content: In situated multimodal contexts, relevance is the concept of the elements
in one modality being connected to the other modality that makes this context informative
and complementary. I present visual infilling with curriculum learning as a global objective
for content and hierarchically attending over entity skeletons as a local objective for content,
to generate visual stories and procedures. To improve the controllability and transferability in
English and five other languages, I also introduce a dual-stage model with weakly supervised
skeletons and a text-as-side attention mechanism to denoise the content in an image caption.
Moving onto structure: The alignment of description in language to the corresponding visual
inputs is crucial to generate a logical and coherent narrative. I present a scaffolding technique
as a local objective for structure by extracting a layout from vast amounts of unsupervised
text to incorporate structure into cooking recipes generated from images. Finally surface form:
The crux of naturalness to automatic generation comes by incorporating individualized and
personalized ways of expressing the same content. I present alocally guided weakly supervised
model for generating persona-based visual stories and a dual-staged adversarial technique to
generate mixed view language from non-parallel data.

All the above work mainly focuses on static multimodal narratives, and I present a case to
highlight the significance of transitioning to dynamic grounding. I conclude by presenting the
shortcomings of the current approaches in the NLP domain to the grounding problem and offer
recommendations along with executable actions for course correction to bridge this gap and
enable grounding for machines to resemble human communication.
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Introduction

Narration and storytelling emerge as a
natural corollary of innovation.

Free-form narrative intelligence has been a long-standing dream for artificial intelligence. This
uniquely human ability has evolved over generations from cave paintings to novels to digital
media, varying from social media posts to a series of movies. The ancient tradition of humans
using shadows against fire is paralleled to using artificial intelligence techniques evolved from
technology to depict stories. The ability to perceive and express a set of related events in a
coherent narrative is an innate human attribute. With the advent of virtual beings co-existing
and sharing the ecosystem with us, it is time to teach them this skill. This reverberates the ne-
cessity of computational narrative intelligence from traditional standpoints (Schank, 1990; Opt,
1988; Brewer, 1982; Lehnert and Vine, 1987; Lehnert, 1982) to more contemporary approaches
and applications (Ouyang and McKeown, 2015; Murray, 2015; Riedl and Harrison, 2016; Harri-
son and Riedl, 2016; Chaturvedi et al., 2018; Underwood et al.). Narratives represent a shared
cohesive understanding. Hence they are a powerful means to shape our minds and decisions.
These can range from a lawyer’s courtroom argument (Delgado, 1989) to online advertising
that determines the attitude towards a product (Chang, 2009; Ching et al., 2013). Transcending
to the conceptual dream of interacting with our virtual assistants in such narratives can be
very beneficial. Hence, strategizing their functionalities and roles is imperative to maximize
these benefits. Maintaining this overarching goal in mind, we will first see the contributing
factors that make a narrative effective.



Introduction 2

1.1 What makes a narrative compelling ?

Narrative/Multi-sentence Generation: A narrative is a cohesion of more than one sen-
tence in conjunction. Several efforts have been made for single sentence generation like ma-
chine translation, response generation, paraphrasing, etc. While this is essential and practi-
cally exceedingly viable, the same techniques are not effective for multi-sentence or long-form
generation. In this thesis, I mainly focus on long-form generation in the domains of stories and

procedures (or instructions) *.

In this thesis, I work towards three of the critical properties or dimensions to emulate the
competence of humans in generation by artificial agents. They are defined as follows:

« Content: Itisthe quality of the text being closely connected, appropriate and informa-

tive. Thus, it contributes to improving the relevance of the text.

« Structure: Itisthe quality of the text being logical and consistent following a structure.

Thus, it contributes to improving the coherence of the text.

o Surface-form realization: It is the choice of the surface tokens derived from under-
lying representation to generate the actual text. Thus, it contributes to the expression of
the text.

Lord of the Lings
Much that once was s lost e/ﬁ’“ none now- lve who

Installing OS on a brand new computer

First, verify your region and keyboard

remendber it Tt \bggans il the Jorgiug) o/ e reat input. Connect to your (Wireless network.
%&(zgo‘/. Three were : y/()('// lo the é)é/e& anmortal, wisest Select Set up for personal use and
and, fairest of all beings. Seven to the (Dwafodords, \grear click Next. Sign in to Windows. Click
muners and ayy Csimen k()/'//r' mountain halls ...\ Tor within Accept to set up Cortana. Click Yes and
these ripgs was bound the A‘//‘('/{y// and the widl to govern follow the instructions to set up the
cach race. But M{y were all (0/' them deceved, ... the Windows timeline. Choose your privacy
Dark Jord Jawron, forged a master ring, and into this settings and click /Accept. Windows will do
rug fre /}/1///'/'(/ Vz: (Vw(’{fy, tis malice and his: wil to a little more set up and (ERENFOPENTYOUR
domenate all (ﬁ{ One rig o rule them all, desktop.

Content Structure Surface Forms

FIGURE 1.1: Examples of manifestation of content, structure and surface-forms in a story-like
text and instructive text.

Examples of these properties are demonstrated in Figure 1.1 which include snippets from ‘Lord
of the Rings’ and ‘Installing OS on a brand new computer’. While the former is picked up from
a story, the latter is a ‘how-to’ activity. As observed from the figure, the three properties
discussed above are manifested in sufficiently distinct ways to suit the intent and the context
of the narratives. The choice of words contributing to the content are very domain-specific
like ‘Elves’, ‘Dwarf-Lords’ in the story and ‘Wireless’ and ‘Cortana’ on the right. The structural
layout on the left uses ‘it began with the forging’ and concludes at the end. Similarly, on the
right, this is indicated in the form of a step-by-step procedure where it begins with cues like
first’ and finally concludes with the words like ‘then open your’. The tone of the presentation

'Other popularly studied multi-sentence generation include summarization, story generation, etc.,



Introduction 3

or surface form realization has an archaic style with the use of phrases like ‘for none now live’
in the story and instructive or imperative sentences with phrases like ‘choose your privacy’
for how-to texts. Fundamentally, these are the three properties of narratives that we focus on
improving in this thesis.

We carry around our personal assistants such as Siri, Alexa, Google Assistant capable of car-
rying out full-fledged yet independent tasks such as booking flights, reserving appointments
etc., In addition to these current capabilities, these virtual assistants also need to pick up on
the right cues to bring forth the right kind of narratives and present it based on relevance to
an audience from their clairvoyant faculties. The skill of incorporating the aforementioned
narrative properties comes naturally to humans, and we seek to impart it to them. We have
explored the various constituency properties that make a narrative effective. In the same way
that we are enveloped in narratives in our surroundings, the context encompasses multiple
modalities and multiple languages. This brings forth an additional dimension of embedding
these properties in situated contexts. In this thesis, I scope these narrative properties in multi-
modal and multilingual scenarios. In specific, we will be looking into the modalities of vision
and language. Accruing to these views, these personal assistants can be revolutionized with
capabilities serving virtual Al characters embedded in Augmented Reality, Virtual Reality and
Internet of Things that can cater to a wider range of responsibilities such as digital education,
entertainment, personal counseling etc.,

Improving multi-modal and multi-lingual capabilities: = Humans interact and engage
with different modalities in regular communication. With the growing ubiquity of various
media and modes used to share information, including videos and audio, incorporating mul-
timodality and multilinguality is paramount. In this thesis, I work on visual, auditory, and
textual modalities as input, focusing on generating text. A significant portion of the work
delves into capturing the aforementioned narrative properties in text from a sequence of vi-
sual information. In addition, the work also describes extending text generation from one
language to a mix of multiple languages.

Textual Anchors and Visual Inputs:  This thesis specifically focuses on anchors from
textual modality modeled with visual input to generate long form texts. This data flow of this
process is demonstrated in Figure 1.2.

First, we use the paired or unpaired text to extract anchors. Since these anchors are retrieved
from text, the anchors are textual as well. Based on the target narrative property that we are
trying to improve, we extract the corresponding anchors for content, structure and surface
forms. These textual anchors along with the input images are used by the anchored gener-
ation model to generate narrative texts. To efficiently bring together multiple modalities or
languages and narrative generation, I present categories of modeling these anchors in the next
chapter.
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1.2 Thesis Statement

The central tenet of this thesis is to improve long-form text generation by anchoring them to
aspects of human communication, especially in multimodal contexts. Anthropomorphic nar-
rative generation in natural language via stories, procedures, etc., has been a long-standing
dream of artificial intelligence. Working towards this goal brings forth the need to adhere
to the innate human characteristics of narratives. They include content (relevance), structure
(coherence), and surface form realization (expression). Anchoring these narrative properties
is maneuvered not only by task-specific requirements but also by the availability of annotated
data. A steep acceleration in brewing new content every day both surmounts and impedes
the need for extensive annotations. The main contribution of this thesis is a two-dimensional
taxonomy of anchoring these three properties by locally and globally conditioned training ob-
jectives. This framework taps into techniques for anchoring to improve narrative generation.
For anchoring content, I introduce anchor biased attention model to denoise, improve control-
lability and cross-lingual transferability. I also introduce a hierarchical entity model to learn
where and how to introduce entity words and an infilling-based model to address the real
world problem of missing contexts and thereby improve robustness. For anchoring structure, I
present a scaffolding structure representation from images for text generation and reordering
sentences. For anchoring surface-form realization, I present solutions with adversarial training
and multi-tasking. Finally, I circumspect the limitations in the assumptions of ongoing work
on grounding and present missing dimensions along with potential paths to bridge this gap.

1.3 Thesis Overview

Anchoring framework and background techniques [Chapter 2 ]: Long text narratives
often comprise implicit and explicit building blocks to make them more compelling and read-
able. First, I formally defining the n-local or n-global anchors in §2.1 followed by the modeling
and task based motivations for this framework in §2.1.1. Then, I present a background of task-
agnostic techniques that are used for grounding these properties §2.2. The narrative properties
that make it efficient are grounded in different levels of granularity of these anchors. Follow-
ing this, since most of this thesis derives anchors from textual modality, I present categories
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Narrative Properties N-Local Anchors N-Global Anchors
Entities, character references,
Content . Query words
missing contexts
Unsupervised structural .
Structure p Sentence order and fusion
layouts
Surface forms Fixed language ids Flexible language ids

TaBLE 1.1: Organization of thesis

of methods to club visual input with text anchors. After introducing these building blocks
for anchoring formally, I present an overview of modeling approaches and tasks for anchored
generation in §2.3.Finally, I present categories of approaches for multimodal anchoring in §2.4.

The aforementioned narrative properties and anchor points can be organized based on their
granularity in driving the narrative into the following segregation. This is depicted in Table
1.1. This layout brings forth three main chapters in this thesis post introduction. Each of
the chapters addresses a narrative property from the perspective of both n-local and n-global
anchor points.

Anchored in Content [Chapter 3]:  Anchoring the narrative in appropriate content helps
improve the relevance of the text (and thereby implicitly a degree of relevance and coherence).
In this chapter, I present methods to anchor entities, references, query words and missing
contexts in the narratives.

o N-Local Anchors: Entities are widely used to represent the content in a story as charac-
ters involved in various plot points. I first present a method to utilize anchors to denoise,
control and transfer content appropriately. I then present methods to utilize reference
forms to improve the content in visual stories. These content-based anchor points from
entities and their references are extracted to form skeletons. Based on their properties,
different forms of these skeletons are used to generate a story from a sequence of images.
Every sentence is undeviatingly guided based on the entities present in the correspond-
ing image. Alternative to explicit provision of content, I propose a model that infills
the relevant content from surrounding contexts via curriculum learning. This local in-
corporation of anchor units, i.e., entities or references, determines the content in every
sentence at fine-grained level.

+ N-Global Anchors: The content in a summarized answer for a query is driven by a theme
or the topic being discussed in the query. This content is determined using surface form
lexical units and the relevant ontologically related words in the question. The theme or
the topic of the answer narrative is selected at the narrative level. This theme is observed
in the overall summary to maintain a holistic consistency of the related content. Though
this general theme is governed by the input, not every sentence is strictly or intricately
maneuvered from the query. Balancing between selecting related content while avoiding
repetition is of chief essence. Hence, conforming to the previously extracted content
provides global guidance to select the subsequent sentences or content units.
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Anchored in Structure [Chapter [Chapter 4 ]: Humans inherently maintain and adhere
to a structure while narrating to make logical exposition and sense of accounted events. While
several factors such as the grammar and lexicon are essential, a compelling narrative also has
a good introduction, detailing each portion, and finally ties these concepts up as a conclusion.
Stringing these discrete units enforces a structure. This structuring can be inherently incor-
porated during learning or performed as a post-editing step after the content is accumulated.
These are the two ways in which structure is used as anchor points.

o N-Local Anchors: 1 propose a method that learns structure representations in an unsu-
pervised fashion. The first step is to derive weak annotations for the narratives at hand.
The manifestation of structure is more apparent in procedural texts where the occur-
rence of a phase logically precedes/succeeds another phase. The structural anchors are
derived based on the relationship between these amorphous phases. The explosion of
state space emerging from raw forms is addressed using clustering. This reveals phase
and state sequences that are incorporated at each step during training with a structure-
based loss objective. The phase and the state sequence information is used to guide every
step of the recipe granularly.

« N-Global Anchors: Controlling the layout of a narrative (in this case, a query-oriented
summary) at a fine-grained level from a topic provided in a query is challenging. So
instead, I work on a method to provide comprehensive guidance that is not entirely
from the question but rather from a derivation or processed form. More concretely,
the content accumulated from content-based anchoring now controls the restructuring
of the sentences among themselves to arrive at a summary that smoothens transitions
between different content units. This process is executed as a post-editing step.

Anchored in Surface Realization [Chapter 3 ]:  The linguistic realization or lexicaliza-
tion, often with discretion in surface form, presents a challenge for a style-based generation. It
refers to communicative preferences defined as a set of linguistic variants based on social asso-
ciations. It is often realized in the form of preferences based on stylistic, gender, political and
cultural aspects. However, this thesis focuses on surface realizations derived from personas
and interaction between multiple languages. Such interaction within a single utterance is also
known as code-switching. Controlling the language information received during generation
can anchor these surface forms.

» N-Local Anchors: A fixed sequence of lexical level language-ids can ground or anchor
each word stringently to realize in one of the participating languages. However, this
demands adhering to a sequence of languages during intermixing. Explicitly intricately
providing language id tags is substantiated in language modeling of code-switched text
in a multi-task learning framework to evaluate the significance of the n-local anchor-
ing. Accompanied by this, we also present the synthesis of mixed language instructions
and demonstrate that anchoring in n-local language ids designates improvement in the
naturalness of the synthesis.

» N-Global Anchors: Surface form realization is often gauged in uni-dimensional and also
resource-rich scenarios. To address this, I work on n-global anchoring of the surface
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forms with limited annotations and non-parallel data. Instead of explicitly rendering the
language id information mentioned earlier to each lexical unit individually, I propose
a model that provides them at an abstract level for the entire sentence. I demonstrate
experiments on learning these surface forms from monolingual data of the participat-
ing languages and argue that dual-stage training partially guides this mixed language
information to generate code-switched text.

Bridging the gap in grounded generation [Chapter 6 ]: Human communication is more
incidental than accidental, with circumstantially defined intents and grounded in context. In
this chapter, I bring forth the dimensions of grounding critical to stride towards a more nat-
ural interaction, including dynamic grounding, purviews of extending grounding levels, and
constraints imposed by the medium of communication. In this regard, I also sketch a path
ahead with systematic solutions by defining a new paradigm for longitudinal benchmarking,
and human-in-the-loop solutions.

Known Unknowns [Chapter 7 ] : In this chapter, I summarize and conclude the main
facets of the thesis. Then, I briefly present prospective future directions, each accompanied
by the known contexts (conjectured from this thesis), known background (brief related work),
partially defined research question, and potential approaches that are unknown or unexplored
experimentally.

This is the overall picture of my thesis, and we will delve deeper into each of the topics men-
tioned above in the following chapters. In the next chapter, a categorization of the prior work
in some popular generation tasks is organized based on the anchoring framework along with
task-agnostic techniques for generation.



Part 1

Background



Anchoring and Neural Text Generation

Wise men speak because they have
something to say; not to say something.

attributed to Plato

We cultivate language usage with a communicative intent or a goal (Bruner, 1974). Usually,
this means that we actually have something to say that is anchored to an intent or a mind map,
etc., The number of times that I rewrote and revised the details in this chapter indicates that
there are various ways to gather my content, organize the structure and express my intent
effectively. These several attempts are formulations of the anchors for my narrative or the
something that I intend to communicate. While anchors ground language both in natural lan-
guage understanding (NLU) and natural language generation (NLG), this thesis focuses on how
they are used for generation. In this chapter, I first describe the anchoring framework and then
provide a background of various task agnostic techniques for text generation.

2.1 Anchoring Framework for Generation

What is an anchor? An anchor is a supporting framework, a basic structure, or a condensed

essential primitive of something.

This chapter is partly based on the following paper:

« “Positioning yourself in the maze of Neural Text Generation: A Task-Agnostic Survey” (Chandu and Black,
2020a)
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An anchor is a reliable or principal form of support that the narrative is based on. The proposed
framework characterizes guidance in two levels of granularity thereby introducing n-local and
n-global anchoring. While this overarching goal of narrative generation aims at a multitude
and diverse set of challenges, this thesis targets exploration of grounding narratives in anchor
points. Situating these narratives by anchoring on real world contexts such as conversational
cues, visual input etc, makes them more relevant, appurtenant and relatable.

Formalizing and realizing anchors within the scope of training procedures emerges from the
degree of supervision needed to generate text, thereby varying from discrete to continuous
anchors or fine-grained to coarse-grained anchors. Thus, manifesting them in the two ends
of the spectrum results in two genera of anchoring: (i) N-Local anchoring and (ii) N-Global
anchoring. Let us now take a closer look at each of these categories. Figure demonstrates the
contrast between these two kinds of anchoring very broadly and we will discuss their formal
definitions next.

As discussed in Chapter 1, a narrative is a sequence of multiple utterances about a connected
sequence of events or topics. So, formally, let a narrative comprise a sequence of k units:
N; = {sl(l), 352), eee sgk)}, where INj is the i*" narrative in the data with k units denoted by
s. Since these primitive units are primarily derived from text, they can be in the for word or a
sentence or a sequence of sentences.

N-Local Anchoring:  The training procedure optimizes for each unit of generation. As
mentioned earlier, this unit can either be in the forms of a word, a sentence, or a sequence
of coherent sentences. The crucial aspect here is that each input unit in a sequence is paired
with an anchor unit corresponding to one of the narrative properties (discussed in §1.1). This
is depicted in the left hand side of Figure 2.1. On the right side, there is a on overview of these
anchors are modeled. The anchors are pairwise associated to the generated text and the dotted
arrows from anchor units to each of encoder, model and decoder indicates the visibility of the
modeling component into the anchors.

A formal representation of this category of anchors pertains to the definition of explicitly,
elaborately and locally guiding each aspect of generation. Hence, the anchor is represented
as A; = {agl), a§2)7 cee az(k)}. These anchors can be derived from either of the participating
modalities or languages from paired or unpaired text IN; or visual input I;. Given I; and A;,

the task is to generate IV;.

Input: I; and A; = {agl), a(-2), . ,a(k)}
Output: N; = {sz(»l), 852), e s(k)}

Note that the guidance is at a granular level as for sgj )
()

)

, there is a corresponding anchor unit
a;’’, where j is the index of the unit in generation. This is a supervised learning instance, since
the anchoring is derived from annotations on the training data. Our focus in this thesis is not to
improve the derivation of these anchor points and hence use off the shelf tools to procure these
annotations. The anchors A; can take several forms facilitating the corresponding narrative

property. This is one end of the spectrum where every time step in generation is anchored.
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FIGURE 2.1: Overview of N-Local Anchoring.

N-Global Anchoring:
demonstrated in Figure 2.2, implying that overall high-level guidance is provided for the en-

The training procedure optimizes at the narrative level. This is

tire narrative. The underlying anchor serves as a guiding theme and does not provide dense
guidance for each narrative unit. Instead, a blanket proposition is served in the context of the

narrative.

sl.“) + si<2) + sl.(3) + sl.(4) + si(5>

Training Objective ‘

Ya T
p Decoder ‘

T

Anchored Model ‘
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N-Global Anchors T T T T T
corresponding to the _
entire generation D D O O D - I:
A;

FIGURE 2.2: Overview of N-Global Anchoring.

Formally, this category of anchors compares with the definition where the anchors are pro-
vided in a coarser-grained detail. Hence the anchor is represented as A; which does not con-
tain atomic units granularly to guide the generation process. There is no one-to-one bijective
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function from the anchor units to the generated text to be more concrete. Hence the entire
narrative is generated at once with global guidance.

Input: I; and an anchor A; corresponding to the overall narrative
Output: N; = {sgl), 352), cees sgk)} guided by A;.

I present an account of anchoring each of the narrative properties discussed in Chapter 1 (i.e.,
content, structure, and surface form realization) with N-Local and N-Global anchors. This
overview is presented in Figure 2.3. Throughout this thesis, we are going to look into the
epiphenomenon of making narratives effective by both sorts of anchoring into the narrative
properties mentioned above.

—_— — > |.._...
Input Data P Yo Narrative
e — Surtace
..... C ontent Structure Realization
Narrative Properties

FIGURE 2.3: Overview of Anchoring in Narrative Properties for Generation

In addition to the formalizations of anchors for improving narrative generation, modeling-
based and task-based requirements also assert the significance of anchor-based generation.

2.1.1 Motivations for Anchoring

The high-level motivation for anchoring is that humans inherently learn from and interact
with multiple views of contexts, be it various modalities or languages. Therefore anchoring
the contexts to these views is critical. In addition to this broad idea, this section presents two
levels of motivations for this framework: modeling-based and task-based motivations.

Modeling-based Motivations: The 80’s and 90’s have witnessed significant efforts towards
understanding and generating narratives as we perceive the world and make sense of it by
building a coherent sequence of units of understanding. However, most of the early systems
had a modular approach to generating text. Each module handles a single narrative property
of the text among content, structure, and surface-form realization. With the advent of neural
techniques, the more recent modeling choice of generating text uses an end-to-end paradigm.
These neural text generation models like (Radford et al., 2019; Zhang et al., 2017; Fedus et al.,
2018a; Lu et al., 2018a) are becoming more and more potent in generating near-human quality
text. They are very good at generating fiction but sometimes can be self-contradictory, disor-
derly, and inconsistent. We as a community are yet to fill in the missing gaps to make them
more embedded in the context of the narrative properties from multiple views to improve the
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naturalness of the text. To this end, prior and ongoing efforts towards generating a compelling
narrative are concentrated on bringing synergy between the early methods on improving in-
dividual models in an end-to-end paradigm such as, including plot or event (Berman, 1988;
Ammanabrolu et al., 2019b), characters (Cavazza et al., 2002; Fan et al., 2019a) development
along with a dramatic arc and suspense.

However, optimizing the objective for each narrative property individually additionally de-
mands rich annotations of these corresponding properties for each time step of the generation.
With the ever-increasing amount of data, gathering annotations for narrative properties some-
times require domain expertise (for instance, content in medical documents, radiology images
etc.,). Therefore, it is essential to keep in mind an array of granularities in annotations to
choose from for anchoring. Hence, this framework helps us visualize the spectrum of super-
vision needed at every time step in terms of providing anchor units between supervised and
unsupervised learning paradigms. N-Local anchoring requires annotations for each utterance
in a narrative, guiding what or how to say it in the context of the rest of the narrative. As
each generated unit of text is rigidly and tightly bound to the anchor points, it demands such
dense annotations. N-Local anchoring is more towards supervised learning with fine-grained
annotations. On the other hand, N-Global is more towards semi or unsupervised learning with
respect to annotations for anchor units. A similar extrapolation to reinforcement learning for
N-Local anchoring is through reward shaping by providing dense intermediate rewards. For
N-Global anchoring, this is done through sparse rewards, for instance, at the end of the se-
quence. Deriving the anchors does not need granular annotations from the training data as
they are implicitly identified at the sequence level. In this thesis, we will utilize this global
guidance in the context of driving or framing a narrative.

Task Based Motivations: This framework also supports the prerequisites of specific task-
based stipulations. While certain tasks like storytelling can be anchored in both ways, there are
still specific tasks suitable for one kind of anchoring more. For instance, N-Local anchoring
is more suitable for dense plot units in stories and goal-oriented dialogs, which are usually
more constrained and to the point. In contrast, N-Global anchoring is more suitable for less
constrained stories that are conditioned just on a theme and chit-chat dialogs where there is
room to wiggle for more diversity. This contrast is because: (i) N-Local anchoring enforces
strict constraints, which is comparatively less in the case of N-Global anchoring, and (ii) N-
Global anchoring has more diversity which decreases as we move towards N-Local anchoring.
The task at hand dictates the degrees of freedom available for controlling these properties, and
an appropriate level between N-Global and N-Local anchoring is to be applied in such cases.

While these motivations stipulate the reasoning behind the choice of anchoring, it is also im-
portant to combine this with what makes them effective in a broad typology of narratives.

2.1.2 Typology of Narratives

Before delving into how the anchors are modeled, it is important to understand the difference
in narrative patterns that the anchors can bring forth. I present a high-level view of some of
the different types of narratives and their characterizations regarding the narrative properties
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discussed earlier. Based on the intent or the communicative goal, narratives can be broadly
categorized into literary, factual, and persuasive. This categorization is not exhaustive by any
means but is depicted to serve the characterization of distinction among them in the narrative

properties.

+ Literary Narratives: These types of narratives present a story. They can sometimes be
voiced as external to the narrative or part of the narrative, spreading across the spectrum
from a fictional story about imaginative events to a real story constituting actual original
happenings.

— Content: Since one of the primary objectives of these narratives is conveying a
story, the content mainly revolves around the characters, places, etc.,

— Structure: A coherent presentation of a story often sets the scene along with place
and era. It then transcends into the characterization of the actors in terms of phys-
ical appearance and behavior. This is often followed by a sequence of obstacles and
how the characters overcome them.

— Surface-form Realization: Stories are creative forms of text. Hence, this form of
narratives comprises key differences in the surface forms. They are metaphoric,
sarcastic, and humorous. In addition, the choice of the vocabulary of each character

reflects the personality of that particular character.

« Factual Narratives: These narratives typically present an explanation of an accord of
events or describe a procedure or report factual information. Thus, the fidelity of the
text is a critical property instead of being imaginative like in the earlier category.

— Content: These narratives are an accounted description of the entities, events,
and actions that do not deviate from the truth value. For instance, in the case
of procedures, the narrative describes the ingredients or actions necessary for the

successful execution of the instructions.

— Structure: These factual descriptions often begin with a central introductory sen-
tence, address different aspects or attributes of the facts. In the case of goal-
oriented texts or procedures, the narrative usually starts with a statement of the
goal followed by a list of materials needed to accomplish the goal. Then it talks
about the step-wise description until the narrative arc attains an end goal of the

final state in the instructions.

— Surface Realization: The reader of the narrative is usually referred to in each step.
This is either done by addressing in a very generic manner using pronouns (for
example, ‘you’) and sometimes even omitting them. Sentences are imperative in
style, indicating that the writer is giving the instructions. Intermittently, there are
linking words to indicate a sequence of steps.

+ Persuasive Narratives: These narratives attempt to change the belief or inclination of
the reader or listener to a different and often to a predetermined stance. They manifest
in the forms of a debate, an argument or an advertisement.

— Content: Inorder to persuade and alter the opinion or decision through a narrative,
it is crucial to gather background information. Moreover, the content should also
include evidence based on reasons and examples to prove the case in point.



Anchoring and Neural Text Generation 15

— Structure: This form of narrative usually begins with the description of the current
position or stance. Then it leads its way into the presentation of alternate points of
view followed by presenting logical reasons and evidence to the favored case.

— Surface Realization: The terms are chosen to pose convincing language. This
presents a confident style, such as using words like ‘will be better’ rather than

‘might be’.

Broadly, we deal with two kinds of text narratives in this thesis: literary and factual. In par-
ticular, for the literary domain, we deal with visual stories. Storytelling through pictures has
been dated back to prehistoric times. Around 30,000 years ago, paintings of animal herds like
bisons, rhinos and gazelles were made in a cave in Southern France. However, these were not
merely paintings; they were also stories about the heroic adventures of humans. Since then, vi-
sual storytelling has evolved from paintings to photography to motion pictures to video games.
However, with respect to its timeline, neural generative storytelling has gained traction only
recently. Similarly, for the factual domain, I present work on procedural or instructional text
(under the ‘how-to’ umbrella). This includes cooking recipes and navigational instructions.
Along the same vein, query-oriented summaries also provide factual descriptions based on a

question.

These motivations bring us to our grand goal which is discussed here.

Goal: The overarching aim of this work is to computationally simulate “Multiview Narra-
tive Generation”. Let us break down what these individual terms are in understanding this
goal discretely in a bottom-up fashion.

« Generation is the process of producing (natural language) output.

« A Narrative is a chronicle of a set of connected events. So far, this means that ‘narrative
intelligence’ is the ability to craft a multi-sentence textual composition and present it
perceptually. It includes knowing what to talk about and how to talk about it.

« Multiview is characterized by heterogeneous contexts of information. Information pro-
cessing by humans is essentially multimodal in nature and situated context can be de-

rived from multiple modalities such as vision and language.

This builds up our definition of multiview narrative generation.

Though our goal for this thesis does not encompass generating full-fledged novels and thesis
documents, I present techniques towards addressing these goals in a step by step manner con-
tributing my two cents towards this grand goal. In this attempt, I make simplified assumptions
to tackle the problems in concrete ways which are discussed next.

Simplified Conjectures:  The natural question that arises at this point is with respect to
decoupling the differences in the narrative properties. What is the difference between structure
and content? Both content and structure work in synergy to bring forth the semantics of the
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text. With respect to this work, I see content as the individual components and structure as the
arrangement of those components. For instance, in the case of a sentence: tokens represent
the content and a parse tree represents the structure. In the case of an image of a cat: pixels
pertaining to the eyes, ears and whiskers make up the content; and the placement of these
parts appropriately comes from the structure.

Although we recognize the significance of extracting the anchors, the scope of this thesis lies
in utilizing the extracted anchors in the end goal of generation. Towards this, we use readily
available techniques to extract the anchors and represent them in various forms to incorporate
them in the generation process. The necessary background on text generation modeling along
with categorization of some of the prior work into N-Local and N-Global anchoring is presented
in the next section.

2.2 Task Agnostic Text Generation Techniques

Neural text generation metamorphosed into several critical natural language applications rang-
ing from text completion to free-form narrative generation. In order to progress research in
text generation, it is critical to absorb the existing research works and position ourselves in
this massively growing field. Specifically, this section surveys the fundamental components of
modeling approaches relaying task agnostic impacts across various generation tasks such as
storytelling, summarization, translation etc., In this context, we present an abstraction of the
imperative techniques with respect to learning paradigms, pretraining, modeling approaches,
decoding, and the key challenges outstanding in the field in each of them. Thereby, we deliver
a one-stop destination for researchers in the field to facilitate a perspective on where to situate
their work and how it impacts other closely related generation tasks.

One of the fields witnessing a steep growth is text generation, which is the task of producing a
written or spoken narrative from structured or unstructured data. This field navigated through
a variety of techniques and challenges from using template-based systems, modeling discourse
structures, statistical methods to more recent autoregressive deep nets, transformers etc., With
this rapid transformation, it is critical to retrospect and position ourselves to foresee the up-
coming task-agnostic challenges to impact the entire field. The primary goal of this section is
to assist the readers to position their work in this vast maze of text generation to identify new
challenges and secondarily present a compact survey of the field in the context of task-agnostic
challenges.

Before diving into the tasks-agnostic techniques, table 2.1 presents the three main paradigms
of tasks in generating text based on the schema of input and output. These categories are pre-
sented for the sake of completeness of the topic at a high level but we do not go into their
details in this section. These several tasks deserve undivided attention and accordingly, they
have been heavily surveyed in the recent past. For instance, independent and exclusive sur-
veys are periodically conducted on summarization (Lin and Ng, 2019; Allahyari et al., 2017;
Nenkova and McKeown, 2012; Tas and Kiyani), knowledge to text generation (Gardent et al.,
2017; Koncel-Kedziorski et al., 2019), machine translation (Chu and Wang, 2018; Dabre et al.,
2019; Chand, 2016; Slocum, 1985), dialog response generation (Liu et al., 2016b; Montenegro
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FIGURE 2.4: Outlining the components of neural text generation discussed through the section.

et al, 2019; Ramesh et al,, 2017; Chen et al,, 2017), storytelling, narrative generation (Tong
et al., 2018; Togelius et al., 2011), image captioning (Hossain et al., 2018) etc., to dig deeper
into task specific approaches that are foundational as well as the bleeding edge of research.
In addition, there have been several studies conducted on surveying text generation. Perera
and Nand (2017) present a detailed overview of information theory based approaches. Igbal
and Qureshi (2020) primarily focus on core modeling approaches, Gatt and Krahmer (2018a)
elaborated on tasks such as captioning, style transfer etc., with a primary focus on data-to-text
tasks. Controllability aspect is explored by Prabhumoye et al. (2020). Lu et al. (2018b) perform
an empirical study on the core more modeling approaches only. While they are extremely nec-
essary, the focus on techniques that are beneficial to other related tasks are often overlooked.
This section focuses on these task agnostic components to improve the ensemble of tasks in

neural text generation.

Figure 2.4 presents the components that are important to study in neural text generation which
are elaborated in this section. Throughout the section, we identify and highlight (in italics) the
challenges in the field in the context of existing work.

2.2.1 Training Paradigms
2.2.1.1 Generative Pre-training

Recent couple of years have seen a major surge in interest for pre-training techniques. UniLM
(UNIfied pre-trained Language Model, (Dong et al., 2019a)) is proposed as a pre-training mech-
anism for both natural language understanding and natural language generation tasks. Funda-
mentally, the previously widely used ELMO (Peters et al., 2018) constitutes a language model
that is left to right and right to left. While GPT (Radford et al.) has an autoregressive left to
right language model, BERT (Devlin et al., 2019a) has a bidirectional language model. UniLM
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Generation
Paradigm Task Input Output
Text-to-Text | Dialog Conversation History Next Response
Machine Translation Source Language Target Language
Style Transfer Style 1 Text Style 2 Text
Summarization Single/Multiple Documents | Summary
Data-to-Text | Image Captioning Image Descriptive Text
Visual Storytelling Images Descriptive Text
Speech Recognition Audio Text
Table to Text Table Text
Knowledge Bases to Text | Knowledge Bases Text
None-to-Text | Language Modeling Null Sequence of Text

TABLE 2.1: Paradigms of Tasks in Text Generation (not detailed in this chapter). Note: To be
compact, we include ‘Knowledge-to-text’ paradigm within ‘Data-to-text’.

is optimized jointly for all of the above objectives along with an additional new seq2seq LM
which is bidirectional encoding followed by unidirectional decoding. Depending on the use
case, UniLM can be adopted to use Unidirectional LM, Bidirectional LM, and Seq2seq LM. With
a similar goal in mind, MASS (Song et al., 2019) modified masking patterns in input to achieve
this. BERT and XLNet (Yang et al., 2019d) pre-train an encoder and GPT pretrains a decoder.
This is a framework introduced to pretrain encoder-attention-decoder together. Encoder masks
a sequence of length k and the decoder predicts the same sequence of length k and every other
token is masked. While the idea of jointly training the encoder-attention-decoder remains the
same as in UniLM, the interesting contribution here is the way masking is utilized to bring
out the following advantages. (i) The tokens masked in decoder are the tokens that are not
masked in encoder. (ii) Encoder supports decoder by extracting useful information from the
masked fragments improving the NLU capabilities. (iii) Since a sequence of length k is decoded
consecutively, NLG capability is improved as well. Note that when k is 1, the model is closer to
BERT which is biased to an encoder and when k is the length of sentence, the model is closer
to GPT which is biased to decoder. Similar to UniLM, BART (Lewis et al., 2019) has a bidirec-
tional encoder and an autoregressive decoder. The underlying model is standard transformer
(Vaswani et al., 2017a) based neural MT framework. The main difference between BART and
MASS is that the tokens masked here are not necessarily consecutive. The main idea is to cor-
rupt text with arbitrary noise such as token masking, token deletion, token infilling, sentence
permutation, and document rotation and reconstruct the original text. Following this, Raffel
et al. (2019) proposed T5 as a unifying framework that ties all NLP problems as text genera-
tion tasks with a text-in and text-out paradigm. Recently, Dathathri et al. (2020) introduced
plug and play language models capable of efficiently training fewer parameters to control a
huge underlying pretrained model. Finetuning these vast models for generative tasks has been
studied in style transformers (Sudhakar et al., 2019) and conversational agents (Dinan et al.,
2019).

Challenges: This new era of very powerful language models opened up a whole new set of
challenges. How can they be effectively used as knowledge sources (Lewis et al., 2020) ? How to
mitigate the inherent societal biases from models learnt at this scale (Shwartz et al., 2020a) ? How
to learn social norms from vast amounts of pretrained models (Forbes et al., 2020) ? How to ensure
coherence in long form generation specific to a domain (Tan et al., 2020) ?
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2.2.2 Core Modeling

The base architecture constitutes of an encoder-decoder with an optional attention mechanism.

Supervised Learning: Most generation approaches in this setting use maximum likelihood
objective for training sequence generation with a sequential multi-label cross entropy. How-
ever, there is an inherent inconsistency in exposure to ground truth text between training and
inference stages when using teacher forcing during training. leading to exposure bias (Ran-
zato et al., 2016). This problem becomes severe with the increasing length of the output. A
solution to address this issue is scheduled sampling (Bengio et al., 2015) which mixes teacher
forced embeddings and model predictions from the previous time step. This problem of text
degeneration still remains a pressing issue, which is revisited in §2.2.4.

Reinforcement Learning: The main issue with the supervised learning approach for text
generation is the mismatch between the maximum likelihood objective and metrics for text
quality. Reinforcement learning addresses this mismatch by directly optimizing end metrics
which could be non-differentiable. Typically, policy gradient algorithms are used to optimize
for BLEU score directly via Reinforce. However, computing these metrics before every update
is not computationally efficient to incorporate in the training procedure. Another problem is the
inherent inefficiency of the metric itself used for reward i.e BLEU is not the best measure to
evaluate text quality. Sometimes these rewards are learnt adversarially. In practice, usually,
the policy network is usually pre-trained with maximum likelihood objective before optimizing
for BLEU score.

Latent Variable Modeling: These models took a pretty steep curve from variational seq2seq
models (Bowman et al., 2016) to conditional VAEs, (Shen et al., 2017b). These latent variable
models have been explored to generate controllable text generation based on topic (Wang et al.,
2019e), structure (Chen et al., 2019a), persona (Zhao et al., 2017) (Wu et al., 2020) etc.,

Adversarial Learning: The third paradigm is adversarial learning comprising of competing
objectives. The mismatch in training and inference stages is addressed using Professor Forcing
(Lamb et al., 2016) with adversarial domain adaptation to bring the behavior of the training and
sampling close to each other. Generative Adversarial Networks (GAN) also gained popularity
with respect to this in the recent times. The core idea is that the gradient of the discriminator
guides how to alter the generated data and by what margin in order to make it more realis-
tic. There are several variants adopted to address specific problems such as SeqGAN to assess
partially generated sequence (Yu et al., 2017), MaskGAN to improve sample quality using text
filling (Fedus et al., 2018a) and LeakGAN to model long term dependencies by leaking discrim-
inator information to generator (Guo et al., 2018). The three main challenges researched in this
area are:

« Discrete Sampling: The sampling step selecting argmax in language is non-differentiable. This
is addressed by replacing it with a continuous approximation by adding Gumbel noise which
is negative log of negative log of a sample from uniform distribution, also known as Gumbel
Softmax.

« Mode Collapse: GANSs typically face the issue of sampling from specific tokens to cheat
discriminator, known as mode collapse. In this way, only a subspace of target distribution is
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learnt by the generator. DP-GAN addresses this using an explicit diversity promoting reward
(Xu et al., 2018b).

« Power dynamics between Generator and Discriminator during training: Another problem arises
when the discriminator is trained faster than the generator and overpowers it. This phe-
nomenon in training is observed frequently, and the gradient from discriminator vanishes
leading to no real update to generator.

2.2.3 Decoding Strategies

The natural next step after pre-training and training is decoding. The distinguishing charac-
teristic of generation is the absence of one-to-one correspondence between time steps of input
and the output, thereby introducing a crucial component which is decoding. Primarily, they
can be categorized as (i) autoregressive and (ii) non-autoregressive.

Autoregressive decoding: Traditional models with this strategy correspond well to the true
distributions of words. This mainly comes from respecting the conditional dependence prop-
erty from left to right. The autoregressive techniques can be further viewed as sampling and
search techniques. One of the issues of this strategy is throttling transformer-based models that
fall short in replicating their training advantages as training can be non-sequential and inference
holds to be sequential with autoregressive decoding.

Non-autoregressive decoding: This line of work primarily addresses two problems that
are associated with autoregressive decoding. First, by definition, there is a conditional inde-
pendence property that holds. This leads to the multimodality problem, where each time step
considers different variants with respect to the entire sequence and these conditions compete with
each other. Second, the main advantage is the reduction in latency during real-time genera-
tion. Guo et al. (2020) addressed this problem in the context of neural machine translation
using transformers by copying each of the source inputs to the decoder either uniformly or
repeatedly based on their fertility counts. These fertilities are predicted using a dedicated neu-
ral network to reduce the unsupervised problem to a supervised one and thereby enabling it
to be used as a latent variable. These invariable replications based on fertilities may lead to
repetition or duplication of words. Closely followed by this, van den Oord et al. (2018) took a
different approach by introducing probability density distillation by modifying a convolutional
neural network using a pre-trained teacher network to score a student network attempting to
minimize the KL divergence between the teacher network and itself. Both these works set the
trend of using latent variables to capture the interdependence between different time steps in
the decoder. Following this work, Lee et al. (2018) use iterative refinement by denoising the
latent variables at each of the refinement steps. This idea of iterative decoding inspired ways
to more avenues by combining the benefits of cloze style mask prediction objectives from Bert
(Devlin et al., 2019a). Some of them include insertion based techniques (Gu et al., 2019a), re-
peated masking and regenerating (Ghazvininejad et al., 2019) and providing model predictions
to the input (Ghazvininejad et al., 2020). Wang et al. (2019¢e) proposed an alternative approach
to address repetition (observed in Guo et al. (2020)) and completeness using regularization
terms for each. Repetition is handled by regularizing similarity between consecutive words.
Completeness is addressed by enabling the reconstruction of the source sentence from hidden
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states of the decoder. Concurrently, Guo et al. (2019a) also address these issues by improving
the inputs to decoder using additional phrase table information and sentence level alignment.

Sampling and Search Techniques:

1. Random Sampling: The words are sampled randomly based on the probability from the
entire distribution without pruning any of the mass.

2. Greedy Decoding: This technique simply boils down to selecting argmax of the proba-
bility distribution. As you keep selecting argmax everywhere, the problem is that it limits the
diversity of generation. Temperature scaling helps to adjust the spectrum between flat and
peaky distributions to generate more diverse or safe responses respectively. This is alleviated
by the following techniques and beam search. This is also worked out for discrete settings
using gumbel-greedy decoding (Gu et al., 2018a). Variants of this were also studied by Zarrief§
and Schlangen (2018).

3. Beam Search: Beam search introduces a course correction mechanism in approximation
of the argmax by selecting a beam size number of beams at each time step. It has been rela-
tively well studied in task agnostic objectives (Wang et al., 2014) for instance, including social
media text (Wang and Ng, 2013), error correction (Dahlmeier and Ng, 2012). Small beam sizes
may lead to ungrammatical sentences, they get more grammatical with increasing beam size.
Similarly, small beam sizes may be less relevant with respect to content but get more generic
with increasing beam size. Prominent variants within beam search are:

(a) Noisy Parallel Approximate Decoding: This method (Cho, 2016) introduces some noise in
each hidden state to non-deterministically make it slightly deviate from argmax.

(b) Beam Blocking: Repetition is one of the problems we see in NLG and this technique (Paulus
et al., 2018) combats this problem by blocking the repeated n-grams. It essentially adjusts the
probability of any repeated n-gram to 0.

(c) Iterative Beam Search: In order to search a more diverse search space, another technique
(Kulikov et al., 2019) was introduced to iteratively perform beam search several times. And for
each current time step, we avoid all of the partial hypotheses encountered until that time step
in the previous iterations based on soft or hard decisions on how to include or exclude these
beams.

(d) Diverse Beam Search: One problem with beam search is that most times the decoded se-
quence still tends to come from a few highly significant beams thereby suppressing diversity.
The moderation by (Vijayakumar et al., 2016) adds a diversity penalty computed (for example
using Hamming distance) between the current hypothesis and the hypotheses in the groups to
readjust the scores for predicting the next word.

(e) Clustered Beam Search: The goal is to prune unnecessary beams. At each time step, Tam
(2020) get the top candidates and embed them by using averaged Glove representations which
are clustered using k-means to pick from each cluster.

(f) Clustering Post Decoding: This technique (Kriz et al.,, 2019) clusters after decoding as op-
posed to modifying the decoding step. Sentence representations from any of the diversity
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promoting beam search variants are obtained. These are then clustered and the sentence with
high log-likelihood is selected from the cluster.

4. Top-k sampling: This technique by Fan et al. (2018) samples from the k most probable
candidates from the output distribution. This means that we are confining the model to select
from a truncated probability mass. If £ is the size of vocabulary, then it is random sampling
and if k is 1 then it is greedy decoding. High valued k results in dicey words but are non-
monotonous and low valued k results in safe outputs which are monotonous. The problem
however is that k is limited to the same value in all scenarios.

5. Top-p sampling: The aforementioned problem of a fixed value of k is addressed by top-p
sampling. This is also known as nucleus sampling (Holtzman et al., 2020), which instead of
getting rid of the unspecified probability mass in top-k sampling, importance is shifted to the
amount of probability mass preserved. This addresses scenarios where there could be a broader
set of reasonable options and sometimes a narrow set of options. It is achieved by selecting
a dynamic k number of words from a cumulative probability distribution until a threshold
probability value is attained.

2.2.4 Key Challenges

For each of the challenges, this section provides a list of solutions. The pitfalls of these solutions
are also described there by encouraging research to address these key challenges.

1. Content Selection:  Certain tasks demand copying over the details in the input such
as rare proper nouns for instance in news articles etc., This is especially needed in tasks like
summarization which can demand a combination of extractive and abstractive techniques.

+ Copy Mechanism: Copy mechanism can take various forms such as pointing to unknown
words (Gulcehre et al., 2016) based on attention (See et al., 2017) or a joint or a conditional copy
mechanism (Gu et al., 2016; Puduppully et al., 2019). It may be based on attention that copies
segments from input into the output. The challenge in this technique is to make sure that this
combination of being extractive and abstractive does not boil down to a purely extractive system.

« Attention mechanism: This is actively used for subselecting content in tasks such as
summarization (Chopra et al., 2016). Recent work has demonstrated instances of attention not
explaining the output (Jain and Wallace, 2019; Latcinnik and Berant, 2020).

+ Hierarchical Modeling: This technique maintains a global account of the content. This
is often modeled using hierarchical techniques or dual-stage models (Martin et al., 2018; Xu
et al.,, 2018a; Gehrmann et al., 2018) where the first stage pre-selects relevant keywords for
generation in the following stage. Such models possibly take a hit on fluency while connecting
dots between selected content and generation. This means that Rouge-1 can be good because the
right words are extracted but Rouge-2 may decrease as it affects the fluency.

+ Memory Modules: Zhou et al. (2018b) and Clark et al. (2018a) explored memory mod-
ules in inducing emotion and entity representations from external memory respectively. An
outstanding challenge still remains in exploring the best ways to encode this external memory.
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2. Repetition: Holtzman et al. (2020) demonstrate that the objective of maximum likelihood
renders high log likelihood for the words that have been generated, leading to repetition. This
problem amplifies with increasing sequence length and transformer-based models.

- Beam blocking: Blocking beams containing previously generated n-grams from subsequent
generation combats repetition and encourages diversity (Klein et al., 2017; Paulus et al., 2018)
etc., Selecting the number of beams is often a problem since it is natural for a function word to
repeat more often. Massarelli et al. (2019) extensively studied the variants of n-gram blocking
by applying delays in beam search.

+ Unlikelihood objective: Welleck et al. (2020) argue that there is a fundamental flaw in the
objective of maximum likelihood. The main idea is to decrease the probability of unlikely or
negative candidates. The negative candidates are selected from the previous contexts either at
token or at sequence levels which are essentially n-grams. Selecting negative contexts is tricky
and needs to be beyond selection of simple n-gram sequences that occurred previously.

- Coverage penalty: This discourages the attention mechanism to attend the same word
repeatedly (See et al., 2017) by assigning coverage penalty of the attention probability mass on
that source time step for each decoded time step.

3. Coherence: This is a critical property of text to factor in for multi-sentence or long-form
generation, that not only takes into account the appropriate content but also the structure of
the narration.

- Static and Dynamic Planning: This addresses coherence in terms of layout or structural
organization of the text (Yao et al,, 2019). A schema of static or dynamic plans is used to form
an abstract flow of the text from which the actual text is realized. However, underlying language
models are capable of taking over, leading to hallucinations and thereby compromising the fidelity
of text.

4. Length of Decoding: One factor that distinguishes generation from the rest of the
seq2seq family of tasks is the variability in the length of the generated output. The main
problem here is that as the length of the sequence increases, the sum of the log probability
scores decreases. This means that models prefer shorter hypotheses. Some solutions to combat
this problem are the following.

- Length Normalization or Penalty: The generated output is scored by normalizing or divid-
ing with length. Wu et al. (2016b) explore a different variation of the normalization constant.

« Probability boosting: This technique multiplies the probability with a fixed constant at
every time step. This alleviates the diminishing score problem.

- Length based bias: Incorporate bias in the model based on empirical relations on lengths
in source and target sentences in the training data.
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5. Sequence level scoring: Instead of modifying the decoding, this strategy performs
sequence level scoring from multiple texts decoded.

+ Reranking: Another mechanism is to sample several full sequences and rerank them based
on generic scores such as perplexity or BLEU or task specific requirements varying from fac-
tual correctness (Goyal and Durrett, 2020), coherence (Lu et al., 2020), style (Holtzman et al.,
2018) etc., The properties of text in the end goal are decoupled from the generation process (a soft
conditioning of reranking on generation helps improve the generation as well).

5. Optimization Objective:  Similar to the observation earlier in §2.2.1, there is an inherent
mismatch in between the objective function which is maximum likelihood and the end metrics
which are BLEU, Rouge etc;

- Reinforcement Learning: A common solution for this problem is using reinforcement
learning to optimize end metrics such as Rouge. Often, a combination of MLE and RL objectives
are used (Hu et al., 2020a; Wang et al.,, 2018) to optimize BLEU (Wu et al., 2016a), ROUGE
(Paulus et al., 2018), CIDEr (Rennie et al., 2017), SPIDEr (Liu et al., 2017a). An existing open
challenge is to understand how to make the models robust by making them learn the task rather
than gaming for the reward. The rewards can also be learnt adversarially during the training
(Li et al., 2017). However, this is still a problem since these end metrics do not directly correlate to
human judgments.

- Factorizing Softmax: Choi et al. (2020) recently proposed a method to factorize softmax by
learning to predict both the frequency class and the token itself during training by factorizing
the probabilities. This model is observed to repeat the same rare token across several sentences.

+ Maximum Mutual Information: The idea is to incorporate pairwise information of source
and target instead of only one direction which is usually target given source (Li et al., 2016a).
The target probability is subtracted from target given source probability to diminish the prob-
ability of generic sentences. The model optimized with MMI can sometimes generate ungram-
matical sentences.

- Distinguishability: Hallucinations in abstractive generation are unwanted byproducts of
optimizing log loss. To combat this, several researchers explored optimizing for minimized dis-
tinguishability with human generated text (Hashimoto et al., 2019; Theis et al., 2016). Following
similar path, Kang and Hashimoto (2020) proposed truncating loss to get rid of unwanted sam-
ples.

5. Speed: Practical applications call for a crucial research direction of generating text in real-
time in addition to chasing state-of-the-art results. Model compression plays a crucial part in
demonstrating an increase in the speed of generation. Cheng et al. (2017) exhaustively sur-
veyed the different techniques to perform model compression. While there are techniques in
the hardware side, there are certain modeling approaches that can handle this problem as well
(Gonzalvo et al., 2016). Most of this work is studied in the context of real-time interpretation of
speech (Figen et al., 2007; Yarmohammadi et al., 2013; Grissom II et al., 2014). Recently, Deng
and Rush (2020) proposed a cascaded decoding approach introducing Markov Transformers
demonstrating high speed and accuracy.
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* Quantization: Quantizing (Roy et al., 2018; Gray, 1984) the weights, i.e., sharing the same
weight when they belong to a bin, proved helpful in improving the speed. This also facilitates
the computations of gradients only once per bin.

« Distillation: It can be performed with a teacher and a smaller student network that tries to
replicate the performance of the teacher with fewer parameters (Chen et al., 2019¢, 2020c).

« Pruning: This technique thresholds and prunes all the connections that have weights lesser
than the predetermined threshold and then we can retrain the network in order to adjust the
weights of the remaining connections.

* Real time: Gu et al. (2017) trained an agent that learns to decide between the actions of
reading by discarding a candidate or writing by accepting a candidate. The policy network
is optimized with a combination of quality evaluated with BLEU and delay evaluated by the
number of consecutive words in the reading stage which increases wait time.

« Caching: Another trick is to cache some of the previous computations to avoid repetition.

2.2.5 Evaluation

Similar to other generative modeling, text generation also faces crucial challenges in evaluation
(Reiter and Belz, 2009; Reiter, 2018). van der Lee et al. (2019) present some of the best practices
of evaluating automatically generated text. The main hindrance to standardize or evaluate NLG
like other standard tasks is that it is often a sub-component of other tasks. Celikyilmaz et al.

(2020) present a more comprehensive survey of evaluation metrics for text generation.

Desiderata of Text: It is crucial to define the factors contributing to the quality of good text.
Some of the factors include relevant content, appropriate structure in terms of coherence, and
suitable surface forms. In addition, fluency, grammaticality, believability, and novelty in some
scenarios are crucial factors.

Intrinsic and Extrinsic: Evaluation in subjective scopes such as text generation can be per-
formed intrinsically or extrinsically. Intrinsic evaluation is performed internally with respect
to the generation itself and extrinsic evaluation is typically performed on the metric used to
evaluate a downstream task in which this generation is used. The quality can also be judged
using automatic metrics and human evaluation.

(a) Automatic Metrics: These metrics can be classified into the following categories:

- Word overlap based metrics: These are based on the extent of word overlap, which means
that they capture replication of words. The problem with such measures is that they do not
focus on semantics but rather just the surface form of words alone. This includes precision
for n-grams(BLEU (Papineni et al., 2002a)), self-BLEU (Zhu et al., 2018), improved weighting
for rare n-grams (NIST (Doddington, 2002)), recall for n-grams (ROUGE (Lin and Hovy, 2002)),
F1 equivalent of n-grams (METEOR (Banerjee and Lavie, 2005a)), tf-idf based cosine similarity
for n-grams (CiDER (Vedantam et al., 2015)). In extension to this, we also have specific met-
rics to evaluate content selection by measuring summarization content units using PYRAMID
(Nenkova and Passonneau, 2004) and parsed scene graphs with objects and relations using
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SPICE (Anderson et al., 2016). Stanojevic and Sima’an (2014) proposed BEER to address this as
a ranking problem with character n-grams along with words.

-Language Model based metrics: This includes perplexity (Brown et al., 1992). Such metrics
are good in commenting about the language model itself. It sort of gives the average number of
choices each random variable has. However, it does not directly evaluate the generation itself,
for instance, a decrease in perplexity does not imply a decrease in the word error rate. The
problem remains that this metric intrinsically conveys if the LM is good enough to select the right
next word for that corpus but not the actual quality of the generated text. The human likeness
is also measured by training a model to discriminate between human and machine-generated
text such as an automatic Turing test (Lowe et al., 2017; Cui et al., 2018; Hashimoto et al., 2019).

- Embedding based metrics: This has the advantage of being able to capture distributed se-
mantics compared to word overlap metrics and language model based metrics. MEANT 2.0 (Lo,
2017) and YISI-1 (Lo et al., 2018) computes structural similarity with shallow semantic parses
being definitely and discretionarily used respectively along with word embeddings. Recently,
contextulaized embeddings have been extensively used to capture this, such as BertScore (Zhang
et al., 2020b) and BLEURT (Sellam et al., 2020). Metrics based on a combination of different em-
beddings are also proposed (Shimanaka et al., 2018; Ma et al., 2017). However the problem of
not correlating to human judgements still persists.

(b) Emulated Automatic Metrics: These metrics check for the intended behavior in gener-
ation based on the specific sub-problem being addressed. For instance, diversity can be evalu-
ated by computing corpus based distributions on number of distinct entities (Fan et al., 2019b;
Dong et al., 2019b; Clark et al., 2018a) and so on. Recent approaches worked on identifying fac-
tual inconsistencies with a QA model using QAGS (Wang et al., 2020a), answering cloze style
questions using SummaQA (Scialom et al., 2019), performance on a language understanding
task using BLANC (Vasilyev et al., 2020), adhering to pre-defined commonsense conditions
(Gabriel et al., 2020).

(c) Human Evaluation: There are broadly two mechanisms in conducting subjective eval-
uations which is a challenging component of text generation. The first is preference testing
and the second is scoring. Studies have shown that preference-based testing is prone to high
variance compared to absolute scoring. Here are some important points to keep in mind during
conducting human evaluation. There are several problems with human evaluations. They are
expensive, have no universally agreed upon guidelines for setup, are difficult to ensure quality
control, have varying scores based on scales (binary vs continuous), are difficult to replicate,
presenting the task in an unambiguous way. In order to measure more reliably, we need to
collect multiple scores and compute inter-annotator agreement with Cohen’s, Krippendorff’s
coefficients etc., Having critically discussed human evaluation, this is still really the best we
got. It is absolutely crucial to perform human evaluation in most tasks. So, the aforementioned
problems need to be taken merely as cautions to develop rational and systematic testing condi-
tions. Comparisons between automatic and human evaluation metrics (Belz and Reiter, 2006)
are actively studied in order to bring human evaluations closer to automatic metrics.
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2.3 Modeling Approaches for Generation and Anchoring

Prior methods in generation primarily had a modular approach dealing with each of the narra-
tive properties that heavily rely on designed rules and simple surface form similarity or prob-
ability modeling. With the advent of neural models, text generation systems have transcended
into an encoder-(attention)-decoder framework. Some of the popularly used techniques are
multi-task learning, adversarial generation, external reward such as reinforcement learning,
structured loss, scalar manipulation, post-editing, attention, latent variable. I will briefly give
an overview of these techniques to facilitate a better understanding of which techniques are
used to improve which properties and in which anchoring techniques in our work.

+ Multi-task Learning:

This is a technique to perform inductive transfer by the means of an auxiliary task in
addition to our primary task. As pointed out by Ruder (2017), multitask learning acts
implicit data augmentation and eavesdropping. We are going to utilize these properties
in learning the languages of the words in code-switched settings in addition to decoding
the words itself. Leveraging a related task aids in transferring generalized information
to another closely related task. Multitask learning not only acts as a regularizer in this
aspect but also learning robust representations while training for the auxiliary task.

The objective for a single task (.7") learning as in the case of regular supervised learning
setting is:

meinZ(O, T) (2.1)

Extending this to a multitask learning objective makes it:

T
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Conditioning on the task itself can be formalized as either multiplicative gating, addition,
concatenation or using multiple heads for different tasks. However, a common challenge
that comes to play with the architecture is negative transfer. This happens when the tasks
are not sufficiently similar leading to the independent network performing better than
multitasking. This can be overcome by sharing parameters softly and weighing them
with a small constant ().
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While identifying a related task is a challenge, this technique in combination with disen-
tanglement has shown promising results to transfer style without varying the semantics
of a sentence. This in specific is indexed in the proposed work for disentangling persona
to facilitate persona-based visual storytelling.

+ Adversarial Training: This introduces a difference in architecture with two competing
networks. Generative Adversarial Networks, commonly known as GANs belong to this
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clan and have attained immense popularity in computer vision. There are a few issues
when adapting this modeling approach to the textual domain and we are going to briefly
discuss them. The premise of this model is that there are two competing networks: a
generator and a discriminator. The adversarial aspect of GANs also leads to the minimax
game. This is because while the discriminator attempts to maximize its performance
on classifying between real and fake, the generator strives to fool the discriminator i.e,
minimize its performance.

Among the narrative properties that we described, this setup is comparatively commonly
used in surface realization, while there is no reason why it cannot be used to improve the
other properties. In this thesis, we are going to present an adversarial learning setup to
generate text with surface realization forms from multiple languages. Here, the objective
that we are going to optimize is:

mgz‘n mgx = Exp,,,, [109Dg(X)] + E,p(z)[log(1 — Dy(Gy(z))] (2.4)

For this we are going to first sample a minibatch of b sentences from true data: x(1), x(?),

. x(® ~ D. Similarly, a minibatch of size b is sampled from latent space: PAORPIC)
(b)
,Z ~ pZ‘

First, a gradient descent step on generator parameters 6:

1_ < ,
=V ; log(1 —Dy(Gp(z")) (2.5)

Following this, a gradient ascent step on discriminator parameters ¢:

b
194> 100D (x )] + [fog(1 — Dy(Gy(z))] 20

i=1

When we are dealing with datasets from two different forms of surface realization, often
these varieties are known as styles.

There are two different datasets X = {x(1), x(?) .. x("=)} that belongs to style s, and
another dataset Y = {y(1), y(®) ... y(")} that belongs to style sy. The generator net-
work typically has an encoder-decoder framework. The goal of attaining a disentangled
representation is to divide each sentence x from X into the content representation cy
and the corresponding style sy. Similar parallel components for Y are ¢y and sy. The
content vector for sentences x and y is attained by passing through an encoder E i.e,
cx = E(x,s4) and ¢y = E(y,sy). This is followed by a decoder F that is aimed at
generating a sentence x in the other style sy. The decoder is attempting to reconstruct
the original sentence in a different style and hence is similar to an auto-encoder. The
objective for reconstruction is:

LG, (Or, 0r) = —(Ex~x[log Pr(x|cx, sx)] + Ey~y[log Pe(y|cy, sy)]) (2.7)
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Often the language models that can be trained in an unsupervised fashion are trained as
discriminators. Discriminator is any classifier that discriminates between the two styles.

$D¢ = -log Py(ex|x) (2.8)

With the minimax game between the generator and the discriminator, the adversarial
objective that we are optimizing is:

min max 4G, — o - o 2.9
Eg,Fg Dy o ¢ (29)

+ External Reward: A stumbling block is annotating texts with the narrative properties
and the fine-grained classes in each of these properties. Curating a dataset to perform
supervised learning is expensive in most cases. Moreover, another issue with the super-
vised learning approach is the mismatch in what we are trying to optimize vs how we
measure the quality of the text. Reinforcement Learning when applied to generation di-
rectly optimizes end metrics that could be non-differentiable. In addition, by definition,
our model is upper bounded by the accuracy of the annotations in our training data and
learning other statistical regularities. Hence we use reinforcement learning which has
the same architectural structure as that of our supervised learning network. This net-
work that generates text from our input is our policy network. One of the approaches
to train this network is by using policy gradients. Based on the generated text in the
context that it is being used, a reward or a penalty is assigned.

Typically, using reinforcement learning for text generation maps the definitions as fol-
lows: State is the words in the input and the words generated in the output till the current
time step. Action is the generation of the next token. Policy is the derivation of the prob-
abilities over the entire vocabulary for decoding the next token. Reward determines the
quality of the action. The training objective in this case is:

T
Z Z Po (yelse) Qlse, ) (2.10)

t=1 y;€V

Here, Py (y¢|s¢) is the likelihood of decoding the token y; given the current state and
Q(st,yt) is the reward for the sentence. The computation of this reward itself can be
framed in various ways as a function of the probability of the tokens and the end goal of
the task. For instance, this is addressed by Hu et al. (2020b) by optimizing rewards for
relevance, coherence, and expressiveness separately. As we observe in the rest of the
settings, the decoder or autoencoder responsible for generating text relies on differen-
tiable training objectives like cycle consistency etc,. These objectives are sometimes not
directly correlated to our metrics such as METEOR, ROUGE etc,.

One problem as we can see here is the credit assignment problem which determines the
sparsity or granularity of the rewards. This is how this reinforcement learning paradigm
takes its place in the proposed anchoring framework. Tailoring reward shaping to a
specific task hinders scalability to other datasets and tasks.
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+ Structured Loss: While classification deals with loss term based on the number of
misclassifications which are discrete and regression deals with continuous target, struc-
tured prediction deals with a structure or sequence of labels. The output space is finite
but dealing with it as a classification problem with permutations of target sequence as
classes is not efficient. This leads to problems in scoring if only a few tokens y; are de-
coded incorrectly. This becomes even more complicated when it comes to a sequence of
sentences. A structured loss term addresses these issues by considering the entire output
as a whole. The sentences in a sequence can form a linear or a graphical structure with
interdependencies from the rest of the sequence. This takes into account the distribution
over the entire sequence and computes the distortion with the sequence in the ground
truth.

+ Scalar Manipulation: The latent representation of the input can be modified with sim-
ple arithmetic operations to condition on the anchors. This can be done at each time step
for concatenation and addition respectively as follows

he = [he; aq] (2.11)

ht = ht + Q¢ (212)

Similarly, this can also be done for the whole input together. While concatenation in-
creases the model complexity owing to the size of the representation, other arithmetic
operations such as addition and subtraction interfere with the token representation itself.

+ Post-editing: Thisis a technique borrowed from traditional approaches which are more
modular. As the name suggests, this approach edits the text gathered post the rest of the
modules. Often this is done to replace designated tokens in tasks such as style transfer
with sentiment etc., Another closely related task is the generation of simple text from
text dense with complex jargon. The token level replacement is not a scalable approach
and often requires manual labor to gather similar or contrasting lexical items. This also

extends to reordering sentences at a discourse level.

« Attention: Model capacity determines a bottleneck in the flow of information. Atten-
tion is one such mechanism that stochastically weighs a segment of the information from
input based on it significance to the end task. This quantifies the dependence and/or in-
terdependence between the input units among themselves and also with the output units.
Attention mechanism enables determining the focus or significance of the input words
with respect to our end goal. This can be formalized in terms of the input hidden states
(hs) and the hidden state at the current time step (h;) to arrive at the attention weights
ot as follows.

h;, h,
- exp(score(hy, h;)) (2.13)

25:1 exp(score(hy, hy))

The context vector (c;) for that particular time step is then computed as a weighted sum
of the attention weights and the input hidden states.
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¢ = Z ayshg (2.14)
S
Finally, the attended representation is computed and used for further part of the network.

a; = f(cy, hy) = tanh(We[c; hy)) (2.15)

In context, we have used hierarchical attention based model for anchoring in the appro-
priate content in the generation of visual stories. For instance, anchoring a story around
characters calls for attending to these characters to weave into the text. In addition,
attention-based encoders and decoders showed powerful results and led to transformer
(Vaswani et al., 2017b) models. This tapped an unprecedented way to capture essential
information in modeling approaches.

« Latent Variable Modeling: Contemporary techniques in text generation with latent
variable models are instantiated in flow models and variational autoencoders. The latter
models are also used to disentangle various key properties of the input. Disentangle-
ment is deeply motivated characteristically by the need for interpretability by humans
which is a crucial goal of artificial intelligence. Recent times have seen a growing inter-
est in cohabitant pretraining and representation learning. We are not going into details
about the importance of representation learning itself. The goal here is to find statisti-
cal regularities based on underlying interactions in the data. Factorizing the segments
of representation corresponding to the content, structure, and surface forms enables ef-
ficacy in using this data and transferring the knowledge across tasks. Learning these
specific properties implicitly within our modeling approaches potentially leads to over-
fitting to the data and hinders generalization. The explicit learning of these regularities
motivates disentanglement. A generative model has to be non-repetitive and diverse
which introduces using a variational autoencoder (VAE) in text generation settings. Let
po(x|z) be the parameterized likelihood with the generative parameter 6. Similarly, let
¢4(z|x) be the parameterized approximate posterior with variational parameter ¢. This
is explored in partial anchoring of our framework by Wang et al. (2019d). The key dif-
ference is that an input is mapped to a distribution instead of a fixed vector. Usually this

distribution is a Guassian parameterized with mean and variance.

Z(0, ¢, x,2) = Eqg,[log po(x|2)] — Drr.(q4(2[%)[[p(2)) (2.16)

In the right hand side of the equation, the first term represents the reconstruction loss
and the second term forces the learnt distribution to be close to guassian of known mean
and variance.

The data itself comprises a variation in the narrative properties. This, for instance, can
be seen through the source of data such as Twitter, topics, domains, genres of texts etc,.
While these are the generative factors in the data, the disentangled VAE is capable of
inferring these distinct underlying factors. While we have disentangled dimensions or
factors of the text, varying the degree of the corresponding factor smoothly navigates
the tone of the text towards that dimension. Xu et al. (2019) attempted controllable text
generation without any supervision by enforcing a structural constraint based on global
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variations. In this way, they have examined transitions between topic and sentiment
during generation. Alternately, Chen et al. (2019b) proposed disentangling structure
and semantics in a multitask framework by introducing losses for paraphrase reconstruc-
tion, discriminative paraphrase, and word positions. Along similar lines, in addition to
multitasking between content and style, John et al. (2019) introduced adversarial loss to
preserve the content while varying style. This discriminative training was, in fact, pre-
viously explored by Hu et al. (2017). Hence disentanglement and interpretability is not
only an active area of research but also a prospective direction in factorizing the different
properties and thereby addressing each according to their nuances.

2.3.1 Anchored Text Generation

This section provides a peek into the modeling approaches in some of the text generation
tasks through the lens of the anchoring framework. As we will discuss in this section, the
anchors for some of them are mid-way between N-Local and N-Global. Text generation sys-
tems are pervasive in everyday Al applications all around us. There are three paradigms of
text generation. They are text-to-text, data-to-text and none-to-text paradigms. Moreover, in
order to make these universally useful text generation systems more natural, they are usu-
ally conditioned with various factors derived from the properties of human communication.
In the framework discussed in the previous chapter, generation is anchored in the narrative
properties. These high-level properties can be realized with different variants and forms such
as emotional, personality-based, or topic-aware generation. This thesis focuses on modeling
approaches of utilizing these anchor or conditioning units in deep learning and traditional
approaches.

There is a neat synergy between the tasks of language modeling and text generation. Lan-
guage modeling predicts the next word given the history of the sequence until the current
time step. Similarly, text generation models predict the next given the generated sequence so
far in addition to some conditioning input.

T
LanguageModeling : p(Y) = Hp(yt|y<t) (2.17)
t=1
T
Generation : p(Y|X) = Hp(yt\X, Y<t) (2.18)
t=1

Based on the different paradigms, X can take the form of images, text or other data.

Summarization:  An important distinction that occurred while shifting from extractive to
abstractive summarization is the step of extracting important or relevant information. This
is usually taken care of by the encoder. As the size of the document or the number of the
documents increases, as in the case of multi-document summarization, it hinders the encoding
of important information. Broadly, I present N-Local and N-Global anchoring to address the
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problems of content selection, copying, hybridized word, and character modeling and distrac-
tion techniques.

« N-Local Anchoring: One way to address the aforementioned issue is using a sepa-
rate content selection network. A very intuitive and elegant solution is proposed by
Gehrmann et al. (2018) which is a two-step process. The first step is a data-efficient
content selector that determines binary tags based on the presence of words in the final
summary. The second step uses this information to constrain the model to generate from
likely phrases using a bottom-up attention mechanism. The anchor units are derived
from word or phrase level masking and this anchoring is provided locally by providing
the words that are predicted to be present in the final summary. Similarly, Chen and
Bansal (2018) have introduced a convolutional encoder that computes representation for
each sentence. The anchor units are derived by first selecting the entire salient sentences
using a pointer network and then using an abstractive layer to translate them through
more fine-grained guidance into summaries. Similarly, Nallapati et al. (2016) proposed
two approaches that classify whether a sentence is present or not.

« N-Global Anchoring: A crucial issue to tackle is that sometimes in summaries we would
like to replicate the information from the source document. See et al. (2017) proposes a
neat way of copy mechanism based on context vectors from attention. While decoding
each word, there is a probability p,e, with which the generator word is picked and 1 —
Pgen With which we copy over the word in the form of sum of attention distributions
over the source document. This gives the final probability distribution for that time step.
The copy probabilities are anchoring into the content by the means of soft combination
of word representations from the attention context vectors. This is a means of anchoring
that is in midways between N-Local and N-Global anchoring since only a few words are
anchored by copying from the source document. While attending to the words that we
want to copy is essential, it is also important to look at the rest of the document to get
a wider range of content. In this regard, Chen et al. (2016) proposed distraction based
techniques. The idea is to distract the model and enable it to navigate the rest of the
document in order to assimilate the entire meaning. The entire history context vector
and the current context vector determine this distraction at the summary level.

In contrast, Chang et al. (2018a) also address summarization using a hybrid word-character
approach that preserves the advantages of both word and character-based representations.
This is a plain seq2seq model without any explicit anchoring.

Image Captioning: This task falls in the category of data-to-text generation with data
being the images. The main challenges in this task include visual encoding objects, semantic
concepts, mapping from language to image regions. The prior work to address these issues can
be categorized into both the anchoring mechanism as follows.

« N-Local Anchoring: Xu et al. (2015) used stochastic hard and deterministic soft attention
on images to perform image captioning. Basically, the model learns alignment between
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the visual features and words, and these attention scores are used to decode a caption.
This alignment is learnt in an end-to-end fashion without any hierarchical or dual-stage
modeling. The guidance from each of the image regions provides a fine-grained guid-
ance to the words in the caption. However, sometimes there are no grounded positions
or representations in an image that each word in the caption can attend to. For instance
words like “a”, “the”, and also other words that are strongly guided by the language
model. Hence, in addition to spatial attention, Lu et al. (2017) use a gating mechanism
that was introduced in this work as a visual sentinel to determine when to look at the
image. This provides a tradeoff between the support from the image and the confidence
of the language model. And an adaptive attention is proposed by attending to the spa-
tially attended image features or the visual sentinel vector to derive the context vector
for the current time step in decoding. Essentially the sentinel enables a bridge between
N-Local and N-Global anchoring into the spatial regions of the input image. The anchor
units here are image regions and the words decoded so far. Similar to the bottom-up
summarization seen earlier, Dai et al. (2018a) propose a dual-stage model that first ex-
tracts an explicit semantic representation in the form of verbs and nouns from the given
image. A set of noun phrases are extracted from captions and binary classification is
performed for the presence of each of the noun phrases in an image. The second stage
generates the caption in a bottom-up recursive fashion. In this stage, a list of ordered
pairs of NPs are maintained. A connecting module attempts to combine these phrases.
This provides dense and fine guidance in generating each word. The anchor units are
noun phrases which are termed as semantic concepts in this work.

+ N-Global Anchoring:

Venugopalan et al. (2017) proposed a model to identify parts of the image like objects
which can be used to decode a caption, particularly helpful when there is not a lot of
annotated data for captions. The visual features are trained for object detection with
image-specific cross-entropy loss. Another language model is trained on huge text cor-
pus such as Wikipedia optimized with maximum likelihood. These image-specific and
text-specific representations of the previously generated words are added to provide an
object-conditioned caption generator. However, the problem of using a pretrained object
detector and language model is catastrophic forgetting. So they perform joint training
and share parameters between these models along with optimizing for a combined loss.
Detecting the object serves as a theme for generating an entire caption. Next, unsuper-
vised image captioning is also done through language pivoting (Gu et al., 2018b) where
two models, the first which is a captioning model and a machine translation model op-
erate in conjunction to generate a sentence in another language where parallel data is
unavailable. The model is anchored in the machine translation space.

Johnson et al. (2016) propose dense captioning, where the idea is to generate several sentences
corresponding to each of the detected regions in the input image. They introduce a localization
layer that does region proposals and thereby region features which are processed with a fully
connected recognition network followed by RNN language model to generate captions. With
respect to each of the regions, the caption has N-Global anchoring. However, since the model
also identifies the regions, with respect to the entire image, the model is anchored locally.
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Storytelling: A storyisa set of connected events which can be real or fictional that are man-
ifested in various forms (such as pictures, text, signs) and adapting to various cultures. With
the increasing success of seq2seq models in capturing long dependencies, the ever-standing
goal of generating stories based on human constraints and surroundings has emerged as one
of the very interesting tasks in NLP. The conditions can be static or dynamic based on the
theme, characters, storyline, the nature of the expected ending etc.,

o N-Local Anchoring: As discussed, one of the forms is generating text from images. This
is also known as visual storytelling (Huang et al., 2016). The dataset supports the anchor-
ing of each story sentence in the corresponding image caption in addition to the image.
Martin et al. (2018) propose a midway abstracted representation of stories in terms of
events. An event2event network first identifies the next event given the events so far.
This sequence of events is then converted into sentences. Xu et al. (2018a) also introduce
a dual-stage skeleton-based story generation where skeleton extraction is performed us-
ing sentence compression techniques to identify the most important words. Extensions
with respect to event structures are also annotated with a framework to tag causal and
temporal relations in stories by Mostafazadeh et al. (2016) that can provide N-Local an-
choring for story generation. Also, Tambwekar et al. (2018) apply reward shaping to
provide dense rewards for certain related verbs in order to achieve a pre-specified end
goal of a story. This also introduces controllability in the sequence of anchors. Yao et al.

(2019) also provide static and dynamic plans based on the frequency of words.

« N-Global Anchoring: An N-Global anchoring can be provided in terms of the theme of
the story. Fan et al. (2018) uses a hierarchical approach to first decode a premise or a
prompt for the story. Following this, a modified cold fusion technique is applied to a
combination of a pre-trained language model and a trained seq2seq model. Similar to
Tambwekar et al. (2018), when a pre-specified ending is given in sparse reward settings,
this categorizes as N-Global anchoring.

Dialog Response Generation: Dialog generation is the task of modeling a discourse or
conversation between a bot and humans to emulate the natural exchange of ideas or thoughts.
This can be goal-oriented or for chit-chat. Often, the conditions from which the anchors are
derived are dynamic based on the progress of the dialog.

« N-Local Anchoring: Xing et al. (2017) introduce a topic aware modeling technique for
dialog response generation. A biased probability distribution of words is computed from
a joint attention over the topic words and the vocabulary space from the input messages.
By adding the topic words probability, the generation distribution is biased to the topic
words. Similarly, Dziri et al. (2019) proposed a topical hierarchical recurrent encoder-
decoder model to derive context and dynamic topic attention to decode each word. This
topic-aware attention is provided for each time step of the decoding. Hence, these models
locally anchor topics in response generation. Zhou et al. (2018c) present an emotional
chatting machine that decodes each word based on the probability distribution between
the softmaxes over the vocabulary and emotion. The emotion is modeled with an external
memory comprising of the emotion-specific words. Similarly, Ghazvininejad et al. (2018)
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incorporate world facts and contextual facts before the decoder to build a knowledgeable
conversation model.

« N-Global Anchoring: Luan et al. (2017) address generation of dialog response in a target
personality by proposing a multi-task learning architecture. The primary task is mod-
eled using a seq2seq network with message and response as input and output. Another
autoencoder model is trained with the target speaker data. The decoder parameters be-
tween both the networks are shared and the model. In this way the speaker role is
adapted to response generation by N-Global anchoring using shared decoder parame-
ters. Also, Mou et al. (2016) use point-wise mutual information to derive a keyword,
which is usually a noun, and generate the entire response using both forward and back-
ward conditioning on this keyword.

2.4 Multiview Interactions with Anchors

The modeling challenge now boils down to how these anchors (derived from textual modality)
interact with the other modalities or views. The secondary view in this case is visual modal-
ity or another language. Figure 2.5 presents 3 categories of methods that anchors and other
modalities (both textual and visual) interact to generate textual output. For representational
purposes, let us consider the secondary view to be visual modality. So, with the input images
I, and the output text T, anchors A and predicted anchors A’ in text, these main categories are:
(a) independent modeling, (b) fusion modeling, (c) latent modeling.

Deriving Anchors:  Identifying appropriate anchors corresponding to these properties is
essential to bring forth their manifestation in the generation. These anchors are often not read-
ily available or are paired with the data. Hence we resort to the following weakly supervised
noisy approximates including (i) training on external data and using the resulting model to
predict weak labels, (ii) using off-the-shelf tools to weakly annotate the required anchors (iii)
deriving anchors from context representations.

Independent Anchoring: The individual views are self-governed and their representations
are not subjected to control by the other views. Scoping the definition means that the textual
anchors are not available along with visual inputs. In such circumstances, we can utilize the
weakly annotated anchors only in the output. The first setup is without the use of any forms
of anchors where only the images are used to generate the text (I — T'). To improve the opti-
mization for the representation of the anchors, the second setup multitasks with the prediction
of the anchors as an auxiliary task for generating the text. And finally, this is extended to the
third setup with a hierarchical multitasking model where the predicted anchors are leveraged
to generate text along with the images.

Fusion Anchoring: In this category, both the views i.e., anchors and images are modeled
together. The multimodal representation fusion transforms the independent representations
from these different views to form a super representation/vector with combined concatenated
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FIGURE 2.5: Interactions among multiple views (visual modality with textual anchors)

information. The early fusion occurs at the feature representation stage where these modal-
ities are directly combined before the actual modeling. The late fusion methods utilize these
representations independently and combine them in the decision making stage. In addition,
the fusion methods can also be combined with the multitasking or hierarchical multitasking
that we discussed above.

Latent Anchoring: Instead of directly using the representations of the anchors, they can
be modified based on selective cross attention based on the context or the images. This la-
tent vector is then used in any of the techniques mentioned above including fusion modeling.
multitasking etc.,

The rest of the thesis presents the utility of these methods to anchor content, structure and
surface form properties of narratives. We will be revisiting the comparison of these methods
for various tasks.

2.5 Conclusions

The past decade witnessed text generation dribbling from niche scenarios into several main-
stream NLP applications. This urges the need for a snapshot to retrospect the progress of varied
text generation tasks in unison. In this chapter, we highlighted some of the existing challenges
in each of the three main task-agnostic components of generation: training paradigms includ-
ing generative pre-training, decoding strategies, and evaluation. In addition, this section also
includes a dense account of key challenges along with some techniques to address them. We
believe this section manifests as a compact resource for major outstanding challenges in this
vast maze of neural text generation that can assist researchers foraging to situate their work
in a task-agnostic manner to accelerate the progress in the future. We believe understanding
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this space helps us foresee upcoming challenges in context by broad audiences, researchers
and practitioners, in academia and industry. Moving forward, we envision that there are some
crucial directions to focus on for impactful innovation in text generation. These include (i) gen-
eration in real-time (ii) non-autoregressive decoding (iii) grounding with situated contexts in real
and virtual environments and games (iv) consistency with personality and opinions especially for
virtual agents (v) conditioning on multiple modalities together with text and data (vi) investigat-
ing better metrics to evaluate generation to correlate better with human judgments (vii) creative
text generation, such as jokes, sarcasm, metaphors etc., (viii) utilizing large scale pre-trained lan-
guage models as knowledge sources, (ix) reducing societal biases and generating text ethically, (x)
setting up benchmarks to evaluate generation agnostic and specific to individual tasks. We believe
this is the right time to extend advancements in any particular task to other tightly coupled
tasks in order to revamp improvements in text generation as a holistic task in the future.

An upsurge in the interest in virtual beings invites research questions and opportunities to-
wards building a generative environment. Such virtual conscious characters capable of un-
derstanding, narrating, and responding in real-time have immensely useful applications such
as digital education, assisting the visually impaired, collaborative authoring etc., Automated
generative narratives are a direct consequence of an explosive complexity of state space that
is laborious for humans to express. It merely does not encompass the quantity but also opens
up doors to diversified quality with rich personalized requirements and interactions. Existing
technologies are capable of dealing with a subset of such diversities and demand continual
work towards developing distinctive interactions that make a difference in the narrative. This
broad goal also appeals to different modes of interactions with these virtual characters in the
future. This thesis is a language technologies based step towards achieving this multiview goal.
I believe this thesis is scratching the surface of an exceptionally potential field of study to assist
humans.
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Content in Narratives: N-Local and N-Global
Anchoring

The number one factor in engagement is
relevance, because relevance drives out
resistance.

Clive Shepherd

Content units are the basic building blocks of a narrative, and the way these units are arranged
determines the structural property of the narrative. Generating text with appropriately rele-
vant content is the first and foremost requirement to communicate our intent. Hence funda-
mentally identifying the relevant content that acts as underlying bolsters is the core part of
presenting the appropriate and relevant information. This information can be either in the
form of a skeleton indexing into every unit of the narrative or probing and providing a general
theme for the narrative. The former is N-Local anchoring, and the latter is known as N-Global
anchoring.

Formally, N-Local anchor units are indexed into every unit of the narrative individually and
(@)

explicitly. Hence there is a one to one mapping for each of a,”’ to each of the generated

This chapter is based on the following papers:
 ‘“Reading Between the Lines: Exploring Infilling in Visual Narratives” (Chandu et al., 2020a)

« “Denoising Large-Scale Image Captioning from Alt-text Data using Content Selection Models”(Chandu et al.,
2020b)

« “Induction and Reference of Entities in a Visual Story” (Dong et al., 2019¢)
« “Tackling Biomedical Text Summarization: OAQA at BioASQ 5B” (Chandu et al., 2017a)
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sentence sz(j ). These anchor units are fine-grained to each and every unit of generation. To
incorporate this, there is a bijective function between anchor units and generated text. Given

I; and A;, the task is to generate IN;.

The anchors A; can take several forms facilitating the content in the narratives. In the case of
N-Local anchoring, we will be looking into inducing entities in the task of visual storytelling
in a supervised learning setting. The anchoring here is done via entity skeletons. Anchors are
represented in three forms: surface forms, nominalized forms, abstract forms. This is addressed
using hierarchical attention-based models to anchor the entity skeletons in different levels.

Similarly, for N-Global anchoring, IN; which contains sgk) is assembled from an anchor A;
which is not further split to k units to provide finer level guidance. In this case of N-Global
anchoring, a theme or topic is provided for the whole narrative and not directly for each sen-

tence.

N-Global anchoring is examined in the case of topic-based summarization, where the topic
is derived from a query. This topic dictates the N-Global anchor of the summary, which de-
termines the extraction of relevant content sentences. In this case, there are three forms of

representing the anchors that comprise of surface forms, expansion forms, embedding forms.

In this chapter, we will have a closer look at each of these anchors based on granularity lev-
els. As mentioned above, the focus is not deriving these anchor points but utilizing them in
aggregating a narrative. The rest of the chapter is organized as follows. In §3.1, we will dis-
cuss the related work in the domains of narrative generation, particularly visual storytelling
and biomedical summarization, in the perspective of N-Local and N-Global anchoring. §3.2
describes how anchors can be used to denoise large-scale image captioning, demonstrating the
cross-lingual transferability and controllability that they offer. This is followed by §3.3 which
delves into details of anchoring N-locally or in a fine-grained fashion for generating stories
from visual input and image captions. Subsequently, in §3.5, a query-based summarization
system is discussed to derive the content based on the elements in the query. Finally, §3.6
concludes this chapter and describes prospective research directions that can be taken up in
this domain.

3.1 Related Work

Multimodal Language: Language generation from visual modality has seen a steep rise in
interest with the introduction of several large scale tasks such as image captioning (Hossain
et al., 2019), visual question answering (Antol et al., 2015) and visual dialog (Das et al., 2017;
Mostafazadeh et al., 2017; De Vries et al., 2017). While the task of generating a sentence from a
single image, i.e., image captioning has been well studied in the literature, generating a long-
form sequence of sentences from a sequence of images has been catching attention only in the
recent past. Hence, the natural next step is towards long-form sequential generation in the

form of stories, procedures, etc., visual narrative telling.
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Visual Storytelling:  Research at the intersection of language and vision is accelerating
with tasks like image captioning (Hossain et al., 2019), visual question answering (Wu et al.,
2017), visual dialog (Das et al., 2017; Mostafazadeh et al., 2017; De Vries et al., 2017; de Vries
et al., 2018). Huang et al. (2016) ventured into sequential step-wise generation of stories by
introducing visual storytelling (ViST). Recent methods have tackled ViST using adversarial
learning, reinforcement learning (Wang et al., 2018; Huang et al., 2019c; Hu et al., 2020b),
modality-fusion (Smilevski et al., 2018), traditional seq2seq models (Kim et al., 2018; Jung et al.,
2020; Hsu et al., 2018) and explicit structures (Bosselut et al., 2016; Bisk et al., 2019). Chandu
et al. (2019a) also proposed a dataset of 16k recipes in a similar form. While these are all cook-
ing recipes, the ViPT dataset comprises a mixture of ten different domains. Also, our dataset
is about 2.8 times larger than the storyboarding dataset, with almost double the number of
procedures in the domain of cooking recipes itself. Though the stories in ViST demonstrate a
sense of continuity, the overarching sequential context is feeble. Procedures such as cooking
recipes (Salvador et al., 2019; Wang et al., 2019b) on the other hand, demonstrate this charac-
teristic inviolably. This ensures a coherent underlying context and structure in the narrative.
Hence, we present a large-scale ViPT dataset to encourage research in this direction.

Conditioning on raw input:  Most of the foundational techniques used to address this task
rely heavily on seq2seq models. In such approaches, anchoring is a proxy for conditioning on
the raw input images. Kim et al. (2018) proposed a seq2seq framework that takes in the raw
images from which ResNet features are extracted to model the story text corresponding to each
individual image. Smilevski et al. (2018) proposed late fusion techniques to address this task.
We derive motivation from these techniques to introduce entities and references as skeletons.

Anchoring Content in Generation:  Grosz et al. (1995) was one of the initial works delv-
ing into how entities and their referring expressions are used in a discourse context. Several
research efforts for narrative generation tasks have spawned from introducing a schema or a
skeleton. Martin et al. (2018); Clark et al. (2018b) explored the usage of event representations
and predicting successive event forms to generate the entire story. Fan et al. (2018) proposed
hierarchical frameworks for story generation conditioned on a premise or a topic. This work
was also extended by decomposing different parts of the model by generating a surface real-
ization form of the predicate-argument structure by abstracting over entities and actions (Fan
et al., 2019a). Xu et al. (2018a) used reinforcement learning first to generate a skeleton (the
most critical phrases) and then expand it to a complete sentence. Yao et al. (2018a) proposed
a hierarchical generation framework in which, given a topic, the model first plans a storyline
and then generates a story based on the storyline. Recently, Zhai et al. (2019) proposed a model
to generate globally coherent stories from a fairly small corpus by using a symbolic text plan-
ning module to produce text plans and then generating fluent text conditioned on the text plan
by a neural surface realization module. Ammanabrolu et al. (2019b) showed that event-based
generation often generated grammatically correct but semantically unrelated sentences and
present ensemble methods for event based plot generation as a solution.

Content selection from vision: There is a rich body of work in improving content selection
for IC (Feng et al., 2019), mainly focused on scene graph based skeletons (Gu et al., 2019b; Kim
et al,, 2019b; Chen et al.,, 2020a; Yang et al., 2019c). However, these annotations with objects
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and relations are expensive, thereby constraining the scaling up to multiple languages and
diverse concepts. Our work delegates this responsibility of identifying content to the language
modality by using inexpensive, off-the-shelf tools for weak supervision.

Content selection from language: An orthogonal body of work relies on skeletons derived
from language using hierarchical phrase modeling (Tan and Chan, 2016; Dai et al., 2018b),
semantic attention (You et al., 2016), attribute LSTM (Yao et al., 2017), skeleton-based attribute
filling (Wang et al., 2017), adaptively merging topic and visual information (Liu et al., 2018a),
multimodal flow (Li et al,, 2019a) and concept guided attention (Li et al., 2019b). Note that
all these prior works utilize human-curated gold datasets such as COCO (Lin et al., 2014) and
Flickr30k (Plummer et al., 2015a) with clean coupling between captions and images. However,
scaling them to large and diverse concepts is expensive. We utilize uncurated silver standard
datasets with the advantages of richness and diversity at the cost of noisy text. Hence we show
the effectiveness of a dual staged approach that denoises the captions by skeleton prediction.

Cross-lingual and controllable captions: Past work on cross-lingual captioning focused
on translation (Barrault et al., 2018), fluency guidance (Lan et al., 2017), using large datasets
(Yoshikawa et al., 2017) and more recently by pivoting on source language captions (Thapliyal
and Soricut, 2020; Gu et al., 2018c). We go a step further and pivot on the predicted English
skeleton to improve multilingual captions due to a dearth of similar off-the-shelf tools in other
languages. We qualitatively explore controlling length via skeletons which was explored be-
fore via adding length to decoder (Luo and Shakhnarovich, 2020; Cornia et al., 2019). Other
controllable aspects include stylistic captions (Guo et al., 2019b; Mathews et al., 2018) language
(Tsutsui and Crandall, 2017) which are potential extensions to our unpaired captioning work.

Interpretable Natural language skeletons: Despite remarkable advancements of large
scale end-to-end models, recent work identifies spurious correlations in the datasets that po-
tentially leads to high performances (Geva et al., 2019; Tsuchiya, 2018). To mitigate this,
researchers began dissecting intermediate components of the models with the goal of inter-
pretability to humans (Wiegreffe and Pinter, 2019; Thorne et al., 2019; Lipton, 2018) as opposed
to implicit explanation (Xu et al., 2015). Our work can also be viewed as an instance of ex-
plaining captions through skeleton predictions similar to recent works on rationalizing answer
predictions for question answering (Latcinnik and Berant, 2020). We view this interpretable
intermediate layer as a peek into the model predictions helping us study more subtle but cru-
cial dataset attributes, such as gender bias, and provide human-in-the-loop interventions to
improve the final caption.

Infilling and Masking:  The idea is motivated by cloze tasks (Taylor, 1953) that address
readability and understanding. However, recent advances in learning a masked language
model (Devlin et al., 2019b) paved the way for a new trend in exploring masked contexts (Song
et al., 2019; Lewis et al., 2019). Generation of meaning patches with missing portions of text
is experimented by Zhu et al. (2019); Donahue et al. (2020); Fedus et al. (2018b) to generate
meaningful patches.Similarly, Ippolito et al. (2019) proposed a hierarchical model to generate
middle span using a bag of predicted words from left and right contexts. In a similar spirit, this
paper studies the effects of infilling techniques for visual narrative generation. An alternate
stream of work to improve the context in stories include providing supporting information
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such as entities (Clark et al., 2018b; Xu et al.,, 2018a), latent templates (Wiseman et al., 2018),
knowledge graphs (Yang et al., 2019b), etc., explicitly. In contrast to this, infilling provides an
opportune platform to learn contextual information implicitly. Our work is positioned at the
intersection of infilling and multimodal language generation.

N-Local Anchoring in Visual Storytelling: Park and Kim (2015) proposed a coherent re-
current convolutional network that utilizes an entity-based local coherence model that resolves
local transitions. They prepare an entity grid with a cross product between the sentences and
the available discourse entities with annotations on the grammatical role. In this way, there
is N-Local anchoring of entities in generating descriptions for a sequence of images with fine-
grained guidance. There has been other work by Liu et al. (2017b) who explored the task of
generating a sequence of sentences for an image stream by anchoring in the joint semantic
space. The joint here represents the multimodal joint space of vision and language. In addition
to conditioning the input image itself from the sequence of images, each step is anchored in
the semantic space that draws correspondences between the image and sentence embeddings
by minimizing contrastive loss between them. This model leverages the semantic coherence
in a photo sequence with a bidirectional attention-based recurrent model to generate stories
from images.

Our work in N-Local anchoring in visual storytelling falls along the lines of generating a story
from visual input based on schema.

Biomedical Summarization:  The problem of extracting exact answers for factoid ques-
tions from this data is being studied extensively, resulting in the development of several tech-
niques, including inferencing (Moldovan et al., 2002), noisy-channel transformation (Echihabi
and Marcu, 2003) and exploitation of resources like WordNet (Lin and Hovy, 2003). However,
recent times have also seen an interest in developing ideal answer generation systems that can
produce relevant, precise, non-repetitive, and readable summaries for biomedical questions
(Tsatsaronis et al., 2015).

N-Global Anchoring in Content Selection: A query-based summarization system called
“BioSQUASH” Shi et al. (2007) uses domain-specific ontologies like the Unified Medical Lan-
guage System (UMLS) (Schuyler et al., 1993) to create a conceptual model for sentence ranking.
Experiments with biomedical ontology-based concept expansion and weighting techniques
were conducted, where the strength of the semantic relationships between concepts was used
as a similarity metric for sentence ranking (Chen and Verma, 2006). Similar methods (Yenala
et al., 2015; Weissenborn et al., 2013) are used for this task where the difference lies in query
similarity ranking methods. Our work focuses on anchoring the content through novel sim-
ilarity computation to gather the content anchored in the question. Fan et al. (2018) adopt a
hierarchical approach to generate a premise and then stories to improve coherence and fluency
where the narration is driven from N-Global anchoring in the theme or the premise.
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(Translation: a collection of some books)

FIGURE 3.1: Overview of our approach: (1) skeleton prediction & (2) skeleton based IC; com-
pared to conventional IC. Output captions shown in English (En), Hindi (Hi) and Italian (It).

3.2 Content selection for Denoising Image Captioning

Training large-scale image captioning (IC) models demands access to a rich and diverse set of
training examples that are expensive to curate in terms of time and manpower. Instead, alt-text-
based captions gathered from the web are a far cheaper alternative to scale with the downside
of being noisy. Recent modeling approaches to IC often fall short in terms of performance
in leveraging these noisy datasets in favor of clean annotations. We address this problem
by breaking down the task into two simpler, more controllable tasks — skeleton prediction
and skeleton-based caption generation. Specifically, we show that sub-selecting content words
as skeletons helps in generating improved and denoised captions when leveraging rich yet
noisy alt-text—based uncurated datasets. We also show that the predicted English skeletons can
further cross-lingually be leveraged to generate non-English captions and present experimental
results covering caption generation in French, Italian, German, Spanish, and Hindi. We also
show that skeleton-based prediction allows for better control of certain caption properties, such
as length, content, and gender expression, providing a handle to perform human-in-the-loop
interpretable semi-automatic corrections.

In the last demi-decade, most of the NLP fields ventured into reaping the benefits of utilizing
large-scale raw data (uncurated) from web crawls. This trend resonated with new uncurated
image-captioning datasets like Conceptual Captions (Sharma et al., 2018). While these uncu-
rated alt-texts are superior in terms of size and diversity in the dataset, they are inferior to the
well-curated datasets (Lin et al., 2014; Wang et al., 2019¢) in terms of noisiness in the captions.
The content in the alt-text for the image is often distorted in favor of the intent or the context
in which the image is presented. For example, the ground truth alt-text caption for a house
is ‘house for sale’ instead of ‘front view of a house’. This noise hinders exploiting these huge
datasets to the fullest.

We present a simple two-staged approach by separating the content selection from caption
generation as illustrated in Figure 6.1. In contrast to most IC approaches (Hossain et al., 2018;
Sharma et al., 2020), which hallucinate incorrect content from noisy training data (i.e ‘custom
posters’ and ‘wedding’), our approach first focuses on denoising the content words (i.e ‘collec-
tion’ and ‘book’) that are further used to generate a relevant caption. We refer to this sequence
of concept words that are key pieces of information consistent with the image as a skeleton.
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Sub-selecting skeleton words that curb noisiness are automatically extracted from the alt-text
captions. We focus on language-based skeletons that are derived from captions (Kuznetsova
et al,, 2014; Fang et al,, 2015; Dai et al., 2018b), rather than expensive visual-based skeletons
derived from image, e.g., scene graphs, (Wang et al., 2019a; Yang et al., 2019c), which are hard
to scale. More concretely, we introduce an intermediate task of distantly supervised skeleton
prediction in the end to end IC pipeline: The end-to-end task of IC is (fy : I — C) is broken
down into a dual-staged pipeline: skeleton prediction (fy : I — S) and skeleton based caption-
ing (fs : I,S — C), where [ is the image, S is the skeleton, and C is the caption (Kulkarni et al.,
2013; Li et al., 2011; Elliott and Keller, 2013; Fang et al., 2015). We present a comparison be-
tween encoding, decoding, and autoencoding these skeletons. As such, our skeleton prediction
solution addresses the semantic gap problem (Li and Chen, 2018; Yao et al., 2018b).

We illustrate the effectiveness of this approach on noisy uncurated datasets in the following
ways. (1) We demonstrate that sub-selecting content words with an intermediate skeleton pre-
diction task denoises content thereby leading to better human evaluation results on captioning.
We also conduct extensive analysis on multimodal discourse relations to understand the rea-
sons for this improvement (Alikhani et al., 2020) being the generation of more visible captions.
(2) Scaling the large uncurated datasets to other languages is still a bottleneck. We show the
transferability of learning English skeletons to improve caption generation in other languages —
English, French, Italian, German, Spanish, and Hindi. (3) The predicted skeletons qualitatively
demonstrate other potential benefits, such as controllability of content, length, and gender via
a natural language-based interpretable interface, which enables one to additionally interact
with the generation process.

3.2.1 Datasets Description

Conceptual Captions (CC): CC (Sharma et al., 2018) is a large-scale dataset of 3.3M image-
caption pairs covering a large variety of processed alt-texts from the web. The focus of this
work is on denoising noisy captioning datasets (web-scale, not human-verified). Hence our
experiments are focused on CC, which is a step closer to having large and diverse alt-texts
from the web at the cost of being noisy. In contrast, other popular datasets like COCO (size
120K) (Lin et al., 2014) and Multi30k (Elliott et al., 2016) are hand-annotated by humans and
contain high quality images/captions. As a resource, CC is useful both for measuring progress
on large-scale automatic captioning (Sharma et al., 2018; Changpinyo et al., 2019; Alikhani
et al., 2020; Thapliyal and Soricut, 2020), as well as pre-training data for a variety of vision-
and-language tasks (Lu et al., 2019a; Chen et al., 2020d; Tan and Bansal, 2019; Su et al., 2020; Li
et al., 2020a).

Pre-processing: CC might contain a long tail of spelling errors and other typos due to the
automatic curation of the data. Therefore, we perform frequency-based thresholding of the
skeleton words to abate this noise. We experimented with several values for this hyperparam-
eter and selected a minimum occurrence count of 50, providing the desired balance between
noise and vocabulary size.
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FIGURE 3.2: Model architecture of our skeleton based captioning along with text as side at-
tention mechanism between visual (v) and textual (w) modalities. The skeleton is present
optionally in the encoder, decoder or both based on our three approaches.

Multilingual CC: To demonstrate the cross-lingual transferability of our skeletons, we use
automatic caption translations' for CC, similar to the approach in (Thapliyal and Soricut, 2020).
Note that the skeletons are learned from and predicted in English (not in the final target lan-
guage), making the English skeleton act as an interlingua. Since multilingual captions are all
pivoted on English skeletons, this nullifies the requirement to 1) collect large-scale image-
caption pairs in various languages, and 2) have access to linguistic tools to analyze captions in
each language. We perform experiments on five languages — French, Italian, German, Spanish,
and Hindi - which vary in word orders and token overlap with the English skeletons.

Conceptual Captions T2 test set: For human evaluations across all languages, we use T2
test set used in the Conceptual Captions Challenge?. It comprises of 1K out of domain images
from the Open Images Dataset (Kuznetsova et al., 2020).

3.2.2 Models Description

IC requires paired examples of images and captions (I, C), where ¢ € C correspond to tokens
in a caption (c1, ¢3, ..., ¢;), that are often expensive to gather. In contrast, our approach uses
intermediate skeletons as an effective way to leverage noisy, uncurated alt-text-based captions
to train a model to generate more visually informative captions. An overview of both the stages
is presented in Fig. 6.1.

"We use the Google Cloud Translate APIL.
*http://www.conceptualcaptions.com/
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3.2.2.1 Distantly Supervised Skeletons

Since gold standard skeleton words are usually unavailable for IC datasets, we use distant
supervision to get these labels. We retrieve syntax annotations (specifically parts-of-speech
(POS) and word lemmas), using the Google Cloud Natural Language API ® over the caption
texts. We use these annotations to experiment with the following four variants of skeletons.

1. Nouns & Verbs: This includes a sequence of lemmas of all the nouns and verbs in a caption.

2. Salient Nouns & Verbs: The saliency of nouns and verbs is determined using tf-idf scores,
treating each caption as a document. For each caption, the top 2 highest scoring noun and verb
tokens (lemma) are selected. This examines if saliency contributes towards the effectiveness
of the skeleton.

3. Nouns: This includes lemmas of all the nouns. This helps us untangle the roles of nouns vs.

verbs in the effectiveness of the skeleton.

4. Iteratively refined captions: Under this condition, the output of the baseline Img2Cap model
serves as the ‘skeleton’ for the next skeleton-based captioning stage. The rationale behind this
skeleton is to compare the utility of sub-selecting skeleton words based on POS in denoising
caption content compared to a full caption prediction.

We ignore skeleton tokens with a frequency of less than 50 in our training data to reduce
noise. This subselection of content based on POS tags and downscaling of vocabulary helps

retain important words as skeletons resulting in a label size of 5k.

3.2.2.2 Modeling

Baseline (Img2Cap): We adopt an encoder-decoder (fy : I — C) IC model based on Trans-
formers (Vaswani et al., 2017a) following recent state-of-the-art approaches (Sharma et al.,
2018; Yu et al,, 2019; Changpinyo et al., 2019; Huang et al., 2019a; Cornia et al., 2020). Our
model uses the IC framework introduced in Changpinyo et al. (2019). Inspired by the bottom-
up and top-down approach (Anderson et al., 2018a), the input image I is represented as a bag
of features containing one global and 16 regional, fine-grained feature vectors. The regional
features correspond to the top 16 box proposals from a Faster-RCNN (Ren et al., 2015) object
detector trained on Visual Genome (Krishna et al., 2017), with a ResNet101 (He et al., 2016a)
that is trained on JFT (Hinton et al., 2015) and fine-tuned on ImageNet (Russakovsky et al.,
2015a). We featurize both global and regional boxes using Graph-RISE (Juan et al., 2019, 2020).
We make the following changes to the state of the art model (Changpinyo et al., 2019), leading
to a 9-point improvement on the dev CIDEr on CC (1.00 vs. 0.91) (improved baseline): 1) en-
code the corners and the area of the bounding boxes to fuse positional information with visual
features, (Lu et al., 2019b), and 2) encode each feature vector with a Linear-ReLU-LayerNorm-
Linear instead of Linear embedding layer, where LayerNorm is layer normalization (Ba et al.,
2016).

*https://cloud.google.com/natural-language
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TaBLE 3.1: The inputs and outputs of the different models. In iterative refinement, S’ is re-

placed by C'.

Dual Staged Modeling: In this approach, we introduce an intermediate natural-language
interpretable skeleton S between I and C. This S is composed of a sequence of lemmas, using
a subset of content words (s1, 52, ...S,) from ¢, where n < m. This reduces the output com-
plexity of fp : I — C by simplifying and denoising the noisy C to S. Hence, the task of IC is
decomposed into the first stage of predicting skeleton concepts and the second stage of caption
generation using the intermediate skeleton.

Stage 1: Skeleton Prediction (Img2Ske):  The first stage (fy : I — S) is to predict one of
the 4 variants of the skeleton words (from §3.2.2.1) from the images. We experiment with both
classification and generation paradigms that respectively do not possess and possess linear
conditioning of the predicted skeleton word on the following words. We observe that the
generation-based skeleton prediction results in skeleton words that co-occur in a sentence. In
contrast, the classification approach predicts skeleton words relevant to an image like person,
man, singer that do not necessarily co-occur in a caption.

To improve co-occurrence of the predicted skeleton words, we generate the skeleton words S
autoregressively where each word is conditioned on the previously predicted skeleton word.
This conditional dependence models word co-occurrence more tightly as p(~;|I, ~;), making
the skeleton a sequence of words. The model is optimized with cross-entropy loss, trained
using teacher forcing. An attractive property is that the same architecture can be used to
decode both the skeleton S and the caption C. Moreover, the output tokens predicted in this
stage are interpretable, and they are used to condition the second stage of our model.

Stage 2: Skeleton-based Caption Generation: The second stage of training uses both
images and skeletons to generate captions fy : [,S — C. We experiment with three variants
of conditioning predicted skeletons via encoding, decoding, and autoencoding as shown in the
overall model architecture in Fig. 4.2. The inputs, outputs for each stage, and the conditioning
of attention for transformer decoder are compared in Table 3.1.

2a. SkeEncoding: The predicted skeleton from the previous stage is used as input to the en-
coder. The image encoding and skeleton embeddings are fused with a unidirectional attention
mechanism, called text-as-side (notated as g). In other words, we use the text representation
as “side information” — each transformed image feature unit can attend to other image feature
units (self-attention) and text (cross-attention), but the text cannot attend to the image. As
shown in Fig. 4.2, this model has the dotted box in the Transformer encoder side, with the tex-
tual query, key, value (Q.,, Ky, Vi) and the visual counterpart attending to textual or visual
key and value (K, + Ky, V,, + Vi) with a visual query (Q,). We focus on the text-as-side
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FIGURE 3.3: Comparison of the content-anchoring based on multimodal interactions in de-
noising

attention mechanism as our preliminary results indicate that it leads to qualitatively better
captions than image-text co-attention (Lu et al., 2019a).

2b. SkeDecoding: The skeleton and caption are concatenated and predicted by the same
decoder. This is not a two-staged model, as the model is trained to predict both skeleton and
caption auto-regressively. The model first predicts the skeleton words conditioned on the pre-
viously generated skeleton words. Then every token in the decoded caption attends to the
entire predicted skeleton as well as the tokens of the caption decoded until that time step. The
dotted box in Transformer decoder of Fig. 4.2 depicts this approach.

2c. SkeAE: To bring both the above models together, we simultaneously encode and decode
the predicted skeleton. This brings the benefits of bidirectional attention on the input features
(image and predicted skeleton words) and autoregressive attention on the re-predicted skeleton
words while generating the caption. In this case, both the dotted boxes on the encoder and
decoder sides in Fig. 4.2 are active. The encoding mechanism follows the g function, and the
decoder prepends the caption generation task with the predicted skeleton.

The comparison across these models is condensed to their bare forms and presented in Figure
3.3.

3.2.3 Experiments and Results

Hyperparameters: Our transformer model uses six encoder and six decoder layers (un-
less specified otherwise), with eight heads for multiheaded attention. Captions are subword-
tokenized with a vocab size of 8,300. The models are optimized with Adam and an initial
learning rate of 3.2¢75. We use mini-batches of size 128, and train for 1M steps. The token
embedding and filter sizes are both 512.
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Iterative Refinement | Classification | Generation
Precision 35.75 23.22 36.66
Recall 24.29 41.31 24.30
F-score 28.92 29.73 29.23

TABLE 3.2: Performance of skeleton prediction stage. Note that for classification and genera-
tion, the skeleton type used is ‘nouns & verbs’.

Model CIDEr
Baseline (SOTA model) | 0.91 (Changpinyo et al., 2019)
Impr. Img2Cap 1.00

Impr. Img2Cap (large) | 0.99

Skeleton Type
Skeleton-based Nouns & Verbs | Nouns only | Sal. Nouns & Verbs
SkeEncoding 0.99 0.97 0.94
SkeDecoding 0.99 0.99 0.96
SkeAE 0.99 0.96 0.94

TABLE 3.3: Automatic metrics to compare various skeleton forms. Img2Cap is the baseline
(large version refers to 12 encoder and decoder layers). Note that these results use generation-
based skeleton prediction.

3.2.3.1 Automatic Evaluation

Skeleton Prediction: The goal of this stage is to extract key skeleton words from the im-
age. We compute precision, recall, and F-score as shown in Table 3.2. With the same labels
(skeleton: nouns & verbs), both classification and generation approaches have similar F-scores.
However, precision is higher for generation, and recall is higher for classification-based pre-
dictions. Based on both qualitative observations and human judgments, we note that the gen-
eration approach was better, which shows that a higher precision is favorable compared to
recall for this stage. The label size (of skeletons) in Table 3.2 is approximately 5K.

Skeleton-based Caption Generation: = We report multilingual IC performance of baseline
and our dual-stage models using CIDEr in Table 3.3 (English) and Table 3.4 (multilingual). Au-
tomatic metrics for captioning are based on surface n-grams, and are not suitable to evaluate
when the ground truth captions themselves are noisy. In addition, we find that CIDEr is mis-
leading (Alikhani et al., 2020; Sharma et al., 2018; Seo et al., 2020) and does not correlate with
human evaluations (§3.2.3.2).

Multilingual captioning: Note that the skeletons are always in English, trained using
annotations over the original English CC dataset. Cross-lingual results on validation data of
Multilingual CC are presented in Table 3.4. In addition to the data noisiness, a reason for
slightly lower performance for non-English captions is probably noisy translation artifacts.
For example, corresponding caption in the Hindi dataset for English caption ‘She is gazing
at the fall colors’ is vah girte rangoM kI Or deK rahl hai (translation: She is looking at the
falling colors.) Translation errors (such as ‘fall’ colors to ‘falling” colors) introduce noise in the
non-English datasets. Figure 3.4 presents an example of multilingual output captions for the

baseline and our SkeAE approach.
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Language | Baseline | SkeEncoding | SkeDecoding | SkeAE
French 0.91 0.90 0.89 0.90
Italian 0.90 0.88 0.86 0.87
German 0.74 0.72 0.72 0.73
Spanish 0.92 0.91 0.89 0.91
Hindi 0.85 0.83 0.82 0.82

TABLE 3.4: CIDEr scores for skeleton (form: Nouns & Verbs, prediction approach: generation)
conditioned caption generation for multiple languages.

Model Enc Input CIDEr
PredSke + Img (Paired) 0.99
PredSke (Unpaired) 0.91
GtSke + Img (Paired Headroom) | 4.62
GtSke (Unpaired Headroom) 448

TABLE 3.5: Ablations on val data for unpaired captioning.

Image Model English French Italian German Spanish Hindi

springisin | fleurs les plus chéres du un campo di tulipani in Friihling ist in der Luft La primavera esta en el aire JEAgAHE

the air monde primavera (meaning: spring is in the | (meaning: spring is in the air) (meaning: spring is in
(meaning: most expensive (meaning: a field of tulips in air) the air)
flowers in the world) spring)

Baseline

-
Loy B . Poce
Y "y:'»‘“”“\?‘““h;,lf

1 SkeAE pink tulips | tulipes roses dans les jardins | genere biologico in un campo | ein Feld von rosa Tulpen | tulipén en un mar de tulipanes | eIt e 1 T

n g5 pred skeleton: | in a field (meaning: pink tulips in the (meaning: biological genus in | (meaning: a field of pink | (meaning: tulip in a sea of &

‘tulip field garden) a field) tulips) tulips) (meaning: a field of
pink tulips)

FIGURE 3.4: Captions generated by baseline and our dual staged approach in 6 languages and
their corresponding translations.

Unpaired Image Captioning: A natural extension to our approach is for the caption gen-
erator to rely purely on predicted skeleton, and not use image features. This is a harder problem
but eliminates the need for image-caption pairs altogether because the second stage (skeleton
to caption) can be trained on a large text-only corpus. In this direction, within the scope of CC
dataset, we investigate 1) with and without using image features in the second stage, 2) using
ground truth skeleton (GTSke) to get an estimate of the upper bound on unpaired captioning 3)
comparing the upper bound to the predicted skeleton (PredSke). These results are presented in
Table 3.5. When image features are ignored, CIDEr drops by only 8 points when only predicted
skeletons are used for caption generation compared to the baseline. This initial result shows
that skeletons are a promising direction towards unpaired captioning.

3.2.3.2 Human Evaluations

Automatic metrics often have been found not to correlate well with human scores (Kilickaya
et al., 2017; Alikhani et al,, 2020) and do not fare well when ground truth text is noisy. So
we conduct extensive human evaluations where captions for each image are evaluated both
in relative preferences and absolute scale (Thapliyal and Soricut, 2020). As mentioned above,
we use the T2 test set of 1000 images, each rated by three distinct annotators. The interface of
this evaluation is displayed in Figure 3.5. While comparing two models side-by-side, they are
randomly assigned ‘A’ or ‘B’ in the interface for each image to avoid any rater bias.
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Image Captions Please compare caption A Please select individual ratings
to Caption B for each cation

Caption A: A is much better than B How does Caption B describe
the image?

a city from the .

trails A is better than B Excellent

Good
As slightly better than B g:geptab'e

Not enough information
A is about the same as B
Caption B: How does Caption B describe

B is slightly better than A | the image?
a view of the

mountains Excellent
B is better than A Good
Acceptable
Bad
B is much better than A Not enough information

FIGURE 3.5: Human evaluation interface: We ask raters to: 1) compare the two captions (rel-
ative), 2) give ratings for each caption (absolute).

Relative Rating: For each image, we ask the raters to choose the most relevant caption.
Comparing Caption A to Caption B, raters can select relative options as shown in the third
column in Figure 3.5. Wins are the percentage of images where at least 2 out of 3 annotators
voted for caption generated with our approach. Losses are a percentage of images where at least
2 out of 3 annotators voted for caption generated with the Img2Cap approach. We compute
gains in this side by side relative evaluation as Gains;jqtive = Wins - Losses.

Results: Table 3.6 presents the human ratings for English captions using different skeletons.
From this, we observe the following:

« Dual Staging helps: Our dual staged models with skeletons (SkeEnc, SkeDec, SkeAE) show
gains compared to the improved baseline Img2Cap model. Most notably, it shows that the
‘Nouns & Verbs’ skeletons significantly improve the SkeEncoding model attaining the most
significant gain, followed by SkeAF and then SkeDecoding.

« Subselecting content words helps: Using the same dual staged SkeEnc model without sub-
selecting content words in the form of iterative refinement does not show any performance
improvement, supporting the hypothesis that sub-selecting content skeleton from noisy cap-
tions improves the overall caption quality.

« Cross-lingual skeleton transfer: Table 3.7 presents our human evaluation scores for captions
in other target languages. We observe gains from the skeleton-based approach for 4 out of
5 languages and only a slight loss for the fifth language, showing the effectiveness of cross-
lingual transferability of the skeleton words.

3.2.3.3 Cross-modal Discourse Coherence

To understand where the improvements quantified in Table 3.6 come from, we turn to the
notion of discourse coherence. Alikhani et al. (2020) introduce multimodal discourse coher-
ence relationships between image-caption pairs. For instance, a caption describing visually
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Baseline magic peace harbour

caption heaven

property image # the magic of the peace of the

apartment for people in | the colours glorious

a picturesque village landscape

a view from the water the magic of the peace of the
the lakes river

view mountain

the view from
the mountains

the view from
the mountains

storm
darkness

a dark storm in
the darkness

a dark storm
on the horizon

house nest valley
mountain

a house nestled
in the valley of
mountains

the house nestled
in the valley of
mountains

FIGURE 3.6: Controllability: Effect of guiding the information through the skeleton. As ob-
served, the caption incorporates information from the skeleton that is consistent with the
image. For example, we see that peace is incorporated in the second column of the top row
while harbor and heaven are not. The relevant skeleton words in other columns guide the
captions accordingly.

Approach Skeleton Wins | Losses | Gains
SkeEncoding | Nouns & Verbs 39.34 | 28.33 +11.0
SkeAE Nouns & Verbs 39.34 | 32.63 +6.7
SkeDecoding | Nouns & Verbs 34.83 | 34.53 +0.3
SkeEncoding | Iterative Refinement | 19.62 | 20.52 -1.1

TaBLE 3.6: Human evaluation scores of different approaches and skeletons on English (vs the

Img2Cap baseline).
Language | Wins | Losses | Gains
French 3143 | 29.53 +1.9
Italian 26.13 | 24.93 +1.2
German 35.23 | 33.93 +1.3
Spanish 34.03 | 34.33 -0.3
Hindi 33.13 | 28.63 +4.5

TABLE 3.7: Human evaluation results for skeleton (form: nouns & verbs, prediction approach:
generation) conditioned caption generation for multiple languages.

recognizable aspects of the image, such as ‘people’ or ‘cake’, is annotated using a Visible
relation; in contrast, a Meta relation corresponds to a caption containing details regarding
how/when/where the image was captured, such as in ‘warm summer afternoon’, while a Story
relation implies that the caption describes some potentially non-visible context behind the
scene depicted in the image, such as ‘fifth anniversary’.

We hypothesize that our multi-stage approach of skeleton-based IC results in the generation
of more captions of Visible type, as the intermediate skeleton predictor is trained to predict
nouns and verbs from the image. To assess this effect, we train the relation classifier described
in Sec. 4 of Alikhani et al. (2020), and obtain discourse relation labels for captions generated on
T2-test images by both the baseline Img2Cap and our SkeEncoding models. Table 3.8 (Counts
columns) quantifies the shift of relation label distribution towards the Visible coherence rela-
tion, confirming our hypothesis. We also study the breakdown by coherence relations using the
results from our human evaluations on the English captions. Table 3.8 (Human Evals column)
reports this breakdown, indicating that, of the 11.01% gains on human evals from Table 3.6, the
shift from non-Visible to Visible discourse captions is associated with clear increases in pref-
erence from the human raters. This is attributable to the fact that human raters are more likely
to prefer captions that are in a Visible relation with the image. Therefore the shift towards
generating Visible-type captions can be positively quantified in terms of human preference.
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Counts Human Evals
Baseline | Ours | Change
Visible 605 640 +5.79% +10.93%
Meta 245 226 -7.76% +13.06%
Story 129 108 -16.28% +10.08%

TABLE 3.8: Analysis of multimodal discourse coherence relations for baseline and our model
on T2 dataset. The last column shows the relative human evaluation gains over baseline cap-
tion of each type. Other relations with small counts are ignored in the above analysis.

Comparison of SkeEnc and SkeAE on multilingual captions We have discussed the
human evaluation scores of the SkeAE model by using nouns and verbs as skeletons in Table
3.7 in the main paper. In addition to this, we also conducted human evaluation to compare the
SkeEnc model with the nouns and verbs skeletons in comparison to the baseline. We present
this in Table 3.9. While there are improvements in the three languages, the performance is also
hurt in two languages. However, as we see, by comparing the performances in Table 3.7 and
Table 3.9, we observe that SkeAE has a clear advantage when leveraging the English caption
to improve multilingual captions. This clearly indicates that channeling the prediction of the
skeleton words in conjunction with the caption itself enables the model decoder to attend to

the previously predicted skeleton words in the same decoder.

Language | Wins | Losses | Gains
French 31.93 | 31.43 +0.50
Italian 33.13 | 28.32 +4.81
German 29.43 | 29.72 -0.30
Spanish 30.53 | 34.43 -3.90
Hindi 29.93 | 26.03 +3.90

TaBLE 3.9: Human evaluation results on SkeEnc model for skeleton (form: nouns & verbs,
prediction approach: generation) conditioned caption generation for multiple languages.

Comparison of Classification and Generation based Skeleton Prediction From a pre-
liminary manual analysis, we observed that the classification based approach to skeleton pre-
diction faces the problem of predicting words that are related but are not likely to co-occur
within the same sentence in the caption. This is described in detail in points 1a and 1b of
§3.2.2. To validate this observation, we conducted human evaluation of the captions generated
from classification and generation based approaches relative to one another. This setup is dif-
ferent from the rest of the experiments in human evaluation in the paper which compare any
given model relative to the baseline model. In contrast, this study is to compare the generation
and classification approaches with one another. These results are presented in Table 3.10.

The top-8 highest scoring content words are chosen to reduce input noise for the caption gen-
erator while improving the recall of concepts. We experimented with different values for this
and selected 8 to be an optimal balance between the content in the skeleton words and the

noise.

We observe that the generation-based approach has significant gains of +8.91 over the classification-
based approach. Most of the prior literature uses the classification-based approach to predict
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Approach | Wins | Losses | Gains
Generation | 39.14 | 30.23 +8.91

TABLE 3.10: Human evaluation results of comparison between the generation and classifica-
tion based approaches

content or bag of concepts to assist caption generation. We hypothesize that this classification-
based model helps in end-to-end approaches where the loss from caption generation backprop-
agates to the classifier model as well. As opposed to this, our model decouples the prediction of
the skeleton or concept words that are further used for caption generation. Hence we believe
that suppressing the words that do not co-occur is important in the skeleton prediction task,
and the generation-based approach addresses this problem.

Absolute Ratings In each human evaluation experiment, we also gathered absolute rat-
ings of each caption in addition to the relative ratings. The relative ratings are described in
§3.2.3.2. We also gather absolute rating for each of the 2 captions per image. Each caption
is rated as acceptable if at least 2 out of 3 annotators rate it as acceptable, good or excellent.
Gainsgpsolute = Acceplour approach — AccepPlpgseline. However they are not used in this quan-
titative analysis. We use them only to validate the ratings such that, for example, an “Excellent”
rated caption is not annotated as inferior to a “Bad” rated caption for the same image. These
ratings are collected to double-check the results of the relative rating as well.

These scores are presented in Table 3.11. The top part of the table indicates the absolute ratings
in terms of Good and OK performance for multilingual captions. The second part of the table
shows the same scores when the baseline model is compared with the corresponding model
and skeleton combination. Each model, i.e., baseline and the proposed model in each row, are
rated individually (not relative to one another). The last two columns indicate the performance
shift of the corresponding proposed model with respect to the baseline in each of the Good and

OK categories.

Row no. | Language Good Baseline | Good SkeAE | OK Baseline | OK SkeAE | Gains in Good | Gains in OK
1 French 34.63 35.04 61.36 60.66 +0.40 -0.70

2 Italian 35.14 35.44 60.86 62.56 +0.30 +1.70

3 German 43.64 41.04 67.27 68.07 -2.60 0.80

4 Spanish 48.15 46.55 74.37 74.67 -1.60 +0.30

5 Hindi 59.96 66.17 85.99 87.99 +6.21 +2.00

Row no. | Model Good Baseline | Good Model | OK Baseline | OK Model | Gains in Good | Gains in OK
6 Unpaired 57.36 55.06 86.48 84.28 -2.30 -2.20

7 SkeEnc (Iterative Refinement) | 63.76 62.36 87.89 87.49 -1.40 -0.40

8 Nouns and Verbs (SkeEnc) 66.47 63.66 89.39 88.89 +2.81 +0.50

9 Nouns and Verbs (SkeAE) 51.55 56.66 79.68 83.18 +5.01 +3.40

TABLE 3.11: Absolute ratings in percentages in Human Evaluations.

Here are some of the observations from these results:

« Better results of Dual Staged Approach: As we can see in the last two rows (rows 8 and
9), our proposed SkeEnc and SkeAE show absolute improvements in both categories.
This further demonstrates that the proposed dual staged approach is generating better
denoised captions when trained on noisy uncurated alt-text—based captions.
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+ Sub-selecting content words is better: Now that we have seen the improvements with
the dual staged approach, we now investigate whether sub-selecting content words is
important. For this, we present the comparison between rows 7 and 8. Both these models
are dual staged with SkeEnc, i.e., encoding the predicted skeleton in the second stage.
The only difference is that row 8 sub-selects all nouns and verbs to predict the skeletons,
whereas row 8 includes all the words from the captions to predict the skeletons. Row
8 shows better performance compared to row 7. This means that sub-selecting content
words contribute to the caption generation in the second stage.

Img2Ske: Classification based prediction Skeleton prediction is posed as a multilabel
classification problem where the prediction of a skeleton word s; is not conditionally dependent
on the prediction of another skeleton word s;. The encoder part remains the same as the
baseline followed by optimization with sigmoid cross entropy between the skeleton words S
and image encoding 2y, which is the representation of the image from the encoder.

1 N IS, N Sz
Accuracy, A = — Z —_— (3.1)

N = Is;us;

The skeleton for the second stage is chosen as the ordered list of top-8 (experimentally selected)
high-scoring words after the softmax layer. However, conditional independence of skeleton
words with one another ignores the co-occurrences of words capable of composing a sentence
or a final caption. For instance, classification predictions are composed of words and their
synonyms that are highly correlated like {person, man, singer}. These words definitely are
relevant to an image but do not all necessarily co-occur in a sentence.

Table 3.2 presents the precision, recall, and f-scores of the generation and classification-based
approaches for skeleton prediction. These metrics, however, are misleading because they do
not account for synonyms or semantic similarity. For example, ‘food’, ‘meal’, ‘lunch’ and ‘din-
ner’ are all distinct labels while computing these metrics, and predicting one instead of the
other get heavily penalized even though the effect on downstream caption quality would be
minimal. This issue gets amplified by the fact that CC has a rich vocabulary with words such
as electricity ‘pylon’ and ‘tower’ referring to the same concept.

Performance drop for Spanish While we have seen improvements in the performance on
multiple languages in human evaluation (Table 3.6), we observed a drop in the preference for
Spanish captions when we use skeletons. Given the similarity in word order between Span-
ish and English compared to Hindi, the lower performance of Spanish is an interesting result
indeed. Our speculation for this is probably due to the dialect differences. The translation
model we used for Spanish is a mix of ‘Spain Spanish’ and ‘Latin American Spanish’, with
Latin American Spanish dominating. The evaluation was done by raters from Spain. The di-
alects are sufficiently different that it would impact the absolute scores.
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FIGURE 3.7: Quantitative relationship between the number of skeleton words and caption

length.

Skeleton valley valley house valley house nest

Words mountain mountain valley mountain
(1 word) (2 words) (3 words) (4 words)

y the the green | houses of the | a house nestled
colours of | valley of | valley and | in the valley of
the valley mountains mountains mountains
(5 words) (5 words) (6 words) (8 words)

FIGURE 3.8: Controllability: Effect of varying the number of words in the skeleton on the
generated caption length.

3.2.3.4 Controllability: Qualitative Discussion

The dual-stage modeling decomposition brings forth the advantage of increased interpretabil-
ity and thereby the ability to use the intermediate stage results to control the final caption.
We present aspects of caption controllability by altering the skeleton to explore effects on cap-
tion length, informativeness, and gender specificity. This section discusses the utility of this
dual staged model for controllability qualitatively. Instead, we present an empirical study only
to control gender specificity in two of the languages semi-automatically. We plan to conduct
experiments on comparison with other models (Zheng et al., 2019; Chen et al., 2020b) and au-
tomatically selecting different but relevant skeleton words in future work.

Effect of length of skeletons on captions: For applications that limit the caption lengths
due to Ul restrictions, the ability to control the length is important. The length of the skeleton
correlates with the number of caption words, as shown in Figure 3.7. For 2 or 3 skeleton words,
the percentage of captions monotonically decreases with the number of caption words, with
the mode at 4-word captions. Thus, for skeletons of size 2, captions of length 4 are much more
frequent than captions of length 6 or 8. For longer skeletons, we see that the mode shifts to
the right: with skeletons of size 5, the caption length peaks between 8 and 10 words. Fig 3.8
illustrates this qualitatively.

Effect on gender specificity: = Current models often make embarrassing mistakes when
generating captions that mention gender. The availability of a skeleton provides a direct handle
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for human-in-the-loop correction of such biases at a pre-caption-generation stage. This is
more robust compared to caption post-processing, especially for highly inflected languages.
To illustrate this, we compare the number of times ‘man’ appears in the captions generated by
our baseline versus our dual-stage model after automatically modifying the skeleton (replacing
‘man’ with the gender-neutral word ‘person’ in the skeleton). Over the T2 dataset, the baseline
caption generates ‘man’ 13 times and the automatic control mechanism via our model reduces
this by 46% (to 7 occurrences) in English. In Hindi, the equivalent of ‘man’ (Adml) is generated
10 times, and it is reduced to a gender-neutral word ‘vyaktI’ by 70% (to 3 occurrences).

Effect of guiding information through skeleton: The skeleton acts as a knob enabling
the model to describe different attributes of the image. Figure 3.6 presents an example of how
varying the skeletons for two different images affect their captions. The words highlighted in
green are derived from the skeleton, the ones in blue are image-related words.

3.3 N-Local Anchoring from Entities

In this section, we will present our work on using N-Local anchors to drive generation in vi-
sual storytelling. We choose these anchors to be entities and their referring expressions. We
are enveloped by stories of visual interpretations in our everyday lives. The way we narrate
a story often comprises two stages: forming a central mind map of entities and then weaving
a story around them. This central representation grounding every sentence in the narrative is
what comprises our N-Local anchors. A contributing factor to coherence is not just basing the
story on these entities but also, referring to them using appropriate terms to avoid repetition.
In this section, we address these two stages of introducing the right entities at seemingly rea-
sonable junctures and referring them coherently in visual storytelling. The building blocks of
the central mind map, also known as entity skeleton, are entity chains, including nominal and
coreference expressions. This entity skeleton is also represented in different levels of abstrac-
tions to compose a generalized frame to weave the story. We build upon an encoder-decoder
framework to penalize the model when the decoded story does not adhere to this entity skele-
ton. We establish a strong baseline for skeleton informed generation and then extend this to
have the capability of multitasking by predicting the skeleton in addition to generating the
story. Finally, we build upon this model and propose a glocal hierarchical attention model that
attends to the skeleton both at the sentence (local) and the story (global) levels. We observe
that our proposed models outperform the baseline in terms of automatic evaluation metric,
METEOR. We perform various analyses targeted to evaluate the performance of our task of
enforcing the entity skeleton, such as the number and diversity of the entities generated. We
also conduct human evaluation from which it is concluded that the visual stories generated by
our model are preferred 82% of the time. In addition, we show that our glocal hierarchical at-
tention model improves coherence by introducing more pronouns as required by the presence
of nouns.

Storytelling in the age of artificial intelligence is not supposed to be a built-in capability of
humans alone. With the advancements in interacting with virtual agents, we are moving to-
wards sharing the ability to narrate creative and coherent stories with machines. The evolution
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of storytelling spans from primordial ways of cave paintings and scriptures to contemporary
ways of books and movies. In addition, stories are ubiquitously pervasive all around us in dig-
ital media. This encompasses multiple modalities, such as visual, audio, and textual narratives.
In this work, we address narrating a story from visual input, also known as visual story telling
(Huang et al., 2016). Generating textual stories from a sequence of images has gained traction
very recently (Gonzalez-Rico and Fuentes-Pineda, 2018; Hsu et al., 2018; Kim et al., 2018; Lukin
etal., 2018; Peng et al., 2018; Chandu et al., 2019b). Stories can be perceived as revolving around
characters (Martin et al., 2018), events/actions (Rishes et al., 2013; Mostafazadeh et al., 2016;
Peng et al., 2018), or theme (Gervas et al., 2004). The granularities at which these instances
are regulated determine whether the anchoring is complete or partial. In this work, we choose
to anchor our visual stories in characters and their corresponding referring expressions. Em-
ulating a naturally generated story requires equipping machines to learn where to introduce
entities, and more importantly, how to refer to them henceforth.

The main task addressed in this section is to introduce entities similar to how humans do
and, more importantly, refer them appropriately in subsequent usage. We perform this in two
phases: (1) Extraction of n-local anchors, which in this case is entity skeleton extraction, and
(2) Anchor-based generation, which is generation informed of the entity skeleton. Here, the
anchor or the skeleton is defined as a simple template comprising of the entities and their re-
ferring expressions extracted using off-the-shelf NLP tools. The skeletons are what anchors
the stories. These skeletons are extracted in three levels of abstraction, comprising of (1) sur-
face form, the skeleton terms in the raw form, (2) nominalized form, that is, the presence of
entities in the noun or pronoun form, and (3) abstract form, that is using different notations
for based on categories of words from language ontologies. This is delved in more detail in
§3.3.2.1. We apply this for the task of visual storytelling, which has both image captions and
story sentences in a sequence. Leveraging the captions, the models also inherently learn the
association of skeleton to the image captions thereby learning where to talk about which en-
tities in a sequence of images. Once this extraction is performed, we move on to the second
phase of incorporating these coreference chains as skeletons to generate a story. This is done
in broadly two ways, after conditioning the decoder with the entity skeletons. The first ap-
proach is an incremental improvement over the baseline that performs multitasking with an
auxiliary goal of predicting the entity skeletons to move the sequences generated from the
primary task of story generation closer towards the extracted entities. The second approach
is hierarchically attending to the entity skeletons at a local (corresponding to words within a
sentence) and global (corresponding to the sentences making up the entire story) levels.

3.3.1 Dataset Description

A dataset that has recently gained traction in the domain of visual storytelling is proposed by
Huang et al. (2016). This problem of grounded sequential generation is introduced as a shared
task?. Formally, the dataset comprises of visual stories or narratives N = {N7y,..., N, }.
Each story in the dataset consists of a sequence of five story-like images, along with descriptions-
in-isolation (DII) and stories-in-sequences (SIS). The descriptions in isolation are isomorphous
to image captions. Each story can be formally represented as:

‘visionandlanguage.net/workshop2018/index.html#challenge
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N; = {(Ii(l), mgl), ygl)), el (Il@, mgs), yz-(5))}, where I; and y,”’ are each image, sin-
gle sentence in DII and single sentence in SIS respectively, and i refers to the ith example story.
SIS and DII are supposed to be associated with each image. However there are about 25% of
the images for which DII are absent in the dataset. The corresponding statistics of the dataset

are presented in Table 3.12.

Train  Val Test
# Stories 40,155 4,990 5,055
# Images 200,775 24,950 25,275
# with no DII | 40,876 4,973 5,195

TABLE 3.12: Details of the ViST Dataset

In our modeling approaches as described in §3.3.2, we also need the descriptions in isola-
tion.Hence for the images for which the DII are absent, we use a pre-trained image captioning
model to complete the dataset for our use case.

3.3.2 Models Description

The anchors in this section are equivalent to entity skeletons. Our approach of using entity
skeletons to generate a coherent visual story is divided into two phases: (1) N-local Anchors
Extraction, i.e., entity skeleton extraction, and (2) N-local Anchors Informed Generation. The

result of the first step is the anchors, in this case corresponding to n-local anchoring, which

(
i
a crucial step based on which generation is done in the second step. However, as discussed

results in a sequence of a 7 for every j sentence in the story. Identifying these anchors is
previously, we use simple off-the-shelf techniques to derive these anchors used in the second
step. In this subsection, we first describe three kinds of schema extraction for coreference
chains and then proceed towards describing two baselines and two proposed story generation
models.

3.3.2.1 Anchor Extraction: N-Local Anchor Representation

The task is to introduce the characters at the right times and refer to them appropriately hence-
forth. This means that we not only target the head mention of an entity but also cater to the
corresponding appropriate coreference expressions. We define these N-Local anchor units or
skeleton as a linear chain of entities and their corresponding referring expressions. There could
be multiple coreference chains in a long narrative. We associate a story with the entity skeleton
that has maximum representation in the five sentences. This means that the skeleton elements
need to be present in the majority of the sentences, thus making it the central theme for basing
the story on. For simplicity purposes, in case of a tie with respect to the above criterion of the
number of mentions, we select the anchor units to be the most frequently occurring corefer-
ence chain from among all the chains present in it. In our future work, we plan to extend this
capability to cater to multiple skeletons simultaneously. We use off-the-shelf tools to represent
these skeletons in three different ways.
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Sentences from SIS Surface Nominalized Abstract
The cake was amazing for this event! None [0, 0] None
The bride and groom were so happy. The bride and groom  [1, 0] person
They kissed with such passion and force. They [1, 1] person
When their son arrived, he was already sleeping. | their [1, 1] person
After the event, I took pictures of the guests. None [0, 0] None
The cake was amazing for this event! event [1, 0] other
The bride and groom were so happy. None [0, 0] None
They kissed with such passion and force. None [0, 0] None
When their son arrived, he was already sleeping. | None [0, 0] None
After the event, I took pictures of the guests. event [1, 0] other

TABLE 3.13: Examples of three forms of Entity-Coreference Schema Representation for repre-
senting n-local anchors

Anchor Form Representation:  For each of the following anchor representations, we first
extract the coreference chains from the textual stories that are made up of SIS in the training
data. This is done by using version 3.7.0 of Stanford CoreNLP toolkit (Manning et al., 2014).
These three ways of representing skeletons are described in detail next.

1. Surface form Coreference Chains: The resulting coreference chains now comprise
surface word forms of entities and their corresponding reference expressions. In specific, the
N-Local anchor units or skeleton for each story is represented as {c1, . . ., cs }, where ¢; is the
coreference word in jth sentence. An example of this can be seen in Table 3.13. From the story
sentences on the left, there are two entity chains that are extracted corresponding to ‘the bride
and the groom’ and ‘event’. The skeleton word is None when there is no word corresponding
to that coreference chain in that sentence. The following two columns show the surface form
entity skeletons corresponding to the N-Local anchor units for each sentence. Note that there
could be multiple such chains extracted for each story due to the number of different entities
present in the story. Our goal is to pivot the story on a central mind map, so we select the chain
that has the minimum number of Nones in the five sentences. Hence in this example, we go
ahead with the first skeleton with ‘the bride and groom’ to weave the story since the skeleton
with ‘event’ has a higher number of Nones.

2. Nominalized Coreference Chains:  The surface form anchor units extracted as de-
scribed before do not comprise the information of whether it is the head mention of the entity
or whether it is referred later. In crude terms, it does not cater to abstracting the properties
of the skeleton words from the surface form word itself. The remaining two forms of an-
chor representations address this issue of abstracting the lexicon from the properties of the
word. In order to encode this information explicitly, we disintegrate the bits that correspond
to the properties of presence and absence of the entity words and whether the word is present
in the noun or the pronoun form. The anchors or skeleton for each story is represented as
{[h,p]1,...,]h,p]5}. Here, h € {0,1}, is a binary variable indicating if there is a coreference
mention, i.e 1 if there is a mention in the skeleton chain and 0 if it is None. Similarly, p € {0,1}
is a binary variable indicating that the word is head mention, i.e, the word is in the noun form
if it is 0 and pronoun form if it is 1. For instance, in Table 3.13, in sentence 2, the skeleton
is represented as [1,0], which means that this sentence has a mention of the skeleton under
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consideration and it is in the noun form. Note that we do not use the surface representation
of the word itself while we represent the skeleton in this format.

3. Abstract Coreference Chains:  As observed from Table 3.13, the anchor units belong
to different categories of entities. The first is the raw form in which they appear, and the sec-
ond is based on the properties of the corresponding anchor units. Instead of disintegrating
the properties into nouns and pronouns, another form is to represent them into the abstract
categories that they belong to. These categories can be person, object, location etc., This differ-
entiates the order of introduction and references of objects or people in the timeline among
the five sentences. We use Wordnet (Miller, 1995) to derive these properties. As depicted in
Table 3.13, the entity skeleton corresponding to a coreference chain can be represented with a
sequence of ‘person’, ‘other’ and ‘None’.

3.3.2.2 Anchor Informed Generation

In this section, we describe the baseline model used to generate textual stories from visual
input. This baseline model is not explicitly anchored in the content derived from an entity and
coreference-based N-Local anchor units.

In order to establish a fair comparison, we alter this baseline slightly to establish a second
baseline that accesses the anchor units. We then discuss two models that incorporate the

entity anchors in various forms in the generation process.

1. Baseline Model:  Our baseline model has an encoder-decoder framework that is based
on the best performing model in the Visual Story Telling challenge in 2018 (Kim et al., 2018)
that attained better scores on human evaluation metrics. The model essentially translates a
sequence of images to a story. All of the images are first resized to 224 X 224, and image features
are extracted from the penultimate layer of ResNet-152 (He et al., 2016b). These image features
act as local features for decoding the sentence corresponding to that image. This sequence of
image features is passed through two layers of Bi-LSTMs to obtain the story’s overall context.
This contributes to global theme of the story. The local context for each sentence in the story is
incorporated with a skip connection of the local features for that particular image. Finally, the
global and local features are concatenated and passed to each time step in the LSTM decoder

to generate the story word by word.

For simplicity in formal representation, we use the following notations. Subscript ¢ and su-

t'h step or sentence in a story and 7" word within the sentence

perscript 7 indicates the
respectively. Iy, x¢, yt, represent image, DII, SIS for a particular time step. k; is the skeleton
coreference element for that particular sentence. Here k can take any of the three forms of
coreference chains discussed previously, which is word itself (surface form) or a pair of binary
digits (nominalization) or noun properties (abstract). Note that k is not used in this baseline

model.
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The encoder part of the model is represented as the following, which comprises of two steps
of deriving the local context features I* and the hidden state of the #*" timestep of the BILSTM
that gives the global context.

l; = ResNet(I})
gi: = Bi-LSTM([ll, lg...l5]t)

The latent representation obtained from this encoder is the glocal representation [l; € g:],
where [@P] represents augmentation of the features. This glocal vector is used to decode the
sentence word by word. The generated words in a sentence from the decoder wy is obtained
from each of the words w7 that are the outputs that are also conditioned on the generated
<T
t

words so far wy" with 7/" word in the sentence being generated at the current step.

wy ~ HPT(ﬁ’tTW’fTv L, gt) (3.2)
T
The baseline model is depicted in the right portion of the Figure 3.9.

2. Skeleton Informed Baseline Model: =~ We need to make a note here that though the
above baseline is the best performing model in the task, it does not take into account the
explicit mentions of the entities as a skeleton to weave the story on. Similarly, it does not
make use of the DII for the images. We explore how to make better use of these DII to extract
the entity skeletons. Hence to establish a fair comparison with our proposed approaches we
condition the decoder on not only the glocal features and the words generated so far, but also
the surface form of the words.

'lbt ~ HPT(’[Z?Z—|’LZJt<T,lt,gt, kt) (33)

In specific the features that are given to the decoder now have [l;, g;, k;]. The skeleton infor-

mation is provided to every time step in the decoder.

3. Multitask Story Generation Model (MTG): Incorporating the entity skeleton infor-
mation directly in the decoder might affect the language model of the decoder. Hence we take
an alternate approach that incrementally improves upon the first baseline model to enable it to
perform two tasks. Instead of augmenting the model with skeleton information, we enable it
to predict the skeleton and penalize it accordingly. The main task here is the generation of the
story itself, and the auxiliary task is the prediction of the entity skeleton word per time step.
Each of these tasks is optimized using cross entropy loss. The loss for generation of the story is
L; and the loss to predict the skeleton of the model is Lo. However, we do not want to penalize
the model equally for both the participating tasks and weigh them by a factor « as much as to
affect the language model of the decoder. We experimented with different weighting factors
for o, which are presented in Table 3.14.
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Note that we do not use k as a part of the encoder even in this model but only use them to
penalize the model when the decoded sentence does not contain a skeleton similar to k.

4. Glocal Hierarchical Attention: Enabling the model to predict the entity skeleton
equips it to model the sentences around the entities, thereby weaving the stories around the
skeleton. However, this multitasking model does not explicitly capture the relationship or fo-
cus on the words within a sentence or across the five sentences with respect to the skeleton
in consideration. Hence, we went one step further to identify the correlation between the
coreference skeleton with different levels, including within a sentence (i.e., at word level) and
across sentences (i.e., at sentence level). We use an attention mechanism to represent these
correlations.

We propose two stages of attention to capture this information:
1. Local Attention: attending to the words in captions (w; from z;) with respect to the
entity skeletons k.
2. Global Attention: attending to the sentences in the story derived from the local attention

for each sentence.

Figure 3.9 depicts the entire glocal hierarchical attention model with the encoder-decoder
framework on the right and the two stages of attention on the left. The attention is performed
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FIGURE 3.10: Qualitative Analysis

on textual modality corresponding to DII (x;) and hence can be perceived as translating DII to
SIS. As observed in Table 3.12, DIIs are absent for about 25% of the data. We use an image cap-
tioning model pretrained on ImageNet data (Russakovsky et al., 2015b). These image captions
are substituted in the place of missing DIIL

Local Attention: The first level of attention, i.e., the local attention measures the correlation
between words in each sentence to the coreference skeleton words. There are five sentences
in each story corresponding to five images. Since we use the skeleton words as they appear to
attend to the words in DII, we use the surface form notation in this model. As we have seen,
the surface form skeleton is represented as C = {cy, c.., ¢5}. The vocabulary of these surface
form skeleton words is limited to 50 words in the implementation. The surface skeleton form C
is passed through a Bi-LSTM, resulting in a hidden state H}, which is of 1024 dimensions. This
hidden state is used to perform attention on the input words of DII for each image. Note here
that the skeleton words for coreference chains are extracted from SIS (i.e., from {y1, y2..,y5}),
from which the hidden state is extracted, which is used to perform attention on the individual

captions (DIl i.e., {z1, z2.., x5} ).

The skeleton remains the same for all the sentences. The skeleton form is passed through a
Bi-LSTM resulting in Hj, € R**2" where hidden dimension of the Bi-LSTM is h. Each z in
the story (with n words in a batch) is passed through a Bi-LSTM with a hidden dimension of
h, resulting in H,,, € R>*"*2" This then undergoes a non-linear transformation.

Attention map for the word level is obtained by performing a batch matrix multiplication (rep-
resented by ®) between the hidden states of the words in a sentence and the hidden states of
the entity skeleton. In order to scale the numbers in probability terms, we apply a softmax
across the words of the sentence. Essentially, this indicates the contribution of each word in
the sentence towards the entity skeleton that is present as a query in attention. This is the
local attention A,, € R5*™*¥ pertaining to a sentence in the story. Mathematically, equation
3.4 depicts the calculation of local attention.

Ay = softmax(H, ® Hy)
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FIGURE 3.11: Visualization of the hierarchically attended representation of the skeleton for
story in Figure 3.10

Glocal Attention: We then perform global attention, which is at the whole story level. In
other words, this attention evaluates the contribution of different sentences in the story to-
wards responding to the extracted entity skeleton. Instead of considering the sentence repre-
sentation as the output of passing the words as is through a Bi-LSTM, we leverage the already
attended local attention (which is at a sentence level) to perform the global attention. Hence
it is the combination of global and local attention, and thereby we perform glocal hierarchical
attention.

For this, each sentence’s locally attended representation is augmented with the output of the
Bi-LSTM that takes in DII. The attended representation for each of the k words is concatenated
and projected through a linear layer into 256 dimensions (F,,). This goes in as sentence repre-
sentation for each of the s;; (where iis the index of the sentence in the story and j corresponds
to the story example) as shown in Figure 3.9. The word representations at each time step are
obtained by augmenting the corresponding vectors from H,, and P,,. These form our new
sentence embeddings. These sentence embeddings are again passed through a Bi-LSTM to get
a sentence level representation. This process is done for each sentence in the story (which are
the replications as shown in the left portion of Figure 3.9). This results in a latent representa-
tion of the story H, € R>*2"_ Along the same lines of local attention, we now compute story
level hierarchical global attention to result in A, € R>**. This is shown in Equation 3.4 where
[, ] indicates augmentation of corresponding vectors.

As = softmaz([Hy, Py ® Hy)

The attended vectors from A,, and A; of size nk and k respectively are concatenated in each
sentence step in the decoder from the baseline model. This is shown in the top right corner of
Figure 3.9 (although the Figure depicts concatenation for single time step).

The various methods discussed above are presented in their condensed anchoring methods in
Figure 3.12.
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FIGURE 3.12: Comparison of the content-anchoring based on multimodal interactions for mod-
eling entities and coreferences

Models Entity Skeleton Form METEOR Distance Avg # distinct entities
Baseline None 27.93 1.02 0.4971
+ Entity Skeletons  Surface 27.66 1.02 0.5014
MTG (a(0.5)) Surface 27.44 1.02 0.9554
MTG (c(0.4)) Surface 27.59 1.02 1.1013
MTG (a(0.2)) Surface 27.54 1.01 0.9989
MTG («(0.5)) Nominalization 30.52 1.12 0.5545
MTG (a(0.5)) Abstract 27.67 1.01 0.5115
Glocal Attention ~ Surface 28.93 1.01 0.8963

TABLE 3.14: Automatic Evaluation of Story Generation Models

Hyperparameter setup: Learning rate of 0.001 is used with a batch size of 64. The word
embedding dimension is 256 and the image features contributing towards the local represen-
tation is 1024. The hidden size of the Bi-LSTM is 1024 which is the dimension of the global
vectors. The attention map features are of dimension size of 256. We selected the 50 most
frequently occurring coreference words to set the vocabulary of k for these experiments i.e,

size(k) = 50.

3.3.3 Experiments and Results

This section presents the quantitative and the qualitative results for the four models discussed
in the previous section.

3.3.3.1 Quantitative Analysis

We perform automatic evaluation with METEOR score for generation. The results are shown
in Table 3.14. However, our main target is to verify whether the story adheres to the provided
entity anchor units. Hence we attempt to perform this evaluation with a different scoring
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mechanism. We extract anchor units which in this case are entity skeletons from the gener-
ated stories in the same procedure as performed on the training stories. With respect to the
ground truth stories, a binary vector of length five is constructed based on whether the en-
tity skeleton word is present or not in that sentence. Euclidean distance between these binary
vectors skeletons of the original and the generated stories is used to validate this aspect of gen-
eration. Table 3.14 presents the results of our models. As we can see, the Euclidean Distance
is not very different in each of the cases. However, we observe that the multitasking approach
(MTG) performs better with the nominalized form of entity skeletons than the baselines and
other forms of entity skeleton representations. The glocal model described performs attention
on the surface words only, and hence the experiment includes only this configuration. We
observe that the glocal attention model outperforms the baseline model. However, there is a
scope for improvement when the attention mechanism is performed on nominalized skeleton
representation, which we leave for future work.

These automatic metrics do not sufficiently capture the number or the diversity of the entities
introduced in the generated stories. We calculated the percentages of the nouns and pronouns
in the ground truth and the generated stories for the test data to analyze the number of entities.
Figure 3.13 presents these percentages for the ground truth stories, generated stories from
baseline, MTG with nominalized skeleton representation, and the Glocal attention model. As
we can see in the nouns section, the baseline model seemed to have over-generated nouns
compared to both of our proposed models. While our MTG model also has over-generated the
nouns, our glocal attention model has generated fewer nouns compared to the ground truth.
However, this is still the closest to the number of nouns in the ground truth stories. Generating
a high number of nouns does not ensure coherence as much as generating an appropriate
number of relevant pronouns. This is observed in the second section in the graph. While the
MTG model generated a higher number of pronouns in comparison to the baseline, the glocal
attention model seemed to have generated an even higher percentage of pronouns. Despite
this over-generation, the glocal attention model is the closest to the number of pronouns in the
ground truth stories. Interestingly, the MTG and glocal attention models seem to have opposite
trends in the generation of nouns and pronouns. We plan on investigating this further in our
future work. Coming to the diversity of the entities generated by the stories, we calculate the
average number of distinct entities present per story for each model. These numbers are shown
in the last column of Table 3.14. This number for the ground truth test stories is 0.7944. As
we can see, the average number of distinct entities is comparatively high for the MTG model.
However, this number is closer to that of the ground truth for the glocal attention model,
assuring sufficient diversity in the entity chains generated by this model.We would like to
make a note here that though the MTG model with nominalized representation is performing
better in terms of METEOR score, our analysis shows promisingly better performance of the
Glocal attention model with respect to both the number and diversity of the entities generated.

3.3.3.2 Qualitative Analysis

Figure 3.10 presents an image sequence for a story along with the corresponding ground truth
(SIS) and the generated stories. The positive and the negative phenomena observed are pre-
sented in the last column. The Glocal Hierarchical Attention Model is able to capture the
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FIGURE 3.13: Percentage of Entities in the form of Nouns and Pronouns in the generated stories

skeleton words right in comparison to the baseline model. For instance, the words ‘we’ and ‘it’
are generated in sentences 1, 3, 4, and 5 with the glocal attention model, whereas these entity
skeleton words are generated only in sentences 4 and 5 in the baseline model. Since there are
multiple occurrences of entities that are connected, the story might present stronger coherence
in the case of the glocal attention model. In addition, the entity skeleton could be boosting the
model to also generate other relevant words based on images such as ‘building’ and ‘game’.
The visualization of the corresponding hierarchical glocal attention map that is fed into the
decoder is presented in Figure 3.11. Darker color indicates higher attention on those words.
The rows in the visualization depict the sentence indices, and the columns indicate a few of
the frequently occurring entity skeleton chains. The scores are not normalized as probability
distributions since the figure does not present all 50 entity skeletons (instead of only the top
10 frequently occurring ones). As we can see, there is a higher weight in the grids pertaining
to ‘we’ for the first, third, and fourth sentences.

Human Evaluation: We conduct human evaluation in the form of preference testing. Twenty
stories were randomly sampled, and we asked five subjects the following preference questions
‘preference of the story narrative from the images’. Our glocal hierarchical attention model is
preferred 82% of the times compared to the baseline model and 64% of the times in comparison
to the MTG model with nominalized representation. We also asked them a follow-up question
of their opinion on the usage of pronouns since that is the task we were focusing on. From
the answers, we conclude that our hypothesis of the usage of pronouns instead of third-party
nouns narrates a more involved story. Therefore, this provides an opportunity margin for
improving story generation.

So far, we have seen how N-Local anchor units based on entity skeletons can provide fine-
grained guidance towards anchoring the content of the story in the entities involved in the
stories. What if the anchors are not explicitly available? Can they be leveraged from the
surrounding contexts? In what kind of narratives do surrounding contexts help anchor the
content more? To investigate these questions, let us look into anchoring with implicit contexts

in the following section.
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FIGURE 3.14: Overview of infilling in visual procedures. Image in the second step is masked
while the model generates the corresponding textual description from surrounding context.

3.4 N-Local Anchoring from Implicit Contexts

Generating long form narratives such as stories and procedures from multiple modalities has
been a long-standing dream for artificial intelligence. In this regard, there is often a crucial
subtext that is derived from the surrounding contexts. The general seq2seq training methods
render the models shorthanded while attempting to bridge the gap between these neighboring
contexts. In this paper, we tackle this problem by using infilling techniques involving the
prediction of missing steps in a narrative while generating textual descriptions from a sequence
of images. We also present a new large scale visual procedure telling (ViPT) dataset with a total
of 46,200 procedures and around 340k pairwise images and textual descriptions that is rich
in such contextual dependencies. Generating steps using infilling technique demonstrates the
effectiveness in visual procedures with more coherent texts. We conclusively show a METEOR
score of 27.51 on procedures which is higher than the state-of-the-art on visual storytelling.
We also demonstrate the effects of interposing new text with missing images during inference.
The code and the dataset will be publicly available at https://visual-narratives.github.io/Visual-
Narratives.

Humans process information from their surrounding contexts from multiple modalities. These
situated contexts are often derived from a modality (source) and expressed in another modal-
ity (target). Recent advances have seen a surge of interest in vision and language as source
and target modalities respectively. One such widely studied task is image captioning (Hos-
sain et al., 2019; Liu et al., 2019) which provides a textual description 7" given an image I. In
contrast, visual storytelling (Huang et al., 2016) is the task of generating a sequence of textual
descriptions ({11, 1%, ..., T),}) from a sequence of images ({ I1, I2, ..., I, }). This sequential con-
text is the differentiating factor in the generation of visual narratives in comparison to image
captioning in isolation. This long form generation comprises a coherent sequence of multiple
sentences.


https://visual-narratives.github.io/Visual-Narratives/
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A fundamental incongruity between how humans process information from multiple modal-
ities and how we teach machines to do the same is that humans are capable of bridging the
information gap from surrounding contexts. Our training procedures do not take care of ac-
commodating the same ability in a supervised learning paradigm. Traditionally, the problem
of missing context in long text generation is addressed using additional input such as entities
(Dong et al., 2019c¢), actions (Fan et al., 2019b), latent templates, external knowledge etc,. These
are explicit methods to inject content during generation. In contrast, in the spirit of simplicity,
we propose infilling techniques to implicitly interpolate the gap between surrounding con-
texts from a stream of images. The training procedure incorporates masked contexts with the
objective of a masked span prediction. We focus on two kinds of visual narratives namely,
stories and procedures. We curated a large scale ViPT dataset with pairwise image and text
descriptions comprising of 46k procedures and 340k images. The percentage of unique words
in each step in comparison to the rest of the recipe is about 60% for ViST and 39% for ViPT.
This implies that overlapping contexts are predominant in procedures than stories datasets.
This is usually because stories are more creative and diverse while procedures are in-domain.
For both these reasons, we hypothesize that infilling technique is more effective in scenar-
ios where it can leverage the vast context from the surrounding information to fill the missing
pieces. To this end, we present our infilling-based model to perform visual narrative generation
and compare its effects on visual stories and procedures. The overview of the infilling-based
training procedure is presented in Figure 3.14. We conclusively observe that it is more effec-
tive in procedural texts with stronger contextual dependencies. We also present the effects of
infilling during training and inference phases and observe that infilling shows benefits during
inference as well. Similarly, infilling-based techniques are also capable of generating longer
sentences. Interpolating contexts to generate narrative descriptions has potential applications
in fields such as digital education (Hollingshead, 2018), social media content (Gella et al., 2018),
augmented reality (Dudley et al., 2018), video games (Kurihara et al., 2019; Ammanabrolu et al.,
2019a), etc,. The main contributions of this paper are:

« We present a Visual Procedure Telling (ViPT) dataset similar to the Visual Storytelling
(ViST) dataset with 46k procedures on various domains.

« We demonstrate the efficacy of our visual infilling technique on narratives that have

stronger contextual dependencies on the rest of the sentences.

Dataset ViST Visual Procedure Telling (ViPT)

Categories stories | recipes crafts outdoors lifestyle technology styling fitness hobbies pets misc
#narratives 50,136 | 34,138 660 1,831 1,824 1,660 1,585 911 1,701 858 1,032
#images or steps | 209,651 | 203,519 8,658 20,526 20,959 19,221 18,112 9,935 19,145 9,599 11,853
avg #steps 5.00 5.96 13.12 11.21 11.49 11.57 11.42 10.90 11.25 11.18 1148
avg #words/step | 11.35 79.19 47.99  35.52 32.58 27.90 17.31 17.54 17.54 17.24 57.45

TABLE 3.15: Details of the ViST and Visual Procedure Telling Dataset broken down into 10
categories
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3.4.1 Dataset Description

While there are several types of narratives, such as literary, factual, and persuasive, this paper
looks into stories and procedures. This section describes our new ViPT dataset and highlights
the differences with ViST.

Procedures vs Stories:  Long form narratives are often characterized by three crucial prop-
erties: content, structure, and surface form realization (Gatt and Krahmer, 2018b). Narrative
properties such as content and structure in these forms are sufficiently contrastive between
stories and procedures. Content in stories includes characters and events, while procedures
include ingredients, materials, and actions. Coming to the structure, stories typically start by
setting a scene and the era, followed by characterizing the participants and culminating with a
solution if an obstacle is encountered. In contrast, a procedural text is often goal-oriented and
thereby typically begins by listing the ingredients/materials needed, followed by a step-by-step
description to arrive at the final goal. While stories can be metaphoric, sarcastic, and humor-
ous in surface realization, the sentences in procedures are often in imperative or instructional

tone.

2. Data Collection Process: = We manually examined around 10 blogging websites with
various user-written text on several how-to activities. Among these, we found that snapguide
and instructables are consistent in the form of pairs of textual descriptions along with their
images. We are going to release the scripts used to collect this data as well as preprocess them.
We removed all the procedures in which at least one image in each step is absent. Once all
this preprocessing is done, the data contained the following categories in both websites. These
categories are based on the tags given by the bloggers to the articles they have written from
among the categories that each website offers. These categories for each of these websites are:

« snapguide: recipes, games-tricks, sports-fitness, gardening, style, lifestyle, outdoors,
beauty, arts-crafts, home, music, photography, pets, automotive, technology

« instructables: crafts, cooking, teachers, circuits, living, workshop, outside

In union, they are a total of 18 categories. We manually examined a few procedures in each of
the categories and regrouped them into 10 broad categories that are presented in Table 3.15. A
list of URLs corresponding to the data is submitted along with the paper.

Visualization of topics:  Each of the categories in our Visual Procedure Telling (ViPT) are
analyzed for the topics present in them. To get a more detailed understanding of these top-
ics in the dataset, we hosted the topic visualizations here: visual-narratives.github.io/Visual-
Narratives/.


https://visual-narratives.github.io/Visual-Narratives/
https://visual-narratives.github.io/Visual-Narratives/
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category snapguide instructables

recipes desserts, cooking
food

crafts arts-crafts craft

outdoors outdoors, outside
gardening

lifestyle lifestyle, living
home

technology | technology, circuits
automotive

styling style,
beauty

fitness sports-fitness

hobbies music,
photography

pets pets

misc games-tricks | teachers,
games-tricks | workshop

TABLE 3.16: Regrouping the categories in ViPT dataset

ViPT dataset:  Though stories have the potential to exhibit the properties listed above, it
is challenging to observe them in the ViST dataset (Huang et al., 2016) owing to the shorter
sequence lengths. The extent to which adjacent groups of sentences have overlapping contexts
is high in procedures as compared to stories. We had previously gathered cooking recipes to
experimentally demonstrate a scaffolding technique to improve structure in long form narra-
tives (Chandu et al., 2019a). We extend this work to gather procedures or ‘how-to” articles that
have step-by-step instructions along with an associated pairwise image to each step in several
domains. To facilitate multi-domain research with stronger interleaved contexts between sur-
rounding steps, we present a large scale visual procedure telling dataset with 46k procedures
comprising of 340k pairwise images and textual descriptions. It is carefully curated from sev-
eral how-to blogging websites. Our dataset comprises pairwise images and textual descriptions
of the corresponding images, typically describing a step in a procedure. This means that each
description of the step is tethered to an image. This makes it a visual narrative telling task. We
categorized the dataset into 10 distinct domains, including recipes, crafts, outdoors, lifestyle,
technology, styling, fitness, hobbies, pets, and miscellaneous. The category-wise details of the
dataset are presented in Table 3.15. As we can observe, the dataset is dominated by cooking
recipes which are relatively of similar sizes as that of ViST compared to the rest of the domains.

Differences between ViPT and ViST datasets:  As observed in Table 3.15, the average
number of steps in ViPT is higher than that of ViST. However, the average number of steps
in recipes and stories is similar, 5.96 and 5.00, respectively. The average number of words per
step in ViPT is also much higher, thereby presenting a more challenging long form text gen-
eration task. Despite the average number of steps being similar, the average length of each
step i.e., the number of words per step in cooking recipes, is about seven times that of stories.
Typically, each step in the ViPT dataset comprises of multiple sentences that is indicative of
the corresponding image. This is as opposed to ViST dataset, which has a single sentence per
step. These long sequences also present a case for dealing with larger vocabularies as well. The
recipes category alone has a vocabulary of 109k tokens while the same for stories is 25k. We
also compared the diversity in vocabulary of each step by computing the average percentage
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of unique words in a step with respect to the rest of the narrative. While this number is a high
60% for ViST, it is 39% for ViPT. This means that about 40% of the words in each step in ViST
overlap with the rest of the story. This could be owed to the way the dataset is gathered by
asking the annotators to pick a sequence of images that are likely to make a coherent story and
then describe these images in sequence. While the stories-in-sequences sufficiently distinguish
themselves from descriptions-in-isolation, the overlapping contexts are not high compared to
procedures. The overlapping contexts for procedures is about 61%. This reveals the stronger
cohesive and overlapping contexts in the ViPT dataset compared to the ViST datasets. These
overlapping contexts motivate the idea of generating a sentence by bridging the contexts from
surrounding sentences. Hence it forms a suitable testbed to learn interpolation from surround-
ing contexts with infilling technique.

Dataset Stories Recipes

Model XE V-Infill | V-InfillR | INet | XE V-Infill | V-InfillR | INet
BLEU-1 62.05 | 61.58 61.84 63.31 | 28.61 | 29.73 28.61 25.10
BLEU-2 38.31 | 37.27 37.81 39.60 | 16.89 | 17.50 17.01 13.36
BLEU-3 22.68 | 21.70 22.42 23.62 | 10.50 | 10.83 10.59 6.51
BLEU-4 13.74 | 12.96 13.69 14.30 | 5.68 5.81 5.71 3.60
METEOR | 35.01 | 34.53 35.08 35.57 | 26.72 | 27.26 27.51 25.62
ROUGE_L | 29.66 | 29.12 29.65 30.14 | 21.64 | 22.02 18.66 20.43

TABLE 3.17: Performance of different models on stories (from ViST) and recipes (from ViPT)

datasets
Infill Index 0 1 2 3 4 5
Model XE | V-Infill | XE | V-Infill | XE | V-Infill | XE | V-Infill | XE | V-Infill | XE V-Infill
BLEU-1 20.9 | 29.7 22.8 | 29.8 235 | 29.9 244 | 304 25.5 | 31.0 26.4 | 31.5
BLEU-2 12.5 | 18.0 13.2 | 17.6 136 | 17.5 14.2 | 17.8 14.9 | 182 15.4 | 18.6
BLEU-3 7.9 | 11.1 8.2 | 10.7 8.4 | 10.8 8.8 | 10.9 9.2 | 11.1 9.6 | 114
BLEU-4 42 |58 42 |56 44 |56 47 |57 49 |58 5.1 | 6.0
METEOR 27.6 | 27.8 26.4 | 27.1 26.0 | 26.9 263 | 27.1 26.6 | 27.2 26.8 | 27.4
ROUGE_L 20.9 | 22.4 203 | 21.8 20.6 | 21.8 21.0 | 21.9 21.3 | 22.0 215 | 22.1

TABLE 3.18: Performance of infilling during inference for recipes in Visual Procedure Telling

Infill Index 0 1 2 3 4
Model XE | V-Infill | XE | V-Infill | XE | V-Infill | XE | V-Infill | XE V-Infill
BLEU-1 60.9 | 63.0 60.8 | 62.0 60.3 | 61.9 60.5 | 62.2 61.8 | 63.3
BLEU-2 37.0 | 39.5 36.9 | 38.6 37.0 | 384 37.0 | 38.7 38.1 | 39.6
BLEU-3 21.7 | 23.7 21.6 | 23.1 21.8 | 22.9 21.8 | 23.2 22.5 | 23.7
BLEU-4 13.1 | 144 13.1 | 14.1 13.2 | 13.9 13.3 | 14.3 13.8 | 14.5
METEOR 349 | 354 34.8 | 35.1 35.2 | 35.2 35.1 | 353 35.2 | 35.5
ROUGE_L 29.3 | 30.2 29.2 | 29.9 29.1 | 30.0 29.2 | 30.0 29.5 | 30.3

TABLE 3.19: Performance of infilling during inference for Visual Story Telling

3.4.2 Models Description

This section describes the baseline model and the infilling techniques adopted on top of it.

We present infilling-based techniques for learning missing visual contexts to generate narrative
text from a sequence of images. As the ViST and recipes category in ViPT are of comparable
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sizes (both in terms of data size and the average number of steps per instance), we perform
comparative experimentation on these two categories. We leave experimenting with all the
domains for our future work, especially learning from one domain to generate the sequences
in other domains. For our ViPT category, we use 80% for training, 10% for validation, and
10% for testing. The stories are composed of 5 steps, and the cooking recipes are truncated
to 5 steps to perform a fair comparison of the effect of the index being infilled. An overview
of infilling-based training is depicted in Figure 3.14. The underlying encoding and decoding
stages are described here.

Encoding: Models 1, 2, and 3 here show different variants of encoding with and without
infilling. Model 4 is the state-of-the-art model for generating stories on ViST. Note that the
encoding part of the missing contexts varies between these models while the decoding strategy
remains the same to compare (i) the performance of encoding masked contexts as opposed to
not masking, and (ii) the performance of masked span prediction between stories and proce-
dures.

1. XE (baseline): We choose a strong performing baseline model based on sequence to
sequence modeling with cross entropy (XE) loss inspired from Wang et al. (2018). It is a CNN-
RNN architecture. The visual features are extracted from the penultimate layer of ResNet-152
by passing the resized images ({1, I2, ..., I,}) of size 224 X 224. These represent the image
specific local features ({1, l2, ..., 1, }). These features are then passed through a bidirectional
GRU layer to attain narrative level global features ({g1, g2, ..., gn }) constituting the narrative
context layer in Figure 3.14.

2. V-Infill: ~ We introduce an infilling indicator function on the underlying XE model by
randomly sampling an infilling index (in;q4,). This is used to construct the final infilled local
features as follows.

e (Vk, 560 < k < n) = {zero_tensor if k=in;qy

Uy otherwise
Other than the sampled in;q,, the rest of the local features for other indices remain the same.
The local features for in;4, are all masked to a zero tensor. The dropout of an entire set of local
features from an image forces the model to learn to bridge the context from the left and the
right images of in;4,. The model is optimized to predict the rest of the steps where images are
present along with the masked span prediction. In this way, the infilling mechanism encourages
our underlying seq2seq model to learn the local representation of the missing context from
global contextual features in the narrative context layer.

3. V-InfillR: This model varies the Rates in which local features are masked as training
proceeds based on the indicator function above in the V-Infill model. Scheduling the number
of missing features itself is a hyperparameter, and we used the following setting. In the first
quarter of training epochs, none are masked, then increasing it to 1 local feature for the next
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F1GURE 3.15: Comparison of the content-anchoring based on multimodal interactions in in-
filling

quarter and leaving it at 2 for the last two quarters. This is similar to the settings observed in
INet model. We have experimented with other settings of scheduling, but this one performed
better than the others.

As mentioned earlier, the encoding of the local features changes based on the infilling tech-
nique being used in each of the above strategies. As we can see, the contribution of the global
features to reconstruct the missing local context is intuitively expected to perform well in the
case of narratives with overlapping contexts. Hence, we hypothesize that the infilling tech-
nique that interpolates between steps that constitute words or phrases that are similar to those
of the surrounding steps benefit from this technique. A ‘how-to’ style of narrative explain-
ing a procedure is more in-domain as compared to the stories and hence hypothesize that our
infilling-based encoding approaches perform relatively better on procedures. We then use the
encoded representation to decode each step of the procedure or story. The decoding strategy
is explained next which is the same in all three of the aforementioned models.

Decoding: In all the above models, gj, are fed into a GRU decoder to predict each word (w;)
of the step (k). The same is done for generating each step in the five steps. In the infilling
methods, the decoding strategy is agnostic to the missing context in the local features. The
global features that bridge the contexts in the encoding are used directly as input to the decoder.
In other words, the network remains the same once the global features are predicted. We
perform beam search with a beam size of 3 during inference. Here 7 is the number of words

in each step, and ¢ is the current time step.

by, ~ [ [ Pr(wf|w;", gr)
T

4. INet: We re-implemented the model achieving the state-of-the-art results (Hu et al.,
2020Db) on the visual storytelling dataset. Additionally, they use a relational embedding layer
that captures relations across spatio-temporal sub-spaces. Our replication of their model is
close to the scores reported in their paper, though not exact. Our re-implementation achieved
a 35.5 METEOR and 63.3 BLEU-1 in comparison to the scores reported in their paper which
are 35.6 and 64.4.

The comparison between the baseline and the implicit context model with infilling is depicted
in Figure 3.15.
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Hyperparameter Setup: We use a GRU with a hidden dimension of 256 for the encoder
and 512 for the decoder. The word embedding dimension is 512. The learning rate is 4e-4
optimized with Adam and smoothing of 1e-8. We use a dropout of 0.2 and momentum of 0.9
with a gradient clipping of 10. When experimented with a transformer-based encoder and
autoregressive decoding, the performance is comparatively lesser, and hence we proceed with
a GRU-based model. Based on the average number of steps in recipes from Table 3.15 which is
5.96, we truncate the recipes to 6 steps.

3.4.3 Experiments and Results

% - - ]
0 | P ‘*\( 2h s |
Spa 4
A = - |
Analysis
There are only a few Trim the fat Dry the meat by Heat a little oilon a After 3-5 minutes Once the meat is to your
components around the meat blotting it with stainless steel or cast pass, usea desired temperature ,
GT necessary to sear until almost paper towels . iron skillet on high spatula to check rest on a plate and cover
meat and make a none is left . heat and wait for the the meat. with foil , 5-10 minutes .
pan sauce. oil to start smoking .
0 Cut the chicken into The first thing you Heat the oil in a Add the salt and pepper | Once the chickenis = Now that you have a hot = The content step 1 is
small pieces will need to do is pan and add the to the pan . cooked , remove pan , it's time to cook the bei ied tp 0
put the meat in olive oil . the chicken from chicken . dllig i s 0.
the pan . the oven and let it = Recovering from
cool for about 10 incorrect steps until
minutes . step 2.
XE
4 For this recipe you will Cut the chicken The first thing you Place the pan on the Make sure it is Once the chicken is done , = The infilled sentence
need the following breast into small need to do is put stove and heat the pan properly cooked remove the chicken from 4i 3 d
ingredients : - 1 cup of | pieces . the meat in the pan | on medium heat . the oven and let it cool for atstep s generic an
water , salt and and let it cool for a few minutes underspecified
pepper about 10 minutes .
0 You will need the Cut the chicken Add the chicken to Heat the oil in a frying Once the chickenis ~ Now that you have a little + Step 0 talks about
following ingredients breast into small the pan . pan over medium heat . done , add the bit , you will need to putthe p
pieces . chicken to the pan meat in the oven at 180 ingredients.
and stiritup . degrees celsius circulating = The ingredients are
air for about 20 minutes . still underspecified.
VeInfill 4 You will need the Cut the onion into Cut the chicken Heat the oil in a frying Once the chickenis | Once the chicken is done , + Step 0 talks about
following ingredients : small pieces . breast into small pan over medium heat . ready , add the remove the pan from the . dP
- meat, 1 cup of pieces . chicken to the pan pan and let it sit for about ingredients.
butter and salt 10 minutes . = Phrase from step 5

copied to step 4

FIGURE 3.16: Comparison of V-Infill and XE dealing with infilling context during inference
(for making chicken roast). GT corresponds to the ground truth step. The index in each row
corresponds to the index of the missing image.

In this section, we present the effects of infilling both during both training and inference on
ViST and ViPT datasets. We also present an analysis based on the length of generated se-
quences along with a qualitative demonstration.

Infilling during training:  The overall performance of the models is presented in Table 3.17.
Both the infilling model variants achieve higher scores on the recipes while not decreasing their
performances on stories. We also observed that increasing the number of masked local features
beyond two drastically decreases the performance on both datasets.

Infilling during inference for Visual Procedure Telling:  Acquiring parallel pairwise
image and narrative data in the wild is often not feasible. Hence, we perform infilling not
only at train time but also at inference time to evaluate the ability of the model to bridge
contexts when the corresponding image is absent and deal with real-world data imputation
scenarios. Table 3.18 demonstrate the performance of the V-Infill model in comparison with
the XE model when different indices are infilled during the inference stage. As observed, the
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automatic scores get affected detrimentally when the infilled index is to the left, i.e., a lower
index. This is because usually the beginning of the sentence comprises introducing the dish
followed by listing down the ingredients. For this reason, the density of the number of entities
present at the beginning of the procedure is usually higher. Hence reconstructing that from
the rest of the recipe is difficult. However, as we move from left to right, i.e., as we gradually
increase the infilled index, we observe an increasing trend in the automatic metric.

Infilling during inference for Visual Story Telling: Table 3.19 demonstrates the effects
of infilling various indices during inference. This table is analogous to Table 3.18 for stories.
As we can see, a similar trend in the increase in all the automatic metrics is present as we move
the infill index to the story’s right. While that is still the case, a very interesting observation
is that the difference between the performance of XE and Infill models for any given index is
much higher for recipes compared to stories. The infilling technique brings much more value
to the task when the nature of the text is procedural and dependent more on the surrounding
contexts.

Lengths of generated sequences: We compare infilling during inference between baseline
XE model and our V-Infill model in Table 3.18. While the METEOR scores remain comparable,
the BLEU scores steadily increase as we move the in;q, to the right. Specifically, these jumps
are bigger after step 3. Quantitatively, this is the result of the model being able to produce
longer sequences as we move to the right as BLEU gets penalized for short sentences. Quali-
tatively, this implies that the initial steps like specifying the ingredients are more crucial than
later ones. A similar observation emerges by analyzing the effects of infilling during training.
The average length of generated recipes by XE is 71.26 and by V-Infill is 76.49. A similar trend
is observed for stories in Table 3.19.

Qualitative Discussion:  Figure 3.16 demonstrates an example of generated samples by
infilling different indices. The top row shows the steps in the ground truth steps for the cor-
responding images. The indices on the top row are the indices of the images or the steps,
and the indices on the left column (in blue) are the indices whose local features are masked.
As observed, the XE model depicts two strategies to recover the missing context. The first is
copying the contents that are similar from the adjacent step directly. For instance, while the
0" index of the image is masked, the XE model generates cutting from trimming and chicken
from meat from the following step. This has nothing to do with the actual description of the
corresponding step. However, our V-Infill model is able to generate the sentence depicting that
it is listing ingredients in this case. Since the baseline incorrectly generates the first step, it is
harder to recover and generate the correct sequence for the rest of the procedure. The second
is the strategy of generating generic sentences. When the infilled index is at 4, the baseline
model generates a sentence that is generic and not specific to the given set of images. In this
case, it generates a statement that says to make sure that it is properly cooked. Our V-Infill
model is able to bridge the context from step 3 about heating the oil and step 5 about removing
the pan and hence interpolates the missing context to be placing the chicken on the pan.
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Despite the recovering strategies used in both these methods, a common problem is observed
in the generated steps. The details in the steps are omitted, thereby leading to the problem
of under-specification. For instance, the actions in step 4 are under-specified by XE when the
infilled index is 4. Similarly, the V-Infill model under-specifies the ingredients.

The recipe in each page is generated from a sequence of images shown in the
corresponding page. Based on the sequence of images, please select a recipe that
you prefer over the other.

In a large bowl, combine the flour , baking soda, baking soda, and salt . Roll out the
dough and roll it out . Place the dough in the oven at 180 degrees celsius circulating
air for about 20 minutes . Place the dough in the oven at 180 degrees celsius
circulating air for about 20 minutes . Place the dough in the oven at 180 degrees
celsius circulating air for about 20 minutes .

In a large bowl, combine the flour , baking powder , salt, and salt . Take the dough out
of the oven and let it cool for about 30 minutes . Put the dough in the oven at 180
degrees celsius circulating air for about 20 minutes . Put the dough in the oven at 180
degrees celsius .

FIGURE 3.17: Human Evaluation Interface for an example of generated recipes with both tech-
niques.

Human Evaluation:  Figure 3.17 depicts a screenshot of our human evaluation interface. A
sequence of images is presented on top of the screen. This evaluation is conducted to compare
between XE and V-Infill models. The generated sentences from both the models, in this case,
XE and V-Infill are presented after the images. Note that the generated outputs are presented
in arbitrarily random order for each example to ensure there is no bias while performing pref-
erence testing. Human subjects are asked to pick one of the generated recipes for the given
sequence of images based on the relevance to them. 10 such recipes are presented for each
user, and we averaged the preference scores among 20 evaluators.

So far, we explored the N-Local anchoring of content with visual modality. In the next section,
we are going to look into the N-Global anchoring of the content driven in the form of a theme

provided in the question for biomedical text summarization.

3.5 N-Global Anchoring from Questions

In this section, we describe anchoring a narrative on the whole by providing a topic and specific
aspects of the topic in an unstructured format for guidance. As a case study, in this section, we
will look at our participation in Phase B of task 5b of the fifth edition of the annual BioASQ chal-
lenge, which includes answering factoid, list, yes-no, and summary questions from biomedical
data. We describe our techniques with an emphasis on ideal answer generation, where the
goal is to produce a relevant, precise, non-redundant, query-oriented summary from multiple
relevant documents. The dataset comprises a huge corpus of unstructured text articles, pairs
of questions, and gold summaries. In this case, the partial anchor A; is derived from a ques-
tion, and the supporting input I; is the gigantic text corpus. The output narrative IN; is the
summary or the ideal answer for the given question from the corpus. The focus of this section
is utilizing the anchoring from question to stitch together the appropriate information in the
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summary. We use extractive summarization techniques to address this task and experiment
with different biomedical ontologies and various algorithms, including agglomerative cluster-
ing, Maximum Marginal Relevance (MMR), and sentence compression. We propose a novel
word embedding based tf-idf similarity metric and a soft positional constraint that improve
our system performance. We evaluate our techniques on test batch 4 from the fourth edition
of the challenge. Our best system achieves a ROUGE-2 score of 0.6534 and ROUGE-SU4 score
of 0.6536.

In recent years, there has been a huge surge in the number of biomedical articles being de-
posited online. The National Library of Medicine (NLM) provides MEDLINE, a gigantic database
of 23 million references to biomedical journal papers. Approximately 200,000 articles ° from
this database have been cited since 2015. The rapid growth of information in this centralized
repository makes it difficult for medical researchers to manually find an exact answer for a
question. This section describes our efforts in creating a system that can provide ideal answers
for biomedical questions. More specifically, we develop a system that can answer the kinds of
biomedical questions present in the dataset for the BioASQ challenge (Tsatsaronis et al., 2015),
which is a challenge on large-scale biomedical semantic indexing and question answering. We
develop a system for biomedical summarization using MMR and clustering-based techniques.

We build on standard techniques such as Maximal Marginal Relevance (Carbonell and Gold-
stein, 1998) and Sentence Compression (Filippova et al., 2015) and incorporate domain-specific
knowledge using biomedical ontologies such as the UMLS metathesaurus and SNOMEDCT
(Stearns et al., 2001) to build an ideal answer generator for biomedical questions. We also ex-
periment with several similarity metrics such as jaccard similarity and a novel word embedding
based tf-idf (w2v tf-idf) similarity metric within our system. We evaluate the performance of
our system on the dataset for test batch 4 of the fourth edition of the challenge and report our
system performance on ROUGE-2 and ROUGE-SU4 (Lin and Hovy, 2003), which are the stan-
dard metrics used for official evaluation in the BioASQ challenge. Our best system achieves
ROUGE-2 and ROUGE-SU4 scores of 0.6534 and 0.6536 respectively on test batch 4 for task 4b
when evaluated on BioASQ Oracle®. Various configurations and similarity metrics, granularity
and algorithms selection enabled us to secure top 1,2,3 in test batch 4 and top 1,2,3,4 in test
batch 5 on automatic evaluation metrics of ROUGE-2 and ROUGE-SU4, from our participation
in Task 5b of ideal answer generation.

3.5.1 Dataset Description

The training data for Phase B of task 5b provides biomedical questions where each question is
associated with question type, URLs of relevant PubMed articles, and relevant snippets from
those articles. This dataset consists of 1,799 questions. The A; anchor for each narrative IN; is
derived from the corresponding question ;. The narrative IN; which is the summary is then
conditioned on this anchor A;. Though our ideal answer generation system is unsupervised,
we use a brief manual inspection of the training data for this edition of the challenge to make
an informed choice of hyperparameters for the algorithms used by our system.

https://www.nlm.nih.gov/bsd/medline_lang_distr.html
Shttp://participants-area.bioasq.org/oracle/
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To develop an ideal answer generator that can produce query-oriented summaries for each
question, two popular approaches can be adopted: extractive or abstractive. Extractive sum-
marization techniques choose sentences from relevant documents and combine them to form
a summary. Abstractive summarization methods use relevant documents to create a semantic
representation of the knowledge from these documents and then generate a summary using
reasoning and natural language generation techniques. Brief analysis on a randomly sampled
subset from the training data shows us that most of the sentences in the gold ideal answers
are present either in the relevant snippets or relevant abstracts of PubMed articles. That is the
reason behind adopting extractive summarization for this task. An interesting ordering trend
observed among relevant snippets which is used to develop a positional constraint. Adding
this positional constraint to our similarity metrics gives us a slight boost in performance. The
intuition behind this idea is explained in more detail in §3.5.2.2.

The dataset from test batch 4 of the fourth edition of the BioASQ challenge consisting of 100
questions is used for evaluation.

3.5.2 Model Description
3.5.2.1 N-Global Anchor Representation

The anchors are N-Global in this case, which means they provide a high-level general theme
or topic for the narrative. There is no strict explicit fine level governance on every sentence in
the summary. The question provides a high-level theme or topic along with the aspects of the
entities that are probed about. The biomedical entities in the question still play a major role
in determining the topic of the query-based summary. Keeping this in view, we come up with
three formulations for the representation of the anchors:

« Surface forms: Words occurring in raw form in the dataset.

« Expansion forms: Biomedical ontologies are leveraged to expand the terms present to
the related words.

« Embedding forms: A latent space representation of these words help in designing better
scoring functions to evaluate conceptual closeness.

As we can recall, these forms are parallels to the different forms of anchors derived for the
complete anchoring task described in §3.3. The corresponding forms for entity skeletons there
are surface forms, nominalized forms, abstract forms. Next, we will be seeing how the afore-
mentioned forms for partial anchoring are used in the relevance ranking, which is the first step
for content selection. In particular, these different forms influence the way similarity scores
are calculated.

3.5.2.2 Summarization Pipeline

In this subsection, we describe our system pipeline for the ideal answer generation task which
mainly comprises of three stages: question-sentence relevance ranker, sentence selection and
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FIGURE 3.18: System pipeline for Ideal Answer Generation (with configuration choices)

sentence tiling. Each stage has multiple configurations depending upon various choices for
algorithms, concept expansion, and similarity metrics. The different forms of N-Global anchors
play a direct role in concept expansion and the formulation of similarity metrics. Figure 3.18
shows the overall architecture of our system and also briefly mentions various algorithms used
in each stage. We describe these stages and choices in more detail in the following subsections.
Note that the anchors are all the words in the questions in three forms described in §3.5.2.1.

Anchor conditioned summaries are extracted from the relevance ranker and sentence selection.

Question-Sentence Relevance ranker: In this phase, we retrieve a list of candidate sen-
tences from gold abstracts and snippets provided for each question and compute relevance
scores with respect to the question for these sentences. We can choose from several similarity
metrics, biomedical ontologies, and different granularities for sentence scoring in this stage.

Granularity for Candidate Sentence Extraction The training data provided for the BioASQ
task contains a list of PubMed IDs of gold relevant documents from NLM, along with pertinent
gold snippets from these documents, for each question. Since the training data only contains
PubMed IDs of relevant documents, we extract complete abstract text for these documents by
first indexing all Medline abstracts ’ via Lucene and then retrieving relevant documents based
on PubMed IDs.

We now have two choices of granularity for candidate sentence extraction: using entire ab-
stract texts from relevant documents or using only relevant snippets. We experiment with both
possibilities. However, since relevant snippets for each question are a subset of abstract texts,
which are highly relevant to the question, leveraging this insight and using only snippets for
candidate sentence extraction gives us better performance, as we see from the results in §3.5.3.

"https://www.nlm.nih.gov/databases/download/pubmed_medline.html
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Similarity metrics The performance of both the relevance ranker and the sentence selection
phase (which is the following phase in the pipeline) depends on the similarity metrics used to
capture question-sentence relevance and sentence-sentence similarity. In this subsection, we
describe various similarity metrics which we experiment with. The representation of anchors
in various forms affects the way these similarity scores are evaluated.

1. Jaccard similarity:  This form of similarity uses the surface form and/or expansion form
representation of the N-Global anchor. For each sentence, its relevance with respect to the
question is computed as the Jaccard index between the sets containing all words occurring in
the question and the sentence. This is the simplest metric that captures surface (word-level)
similarity between the question and the sentence. Including related concepts obtained by con-
cept expansion in these word sets provide some measure of semantic overlap, but this technique
is not very effective as we show in §3.5.3. Hence this similarity is capable of leveraging the
surface form and expansion form representations of the anchors.

2. Tf-idf based similarity with word embeddings:  This form of similarity is capable of
utilizing the embedding form representations for the N-Global anchor. Using ontologies such
as WordNet (for general English) and UMLS/ SNOMEDCT (for biomedical domain) for concept
expansion to incorporate some semantics while computing sentence similarity is not sufficient
due to the unbounded nature of such ontologies. Hence, to assimilate semantic information
in a more controlled manner, we use a novel similarity metric inspired by the widely-used tf-
idf cosine similarity metric, which incorporates semantic information by making use of word
embeddings (Mikolov et al., 2013).

Let W represent the symmetric word-to-word similarity matrix and @, b represent tf-idf vectors
for the sentences. The similarity metric is defined as:

STNATE
sim(d,b) = a_ Wb (3.4)

VaTWaVvbTwb

The word-to-word similarity matrix W is computed using cosine similarity between word em-
beddings for each word. We use word embeddings that have been pre-trained on PubMed,
PMC, and Wikipedia articles to incorporate domain knowledge °.

This form utilizes the embedding form representation of the anchor words.

3. Similarity function with positional constraints:  As described in §3.5.1, the data
provided for each question contains a list of relevant abstracts of PubMed articles, as well as a
list of relevant snippets extracted from these abstracts. The abstracts are ordered by relevance.
Snippets, on the other hand, are not ordered by relevance but are ordered according to the
abstracts that they are extracted from. Since the abstracts themselves are ordered by relevance,
this gives an inherent discourse structure to the snippets. This observation motivates us to
incorporate information about a snippet’s position in the list into the similarity function to

These pre-trained word vectors are provided by http://evexdb.org/pmresources/vec-space-models/
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improve the summaries generated by our system. We first test this hypothesis using a simple
baseline which gives the first snippet in the list as the summary for every question. This simple
baseline is able to achieve good ROUGE scores, as shown in Table 3.21. We experiment with
two different ways of incorporating this constraint:

« Hard positional constraint: In this method, we enforce the snippet position as a hard
constraint. We achieve this by restricting the algorithm to select the first sentence of the
summary from the first snippet (most relevant snippet) in the list. The remaining sen-
tences can be selected from any snippet. This method does not have much improvement
on our ROUGE scores, as explained in §3.5.3.

+ Soft positional constraint: This method incorporates the snippet position as a soft
constraint by adding it to the similarity function. The augmented similarity function
after incorporating the snippet position is presented below:

positional Sim(q, s) = a x sim(q, s)+

(3.5)
(1 — ) *xrank(s)

Here, g and s denote the question and sentence respectively; sim(q, s) denotes a function
which computes similarity between question and sentence (we experiment with Jaccard
and tf-idf based similarities); rank(s) denotes the boost given to the sentence based on
the position of the snippet to which it belongs and « is a weighting parameter. The value
of rank(s) for a sentence is computed as follows:

rank(s) =1 — pos(s)
pos(s) = snippet Pos(s)/#snippets

Here, snippet Pos(s) denotes the position (index) of the snippet, to which the sentence
belongs, in the list of relevant snippets. If a sentence belongs to multiple snippets, we
consider the lowest index. #snippets denotes the number of relevant snippets for the
current question. This positional boost gives higher weight to sentences with lower
position values (since they occur earlier in the list) and returns a normalized value in
the range 0-1, to ensure that it is comparable to the range of values produced by the
similarity function. Adding this constraint boosts our ROUGE scores.

As we can observe, the constraints are imposed on top of the underlying similarity scores
to rerank the retrieved sentences. Hence all the anchor forms compatible in calculating the
corresponding sim(q, s) score can be used along with these positional constraints.

Table 3.20 demonstrates the compatibility of different anchor form representations with the
similarity metric computation.
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Similarity Anchor forms

Metrics Surface form Expansion form Embedding form
Jaccard v v

Tf-idf v
Positional 4 v 4

TaBLE 3.20: Compatibility of anchor form representation with similarity metrics

Biomedical Tools and Ontologies We experiment with various biomedical tools and on-
tologies for concept expansion in order to incorporate relations between concepts while com-
puting similarity. To perform concept expansion, the first step is to identify biomedical con-
cepts from a sentence. We choose the MetaMap concept identification tool and use a python
wrapper, pymetamap’ for this purpose. This API identifies biomedical concepts from a sen-
tence and returns a Concept Unique Identification (CUI) for each concept. This CUI acts as a
unique identifier for the concept which is shared across ontologies, i.e., it can be used as an
ID to retrieve the same concept from the UMLS ontology. After identifying biomedical con-
cepts, we experiment with two ontologies for concept expansion: UMLS Metathesaurus and
SNOMEDCT.

« UMLS Metathesaurus: The UMLS Metathesarus contains many types of relations for
each biomedical concept. For our task, three relation types are of interest to us: ‘RB’
(broader relationship), ‘RL’ (similar or alike relationship) and ‘RQ’ (related and possibly
synonymous relationship). However, none of the biomedical concepts identified from
questions and sentences in our training dataset contained relations of the type ‘RL’ or
‘RQ’. Hence we perform expansion for each biomedical concept by collecting all concepts
linked to it by the ‘RB’ relation.

« SNOMEDCT: The SNOMEDCT ontology does not contain CUIs for biomedical con-
cepts. Hence, we need to use a different technique to locate concepts in this ontology.
In addition to CUI, pymetamap also provides a “preferred name” for each concept. We
use this preferred name to perform a full-text search in the SNOMEDCT ontology. All
concepts returned by this search are then considered to be related concepts and used for
expansion. Using this ontology for concept expansion returns a much larger number
of related concepts due to the nature of our search (using fuzzy text search instead of
precise identifiers).

We use these techniques to perform concept expansion on both questions and sentences from
relevant snippets. In §3.5.3.2, we present the results of various system configurations with and
without domain-specific concept expansion.

Sentence Selection In this stage, we want to select sentences for the final summary from
candidate sentences extracted by the previous stage. Since the BioASQ task has a word limit
of 200, we limit the number of sentences selected for the final summary to five. This sentence
limit gives us good ROUGE scores across multiple system configurations.

*https://github.com/AnthonyMRios/pymetamap
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The simplest way of performing sentence selection is to continue selecting the sentence with
the highest relevance score to the question until the sentence limit is reached. However, sen-
tences with high relevance to the question may be semantically similar, thus introducing re-
dundancy in the generated summary. We use two algorithms to combat this issue: agglomer-
ative clustering based on sentence similarity and Maximum Marginal Relevance (MMR) (Car-
bonell and Goldstein, 1998). Both algorithms require effective similarity metrics to compute
semantic similarity between sentences. We experiment with various similarity metrics de-
scribed in §3.5.2.2. We also experiment with concept expansion using multiple biomedical
ontologies. Selecting relevant content here is anchored in the question.

Agglomerative Clustering Redundancy reduction via clustering is one of the techniques
that was proposed for biomedical query-oriented summarization (Chen and Verma, 2006). In
this technique, we create all possible sentence pairs from our set of candidate sentences and
compute pair-wise similarities. We then perform agglomerative clustering on the sentences
using these pair-wise similarity scores. Finally, we select one sentence from each cluster to
generate the final summary in such a way that the sentence having maximum question rel-
evance score is selected from every cluster. The number of clusters is set to the maximum
number of sentences we need in the final summary (five in this case). The intuition behind this
technique is that agglomerative clustering forces semantically similar sentences to fall into
the same cluster. Since we only select one sentence from each cluster in the end, we discard
sentences that are highly similar to the selected ones.

Maximal Marginal Relevance Maximal Marginal Relevance (Carbonell and Goldstein, 1998)
is a widely-used summarization algorithm that was proposed to tackle the issue of redundancy
while maintaining query relevance in summarization. This algorithm selects new sentences
based on a combination of relevance score with respect to the question as well as similarity
score with respect to the sentences which have already been selected for the final summary.
Thus, this algorithm incorporates sentence similarity as a constraint instead of explicitly clus-

tering sentences.

Sentence Tiling In the final stage, we combine all selected sentences to produce the final
summary. The simplest way is to append all selected sentences while constraining summary
length (because of the word-limit constraint for this task). We also experiment with an LSTM-
based sentence compression method. We train a neural network based on work done previ-
ously by Filippova et al. (2015) for sentence compression. We generate training data for this
network by pairing sentences from abstract texts with their full-text versions. Given that this
dataset is too small to train the neural network, we add training instances from existing sen-
tence compression datasets. Input to this model includes the word vector representation for
a word and a binary value to indicate whether the previous word was included in the output
sentence. Based on these inputs, the output of the model predicts whether the word should be
deleted or not. In the end, sentences generated after word deletion are concatenated together
to generate the final summary. It is to be noted that this model does not require any linguistic
features. Note that concatenating the selected content based in the order of relevance does
not guarantee a coherent structure in the narrative. This chapter mainly focuses on anchoring
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Experiment ROUGE-2 | ROUGE-SU4
1 | Clustering + Abstract texts (with average constraint) 0.2906 0.3138
2 | Clustering + Snippets (with average constraint) 0.4314 0.4347
3 | Clustering + Snippets (without average constraint) 0.5609 0.5632
4 | Clustering + UMLS expansion 0.5488 0.5521
5 | Clustering + SNOMEDCT expansion 0.5514 0.5586
6 | Clustering + UMLS expansion + weighting 0.5402 0.5431
7 | Clustering + SNOMEDCT expansion + weighting 0.5530 0.5588
8 | Clustering + UMLS expansion + weighted normalization 0.5592 0.5632
9 | Clustering + SNOMEDCT expansion + weighted normalization 0.5585 0.5650
10 | MMR 0.6338 0.6296
11 | MMR + w2y tf-idf similarity 0.6168 0.6126
12 | First snippet baseline 0.3363 0.3308
13 | MMR + Hard positional constraint + Jaccard similarity 0.6338 0.6296
14 | MMR + Soft positional constraint + Jaccard similarity 0.6419 0.6410
15 | Hard positional constraint + Jaccard similarity 0.6328 0.6254
16 | Soft positional constraint + Jaccard similarity 0.6433 0.6429
17 | Soft positional constraint + w2v tf-idf similarity 0.6534 0.6536
18 | MMR + tf-idf similarity + LSTM compression 0.5689 0.5723

TaBLE 3.21: ROUGE scores with different algorithms, ontologies and similarity metrics

the content selection in the question. In the next chapter, we will discuss some post-editing
techniques to reorder the selected content to form a more coherent summary.

3.5.3 Experiments and Results

We experiment with ideal answer generation using various system configurations which differ
in similarity metrics, biomedical ontologies, sentence selection algorithms(clustering/MMR),
and tiling algorithms used. The official evaluation for ideal answers includes manual evaluation
by biomedical experts in the BioASQ team as well as automatic evaluation via ROUGE scores.
To present comparable and standardized results, we run our system on the batch 4 dataset for
Phase B of task 4b and get our results evaluated via the BioASQ Oracle.

3.5.3.1 Quantitative Analysis

These results are shown in Table 1. We obtain the best results among these configurations by
using soft positional constraint with tf-idf based similarity on snippets. The first three rows in
Table 1 show our experiments with different granularities for sentence extraction. While using
abstract texts for sentence selection, we observe that our clustering technique frequently puts
sentences with low query relevance into the same clusters. Since our selection method picks
one sentence from each cluster, some sentences with low query relevance from these “bad”
clusters are also selected for the final summary. To solve this issue, we imposed a constraint
that filtered out sentences with a lower-than-average relevance score regarding the question
before clustering. We also tried adding this constraint while using relevant snippets, but this
reduced our scores because sentences from snippets are already relevant to the question, and
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Category Question/Summary
Question What is the effect that EZH2 has on chromatin?
Gold Ideal Ez that catalyzes di- and trimethylation of histone H3 lysine 27 (H3K37me2/3), marks repressive to transcription.[7] The mammalian
Answer homologs Ezh1 and Ezh2 form similar PRC2 complexes but exhibit contrasting repressive roles.[2] PRC2-Ezh2 catalyzes H3K27me2/3 and

its knockdown affects global H3K27me2/3 levels.[3] EZH2 thus maintains chromatin in a repressive state.

Clustering + During progenitor cell differentiation and ageing, PcG silencer EZH2 attenuates, causing loss of PRC binding and transcriptional activation of INK4b

Snippets and INK4a Treg-specific ablation of Ezh2 resulted in spontaneous autoimmunity with reduced Foxp3(+) cells in non-lymphoid tissues and impaired
resolution of experimental autoimmune encephalomyelitis We report that the mammalian homologs Ezh1 and Ezh2 form similar PRC2 complexes
but exhibit contrasting repressive roles.[2] In this study, we found the inverse correlation between FOXP3 and Ezh2, an enzyme for histone H3K27
trimethylation (H3K27me3) and a central epigenetic regulator in cancer the PRC2-Ezh2 complex, which is bound to the myogenin (MyoG) promoter
and muscle creatine kinase (mCK) enhancer in proliferating myoblasts, and the PRC2-Ezh1 complex, which replaces PRC2-Ezh2 on MyoG promoter
in post-mitotic myotubes.

Clustering + During progenitor cell differentiation and ageing, PcG silencer EZH2 attenuates, causing loss of PRC binding and transcriptional activation of INK4b

UMLS and INK4a. We report that the mammalian homologs Ezh1 and Ezh2 form similar PRC2 complexes but exhibit contrasting repressive roles.
expansion + [2] Treg-specific ablation of Ezh2 resulted in spontaneous autoimmunity with reduced Foxp3(+) cells in non-lymphoid tissues and impaired resolution
weighted of experimental autoimmune encephalomyelitis Ez that catalyzes di- and trimethylation of histone H3 lysine 27 (H3K37me2/3) [3], marks

normalization | repressive to transcription.[1] the PRC2-Ezh2 complex, which is bound to the myogenin (MyoG) promoter and muscle creatine kinase (mCK)
enhancer in proliferating myoblasts, and the PRC2-Ezh1 complex, which replaces PRC2-Ezh2 on MyoG promoter in post-mitotic myotubes.

Clustering + During progenitor cell differentiation and ageing, PcG silencer EZH2 attenuates, causing loss of PRC binding and transcriptional activation of INK4b

SNOMEDCT and INK4a Treg-specific ablation of Ezh2 resulted in spontaneous autoimmunity with reduced Foxp3(+) cells in non-lymphoid tissues and impaired

expansion + resolution of experimental autoimmune encephalomyelitis We report that the mammalian homologs Ezh1 and Ezh2 form similar PRC2 complexes

weighted but exhibit contrasting repressive roles.[2] Ez that ly di- and trimethylation of hi: H3 lysine 27 (H3K37me2/3), marks repressive

normalization | to transcription.[1] the PRC2-Ezh2 complex, which is bound to the myogenin (MyoG) promoter and muscle creatine kinase (mCK) enhancer in
proliferating myoblasts, and the PRC2-Ezh1 complex, which replaces PRC2-Ezh2 on MyoG promoter in post-mitotic myotubes.

MMR Ezh1 and Ezh2 maintain repressive chromatin through different mechanisms.[1] The chromatin-modifying enzyme Ezh2 is critical for the
maintenance of regulatory T cell identity after activation. Treg-specific ablation of Ezh2 resulted in spontaneous autoimmunity with reduced Foxp3(+)
cells in non-lymphoid tissues and impaired resolution of experimental autoimmune encephalomyelitis. the PRC2-Ezh2 complex, which is bound to the
myogenin (MyoG) promoter and muscle creatine kinase (mCK) enhancer in proliferating myoblasts, and the PRC2-Ezh1 complex, which replaces
PRC2-Ezh2 on MyoG promoter in post-mitotic myotubes. In this study, we found the inverse correlation between FOXP3 and Ezh2, an enzyme for
histone H3K27 trimethylation (H3K27me3) and a central epigenetic regulator in cancer.

MMR + w2v Ezh1 and Ezh2 maintain repressive chromatin through different mechanisms.[1] In this study, we found the inverse correlation between FOXP3

tf-idf and Ezh2, an enzyme for histone H3K27 trimethylation (H3K27me3) and a central epigenetic regulator in cancer. These studies reveal a critical role
for Ezh2 in the maintenance of Treg cell identity during cellular activation. We report that the mammalian homologs Ezh1 and Ezh2 form similar
PRC2 complexes but exhibit contrasting repressive roles.[2] The chromatin-modifying enzyme Ezh2 is critical for the maintenance of regulatory T
cell identity after activation.

Soft Ezh1 and Ezh2 maintain repressive chromatin through different mechanisms.[1] We report that the mammalian homologs Ezh1 and Ezh2
constraint + form similar PRC2 complexes but exhibit contrasting repressive roles.[2] Ez that catalyzes di- and trimethylation of histone H3 lysine 27
w2y tf-idf (H3K37me2/3), marks repressive to transcription. During progenitor cell differentiation and ageing, PcG silencer EZH2 attenuates, causing loss of

PRC binding and transcriptional activation of INK4b and INK4a. the PRC2-Ezh2 complex, which is bound to the myogenin (MyoG) promoter and
muscle creatine kinase (mCK) enhancer in proliferating myoblasts, and the PRC2-Ezh1 complex, which replaces PRC2-Ezh2 on MyoG promoter in
post-mitotic myotubes.

MMR + w2v and ezh2 maintain repressive chromatin through different mechanisms.[1] this study , found the inverse correlation between foxp3 and ezh2 , an
tf-idf + LSTM | enzyme for histone h3k27 trimethylation (h3k27me3) and a central epigenetic regulator in cancer . prc2-ezh2 complex , which is bound to the
sentence myogenin (myog) promoter and muscle creatine kinase (mck) enhancer in proliferating myoblasts , and the prc2-ezh1 complex , which replaces
compression | prc2-ezh2 on myog promoter in post-mitotic myotubes .

FIGURE 3.19: Summaries generated with different techniques

we end up discarding important information by filtering. We also note that switching granu-
larity from abstract texts to relevant snippets significantly boosted the ROUGE scores. Hence all
subsequent experiments (rows 4-18) use snippets for sentence extraction.

Rows 4-9 show our experiments with concept expansion using various biomedical ontologies
and weighting techniques. We use the following weighting technique: while calculating simi-
larity, words from the original question and sentences carry a weight of 1, while words obtained
added after concept expansion carry a weight of 0.5. We do not observe significant gains using
concept expansion. The unbounded nature of concept expansion hurts our performance, and so
we refrain from using this technique in further experiments. Row 10 shows our experiment
using MMR for sentence selection instead of clustering. MMR provides a significant boost in
ROUGE score. Row 11 shows our experiment with the w2v tf-idf based similarity metric instead
of Jaccard similarity, which decreases our ROUGE scores slightly but is still better than previ-
ous system configurations. Row 12 shows the scores of a baseline system that returns the first
snippet from the list, which is quite high, validating our assumption that snippet position is an
important factor. Rows 13-17 show our experiments with different ways of adding positional
constraints described in §3.5.2.2. While using a hard constraint does not show much improve-
ment, soft positional constraint gives a slight boost. Results with and without MMR for this
metric are nearly comparable. Soft constraint gives a huge boost when used with w2v tf-idf based
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similarity. Row 18 shows our experiment adding LSTM-based compression on top of MMR with
w2v tf-idf based similarity, which reduces our scores. Row 17 is the system configuration with
the highest ROUGE score on our dataset, which uses soft positional constraint with w2v tf-idf
similarity.

3.5.3.2 Qualitative Analysis

Figure 3.19 presents ideal answers generated by some of our system configurations for a ran-
domly selected summary question from Task 4b Phase B data to provide a comparative qual-
itative error analysis. Each sentence in the ideal gold answer is indexed with a number, as
shown in the figure. We perform a relative analysis of the extent of information captured by a
selected subset of system configurations from Table 1.

The sentence indexed [1] in the gold ideal answer is present word-for-word in summaries
created by two configurations: Clustering + SNOMEDCT expansion + weighted normalization
and Soft constraint + w2v tf-idf. Clustering + UMLS expansion + weighted normalization
contains a longer version of this sentence. We also observe that this sentence does not contain
any of the terms from the original question. Hence, summaries generated by all configurations
using only Jaccard similarity (Clustering + Snippets, MMR) do not contain this sentence since
there is no surface-level similarity. However, methods incorporating semantic information via
word embeddings (w2v tf-idf similarity) or concept expansion (UMLS/ SNOMEDCT) include
this sentence in the final summary, which shows that incorporating semantic information is
important to bridge the vocabulary gap in some situations.

The sentence indexed [2] in the gold answer is present in summaries generated by most of the
configurations as shown but with extra phrases such as “We report that’ at the beginning of
the sentence. Though the presence of such words does not have a major impact on automatic
scores like ROUGE, it influences the manual evaluation, which also judges summary readabil-
ity. However, the LSTM-based compression method removes these words via deletion. We
observe that this sentence contains the concept “Ezh2” which is also present in the question.
Hence, some configurations which use surface-level similarity (Clustering+Snippets) also pick
this sentence for the final summary. But this sentence is not present in the summary gener-
ated by the MMR + snippets configuration. This happens because many sentences selected by
the algorithm already contain the concept “Ezh2” and so this sentence is excluded due to its
similarity to already selected sentences.

3.6 Conclusions and Prospective Future Directions

In this section, we summarize our findings in anchoring the narratives in N-Local and N-Global
anchors. From that point, I would like to point out a few potential research directions to place
our eggs in for our next steps in this direction.

Automatic narrative generation has been a dream since the emergence of Al In several circum-
stances, this narrative is situated in the context. We examined deriving the anchors from this
context to improve the narration. In specific, this chapter focused on improving the narrative
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by anchoring in relevant content. Anchoring the narrative in content assists in improving the
relevance and naturalness aspects. This anchoring can be done at a finer or a coarser level.
We presented the N-Local anchoring with visual storytelling and N-Global anchoring with
query-oriented summarization.

Scaling image captioning models practically mandates training on noisy and uncurated data
available on the web. Our works presents an approach that denoises learning from such large
yet diverse web-scaled data with alt-text annotations by sub-selecting content as intermediate
skeletons. We experimentally demonstrate that this approach improves the captions signif-
icantly in human evaluations on out-of-domain test data by converting meta and story like
captions to more visually informative captions. We also demonstrate the transferability of
oversimplified English skeleton words to improve captions in five other languages.

Additionally, the natural-language interpretable skeleton layer allows us better control and
perform human-in-the-loop corrections of model predictions. We believe this is a promising
direction towards unpaired IC and has a strong potential for semi-automatic interventions to
correct or interact with the skeletons to guide the final captions better.

Naturalness to a story comes as a package of not only introducing entities, but also referring to
them appropriately as humans do. Our work on using N-Local anchor units is inspired by the
intuition that humans form a central mindmap of a story before narrating it. In this work, this
mindmap is associated with the entities (such as people, location, etc.,) involved in the story.
We present our work on introducing entity and reference skeletons in generating a grounded
story from visual input. In the first phase, we represent the entity skeletons in three forms:
surface, nominalized, and abstract. These are different ways to anchor the characters and their
referring expressions in the stories. These forms of representations correspond to different
properties of the skeleton words like whether they are nouns or pronouns or the category of
the nouns based on an ontology. In the second phase, we present a story generation model
that takes in the entity skeletons and the images. A strong baseline model is selected that
has high performance with respect to human evaluation scores for the task of plain visual
storytelling. We extended the baseline to set up another baseline that is informed of the entity
skeletons to perform a fair comparison. We then proposed two models: (1) multitasking with
the prediction of the skeleton and (2) glocal hierarchical attention model that attends to the
skeleton words at the word level and the sentence level hierarchically. We observe that our
MTG and glocal hierarchical attention models can adhere to the skeleton, thereby producing
schema-based stories. Our MTG model performs better in terms of automatic metrics like
METEOR by around 3 units. However, analysis on the percentage of generation of the noun and
pronoun forms of entities reveals that the glocal hierarchical attention model generates entities
closer to the distribution in the ground truth stories. We also conducted human evaluation that
reveals that the glocal hierarchical attention model is preferred 82% of the time.

We demonstrate that infilling is a simple yet effective technique and a step towards maximizing
the utilization of surrounding contexts in visual narratives. Infilling is the strategy that enables
the model to learn surrounding contextual information by masking spans of input while the
decoding attempts to generate the entire text. To experimentally support our hypothesis, we
collect a new large-scale ViPT dataset of 46k procedures comprising 10 categories. We compare
the performance of our model and conclusively show the higher significance of infilling-based
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techniques in visual procedures compared to visual stories. In the future, we plan to explore the
following two directions: (1) interpolating the contexts between consecutive steps by introduc-
ing a new infilled image and (2) addressing the underspecification problem by controlling the
content in an infilled image with explicit guidance. These infilling techniques are also instru-
mental when dealing with data imputation with missing contexts and collaborative authoring
in real-world scenarios.

Complementing this scenario guides the narrative with an overall theme or topic not divided
to provide one-to-one level finer guidance at the sentence level. In this chapter, we presented
a system for query-oriented summary generation anchored in question. Since the topic and
the aspects in the question drives the general theme of the summary and do not finely gov-
ern every sentence, this is the case of N-Global anchoring. The three forms of anchors that
we have explored in this section are: surface forms, expansion forms, embedding forms. We
observed that incorporating word embedding based tf-idf similarity along with soft positional
constraints outperforms surface-level word similarity with soft positional constraints. This is
because the former captures both semantic information of the content as well as relevance to
query based on sentence position. However, though the expansion forms are bringing more
information to the plate, they still seem to hurt the performance. Investigating a controlled
utilization of the expansion forms has the potential to reap benefits in improving the content
property of narration.

Based on the learning experiences from anchoring the narratives in varied levels of granulari-
ties of content, I believe further exploration in any of the following domains has the potential to
show significant improvements. These range from anchoring techniques to evaluation which
are described in detail as follows:

1. Partial Anchoring: In this chapter, we have explored anchoring in both these extremes,
i.e,, guidance at the sentence and narrative levels. One of the prospective directions is anchor-
ing the narrative in partial anchoring. This means that instead of anchoring every sentence,
we can provide anchors to a group of sentences and another anchor for the next group. For
instance, consider a narrative that is segregated into introduction, body and conclusion. With
a slightly coarser-grained anchoring compared to N-Local anchors, each of these segregations
can be anchored in a theme or a topic.

2. Fusion of N-Local and N-Global anchoring: Instead of categorizing anchors into both
ends of the spectrum with respect to the granularity in guiding the narrative, another approach
is fusing these anchors. For instance, consider the case where a story is to be weaved around
themed characters. The character arcs are provided for every interacting pair of characters,
but this information is provided in the form of a theme and not guidance for every sentence.
The story is now anchored N-locally with respect to every participating character. However,
each character’s development is determined on the whole for the entire story.

3. Anchor Form Representation:  As we have observed in the case of entity skeletons
as N-Local anchors, nominalized representation of the entity skeletons seems to outperform
other models in METEOR score. Similarly, in the case of N-Global anchoring, a combination of
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expansion and embedding forms has prospective chances of improved performance. Investi-
gating other forms of anchor representation utilized in the generation models is an interesting
area with the potential to improve the narratives significantly. For instance, investigating the
incorporation of nominalized N-Local anchors in the glocal attention model may reap the ben-
efits of both models. As a natural addition, applying our methods to other forms of conditions
to generate storytelling, such as semantic representations, graphs, and prompts, would be in-
teresting to investigate the generalizability of our approaches.

4. Targeted Anchor based Evaluation: Despite the common usage of metrics such as
METEOR for text generation tasks, it often lacks the needful targeted for the specific tasks.
In the case of N-Local anchoring, we have extended some analysis leveraging the number
and the diversity of the entities generated. Similarly, investigating metrics that evaluate the
incorporation of anchors in the generated text provides visibility into the specific goal we are
attempting to address. Exploring and setting up task-specific metrics to evaluate intermediate
tasks such as anchor form or skeleton representation would be useful in streamlining the steps
towards the end goal.

Laying Foundation for Anchoring in Structure:  So far, we have looked into anchoring
the narrative in relevant content in scenarios with the availability of N-Local and N-Global an-
chors. An important property of the narrative is to identify and approximate the right content.
Building on top of this, there is also a necessity for the content to be organized in a coherent
layout to enable readability. This property is attributed to the structure, which we are going
to look into in the next chapter. Fundamentally, this structure can be used in our framework
of N-Local and N-Global anchors.

+ N-Local Anchoring: Conditioning finely into the entity skeletons anchors the stories into
the content. Determining the structural layout is more explicit in procedural how-to
activities in comparison to stories. Drawing parallels to the visual storytelling, we gath-
ered a new dataset for storyboarding recipes which has data comprising of parallel image
and step-wise textual description. Determining anchors for structure in the same way
as content is challenging due to the lack of tangible representation. Hence, as will be
examined in the next chapter, we resort to incorporating state sequence information in
the generation process to anchor the narrative in structure.

« N-Global Anchoring: As we have seen in N-Global anchoring of content, the content se-
lection relies on the general theme provided by the anchor in the question. However, the
layout or the organization of the content was performed naively by tiling the sentences
based on position or relevance to the anchor. There is potential scope for improving
the coherence of the narrative by structuring the selected content in a logical order. In
the next chapter, we will explore reordering the sentences and fusing text to anchor the
narrative in structure. The reorganization depends on the sentences selected by content;
therefore, this layout is determined at the summary level.
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Anchoring

The confidence people have in their
beliefs is not a measure of the quality of
evidence but of the coherence of the
story the mind has managed to
construct.

Daniel Kahneman

In the previous chapter, we have gathered the building blocks needed to gather and induce
content-based anchors (both through N-Local and N-Global anchoring) in a narrative. As we
have discussed previously, the next step is to arrange or organize the content in a logical form
to ensure coherence. This arrangement or coherence contributes to a well-organized thought
or construct that builds the evidence in an organized manner.

Determining a high-level layout in terms of structure for the visual stories dataset dealt with
in the last chapter is ambivalent. However, this structure is observed definitively in procedural
texts such as ‘how-to’” activities. Hence, we collect a dataset that resembles the visual story-
telling dataset in a high-level composition for the domain of cooking recipes, which is hereby
addressed as ‘storyboarding recipes’ dataset. We will discuss anchoring the generation of these
recipes in structure in this chapter. In the case of query-based summaries, we primarily relied
on the relevance and positions of the individual sentences in the documents from which they

This chapter is based on the following papers:
« ‘“Storyboarding of Recipes: Grounded Contextual Generation” (Chandu et al., 2019a)

« “Extraction meets abstraction: Ideal answer generation for biomedical questions” (Li et al., 2018c)
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were extracted. This is used in the form of positional constraints, which is incorporated in
content selection. However, the problem of assimilating an overall view with respect to the
other sentences and relative to the central idea of the rest of the narrative remains. This is ad-
dressed in this chapter by accounting the overall view of the selected sentences by reordering
and fusing them as a post-editing step. We are going to delve deeper into the techniques used
for these N-Local and N-Global anchoring forms. Along similar lines in the previous chapter,
our focus is not efficiently deriving these structural anchors. We use existing techniques to
define and represent structural layouts of the narratives.

A differentiating factor between anchoring in the content and anchoring in structure is the
tangibility of the anchor. The former has tangible units to be incorporated in the generation
sequence, thereby leading up to tangible metrics to optimize in the loss. In the case of structure,
similar anchors are not tangible units present in the form of skeleton chains.

As we have seen in the previous chapter, N-Local anchoring provides multiple units of anchors

to aid and drive the generation. This means that A; = {az(l), a'? , az(

i RO

%

") }. In the case of an-
choring in content, the individual a,”’, where j€[1, k|, is a tangible or interpretable unit. This
tangibility is not trivially observed in the case of structure. So, here A; is the fine-grained N-
Local sequence of structural anchor units. The innumerable possibilities of organizing content
quickly result in a combinatorial explosion of state space. Hence, we use clustering techniques
to represent different phases, and then finite state machines to organize these phases into state
sequences. This state sequence information is used to guide the generation of every step in
the recipes and is hence completely anchored in and guided by structure. Structural anchors
in this case are hence represented in two forms: phase clusters and state sequences, which are
the possibilities that A; sequence can take. These representations, along with the way they

are incorporated in the generation process, are detailed in §4.2 of this chapter.

In contrast, for the case of N-Global anchoring, this guidance is not granularly provided by the
input. The guidance can be derived in a pseudo-form at a narrative level. Clustering techniques
are very useful for reducing the explosion of state space in N-Local and N-Global anchoring.
However, in some cases, the structural layout of the narrative is not dictated by granular input.
This is observed in the case of query-oriented summarization. In the case of storyboarding,
the governing structure is provided for each step in the how-to procedure. This is not the case
for the topic or question provided in the query-based summaries. The structure is dictated
indirectly from the question based on the relevant content extracted. This is based on the
hypothesis that units belonging to the same or similar sub-content should appear together to
ensure a smooth flow between the topics of the content. Hence, we extend the techniques
used in anchoring content in the previous chapter to indirectly drive the organization of the
content to form a logical narrative. The similarity or redundancy of the content units extracted
anchors the reorganization of the relevant material. Hence A; is a function of I; that dictates
the layout of IV;. The question is not directly providing guidance to every sentence. Rather the
selected content units are rearranging among themselves with indirect or partial governance
from the question. Our focus in this sub-part is going to be mainly on ordering the sentences
in the text gathered from anchoring in content. This is detailed in §5.4.

As we will see in the next section, there are two paradigms to deal with organizing the material
to maintain a coherent structure. The first is no pre-selection of content. We take this paradigm
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to deal with content and structure within the same model with explicit N-Local anchoring
for structural representations. The other end of the spectrum is pre-selection of content. We
approach this paradigm with N-Global anchoring as the whole of the content, or the narrative
is selected. The task at hand now is to reorganize the material to make it logical and coherent.

4.1 Related Work

Anchoring based on Domain: Martin et al. (2017) and Khalifa et al. (2017) demonstrated
that the predictive ability of a seq2seq model improves as the language corpus is reduced to a
specialized domain with specific actions. Our choice of restricting domain to recipes is inspired
by this, where the set of events is specialized (such as ‘cut’, ‘mix’, ‘add’) although we do not
explicitly use event representations. These specialized set of events are correlated to phases of
procedural text as described in the following sections. Specifying the domain of text sometimes
can induce a structure and thereby a structural skeleton that aids generation. These specialized
actions form an inherent sequence either from domain knowledge or learning the sequence
from data.

Planning while writing: Traditionally, planning the content before writing is what draws
parallels to the whole idea of generating text from anchors. Simply put, the plan here is equiv-
alent to our anchors. A major challenge faced by neural text generation (Lu et al., 2018a) while
generating long sequences is the inability to maintain structure, contravening the coherence of
the overall generated text. This aspect was also observed in various tasks like summarization
(Liu et al., 2018b), story generation (Fan et al., 2019a). (Yao et al., 2018a) experimented with

static and dynamic schema to realize the entire storyline before generating.

Pre-selection of Content: There are two schools of modeling approaches with respect to
this. The first does not pre-select the content or in this context ‘data’ on which the gener-
ation process relies. By this, I mean that this is not explicitly modeled, although techniques
like attention are implicitly performed to give more weight or importance to certain content.
One such piece of work that relies on pre-selecting content and then planning accordingly was
explored by Puduppully et al. (2018) in data to text generation. This sometimes entails learn-
ing similarity or analogies between the formatted data available in organized structures and
free-form texts. Perez-Beltrachini and Lapata (2018) have learnt these alignments loosely to
bootstrap the training process. They have addressed this problem using multi-instance learn-
ing.

No Pre-selection of Content:  The other end of the spectrum does not select content and
then explicitly build a planning algorithm. This paradigm of algorithms typically follows ‘gen-
erate as we go’. For instance, Wong and Mooney (2007) show that a hybrid model that takes
in forward and inverted mappings from phrase-based statistical machine translation methods
is effective in generating text which does not make use of an explicit planning algorithm. It is
worth mentioning another section of work in this context that selects content but omits any
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planning. Similarly, Belz (2008) proposed a non-modular and integrated framework to gen-
erate weather forecasts from probabilistic space automatically. The two processes of content
selection and surface realization are combined by Konstas and Lapata (2012) with probabilis-
tic context-free grammar represented as a weighted hypergraph. The generation process is
reframed as finding the best derivation tree from this graph. However, this technique is chal-
lenged in dealing with long-form narrative descriptions. However, in this work, we propose a
hierarchical multi-task approach to perform structure-aware generation.

Ordering Content in text:  Sha et al. (2018) proposed an order planning text generation
algorithm to generate biographies from Wikipedia data. The heuristic location-based address-
ing with external memory by Graves et al. (2016) is modeled with a likelihood of a field given
the previous fields. Agrawal et al. (2016) introduced the task of sorting a temporally jumbled
set of image-caption pairs from a story such that the output sequence forms a coherent story.

Comprehending Food: Recent times have seen large scale datasets in food, such as Recipe1lM
(Marin et al., 2018), Food-101 (Bossard et al., 2014).Food recognition (Arora et al., 2019) ad-
dresses understanding food from a vision perspective. Salvador et al. (2018) worked on gener-
ating cooking instructions by inferring ingredients from an image. Zhou et al. (2018e) proposed
a method to generate procedure segments for YouCook2 data. In the NLP domain, this is stud-
ied as generating procedural text by including ingredients as checklists (Kiddon et al., 2016) or
treating the recipe as a flow graph (Mori et al., 2014). Our work is at the intersection of two
modalities (language and vision) by generating procedural text for recipes from a sequence of
images. Bosselut et al. (2017) worked on reasoning non-mentioned causal effects, thereby im-
proving the understanding and generation of procedural text for cooking recipes. This is done
by dynamically tracking entities by modeling actions using state transformers.

4.2 N-Local Anchoring from phases in recipes

Structural layouts of narratives are more apparent in goal-oriented procedural texts such as
various ‘how-to’ activities. In this regard, we introduce a dataset for sequential procedural
(how-to) text generation from images in the cooking domain. The dataset consists of 16,441
cooking recipes with 160,479 photos associated with different steps. We set up a baseline
motivated by the best performing model in terms of human evaluation for the Visual Story
Telling (ViST) task. In addition, we introduce two models in this section to incorporate high-
level structure learnt by a Finite State Machine (FSM) in neural sequential generation process
by: (1) Scaffolding Structure in Decoder (SSiD) (2) Scaffolding Structure in Loss (SSiL). Our
best-performing model (SSiL) achieves a METEOR score of 0.31, which is an improvement of
0.6 over the baseline model. We also conducted a human evaluation of the generated grounded
recipes, which reveal that 61% found that our proposed (SSiL) model is better than the baseline
model in terms of overall recipes. We also discuss the analysis of the output, highlighting key
important NLP issues for prospective directions.

Interpretation is heavily conditioned on context. Real-world interactions provide this context
in multiple modalities. In this section, this context is derived from visual features and language.
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Lasagna
ingredients: tomato

To make the sauce,
cook diced onion in
olive oil, and then add

Spoon your ricotta
into a bowl and

This is the way |
layered: spoonful

Bake in a 400 F
oven for 30-40

SaEE @F cfannedk the ground beef, garlic ~ @dd @ good pinch  of sauce on the minutes or until
Lomaioes lor Maxing  ,nd tomato paste. Stir  of Italian bottom of the pan,  you can easily
sauce -atleast4-6  yniil fragrant and then seasoning and lasagna noodles, pierce through the
cups, one box no meat starts to brown : g

) crushed red 1/2 the ricotta noodles with a
boil lasagna and break up, and then N : .
el GaE add the crushed pepper. I like to cheese, 1/2 the knife and the top is
zucchini, one tomatoes. Pour some add a little black sauteed vegetables, lightly browned.

yellow squash, one
jalapeno (or bell
pepper!), 1/2 an
onion, pinch of
oregano, pinch of

water into tomato can
and swish it around and
then pour that into the
pot. Stir well and let
simmer while the veg
continue to lose

pepper too. Mix
around until well
combined. Shred
your mozzarella or
cut into small

mozzarella cheese,
sauce to cover. Do
that twice and then
sprinkle parmesan
cheese on the top.

Try not to eat it all
at once. The boy
and I have eaten
1/2 of it, and it's
only been a day

basil moisture.

slices. since I made it. :D

FIGURE 4.1: Storyboard for the recipe of vegetable lasagna

The description of a picture changes drastically when seen in a sequential narrative context.
Formally, this task is defined as: given a sequence of images I = {11, Is, ..., I;,} and pairwise
associated textual descriptions, T = {71, 75,...,T,}; for a new sequence ]Il, our task is to
generate the corresponding T Figure 4.1 depicts an example for making vegetable lasagna,
where the input is the first row and the output is the second row. We call this a ‘storyboard’,
since it unravels the most important steps of a procedure associated with corresponding nat-
ural language text. The sequential context differentiates this task from image captioning in
isolation. The dataset is similar to that of ViST (Huang et al., 2016) with an apparent differ-
ence between stories and instructional in-domain text, which is the clear transition in phases
of the narrative. This task supplements the task of ViST with a richer context of goal-oriented
procedure (how-to). Numerous online blogs and videos depict various categories of how-to
guides for games, do-it-yourself (DIY) crafts, technology, etc. This task lays initial foundations
for full fledged storyboarding of a given video by selecting the right junctions/clips to ground
significant events and generate sequential textual descriptions. We are going to focus on the
domain of cooking recipes in the rest of this section. We discuss our approach in generating
more structural/coherent cooking recipes by explicitly modeling the state transitions between
different stages of cooking (phases). We introduce a framework to apply traditional FSMs to
incorporate more structure in neural generation.

The two main contributions of this section are: (1) A dataset of 16k recipes targeted for se-
quential multimodal procedural text generation, (2) Two models (SSiD: Structural Scaffolding
in Decoder ,and SSiL: Structural Scaffolding in Loss) for incorporating high-level structure
learnt by an FSM into a neural text generation model to improve structure/coherence. This
structure is N-locally induced in the generation model.

4.2.1 Data Collection and Description

We identified two how-to blogs from: instructables.comand snapguide.com, comprising step-
wise instructions (images and text) of various how-to activities like games, crafts, etc,. We
gathered 16,441 samples with 160,479 photos for food, dessert, and recipe topics. We used
80% for training, 10% for validation, and 10% for testing our models. In some cases, there are
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Data Sources # Recipes # Avg Steps
instructables 9,101 7.14
snapguide 7,340 13.01

TABLE 4.1: Details of dataset for storyboarding recipes

multiple images for the same step, and we randomly select an image from the set of images.
We indicate that there is a potential space for research here in selecting the most distinguish-
ing/representative/meaningful image. Details of the datasets are presented in Table 4.1. The
data and visualization of the distribution of topics are here'. A trivial extension could be done
on other domains like gardening, origami crafts, fixing guitar strings, etc., which is left for
future work.

4.2.2 Models Description

Dy (PlIQ) = Y P(i)log :J:j;

== .

T . State
ransitions

>

Clustering

.................

'
'

: el
' Recipes
.

FIGURE 4.2: Architecture for incorporating high level structure in neural recipe generation by
n-local anchoring through state machines

We first describe a baseline model for the task of storyboarding cooking recipes in this section.
We then propose two models with incremental improvements to incorporate the structure of
procedural text in the generated recipes: SSiD (Scaffolding Structure in Decoder) and SSiL
(Scaffolding Structure in Loss). The architecture of scaffolding structure is presented in Figure
4.2, of which different aspects are described in the following subsections. The anchors for
structure are not tangible, thereby challenging the representation of different forms of the
anchors. Three different forms of the structural anchors are used in the following scaffolding
models, namely: hard phases, hard states and soft states. These are described in detail as and
when we model and use them. The indexed representations of these forms corresponding to
the models are depicted in §4.2.3.

'https://storyboarding.github.io/story-boarding/
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1. Baseline Model (Glocal): The baseline model is inspired from the best performing system
in the ViST challenge with respect to human evaluation (Kim et al., 2018). The images are first
resized into 224 X 224. Image features for each step are extracted from the penultimate layer
of pre-trained ResNet-152 (He et al., 2016b). These features are then passed through an affinity
layer to obtain an image feature of dimension 1024. To maintain the context of the entire
recipe (global context), the sequence of these image features is passed through a two-layered
Bi-LSTM with a hidden size of 1024. To maintain specificity of the current image (local context),
the image features for the current step are concatenated using a skip connection to the output
of the Bi-LSTM to obtain a glocal representation. Dropout of 0.5 is applied systematically
at the affinity layer to obtain the image feature representation and after the Bi-LSTM layer.
Batch normalization is applied with a momentum of 0.01. This completes the encoder part of
the sequence to sequence architecture. These glocal vectors are used for decoding each step.
These features are passed through a fully connected layer to obtain a representation of 1024
dimension, followed by a non-linear transformation using ReLU. These features are then passed
through a decoder LSTM for each step in the recipe, which is trained by teacher forcing. The
overall coherence in the generation is addressed by feeding the decoder state of the previous
step to the next one. This is a seq2seq model translating one modality into another. The model
is optimized using Adam with a learning rate of 0.001 and weight decay of 1le-5.

The model described above does not explicitly cater to the structure of the narration of recipes
in the generation process. However, we know that procedural text has a high-level structure
that carries a skeleton of the narrative. In the subsequent subsections, we present two models
that impose this high-level narrative structure as a scaffold. While this scaffold lies external to
the baseline model, it functions on imposing the structure in the decoder (SSiD) and the loss
term (SSiL).

2. Scaffolding Structure in Decoder (SSiD): There is a high-level latent structure involved
in a cooking recipe that adheres to transitions between steps that we define as phases. Note
that the steps and phases are different here. To be specific, according to our definition, one
or more steps map to a phase (this work does not deal with multiple phases being a part of a
single step). Phases may be ‘listing ingredients’, ‘baking’, ‘garnishing’ etc., The key idea of the
SSiD model is to incorporate the sequence of phases in the decoder to impose structure during
text generation.

There are two sources of supervision to drive the model: (1) multimodal dataset M = {I, T}
from §4.2.1, (2) unimodal textual recipes” U to learn phase sequences. Finer phases are learnt
using clustering followed by an FSM.

Clustering: K-Means clustering is performed on the sentence embeddings with composi-
tional n-gram features (Pagliardini et al., 2018) on each step of the recipe in U. Aligning with
our intuition, when k is 3, it is observed that these clusters roughly indicate categories of
desserts, drinks and main course foods (pizza, quesadilla etc,). However, we need to find out
finer categories of the phases corresponding to the phases in the recipes. We use k-means
clustering to obtain the categories of these phases. We experimented with different number

www.ffts.com/recipes.htm
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of phases P as shown in Table 4.2. For example, let an example recipe comprise of 4 steps i.e,
a sequence of 4 images. At this point, each recipe can be represented as a hard sequence of

phases r = ( p1, p2, p3, pa ).

FSM: The phases learnt through clustering are not ground truth phases. We explore the
usage of an FSM to individually model hard and a softer representation of the phase sequences
by leveraging the states in an FSM. We first describe how the hard representation is modeled.
The algorithm was originally developed for building language models for limited token sets in
grapheme to phoneme prediction. The iterative algorithm starts with an ergodic state for all
phase types and uses entropy to find the best state split that would maximize the prediction.
As opposed to phase sequences, each recipe is now represented as a state sequence (decoded
from FSM) i.e, r = (s1, So, S3, s4) (hard states). This is a hard representation of the sequence
of states.

We next describe how a soft representation of these states is modeled. Since the phases are
learnt in an unsupervised fashion, and the ground truth of the phases is not available, we
explored a softer representation of the states. We hypothesize that a soft representation of
the states might smooth the irregularities of phases learnt. From the output of the FSM, we
obtain the state transition probabilities from each state to every other state. Each state s; can
be represented as (g;; V j € S) (soft states), where g;; is the state transition probability from s;
to s; and S is the total number of states. This is the soft representation of state sequences.

The structure in the recipe is learnt as a sequence of phases and/or states (hard or soft). This
is the structural scaffold that we would like to incorporate in the baseline model. In the SSiD
model, for each step in the recipe, we identify which phase it is in using the clustering model
and use the phase sequence to decode state transitions from the FSM. The state sequences
are concatenated to the decoder in the hard version, and the state transition probabilities are
concatenated in the decoder in the soft version at every time step.

At this point, we have 2 dimensions; one is the complexity of the phases (P), and the other
is the complexity of the states in FSM (S). Comprehensive results of searching this space are
presented in Table 4.2. We plan to explore the usage of a hidden markov model in place of FSM
in the future.

3. Scaffolding Structure in Loss (SSiL): In addition to imposing structure via SSiD, we
explored measuring the deviation of the structure learnt through phase/state sequences from
the original structure. This leads to our next model, where the deviation of the structure in
the generated output from that of the original structure is reflected in the loss. The decoded
steps are passed through the clustering model to get phase sequences, and then state transi-
tion probabilities are decoded from FSM for the generated output. Going a step further, we
investigate the divergence between the phases of generated and original steps. This can also
be viewed as hierarchical multi-task learning (Sanh et al., 2018). The first task is to decode
each step in the recipe (which uses a cross entropy criterion, L1). The second task uses KL
divergence between phase sequences of decoded and original steps to penalize the model (say,
L2)When there are T steps in a recipe, we obtain o(s]) and g(s7) as the distributions of phases
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FST Complexity 1 20 40 60 80 100 120

20 Phases 11.27 11.60 1231 13.71 1232 12,51 12.36
40 Phases 12.03 1244 11.48 12,58 12,50 13.91 11.82
60 Phases 11.13  11.18 1274 12.26 12.47 1298 1147

TABLE 4.2: BLEU Scores for different number of phases (P) and states(S)

comprising of soft states for the original and generated recipes respectively. We measure the
KL divergence(D g1 ) between these distributions:

T S ]
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Each task optimizes different functions, and we minimize the combination of the two losses.

Yorrarli(LT) +a) yeyLla(U)

This combined loss is used to penalize the model. Here, « is obtained from the KL annealing
(Bowman et al., 2015) function that gradually increases the weight of the KL term from 0 to 1
during train time.

4.2.3 N-Local Anchor Representation: Phases and States

The anchors for structure are not tangible surface-level words that can be extracted and utilized
for conditioned generation. The intangible underlying layout is represented in the forms of
phases and states that are discussed in the previous subsections. There are three forms of
structural anchor representations distributed among states and phases along with hard or soft
representations.

« Hard phases: ( p1, p2, p3, p4 )

 Hard States: <81, 52, 83, S4>

« Soft States: ( { q11,--q15 ), { @21,--+G25 ), ( gS1.---Gss ) ), Where g;; is the state transition
probability from s; to s;

The condensed forms to compare between the aforementioned models are presented in Figure
4.3. The SSiL model is a combination of latent modeling and multitasking, as shown here.

4.2.4 Experiments and Results
4.2.4.1 Quantitative Analysis

The two dimensions explored in FSM are P and S and exhaustive results are presented in Table
4.2. The BLEU score (Papineni et al., 2002b) is the highest when P is 40 and S is 100. Fixing
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o
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Baseline SSiD Model
(Independent) (Latent Anchoring)
SSiL Model

FIGURE 4.3: Comparison of the structure-anchoring based on multimodal interactions

Models BLEU METEOR ROUGE-L
Glocal 10.74 0.25 0.31
SSiD (hard phases) 11.49  0.24 0.31
SSiD (hard states)  11.93  0.25 0.31
SSiD (soft phases)  13.91  0.29 0.32
SSiL (soft phases) 16.38 0.31 0.34

TABLE 4.3: Evaluation of storyboarding recipes

Models Phenomena
This is a simple recipe for making | You will need: a butter knife a Add butter evenly on the pan. | Put the chicken on the grill and - Ingredients phase wrongly
Glocal Model a delicious chicken salad. plate of bread flour a little bit of set aside. identified.
salt a dash of pepper flakes a - Wrong ingredients.
couple of tablespoons of olive oil - Improper conclusion.
a pinch of sugar.
This is a simple recipe for making | Ingredients: 4 pounds chicken 2 | Add butter evenly on the pan. | Serve the baked chicken wings - Learnt majority structure (step 1)
SSiD Model a delicious and easy dish. tsp salt, ¥z tsp sugar, marinara and enjoy the evening! + Got ‘tongs’ right because of
sauce, mozzarella cheese ( i separate tools mention.
used provolone ). Tools: a knife, - The action of baking is not
an oven for the chicken, tongs. explicitly mentioned (before
Mix all ingredients in a bag. ‘baked’ wings).
You will need: 5 pounds of Preheat oven to 450 F. Mix dry Place a mat on the baking pan | Spread the chicken pieces on + Global context of baking
SSil. Model chicken wings, 2 cup all purpose | ingredients in the dry ziplock bag. | and spread butter evenly on it. | butter on the baking pan. Bake maintained in preheating.
flour, 2 tsp salt, 2 tsp of paprika, until crispy for 30 minutes. Serve | + Non-repetitive ingredients phase.
melted butter, silicon mat, baking and enjoy! + Referring expressions (baking
pan. pan -> it).
- Not mentioned tools (tongs).

FIGURE 4.4: Comparison of generated storyboards for Easy Oven Baked Crispy Chicken Wings

these values, we compare the models proposed in Table 4.3. The models with hard phases
and hard states are not as stable as the one with soft phases since backpropagation affects the
impact of the scaffolded phases. Upon manual inspection, a key observation is that for SSiD
model, most of the recipes followed a similar structure. It seemed to be conditioned on a global
structure learnt from all recipes rather than the current input. However, the SSiL model seems
to generate a recipe that is conditioned on the structure of that particular example.

Human Evaluation: We have also performed human evaluation by conducting a user pref-
erence study to compare the baseline with our best performing SSiL. model. We randomly

sampled generated outputs of 20 recipes and asked ten users to answer two preferences: (1)
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overall recipe based on images, (2) structurally coherent recipe. Our SSiL model was preferred
61% and 72.5% for the overall and structural preferences respectively. This shows that while
there is a viable space to improve the structure, generating an edible recipe needs to be explored
to improve the overall preference.

4.2.4.2 Qualitative Analysis

Figure 4.4 presents the generated text from the three models with an analysis described below.

Coherence of Referring Expressions:  Introducing referring expressions is a key aspect
of coherence (Dale, 2006, 1992), as seen in the case of ‘baking pan’ being referred as ‘it’ in the
SSiL model.

Context Maintenance: Maintaining overall context explicitly affects generating each step.
This is seen in the SSiL. model where ‘preheating’ in the second step is learnt from baking step
that appears later although the image does not show an oven.

Schema for Procedural Text:  Explicit modeling of structure has enabled the SSiD and
SSiL models to conclude the recipe by generating words like ‘serve’ and ‘enjoy’. Lacking this
structure, the glocal model talks about ‘setting aside’ at the end.

Precision of Entities and Actions: The SSiD model introduces ‘sugar’ in ingredients after
generating ‘salt’. A brief manual examination revealed that this co-occurrence is a common

phenomenon. The SSiL. model misses ‘tongs’ in the first step.

In this section, we have explored N-Local anchoring of structure in a generate as we go paradigm.
In the next section, we are going to look into N-Global anchoring in structure based on the
paradigm of pre-selection of content.

4.3 N-Global Anchoring from Reordering

As we have seen in the previous chapter, the growing number of biomedical publications is a
challenge for human researchers, who invest considerable effort to search for relevant docu-
ments and pinpointed answers. Moreover, extractive summarization techniques, which con-
catenate the most relevant text units drawn from multiple documents, perform well on au-
tomatic evaluation metrics like ROUGE, but score poorly on human readability, due to the
presence of redundant text and grammatical errors in the answer. Evaluation based on such
metrics for anchoring in content does not imply the overall quality of the narratives. The com-
plementary anchoring that we focus on in this section is in structure. This is an extension to the
work we have explored in N-Global anchoring in content in the previous chapter. The relevant
content is extracted on the whole from the question. We have performed naive concatenation
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based on relevance in the previous chapter. In this chapter we treat this as pre-selected con-
tent and reorganize the material at the narrative level. It is implicitly driven by the content
extracted based on the question. The question does not have an explicit contribution in deter-
mining the structure of the summary, rather has an implicit influence in the form of content
derived. In this section, we will discuss three novel approaches for sentence ordering from
the sentences selected by anchoring in content. Along with this, our experiments on sentence
fusion based on Integer Linear Programming are presented. This is an attempt to improve the
human readability of ideal answers.

Human researchers invest considerable effort when searching very large text corpora for an-
swers to their questions. Existing search engines like PubMed (Falagas et al., 2008) only par-
tially address this need since they return relevant documents but do not provide a direct an-
swer for the user’s question. The process of filtering and combining information from relevant
documents to obtain an ideal answer is still time consuming (Tsatsaronis et al., 2015). Biomed-
ical Question Answering (BQA) systems can automatically generate ideal answers for a user’s
question, significantly reducing the effort required to locate the most relevant information in
a large corpus.

Our goal is to build an effective BQA system to generate coherent, query-oriented, non-redundant,
human-readable summaries for biomedical questions. Our approach is based on an extractive
BQA system (Chandu et al.,, 2017a) which is used as stitching an ideal answer together by an-
choring in content in the previous chapter. However, owing to the extractive nature of this
system, it suffers from problems in human readability and coherence. In particular, extractive
summaries which concatenate the most relevant text units from multiple documents are often
incoherent to the reader, especially when the answer sentences jump back and forth between
topics. Although the existing extractive approach explicitly attempts to reduce redundancy at
the sentence level (via SoftMMR), stitching together existing sentences always admits the pos-
sibility of redundant text at the phrase level. In this section, we will discuss an improvement
upon the baseline extractive system in two ways:

+ Re-ordering the sentences that are selected by anchoring in content. Since the guidance
from content implicitly affects the structure of the summary at the entire narrative level,
the question provides N-Global anchoring in structure.

« Fusing words and sentences to form a more human readable summary. This also serves
as a post-editing step to smoothen the process the summary put together.

4.3.1 Models Description

The data is the same as described in the previous chapter. So, first, start by looking into an
overview of the baseline system.

Overview of Baseline System: Anchored in Content In this section, we provide a brief
layout of our baseline system, which achieved the top ROUGE scores in the final test batches
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of the fifth edition of BioASQ Challenge (Chandu et al.,, 2017a). This system includes baseline
modules for relevance ranking, sentence selection, and sentence tiling.

The relevance ranker of the baseline performs the following steps: 1) Expand concepts in the
original question using a metathesaurus, such as UMLS (Bodenreider, 2004) or SNOMEDCT
(Donnelly, 2006); and 2) calculate a relevance score (e.g., Jaccard similarity) for each ques-
tion/snippet pair (to measure relevance) and each pair of generated snippets (to measure re-
dundancy). The sentence selection model of the baseline used the Maximal Marginal Relevance
(MMR) algorithm (Carbonell and Goldstein, 1998), which iteratively selects answer sentences
according to their relevance to the question and their similarity to sentences that have already
been selected until a certain number of sentences have been selected. The sentence tiling mod-
ule of the baseline simply concatenates selected sentences up to a given limit on text length
(200 words), with no explicit attempt to improve the coherence of the resulting summary.

The baseline system achieved high ROUGE scores but performed poorly on the human read-
ability evaluation in BioASQ 2017. In order to improve human readability, we first developed
several post-processing modules, such as sentence re-ordering and sentence fusion, which will
be discussed in detail in the following sections.

Modeling Approach: Sentence Ordering

Motivation: We tried to improve upon the Soft MMR system (Chandu et al., 2017a). This
pipeline assumes the relevance to be a proxy for ordering the selected sentences to generate
the final summary. On the other hand, it does not take into account the flow and transition
of sentences to build a coherent flow between these sentences. Since the maximum length
of the answer is 200 words (as imposed by the competition guidelines), this system optimizes
on selecting the most non-redundant query relevant sentences to maximize the ROUGE score.
In this section, we focus on different types of sentence ordering that lead to more coherent

answers.

1. Similarity Ordering: The intuition behind the Similarity Ordering algorithm is that sen-
tences that have similar content should appear consecutively so that the generated answer is
not jumping back and forth between topics. Our implementation is based on work by Zhang
(2011), which discusses the use of similarity metrics at two levels - first to cluster sentences,
and then to order them within a cluster - which can lead to big improvements in coherency and
readability. We apply this approach to the BQA domain, where we cluster our set of candidate
answers using k-means with k = 2. We then order the sentences within each cluster, starting
with the candidate sentence nearest to the centroid of its cluster and working outward. The
intuition is that the most central sentence will contain the largest number of tokens shared by
all the sentences in the cluster and is likely to be the most general or comprehensive sentence.
This supports our goal of an ideal answer that begins with a broad answer to the question,
followed by specifics and supporting evidence from the literature.

In Figure 4.5a, we see that the order of the sentences that appear in the final answer is com-
pletely independent of their ordering in the original snippets.
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FIGURE 4.5: (a) Similarity Ordering (b) Majority Ordering (c) Block Ordering

2. Majority Ordering: The Majority Ordering algorithm (Barzilay and Elhadad, 2002) makes
two main assumptions that are quite reasonable: sentences coming from the same parent doc-
ument should be grouped together, and the most coherent ordering of a group of sentences
is how they were presented in their parent document. Topically, it is logical that sentences
drawn from the same parent document would be similar. Moreover, grammatically and syn-
tactically, it is logical that the sentences may be structured so that maintaining an invariant
ordering would augment human comprehension.

Specifically, the Majority Ordering algorithm groups sentences by their parent document and
then orders the blocks by the ranking of the highest-ranked sentence in a block. Figure 4.5
illustrates the differences between Similarity Ordering, Majority Ordering, and Block Ordering.
The color of each sentence unit indicates the document it was selected from, and the suffix
indicates the relevance score of that unit within the document.

3. Block Ordering: Intuitively, the Block Ordering algorithm is an amalgamation of the
Similarity Ordering and Majority Ordering algorithms. The Block Ordering algorithm has two
primary components. The first component involves grouping the sentences into blocks based
on their parent document. This step is shared between the Block Ordering algorithm and the
Majority Ordering algorithm. The second step involves ordering the grouped blocks of text.

The algorithm for ordering the blocks of texts combines document heuristics with our Similar-
ity Ordering algorithm. We first order the blocks by their length (the number of sentences in
the block). For blocks of equal length, we calculate the similarity of each block with the last
fixed sentence. Hence, given the last sentence of the preceding block, we select the next block
first by its length and then by the similarity of the block with the preceding sentence. If there is
no single longest block to begin the answer, we select the longest block most similar to the full
answer. This algorithm is tuned for specific goals with respect to human comprehension and
readability. Grouping the sentences into blocks is done to maximize local coherence. The use
of block length as an ordering heuristic is done to order topics by relevance. Finally, ordering
blocks of equal length by similarity to the preceding sentence is done to maximize sentence
continuity and fluidity.

In Figure 4.5¢ the green block is ordered first because it is the longest. The blue block is ordered
second because it has the highest similarity score with sentence 3.4. The yellow block is ordered
third because it has a higher similarity with sentence 2.2, and the red block is thus last.
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4.3.2 Analysis of Ordering

Quantitative Analysis: To evaluate our approaches, we performed a manual analysis of 100
different answers, ordered by each of our proposed ordering algorithms (see Table 4.4). We rate
each ordering as ‘reasonable’ or ‘unreasonable’. Note that this rating does not pass judgment
on the correctness of the answer since it is designed for comparative analysis at the module
level (i.e., to compare ordering approaches rather than content selection).

Algorithm Reasonable Unreasonable
Baseline 59 41
Similarity Ordering 55 45
Majority Ordering 71 29
Block Ordering 75 25

TABLE 4.4: Manual evaluation of sentence ordering

Qualitative Analysis: Because sentence ordering in the baseline system is based solely on
question-answer relevance, we identified two major issues: global coherence and local coher-

ence.

The global coherence issue is generally a problem of layout and cohesiveness. An ideal answer
would begin with a broad answer to the question and move into more specific details and any
available evidence to support the answer. Further, an ideal answer should not be hopping back
and forth between topics and should stick to one before moving on to another. The baseline
system did a decent job of beginning with a broad answer to the question because the input
sequence is ordered by its relevance score. However, after the first sentence, answers tended
towards redundant information and divergent trains of thought.

The local coherence issue has more to do with the semantics of the sentence and grammatical
restrictions of the language. For instance, language like “There was also’ should not appear
as the first sentence in an answer because this makes no sense logically. Additionally, certain
words like ‘Furthermore’ indicate that the content of the sentence is highly dependent on the
content of the preceding sentence(s), and the baseline ordering approach frequently breaks this
dependency.

1. Similarity Ordering: We found that the Similarity Ordering performed poorly; only 55
of 100 answers were deemed ‘reasonable’. We believe this is due to the high degree of simi-
larity between the candidate sentences in our domain. Because the candidate sentences are so
similar, the results of clustering are highly variant and appear to be almost arbitrary at times.
All the sentences contain similar language and key phrases that make it challenging to create
meaningful sub-clusters. Additionally, one of the biggest problems with our system is due to
the sentences that began with phrases like ‘However’ and ‘Furthermore’ that place strict re-
quirements on the content of the preceding sentence. This was particularly problematic for the
Similarity Ordering algorithm, which has no mechanism for making sure that such sentences
are placed logically with their dependent sentences. The Similarity Ordering algorithm does
perform relatively well in creating logical groups of sentences that cut down on how often
an answer is jumping from one topic to another. Additionally, these groups are ordered well,
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beginning with the more general of the two and then finishing with specifics and a presenta-
tion of the supporting data. However, we note that the problems with local coherence greatly
outweigh the strengths in global coherence since a good answer can still be coherent, even if
the organization could be improved. Whereas if the local coherence is poor, then the answer
becomes nonsensical.

2. Majority Ordering: The Majority Ordering algorithm proved to be a successful method
for ordering sentences, where 71 out of 100 answers were deemed ‘reasonable’. The Majority
Ordering displayed very strong local coherence, which confirms the hypothesis that sentences
should likely be kept in their original ordering to maximize human readability and coherence.

However, this algorithm faced issues with global coherence. It produced answers that start
with a relevant topic more often than not; however, after the initial block, it struggled to
smoothly transition from one block to the next. This is consistent with expectations for the
Majority Ordering algorithm. The block with the highest-rated sentence is ordered first, which
explains why the first block is frequently the most topically relevant. After the initial block
placement, however, the algorithm makes no explicit attempts to manage or smooth transitions
between blocks. Compared with the other two algorithms, this is where the Majority Order-
ing algorithm displays its poorest performance. It performs strongly when ordering sentences
within a block, enforcing local coherence so that sentences beginning with language such as
‘Finally’, ‘Lastly’, “Therefore’, etc., followed a related sentence that satisfied the sequential de-
pendency.

3. Block Ordering: The Block Ordering algorithm produced the best answers, with 75 out
of 100 answers ranked as ‘reasonable’. This is consistent with our expectations, as the Block
Ordering algorithm effectively combines the most substantial aspects of the Majority Order-
ing and Similarity Ordering algorithms. With respect to local coherence, this algorithm dis-
plays similar performance when compared to the Majority Ordering algorithm while display-
ing stronger coherence between blocks (due to the use of a similarity metric to order blocks).
This algorithm also showed the strongest global coherence, which is likely due to first grouping
the sentences into blocks and then ordering them.

This algorithm displayed one core weakness, which is its inability to identify high-quality open-
ing sentences. This is due to the usage of block length as a heuristic for topic relevance. While
in most cases, this heuristic proved to be successful, accounting for these outliers may sig-
nificantly improve the performance of the Block Ordering algorithm. We note that the Block
ordering algorithm performed well in producing high-quality and coherent answers. We can
see that Block Ordering performs the best with respect to the simple coherence evaluation we
conducted.

Modeling Approach - Sentence Fusion: An observed weakness of the original system
is that the generated summaries often contain highly repetitive information. While MMR is
added in the pipeline to deal with redundancy and maximize the diversity of covered infor-
mation, extractive summarization still picks entire sentences that may partially overlap with
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a previously selected sentence. To tackle this problem, we introduce sentence fusion to iden-
tify common information among sentences and apply simple abstractive techniques over the
baseline extractive summaries.

Methodology: Given a set of candidate sentences generated by the pipeline for each sum-
mary, the sentence fusion module operates in two steps: 1) the candidate set is expanded to
include fused sentences, and 2) sentences are selected from the expanded set to produce a new
summary.

Expansion of Candidate Set: To generate fused sentences, we begin by building upon pre-
vious work on multiple-sentence compression (Filippova, 2010), in which a directed word graph
is used to express sentence structures. The word graph is constructed by iteratively adding can-
didate sentences. All words in the first sentence are added to the graph by creating a sequence
of word nodes. A word in the following sentence is then mapped onto an existing word node if
and only if it is the same word, with the same part of speech. Our assumption is that a shared
node in the word graph is likely to refer to the same entity or event across sentences.

We then find a K-possible fused sentence by searching for the K-shortest path within the word
graph. Definition of the edge weights follows from work by Filippova (2010):

freqsii‘)+fre‘(1(‘j)71
w( J) ZSES fo(877'7.7)

~ freq(i) x freq(j)

where dif f(s,i,7) is the difference between the offset positions of word i and j in sentence

s. Intuitively, we want to promote a connection between two word nodes with close distance
and between nodes that have multiple paths between them. We also prefer a compression path
that goes through the most frequent no-stop nodes to emphasize important words.

When applying the sentence fusion technique to the BioASQ task, we first pre-process the
candidate sentences to remove transition words like “Therefore’ and ‘Finally’. Such transition
words may be problematic because they are not necessarily suitable for the new logical intent
in fused sentences and may break the coherence of the final answer. We also constrain fusion
so that the fused sentences are more readable. For instance, we only allow the fusing of pairs of
sentences that are of proper length to avoid generating overly complicated sentences. We also
avoid fusing sentences that are too similar or too dissimilar. In the first case, information in the
two sentences is largely repetitive, so we simply discard the one containing less information.
In the latter case, fusing two dissimilar sentences more likely confuses the reader with too
much information rather than improving the sentence readability. Finally, we add a filter to
discard ill-formed sentences, according to some hand-crafted heuristics.

Selecting Sentences from Candidate Set: The next step is to select sentences from the
candidate set and produce a new summary. An Integer Linear Program (ILP) problem is for-
mulated as follows, according to Gillick and Favre (2009):
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Method R-2 R-SU4 AvgPr. AvgRe. AvgFl AvglLen
1 Baseline System 0.6948 0.6890  0.2297 0.8688 0.3207 173.31
2  MMR + Order 0.6291  0.6197  0.2758 0.8118 0.3633 140.39
3 MMR + Fusion 0.6183 0.6169 0.2783 0.8094 0.3687 139.24
4 MMR + Relevance + Order 0.6357 0.6256  0.2728 0.8124 0.3606 143.55
5 MMR + Relevance + Order + Post 0.6215 0.6126 0.2788 0.8111 0.3668 139.10
6 MMR + Relevance + Order + Fusion + LM 0.6114 0.6042 0.2775 0.8113 0.3682 141.21
7  MMR + Relevance + Order + Fusion 0.6213  0.6101  0.2686 0.8099 0.3579 14394
8 MMR + Relevance + Order + Fusion + Post 0.6017  0.5932  0.2775 0.8091 0.3653 140.38
9 MMR + Fusion + Order 0.6223  0.6159  0.2840 0.8181 0.3745 138.79
10 MMR + Fusion + Relevance + Order 0.6257 0.6214 0.2825 0.8193 0.3730 139.73
11 MMR + Fusion + Relevance + Order + Post 0.6149  0.6096  0.2886 0.8126 0.3768 136.43
12 Fusion + MMR + Relevance + Order 0.6112  0.6103  0.2837 0.8211 0.3723  142.11
13 Fusion + MMR + Relevance + Order + Post 0.6048  0.6040  0.2898 0.8143 0.3789 137.78

TaBLE 4.5: Performance of different module combinations on Test Batch 4, BioASQ 4th edition;
R=Rouge, Pr=Precision, Re=Recall
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In the equation, z; is an indicator of whether concept i is selected into the final summary, and w;
is the corresponding weight for the concept. The goal is to maximize the coverage of important
concepts in a summary. We assign diminishing weights during the actual experiments so that
later occurrences of an existing concept are less important. This forces the system to select a
more diverse set of concepts. We follow the convention of using bigrams as a surrogate for
concepts (Berg-Kirkpatrick et al., 2011; Gillick et al., 2008), and bigram counts as initial weights.
Variable A;; indicates whether concept ¢ appears in sentence j, and variable y; indicates if a
sentence j is selected or not.

4.3.3 Experiments and Results

4.3.3.1 Quantitative Analysis

Table 4.5 shows the results of different configurations of the ordering and fusion algorithms
(Rows 1 - 4, Row 7, Row 9). Though the overall ROUGE score drops slightly from 0.69 to 0.61

after sentence fusion with the ILP-selection step, this is still competitive with other systems
(including the baseline). The sentence re-ordering does not directly impact the ROUGE scores.

4.3.3.2 Qualitative Analysis

We manually examined the fused sentences for 50 questions. We found that our sentence
fusion technique is capable of breaking down long sentences into independent pieces and is,
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therefore, able to disregard irrelevant information. For example, given a summary containing

the original sentence:

‘Thus, miR-155 contributes to Th17 cell function by suppressing the inhibitory
effects of Jarid2. (2014) bring microRNAs and chromatin together by showing how
activation-induced miR-155 targets the chromatin protein Jarid2 to regulate proinflammatory
cytokine production in T helper 17 cells’.

Our fusion technique is able to extract important information and formulate it into
complete sentences, producing a new summary containing the following sentence:

‘Mir-155 targets the chromatin protein jarid2 to regulate proinflammatory cy-

tokine expression in th17 cells’.

The fusion module is also able to compress multiple sentences into one, with minor grammat-

ical errors. For example:

Sentence 1: ‘The RESID Database is a comprehensive collection of annotations and

structures for protein post-translational modifications including N-terminal, C-terminal

and peptide chain cross-link modifications[1]’

Sentence 2: ‘The RESID Database contains supplemental information on post-translational
modifications for the standardized annotations appearing in the PIR-International

Protein Sequence Database[2]

Our approach produces the fused sentence:

‘The RESID Database contains supplemental information on post-translational

modifications[1] is a comprehensive collection of annotations and structures for protein

post-translational modifications including N-terminal, C-terminal and peptide chain

cross-link modifications[2]’

However, the overall quality of fused sentences is not stable. As shown in Figure 4.6, around
25% of the selected sentences in final summaries are fused. Among the fused sentences, 47%
improved the overall readability by reducing redundancy and repetition. 5% of the sentences
have improved readability with minor grammatical errors, such as a missing subordinate con-
junction or superfluous discourse markers. 8% of the fused sentences did have an appreciable
effect on readability. However, a large number of fused sentences (around 26 %) were not
coherent and degraded the quality of the answer.
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Quality of Individual Fused Sentence
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FIGURE 4.6: Quality of Fused Sentences

Further Improvements: In order to further improve the performance of our system, we
made a few modifications to each module in the system and improved the overall architecture
of the module pipeline:

+ Modification of System Architecture: We intuited that the ILP process in the sen-
tence fusion model could not handle a very large number of candidate inputs, producing
a lot of (redundant, similar) fused sentences. To resolve this problem, we removed the
ILP model from the sentence fusion step. We also moved the sentence fusion step before
the sentence selection module (Rows 12-13) so that the MMR algorithm in the sentence
selection module could eliminate redundant fused sentences.

« Modifications to Sentence Selection Module and Relevance Ranker: For the sen-
tence selection module, we modified the original MMR model. The original MMR model
selected a fixed number of sentences, which naturally introduced repetition. In order to
reduce repetition, we built a so-called ‘Early-Stop MMR’, which stops selecting sentences
when the maximum overlap score grows beyond a certain threshold, and the minimum
relevance score drops down below another threshold (Rows 4-8).

For the relevance ranker, we explore an alternative similarity metric (Row 6). The Query
Likelihood Language Model (Schiitze et al., 2008) is widely used in information retrieval.
We formulated the relevance ranking procedure as an information retrieval problem and
used a language model so that long sentences would get a higher penalty.

+ Post-Processing: To further reduce repetition, we add an additional filter before final
concatenation by iteratively adding the selected sentences to the final output, and dis-
carding a sentence if it is too similar to the existing summary (Rows 8,11 and 13).

Analysis - Effects of Individual Modules: Table 4.5 shows the results of extensions to
the baseline system. Two systems are highlighted (Rows 5 and 10), as they give the most
balanced results between the quality of retrieved information and conciseness: one system
performs sentence selection, then ranks sentences before ordering by relevance, and applies
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Question Which syndrome is associated with mutant DVL1?
Ideal Answer Mutations in DVL1 cause an osteosclerotic form of Robinow syn-
drome.

1 | MMR + Rele- | We identified de novo frameshift mutations in DVL1, a mediator of both
vance + Order + | canonical and non-canonical Wnt signaling, as the cause of RS-OS, an
Fusion RS subtype involving osteosclerosis, in three unrelated individuals. Ar-
geted Sanger sequencing in additional subjects with DRS uncovered DVL1
exon 14 mutations in five individuals, including a pair of monozygotic
twins. DVL1 frameshift mutations clustering in the penultimate exon cause
autosomal-dominant Robinow syndrome. Mutations in DVL1 cause an
osteosclerotic form of Robinow syndrome.

2 | MMR + Rele- | Mutations in DVL1 cause an osteosclerotic form of Robinow

vance + Fusion | syndrome. DVL1 frameshift mutations clustering in the penultimate
+ Order exon cause autosomal-dominant Robinow syndrome. We identified de
novo frameshift mutations in DVL1, a mediator of both canonical and
non-canonical Wnt signaling, as the cause of RS-OS, an RS subtype
involving osteosclerosis, in three unrelated individuals. Argeted Sanger
sequencing in additional subjects with DRS uncovered DVL1 exon 14
mutations in five individuals, including a pair of monozygotic twins.

3 | Fusion + MMR | DVL1 frameshift mutations in DVL1 cause an osteosclerotic form of
+ Relevance + | Robinow syndrome. We identified de novo frameshift mutations in DVL1,
Order + Post a mediator of both canonical and non-canonical Wnt signaling, as the
cause of RS-OS, an RS subtype involving osteosclerosis, in three unrelated
individuals. Argeted Sanger sequencing in additional subjects with DRS
uncovered DVL1 exon 14 mutations in five individuals, including a pair of
monozygotic twins.

TABLE 4.6: System performance comparing Fusion + Ordering and Ordering + Fusion

the additional post-processing step (Row 5); the other system performs sentence selection,
fusion, and then ranks sentences prior to ordering without the post-processing step (Row 10).

Rows 5, 8, 11, and 13 show the effectiveness of the additional post-processing step. Overall,
this procedure is able to reduce the answer length while preserving important information. We
observed that the post-processing step is less effective when fusion is performed after MMR.
This is because, in these settings, there is an additional sentence selection step in the fusion
module using integer linear programming that forces the selected sentences to be diverse.
In all other settings, including when fusion is performed prior to MMR, we only have one
sentence selection step. Since MMR iteratively selects sentences according to both similarity
and relevance, the last selected ones may be informative but repetitive. Row 6 shows our
experiments with language modeling; the language model gives a higher penalty to longer
sentences, producing shorter but less informative results.

Analysis - Impact of System Architecture: Exploring the performance of systems using
different architectures, we observed that systems with fusion prior to ordering could generate
more logically coherent summaries. Table 4.6 shows an example. All underlined sentences
express the same fact that DVL1 is the cause of Robinow syndrome. In Row 1, where fusion
is performed after ordering, there is a sentence that serves as an explanation between the
underlined sentences, which breaks the logical coherence. In Row 2 and Row 3, where ordering
is performed after fusion, the generated answers demonstrate better coherence: All underlined
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sentences are placed together, followed by the explanation; The opening sentences are also

more concise and more directly related to the question.

We also experimented with architectures where the fusion module is run prior to MMR, and
MMR is used as the only sentence selection step. In these systems, MMR receives many fused
sentences that overlap and complement each other at the same time because all similar sen-
tences are fused prior to sentence selection. As a result, such architectures sometimes produce

summaries that are more repetitive compared to others.

4.4 Conclusions and Prospective Future Directions

An effective narrative not only talks about the right content but organizes the content in a fairly
coherent manner. This forms a structural layout. In this chapter, we have explored N-Local
and N-Global anchoring into the structure in order to generate a narrative. Representation
of structural format is not readily tangible and thereby not trivially interpretable. Hence we

make use of clustering and reordering techniques to tackle this problem.

For N-Local anchoring, we looked into the visual and text domains where the task is to gen-
erate textual step-wise instruction for a ‘how-to’ activity such as cooking recipes. The focus
here is instilling structure learnt from FSMs in neural models for sequential procedural text
generation with multimodal data. We gather a dataset of 16k recipes where each step has text
and associated images. We propose two ways of imposing structure from phases and states
of a recipe derived from FSM N-locally for each step. The first model imposes structure on
the decoder and the second model on the loss function by modeling it as a hierarchical multi-
task learning problem. We show that our proposed approach improves upon the baseline and
achieves a METEOR score of 0.31.

Similarly, we revisit query-based summarization to address N-Global anchoring in structure.
Though extractive summarization techniques can be developed to maximize performance as
measured by evaluation metrics like ROUGE, such systems suffer from human readability is-
sues, as mentioned above. In this chapter, we attempted to combine extractive techniques
with simple abstractive extensions by extracting the most relevant non-redundant sentences,
re-ordering and fusing them to make the resulting text more human-readable and coherent.
Using an initial set of 100 candidate answer sets, we experimented with different ordering al-
gorithms such as Similarity, Majority, and Block Ordering. We identified that Block Ordering
performs better the others in terms of global and local coherence. We then introduced an In-
teger Linear Programming based fusion module that is capable of not only fusing repeated
content but also breaking down complicated sentences into simpler sentences, thus improving
human readability. The improved baseline system achieved a ROUGE-2 of 0.6257 and ROUGE-
SU4 of 0.6214 on test batch 4 of BioASQ 4b.

Based on the takeaways learnt from this chapter, I believe the following directions are worth
investing our efforts to bring significant improvements in the way structure is anchored in
narratives.
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1. Interpretability of Latent Structure:  The N-Local anchoring relies on the sequential
input of structure anchors at each and every step. This structural representation is provided
in the form of phase and state sequences from clustering and state machines, respectively. We
have performed a grid search over the number of phases and states in this process. Interpreting
each of these may provide more intuition into the semantic structuring of the narrative. This
also leads to an immediate intermediary step of evaluating the latent structure unit explicitly.

2. Backpropable Scaffold for Anchors: We have explored an external memory mecha-
nism that acts as a scaffold to structure. Investigating backpropable variants as a scaffold for
structure such as hidden markov models are worth investing effort in. This also is a prospective
direction to pave the way into dynamic planning.

3. Partial Anchoring: As discussed in the previous chapter, the idea of this point is similar.
In this chapter, we explored the ends of the spectrum based on anchoring each unit explicitly
and at the overall narrative level. There are intermediate techniques such as dynamic planning
that rely on generating a whole component of one structural unit instead of each unit of the
narrative. This direction is promising as we can hypothesize improved local coherence with
respect to the structural unit.

4. Non-autoregressive sentence order prediction: An overall sentence ordering is per-
formed by keeping the entire narrative in mind. While this takes care of relative presence, an-
other possibility that can be extended to neural models is the prediction of sentence orderings
non-autoregressively. In this way, the mini-structure within a structure is partly agnostic to
long-distance contexts, thereby giving more importance to surrounding contexts. In addition,
if ordering is performed at the end of the network as a post-editing step, non-autoregressive
techniques would enable parallel computations, thereby speeding up the process, which is par-
ticularly helpful in real-time systems.



Surface Form Realization: N-Local and N-Global
Anchoring

To bring relevance to people, you have
to be able to speak their language
effectively.

Sunday Adelaja

Relevance in itself is not sufficient, it is also important to realize or present it in varied ways
depending on personalities or languages. So far, we have looked into determining anchoring
in the right content and organizing it by anchoring in the appropriate structure. The obvious
next step is in the choice of surface form words that pose a challenge in how these sentences
are generated. Hence, we move to our next step, which is anchoring the generation in surface
form realization. This is often referred to in the literature as stylistic variation (Schilling, 2013;
Harrison et al., 2019). One such variation in styles is reflected through various personas, which
impact the way a story is narrated, as studied by Mairesse and Walker (2010). In this chapter,
we are going to look into surface form realization in two forms. In the first part, I will present
surface form choices from different languages, and in the second part, we will discuss more
traditional definitions with respect to persona and style.

Part of this chapter is based on the following papers:

« “My Way of Telling a Story”: Persona based Grounded Story Generation (Chandu et al., 2019c)
« “Style Variation as a Vantage Point for Code-Switching” (Chandu and Black, 2020b)

« “Language informed modeling of code-switched text” (Chandu et al., 2018)

« “Speech Synthesis for Mixed-Language Navigation Instructions” (Chandu et al., 2017b)

117
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In this section, our main focus is going to be on surface realization when multiple languages
interact with one another within a single utterance. This phenomenon is also known as code-
switching (Milroy et al., 1995). Code-Switching (CS) is a widely studied linguistic phenomenon
where two different languages are interleaved. This occurs within multilingual communities
(Poplack, 1980; Myers-Scotton, 1997; Muysken, 2000; Bullock and Toribio, 2009). Typically
one language (the matrix language) provides the grammatical structure for CS text, and words
are inserted from another language (the embedded language). Different languages are varied
surface form realizations of the same content. Having said this, we do not understate the
obvious forms of differences in concepts perceived through the lens of languages (Yaguello
et al., 1998; Deutscher, 2010). We are assuming to deal with concepts that are generic across
languages. There is no strict constraint on the number of languages that participate in the
interaction. However, typically this intermixing is between two languages. In the case of
code-switching for this chapter, we will be looking into the mixing of two different languages.
The choice of selecting a language to express each word is the choice we have in the forms of
‘surface realization. The obvious guidance that can be provided in this scenario is via language
id.

This language id information can be used both as N-Local and N-Global anchors while dealing
with code-switched text. In the case of N-Local anchoring, the language id for each lexical
unit is provided separately and distinctly. We observe how this way of N-Local anchoring
of language ids helps in training a code-switched language model. We will also explore the
usage of identifying the language of each lexical unit in synthesizing speech instructions with
entities belonging to more than one language. Here, each of the lexical units is directly guided
through an anchor unit ag which is the language id. Note that since the guidance is provided
at the word level, the output unit is also a word instead of a sentence anchoring the content
and structure.

In most cases, gathering annotated code-switched data is a challenge for several language pairs.
Even if we manage to find this data in the wild, annotating it with lexical level language ids
is a very expensive task and manually intensive task. Automatically identifying the language
ids is still an active area of research (Molina et al., 2016). However, we have access to mono-
lingual corpora for many languages, except a long tail of low-resource languages. We plan on
making use of these monolingual resources to provide overall guidance from the language id
information in generating code-switched text. The language id information is not explicitly
given to each lexical unit, but the representation in the latent space is modeled to discriminate
the levels of mixing between languages.

5.1 Related Work

Overview of Modeling Code-Switched text:  Early efforts to develop computational frame-
work for CS data include Joshi (1982) in the 1980s and Goyal et al. (2003); Sinha and Thakur
(2005); Solorio and Liu (2008a,b) in the 2000s. However, these methods are quite limited in their
applicability to the kind of data we see on the Internet and social media where code-switching
data is usually found. This has led to an increased attention of the NLP community in the areas
of Language Modeling (Li and Fung, 2013, 2014; Adel et al., 2015, 2013a,b; Garg et al., 2017),
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POS tagging (Vyas et al., 2014; Jamatia et al., 2015; Cetinoglu and Coltekin, 2016), language
identification (King and Abney, 2013) prediction of code-switch points (Das and Gamback,
2014), sentiment analysis (Rudra et al., 2016) and also certain meta level studies that include
understanding metrics to characterize code-mixing (Patro et al., 2017; Guzman et al., 2017).

Code-Switched Language Models: Neural Language Models have a limitation in capturing
only a finite context. This was overcome in Recurrent Neural Network (RNN) based Language
Model (Mikolov et al., 2010). The RNN has an input layer z, hidden layer s (also called context
layer or state), and an output layer y. What allows for capturing of an infinite context is that
the input to the network at time ¢, i.e., x(¢) is concatenated with s(¢ — 1), i.e., the output
of the hidden layer at time ¢ — 1 to compute the current state s(¢) and output y(¢) which is
the probability of the next word given the context. Several word-level tasks can be tackled
better at the constituent character-level (Zhang et al., 2015; Chung et al., 2016). Character-
Level Language Models (Kim et al., 2016) represent a word w as a collection of the embeddings
of the constituent characters C* = [cy, ¢, - - - , ¢;] where [ is the length of w. C" is then passed
through a Convolution Neural Network(CNN) with varying filter widths to capture different
lengths of character n-grams. Essentially, if there are A filters, then the feature mapping for
wis y¥ = [y1,y2, - ,yn). This feature mapping instead of word embeddings is fed to the
RNN-LM as described above, and the rest of the procedure remains the same.

There has been some recent focus on adapting existing language models for CS text. Li and
Fung (2013, 2014) use a translation model together with the language model of the matrix
language to model the mixed language. Linguistic features reduce the search space within the
translation model in CS texts like inversion constraint and functional head constraint (Sankoff
and Poplack, 1981).

N-Local Anchoring from Language Modeling: In another approach, Adel et al. (2015),
use a Factored Language Model (FLM) that includes syntactic and semantic features found in
CS text that are indicative of a switch e.g., trigger words, trigger POS tags, brown cluster of
function and content words that result in a significant reduction in perplexity. Another re-
cent method called Dual Language Model (DLM) (Garg et al., 2017) combines two monolingual
language models by introducing a ‘switch’ token common to both languages. Predicting this
word in either language acts as a proxy to the probability of a switch, and the next word is
then predicted using the LM of the language that was switched to. Among neural methods,
Adel et al. (2013a) use an RNN-based LM to predict the language of the next word along with
the actual word to model CS text. Following on these intuitions, our models are built on top
of the AWD-LSTM LM (Merity et al., 2017) that was chosen due to its accessibility and high
performance (recently State of the Art) on the Penn-Tree Bank and Wikitext-2 dataset (Merity
et al,, 2016). Extensive work has been done on this model through investigation on the relative
importance of hyper-parameters (Merity et al., 2018).

A natural extension to language modeling is the generation of text. There have been several
studies that relied on constraint-theory-based generation techniques. Li and Fung (2012) com-
bined syntactic constraints by predicting language boundary to reconstruct CS text. Pratapa
et al. (2018) and Lee et al. (2019) present techniques based on Equivalence Theory (Poplack,
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1980) and Matrix Language Frame Theory (Myers-Scotton, 1997) to create grammatically valid
CS text. While these methods demonstrate the use of expert knowledge to assist generation,

the same is difficult to replicate and scale to other languages.

Prior works rely on annotations of language spans in multi-task setup (Chandu et al., 2018) or
using dual RNN to handle each language (Garg et al., 2018b). Capturing syntactic and language
switching signals proves effective in a hierarchical VAE architecture (Samanta et al., 2019).

Anchoring Language in Speech Systems: Previous work in synthesizing multilingual speech
can be classified into three approaches: bilingual TTS systems in which two speech databases
are used from the same speaker to build a single TTS system, polyglot systems that create com-
bined phonesets, and phone-mapping based approaches. Bilingual TTS systems have been
proposed by Liang et al. (2007) for English-Mandarin code switched TTS. Microsoft Mulan
(Chu et al., 2003) is a bilingual system for English-Mandarin that uses different frontends to
process text in different languages and then uses a single voice to synthesize the text. Both
these systems synthesize speech using native scripts; that is, each language is written using its
own script. Polyglot systems (Traber et al., 1999) enable multilingual speech synthesis using a
single TTS system. This method involves recording a multi-language speech corpus by some-
one fluent in multiple languages. This speech corpus is then used to build a multilingual TTS
system. The primary issue with polyglot speech synthesis is that it requires the development
of a combined phoneset, incorporating phones from all the languages under consideration.

Another type of multilingual synthesis is based on phone mapping, whereby the phones of the
foreign language are substituted with the closest sounding phones of the primary language.
This method results in a strong foreign accent while synthesizing the foreign words, which may
or may not be acceptable. Also, if the sequence of the mapped phones does not exist or does not
frequently occur in the primary language, the synthesis quality can be poor. To overcome this,
an average polyglot synthesis technique using HMM-based synthesis and speaker adaptation
has been proposed (Latorre et al., 2006). Such methods make use of speech data from different
languages and speakers.

A framework for speech synthesis of code-mixed text was proposed by Sitaram and Black
(2016); Sitaram et al. in which we assumed that two languages were mixed, and one of the
languages was not written in its native script but borrowed the script of the other language.
This framework consisted of first identifying the language of a word using a dictionary or
HMM-based approach, then normalizing spellings of the language that was not written in its
native script, and then transliterating it from the borrowed script to the native script. Then,
we used a mapping between the phonemes of both languages to synthesize the text using a
TTS system trained on a single language. We performed experiments on German-English and
Hindi-English. We also conducted experiments to determine which language’s TTS database

should be used when synthesizing code-mixed text.

In this chapter, we extend on this previous work in two ways: (1) Our current system is a
bilingual system built using speech from two monolingual speech datasets and a combined
phoneset, thereby removing the need for a phone to phone mapping (2) We formulate our
proposed approach and determine its effectiveness in the domain of navigation instructions.
The synthesis depends on lexical level language anchors.
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N-Global Anchoring in Code-Switching: As we have seen in the sub-topic of N-Local
anchoring of language id for code-switched generation, most of the prior work falls under
this domain. Chang et al. (2018b) proposed a GAN-based approach to generate language id
tags and discriminate whether it is a valid sequence. This process internally uses an explicit
representation of language tags though this is not provided as a part of the input. Winata et al.
(2019) proposed a seq-to-seq model with a copy mechanism limiting the method to rely on
parallel monolingual translations of CS text.

Our approach for N-Global anchoring the language information eliminates the need for draft-
ing constraint theories, additional annotations for language ids, and parallel data. This enables
scalability to new language pairs attributed to the availability of monolingual corpora and lim-
ited CS text.

Emotion in Text Generation: Cavazza et al. (2009) have stressed the importance of ex-
pressing emotions in the believability of the automated storytelling system. Adapting a per-
sonality trait hence becomes crucial to capture and maintain the interest of the audience. Asso-
ciating the narrative to a personality instigates a sense of empathy and relatedness. Although
there has been research in generating persona-based dialog responses and generating stylis-
tic sentences (Shuster et al., 2018; Fu et al.,, 2018; Prabhumoye et al., 2018; Shen et al., 2017a),
generating persona-based stories with different personality types narrating them has been un-
explored. In this chapter, we focus on generating a story from a sequence of images as if the
agent belongs to a particular personality type.

Style Transfer:  One line of research that is closely related to our task is style transfer in
text. Recently generative models have gained popularity in attempting to solve style transfer
in text with non-parallel data (Hu et al., 2017; Shen et al., 2017a; Li et al., 2018a). Some of this
work has also focused on transferring author attributes (Prabhumoye et al., 2018), transferring
multiple attributes (Lample et al., 2019; Logeswaran et al., 2018) and collecting parallel dataset
for formality (Rao and Tetreault, 2018). Although our work can be viewed as another facet of
style transfer, we have strong grounding of the stories in the sequence of images.

Persona Based Dialog: Persona-based generation of responses has been studied by the
NLP community in the dialog domain. Li et al. (2016b) encoded personas of individuals in
contextualized embeddings that capture the background information and style to maintain
consistency in the responses given. The embeddings for the speaker information are learnt
jointly with the word embeddings. Following this work, Zhou et al. (2018c) proposed Emotional
Chatting Machine that generates responses in an emotional tone in addition to conditioning
the content. The key difference between former and latter work is that the latter captures the
dynamic change in emotion as the conversation proceeds, while the user persona remains the
same in the former case. Zhang et al. (2018) release a huge dataset of conversations conditioned
on the persona of the two people interacting. This work shows that conditioning on the profile
information improves the dialogues, which is measured by the next utterance prediction. In
these works, the gold value of the target response was known. For our work, we do not have
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gold values of stories in different personas. Hence we leverage annotated data from a different
task and transfer that knowledge to steer our generation process.

Multimodal domain: = With the interplay between visual and textual modalities, an ob-
vious downstream application for persona-based text generation is image captioning. Chan-
drasekaran et al. (2018) worked on generating witty captions for images by both retrieving and
generating with an encoder-decoder architecture. This work used external resources to gather
a list of words that are related to puns from the web, which the decoder attempts to generate
conditioned on phonological similarity. Wang and Wen (2015) studied the statistical correla-
tion of words associated with specific memes. These ideas have also recently penetrated into
the visual dialog setting. Shuster et al. (2018) have collected a grounded conversational dataset
with 202k dialogs where humans are asked to portray a personality in the collection process.
They have also set up various baselines with different techniques to fuse the modalities, in-
cluding multimodal sum combiner and multimodal attention combiner. We use this dataset to
learn personas which in turn are adapted to our storytelling model.

5.2 N-Local Anchoring in Language Information

As we have discussed before, N-Local anchoring provides definitive and specific categorical
grounding while modeling text. Our main focus is on utilizing these fine-grained anchoring
units in generation. We use existing technologies to determine these anchors. In this case,
we will be using lexical level language id information in modeling text. In §5.2.1, we will
be looking into building a language model for code-switched text using the anchors at lexical
units along with the input and predicting the same explicit anchor units in a multi-task learning
framework. Following this in §5.2.2, we will delve into utilizing these lexical level language id

units in improving the quality of mixed-language instructions.

5.2.1 N-Local Anchoring for Language Modeling

We approach Code-Switching through Language Modeling (LM) on a corpus of Hinglish (Hindi
+ English) that we collected from blogging websites containing 59,189 unique sentences. We
implement and discuss different Language Models derived from a multi-layered LSTM archi-
tecture. Our main hypothesis is that providing language id information explicitly for each
individual word builds a robust language model as opposed to simple word-level models by
learning the switching points. We attempt this in two ways: (1) factored model learning em-
beddings both for input word and input language, and (2) multi-task learning of predicting the
language of the next word along with the word itself. We show that our highest performing
model achieves a test perplexity of 19.52 on the CS corpus that we collected and processed. On
this data, we demonstrate that our performance is an improvement over AWD-LSTM LM (a
recent State of the Art on monolingual English).

Code-Switched data is quite challenging to obtain as this phenomenon is usually observed in
informal settings. Moreover, data obtained from online sources are often noisy because of
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spelling, script, morphological, and grammatical variations. These sources of noise make it
quite challenging to build robust NLP tools (Cetinoglu et al., 2016). Our goal is to improve LM
for Hindi-English code-mixed data (Hinglish) where similar challenges are apparent. The task
of language modeling is very important to several downstream applications in NLP including
speech recognition, machine translation, etc. This task also aids in multi-task learning where
parameters are shared between the language model and the other task. This is particularly
important in domains such as code-switching that lack annotated data, where the necessity
to leverage unsupervised techniques or transfer the representations from an unsupervised or
self-supervised setup is crucial. In this section, we present our attempt to this problem using
two techniques: (1) Factored language model that contains the factors of word and language
given to a stacked LSTM based architecture, and (2) Posing this as a multi-task learning (MTL)
problem with a dual objective including predicting the next word, and predicting the language
of the next word. Learning to predict the language of the next word allows the model to switch
points between languages at a global level. In the path towards building the MTL architecture,
we attempted to explicitly learn the language of the current word without predicting the lan-
guage of the next word. This is one of the models in our ablation studies, which is similar to
and is inspired from the factored LM.

In addition to the techniques used for monolingual language modeling, providing informa-
tion about the language is a key component in a code-switched domain. Our main goal in
this section is to examine the effect of language information in modeling code-switched text.
We approach this systematically by experimenting with ablations of encoding and decoding
language id along with the word itself. In this way, the model implicitly learns the switch
points between the languages. We achieve the least perplexity score in combination with a
language-informed encoder and a language-informed decoder among the ablation of multiple
models.

5.2.1.1 Data Collection and Description

To the best of our knowledge, there was no standard dataset to evaluate LM in code-switched
texts at the time this work was done. In this subsection, we will describe our data collection

and provide a brief analysis of it.

Data Collection: Curating a reasonable dataset for code-switched text is an important chal-
lenge for researchers in this domain. To the knowledge of the authors, there was no benchmark
code-switched corpus for language modeling as there is for English (Merity et al., 2016; Marcus
et al., 1994). Code-Switching is commonly observed in informal settings and in casual conver-
sations. Hence the two potential source choices to gather data include social media (such as
Twitter and Facebook) and blogging websites. We decided to go with the latter due to compar-
atively lesser noise and the availability of more descriptive text. Our data for code-switched
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Criteria Train Dev Test

# Sentences 35513 11839 11837
Avg Length of Sentences 18.90 17.58 18.22
Multilingual Index 0.8892  0.8905  0.8914
Language Entropy 0.6635  0.6639  0.6641
Integration Index 0.3304 0.3314  0.3312
Unique Unigrams 35,769 18,053 19,330
Unique Bigrams 276,552 125,108 130,947
Unique Trigrams 553,866 219,098 229,967

TaBLE 5.1: Hinglish Data Statistics for Code-Switched Language Modeling

language modeling was collected after having crawled eight blogging Hinglish websites' that
were returned by popular search engines (such as Google and Bing) with simple code-switched
queries in the domains of health and technology. These code-switched texts cover several dif-
ferent topics, primarily technical reviews of electronic and general e-commerce products as
well as several health-related articles. These texts were all tokenized at the sentence level, and
lexical language identification was performed. All the sentences that did not have at least one
word each from both languages were discarded to channel our problem towards tackling intra-
sentential code-switching. This resulted in a total of 59,189 unique sentences. The data needed
extensive cleaning due to a lot of hyperlinked text spans in varying formats.

Pre-processing:  One of the important characteristics of code-switched text in Hinglish,
when written in Roman script, is the non-standard representations of the words. This is very
commonly observed since there are strict guidelines that monitor the correctness of an ap-
proximately phonetically represented word. There is no standard one-to-one correspondence
of syllables in Hindi when written in the Roman script that universally everyone would follow
in informal settings. Hence the same word could be written in multiple representations based
on the idiosyncrasies of the individual and perception of Romanization of a syllable to that
specific person.

For models encompassing language informed encoders, we perform lexical language identifi-
cation for each of the words and annotate them with this information.

The non-standardized representations of the words are dealt in the following two ways:

« Soundex Encodings: We use soundex encodings of the words as another factor. This way,
the idiolectic representational variations with an additional ‘h’ for aspirated sounds and
single vs. multiple vowels for long and short syllables etc., would be mapped to the
same space. This is not a solution to normalizing the representational variations, but

'Hinglish blogging websites:
www.hinglishpedia.com
www.qureshiinfotech.com
www.hindimehelp.com
www.pakkasolutionhindi.com
www.myhelplive.blogspot.com
www.seekhoweb.com
www.onlinesikhe.com
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FIGURE 5.1: Anchoring language id units in Language Modeling of Code-Switching

we hypothesize that this feature helps learn context around variants of the same word
better.

« Transliteration: Along the similar lines of standardizing the multiple representations
of the same word, the words identified as Hindi at the lexical level are transliterated
into their Devanagari representation, and the most likely Devanagari spelling in a pre-

existing Devanagari dictionary is chosen according to soundex encoding.

Data Analysis: To estimate the quality and extent of mixing and frequency of switching in
our data, we measured the Multilingual index (M-Index), Language Entropy and Integration
index (I-index) that were introduced in the domain of CS by Guzman et al. (2017). A multi-
lingual index of 1 indicates an equal extent of mixing from both the participating languages.
As we can observe, the mixing is nearly in the range of 0.8, which indicates that both Hindi
and English are participating in the ratio of 4 is to 5, respectively. The metric itself does not
reveal which is the embedded language and which is the matrix language. These metrics, along
with other n-gram statistics over our data, are presented in Table 5.1. Note that these code-
switching metrics for each of the train, validate, and test splits of the data are almost the same,

indicating a similar extent of mixing in them.

5.2.1.2 Models Description

In this subsection, we describe the process of step-by-step building of our final model to per-
form language modeling for code-switched text that performs comparatively better than the
remaining models. The path to this is approximately along the lines of incorporating the lan-
guage information in the model along with the word information to improve the performance

overall.
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« Stage 1: With this intuition, we start with a factored LM that takes both language and
words as factors to an LSTM based architecture of a language model.

« Stage 2: We then move onto improving the core of the LSTM by adapting the state-of-
the-art model (Merity et al., 2018).

« Stage 3: We improve this model by incorporating lexical level language information
before encoding the input (which is already done in Stage 1) and decoding the output for
the next word. This is similar to a multi-task learning setting where the two tasks are
predicting the next word and predicting the language of the next word. Both the losses
propagate back with a weighting factor. Note that only the loss at the word decoder
is used to calculate the perplexity of the model. We also perform ablations with the
combinations of giving language information of the current word and predicting the
language of the next word.

Factored Language Model: Each word in the vocabulary V is represented as embeddings
of 2 factors: token, language information. The language information is an embedding corre-
sponding to the language that the current token belongs to. This is described in detail later in
stage 3. We build an LSTM based LM with long and short-term dependencies between switch
points and partially normalized tokens.

The model trained uses two embedding layers: one learned from pure vocabulary and one
learned from the language label. At training time, these embeddings are concatenated and fed
into a single-layered LSTM. A linear decoding layer is then used to transition from the LSTM’s
representation into the vocabulary space. The model is trained using the Categorical Cross-
Entropy Loss and the ADAM optimizer (Kingma and Ba, 2014). The task itself is predicting the
next word given the history of word occurrences until the current time step. In addition to
this, each word is anchored in the information of belongingness to a particular language.

Improving the core of the modeling architecture: The underlying model has a single-
layer LSTM where the input representation from the concatenation of individual factors is fed
as input. In the second stage, we improve the inner LSTM model itself based on SOTA for
WikiText-2 (Merity et al., 2018). We have built a word-level language model based on Merity
et al. (2017). Although the huge number of parameters in neural models enable them to learn a
high degree of non-linearities present in the data, they affect the generalization capabilities of
the model. In spite of techniques such as batch normalization and dropout that are generally
used to regularize training in neural networks, the performance improvement has not been
substantial in the case of sequential units such as recurrent models.

The nuances that this model addresses are as follows. First, coming to the problems of a default
usage of dropout to the recurrent units that inhibit maintenance of longer-term dependencies.
One solution for this is to use the same dropout mask at each time step, known as Locked
Dropout. Another solution is the application of dropout for specific network units such as
certain gates or states rather than the entire unit. The second kind of regularization techniques
involve different kinds of normalization that directly impact the training process due to the
induction of more trainable parameters. Finally, an effective optimization algorithm is needed
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in synergy with when the dropout is applied. This paper uses ASGD (Averaged Stochastic
Gradient Descent) that returns an average across the iterations that have crossed a specified
loss threshold value, which is decided using a non-monotonic criterion. The distinguishing
factors with this model are the regularization and optimization strategies applied to the LSTM
based models built upon their core form.

Language Informed Encoding and Decoding: This is built upon the model we have from
both of the above stages, where we factorize the language id of the input word and decode
the next word. This factored information is decoded along with the primary task of predicting
the next word. This technique is incorporated with the model described in Stage 2 with AWD-
LSTM. In addition to this, we pose this as a multi-task learning problem, with shared layers
except for the decoder. The two tasks are the following:

1. Primary Task: Predict the next word.

2. Auxiliary Task: Predict the language of the next word.

There are a number of ways to frame the desire for humans to switch between languages (Skiba,
1997; Moreno et al., 2002); however, we view the human desire as out of scope for this work.
Instead, our focus is on how we can incorporate linguistic information while training a statis-
tical model for code-switched text. We discuss two main choices as to where we can introduce
this information: either at the input stage or at the decoding stage of an RNN language model.

N-Local Anchoring Units:  Given a CS sentence X5 = (!, 2 ... , ™) which has lexical

level language sequence Ls = (I1, 12 ... , I™), our model has to predict the word at the next
time step. Note that this vector I? is the language of the ith lexical item and is represented
as a vector of length sixteen which is trained in concert with the model. This allows our
model to encode the distributional properties of the language switching. We experimented
with encoding and decoding the word and language embeddings for this task. Og,, 0F,,
Op, and Op, are the parameters for the word encoder, language encoder, word decoder and
language decoder respectively. Here the prediction of the next word is anchored N-locally in
the language id information in the form of a sequence of embeddings, which is L = (I*, 12 ...

Vi)

We identify four different model architectures (Figure 5.1) that could be useful in training code-
switched language models. In the first model, our baseline, we have a sequence of words, and
we are trying to predict the following word. This model is identical to running a traditional
RNN language model on CS text. For our baseline model, we adapt the state-of-the-art language
model, the AWD-LSTM, for this domain. This model is a three-layered stacked LSTM trained
via Averaged SGD with tied weights between the embedding and the softmax layer. There are
several other important elements of this model, all of which are detailed in Merity et al. (2017).
The next word in this model is given by:

z = Encoder(X s, Og)
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In our second model, we extend our baseline such that we have a sequence of words and their
language IDs, and we are trying to predict the following word. This model can be seen as a
factored language model operating with code-switched data. So, the next word in this model
is given by:

Decoder(Encoder(Xcs, Oy ). 0D )

In our third model, we take a sequence of words as input and attempt to predict both the
language and the value of the following word. The next word in this model is given by:

Decoder(Encoder(X cs, Oy ) @D Encoder(Les, Oy ), Opy )

In our fourth model, we take a sequence of words and their corresponding language IDs as the
input and attempt to predict both the language and value of the subsequent word. In our third
and fourth models, we operate with two-loss values being calculated (one for the word error
and one for the language error multiplied by 0.1), and gradients for both losses are propagated
through the network and are used to update the weights.

Figure 5.2 presents a comparison of the condensed anchoring techniques for the language mod-
eling task. Here L represents the language input data, T represents the generated output and
A represents anchors in the form of language ids.

o © ©
@

Baseline Language Informed Encoder
(Independent) (Fusion Anchoring)
-+

Language Informed Decoder Language Informed Encoder & Decoder
(Independent) (Fusion Anchoring)

FIGURE 5.2: Comparison of the surface-form-anchoring based on lid for language modeling

5.2.1.3 Results: Quantitative Analysis

We trained 4 different models based on the description in §5.2.1.2. The results of these experi-
ments are presented in Table 5.2. We observe that the Language Aware Encoding and Decoding
with the AWD-LSTM gives the least perplexity. This aligns with our hypothesis that providing
language information of the current word before encoding and enabling the model to decode
the language of the next word allows the model to learn a higher-level context of switch points
between the languages.
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Model/Data Train Dev Test
Base AWD-LSTM Model 10.08  19.73  20.92
Language Aware Encoder AWD-LSTM 10.07  19.00 20.18
Language Aware Decoder AWD-LSTM 11.60  20.72 22.01

Language Aware Encoder & Decoder AWD-LSTM  9.47 18.51 19.52

TABLE 5.2: Perplexity scores of different models from Anchoring Language Ids

3R 3T android lollipop 3R android phone & connected &

gloss: if you android lollipop and android phone to connected are

trans: if you are connected to android lollipop and android phone

3R 3T us android phone FARA share W{?% g

gloss: and you that android phone regarding share doing are

trans: and you are sharing regarding that android phone

AT A 399 blog %%’E{E@Hﬁ TEAEHE option Wee AT hun /G WA high quality backlink & post fer@t

gloss: today I my blog for very beneficial option bring here on which all high quality backlink ’s post written
trans: today I bring a very beneficial option for my blog on which all high quality backlink’s post written

FIGURE 5.3: Sample Code-Mixed generation by AWD-LSTM along with gloss and translation
(text in red are Hindi words that weren’t identified correctly in the LID step.

5.2.1.4 Results: Qualitative Analysis:

We also did a qualitative analysis of this model with the sentences they generate. Some gen-
eration examples of the baseline AWD-LSTM are shown in table 5.3. We observe them to be
quite consistent in generating meaningful code-mixed n-grams of length ten and above.

However, the sentences generated were not very coherent. Part of the reason for this is training
sentences themselves did not have proper punctuation and end-markers, which are issues to
take care of during pre-processing. Notice that in the first two examples, the first word is
connective (in specific a conjunction), and hence expects their respective sub-ordinate and
co-ordinate parts of the missing sentences.

Also, as seen in the second word of the last sentence, which is the transliterated form of the
word for ‘mei’ in Hindi (which is the Hindi word for ‘in’), in this context, the word that is closest
in lexical form should have been ‘main’ (which is the Hindi word for T’). Using transliteration as
a proxy to standardize the representations of the words is the reason for the model to make such
errors. Character level models have been working well for spell corrections and normalization,
and incorporating character level convolution as input along with the word embeddings could
potentially help solve this problem.

Simultaneously, we observe the t-sne plots of the Hindi and English words from the embed-
ding layer separately. For the English terms, the content words like infographics, click,
cyber, blueborne are related to blogs and tend to be grouped closer. While in case of the
Hindi terms, verbs like banaya(-made),aaoge(-come), karte hain(are doing) and function words
are grouped closer. This is understandable because of the matrix language being in Hindi. So,
the Hindi words made up the bulk of the syntax contained in these sentences, with English
content words sprinkled in between. Also, because a long distance separates the English con-
tent words, they do not influence the meanings of one another in the context. For the same
reason we did not find any noticeable correlation between the meanings of Hindi and English
word embeddings because they played very different roles in sentences.
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FIGURE 5.4: English Word Embeddings
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F1Gure 5.5: Hindi Word Embeddings

We hypothesized that incorporating the information of language aids in building more ro-
bust language models for code-switched text by anchoring them N-locally. In this context, we
substantiate our hypothesis by experimenting with different combinations of providing the
language of the current word as input and decoding the language of the next word along with
the word itself. We conclude that we are able to improve the State-of-The-Art language model
for monolingual text by both explicitly providing the language information and decoding the
language of the next word to perform this task for the CS domain. We treat this problem as
a multi-task learning problem where the same embedding and LSTM layers are shared. These
two comparable tasks are predicting the next word and predicting the language of the next
word. So far, our best test perplexity is 18.51 on development and 19.52 on test sets. This is in
comparison to the baseline model, which is 19.73 and 20.92 on dev and tests, respectively. We
are of the opinion that further research can be done to not only improve perplexity but also
improve the quality of the training and testing dataset. Language models are a core element
in multiple generation tasks, from speech recognition to machine translation. We believe that
this work will support future research into the development of such NLP tools for CS domain.
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5.2.2 N-Local Anchoring for Speech Synthesis:

In §5.2.1, we have seen how explicit modeling of lexical level language ids aids in code-switched
language modeling. In this subsection, we are going to delve into the utility of these explicit N-
Local anchors in improving the quality of generating mixed-language instructions. Specifically,
we will look into the domain of navigational instructions in settings with a mismatch between
the language in which a text-to-speech (TTS) system is trained and the language from which

the local place names are derived.

Text-to-Speech (TTS) systems that can read navigation instructions are one of the most widely
used speech interfaces today. Text in the navigation domain may contain named entities such
as location names that are not in the language that the TTS database is recorded in. Moreover,
named entities can be compound words where individual lexical items belong to different lan-
guages. These named entities may be transliterated into the script that the TTS system is
trained on. This may result in incorrect pronunciation rules being used for such words. We
describe experiments to extend our previous work in generating code-mixed speech to synthe-
size navigation instructions with a mixed-lingual TTS system. We conduct subjective listening
tests with two sets of users, one being students who are native speakers of an Indian language
and very proficient in English, and the other being drivers with low English literacy but famil-
iarity with location names. We find that in both sets of users, there is a significant preference

for our proposed system over a baseline system that synthesizes instructions in English.

Navigation systems that can render instructions in the form of synthesized speech in addition
to a visual interface are an important application of TTS Systems where being hands-free is
critical. The text that needs to be synthesized in the navigation domain contains many named
entities, such as names of roads and landmarks. The language that the TTS system is trained on
may not be the same as the language that local place names are derived from. This may lead to
pronunciation that does not seem natural, which may affect the usability of such systems. Text
for instructions is typically rendered in a single script. That is, although names of roads and
landmarks are derived from a particular language, they are represented in the language that
the TTS system is speaking in. For example, instructions being spoken by an Indian English
TTS system for navigation in Bangalore will contain location names transliterated into the
Roman script. Language identification can be applied to categorize words in text that contains
foreign named entities so that corresponding phonetic rules are applied to each set accordingly.
This scenario is different from code-mixing in the sense that only certain words, specifically
proper nouns, belong to the native language. However, the influence of English still prevails
in the names of the places as well, for example: ‘road’, ‘park’, ‘mall’, ‘plaza’ etc. An example

navigation instruction that is collected between two locations in Delhi is:

Turn\Eng left\Eng at\Eng Mukhiya\Hin Market\Eng Chowk\Hin onto\Eng Karawal\Hin Nagar\Hin.

In this example, the words followed by ‘\Eng’ and “\Hin’ are English and Hindi words, respec-
tively. As stated before, there is a mixture of languages in the names of the places as well.
For example, in ‘Mukhiya Market Chowk’, ‘market’ is an English word while the others are
derived from the native language Hindi. In this work, we extend the work on synthesizing
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code-mixed text using a monolingual voice to the domain of synthesizing navigation instruc-
tions using a bilingual voice. We build systems to synthesize navigation instructions using a
Hindi-English bilingual voice for location names derived from Hindi, Kannada, and Telugu.
In addition, we conduct subjective listening tests to compare our system with a monolingual
baseline system. Studies show that the performance of a driver is impacted by their cognitive
load (Jonides, 1981). This may compromise the ability of the driver to perceive safety-critical
events. Considering that TTS systems for navigation instructions are deployed in real-time, it
is imperative to aid the user with the provision of more natural auditory instructions. With
the proliferation of ride-sharing applications like Uber and Ola in countries like India, many
individuals working as full-time drivers are now using navigation apps that have TTS systems.
In some cases, these drivers choose to use such apps voluntarily, while in other cases, the use
of such apps is mandated by the cab company. Many of these drivers are semi-literate and have
low English proficiency, and we conduct interviews and listening tests with them to evaluate
our system. We also conduct listening tests with another set of users, mostly comprising of
graduate students who have high English proficiency. In the remainder of the paper, we refer
to an English navigation instruction as native to a language if it has words derived from that
language as the names of the places.

5.2.2.1 Data Collection and Description

We used the Google Maps API to collect navigation directions from the locations where the
following are the native languages: Hindi, Telugu, Kannada, Gujarati, Bengali, Marathi, and
Tamil. While we conducted listening tests for Hindi, Kannada, and Telugu, this method is easily
extensible to the other languages as well. The choice of these languages was based on access to
native speakers in these languages to perform subjective testing. The navigation instructions
used in GPS applications are in English, and so the syntactic structure of these instructions
remains in English. The names of the places, including native language words, are considered
words from the embedded language into English, which is the matrix language, in the matrix
language-embedded language theory of code-mixing. Language Mix Ratio (LMR) is defined as
the ratio of the number of words from the embedded language to the number of words in the
matrix language. Table 5.3 includes details about the data, including the LMR, after using the
language identification module mentioned in the following section.

Language # distinct routes # sentences LMR

Hindi 399 4,806 0.2392
Telugu 1,974 19,976 0.1576
Kannada 8,898 108,178 0.1471
Gujarati 1,995 17,649 0.0942
Bengali 2,448 24,909 0.1852
Marathi 2,363 23,614 0.1977
Tamil 3,322 37,428 0.1612

TABLE 5.3: Navigation Instructions: Data Statistics
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Text navigational Turn left at Mukhiya Market Chowk onto
instruction Karawal Nagar Bhajanpura Road .

Turn\Eng left\Eng at\Eng Mukhiya\Hin Market\Eng Chowk\Eng
Language onto\Eng Karawal\Hin Nagar\Hin Bhajanpura\Hin Road\Eng . ARG, FRIGA, AR, HITTRT
Identification

Is native
word?

Transliteration to
Native Script Turn, left, at, Market, Chowk, onto, Road

Native G2P
Turn left at AT Market Chowk onto System Multilingual
FRIGE AIR HTSHTAYRT Road . Synthesizer

Mixed Script Multilingual @_. M
Instruction

Vocal navigational
English G2P instruction
System

FIGURE 5.6: Architecture of the system with example of Hindi navigation instruction
(Note that the language of the word ‘Chowk’ is misidentified and transliteration of ‘karawal’
is incorrect)

The navigation domain has fewer spelling variations than general cross script code-mixing
in social media and blogging websites observed from our previous work in language model-
ing, where normalization is crucial. The navigation data we collected has fairly standardized
spellings for the names of the places, although the native words of the places are transliterated
into English.

5.2.2.2 Model Description

Our proposed technique is similar to the pipeline we follow for synthesizing code-mixed text
- first, we identify the language of each individual word in the sentence. These language ids
are the N-Local anchor units that aid the synthesis process. Then, we transliterate the words
that are not in English to the native script. This mixed script multilingual instruction is sent
to corresponding G2P systems based on the language of lexical items. Finally, a multilingual
synthesizer is used to generate vocal navigational instruction. This section briefly outlines
these stages. The overall architecture of the system is demonstrated in Figure 5.6.

Anchor Extraction - Language Identification: In this stage, the task is to identify the
names of places in the native language in each of the navigation instructions. One way is
to use POS taggers and Named Entity Recognition tools to identify the names of locations in
the instructions. We have attempted mapping named entities from Wikipedia full text dumps
with the ones found in navigational instructions by using Soundex encodings. This method has
good coverage of important places but did not work well for local street names. In addition, as
discussed in the introduction, we often find that place-names contain English words like ‘mall’,
‘park’, ‘station’ etc., which need to be pronounced with English pronunciation rules. Hence,
we identify the language of each word in the navigation instructions. We used an off-the-shelf
system for language identification (Bhat et al., 2014) which uses character n-grams as features.
Due to the specificity of the domain, we also attempt to mitigate errors made by the system
by labeling common words like ‘road’, ‘bus’, ‘main’ as English words. This system covers all
the languages of our interest, except for Marathi. Since this system is not trained to identify
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Marathi and English, we proxy Hindi for Marathi for the language identification task. Though
this is not ideal, it serves as a solution to differentiate English and non-English words.

Transliteration: To map the representation of native words to their corresponding phonemes
used in the front end, these words are transliterated from the Romanized script to the native
script. Bhat et al. (2014) modeled transliteration as a structured prediction problem using sec-
ond order Hidden Markov Models. In our initial experiments using Soundex codes, we mapped
these transliterated words to words from large text of monolingual script (including wiki text
dump, wiki titles, and web pages from relevant queries) to derive a locality name. Even a very
large amount of text had coverage issues with respect to proper nouns. We experimented with
transliteration as a sequence to sequence problem by training an LSTM to convert English se-
quences for the names of the places to the native script. We used 1000 parallel examples of
Hindi words written in Devanagari and Romanized scripts from the FIRE task data (Choud-
hury et al., 2014) for this task. When trained on 800 samples and tested on 200 samples, the
character level accuracy is 35.64%, while the word-level accuracy is much smaller. The prob-
lems of recurring and invalid sequences of characters were addressed by building a language
model of the native script. In similar lines of (Black et al., 1998), which uses decision tree based
letter to sound rules, we adapted this approach for the task of transliteration, and for the same
test set, we got a word-level accuracy of 26%.

Brahmi-Net transliteration (Kunchukuttan et al., 2015) considers this problem similar to a
phrase-based translation problem, through which sequences of characters from source to the
target language are learnt, where the parallel corpus is trained using Moses. This system sup-
ports 13 Indo-Aryan languages, 4 Dravidian languages, and English, including 306 language
pairs for statistical transliteration. Using this, the accuracy corresponding to the correctness
of the entire word for the 200 test examples is 32.65%. Since this yielded higher accuracies at
the word level, we proceeded with this scheme using their REST API to transliterate words
into their native script.

Synthesis: The final step is to synthesize the navigation instructions that are transliterated
into the appropriate script. Once we transliterate native language words, we synthesize the
sentence using the bilingual TTS voice.

Speech data from Mono and English sets of the male speaker released as a part of resources
for Indian languages (Baby et al., 2016) was used for these experiments. We used all the 1,132
prompts from the Arctic set recorded by a male Indian English speaker and used only the first
600 prompts from the Hindi set so that both Hindi and English utterances are of equal duration
(approximately an hour each), as the Hindi utterances were longer. The speech data was sam-
pled at 16 kHz and recorded by a professional speaker in a high-quality studio environment.
For combining the English and Hindi phonesets, we used a simple phone clustering approach:
the phones common in English and Hindi were retained as is, and the phones present only in
English were added, resulting in a common phoneset. By doing this, we bypassed the phone-
mapping process, which was shown to result in accented speech (Elluru et al., 2013) and would
have limited the phones that could be used to those in the target language’s phoneset. For
getting pronunciations of native language words, we used the Festvox Indic frontend (Parlikar
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et al., 2016), which provides a g2p mapping between all Indian language UTF-8 code points
and a phoneme from a common Indic phoneset. For some languages, rules like stress assign-
ment, schwa deletion, and voicing rules are implemented in the frontend. To build the voice,
we followed the standard CLUSTERGEN (Black, 2006) Statistical Parametric Synthesis voice
building process.

Figure 5.7 presents a comparison of the condensed forms of the models with anchors. The
generated output is in the form of speech which is represented as S here.

PP o
®

Baseline Proposed Model
(Independent) (Fusion Anchoring)

F1GURE 5.7: Comparison of the surface-form-anchoring based on lid for speech synthesis

5.2.2.3 Results

To perform preference testing, we synthesized navigation instructions using two methods. The
first method was to retain all the lexical items in English. The second method used the proposed
technique, i.e., language identification, transliteration, and g2p using the native script. Both
the methods used the same TTS voice trained using the bilingual data. We will now present
our findings from preference testing and user studies with drivers.

Preference Testing: We conducted a user preference study to compare the baseline system
to our proposed approach. We randomly sampled 20 navigation instructions in each of Hindi,
Kannada, and Telugu languages from the data collected and synthesized them. We used the
Testvox web-based framework (Parlikar, 2012) for conducting these listening tests. Examples
of these synthesized files can be found here 2. We asked five native speakers, each of Hindi, Tel-
ugu, and Kannada, to perform the listening test. We gave each speaker navigation instructions
with location names derived from their mother tongue. We asked them to pick the sample that
sounded more natural and understandable, with an option of choosing ‘No preference’ as well.
Table 5.4 presents the results of this preference testing for three languages; Hindi, Kannada,
and Telugu. We can see that there was a significant preference for our proposed system in all
three languages.

In addition to preference testing, we also did an informal study for intelligibility. For each of
the languages, one student was asked to transcribe 20 navigation instructions, and we recorded
the number of times that the person had to listen to it to transcribe the sentence accurately.
On an average, the transcriber had to listen 1.70 times for Hindi, 1.75 for Telugu, and 2.15 for
Kannada navigation instructions.

*http://www.cs.cmu.edu/ kchandu/navigation/index.html
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Prefer Prefer No

Language Baseline Proposed Preference
Hindi 17% 70% 13%
Telugu 4% 76% 20%
Kannada 19% 69% 12%

TABLE 5.4: Subjective listening tests for preference in synthesis of mixed-language naviga-
tional instructions

The language identification module that we are using has an accuracy of 88.08%, 92.27%, and
91.89% for Hindi-English, Telugu-English, and Kannada-English language pairs. Some words
are very ambiguous, and the limited context may not be enough to identify the language cor-
rectly, particularly if the language identification system is trained on data from another do-
main. For example, the word ‘to’ is identified as a Hindi word as it is very common in Hindi
(meaning: ‘then’); however, in the navigation instructions, it is always an English word. We
observed the following errors in the Kannada native words. The language identification system,
apart from using n-gram character features, also takes into account the context information
from surrounding words. Hence the same word can be identified in different languages based
on context. One such example is ‘Jaraganahalli’, identified as Kannada and English in two dif-
ferent instructions. Erroneous transliteration introduces some errors, for example, for words
like ‘Hosakerehalli’ and ‘Gubbi Thotadappa Road’. People acquainted with these locations,
however, could still recognize them. As observed from Table 5.4, our system is preferred to a
great extent in Telugu in comparison to other languages that we conducted this study. This
could be because Telugu words are relatively longer than in the other languages, and hence
English pronunciations of long Telugu words may be even more distracting.

User study with drivers: In addition to conducting listening tests with users with high
English proficiency and familiarity with speech-based systems, we also wanted to conduct
user studies with a population of drivers who use navigation apps. These drivers are typically
semi-literate and have low English proficiency and relatively low exposure to technology.

We conducted interviews and listening tests with 11 subjects who are full-time drivers in Ban-
galore. We briefed the drivers about the goals of the project, collected demographic data from
them, and asked them about their experience with GPS-based navigation systems, particularly
about the TTS part of the systems. The drivers were given a mobile top-up recharge of INR
50 (around 0.8 USD) as compensation for participating in the study. The entire interview was
conducted in Kannada, the local language in Bangalore, although the TTS system itself was
the bilingual voice described above. All the drivers in the study reported that they were fa-
miliar with locations in Bangalore, and almost all of them had lived in Bangalore for at least
five years. Most drivers said that they had low English proficiency, with almost all of them
saying that they could not speak or write English, but they could read and understand some
English. All the drivers were multilingual, with some drivers knowing as many as five lan-
guages - Kannada, Tamil, Telugu, and Hindi being the most common languages that drivers
knew, with some drivers knowing some English and one driver also knowing Urdu. After the
initial interview to collect demographic information, the drivers were given the same listening
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task as the previous study, with location names in Bangalore. Each driver listened to ten pairs
of audio files using the Testvox interface. They were asked to choose the system that they
could understand better, and one of the authors helped them navigate the web-based listening
test and answered any questions they had. Table 5.5 shows their listening preference between
the baseline system and our proposed approach.

Prefer Baseline Prefer Proposed No Preference
34% 60% 6%

TABLE 5.5: Subjective listening tests with drivers for synthesis of mixed language navigational
instructions

From Table 5.5, it is clear that drivers had a strong preference for the proposed system. In many
cases, they also pointed out specific words that they could understand better in the proposed
system. The proposed system produced some extra schwas in some words, which made it
sound slightly unnatural, but the drivers did not point this out. In some cases, the drivers also
pointed out that the (incorrect) pronunciation of a particular word in the monolingual system
was similar to what they heard in the current navigation app that they used.

After the listening test, we asked drivers open-ended questions about their experience with
navigation apps and suggestions for improvement. Some drivers had driven Ola and Uber cabs
and had more experience with navigation apps, while others used them only when they went
out of town, did not know a route, or wanted to find out about traffic conditions. Surpris-
ingly, almost all drivers preferred the navigation instructions to be in English rather than the
local language or their native language. Their reasons for this were that the instructions used
minimal English, which they already understood, and they wanted the instructions to be in a
language that their passengers could understand so that there was more transparency with the
customer. They did, however, say that they knew of other drivers who knew no English who
used the navigation app with the voice on mute because they could not understand it.

In this section, we examined the role of N-Local anchoring units in the form of language ids
to explicitly model each lexical unit in the tasks of language modeling and speech synthesis.
However, it is often the case where it is hard to derive these language id labels, especially
because code-switching in written forms involves cross-scripting. For instance, in the case
of Hinglish, we often observe Hindi words to be written in the Roman script instead of the
Devanagari script. Annotating lexical items with language information is manually intensive
work while automating this process is still an active area of research. Hence we pave the
way unto our next section, which anchors the generation of code-switched text at the entire
sentence level instead of each of the lexical units.

5.3 N-Local Anchoring in Personality

In the previous sections, we have explored the choices in surface form representation in multi-
lingual scenarios, especially when the participating languages interact with one another within
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the same sentence. In this section, we are going to explore surface realization in monolin-
gual scenarios, realized in the form of personalities through visual storytelling. This is on-
going research work, and hence this section briefly describes techniques that we adapted for
personality-induced story generation, which motivates the proposed research work in this di-
rection.

As we have discussed previously, visual storytelling is the task of generating stories based on a
sequence of images. Inspired by the recent works in neural generation focusing on controlling
the form of text, this chapter explores the idea of generating these stories in different personas.
However, one of the main challenges of performing this task is the lack of a dataset of visual
stories in different personas. Having said that, there are independent datasets for both visual
storytelling and annotated sentences for various persona. This section describes an approach
to overcome this by getting labeled persona data from a different task and leveraging those
annotations to perform persona-based story generation. This section presents an inspection of
various ways of incorporating personality in both the encoder and the decoder representations
to steer the generation in the target direction by anchoring in the persona representation. To
this end, five models are proposed, which are incremental extensions to the baseline model
to perform the task at hand. In our experiments, five different personas are used to guide the
generation process. The models based on our hypotheses perform better at capturing words
while generating stories in the target persona.

This section introduces an approach to generating visual stories in five different personality
types. A key challenge to this end is the lack of large-scale persona annotated stories. This
is addressed by transferring knowledge from annotated data in the dialog domain to the sto-
rytelling domain. The visual story generator model is based on Kim et al. (2018), and I pro-
pose multiple techniques to induce the personalities in the latent representations of both the
encoder and the decoder. Our work aims to learn the mapping between the latent representa-
tions of the images and the tokens of the story such that the generative model is encouraged
to generate tokens of a particular personality. The generative models are evaluated using the
automatic metric of ROUGE (Lin, 2004) which takes into account the sentence level similarity
in structure and thus roughly evaluates the matching of content. We acknowledge that there is
a drop in this metric since our model is not trying to optimize generation alone but also adapts
personality from a different dataset.

The success of generating the story in the target personality type is also evaluated using au-
tomatic and qualitative analysis. The automatic metrics comprise the classification accuracies
rooted in the annotated data. It is observed that one of the proposed models (LEPC, described
in §5.3.2 performs slightly better at classification accuracies for most of the personas while
retaining similar ROUGE scores.

The main contribution of this section is showing simple yet effective approaches to narrative
visual stories in different personality types. This section also displays an effective way of
using annotated data in the dialog domain to guide the generative models to a specified target
personality.
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5.3.1 Datasets Description

Coalescing the segments of personality and sequential generation together, our task is to gen-
erate a grounded sequential story from the view of a personality. To bring this to action, we
describe the two sources of data we use to generate personality-based stories in this section.
The first source of data is focused on generic story generation from a sequence of images and
the second source of data includes annotations for personality types for sentences. We tailor a
composition of these two sources to obtain a dataset for personality-based visual storytelling.
Here, we note that the techniques described above can be applied for unimodal story genera-
tion as well.

Visual Story Telling:  Visual Storytelling is the task of generating stories from a sequence
of images. A dataset for this grounded sequential generation problem was collected by Huang
et al. (2016), and an effort for a shared task > was led in 2018. The dataset includes 40,155
training sequences of stories. It comprises a sequence of images, descriptions of images in iso-
lation, and stories of images in sequences. We randomly divide the dataset into five segments
(comprising of 8031 stories each), and each segment is associated with a personality.

Personality Dialog:  Shuster et al. (2018) have provided a dataset of 401k dialog utterances,
each of which belongs to one of 215 different personalities. The dataset was collected through
image-grounded human-human conversations. Humans were asked to play the role of a given
personality. This makes this dataset very pertinent for our task as it was collected through
engaging image chat between two humans enacting their personalities.

For our task, we wanted to choose a set of five distinct personality types. Let the set of utter-
ances that belong to each personality type be Up, = {u;,, .« up}wherep € {1,...,215}.
We first calculate the pooled BERT representation (Devlin et al., 2018) of each of the utterances.
To get the representation of the personality P, we simply average the BERT representations
of all the utterances that belong to that personality. The representation of each personality is
given by:

EleERT(uf,)

P, = = (5.1)

This representation is calculated only on the train set of Shuster et al. (2018).

Since our goal is to pick the five most distinct personality types, we have the daunting task
of filtering the 215 personality types to 5. To make our task easier, we want to group similar
personalities together. Hence, we use K-Means Clustering to cluster the representations of the
personalities into 40 clusters *. We get well-formed and meaningful clusters which look like
[Impersonal, Aloof (Detached, Distant), Apathetic (Uncaring, Disinterested), Blunt, Cold, Stiff];
[Practical, Rational, Realistic, Businesslike]; [Empathetic, Sympathetic, Emotional]; [Calm,
Gentle, Peaceful, Relaxed, Mellow (Soothing, Sweet)], etc., We then build a classifier using

*http://visionandlanguage.net/workshop2018/index.html#challenge
“We do not perform an exhaustive search on the number of clusters. We tried k values of 5, 20, and 40 and
selected 40 as the ideal value based on manual inspection of the clusters.
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the technique described in §5.3.2 to classify the utterances to belong to one of the 40 clusters.
We pick the top five clusters that give the highest accuracy for the 40-way classification.

The five personality clusters selected are:

« Cluster 1(C1): Arrogant, Conceited, Egocentric, Lazy, Money-minded, Narcissistic, Pompous
and Resentful

« Cluster 2 (C2): Skeptical and Paranoid
« Cluster 3 (C3): Energetic, Enthusiastic, Exciting, Happy, Vivacious, Excitable
« Cluster 4 (C4): Bland and Uncreative

« Cluster 5 (C5): Patriotic

5.3.2 Model Description

Asmentioned in earlier chapters on the properties of content, we have a dataset of visual stories
S = {S1,...,Sn}. Each story S; is a set of sequence of five images and the corresponding
text of the story S; = {(IZ-(I), mgl)), cee (Ii(5)7 wf)))}. Our task is to generate the story
based on not only the sequence of the images but also closely following the narrative style of
a personality type. We have five personality types (described in §5.3.1) P = {p1,...,D5}
and each story is assigned one of these five personalities as their target persona. Here, each p;
represents the one-hot encoding of the target personality for story i.e p; = [1, 0, 0, 0, 0] and
soontill ps = [0, 0,0, 0, 1]. Hence, we create a dataset such that for each story, we also have
a specified target personality type S; = {(Ii(l), a:z(-l)), cees (Ii(s), mgs)); p;}. The inputs to
our models are the sequence of images and the target personality type. We build generative
models such that they are able to generate stories in the specified target personality type from
the images. In this section, we first briefly describe classifiers trained discriminatively to iden-
tify each of the personalities and then move on to the story generation models that use these
classifiers.

Here is an overview of the differences in the six models that we describe next.
1. The baseline model (Glocal) is a sequence to sequence model with global and local con-
texts for generating story sentences corresponding to each image.

2. The Multitask Personality Prediction (MPP) model is equipped with predicting the per-
sonality in addition to generating the sentences of the story. This model also incorpo-
rates binary encoding of personality.

3. The Latent Encoding of Personality in Context (LEPC) model incorporates an embedding
of the personality as opposed to binary encoding.

4. The Latent Encoding of Personality in Decoder (LEPD) model augments personality em-
bedding at each step in the decoder, where each step generates a token.
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5. Stripped Encoding of Personality in Context (SEPC) is similar to LEPC but encodes per-
sonality embedding after stripping the mean of the story representation.

6. Stripped Encoding of Personality in Decoder (SEPD) is similar to LEPD but encodes per-
sonality embedding after stripping the mean of the story representation. This is similar
to the intuition behind SEPC.

Classification We use convolutional neural network (CNN) architecture to train our classi-
fiers. We train five separate binary classifiers for each of the personality types. The classifiers
are trained to predict whether a sentence belongs to a particular personality or not. We train
the classifiers in a supervised manner. We need labeled data to train each of the classifiers.
Each sample of text « in the respective datasets of each of the five personality types has a label
in the set {0,1}. Let Hzc)j denote the parameters of the classifier for personality p; where
J € {1,...,5}. Each classifier is trained with the following objective:

L£(6%) = Ex|[log qc (pj|z)] (5.2)

We use cross entropy loss to calculate [,gj for each of the five classifiers. The classifiers accept
continuous representations of tokens as input.

Story Generation We present five extensions to incorporate personality-based features in
the generation of stories.

(1) Baseline model (Glocal):  We first describe the baseline model that is used for visual
storytelling. This is based on the model Kim et al. (2018) that attained better scores on human
evaluation metrics. It follows an encoder-decoder framework translating a sequence of images
into a story. From here on, we refer to this model as glocal through the rest of the section owing
to the global and local features in the generation of story sequence at each step (described in
this section).

The image features for each of the steps are extracted with a ResNet-152 (He et al., 2016b) post
resizing to 224 X 224. The features are taken from the penultimate layer of this pretrained
model and the gradients are not propagated through this layer during optimization. These
features are passed through a fully connected layer to obtain the final image features. In order
to obtain an overall context of the story, the sequence of the image features is passed through
a Bi-LSTM. This represents the global context of the story. For each step in the generation of
the story, the local context corresponding to the specificity of that particular image is obtained
by augmenting the image features (local context) to the context features from the Bi-LSTM
(global context). These glocal features are used to decode the story sentence at each step. This
concludes the encoder part of the story. The decoder of each step in the story also uses an
LSTM, which takes the same glocal feature for that particular step at each time step. Hence
there are five glocal features feeding into each time step in the decoder.

For simplicity in understanding, we use the following notations throughout model descriptions
to represent the mathematical formulation of the generation models. Subscript k indicates the
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K" step or sentence in a story. Subscript i indicates the 4*” story example. The story encoder

is represented as Encoder which comprises the features extracted from the penultimate layer
of ResNet-152 concatenated with the global context features from the Bi-LSTM. The entirety
of this representation in encoder and the glocal features obtained is represented using zj, for
the kqp, step or sentence in the story.

z, = Encoder(I},) (5.3)

Now, the generation of a sentence in the story is represented as follows:
. At | A<t
T ~ HPr(:cfckn,f y Zk) (5.4)
t

The generated sentence & is obtained from each of the output words &£, which is generated
by conditioning on all of the prior words :f:,ft and the glocal feature obtained as z.

Personality based Generation: In the rest of the section, we are going to describe the
incremental extensions to the baseline to adapt the model to perform persona-based story
generation.

(2) Multitask Personality Prediction (MPP): The intuition behind the hypothesis here is
to provide the personality information to the model and enable it to predict the personality
and the generation of the story. The obvious extension to provide personality information is
to incorporate the one-hot encoding p; € P of the five personas in the context before the
decoder. The visual storytelling data is split into five predetermined personalities as described
in §5.3.1. For each story, the corresponding personality is encoded in a one-hot representation
and is augmented to the glocal context features. These features are then given to the decoder
to produce each step in the story. The model is enabled to perform two tasks: the primary
task is to generate the story, and the secondary task is to predict the personality of the story.
The classifiers described in §5.3.2 are used to perform personality prediction. Formally, the
generation process is represented by:

& ~ [ Pr(atleg’, ze, pi) (5.5)
t

Here, we condition the generation of each word on the glocal context features zg, binary en-
coding of the personality p; and the words generated till that point.

The cross entropy loss for generation is L4 and the loss for the prediction of each of the per-
sonalities is ng given by Eq 5.2. The overall loss optimized for this model is:
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(1_0‘) > pj
L:total:a'[’g'i'T'Z[‘C

i=1

The overall model is optimized on this total loss. We use cross entropy loss for each of the
individual losses. We give a higher weight a to the story generation and equally distribute the
remaining (1 — «) among each of the 5 personalities.

(3) Latent Encoding of Personality in Context (LEPC): This model is an incremental im-
provement over the MPP model. The key difference is the incorporation of personality as an
embedding that captures more centralized traits in words belonging to that particular person-
ality. For each of the five personality types, we have a latent representation of the personality
(P), as opposed to the binary encoding in MPP model. Similar to the earlier setting, this av-
erage personality feature vector is concatenated with the glocal context vector The generation
step is formally represented as:

&r, ~ [ [ Pr(@L|25", [z P, pi) (5.6)
t

This means that zy, is concatenated with P to give personality informed representation; and
the generation of each word is conditioned on these concatenated features z, binary encoding
of the personality p; and the words generated so far.

(4) Latent Encoding of Personality in Decoder (LEPD): Instead of augmenting the per-
sonality traits to the context as done in the LEPC model, they could be explicitly used in each
step of decoding. The latent representation of the personality (P) is concatenated with the
word embedding for each time step in the decoder.

& ~ [[ Pr@Ll[@5" Pl 2k, pi) (5.7)
t

The generation of each word is conditioned on the words generated so far that are already
concatenated with the average vector for the corresponding personality, the glocal features,
and the binary encoding of the personality.

(5) Stripped Encoding of Personality in Context (SEPC): In order to orient the gener-
ation more towards the personality, we need to go beyond the simple augmentation of per-
sonality. Deriving motivation from neural storytelling’, we use a similar approach to subtract
central characteristics of words in a story and add the characteristics of the personality. Along
the same lines of calculating an average representation for each of the personalities, we also
obtain an average representation of the story &. This average representation & intuitively

*https://github.com/ryankiros/neural-storyteller
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captures the style of the story. Essentially, the story style is being stripped off the context, and
personality style is incorporated. The modified glocal feature that is given to the decoder is
obtained as m = zp — & + P. The generation process is now conditioned on m instead of
zk. Hence, the generation of each word in decoding is conditioned on the words generated so
far (i:lft), the binary encoding of the personality (p;) and the modified representation of the
context features (m).

& ~ [[ Pr(atlagt, m,pi) (5.8)
t

Here, note that the context features obtained thus far are from the visual data and performing
this operation is attempting to associate the visual data with the central textual representations
of the personalities and the stories.

(6) Stripped Encoding of Personality in Decoder (SEPD):  This model is similar to SEPC
with the modification of performing the stripping at each word embedding in the decoder as
opposed to the context level stripping. The time steps to strip features are at the sentence
level in SEPC and are at word level in the SEPD model. The LSTM based decoder decodes
one word at a time. At each of these time steps, the word embedding feature £ is modified as

ek=E—S+P.

This modification is performed in each step of the decoding process. These modified features
are used to generate each sentence in the full story. The model is trained to generate a sentence
in the story as described below:

T ~ H Pr(ﬁ:ﬂe,ft, Zky Di) (5.9)
t

The generation of each word is conditioned on the modified word embeddings using the afore-
mentioned transformation (e,ft), the binary encodings of the personalities (p;), and the glocal
context features.

The various models discussed above are presented in the condensed anchor forms in the Figure
5.8.

5.3.3 Experiments and Results

This section presents the experimental setup for the models described in §5.3.2. Each of the
models is an incremental extension over the baseline glocal model. The hyperparameters used
for this are as follows.

We build five separate classifiers, one for each personality cluster. Note that these clusters are
also associated with personalities and hence are later referred to as P followed by the cluster id
in the following sections. To build the five binary classifiers, we create label balanced datasets
for each cluster i.e., we randomly select as many negative samples from the remaining 4 clusters
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Baseline MPP Model
(Independent) (Independent)
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FIGURE 5.8: Comparison of the surface-form-anchoring based on multimodal interactions for
persona based generation

as there are positive samples in that cluster. We use the train, dev and test split as is from
Shuster et al. (2018). The dataset statistics for each of the five clusters is provided in Table 5.6.

Cluster Type | Train | Dev | Test
Cluster 1 26538 | 1132 | 2294
Cluster 2 6614 | 266 | 608
Cluster 3 19784 898 | 1646
Cluster 4 6646 | 266 | 576
Cluster 5 3262 138 314

TABLE 5.6: Statistics of data belonging to each of the persona clusters

Note that all the datasets have a balanced distribution of labels 0 and 1. For our experiments,
it does not matter that the distribution of the number of samples is different because we build
separate classifiers for each of the clusters, and their output is treated as independent from one
another.

As seen in Table 5.7, all the classifiers attain good accuracies and F-scores on the test set.

C1 C2 C3 C4 Cs5
Acc. | 79.12 | 81.09 | 83.17 | 77.95 | 84.08
F1 0.79 | 0.81 083 | 0.78 | 0.84

TABLE 5.7: Performance of classifiers for each of the persona clusters

We finally calculate the representation P for each of the five clusters and the representation
S of stories using equation 5.1. Note that S is calculated over the visual storytelling dataset.
These representations are used by our generative models LEPC, LEPD, SEPC, and SEPD.

Hyperparameters: The hidden size of the Bi-LSTM encoder of the story to capture context
is 1024. The dimensionality of the glocal context vector zj, is 2048. A dropout layer of 50% is
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she will pick them

the kids love each

grandma can not

Original grandma loves when grandpa says it 's
all the kids come over  them up and put them  other as well giving forget her little girl and  time for cake .
to visit . on her lap even lots of hugs and love .  gives her some love

though it <unk> . as well .

Glocal the family is havinga  they are playing with he is happy to see his  she is being silly the birthday girl is
great time . each other . grandson . eating a cake .

MPP [ male ] and his they are all smiles for  everyone is enjoying [ female ] is so excited  she is very happy
friends are having a the camera . their new family . to be there . about her birthday .
great time .

LEPC the family was having  they were so happy to  they were having a she was very excited he was surprised by
a great time . be together . good time with to play with a kid . all of his friends .

grandson .

LEPD the family was ready they had a great time .  they were havingalot we had a great day . he was happy to eat
to see a lot of a party . of fun . cake .

SEPC the parade was very there were a lot of we were so happy to i had a great time . this was a picture of
beautiful . people there . be a great time . a little girl .

SEPD the family is a great it was a lot of a big . there were a lot . i had a picture . they were a very .

time .

FIGURE 5.9: Comparison of generated stories from all the described models.

applied post the fully connected layer to obtain the image features and after the global features
obtained from Bi-LSTM, which is 2-layered. The word embedding dimension used is 256. The
learning rate is 1e-3 with a weight decay of le-5. Adam optimizer is used with batch normal-
ization and a momentum of 0.01. Weighting the loss functions differently is done to penalize
the model more if the decoding is at fault compared to not predicting the story’s personality.
a is set to 0.5, and each of the individual personality losses is weighted by a factor of 0.1.

The rest of the 5 models use the same hyperparameter setting with an exception to word em-
bedding dimension. The average personality (P) and the average story (S) representations
are obtained from pre-trained BERT model.Hence this is a 768 dimensional vector. In order
to perform the stripping of the story feature and adding the personality features to the word
embeddings in the decoder, the word embedding dimension is matched to 768 in the SEPD

model.
Model C1 C2 C3 C4 C5
Glocal | 69.90 | 73.29 | 51.55 | 34.91 | 65.86
MPP 69.35 | 72.44 | 47.54 | 33.83 | 58.49
LEPC 70.10 | 73.24 | 52.13 | 34.59 | 66.42
LEPD 76.44 | 79.20 | 33.71 | 34.02 | 67.13
SEPC 76.76 | 77.00 | 32.84 | 44.53 | 60.08
SEPD 78.14 | 79.44 | 31.33 | 34.99 | 73.88

TABLE 5.8: Performance (in terms of accuracy) of generated stories to capture persona
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Model | ROUGE_L
Glocal 0.1805
MPP 0.1713
LEPC 0.1814
LEPD 0.1731
SEPC 0.1665
SEPD 0.1689

TABLE 5.9: ROUGE_L scores for the generated stories by each of our models

5.3.3.1 Quantitative Results

We perform two sets of experiments: (1) evaluating the performance of the models on capturing
the personalities in the story and (2) performance of story generation. The former evaluation is
performed using the pre-trained classifiers (5.3.2) on the personality dataset. We calculate the
classification accuracy of the generated stories of the test set for the desired target personality.
However, we need to note that the classification error of the trained models is also reflected
in this result. This evaluation is done at a sentence level, i.e., accuracy is calculated over each
sentence of the story (each sentence of the story has the same target personality as that of
the entire story). The performance of the generation is evaluated using the ROUGE score °.
Although this captures the generic aspect of generation, the metric explicitly does not evaluate
whether the story is generated on a conditioned personality. In the future, we would also like
to look at automatic evaluation of the generated stories with respect to the incorporation of
personalities.

Table 5.8 shows the results of classification accuracy for each of the five personalities. Table 5.9
shows the results of ROUGE_L evaluation. We acknowledge that there would be a deviation
to this automatic score since optimizing the gold standard generation of a story from training
data is not our end goal. Rather, our models use two distinct datasets and learn to transfer the
traits annotated in the personality dialog dataset into the visual storytelling dataset.

Despite this, we notice that the LEPC model gives comparative results to that of the glocal
model in terms of story generation. It is noticed that the LEPC model also gives a slight im-
provement on the classification accuracies for most of the clusters (each cluster representing
a personality). However, this is an insufficient result to generalize that incorporating person-
ality at the context level performs better than that at the word level since the inverted stance
is observed in SEPC and SEPD models. We plan to investigate this further by performing ab-
lations and examining which operation is causing these models to perform weakly. Note that
the SEPC model performs the best in incorporating personality in three of the five personality
types. But this model takes a hit in the automatic score. This is because our generative models
are dealing with competing losses or reconstruction of classification.

SWe use the implementation from https://github.com/Maluuba/nlg-eval


https://github.com/Maluuba/nlg-eval

Surface Form Realization: N-Local and N-Global Anchoring 148

5.3.3.2 Qualitative Results

We present an example of the story generated by each of the models proposed in Figure 5.9.
This example belongs to persona in cluster C3. The words corresponding to this cluster are
highlighted with blue color in the persona-conditioned generation of the stories. The main
observation is that all of the five sentences in the story contain a word relevant to happiness
for each of the MPP, LEPC, and LEPD models. SEPC and SEPD models capture these happi-
ness features in only two and one sentences, respectively. The glocal model does not cater
explicitly to the personality, while our proposed models attempt to capture the persona tone
in generation. This is observed in the fourth generated sentence in the sequence by each of
our proposed models. While the glocal model uses the word Ssilly’, our models capture the
tone and generate ‘excited’ and ‘great’. Similarly for the fifth sentence, MPP, LEPC and LEPD
generate ‘happy’, ‘surprised’ and ‘happy’ respectively.

It is observed that in most generated stories, the language model has taken a rough hit in
the SEPD model. This is also substantiated in Figure 5.9. This seems to be due to stripping
away the essential word embedding features that contribute to linguistic priors or language
model. This could be potentially corrected by retaining the word embedding feature as is and
augmenting it with the stripped features. Having presented these results, we notice that there is
significant scope for improving the generation of the story while capturing high-level persona
traits in generation. The scalar manipulations that we have seen in this section seem to affect
the language model to the extent that it affects the readability. This motivates our proposed
work on disentangling the latent representation to transfer the personality from an eternal
data source that guides the latent space to generate persona induced story.

5.4 N-Global Anchoring in Language Information

One of the major problems in this domain is the dearth of annotated data (including anno-
tations for lexical level language id information) and substantial corpora to train large-scale
neural models. This makes it a variant of low resource setting (Sitaram et al., 2019) with no
directly available data for scaling it to larger modeling techniques. We present a novel van-
tage point of code-switching to be style variations between both the participating languages.
Our approach does not need any external annotations such as lexical language id, thereby not
N-locally relying on additional anchoring for each unit. Instead, it mainly relies on easily ob-
tainable monolingual corpora without any parallel alignment and a limited set of naturally
code-switched sentences. Utilizing this data, we rely on a discriminator that decides whether
the given sentence is: (1) code-switched or monolingual and (2) naturally code-switched or
randomly switched. The latent representation derived from the monolingual data is represen-
tative of each of these styles in which the generation of code-switched text is anchored at the
sentence level. We propose a two-stage generative adversarial training approach where the
first stage generates competitive negative examples for code-switched and the second stage
generates more realistic code-switched sentences. We present our experiments on the follow-
ing pairs of languages: Spanish-English, Mandarin-English, Hindi-English, and Arabic-French.
We show that the trends in metrics for generated code-switched sentences move closer to real
data in each of the above language pairs through the dual-stage training process. We believe
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this viewpoint of code-switching as style variations opens new perspectives to dealing with
this form of surface realization. There are plenty of monolingual corpora available for each of
the participating languages. We present a novel standpoint to transfer knowledge from mono-
lingual corpora without additional annotations such as language ids or parse trees. The recent
advances in cross-lingual pre-trained language models (Artetxe and Schwenk, 2019; Conneau
and Lample, 2019) call out for vast amounts of code-switched data. Hence, our work on auto-
matic generation of CS text is relevant for several downstream tasks.

We propose a novel vantage point for code-switched text to be observed as a stylistic variation
between the participating embedded and matrix languages. For the scope of this paper, we
define the style variations between languages to be extrinsic properties such as surface lexi-
cal forms and intrinsic properties such as underlying grammar, word order etc,, We address
this problem with adversarial training in two stages: (1) Stage 1: transfer the style of each of
the monolingual participating languages into the content of the other language; (2) Stage 2:
discriminating between the incorrectly switched and naturally switched sentences. The four
styles in play here are the following: (1) ,,,: matrix language style (2) lo: embedded language
style (3) l4: incorrect/artificial code-switching style (4) l,,: natural code-switching style. Intu-
itively, each of the generated sentence has N-Global anchors in one of these styles I, where
x € (m,e,a,n). The goal is to traverse smoothly across these styles without affecting the
content. The first stage generates negative examples facilitating the discriminative training for
the second stage. This dual-stage training eliminates the need for additional linguistic anno-
tations, such as language id used by several contemporary works. We present our results on
four pairs of languages.

5.4.1 Datasets Description

Each of the participating monolingual utterances (belonging to M (matrix language) and E
(embedded language) are treated as two distinct styles. Note that the sentences are not aligned
either at the phrase or sentence levels. We explored code-switching for four language pairs as
presented in Table 5.10.

The reasons behind selecting these language pairs are multi-step. We selected Hinglish and
Spanglish since they are widely spoken languages. The usage of Hindi in Hinglish is commonly
romanized, bringing in a new variety to the platform. Spanglish and Hinglish thus have very
close scripts as opposed to Mandarin-English where the scripts are different. While the word
order for English, Spanish, Mandarin and French is subject-verb-object (SVO), the same for
Hindi is subject-object-verb (SOV) and Arabic is verb-subject-object (VSO). These differences
facilitate the stylistic attributes to the mixing of these languages.

5.4.2 Model Description

The two problems we address are repealing the need for annotations (such as language id) on
CS data and maximizing the utilization of monolingual data. Both the issues are addressed
using a two-stage generative adversarial training paradigm with a transformer-based autoen-
coder. The unavailability of parallel sentences is tackled by preserving the semantics of the
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Language | Monolingual Code-Switched
Spanish Graff et al. (2010)
English Budzianowski et al.
(2018)

Mandarin | Tian et al. (2014)
English Budzianowski et al.
(2018)

Hindi Mathur et al. (2018)
English Mathur et al. (2018)
Arabic Song et al. (2014)
French Koehn (2005)

Deuchar et al. (2014)

Lyu et al. (2010)

Mathur et al. (2018)

Cotterell et al. (2014)

TABLE 5.10: Monolingual and Code-Switched Datasets used for training Stage 1 and Stage 2

original sentence of one language and mixing the attributes of the other language without dis-
entangling the representation into these two properties. Following are the two stages involved:

Stage 1 : The embedded and matrix languages are mixed in arbitrary ways to generate CS
text. This stage simply uses the corpora from each language as an individual style.

Stage 2 : The sentences generated after Stage 1 were not supervised via any real CS sentences.
Hence, they are used as negative examples (with style l,) against limited amount of CS text
(with style l,,) to generate naturally switched sentences.

The architecture remains the same for both stages except for variation in hyperparameters.
Figure 5.10 presents our GAN setup for Stage 1. The following subsections present the flow
by instantiating for Stage 1 for readability. The same process is applied for Stage 2 with the
difference of using positive and negative examples of CS sentences.

Generator The generator in our architecture comprises of transformer based encoder and
decoder. In Stage 1, our transformer encoder takes in the matrix language sentence (s,, € M
) along with the matrix language encoding or style (I,,,) and produces a latent representation

(Zm,m)-
Zm,m = TransEnc(sm,lm)Vsm € M (5.10)

We use this zy,,m along with the original matrix language sentence s,, and the matrix lan-
guage encoding l,,, to reconstruct the original sentence s,,. Greedy decoding is performed
that uses argmax which is non-differentiable to compute the loss for reconstructing the origi-

nal sentence (LG (matriz))-
Le(matriz) = — Z 1og(Pr(Sm|Sm,l = m)) (5.11)
sSm EM

Next, the same matrix language sentence s, is considered along with the embedded language
encoding [l to produce a latent representation (2m,e).

Zm,e = TransEnc(sm,le)Vsm € M (5.12)
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FIGURE 5.10: Transformer based GAN architecture for generating CS text. Note: The same
architecture is used for two stages. Matrix language sentence is the embedding of the text and
language encoding is the embedding of the language.

This 2y, is used to reconstruct the original sentence s,,. This means that the model is at-
tempting to reconstruct the content of the original sentence while varying the style i.e., lan-
guage encoding. The loss corresponding to this reconstruction is (LG (embedded))-

LG(embedded) = - Z lOg(P’I"(SmISm,l = e)) (5~13)
sm EM

Similarly, corresponding counterparts using ze e and ze m, are generated.

Discriminator The discriminator is a classifier that predicts whether the current distribu-
tion is closer to the original latent space or the generated latent space. The purpose of the
generator reconstructing the original sentence s,, with matrix language encoding !, (con-
tributing to LG (matrixz)) is solely to make sure that the generator is retaining the content
of the original sentence, and has no contribution towards training the discriminator. On the
other hand, the generation of the sentence s,,, with embedded language encoding l¢, say Sy,
essentially establishes our end goal. In the GAN architecture, we now have two choices, i.e.,
sampling a sentence from: (1) original distribution S, m, i.e., the matrix language sentence
with the matrix language encoding or (2) distribution from the generator s, e, i.e., the matrix
language sentence with the embedded language encoding. The positive examples to train the
discriminator come from real sentences, which are trained by maximizing the probability for
predicting that it belongs to label m.

Lp(matriz) = — Z log(Pr(m|zm,m,l = m)) (5.14)

One particular problem for training GANs in the text domain is the non-differentiable function
of argmax that is performed in decoding. There are three prominent solutions to address this
problem, including REINFORCE (Williams, 1992), Gumbel-Softmax (Jang et al., 2016), manipu-
lating the latent space. We proceed with the third option by performing a continuous softmax
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of the words, thus eliminating the need to perform argmax, which is described in detail here.
Let the vocab size be V and the embedding dimension be H. Instead of discretely making a
selection of the embedding over the vocabulary space to select each word, we perform contin-
uous softmax. The final softmax layer in the decoder provides us with a vector of size 1 X V.
Multiplying this with the embedding weights (V X H) results in 1 X H vectors for each word.
Note that in the case of argmax, we make a discrete selection of the word, whereas, in the
case of continuous softmax, we arrive at a soft representation of the weighted combination
of properties of the words across different words in the vocabulary. Therefore the latter does
not enforce this soft representation to be a word. This partially decoded representation now
passes through the transformer encoder to arrive at a latent representation to be fed into the
discriminator.

LD(embedded) = - ZlOg(Pr(elzm,(ul = 6)) (5.15)

Dual Stage Training Setup:  The task of generating CS text not only entails mixing lan-
guages but also mixing them appropriately. This means that our discriminator performs two
tasks of discriminating between: (1) the participating languages, owing to the asymmetry be-
tween their interactions, such as matrix and embedded languages (Stage 1) and (2) incorrectly
and correctly switched languages (Stage 2). Hence we dissolve the training procedure into two
stages, with each stage dedicated to one of the aforementioned tasks. In Stage 1, the sentences
from s,,, € M are transferred to the style of l¢ (Sy,e). Similarly, the converse produces the
sentences Se m, i.e., sentences in the embedded language in the style of the matrix language.
Since there is no supervision from naturally CS sentences, we delegate this responsibility to
the second stage of training with the same architecture. We used s, ¢ as negative examples of
CS sentences for Stage 2 of training. We have also experimented with a random subset of s, ¢
and S¢ ,, as negative examples. This performed worse than the former setting since s, ¢ has
the underlying grammatical structure of M, thereby generating stronger negative examples for
adversarial training.

Figure 5.11 presents a comparison of the condensed forms of anchoring the text with the token
level language ids.

0o

o0

Baseline Proposed Model
(Independent) (Latent Anchorina)

FIGURE 5.11: Comparison of the surface-form-anchoring based on discriminator for language
generation

Hyperparameter setup: We used three layers of transformer encoders and decoders with
a maximum sequence length of 45 words. The word embedding dimension is 256, with 300
iterations of pre-training the generator before training our GAN. In Stage 1, there is minimal
overlap of vocabulary between the languages. This is contrary to data in typical style transfer
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FIGURE 5.12: Trends in metrics for evaluating the generation of CS text for four language pairs
in dual stage training. The dotted line of each color benchmarks the corresponding metric for real
CS data.

datasets, which have overlapping vocabulary spaces. Hence the discriminator learns much
faster than the generator in our case. To combat this, the learning rate in Stage 1 for the
generator is le-3, and the discriminator is le-4. For Stage 2, the generator and discriminator
are initialized with models learnt in Stage 1, thereby transferring the knowledge of each of
the languages. However, to quickly adapt to the parameter space of Stage 2, we use slanted
triangular learning rate (Howard and Ruder, 2018) with a short linear increase period followed
by a longer decay period. Adam optimizers are used throughout the model. We plan to release
our code, models, and generated samples upon acceptance.

Anchor Representation The N-Global anchor is incorporated in the form of style along
with each sentence in the form of one of l,,, le, lg or I,,. This encoding is not provided for
each lexical unit but guides the entire sentence. Similarly, the penalty is observed for the entire
sentence, i.e., the discriminator as described in the next subsection models the probability of
the latent representation belonging to one of the above styles. Note that in each stage, the
discriminator acts to classify the latent representation into two classes. In Stage 1, these classes
are l,,, and l¢, and in Stage 2, these classes are I and 1,,.

5.4.3 Experiments and Results

We present our results on four pairs of languages from Table 5.10. We evaluate trends in dif-
ferent metrics of CS proposed by Guzman et al. (2017) in our dual-stage training. Consolidated
results are presented in Figure 5.12. Metrics that we look into are multilingual-index, language
entropy, integration-index and burstiness. In Figure 5.12, ‘Stage 1’ contains generated sentences
Sm,e- The model learnt in Stage 2 has options to generate from negative examples or original
text of each language as source. ‘Stage 2’ contains sentences generated using negative exam-
ples from Stage 1 as source. Similarly, ‘From <lang>’ uses the corresponding language as
source to transfer style to real CS. We observe that the metrics move closer to real CS in ‘Stage
2’ as compared to ‘Stage 1’. Within ‘Stage 2’, metrics are closer to real CS data when the source
text belongs to M in comparison to [E or s, . from Stage 1. We plan to explore properties of
syntactic and semantic mixing in each stage in our future work.
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5.4.3.1 Human Evaluation

We conduct human evaluation in the form of preference testing between groups of sentences
with ten human subjects for generated Hinglish, each with ten batches of sentences. Each
batch has two sets of sentences (each set having 5 sentences). The first set is from Stage 1
and the second set is from Stage 2, which are jumbled randomly. The preference testing is
done at the set level. We ask the human evaluators to select a set that ‘seems more natural’.
The instances are grouped lengthwise i.e, among 10 instances: short-length in the range of 3-5
words (2 sets), medium-length in the range of 6-10 words (5 sets), long-length in the range of
11-15 words (3 sets).

Overall, the sentences generated from Stage 2 are preferred 74% of the time. Dissecting them
length-wise Stage 2 is preferred 60% in short-length, 84% in medium-length, and 67% in long-
length. This shows that, though Stage 2 generation is clearly preferred for all ranges of sentence
lengths, it is better in generating longer sentences in comparison to shorter sentences.

5.4.3.2 Qualitative Analysis

The following are some of the common forms of errors observed in the generated text for
Hinglish when trained on the blogging data collected from Chandu et al. (2018) on which
similar trends in results from Hinglish in Figure 5.12 were observed.

« Gender Disagreement: For instance, consider the sentence ‘kyunki ye scam bhi ho sakti hai’
(Meaning: because this can also be a scam). The gender of the direct object, which is ‘scam’
should agree with the inflection of the verb ‘sakti’. Hence this should have been ‘sakta’. The
gender of the word ‘scam’ (which is a borrowed word from embedded language English) is
unknown in the matrix language, so it would be presumed to be masculine. But this sentence
used a feminine verb phrase.

« Incorrect Case markers: ‘agar aap bhi ye post pasand aaye toh aap puch sakte hai’ (Meaning:
If this post is pleasing to you also, then you can ask). The words ‘to you’ is supposed to be in
dative case which is ‘aap ko’ in the first clause of the sentence. However ‘aap’, which is in the
nominative case is generated.

» Semantically incorrect - random mixing: Sometimes, the model also generates completely
random mix of words. For instance, this is one of the sentences from the output: ‘am bahut hi
achchi jankari aapko pata hi hoga’ (Loosely Translated Meaning: very good information you
must be knowing). The sentence does not convey a coherent meaning. The word order of the
sentence is also jumbled and does not strictly belong to either of the matrix or the embedded
languages.

« No mixing: In some cases, the entire sentence is built from words belonging to the same
language. For instance, ‘the best way to improve your application for the reasons listed below’.

« Incorrect sub-word mixing: Though the incorrect case markers and gender disagreement
are syntactic errors, this seems to happen due to the modeling at the word level. Sub-word
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level modeling of text is a promising direction to address this error category, especially for
morphologically rich languages.

The category of the first two error types described above is syntactic. Our current model is
purely data-driven from the surface forms. This motivates the utility of inducing syntax while
generation. This also encourages the case to model sub-word level modeling, especially for
morphologically rich languages. The semantically incorrect sentences seem to be generated
due to the random mixing of the words from both languages. The loosely translated meaning
of the sentence is not utterly senseless but, when framed in CS fashion does not make sense.
In addition, there is an inherent challenge while dealing with multiple datasets that lead up
to domain variation. For instance, the vocabulary or the style on social media platforms such
as Twitter is very different from the domain of conversations. Although we have carefully
selected the datasets to belong to similar domains, this might often not be feasible, inviting the
domain invariant modeling of text.

We present a novel perspective of viewing CS as style variants between participating lan-
guages. We believe this viewpoint opens new avenues for dealing with mixed language text.
The main contributions of the paper are threefold. Firstly, we eliminate the need for explicit
language identification using two-stage adversarial training. Secondly, our approach transfers
from bountiful monolingual resources and relies on limited CS data to generate new CS sen-
tences. Thirdly, we present our experiments on a dual-stage transformer-based GAN model
for generating four pairs of CS languages: Spanish-English, Mandarin-English, Hindi-English,
and Arabic-French. In the future, we would like to compare the performance of this technique
with other style transfer models and also explore the possibility of end-to-end training of both
stages. We are also continuing to work on utilizing the generated data to pre-train models to
perform downstream tasks.

5.5 Conclusions and Prospective Future Directions

In this chapter, we have explored the incorporation of surface realization property by anchor-
ing at two levels: N-Local and N-Global. In §4.2, we explored two different use cases of in-
ducing the language ids at the lexical level. The first is language modeling, and the second is
speech synthesis. In the case of language modeling, we extended the capability of the state-
of-the-art language model for English so as to equip it to deal with code-switched text. To
enable this, we anchored each lexical unit with the corresponding language id and utilized the
embedding representation of the same to be incorporated along with each word. In addition to
the primary task of predicting the next word, as is typical in language modeling, we introduced
a multi-task learning framework with a secondary task of predicting the language of the next
word. As shown empirically, this N-Local anchoring performs better than the corresponding
strong baseline.

In N-Local anchoring of language ids explicitly for speech synthesis, we presented techniques
to synthesize navigation instructions in mixed language, where the instructions are rendered
in one language, and the names of locations are derived from another language. Such scenarios
are common in multilingual countries like India, where English is a widely-used language. We
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first perform language identification and then transliterate native language words into the na-
tive script to derive appropriate pronunciation rules. We bypassed the step of mapping phones
cross-lingually by using a bilingual TTS system to synthesize mixed-language navigation in-
structions. We performed experiments synthesizing navigation instructions with named enti-
ties derived from three Indian languages - Hindi, Telugu, and Kannada. In subjective listening
tests, there was a significant preference for our proposed approach compared to a monolin-
gual Indian English system. We also performed a listening test and open-ended interviews
with drivers with low English proficiency and found a preference for our proposed approach.

In §5.4, we present a novel perspective of viewing CS as style variants between participating
languages. We believe this viewpoint opens new avenues for dealing with mixed language
text. The main contributions of this section are threefold. Firstly, we eliminate the need for
explicit language identification using two-stage adversarial training. Secondly, our approach
transfers from bountiful monolingual resources and relies on limited CS data to generate new
CS sentences. Thirdly, we present our experiments on a dual-stage transformer-based GAN
model for generating four pairs of CS languages: Spanish-English, Mandarin-English, Hindi-
English, and Arabic-French.

Now, we will explore some of the prospective directions that are worth exploring in this direc-
tion.

1. Widening Anchor Forms: As we have seen in this chapter, all of the anchor units cor-
respond to the language information. However, from the learning experiences in addressing
the anchoring of content and structural properties, anchors can be other forms. For instance,
properties of syntactic and semantic mixing such as parse tree units or part-of-speech tags
can as well be explored to be anchored in. This is comparatively trivial in the case of N-Local
anchoring in comparison to N-Global anchoring. Having said that, note that these are difficult
to obtain in comparison to language id anchors. More often than not, the literature in deter-
mining POS tags (Vyas et al., 2014; Solorio and Liu, 2008b) and parses (Duong et al., 2017; Bhat
et al., 2018; Goyal et al., 2003) rely on language identification as a first step. The other types of
widening the forms may include incorporating other modalities such as corresponding speech
units.

2. Two dimensional Domains:  Arguably, the collection of additional code-switched data
would be a significant contribution to this work. The sources for collecting code-switched data
remain limited in topic and variation, and additional sources of code-switched data would be
the best way to improve how well our model can generalize. This is a problem particularly for
N-Local anchoring each lexical unit as the code-switched training data drives the downstream
inference tasks as well. However, this problem is not limited to N-Local anchoring. In the case
of dataset selection for monolingual and code-switched corpus in N-Global anchoring, this
manual inspection of nearly related domains of the data for dual-stage training was crucial.
While this is a pressing issue, we can also address this by combining our task at hand with
domain adaptation techniques. Notice that there are two dimensions of the domains in these
datasets. The first is the difference in the domains of the text itself, and the second is the
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difference in languages. I believe bringing together this diverse data is important and see the
potential in bringing together the techniques for code-switching and domain adaptation.

3. Spelling Variations: = As we have discussed earlier, one of the major challenges in deal-
ing with code-switched text is cross-scripting. This leads to unnormalized texts with a lot of
variations. The robustness of the language model also depends on the diversity of context
in which the words co-occur. Since most of the articles collected for N-Local anchoring for
the task of language modeling belong to the topics of e-commerce, the latest technology, and
health, this may be affected. Hence, using pre-trained word embeddings based on large mono-
lingual corpora after aligning the embedding spaces of both the participating languages such
as MUSE embeddings (Conneau et al., 2017). However, due to the non-standardized spellings
in the romanized Hinglish text, most words that are incorrectly transliterated are not found
in common multilingual embeddings, for instance, MUSE. This implies that the errors from
transliteration are propagated through the subsequent parts of the model. In this perspective,
a locally-spatially invariant technique might come in handy. For instance, character level CNN
based model along with an LSTM at the top can be a possible direction to explore. Let ¢y, c2 ...
cp be the padded sequence of characters of a word. Each of the characters has a e dimensional
embedding. Let c;:;4; be the concatenation of characters from % to j. Next, we take k filters
of size s X e, where s is the window size which in our case is 3. The feature in the CNN layer is
computed and activated using a Relu, which gives a feature map of size p — s + 1 over which
mean pooling is performed. Typically, in prior work in modeling monolingual text, character
representation in addition to word-level representation seems to give good results. This latent
representation is used to decode the next word. This can be explored further.
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Grounding ‘Grounding’ in NLP

The NLP community has seen substantial recent interest in grounding to facilitate interaction
between language technologies and the world. However, as a community, we use the term
broadly to reference any linking of text to data or non-textual modality. In contrast, Cognitive
Science more formally defines “grounding” as the process of establishing what mutual
information is required for successful communication between two interlocutors — a
definition which might implicitly capture the NLP usage but differs in intent and scope.

We investigate the gap between these definitions and seek answers to the following questions:
(1) What aspects of grounding are missing from NLP tasks? Here we present the dimensions
of coordination, purviews and constraints. (2) How is the term “grounding” used in the current
research? We study the trends in datasets, domains, and tasks introduced in recent NLP confer-
ences. And finally, (3) How to advance our current definition to align with Cognitive Science? We
present ways to both create new tasks or repurpose the existing ones to make advancements
towards a more complete sense of grounding.

We as humans communicate and interact for a variety of reasons with a purpose and a goal. We
use language to seek and share information, clarify misunderstandings that conflict with our
prior knowledge, and contextualize based on the medium of interaction to develop and main-
tain social relationships. However, language has and is going to be only one of the enablers of
this communication, reliant on several auxiliary signals and sources such as documents, me-
dia, physical context, etc. This linking of concepts to context is grounding and within the NLP
context, is most often a knowledge base, images, or discourse.

This chapter is based on the following paper:
« “Grounding ‘Grounding’ in NLP” (Chandu and Black, 2020a)
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FIGURE 6.1: Dimensions of grounding — required to bridge the gap between current state of
research and what is missing from grounding in real sense.

In contrast, research in cognitive science defines grounding as the process of building a com-
mon ground based on shared mutual information in order to successfully communicate (Clark
and Carlson, 1982; Krauss and Fussell, 1990; Clark and Brennan, 1991; Lewis, 2008). We argue
that this definition subsumes NLP’s current working definition and provides concrete guidance

on which phenomena are missing from the current literature to ensure the long-term utility of
our technologies.

In §6.1, we formalize three dimensions key to grounding: Coordination, Purviews, and Con-
straints, to systematize our analysis of limitations in current work. §6.2 presents a comprehen-
sive review of the current progress in the field, including the interplay of different domains,
modalities, and techniques. This analysis includes understanding when techniques have been
specifically designed for a single modality, task, or form of grounding. Finally, §6.4 outlines
strategies to repurpose existing datasets and tasks to fit the new richer definition from the
cognitive science literature. The introspection, re-formulation, and concrete steps situate NLP
‘grounding’ in the larger scientific discourse to increase its relevance and promise.

6.1 Dimensions of grounding

Defining grounding loosely as linking or tethering concepts is insufficient for true grounding.
Figure 6.1 presents the research dimensions missing from most current work.

6.1.1 Dimension 1: Coordination in grounding

The first and the most important dimension that bridges the gap between the two definitions
of grounding is the aspect of coordination — alternatively viewed as the difference between
static and dynamic grounding (Fig 6.2).
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Static grounding is the most common type and assumes that the evidence for common
ground or the gold truth for grounding is given or attained pseudo-automatically. This is
demonstrated in the left box of Figure 6.2. The sequence for this form of interaction includes:
(1) human querying the agent, (2) agent querying the data or knowledge it acquired, (3) agent
retrieving and framing a response, and (4) agent delivering it to the human. In this setting, the
common ground is the ground truth KB/data. The human and the agent have common ground
by assuming its universality (i.e., no external references). Therefore, successfully grounding
the query relies solely on the agent being able to link the query to the data. For instance, in a
scenario where a human wants to know the weather report, the accuracy of the database itself
is axiomatic, and we build a model for the agent to accurately retrieve the queried information.

Most current research assumes static grounding, so progress is measured by the ability of the
agent to link more concepts to more data. However, the axiomatic common ground often does
not exist and needs to be established in real-world scenarios.

Dynamic grounding is interactions can be achieved in two ways. The first posits that
common ground is built via interactions and clarifications. The mutual information needed to
communicate successfully is built via interactions including: requesting and providing clarifi-
cations, acknowledging or confirming the clarification, enacting or demonstrating to receive
confirmation, and so forth. This dynamically established grounding guides the rest of the in-
teraction by course-correcting any misunderstandings. The sequence of actions in dynamic
grounding is demonstrated in the right side box of Figure 6.2. The steps for establishing ground-
ing are a part of the interaction that include: (1) The human querying the agent, (2) The agent
requesting clarification or acknowledging, (3) The human clarifying or confirming. These three
steps loop until a common ground is established. The remaining steps of (4) querying the data,
(5) retrieving/framing a response, and (6) delivering the response, are the same as that of static
grounding. The process of successfully grounding the query not only relies on the ability of
the agent to link the query but also to construct the common ground from the mutually shared
information with respect to the human.

Cognitive sciences in the perspective of language acquisition (Carpenter et al., 1998) present
two ways of dynamic grounding via attention: Dyadic joint attention and Triadic joint atten-
tion. In our case, dyadic attention describes the interaction between the human and the agent
and any clarification or confirmation is done strictly between the both of them. Triadic at-
tention also includes a tangible entity along with the human and the agent. The human can
provide clarifications by gazing or pointing to this additional piece in the triad.

Summary: The community should prioritize dynamic grounding as it is more general and

more accurately matches real experiences.

So far we discussed resolving intent ambiguities. The second kind of dynamic nature in inter-
actions are due to the changes or evolving communicative intents and slots. These changes
are often observed in scenarios where there are multiple acceptable choices presented to the
speaker. Let us consider the example of a human interacting with a virtual travel assistant. The
assistant presents a scenario of hotel booking and flight tickets for travel. After confirming this
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FIGURE 6.2: Coordination in grounding

and before finalizing the itinerary, if the user decides to spend an extra day at the next loca-
tion, the assistant accommodating this request by updating the previous belief state is a critical
step. DSTC 2 (Henderson et al., 2014) introduces a dynamic dialog state, where the users are
allowed to change their goals within a domain, which in this case is the restaurant domain. In
this way, there are two categories of dynamic grounding and interactive assistants need to be
robust to both varying intents and confusing intents. Another layer of conversational artifacts
that is missing from our current assistants is the combination of the phenomenon — misunder-
standing a changing communicative goal. Dan Bohus’s thesis work (Bohus) presents one of
the initial efforts in a belief updating mechanism along with error recovering strategies in a
dialog between human and computer. For the remainder of the thesis, the first kind of dynamic
grounding is referenced and discussed. The ability to recover from mistakes and indexing to
the right turn in the conversation where the misunderstanding occurred after a corrected turn
is critical to make an improved impact on real world assistants.

6.1.2 Dimension 2: Purviews of grounding

Next, we present the different stages behind reaching common ground, known as purviews.
Most of the current approaches and tasks address these stages individually and independently,
while they are often co-dependent in real-world scenarios.

Stage 1: Localization: The first stage is the localization of the concept either in the phys-
ical or mental contexts. This step is idiosyncratic and relates to the ability of the agent alone
to localize the concept. These concepts often are also linked in a compositional form. For in-
stance, consider a scenario in which the agent is to locate a ‘blue sweater’. The agent needs
to understand each of the concepts of ‘blue’ and ‘sweater’ individually and then locate the
composition of the whole unit. Clark and Krych (2004) from cognitive sciences demonstrate
how incremental grounding is performed with these compositions and show how recognition
and interpretation of fragments help in this by breaking down instructions into simpler ones.
This localization occurs at word, phrase, and even sentence level in the language modality and
pixel, object, and scene level in the visual modality.

Stage 2: External Knowledge:  After localizing the concept, the next step is to ensure
consistency of the current context of the concept with existing knowledge. Oftentimes, the
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references of grounding either match or contradict the references from our prior knowledge
and external knowledge. This might lead to misunderstandings in the consequent communi-
cation. Hence, in addition to localizing the concept, it is also essential to make the concept and
its attributes consistent with the available knowledge sources. Most of the current research is
focused on localizing with few efforts towards extending it to maintain a consistency of the
grounded concept with other knowledge sources.

Stage 3: Common sense:  After establishing consistency of the concept, a human-like in-
teraction additionally calls for grounding the common sense associated with the concept in
that scenario. In addition to the basic level of practical knowledge that concerns with day to
day scenarios (Sap et al., 2020), the concept should also be reasoned based on that particular
context. This contextual common sense moves the idiosyncratic sense towards a sense of col-
lective understanding. For instance, if the human feels cold and asks the agent to get a blue
coat, the agent needs to understand that the coat, in this instance, is a sweater coat and not a
formal coat. This implicit common sense minimizes the effort in building a common ground re-
ducing articulation of meticulous details. Therefore it is essential to incorporate this explicitly
in our modeling as well.

Stage 4: Personalized consensus:  As a part of the evolving conversations, the references
in the language might evolve as well. The grounded term might have different meanings for the
agent in the context with access to the history as opposed to a fresh agent without access to the
history. This multi-turn process to achieve consensus makes this collective or a shared stage.
In such settings, it is sufficient that the human and the agent are in consensus with the truth
value of the grounded term, which need not be the same as the ground truth. This shift in the
truth value of the grounded terms’ meanings often arises due to developing short-cuts for ease
of communication and personalization. This shift is acceptable as long as the communication
is successful.

Summary: Common ground requires jointly modeling both general and personalized contex-

tual knowledge.

6.1.3 Dimension 3: Constraints of grounding

Communication happens via a mode or a medium in practical scenarios. The number and
availability of such media have increased and facilitated ubiquitous communication around
the world, presenting diversity in the mode of interaction. Motivated by this, we resurface and
adapt the constraints of grounding with respect to media of interaction as defined by Clark
and Brennan (1991). Here are the definitions of these constraints in the context of grounded
language processing and the corresponding categorization of the majority of the representative
domains in grounding satisfying different constraints.

« Copresence: The agent and the human share the same physical environment of the data. Most
of the current research in the category of embodied agents satisfy this constraint.
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« Visibility: The data is visible to the agent and/or the human. The domains of images, images
& speech, videos, embodied agents satisfy this constraint.

» Audibility: The agent and human communicate by speaking about the data. The domains
like speech, spoken image captions, and videos satisfy this constraint.

« Cotemporality: The agent/human receives at roughly the same time as the human/agent pro-
duces. The lag in the domains like conversations or interactive embodied agents is considered
negligible and satisfies this constraint.

» Simultaneity: The agent and the human can send and receive at once and simultaneously.
Most media are cotemporal but do not engage in simultaneous interaction. This often disrupts
the understanding of the current utterance, and the participant may have to repeat it to avoid
misunderstandings, which is commonly observed in real-world scenarios.

« Sequentiality: The turn order of the agent and the human cannot get out of sequence. Face-to-
face conversations usually follow this constraint, but an email thread with active participants
and the comments sections in online portals do not follow a sequence. In such cases, a reply to
the message may be separated by an arbitrary number of irrelevant messages. These categories
are usually understudied but are commonly observed online.

* Reviewability: The agent reviews the common ground to the human to adapt to imperfect
human memories. For instance, we reiterate full references instead of adapting to short cut
references when the conversation resurfaces after a while. This is to develop a personalized
adaptation between the interlocutors based on the media to enable ease of communication.

* Revisability: The interaction between the agent and the human can index to a specific utter-
ance in the conversation sequence and revise it, therefore changing the course of the interac-
tion henceforth. Human errors are only natural in a conversation, and the agent needs to be
ready to rectify the previously grounded understanding.

There has been a good and continual effort in formulating tasks and datasets that satisfy the
constraints of visibility, audibility, and cotemporality. Recent efforts also see an increased
interest in addressing copresence in grounded contexts.

Summary: Key to progress, and largely absent from the literature, is a focus on simultaneity,

sequentiality and revisability.

6.2 Grounding ‘Grounding’

Having covered a more formal definition of grounding adapted to NLP, we turn our attention to
cataloging the precise usage of ‘grounding’ in our research community. We present an analysis
on the various domains and techniques NLP has explored.
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6.2.1 Data and Annotations

To this end, we sub selected all the papers that mention terms for ‘grounding’ from the S20RC
data (Lo et al., 2020). In this way, we grounded the term ‘grounding’ in literature ' to collect
the relevant papers. Each of the papers is annotated with answers to the following questions:
(i) is it introducing a new task? (ii) is it introducing a new dataset? (iii) what is the world scope
(iv) is it working on multiple languages? (v) what are the grounding domains? (vi) what is the
grounding task? (vii) what is the grounding technique?

6.2.2 Domains of grounding

Real-world contexts we interact with are diverse and can be derived from different modalities
such as textual or non-textual, each of which comprises domains. Our categorization of these
is inspired from the constraints of grounding as described in §6.1.3. Based on this, the modality
based categorization includes the following domains:

« Textual modality comprising plain text, entities & events, knowledge bases and knowledge graphs.
« Non-textual modality comprising images, speech, images & speech and videos.

Numerous other domains, including numbers and equations, colors, programs, tables, brain ac-
tivity signals etc., are studied in the context of grounding at a relatively lower scale in com-
parison to the aforementioned ones. Each of these can further be interacted with along the
variation in the coordination dimension of grounding from §6.1.1, that give rise to the follow-
ing settings including conversations, embodied agents and face-to-face interactions.

6.2.3 Approaches to grounding

This section presents a list of approaches tailored to grounding. The obvious solution is to
expand the datasets to promote a research platform. The second is to manipulate different
representations to link and bring them together. Finally, the learning objective can leverage
grounding. The sub-categories within each are presented in Figure 6.3.

1. Expanding datasets / annotations:  The first step towards building an ecosystem for
research in grounding is to curate the necessary datasets, which is accomplished with expen-
sive human efforts, augmenting existing annotations and automatically deriving annotations
with weak supervision.

New datasets: There has been an increase in efforts for curating new datasets with task-
specific annotations. These are briefly overlaid in Table 6.1 along with their modalities, do-
mains, and tasks.

'Please note that this is not an exhaustive list of papers working on grounding as there are several others that
do mention this term and still work on some form of grounding
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scene generation (Chang et al., 2015)
action segmentation (Regneri et al., 2013)
Videos semantic parsing (Ross et al., 2018)
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question answering (Lei et al., 2020a)
content transfer (Prabhumoye et al., 2019)
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2 Text reference resolution (Kennington and Schlangen, 2015)
é symbol grounding (Kameko et al., 2015)
bilingual lexicon extraction (Laws et al., 2010)
POS tagging (Cardenas et al., 2019)
negotiations (Cadilhac et al., 2013)
Text documents (Zhou et al., 2018d)
improvisation (Cho and May, 2020)
Aq_sf ferri . (Haber et al., 2019)
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g Visual emotions and styles (Shuster et al., 2020)
s media interviews (Majumder et al., 2020)
spatial reasoning (Janner et al., 2018)
navigation (Ku et al., 2020)
Other  problem solving (Li and Boyer, 2015)

TABLE 6.1: Pointers to curated datasets introduced to address grounding

Augment annotations: These curated datasets can also be used subsequently to augment
with task-specific annotations instead of collecting the data from scratch, which might be more

expensive.

» Non-textual Modality: Static grounding here includes using adversarial references to ground
visual referring expressions (Akula et al., 2020), language learning (Suglia et al., 2020; Jin et al.,
2020) etc.,
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» Textual Modality: Static grounding includes entity slot filling (Bisk et al., 2016).

» Interactive: Though not fully dynamic grounding, some efforts here are amongst tasks like
understanding spatial expressions (Udagawa et al., 2020), collaborative drawing (Kim et al.,
2019a) etc.,

Weak supervision: While the above two are based on human efforts, we can also perform
weak supervision to use a model trained to derive automatic soft annotations required for the
task.

» Non-Textual Modality: In the visual modality, weak supervision is used in the contexts of
automatic object proposals for different tasks like spoken image captioning (Srinivasan et al.,
2020), visual semantic role labeling (Silberer and Pinkal, 2018), phrase grounding (Chen et al.,
2019d), loose temporal alignments between utterances and a set of events (Koncel-Kedziorski
et al, 2014) etc.,

» Textual Modality: In the contexts of text, Tsai and Roth (2016a) work towards disambiguating
concept mentions appearing in documents and grounding them in multiple KBs, which is a step
towards Stage 3 in §6.1.2. Poon (2013) perform question answering with a single database.

Summary: While augmentation and weak supervision can be leveraged for dimensions of
coordination and purviews, curating new datasets is the need of the hour to explore various

constraints.

2. Manipulating representations: Grounding concepts often involves multiple modalities
or representations that are linked. Three major methods to approach this are detailed here.

Fusion and concatenation: Fusion is a very common technique in scenarios involving mul-
tiple modalities. In scenarios with a single modality, representations are often concatenated.

« Non-textual modality: Fusion is applied with images for tasks like referring expressions (Roy
etal., 2019), SRL (Yang et al., 2016) etc., For videos, some tasks are grounding action descriptions
(Regneri et al., 2013), spatio-temporal QA (Lei et al., 2020a), concept similarity (Kiela and Clark,
2015), mapping events (Fleischman and Roy, 2008) etc.,

» Textual Modality: With text, this is similar to concatenating context (Prabhumoye et al.
(2019) perform content transfer by augmenting context).

« Interactive: In a conversational setting, work is explored in reference resolution (Takmaz
et al., 2020; Haber et al., 2019), generating engaging response (Shuster et al., 2020), document
grounded response generation (Zhou et al., 2018d), etc.,

» Others: Nakano et al. (2003) study face-to-face grounding in instruction giving for agents.

Alignment: An alternative to combining representations is to align them in relation to one
another.

* Non-textual modality: Wang et al. (2020c) perform phrase localization in images and Hessel
et al. (2020) study temporal alignment in videos.
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s Interactive: Han and Schlangen (2017) align GUI actions to sub-utterances in conversations
and Janner et al. (2018) align local neighborhoods to the corresponding verbalizations.

Projecting into a common space: A widely used approach is to also bring the different
representations onto a joint common space.

» Non-textual modality: Projection to a joint semantic space is used in spoken image cap-
tioning (Chrupala et al., 2017; Alishahi et al., 2017; Havard et al., 2019), bicoding for learning
image attributes (Silberer and Lapata, 2014), representation learning of images (Zarrie and
Schlangen, 2017) and speech (Vijayakumar et al., 2017).

» Textual modality: Tsaiand Roth (2016b) demonstrate cross-lingual NER and mention ground-
ing model by activating corresponding language features.Yang et al. (2019¢) perform imputa-
tion of embeddings for rare and unseen words by projecting a graph to the pre-trained embed-
dings space.

Summary: Handling different representations effectively aid improving consistency across

purviews and improve modeling media based constraints dimensions.

3. Learning Objective: Grounding is often performed to support a more defined end-purpose
task. This can be incorporated in the objective as follows.

Multitasking and Joint Modeling: The linking formulation of grounding is often used as an
auxiliary or dependent to model another task.

« Non-textual Modality: Multitasking with images is used to perform spoken image captioning
(Chrupala, 2019) and grammar induction (Zhao and Titov, 2020). Joint modeling was used
in multi-resolution language grounding (Koncel-Kedziorski et al., 2014), identifying referring
expressions Roy et al. (2019), multimodal MT (Zhou et al., 2018f), video parsing (Ross et al.,
2018), learning latent semantic annotations (Qin et al., 2018) etc.,

» Interactive: In a conversational setting, multitasking is used to compute concept similarity
judgements (Silberer and Lapata, 2014), knowledge grounded response generation (Majumder
et al., 2020), grounding language instructions (Hu et al., 2019). Joint modeling is used by Li and
Boyer (2015) to address dialog for complex problem solving in computer programs.

Loss Function: It is essential to utilize appropriate loss designed for the specific grounding
task.

» Non-textual Modality: Grujicic et al. (2020) design soft organ distance loss to model inter
and intra organ interactions. Ilharco et al. (2019) improve diversity in spoken captions with a
masked margin softmax loss.

Adversarial: Leveraging deceptive grounded inputs in an attempt to fool the model is capable
of making it robust to certain errors.

« Non-textual Modality: Chen et al. (2018); Akula et al. (2020) present an algorithm to craft
visually-similar adversarial examples.
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» Textual Modality: Zellers et al. (2018) perform adversarial filtering and construct a de-biased
dataset by iteratively training stylistic classifiers.

Additional information on the categories of the models Here is a brief elaboration of
the datasets presented in Table 6.1.

New datasets: The first solution is to curate the entire dataset with annotations designed for
the task.

* Non-textual Modality: For images, new datasets are curated for a variety of tasks including

caption relevance (Suhr et al., 2019), multimodal MT (Zhou et al., 2018f), soccer commentaries
(Koncel-Kedziorski et al., 2014) semantic role labeling (Silberer and Pinkal, 2018), instruction
following (Han and Schlangen, 2017), navigation (Andreas and Klein, 2014), understanding
physical causality of actions (Gao et al., 2016), understanding topological spatial expressions
(Kelleher et al., 2006), spoken image captioning (Alishahi et al., 2017), entailment (Vu et al.,
2018), image search (Kiros et al.,, 2018), scene generation (Chang et al., 2015), etc., Coming to
videos, datasets have become popular for several tasks like identifying action segments (Reg-
neri et al.,, 2013), sematic parsing (Ross et al., 2018), instruction following from visual demon-
stration (Liu et al., 2016a), spatio-temporal question answering (Lei et al., 2020a), etc.,

» Textual Modality: Within text, there are several datasets for tasks like content transfer
(Prabhumoye et al.,, 2019), commonsense inference (Zellers et al., 2018), reference resolution
(Kennington and Schlangen, 2015), symbol grounding (Kameko et al., 2015), studying linguistic
and non-linguistic contexts in micro-blogs (Doyle and Frank, 2015), bilingual lexicon extraction
(Laws et al., 2010), universal part-of-speech tagging for low resource languages (Cardenas et al.,
2019), entity linking and reference (Nothman et al., 2012) etc.,

+ Other: More static grounding datasets correspond to tasks like identifying phrases repre-
senting variables (Roy et al., 2016), conceptual similarity in olfactory data (Kiela et al., 2015),
identifying colors from descriptions (Monroe et al., 2017), correcting numbers (Spithourakis
et al., 2016) etc.,

» Interactive: Coming to an interactive setting, the datasets span tasks like conversations based
on negotiations (Cadilhac et al., 2013), referring expressions from images (Haber et al., 2019;
Takmaz et al.,, 2020), emotions and styles (Shuster et al., 2020), media interviews (Majumder
et al.,, 2020), documents (Zhou et al., 2018d), improvisation (Cho and May, 2020), problem solv-
ing (Li and Boyer, 2015), spatial reasoning in a simulated environment (Jdnner et al., 2018),
navigation (Ku et al., 2020) etc.,

In addition, there are several other techniques used to ground phenomena in real-world con-
texts.

A common strategy when language is involved is leveraging syntax and parsing. In the
domain of images, Udagawa et al. (2020) design an annotation protocol to capture important
linguistic structures based on predicate-argument structure, modification, and ellipsis to utilize
linguistic structures based on spatial expressions. Becerra-Bonache et al. (2018) study linguis-
tic complexity from a developmental point of view by using syntactic rules to provide data to
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a learner that identifies the underlying language from this data. Shi et al. (2019) use image-
caption pairs to extract constituents from text, based on the assumption that similar spans
should be matched to similar visual objects and these concrete spans form constituents. Kelle-
her et al. (2006) use combinatory categorial grammar (CCG) to build a psycholinguistic-based
model to predict absolute proximity ratings to identify spatial proximity between objects in a
natural scene. Ross et al. (2018) employ CCG-based parsing to a fixed set of unary and binary
derivation rules to generate semantic parses for videos.

» Textual Modality: Johnson et al. (2012) study the modeling the task of inferring the referred
objects using social cues and grammatical reduction strategies in language acquisition. Eckle-
Kohler (2016) attempt to understand the meaning in syntax by a multi-perspective semantic
characterization of the inferred classes in multiple lexicons. Chen (2012) develop a context-
free grammar to understand formal navigation instructions that correspond better with words
or phrases in natural language. Borschinger et al. (2011) study the probabilistic context-free
grammar learning task using the inside-out algorithm in-game commentaries. CCG parsers
are also used to perform the entity slot filling task (Bisk et al., 2016). When applied to question
answering over a database, dependency rules are used to model the edge states, as well as
transitions such as the work done by using a treeHMM (Poon, 2013).

 Other: Roy et al. (2016) perform equation parsing that identifies noun phrases in a given
sentence representing variables using high precision mathematical lexicon to generate the cor-
rect relations in the equations. Parikh et al. (2015) perform prototype-driven learning to learn
a semantic parser in tables of nested events and unannotated text.

« Interactive: Luong et al. (2013) use parsing and grammar induction to produce a parser
capable of representing full discourses and dialogs. Steels (2004) study games and embodied
agents by modeling a constructivist approach based on invention, abduction, and induction to
language development.

Another frequently used technique when language is involved is by leveraging the principle of
compositionality. This implies that the meanings of its constituents determine the meaning
of a complex expression and how they interact with one another.

» Non-textual Modality: In the domain of images, Suhr et al. (2019) present a new dataset to
understand challenges in language grounding, including compositionality, semantic diversity,
and visual reasoning. Shi et al. (2019), discussed earlier, also use grammar rules to compose
the inputs. Koncel-Kedziorski et al. (2014) leverage the compositional nature of language to
understand professional soccer commentaries. In the domain of videos, Nayak and Mukerjee
(2012) study language acquisition by segmenting the world to obtain a meaning space and
combining them to get a linguistic pattern.

« Textual Modality: With ontologies, Pappas et al. (2020) perform adaptive language mod-
eling to other domains to get a fully compositional output embedding layer which is further
grounded in information from a structured lexicon.

» Interactive: Roy et al. (2003) work on grounding word meanings for robots by composing
perceptual, procedural, and affordance representations.
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Hierarchical modeling is also applied to show effect of introducing phone, syllable, or word
boundaries in spoken captions (Havard et al., 2020) and with a compact bilinear pooling in
visual question answering (Fukui et al., 2016).

There is some work that presents a bayesian probabilistic formulation to learn referential
grounding in dialog (Liu et al., 2014), user preferences (Cadilhac et al., 2013), color descrip-
tions (McMahan and Stone, 2015; Andreas and Klein, 2014).

A huge chunk of work also focuses on leveraging attention mechanism for grounding multi-
modal phenomenon in images (Srinivasan et al., 2020; Chu et al., 2018; Huang et al., 2019b; Fan
et al., 2019¢; Vu et al., 2018; Kawakami et al., 2019), videos (Lei et al., 2020a; Chen et al., 2019d)
and navigation of embodied agents (Yang et al., 2020), etc.,

Some approach this using data structures such as graphs in the domains of grounding images
(Chang et al., 2015; Liu et al., 2014), videos (Liu et al., 2016a), text (Laws et al., 2010; Chen, 2012;
Massé et al., 2008), entities (Zhou et al., 2018a), knowledge graphs and ontologies (Jauhar et al.,
2015; Zhang et al., 2020a) and interactive settings (Jauhar et al., 2015; Xu et al., 2020).

This is not an exhaustive study of all the techniques that present grounding, but are some of the
representative categories. Here are more studies that perform grounding with various tech-
niques such as clustering (Shutova et al., 2015; Cardenas et al., 2019) regularization (Shrestha
et al., 2020), CRFs (Gao et al., 2016), classification (Pangburn et al., 2003; Monroe et al., 2017),
linguistic theories (Strube and Hahn, 1999), iterative refinement (Li et al., 2019c), language
modeling (Spithourakis et al., 2016; Cho and May, 2020), nearest neighbors (Kiela et al., 2015),
mutual information (Oates, 2003), cycle consistency (Zhong et al., 2020b) etc.,

Summary: Manipulating the learning objective is a modeling capability aiding as an ad-
ditional component in bringing grounding adjunct to several other end tasks across all the

dimensions.

6.3 Analysis of trends

Based on the different datasets and categories of approaches from the §6.2.3, we study the
trends of different phenomena. Figure 6.4 presents the trends in the development of grounding
over the past decade including specific approaches (a,b), world scopes (Bisk et al., 2020) (c), and
inclusivity of multiple languages (d). We also present hierarchical pie charts in Figure 6.5 to
analyze the compositions of modalities and domains for these approaches.

Trends in datasets expansion: The introduction of new datasets has seen a rapid increase
over the years, while there is also a subtle increasing trend in augmenting annotations to the
existing datasets, as observed in Figure 6.4 (a). As we can see from Figure 6.5 (a), across all
the domains, gathering new datasets seems to be prominent than augmenting them with addi-
tional annotations to repurpose the data for a new task. There seems to be a higher emphasis
on the expansion of datasets in the non-textual modalities, particularly in the domain of im-
ages. A similar rise is not observed in interactive settings, including conversational data and
interaction with embodied agents; which is the propitious way to bridge the gap towards a real
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FIGURE 6.4: Analysis on the trends in grounding

sense of grounding. It is indeed encouraging to see an increasing trend in the efforts for ex-
panding datasets, but the need of the hour is to redirect some of these resources to address dynamic
grounding in the coordination dimension, which is scarcely studied in existing datasets.

Trends in manipulating representations: From Figure 6.4 (b), we note that the fusion
technique has and is becoming increasingly popular in grounding through manipulating rep-
resentations in comparison to alignment and projection. This is also observed in Figure 6.5
(b) with the dominance of non-textual modality. In the context of textual modality, this tech-
nique is equivalent to concatenation of the context or history in a conversation. Projecting
onto a common space is the next popular technique in comparison to alignment. Similarly,
we observe that the non-textual modality overwhelmingly occupies the space of manipulating
representations with exceeding prominence of fusion. Fusion and projecting onto common space
currently are exceedingly used methodologies to ground within a single purview. They demonstrate
a promising direction to manipulate representations across different stages to maintain consistency
along the purviews.

Trends in World Scopes: We also study the development of the field based on the definitions
of the world scopes presented by Bisk et al. (2020). Based on this, the last decade has seen an
increasing dominance in research on world scope 3 (world of sights and sounds). However, this
is limited to this scope, and the same trend is not clear in world scope 4 (world of embodiment
and action). An encouraging observation is the focus of the field in world scope 5 (social world)
which is closer to real interactions in the last year. We need to accelerate the development of
datasets and tasks in world scopes 4 and 5. 1t is highly recommended to take the dynamic grounding
scenario into account in the efforts for curating datasets in these scopes.

Inclusivity of multiple languages: As observed in Figure 6.4 (c), research in the tasks of
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grounding in multiple languages is still catastrophically shorthanded. The norm for bench-
marking large-scale tasks still remains anglo-centric, and we need serious efforts to drive this
trend to identify challenges in grounding across languages. As a first step, a relatively less ex-
pensive way to navigate this dearth is to augment the annotations of existing datasets with other
languages.

6.4 Path Ahead: Towards New Tasks and Repurposing Existing
Datasets

We presented the dimensions of grounding that require serious attention to bridge the gap
between the definitions in cognitive sciences and language processing communities in §6.1.
Based on this, we analyzed the language processing research to understand where we stand
and where we fall short with the ongoing efforts in trends in grounding in §6.2. While we
strongly advocate for efforts in building new datasets and tasks considering progress along
these dimensions, we believe in a smoother transition towards this goal. Hence we present
strategies to repurpose existing resources to maximum utility as we stride towards achieving
grounding in the real sense. In this section, we focus on concrete suggestions to improve along
each of the dimensions.

Coordination: This is based on simulating interaction towards dynamic grounding using an
iterative paradigm. Since establishing common ground is not integrated within the datasets, we
propose an iterative paradigm that explicitly performs grounding on a common ground based
on our priors. This iterative paradigm can be related to work by Shwartz et al. (2020b) that
generates clarification questions and answers to incorporate in the task of question answering.
This loop of semi-automatic generation of clarifications establishes common ground. de Vries
et al. (2017); Suglia et al. (2020) also disambiguate or clarify the referenced object through a
series of questions in a guessing game. This is also in spirit similar to generating an explanation
or a hypothesis for question answering (Latcinnik and Berant, 2020). The process of generating

an acceptable explanation to human before acts as establishing a common ground. The need
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of the hour that can revolutionize this paradigm is the development of evaluation strategies to
monitor the evolution of the common ground.

Purviews: This is based on establishing consistency across stages of grounding with an in-
cremental paradigm. A simple solution is a modular approach where the purviews flow into
the next stage after reasonably satisfying the previous stage. The popular benchmarking ap-
proaches today categorize the datasets and tasks that are similar with respect to their inputs
or the outputs. This inhibits the stage-wise building to extend into different purviews. We ad-
vocate for an orthogonal approach to this benchmarking with a pipeline model where the output
distributions of different tasks are not the same but plug into one another linearly, motivated by
the purviews. The limitation of this is that the applicability of this approach is limited by the
availability of the datasets in all the purviews of that domain.

Constraints: With media-imposed constraints, there is a need for a paradigm shift in the
way these datasets are curated. The optimal way to navigate this problem is curating new
datasets to specifically focusing on the less studied constraints of simultaneity, sequentiality, and
revisability.

Augment with multilingual annotations: Different languages also bring novel challenges
to each of these issues (e.g. pronoun drop dialogue in Japanese, morphological alignments,
etc.). However, as observed in §6.3, the increase in expanding datasets is not proportionally
reflected to include multiple languages. We recommend a relatively less expensive process of
translating the datasets for grounding into other languages to kick start this inclusion. The
research community has already seen such efforts in image captioning with human-annotated
German captions in Multi30k (Elliott et al., 2016) extended from Flick30k (Plummer et al., 2015b)
and Japanese captions in STAIR Captions (Yoshikawa et al., 2017) based on MS-COCO images
(Lin et al., 2014). Instead of using human annotations, some efforts have also been made to use
automatic translations such as the work by Thapliyal and Soricut (2020) extending from Sharma
et al. (2018). Not just augmentation, but there are also ongoing efforts in gathering datasets in
multiple languages (Ku et al., 2020) extending the work from Anderson et al. (2018b).

As we are ripening research with a cultivated definition of grounding, we implore the commu-
nity to invest resources wisely towards achieving a practically applicable sense of ‘grounding’.
More specifically, we discuss the missing pieces and dimensions that bridge the gap between
the definitions of grounding in Cognitive Sciences and NLP communities. Thereby, we chart
out executable actions in steering existing resources to bridge this gap along these dimensions.
We also recommend systematic evaluation of grounding along these dimensions in addition to
the existing linking capabilities.



Known Unknowns

There are known knowns. These are
things we know that we know. There are
known unknowns. That is to say, there
are things that we know we don’t know.
But there are also unknown unknowns.
There are things we don’t know we
don’t know.

Donald Rumsfeld

I begin this chapter with a summary of the main contributions of this thesis. Assimilating
the learnings from this work, I will venture into prospective future directions with the known
context (based on findings from my thesis work), known background (related work for this
context), the main research question, and potentially (un)known steps to answer this question.
Finally, I discuss the broader impact on other directions or fields of study along with ethical
considerations and cautionary measures to use this work.

7.1 Summary of Contributions

Anthropomorphic narrative generation in natural language in the form of stories, procedures,
etc., has been a long-standing dream of artificial intelligence. Working towards this goal brings
forth the need to adhere to the innate human characteristics of narratives. This includes con-
tent (relevance), structure (coherence) and surface form realization (expression). In this thesis,
I introduce anchoring to these properties with local and global objectives. Anchoring these
narrative properties is maneuvered not only by task-specific requirements but also by the
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availability of annotated data. Moreover, steep acceleration in brewing new content every
day both surmounts and impedes the need for extensive annotations. This calls for a spec-
trum of anchoring between supervised and unsupervised, ranging from token-level to sparse
narrative-level annotations. The main contribution of this thesis is a novel two-dimensional
taxonomy of anchoring these three properties by locally and globally conditioned training ob-
jectives. This framework taps into techniques for anchoring to improve narrative generation,
which is detailed in Chapter 2 of Part 1. Following this, I discussed task agnostic techniques for
text generation, delving into the learning algorithms, decoding strategies and evaluation meth-
ods. Then, bringing text generation and anchoring together, I detailed various methodologies
to anchor different desiderata of task-specific requirements in the aforementioned text gen-
eration techniques followed by presenting categories of these methods to anchor multimodal
narratives.

Consequently, I discussed anchoring each narrative property in the three chapters in Part 2. To
begin with, the first property of effective narratives is the quality of being closely connected,
appropriate and informative, thereby contributing to the content or relevance. I investigated
methods to improve content in Chapter 3. Here, I first presented a dual staged method with
constrained cross attention on weakly supervised anchors (derived as content units) to denoise
web-scale vision and language data. These anchors also demonstrated cross-lingual transfer-
ability across five languages. In addition to empirical improvements in human evaluations,
I also evaluated the quantification of these improvements from visually informative captions
via cross-modal discourse coherence. I also qualitatively demonstrated their ability to generate
controllable captions along with their ability to provide for human-interpretable intermediate
representations to perform human-in-the-loop corrections. Introducing these content words
is not a sufficient parameter to improve coherence; referring to them henceforth is also crucial.
Following this, I presented a hierarchical glocal attention model to learn to introduce entities
and refer to them in visual stories. In addition to evaluating automatic generation-based eval-
uation metrics, I also studied them with the percentage of nouns and pronouns generated in
the narratives. In both the above cases, we used weakly supervised labels to inform anchors
for the generation model. However, in the absence of explicit anchors, deriving missing con-
texts implicitly via infilling is a simple yet effective technique, especially with high overlapping
contexts. I demonstrated the utility of this in training and inference to generate a context for
missing images.

The second property of effective narratives is the quality of being logical and consistent fol-
lowing a structure. 1 discussed this in detail in Chapter 4 where I demonstrate gains from
anchoring to a structural layout by scaffolding structure representation from unannotated tex-
tual recipes. These structural representations are learnt in a hard form in an unsupervised
fashion from a sequence of clusters. I also demonstrated using a finite state machine to rep-
resent the state transitions in hard and soft forms. Finally, I presented models to use these
derived representations in the decoder along with a hierarchical multitasking objective to vi-
sual recipes. In addition to anchoring structure locally, this can also be done at the narrative
level by reordering the sentences presented for summarization. Unlike content, structure is a
more abstract property, and competently representing structure across multiple domains like
procedural texts, persuasive texts, etc., remains an open challenge.
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The third property of effective narratives comes from the choice of surface tokens derived
from underlying representation contributing to the expression of the text. I presented ways
to do this in terms of persona and multilinguality in Chapter 5. First, when anchoring to the
persona, I derived personality characterization clusters from weak supervision. I utilized them
to update the generation model for visual stories with early and late fusion techniques. Second,
for anchoring the language choice of tokens in code-switching, I used lexical level language ids
to improve generation in multiple tasks. Starting with language modeling, I show the efficacy
of using language id anchor units in encoding, decoding, and autoencoding. I also extend this
idea to improve the speech synthesis of navigational instructions. Instead of using local, i.e.,
lexical level anchors, I worked on improving unsupervised text generation with a dual-stage
adversarial method. The continuous softmax representation of the individual sentences is used
as global sentence level anchors for the discriminator. For automatic evaluation, I compared
the trends for multilingual index, language entropy, integration index, and burstiness. Finally, I
showed results on a grouped evaluation form for human evaluations, where preference testing
is carried out over groups of sentences to arrive at an average preference.

Finally, in Part 3, I presented the missing dimensions of grounding in NLP as contrasted with
cognitive sciences paving the way to the future directions. Specifically, this chapter challenges
the current operation of ‘grounding’ in NLP under the assumption that it is any kind of linking
of text to data or non-textual modality. First, to bridge the gap with cognitive sciences, I dis-
cussed where we fall short in coordination by contrasting static and dynamic grounding with
prospective methods to address them using human-in-the-loop and iterative refinement. Sec-
ond, I revisited the current paradigm of lateral benchmarking to expand purviews using longi-
tudinal benchmarking. Finally, I discussed media-imposed constraints that manifest grounding
in different modalities and cues.

Learning from the findings of this work, I present some potential future directions in the next
section that can be worked on as a consequence of some of the informed knowns.

7.2 Future Directions

Short-term:
Unpaired Visual Cross-lingual Generation:

Known Context: An often demanding expectation that promises improved performances
is the availability of vast amounts of paired data. However, this is a vexatious assumption,
particularly in scenarios where we scale across languages and domains and extend this to
narratives.

Known Background: Prior work explored unsupervised image captioning (Feng et al., 2019),
where the images and captions are projected onto a common space and are used to reconstruct
each other to ensure semantically consistent texts with the image using bi-modal reconstruc-
tion. Similarly, Gu et al. (2018c) address this by learning a model in a pivot language and then
translating it to the target language.



Known Unknowns 178

Research Question: Can anchors be leveraged as condensed information units for pivoting
into different unpaired languages or domains?

Unknown: Chapter 3 discusses selective cross-attention on the anchors for improving image
captions. We conducted initial experiments for unpaired captions with anchors as intermediate
representations. The anchors derived from the noisy captions drop the CIDEr scores by only
8 points when image information is completely absent. Unpaired captioning (where paired
data often is present in one or none of the domains or languages) is an important yet relatively
under-explored problem with valuable applications. Obtaining visually informative anchors or
information units, as studied in this chapter, has the potential to scale this to multiple languages
(Thapliyal and Soricut, 2020), domains (Yang et al., 2019a) and styles (Gan et al., 2017). First, for
the case of various languages, we have examined the convenience, practicality and efficacy of
anchors for cross-lingual transferability to generate image descriptions. Second, for domains,
biomedical image captioning caters specifically to assist physicians in diagnosing the condition
of a patient. Shin et al. (2016) have used predicting MESH terms as intermediate anchors to
generate captions for chest X-Rays. Here, predicting one of the granular 57 classes additionally
as anchor units helped improve the captions. This tag and generate approach is the key feature
to maintain factuality. However, paired data with various medical ontologies are not only
unavaialable but also very expensive to create both with respect to money and the availability
of domain experts. Unpaired captioning techniques have immense utility here. Additionally,
utilizing anchors from typologically similar languages for cross-lingual generation and a notion
of close domains for cross-domain generation is worthwhile to explore.

Identifying these anchors from a large yet noisy dataset can also assist in novel object cap-
tioning (Agrawal et al., 2019) and thereby novel narratives. I conducted initial experiments on
end-to-end modeling of the dual staged generation combining the anchor prediction and text
generation. In principle, the motivation is similar to SkeDecoding. The main advantages that
this has to offer are two-fold. First, it nearly halves the inference time of the generation model
with no additional separate step of anchor prediction. Second, the anchor prediction receives
more involved feedback from the loss of the decoder for generation.

Dynamic Grounding:

Known Context: In Chapter 6, I discuss the relatively less studied dimensions of grounding
that sees beyond the simple linking of the non-textual modality or data to the tokens. I made
initial efforts to improve a couple of these dimensions.

Known Background: Recent advancements in embodied Al also focus on clarifications and
disambiguations in conversations. Multiple rounds in conversations enable both incremental
building of grounding contexts and appropriate course corrections when necessary. Most ear-
lier work primarily focused on static instructions (Shridhar et al., 2020), memory augmented
neural model to enable hierarchical decision making (Nguyen and Daumé III, 2019), providing
clarifications (Chi et al., 2020) and ambiguity resolution (Thomason et al., 2019; Kottur et al,,
2021a). Recently, Ido Dagan’s keynote talk at EMNLP 2021 also emphasizes on the practical
utility of transforming NLP tasks such as summarization, sentiment analysis etc., to interactive
or dynamic settings.
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Unknown - Dynamic Grounding: The premise in this thesis is the assumed truth value of
the anchors and conditioning the generation on these anchors. However, a key component
of real interactions is the collaborative and incremental building of the common ground for
the anchors. Asking clarification questions and providing additional clarifying responses is a
central tenet to achieve this. In our ongoing efforts, we are building an interactive multimodal
dataset with AI2Thor (Kolve et al., 2017) for task-oriented dialogs by explicitly modeling scenes
that have confusable objects attributed by various properties. Our work here aims at this posit:
common ground is achieved via interactive clarifications. We focus on the task of grounded and
situated skill learning.

There are existing works in conversational Al on static images or room-to-room navigation
tasks. While assisting someone in getting from point A to B is an essential building block
of our work as well, we also focus on the missing gaps that include realism and linguistic
complexity with object interactions, long-horizon plans, or compositional instructions. Some
contrast with the existing work is detailed here:

« CHAI (Misra et al., 2018): ‘interact’ is the main action available here. In contrast, we will

have multiple and more complex set of actions and action sequences.

« VirtualHome (Puig et al., 2018): It has a third-person view. There is no clarification-
based interaction. In contrast, our goal is to interact with the simulation with the intent
of deriving clarifications.

« ALFRED (Shridhar et al., 2020): It has static videos. We have interactions with correc-
tions to the current path of establishing a goal in a common ground. The similarities
between them are that they are goal conditioned, i.e., task-oriented.

+ R2R (Anderson et al.,, 2018b): This mainly focuses on navigation only. In contrast, we
will have high-level actions sometimes without step-by-step instructions.

« Embodied QA (Das et al., 2018): This has template-based language for questions. In con-
trast, we have more natural questions (accompanied by some natural noise that human
articulations include).

« SIMMC 2.0 (Kottur et al., 2021b): It has one of the tasks focusing on ambiguities in shop-
ping scenarios in static environments. In contrast, we have diverse day to day actions in
interactive virtual environments.

In this work, our main focus is on generating clarifying questions and resolving ambiguities.
In the language end of learning, we aim to achieve realizations of a diverse set of instructions
to achieve a common ground through coordination. In the visual end of learning, we aim to
establish this common ground through correlations between visual and language representa-
tions.

There is also a growing interest in this direction owing to the practical utility and the next-
generation capabilities of embodied virtual agents. Very recently, Padmakumar et al. (2021)
not only introduced a dataset studying ambiguity resolution and recovery of mistakes that
includes embodied conversations interleaved with actions in the environment but also provide
a platform for the community to contribute towards this open goal.
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The factors contributing to these clarifications arise from contextual awareness, including oc-
cupancy, relative and absolute proximity, attributes like color and geometry described in the
forms of adjectival references, spatial references (absolute, relative, landmark-based), and com-
binations of the above phenomena. The language phenomena towards clarifications include
explicit questions, implicit questions (repeating the utterance), choice from multiple options,
etc., Extending the anchors from static environments to these dynamic environments requires
compositional and iteratively building these anchors.

Unknown - Longitudinal Benchmarking (discussed in Chapter 6): The lateral paradigm
of benchmarking made remarkable strides in encouraging model generalization. However,
translating to practical use cases is often challenging due to the limitations in purviews or scope
for each task. As part of the GEM effort (Gehrmann et al., 2021) for 2022, we are planning to
gather a new multi-purpose dataset that caters to multiple problems like document grounded
generation, multi-sentence generation, etc., in addition to being multilingual.

Medium-term:
Interpretable Evaluation:

Known Context: Automatic evaluation metrics for generation are often unreliable (Celiky-
ilmaz et al., 2020) and are still being heavily studied. On the other hand, human evaluations
are non-standardized hindering their reproducibility due to the subjective nature in human
preferences (Howcroft et al., 2020) and are very expensive and time-consuming .

Known Background: The similarity between generated and gold-standard texts are often
computed with n-gram overlap metrics (Papineni et al., 2002b; Banerjee and Lavie, 2005b),
content-based overlap metrics (Nenkova et al., 2007) and diversity-based metrics (Zhu et al.,
2018). These methods are further crippled by artifacts from translationese (Freitag et al., 2020)
that are alleviated using diverse paraphrases.

Research Question: Can anchors be used to potentially improve the evaluation paradigm of
generation?

Unknown: Evaluating discrete labels is a relatively reliable method as compared to evalu-
ating sequences of texts using the aforementioned methods. Based on this premise, there are
two ways that anchors can be used for evaluation. First, these anchor units can be reliably
extracted from inputs and evaluated similar to multi-label classification like precision, recall,
f-score. Please note that the limitation to this method is that we need to have prior knowl-
edge of the what makes up for suitable anchor tokens that forms the label space. This helps in
evaluating the quality of the predicted anchors. The second is evaluating the anchors from the
generated output texts. This is motivated by evaluating the consistency and factuality of the
generated texts. Factual consistency in evaluating summarization has been studied by answer-
ing the questions from generated summaries based on precision (Scialom et al., 2019), extending
it to precision and recall (Scialom et al., 2021). Wang et al. (2020b) evaluate the consistency by
building a QA model to answer questions on the source document and the summary. While
these are very sophisticated methods, they heavily rely on the generated questions and the
backbone QA model. In contrast, the anchor units present a potential for oversimplified repre-
sentation of the content in the source documents and summary that can be evaluated without
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the dependency of an external NLU model to answer questions. Evaluating the anchors also
presents adaptable ways to measure the task-specific desiderata. For example, in Chapter 3, I
measure the percentage of nouns and pronouns in the generated visual stories. It is in similar
lines of motivation with Lite?'® Pyramid (Zhang and Bansal, 2021) which attempts to predict
the semantic content units from semantic triplet units. This is done by predicting simulation
easiness using XGBoost. It maintains the advantages of retaining expensive semantic content
units while balancing with the automatically extracted semantic triplet units for the low-scored
half of the sentences. Both the features used by the regressor and the semantic triplet units
based on SRL are interpretable. This work is very close to the motivation of our proposal to
evaluate generation by the anchor units’ ability to ground text.

Beyond Factual Prompting - Structure and Multimodality:

Known context: Understanding and representing the narrative property of structure i.e.,
coherence is very challenging. In Chapter 4, I used a hard and soft representation of transitions
between clusters on unsupervised data as a form of structural representation, where the soft
representation demonstrated better performance.

Known Background: Recently, language models are being explored to learn content or factual
knowledge in the form of answering factoid questions (Radford et al., 2019), common sense
questions (Sap et al., 2019), predict relations between entities (Petroni et al., 2019; Wang et al.,
2021a). The discrete language prompts are generated based on pattern matching, dependency
or based on paraphrases, ensembling prompts (Liu et al., 2021; Jiang et al., 2020b).

Research Question: Can LMs be used as a tool to prompt for structure and multimodal
information?

Unknown: Prompting transforms NLP tasks and poses them as fill-in-the-blanks or complete
the sentence kinds of problems. It is a very handy and effective way to understand what the
pre-trained models have learnt. Using appropriate prompts like TLDR; enables summarization
of long texts (Raffel et al., 2020) and language ids enables machine translation (Liu et al., 2020).
It offers several advantages without loading the model with any additional parameters. Iden-
tifying the right prompts can solve more than one task, and it directly uses the outputs of the
model devoid of any internal correlated representations. Most of the very recent prior work
explored what and when the language models know this information (Jiang et al., 2020b,a). In
addition to these facts, language models are also very coherent and logical. As the next step,
I believe that exploring prompting to improve structural coherence is worthwhile. Shin et al.
(2020) have created prompts automatically via gradient-based search techniques proposing Au-
toprompt. The gradient-based methods iteratively replace the highest-ranked token after the
dot product with the gradient for the initial trigger. However, as we have seen in Chapter 4, a
soft representation of structure performed better over a discrete hard representation. For this
reason, as future work, I plan to explore continuous prompts to maintain logical consistency in
long-form texts. Continuous prompts were used earlier in the contexts of prefix tuning (Li and
Liang, 2021) in the form continuous embeddings. However, the downside of these prompts is
that they are not interpretable. Besides, venturing into this recent field of study for prompting
remains nascent in multimodal domains. Combining generation and classification capabilities,
UNIMO (Li et al., 2021), VLP (Zhou et al., 2020a), OSCAR (Li et al., 2020b), VinVL (Zhang et al.,
2021) etc., apply cross-modal modeling techniques with combinations of contrastive loss and
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seq2seq objectives. In most of these techniques, object tags are used as anchor points (Li et al.,
2020b) to improve learning alignments. Hence future work can use discrete or continuous
prompts to probe the multimodal information in these large pretrained models.

Controllable Generation:

Known context: Training on the massive amounts of free text available online does not
directly give us an explicit control to adjust attributes like style, sentiment, content, etc.,

Known Background: Adjusting the log-likelihood scores of the language model to enable
better control has been explored by augmenting an additional reranking score with topic em-
beddings and distributional constraints (Baheti et al., 2018) and likelihood-free importance
weighting (Grover et al., 2019).

Research Question: How to use anchors efficiently to control generation?

Unknown - Deriving Control Anchors: The missing piece from this thesis to arrive at full-
fledged controllability. There are two ways to extend the utility of anchors to achieve this. The
first is the automatic derivation of multiple relevant versions of each anchor unit. In Chapter
3, I discuss the methods for controlling generation with appropriate anchors. However, these
anchors are constructed manually to explore the effectiveness of the anchors to control mul-
timodal generation and evaluate anchor conditioned generation. Due to the selective text-as-
side cross-attention mechanism, there is an increased influence of the anchors in the generated
text. For the very same reason, an irrelevant anchor adversely affects the generated text (Figure
3.6). Automatically deriving both relevant and diverse anchors still remains an open challenge.
Combining derived anchors with controllable generation techniques contributes towards the
creative generation of text from multimodal inputs similar to the experiments in §3.2.3.4.

Unknown - Decoupling content and surface forms: The content words that the afore-
mentioned anchors resonate in guiding texts resonate with the stylistic attributes. Chapter
5 explores techniques to induce persona or style-specific surface form realizations in visual
stories. However, decoupling the content from stylistic attributes of the language remains an
open challenge in NLP as they both go hand in hand on some level. The surface form of the
words does not simply carry the style and is not devoid of the content.

Long-term:
Low Resource Multimodal NLP:

Known Context: With the recent successes of large pre-trained models and courtesy to the
available resources online, they have gradually perforated to large multilingual pre-trained
models. However, the same momentum is not picked up in multimodal multilingual models,
leading to gap in low resource multimodal NLP.

Known Background: The proliferation of multimodal efforts to several other languages has
two paths. The first option is by gathering new relevant datasets, and the second option is
by using independent non-parallel multimodal and multilingual datasets. Coming to the first,
Huang et al. (2021) gathered Multi-HowTo100M, which is a multilingual instructional video
dataset and present intra-modal and inter-modal contrastive objectives along with visual piv-
ots. However, the scantiness of labeled data for both multilingual and multimodal poses a



Known Unknowns 183

problem to advance research leading to the second option above. Coming to the rescue, there
are resources independently for both these streams. Recent efforts have also tried to combine
traditional unimodal multilingual masked language modeling along with multimodal masked
language modeling, and masked region modeling (Ni et al., 2021). This study reveals that train-
ing with five languages is better than 50 languages due to inaccuracies in translated data. The
translation artifacts and the visual pivots mentioned in both these streams above can be mod-
eled in the form of anchors and techniques from unpaired captioning can be used. However,
on a seemingly unrelated but heavily related note, Caswell et al. (2021) audit the quality of the
enormous web-mined multilingual corpora used to train these models. It is astounding to see
that about 83 corpora are mislabeled or use ambiguous language codes. Hence, a careful choice
of the multilingual resources, especially for low-resource languages is imperative to keep in
mind for practically reliable contributions.

Research Question: How to efficiently use non-parallel independent multimodal and multi-
lingual resources to improve multimodal NLP?

Unknown: As Caswell et al. (2021) have studied, a macro-average of language noise demon-
strates the liability per language. Per sentence level, the inferior quality of sentences, partic-
ularly for low-resource languages, goes unnoticed. In principle, several research studies have
demonstrated that utilizing more than one modality improves downstream tasks like machine
translation (Yao and Wan, 2020). In contrast, it is also very challenging to apply this practically
where including multimodal information reduced BLEU and METEOR scores for German and
French captions (Barrault et al., 2018). However, improvements are shown with visual contexts
for challenging language pairs like English-Czech with distinctive word order and morphology.
Follow-up studies have also demonstrated the granularity of masking as a means to corrupt
the input text to improve robustness and enable the model to rely heavily on the visual con-
texts. Utilizing bilingual dictionaries as anchors, potential future work can focus on improving
the translation in low-resourced languages using hierarchical decoding techniques discussed
in Chapter 2. Firstly, Identifying these keywords as anchors enables iterative refinement of the
final narration better with keyword contexts. Secondly, exploring multimodal data collection
in low resource languages with coverage of semantic buckets based inter-modal phenomena.
For instance, Arun et al. (2020) present a tree structure meaning representation (Balakrish-
nan et al., 2019) to use limited data by grouping semantically similar data points into coarse,
medium, and fine-grained buckets. The reason behind this is the coverage of meaning repre-
sentation along with dynamic data augmentation, therefore, percolating similarly motivated
ideas for multimodal NLP is constructive.

When are hallucinations good?

Known Context: Hallucinations are unreal experiences that appear real but are only created
within the remnants of the mind (or the model). Oftentimes, modeling approaches curb or
rectify the model from hallucinations for legitimate reasons. In Chapter 3, we discussed how
anchoring encourages the model to generate visually informative image captions devoid of
these hallucinations. Specifically, §3.2.3.3 presented an analysis on the ability of anchors to
increase visible captions in comparison to meta and story-like captions. However, is regulating
hallucination the modus operandi?
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Known Background: The expectation of a model to abide by the enforced prescriptions
within the limits of the data to ensure loyalty and fidelity in predictions is justifiable. While
this is utmost useful, hallucinations are not always harmful. Several ongoing research ef-
forts legitimately attempt to reduce hallucinations (Rohrbach et al., 2018; Zhou et al., 2020b) as
this is considered an undesired model behavior. The primary motivation behind discouraging
hallucinated words is to reduce the effects of co-occurring words. Sun et al. (2022) explore
explanations for hallucinated words and attempt to minimize hallucinations arising from cor-
relations.

Research Question: In what scenarios are hallucinations beneficial, and how to model these
admissible hallucinations?

Unknown: The mark of an educated person is the ability to make a reasoned guess based on
insufficient information. Let us break this down into the two comprising components. The
first is insufficient information that motivates the necessity for hallucination. Real-world se-
quential data does not often co-occur with paired textual descriptions. Replacing the missing
data with substituted values for an entire component is known as item imputation in statis-
tics. Similarly, in Chapter 3, I discussed imputation during the inference stage for generating
a textual description for missing visual contexts. The insufficiency of information or missing
information in the input encourages the model to learn correlations among the interacting ob-
jects to generate invisible context. The ability to hallucinate this information is desirable in
such contexts.

Most of the vision and language tasks in the research world focus on aligning the information
across modalities via image captioning, visual question answering, visual dialog, multimodal
translation, etc. While understanding the relevant conjoint information is indispensable, we
are overlooking the importance of understanding the relevant disjoint information. In most
practical scenarios, we discuss complementary information ‘about’ what we see rather than
describing the exact information of what ‘exactly’ we see. In an invited talk by Dr. Jason
Baldridge on ‘If Bears were Bees and Cats were Researchers’, at the ALVR workshop ', he
asserts that images and text, when combined, deliver completely different contextualized nar-
ratives. He presents this key point on the language associated with an image in comics provides
new additional information but not repetitive information. Iyyer et al. (2017) also previously
collected a dataset of comics and performed analysis to support how neither text nor image can
independently convey the story in a comic book but rather contain complementary informa-
tion. In other words, reasonably hallucinating connective inferences across multiple plot units
are required to better leverage the narrative’s context. The second component is making an ed-
ucated guess. Utilizing common-sense to derive occluded contexts in images is, in fact desirable
in some cases (for instance, in a caption ‘a woman sitting on a bench in a park’, mentioning
the bench despite the bench not being visible demonstrates necessary deduction skills). Hou
et al. (2020) jointly model common-sense and relation reasoning to predict visibly unaware
or occluded concepts from knowledge graphs. Reasoning behind or generating rationales for
the interactions between participants in a visual context is crucial step to interpret the visibly
unavailable context (Zellers et al., 2019; Yin et al., 2021) This also improves describing the con-
textual relationships between the objects and events in the media. Hence, extrapolating the

'https://alvr-workshop.github.io/
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world beyond visible pixels can merge this hallucinated yet necessary context for higher-order
cognition.

7.3 Broader Impact

(1) Specialized Domains:
Space Technology:

We have heard or used the phrase ‘this stuff is not rocket science’ several times. Well, then
can NLP contribute towards this perceivable complex rocket science or space exploration? Al
venturing into assisting space technology has several applications ranging from architecture
of missions to astronaut assistants. Science fiction has always portrayed optimistic goals and
utility of Astronaut Assistants with examples like Tars, Case, etc. These assistants can per-
form gargantuan calculations and sift through inconceivably vast information with a natural
language interface to provide concise and useful information. First, assistive technology like
Daphne (Bang et al.,, 2018) to design space missions can reduce the information overload of
complex phenomena. It interacts with the user to provide information in the form of answers
to specific questions in natural language and a visual interface. It also provides coherent feed-
back to a proposed design that requires the capabilities of long-form multi-sentence coherent
texts to make it sufficiently detailed. Second, with hostile temperatures and living conditions,
teaching robots to perform dexterous tasks outside the space craft or the space station can
have tremendous implications in reducing dangers to human lives. While understanding and
following natural language instructions to fix equipment is one-half of this, generating the de-
scription of the events or issues along with clarification questions is crucial in unprecedented
scenarios. Most of the data also includes visuals sent to the astronauts and the ground station
making it critical to understand domain-specific multimodal information. For instance, NASA
is working on building a robot assistant named Robonaut aboard International Space Station
(ISS) that can carry out risky jobs . A similar effort known as Crew Interactive MObile com-
panioN astronaut assistant (CIMON) ° is an emotionally intelligent robot with voice control
systems along with social capabilities to decrease the stress caused due to isolation in long-
term missions. It also has the capabilities of documenting experiments. Presenting a gist of
meaningful results from a cogent understanding of vast logs would also require anchoring the
compilation with a logical structure and selecting the appropriate content units. Third, similar
to using GPS to build navigation systems on the Earth, we can extrapolate this to building a
similar system to navigate extraterrestrial bodies. In collaboration with Intel, NASA developed
a virtual MoonMap * from millions of images gathered by the Lunar Reconnaissance Orbiter
(LRO). Anchoring the images to visually similar bodies to plan routes interpretable by the as-
tronauts assists them in having better control over the exploratory navigation. Our quest to
evolve as interplanetary species can be fulfilled by working hand in hand with robots. Trusting
this technology is the key to building a cooperative relationship.

Health:

*https://robonaut. jsc.nasa.gov/R2/
https://en.wikipedia.org/wiki/Cimon_(robot)
*https://www.youtube.com/watch?v=nr5Pj6GQL20
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NLG systems can vastly contribute to the widespread utility of automatic and assistive tech-
nologies in biomedical and health domains. Proliferating this literally life-giving and life-
changing information to the hands of regular people, i.e., non-domain experts can reap the
benefits of medicine to the fullest. These domain-specific information resources are archived
and provided as a digital repository in PubMed Central®. As most of these open-access full-texts
and abstracts are from scholarly articles, simplifying and presenting them in regular natural
language is a critical bottleneck. Coupling this with multimodal information like images from
radiology scans, etc., doubles down on this issue. Based on the use case, medical imaging is
performed by various methods like X-Rays (images of structures like bones), CT Scan (images
of cross-sections including bones and soft-tissues), MRI (detailed images of organs and tissues
from magnetic fields and radio waves), Ultrasound (images of organs and structures), PET Scan
(images of functioning of tissues and organs with radioactive drugs called tracers), etc., The di-
verse categories of conditions they are used to detect including epilepsy (PET Scan), monitoring
pregnancy (Ultrasound), tumors (MRI, CT Scan), bone fractures (X-Rays) mandate the diver-
sity in the information provided by these various techniques. There are few and distributed
efforts in understanding these across different types of images. For example, Pelka et al. (2018)
present a dataset derived from PubMed called Radiology Objects in COntext (ROCO) and study
the inter-dependency and synergy between the visual components and the textual represen-
tation of the semantic relations between these components. Anchoring the content of related
conditions from one of the domain of medical imagery and generating captions in another
is immensely useful to retrieve information for evidence-based medicine. Secondly, complex
language makes it difficult to be understood by non-native speakers, people with intellectual
disabilities, and language-impaired people such as aphasic and dyslexic people (Glavas and Sta-
jner, 2015). Compounding on this, the requirement of domain expertise makes it even harder
to understand scientific medical documents. Researchers have made strides in lexical and syn-
tactic simplification of medical documents (Koptient et al., 2021). However, gathering paired
simplified and complex text and medical images scaled across different categories of images
mentioned above is not a practical solution. Applying the unpaired captioning methods dis-
cussed in this thesis shows a promising direction to approach this problem. This provides
varied controllability of the simplicity or style of the text. Finally, extending this to a sequence
of sub-figures, Subramanian et al. (2020) release a dataset with manually annotated sub-figures
and sub-captions. By adopting techniques from generation from a sequence of images in this
thesis, we can potentially envisage generating sequences of text for a sequence of related im-
ages and also a description of the entire portfolio of a patient as the case progresses from mul-
tiple scans. Anchoring this to a structure of the case progression helps medical practitioners
draw insights from the patient’s history.

Legal Sector:

Zhong et al. (2020a) present a comprehensive overview of the applications of NLP in legal
Al including matching similar cases, summarization, intended harm detection, etc. Similar
to the implications in other sectors, Al is also remodeling the legal sector with instrumental
contributions from NLP. Firstly, conducting comprehensive background research is a critical
yet extremely time-consuming process due to domain-specific knowledge and legal jargon.
Translating day-to-day language to legalese and vice-versa can prove immensely helpful in

*https://www.ncbi.nlm.nih.gov/pmc/
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rummaging through volumes of documents. The two critical components to achieving this are
controlling the domain-specific language complexity and anchoring the relevant documents
with appropriate proportionally commensurate content. Secondly, automating the generation
of routine legal documents is immensely helpful both for lawyers and their clients. However,
ambiguity and obscure language usage can lead to obtuse and unintentional confusions in con-
tracts or other legally bound documents. Enabling appropriate structure to maintain a logical
coherence throughout the document is essential. The simplest approximation to this is, of
course, generating a fill-in-the-blank template to maintain coherence. The relevant fields are
usually filled with answers in an interactive questioning and answering. For example, DoNot-
Pay is a mobile application that fights inaccurate parking tickets, files unemployment benefits
while also assisting in spam filtering of emails, etc., using this technology. Similarly, Contract
Express of Thomson Reuters partners with lawyers to help in automation. Some products like
Specifio and TurboPatent have also contributed towards streamlining automated documents
for filing patents. Template or slot filling is not scalable to more complex scenarios, and this
provides an opportunity to power our existing NLG systems to draft these documents. Thirdly,
automatic contract reviews ease the process of fact-checking in one or multiple related doc-
uments. It is a hierarchical process of assessing provisions at granular levels in comparison
with other successful contracts in the past. Specific content anchors on bribery or percent-
age shares, etc., can be verified against existing documents to suggest deemed corrections. For
example, Kira Systems provides for verifying the presence of pre-defined provisions across var-
ious types of contracts. While the automatic generation of documents has pragmatic use cases,
orthogonally, understanding legal documents by interacting with a chatbot is also where NLP
can tremendously contribute. Norton Rose Fulbright built by using IBM Watson as the under-
lying systems assists in understanding privacy documents. Understanding the documents and
answering in user-understandable language is unquestionably useful.

(2) Entertainment:
Digital Entertainment:

Al is already taking preliminary steps in the realm of movies and TV shows. Recently, Netflix
has introduced interactive content®, and several other shows ’ that presents a variety of choices
in the scenes and characters thereby fabricating a story as we watch. The reactions of various
characters in branching narratives and ‘what if’ plot points ® bring them closer to the audiences
by enhanced engagement. Most of these efforts are now made in discrete choices between pre-
defined options, while there are a few efforts towards more natural preferences in the forms of
natural language text or speech. Anchoring these branching narratives to the content in plot
points while maintaining the consistency of the characterizations and personas is the key to
building a believable plot.

Branching Storylines for Games:

Role-Playing Games (RPGs) are one genre of games that have held the gaming community’s
attention through a test of time and have seen a resurgence in the last decade. They involve a

Shttps://help.netflix.com/en/node/62526

"https://en.wikipedia.org/wiki/List_of_interactive_movies#Pre-1970s, https://www.imdb
.com/title/tt8038720/
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player assuming the role of a character and living out their story. A prevalent phenomenon in
most RPGs today is the possibility of different endings based on the character’s conversational
choices throughout the game. As a reference, in the popular game Witcher 3, enumerating the
different conversation choices lead to corresponding consequences °. As seen here, in the final
act, encouraging Ciri, who is a deuteragonist in the game, guides the player to a positive ending
scenario, while not doing so leads to a negative ending scenario where she dies. Similarly, each
conversation choice the player makes in a certain scenario can help build the backstory and
the persona of the character and guide them towards an ending compatible with their persona.
There are two primary problems in this design. The first is that these endings and choices
are predetermined and are countably finite in their combinations. The second is that there
are only a few critical conversational choices that, in effect impact the paths to an ending.
Due to both of these issues, the game can be fundamentally represented as a decision graph
that is static. An example can be seen here for the game, God of War!’. In this graph, the
nodes are the characters, and plot points serve as the content, and their organization in the
story timeline serves as the structure. The action choices made via conversations throughout
the game realize the paths connecting these nodes to offer the player creative control over
the storyline, thereby making it more interesting. However, the predetermined choices in
the conversations are neither creative nor accommodating of free-form language, making the
game stale after just a few playthroughs. Therefore, anchoring the free-form conversational
choices to the appropriate edges in the graph can dynamically construct the storyline for the
game by making the experience of navigating the game more natural to the player. In addition,
the multitude of paths traversing the graph quenches the creative thirst of a player, thereby
making the game more enjoyable for multiple playthroughs as it is not constrained by the
discrete options but is open to the language creativity of the person playing it.

(3) Education:

Teachers constantly attempt to improve the way lessons are delivered to the students with a
special focus on improving the engagement of the students by developing instructional social
simulations (Emonts et al., 2012; Johnson and Zaker, 2012), developing interpersonal teaching
relationships (Sagae et al., 2012). The two primary motivations to improve this engagement
are (1) student-centric interactive learning, (2) online and accessible education. The current ef-
forts in the confluence of NLP and education are primarily along answering (Clark et al., 2016;
Li and Clark, 2015; Clark, 2015) and generating elementary science topics or facts (Rus et al.,
2007; Jia et al., 2021). But venturing into multimodality and controllable generation opens up a
whole new world of interactive learning experiences. Most learning experiences for students
are set with rigid practices like reading, memorizing, and regurgitating. Listening to a lecture
in class is mostly auditory learning. Similarly, reading a textbook is also auditory as we listen
to our internal voice as we read. However, several studies have shown the effectiveness of
multimodal education (Hassett and Curwood, 2009; Unsworth, 2008) kindling the interest and
retaining the knowledge or skills taught in the classroom. These studies revealed that recalling
and understanding lessons is made easier when multiple senses are brought together. This also
caters to teaching visual or kinesthetic learners (Begel et al., 2004). The different learning styles
range across modalities, including visual, auditory, reading, writing, and kinaesthetic methods,

ght‘cps ://witcher.fandom.com/wiki/The_Witcher_3_decision_checklist
https://twitter.com/corybarlog/status/1119846983252893696/photo/1
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also known as the VARK framework (Ibrahim and Hussein, 2016). Tiirkay (2016) also present
the effectiveness of whiteboard animations like VideoScribe, GoAnimate, PowToon, etc., for
teaching physics concepts. Understanding these modes better is the key to building student-
centric learning platforms. This requires building teaching agents capable of constructing a
coherent narrative for explaining a concept. A good benefit also comes from tailoring the top-
ics based on the needs of the students. Secondly, accessible education has been the ambition
of several non-profit volunteers, political parties, etc., MOOCs (Massive Open Online Courses)
provides affordable and flexible ways to deliver quality education diversifying from learning
new skills like home organization, career-advancing skills etc., However, maximizing the util-
ity of scaling this is limited by socio-culturally diverse learners (Gillani et al., 2014). DuoLingo
application (Mayhew et al., 2020) worked on developing acceptable paraphrases of language
and translations . The applications of this nature can benefit from controlling the content while
not losing out on the meaning of the generated paraphrases. At the same time, personalizing
the style of the generated paraphrases can avail the advantages from controlling the surface
forms. They also personalize the structure of the course based on the learning speed or re-
quirement of the learners by laying a plan out from the beginner, intermediate, to advanced
lessons. With the submergence of our lives in the recent pandemic, educators and technology
have stepped up their roles in providing this education online effectively, thereby bringing us
closer to the dream of accessible education, making it more necessary than ever.

(4) Collaborative Authoring:
Co-authoring Books:

Asynchronous collaborative writing among multiple writers only has largely perforated among
us with the help of tools like EtherPad !, Google Docs '?, BookType '°, Overleaf '*, etc., How-
ever, extending this collaboration to suggestions from bots has several non-trivial challenges.
One such crucial aspect in collaborative writing is externalizing the process of determining
the plan and organization of the document is often helpful to ensure agreement between the
bot and the writer. Adopting the findings in this thesis from generating a layout or structure
of the document can help in coordination. The assessment from the open-ended interviews
conducted by Clark et al. (2018c) for machine-in-the-loop short story writing and slogan writ-
ing revealed that it is enjoyable and it allowed them to write in a judgment-free environment.
Clark and Smith (2021) monitor the revisions made to the suggestions to study the preference
between suggestions from two models. In a similar vein, leveraging the revision history is a
proven way to train NLP models for providing suggestions in not only providing suggestions
in collaborative writing but extrinsic NLP tasks as well (Ferschke et al., 2013). Specifically, the
summaries are anchored around the highly persisted sentence across revision histories that is
considered significant content in the article (Nelken and Yamangil, 2008). Similarly, Yatskar
et al. (2010) utilize adjacent revisions to learn paraphrases and text simplification. Beyond sim-
ple surface-level suggestions, generating content and structure anchors for the entire narrative
can provide fine-grained local suggestions on the plot points or overall narrative level global
suggestions based on how the story is expected to end. These suggestions also augment the

"https://etherpad.org/
“nttps://www.google.com/docs/about/
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creativity of the writers. The usefulness of the suggestions depends on the authors and need to
be tailored to their writing style, resulting in a tradeoff between suggesting surprise elements
and consistency with the story arc so far. Therefore, applying control over surface forms has a
great potential to adapt to individual writers. Collaborative authoring of books and novels to
generate new ideas along with textual description is being used by contemporary authors like
Robin Sloan®. The existing resources, facts, and characterizations can be utilized to generate
new or alternate storylines. These plot points are the anchors around which the story can be
tailored. One could generate memes or stories with images with personalized information. This
can alter the core message of the story while leveraging the existing characterizations. Com-
mercially, in addition to correcting grammatical errors and spellings, Grammarly also helps in
writing patterns following a required style and tone. It also mentions explanations like certain
framing makes the text sound ‘more confident’, ‘affirmative’, etc. Due to these reasons, this
tool is also adopted by the scientific community, where D&I initiatives have circulated free
promotion codes to help student authors to improve their scientific paper writing skills.

Automated/Assisted Journalism:

In a world with constant information influx, being well-informed is one of the basic necessities.
Journalism is subject to issues bred by timeline recency, public interest, demographic domi-
nance, and personalization. Al agents assisting in automated journalism for the long tail of
events can address all these issues by sharing tasks and cognitive load from humans. However,
this is a very responsible role demanding trustworthiness as the effect is mass communication.
Most NLP tools journalists use include topic modeling, entity recognition, text classification,
and sentiment analysis, etc., Here are some of the challenges that journalists face in the process
of building a story. First, the evidence or supporting documents arrive in a mixture of modes.
Stray (2016) mention that on an average, journalists study about 4k documents in the form of
physically printed, scanned papers that need OCR, online documents, AV tapes, etc., Distilling
the relevant content from these overwhelmingly large sources of information and generating
an ingestible summary in natural language is very useful. Second, journalists are often look-
ing for evidence or patterns for a pre-cognizant subject. This implies that search capabilities
are more important than exploring vast numbers of documents. Oftentimes, these concepts
may be eluded from traditional search capabilities such as keyword or embedding search. A
common example is identifying patterns and indications of the abstract concept of ‘corruption’.
Anchoring the concept to various forms of realizations is crucial to draw pieces of evidence for
such concepts. Third, assistive technology to build network sketches or maps (similar to entity
skeletons discussed in Chapter 3) helps draw connections across superficially disconnected yet
connected content, including organizations, events, and people. Storytelling in entity networks
to support intelligence analysts Hossain et al. (2012) use connected cliques of entities to study
the skeleton patterns to study the relationships between them. These are not for data visual-
ization tools, but rather they are more like conceptual tools enabling the journalists to think
through the story. Garcia et al. (2007) integrates journalistic standards with ontological and
meta-data standards to improve such representations. Stray (2019) surveys the Al techniques
used for journalism and where the difficulty of amortizing the initial costs lie. They men-
tion that the problems or scenarios described are often very unique to individual stories being
covered. However, applying our techniques to identify standard patterns of structures across

“https://www.robinsloan.com/notes/writing-with-the-machine/
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genres of articles can assist journalists in fitting the information in these adapted templates
while providing them the freedom to adjust according to the case. Finally, being responsible
and anchoring to a socially responsible style of writing is necessary to avoid the possibility of
any aggression or provocation. Enculturing machines with social norms and conventions to be
sensitive towards human values and sentiments is fundamental while generating mass-media
texts.

(5) Augmented or Virtual or Mixed Reality:
Virtual and Embodied Beings:

Virtual beings are embodiments of Al serving as the consciousness of some of our beloved or
imaginary characters. They bring together the latest advancements in graphic design, com-
puter vision, NLP, speech technology, and many more areas, envisioning a future with char-
acters that look and sound nearly like humans, being a part of our everyday lives. Several
such virtual beings are already sharing the internet space with us, such as Lil Miquela '°,
who is a virtual fictional influencer that dawned as an Instagram profile and rapidly gained
a huge following. She markets several fashion brands and also endorses popular brands such
as Calvin Klein and Prada. Similarly, Mica !’ from Magic Leap is a Mixed Reality Al assistant,
and Lucy'® from Fable is a virtual being pushing the frontiers of this technology in real-world
applications. Such virtual beings need the ability to tailor the content of the interaction based
on the age, context, and preferences of their audience. The ability to anchor these preferences
is imperative for Lucy to narrate children’s stories based on their favorite characters or themes
to kids and describe factual news to a more mature audience. The difference in the varieties
of narratives described above leads to the need for anchoring the relevant characters, events,
and the appropriate structure based on highlighting the main event and going into the details
in a news article versus introducing the characters and their backstories leading to the main
event. With several such advancements, interacting with virtual and embodied agents such as
Amazon Astro, Jibo in a situated context, i.e., enveloped in multiple modalities that have been
a fantasy, is moving slowly towards reality. For instance, personal assistants equipped with
real-world skills can build rapport and assist blind people in activities such as cooking, shop-
ping, etc., In tandem, other advancements include reconstructing the social media presence
(Eter9'?) or an interactive re-creation of a deceased person *°. Venturing into the development
of such agents being an uncharted territory in real-world consumer interactions also brings
with them a myriad of ethical conundrums that need to be thoroughly considered.

Tourism:

Right from the advent of augmented reality, tourism has always been an industry its appli-
cations could fit right in and enrich the human experience with an annotated perception of
the surroundings. Tourism, as an industry, has always been about selling an experience, and
AR has shown great promise in pushing the limits of this experience, breaking the communi-
cation barriers, and making it both fun and accessible. As an example, AR mobile apps such
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as CityGuideTour”!, ARCity* that use object recognition to offer information about places of
interest. AR glasses have shown the promise of providing a more immersive experience by the
use of Al agents interacting with users, which eliminates the need for a tour guide. Despite
the advances, a gap in this scenario is that the descriptions that accompany the landmarks
(content) are static and are usually just excerpts taken from a common online source opening
a tremendous potential to anchor content and personalization.This brings us to an AR assistant
that interacts with people, guiding them through areas whilst generating descriptions that are
anchored to themes like history, recent events, fun trivia about the place based on the interests
of the individual. It would provide people with a much more personalized experience of the
place they are touring.

7.4 Ethical Considerations

The positive or negative reverberations of studying multimodality and controlling the gen-
eration in downstream applications are momentous. Therefore, drawing nearer to this goal
mandates responsible and careful considerations on their ethical implications. In this section,
I touch upon how anchoring can play a role in fairness, generating more balanced datasets,
etc.,

Fairness and Biases:

Explicitly providing attributions to describe people or things or concepts exclusively for non-
prototypical scenarios challenges modeling fairness in NLP. Leaning into prototypical central
notions assigns membership that is defined operationally by the judgment of what a good mem-
ber means by people (Rosch, 1975; Rosch et al., 1976) along with perceptual symbol systems
for archetypes (Barsalou et al., 1999) leading to unintentionally excluding members not fitting
into the prototypical framework. These archetypes proliferate from cognitive biases (Green-
wald et al., 1998) to data biases rendering their implications on our modeling predictions. A
specific case of such biases is the reporting bias, which is the phenomenon of the frequency
with which events/tokens are mentioned in documents not mirroring the frequency or degree
of their occurrence in the real world. For instance, common examples studied in NLP and
vision research is biased gender representation in documents (Garcia et al., 2014; Glott et al.,
2010; Jia et al., 2016), stereotypical associations (Bolukbasi et al., 2016), criminal attributions
(Manzini et al., 2019) in word embeddings. They can be systematically studied using word em-
bedding association tests (WEAT) (Caliskan et al., 2017). However, identifying these biases is
only half the solution, while mitigating them, shoulders the rest. Gonen and Goldberg (2019)
show debiasing methods help mask out systematic biases to some extent but do not actually
make the embeddings devoid of such biases. To this end, as discussed in §3.2 of Chapter 3, ex-
tracting entity skeletons and using semi-automatic human in the loop corrections can mitigate
these biases to some extent. This technique is particularly useful for languages with gram-
matical gender and with rich morphological agreement (Zhou et al., 2019). In such languages,
there are often non-trivial morphological interdependencies when specific aspects like gender
or number changes. So, surface-level replacement techniques often fail to accommodate these
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levels. Hence, anchors provide a better handle to provide interpretable control as the anchors
are in natural language to perform human-in-the-loop corrections.

Caution — Evolution of biases: The biases prevalent in public discourse are not static and
evolve with socio-cultural circumstances. For instance, Garg et al. (2018a) study the correla-
tions between several such correlated transformations, including gender bias manifestations
in articles with women rights movements and notes on Asian biases across decades. While an-
choring the content to control these biases is beneficial, having static control is harmful. It is
important to acknowledge that this controllability in text generation, like any other model de-
velopment, adapts to these ever-evolving biases with pirouetting social climates. Additionally,
the enormous potential of a pre-trained model, albeit being trained on vast amounts of data,
is capped by the circumstantial data until that time it is trained. So, anchoring or controlling
the generation to mitigate these biases is the key to utilizing these models to their maximum
capacity instead of retraining from scratch.

Generating Balanced Datasets and/or Data Augmentation:

As discussed earlier, one of the contributing factors for biases being baked into our models is
data bias. Despite making explicit efforts to mitigate such data biases, ensuring the appropri-
ate representation of the included sectors is non-trivial. For instance, despite including specific
population sectors in the data, they might not be portrayed in a positive or even neutral light.
As aresult, such data might have amplified damaging effects in model predictions. These kinds
of unbalanced datasets have downstream effects in tasks like coreference resolution (Webster
et al., 2018) machine translation (Prates et al., 2020), sentiment analysis (Kiritchenko and Mo-
hammad, 2018). Therefore generating more balanced datasets is crucial for preventing the
models from amplifying these effects. Similar to cultural aspects, such implications are also
associated with named entities (Shwartz et al., 2020a; Prabhakaran et al., 2019). Parentheti-
cally, studies have shown identity terms leading to increased yet unintended toxicity scores **
on public forums. Text generation has the potential to address this by generating more bal-
anced datasets and utilizing this for training. Nonetheless, powerful text generation models
like GPT-2 are no exceptions to falling prey to such biases from prompts (Sheng et al., 2019). In
such circumstances, utilizing anchors to control the generation of such counterexamples-based
datasets is very useful to move forward. Controlling specific aspects defying the balance is one
way to approach this. Often, these datasets are curated from human annotators to counter the
pre-cognizant notion of (Rudinger et al., 2018; Dawkins, 2021). For instance, balancing train-
ing data is done by selecting or creating examples that contain identity terms corresponding
to both toxic and non-toxic labels (Dixon et al., 2018). However, such data might not always
be easily available to sample from, especially in the defied category. Hence anchoring the gen-
erated textual samples to multiple labels in a balanced and harmonized way can help alleviate
the problem of imbalanced datasets.

Secondly, scaling for a culturally diverse annotation pipeline for all tasks and languages is
not easy to accomplish and was found to be a practically overlooked aspect in datasets as
well. Costa-jussa et al. (2020) curated a multilingual corpus of gender-balanced biographies
from Wikipedia to facilitate unbiased research in machine translation. But this might not be
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possible from freely accessible and available data that models are mostly trained on. As a spe-
cific example, in one of our ongoing projects, we are attempting to collect task-specific data for
indigenous languages. Gathering a representative dataset is immensely difficult especially ow-
ing to the very few language speakers accessible to us. Our conversations with more involved
researchers working on indigenous Canadian languages affirmed that Simulating the data for
underrepresented targets can be immensely helpful to other tasks in the NLP pipeline that have
nothing to do with generation as well. Concretely, I experimented the effects of generating
code-switched data from my approach described in §5.4 Chapter 5 to down-stream tasks. We
observed an improvement by finetuning the model with our generated data before perform-
ing task-specific finetuning on various classification and sequence labeling tasks included in
Khanuja et al. (2020). This problem is not limited to the diverse languages but variants of the
same language as well. Jurgens et al. (2017) study the dialectal variability of English (which
is unquestionably a resource-rich language) and studied how language identification tools are
not socially equitable and fail in the dialectal variants of underdeveloped nations. Hence it
is our responsibility to develop language technologies more equitably by accommodating all
languages, dialects and controlling targeted text generation plays a pivotal role in generating
task-specific datasets conducive to the labels. If few gold standard examples are present for
the task or languages at hand, the generated datasets can be augmented with relatively low
confidence samples for training.

Caution - Isolated anchoring or controlling: A root cause for not being able to ignore
such imbalances is because models heavily learn from correlations but not from the causa-
tions. These correlations can have appalling effects on sensitive downstream applications such
as Al-assisted therapists generating a life-ending suggestion. In large pre-trained models, this
problem compounds with contextualized embeddings where these unintended correlations are
propagated to the embeddings of other words as well (Tan and Celis, 2019). Furthermore, tack-
ling the balance of datasets by generating anchored texts may inadvertently introduce other
correlated biases. For instance, anchoring may remove biases against a class (say, women) and
another class (say, black), but not against the aggregated class (say, black women). Therefore
performing an independent and intersectional evaluation of the axes of biases is recommended
before using this data for downstream purposes.

Faithfulness:

The gap between trusting the generation arises from misaligned incentives amongst the stake-
holders: the researchers are inclined towards innovation working towards publications on
research datasets, software companies tend to use the open-sourced technology off the shelf,
adapting it to their use cases, and users consume this technology torn between the dilemma of
trusting or not trusting the generated articles, etc., Improving the faithfulness of the generated
text is of utmost importance to responsibly build the users’ trust. Text generation models have
leaped by gigantic means in generating sensible text from word salads. However, it is no hidden
truth that it is easier for machines to write fiction than facts. In a world with rapid information
exchange mushrooming fake news is detrimental to health in a pandemic (de Barcelos et al.,
2021), political influences (Van der Linden et al., 2020; Hirst, 2017), financial and stock markets
(Kogan et al., 2019; Cheo, 2018) etc., Faithful generation of text is, therefore, more crucial for
almost all applications that can impact people and influence their notions. Potential ways to
integrate this is by calibrating anchors’ decoding with concepts identified from the images with
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high confidence. This technique is used in decoding structure-to-text (Tian et al., 2019) with
a confidence oriented decoder. Anchoring techniques are also used directly here: Wang et al.
(2021b) use a two-staged skeleton-based method where the first stage is to carefully sketch
skeleton generation with an autoregressive pointer network followed by non-autoregressive
insertion and deletion operations to realize the surface form from the skeleton. This way of
utilizing skeletons or anchors has been the central theme throughout the thesis. As discussed
in §3.3.3.2 of Chapter 3, evaluating the prediction of anchors in the generated text is one form
of interpretable and simplified testing strategies.

Caution — Personalization and Impersonation: Anchoring the generated text to a pre-
ferred personality can potentially be misused to generate believable texts like articles or emails
impersonating a specific person. This can be used for social good like a celebrity promoting
local businesses **. However, we need to be attentive to the flip side of persona anchored gener-
ation that can impersonate an influential personality to spread fake information. For instance,
multimodal disinformation (Hameleers et al., 2020; Alam et al., 2021) can range from harmless
edits of restaurant dinner to harmful scenarios (Da et al., 2020). Learning to understand such
edited media have extensive societal implications.

Explanation Generation:

The past few years witnessed vast strides in using language-based applications in everyday use
that use at least a hint if not fully modeled by NLP techniques. These include critical domains
such as healthcare, criminal justice, autonomous driving, etc., However, regulating these tech-
niques and their usage is critical to bring it in as a way of our lives trust-worthily. Gade et al.
(2020) present several such regulations like GDPR, Algorithmic Accountability Act imposed to
make automated decision support systems accountable. Some of these guidelines include ex-
plaining the decisions of using this technology to the consumers #°. Generating explanations
for individual cases is utmost useful for both the data scientists and the consumers to both
trust this emerging technology and improve it when necessary. Amassing to other forms like
visualizing model parameters and interpreting attention or interactive systems to improve pre-
dictions used by data scientists (Katsis and Wolf, 2019) which are popular, the text modality is
a powerful means for generating human-understandable, natural language explanations. This
conflates the advantages of explanation generation and explanation presentation into a single
step. Goal-oriented narratives set a precedent for explanatory proofs. Generating explana-
tions and rationalization is an analogy to a logical pathway towards arriving at proof. Certain
tasks in NLP such as fake news detection, virality prediction, lie detection for courtroom judg-
ments are better performed by machines than humans. Generating reasoning explanations for
these scenarios can assist humans in learning patterns that machines can see and thus assist
in making better and more informed judgments. Reasoning or explaining about the missing
multimodal events requires understanding cross-modal information along with commonsense
knowledge. In §3.4 of Chapter 3, I presented infilling in the inference in curriculum based
learning model to bridge the missing information gap. Lei et al. (2020b) perform a similar task

*https://indianexpress.com/article/trending/trending-in-india/cadburys-diwali-shah-ru
kh-khan-7587613/

®https://www.ftc.gov/news—events/blogs/business-blog/2020/04/using-artificial-intelli
gence-algorithms


https://indianexpress.com/article/trending/trending-in-india/cadburys-diwali-shah-rukh-khan-7587613/
https://indianexpress.com/article/trending/trending-in-india/cadburys-diwali-shah-rukh-khan-7587613/
https://www.ftc.gov/news-events/blogs/business-blog/2020/04/using-artificial-intelligence-algorithms
https://www.ftc.gov/news-events/blogs/business-blog/2020/04/using-artificial-intelligence-algorithms

Known Unknowns 196

of reasoning about predicting the next event given a video and an associated dialog. The rea-
soning behind arriving at answer is also studied in the context of visual entailment (Do et al.,
2020), visual question answering (Li et al., 2018b), visual commonsense reasoning (Zellers et al.,
2019) etc., Similar to the principle used by Latcinnik and Berant (2020) in the form of generating
intermediate hypotheses using an LM to explain the answers predicted by a question answer-
ing model, predicting anchors derived from visual input to explain the downstream generation
of multimodal stories serve as cross-modal explanations. This is the right direction pledged in
progressing our field to bring this transformational yet rhapsodical technology closer to the
hands of all the people without fear.

Caution — Misleading Explanations: Post-hoc explanation techniques for the black box
predictions can be misleading due to several reasons like failure to capture causal relation-
ships, and failure to be robust, falling prey to minor perturbations, etc., (Lakkaraju and Bastani,
2020). Understanding the sufficiency and comprehensiveness metrics (Carton et al., 2020) of
an explanation can vary across fields and specific use cases. In such cases, it is crucial to work
with domain experts to determine the standards of expected explanations that are useful in
practice.
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In the course of the thesis, I described how anchoring could tether and control narra-
tive generation to various properties like content, structure, and surface forms from
multiple views deriving from multiple modalities and languages. Based on these find-
ings, I also described concrete promising future directions and a broader impact of
the techniques proposed. These beneficial implications on various strata of the so-
ciety encourage us to advance anchoring narrative generation from multiple views
while carefully practicing caution to circumvent potentially intended or unintended
ethical conundrums. With an optimistic outlook towards the future of multi-view
anchored text generation, this thesis serves as a piece of Ariadne’s string to navigate
the labyrinth of potential that this field encompasses.
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