
Features for Search and Understanding of
Noisy Conversational Speech

Justin Chiu

CMU-LTI-18-005

May 2018

Language Technologies Institute
School of Computer Science
Carnegie Mellon University

5000 Forbes Ave., Pittsburgh, PA 15213
www.lti.cs.cmu.edu

Thesis Committee:
Alexander Rudnicky, Chair (Carnegie Mellon University)

Alan W Black (Carnegie Mellon University)
Alexander G. Hauptmann (Carnegie Mellon University)

Gareth J.F. Jones (Dublin City University)

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

In Language and Information Technologies

Copyright c© 2018 Justin Chiu



Keywords: Features, Conversational Speech, Noisy Automatic Speech Recognition



Abstract
As the amount of speech data available increases rapidly, so does the need for ef-

ficient search and understanding. Techniques such as Spoken Term Detection (STD),
which focuses on finding instances of a particular spoken word or phrase in a cor-
pus, try to address this problem by locating the query word with the desired meaning.
However, STD may not provide the desired result, if the Automatic Speech Recog-
nition (ASR) system in the STD pipeline has limited performance, or the meaning
of the item retrieved is not the one intended. In this thesis, we propose different
features that can improve the performance on search and understanding of noisy
conversational speech.

First, we describe a Word Burst phenomenon which leverages the structural
property of conversational speech. Word Burst refers to a phenomenon in conversa-
tional speech in which particular content words tend to occur in close proximity of
each other as a byproduct of the topic under discussion. We design a decoder out-
put rescoring algorithm according to Word Burst phenomenon to refine our recog-
nition results for better STD performance. Our rescoring algorithm significantly
reduced the false alarm that were produced by the STD system. We also leverage
Word Burst as a feature for identifying recognition errors in conversational speech.
Our experiments show that including Word Burst feature can provide significant im-
provement. With this feature, we demonstrate that higher level information, such
as structural property can improve search and understanding without the need for
language-specific resources or external knowledge.

Second, we identify the mismatch between different decoder output created by
the same ASR system can be leveraged as a feature for better STD performance.
After the decoding process of an ASR system, the result can be stored in the for-
mat of lattice or confusion networks. The lattice has richer historical information
for each word, while the confusion network maintain a simple and more compact
format. Each of this format contains unique information that is not presented in the
other format. By combining the STD result generated from these two decoder out-
put, we can achieve improvement on STD systems as well. This feature shows that
unexplored information could be stored in different output generated by the identical
ASR system.

Last but not least, we presented a feature based on distributed representations
of spoken utterances. Distributed representations group similar words closer in a
vector space according to its context. Every word that shows up in a regular context
will be projected into the vector space closely to each other. As a feature space, we
not only project the word in the space, but also project the utterances that contains
multiple words into the space. We apply this feature to Spoken Word Sense Induction
(SWSI) task, which differentiates target keyword instances by clustering according
to context. We compare this approach with several existing approaches and shows
that it achieves the best performance, regardless of the ASR quality.
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Chapter 1

Introduction

1.1 Motivation

Conversation is one of the main methods that humans use to communicate with each other. In
recent years, products that use conversational interfaces have appeared and have allowed humans
to communicate with smart devices or computer , such as Siri, Google Home or Amazon Echo.
As the technology keeps progressing, we believe there will be more computer systems or de-
vices interacting with human through conversational speech. As a result, being able to properly
understand such speech become a critical task for building systems that communicate through
language.

An inherent issue in processing conversational speech is that it is imprecise in several ways.
When the speech is being produced in an informal situation, it will not always be well struc-
tured. For example, when chatting with friends, a spoken utterance might not be grammatically
correct but it will nevertheless make sense. Similarly, when speech is been produced in difficult
environments, background noises might make the speech harder to make out. It will affect the
performance of the Automatic Speech Recognition (ASR) system. In addition to imprecision
and noisiness, there are other challenges, conversational interfaces are also expanding to differ-
ent languages that might not have as many resources such as English. These conditions constitute
challenges for speech understanding.

A key motivation for our work is to identify potential features or approaches that can pro-
vide improvement to speech processing in addition to traditional modeling techniques, that are
effective regardless of a particular language, and focus more on the properties and structure of
conversation that derive from its communicative functions. We believe that it is possible to pro-
vide general improvement to speech understanding as a whole, using techniques based on how
people use generic knowledge of conversational structure to improve their understanding in dif-
ferent situations.

1.1.1 The challenge of existing approaches

There are many contemporary technologies that can be used to perform search and understanding
of speech. Most of these use Machine Learning models to conduct their analysis. However,

1



Machine Learning based approaches have some challenges:
• Robustness: Machine Learning models tend to perform well on clean data, as the features

extracted from data can be more discriminative. When the data are noisy, the quality of
extracted features is affected and hence impairs knowledge extraction performance. For
example, Automatic Speech Recognition (ASR) on clean speech corpus such as Switch-
board can achieve the WER under 20% (Hinton et al., 2012), while ASR on noisy corpus
still have a WER over 50% (Miao and Metze, 2013). This performance difference shows
the challenge on the robustness aspect. The reason for this difference is because the fea-
tures extracted from the clean data can fit to the trained model better, while the features
extracted from noisier data contains more noise and can not fit to the model that well.
Noise will be an issue because the data we collect nowadays will come from different
environments and hard to ensure it is always clean data.

• Training data: High-performance Machine Learning models tend to require significant
amounts of data to train a good model. The data also requires human labels/knowledge to
make them usable for training. Collecting a significant amount of human-labeled data for
training is expensive, especially data that is difficult to obtain, e.g. languages that are used
in less developed regions, where Internet is not available.

• Portability: There are approaches that utilize language-specific features such as tone in
Chinese for Automatic Speech Recognition (ASR) (Fu et al., 1998). These kinds of ap-
proaches can achieve impressive improvement on a single language yet lack portability
to adapt to other languages, and features like tones might not even exist in some other
languages.

To demonstrate the challenge of existing approaches, an example based on Spoken Term
Detection (STD) task will be provide in section 1.3.1, after its task introduction.

1.2 Thesis Statement
Humans communicate with each other through conversation in order to exchange information
and knowledge. Despite the fact that our daily conversation is noisy, we are still able to receive
the information without too much difficulty. We think the reason for this is because humans
expect conversation with other people to happen in certain ways. There are multiple phenom-
ena that can be observed in human conversations and that can be treated as a feature to support
human understanding of other people’s speech. First, words that has been spoken recently in
conversation is more likely to recur in close proximity. We refer to those as the Word Burst
phenomenon in this thesis. Second, if an identical word had been spoken in the conversation
with very similar context, it tends to have similar meaning. However, if the same word had been
spoken in a different context, its meaning is quite possibly different. These phenomena reflect
human’s communicating knowledge and delivering semantics through conversations. Since hu-
mans are able to leverage these phenomena to support understanding, we anticipate that it should
also be beneficial for automatic systems. Aside from these features from the conversational side,
we also identify another feature from the automatic system side. When an automatic system
processes its input, the system can store the processed result in different representations. Each
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representation has its own strengths and weaknesses, and the mismatch between different repre-
sentations contains information that can provide more accurate at expectation the original data.
In this thesis, we aim to leverage these phenomena to support search and understanding of speech
collections. Our approach can also address challenges found in existing approaches to automatic
speech recognition:

• Robustness: Since the data we process are noisy, we need to use additional information in
order to improve the quality of input data for Machine Learning models. The phenomena
we aim to leverage serve this purpose.

• Training data: The approaches we propose do not require specific training data, as they
either depend on phenomena related to how humans organize their words in conversation
or how automatic systems represent these results.

• Portability: Since we are leveraging phenomena from either generic human conversation
or generic automatic systems, our approaches are unlikely to have any language-specific
limitations.

One important note we wish to clarify is that, for the two conversational oriented phenom-
ena that we leverage, we are not leveraging “semantics”. The information we leverage can be
considered as a feature of semantics, as the reason for its existence is to support the exchange of
semantic information between people. It can, at most, be considered as an observable manifesta-
tion of semantics. We believe semantic is an abstract concept and the definition of it is subjective.
However, the feature we leveraged in the thesis is an objective phenomena that can be utilized
consistently among different experiments.

To be more precise, the research question we identified in existing work is the challenge we
described in last section: existing approaches might not be robust enough when training data
is insufficient. Hence, this also limits the portability of the approach to language with insuffi-
cient data. We propose to identify high level features in human conversation that enhance the
search and understanding of noisy conversational speech. The features we explore will address
the challenge of existing approaches since it does not require large amounts of training data nor
language specific features, and can be ported to different languages easily. This should support
the development of search and understanding systems for human speech in various languages,
especially languages with insufficient data available. In addition, this will also improve our un-
derstanding of conversational activities, which is a great source of language-independent features
for understanding human speech.

1.3 The tasks

In this thesis, we work on three different tasks, Spoken Term Detection (STD), Identifying
Recognition Errors, and Spoken Word Sense Induction (SWSI). We will first introduce the three
tasks, their current challenges, and how we are going to address them. After the tasks introduc-
tion, we will describe our motivation for selecting these tasks as the focus for the thesis.
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1.3.1 Spoken Term Detection
Task Introduction

Spoken Term Detection (STD) focuses on finding instances of a particular spoken word or phrase
in an audio corpus. It is also called Key Word Search (KWS), yet we will unify the naming as
STD in this thesis. The STD system inputs a set of text queries, and it should output the locations
of the given text query in the audio corpus. It was proposed as a task in order to efficiently retrieve
information from a growing body of computer-accessible volumes of audio data.

Most STD is accomplished by using combinations of Automatic Speech Recognition (ASR)
systems and term searching systems. An ASR system is applied to an audio stream and generates
a time-marked recognition hypothesis of the speech. The performance of an ASR system is
evaluated by Word Error Rate (WER), which is the word level Levenshtein distance between
the decoded word and the ground truth. For the term searching purpose, sometimes the ASR
performance will also be evaluated with lattice recall, the recall value of the given query in
the recognized lattice. The recognition hypothesis (which can be the single best only or the
entire lattice/confusion network) is then indexed and searched by an term searching system, and
the result returned for a query unit is a list of possible locations for the query unit ordered by
decreasing probability.

The evaluation metric of STD is mostly related to a value called Term Weighted Value (TWV)
(Fiscus et al., 2007; Wegmann et al., 2013). The formula for TWV is as follows:

TWV (θ) = 1− (PMiss(term, θ) + β ∗ PFA(term, θ))

Different TWV based value can be used for evaluation, including Actual Term Weighted
Value (ATWV), Maximum Term Weighted Value (MTWV) or Supreme Term Weighted Value
(STWV). ATWV is the average of TWV over all queries; MTWV is the maximum TWV over
the range of all possible values of the detection threshold; STWV is the maximum TWV without
considering false alarms. It is similar to lattice recall for a given query.

The concept of the TWV score is simple: If the system performs perfectly on a query, it has
a TWV of 1; if the system misses some of the query words or produces false alarms, it receives
a penalty on the TWV score. As a result, the TWV score is bounded above by 1 but has no fixed
lower bound.

TWV-based evaluation metrics had been reported as very unstable metrics (Wegmann et al.,
2013). These metrics depend on specific parameters, and different evaluations could have differ-
ent parameters. In this thesis, we use the parameters provided by the IARPA BABEL program.
However, due to these parameters, the results that have been reported on different data sets might
not be comparable with each other if the parameters are not the same. Only the relative compar-
ison on the same dataset with the same parameters can be used as a way of evaluating whether
the approach can provide improvement.

The most intuitive way of doing STD is to use ASR systems to decode the speech to produce
a single-best recognition hypothesis and then identify whether the query term shows up on the
decoded hypothesis. In this case, the term searching step becomes trivial. This works well
when the ASR performance is below 20% WER (Miller et al., 2007), so in the condition when
ASR system with such performance is available, STD is considered less challenging. However,
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when the ASR performance is limited, identifying query terms on the single-best recognition
hypothesis is not enough, and it opens up an entire research space.

Table 1.1: WER and ATWV on using single-best recognition hypothesis or lattice (from (Miller
et al., 2007))

Language WER(%) 1 best (ATWV) lattice (ATWV) 1 best ATWV / lattice ATWV (%)
English 14.9 0.754 0.852 88.5
Chinese 31.7 0.228 0.343 66.5

(Miller et al., 2007) reported their STD performance on English and Chinese with the compar-
ison as shown in Table 1.1. When the WER is low, using the single-best recognition hypothesis
can achieve 89% performance compared with searching in the lattice. However, as the WER
increases, the difference between searching on the single-best recognition hypothesis and lattice
becomes more significant.

Due to this report, the ASR system is generally considered more important in STD tasks,
since if the ASR has decent performance, the term searching system search becomes less chal-
lenging in STD. In addition to that, if the actual query term is not recognized at all, the term
searching system still cannot retrieve it. As a result, publications in the STD domain are mostly
trying to improve the recognition performance, which can be estimated by reducing the WER or
increasing the lattice recall in ASR for better STD performance.

Current Challenge

The current challenge in STD is the limitation of ASR performance under certain conditions.
One of the conditions that has received a significant amount of research attention recently is
the Limited Resources condition. Under Limited Resources condition, the training data for the
ASR system is not sufficient for creating a robust model. The amount of training data in this
condition is about 10 hours of speech (Miao and Metze, 2013), which is far less than a classical
ASR system that is trained with more than 100 hours of speech(Dahl et al., 2012). A good
example for this condition is to perform STD on Limited Resources languages such as Tagalog
or Pashto. Research on these directions also focuses on applying their technique to multiple
languages, so it cannot use language-specific features to address the challenge. Even with the
recent advance in Deep Neural Networks for ASR (Dahl et al., 2012), ASR under such condition
still performs badly. (Miao et al., 2013) reported that their Deep Learning ASR systems have
WER from 69.9% to 72.0% in multiple languages under such condition. This is far from the
ASR performance reported in previous STD tasks that are not under this condition (Miller et al.,
2007), in which they achieve 14.9% WER. The noisy ASR result significantly degrades STD
performance. This huge gap not only happens on WER but also on ATWV value. In 2007,
(Miller et al., 2007) reported that their STD performance on English recordings reached 0.852
Actual Term Weighted Value (ATWV). However, the same team reported their STD performance
on Pashto recordings in 2013 (Karakos et al., 2013). Even though the technology had advanced
for six years, their best performance was 0.492 ATWV. When the challenge we described was
tested, the performance of the system degraded significantly.
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Our Approaches for the Challenge

On the Limited Resources STD task, we present two different approach to improve performance.
Note that both of these approaches are focused on the term searching systems, as we believe
this can provide improvements in addition to the progress of the ASR systems. We think the
research on STD should not overemphasize the ASR system, and our work here demonstrates
that improving term searching systems can also achieve reasonable improvement on STD tasks.

First, we describe two different ways to rescore the recognition hypothesis in conversational
speech, Word Burst rescoring (Chiu and Rudnicky, 2013) and Unique Penalization rescoring,
both relying on the Word Burst phenomenon, which we consider as a feature in conversational
speech. Word Burst describes the phenomenon in conversational speech in which particular
content words tend to occur in close proximity of each other as a byproduct of the topic under
discussion. Based on this phenomenon, we present Word Burst rescoring, a rescoring algorithm
that focus on complicated rescoring within a smaller temporal window, and Unique Penalization,
which focuses more on identifying the proper window size in conversational setup for the Word
Burst phenomenon. In Chapter 4, we describe this work in detail.

Second, we identify the mismatch between different recognition hypothesis created by the
same ASR system can be leveraged as a feature for better STD performance (Chiu et al., 2014).
The intuition of this work is as follows: When we ask a single person to present the “same”
information to different people, the person will structure their communication according to their
audience. These different forms of communication will have their unique and missing infor-
mation about the original raw information, and it will be the same for different decoder output
generated by the same ASR system. If we can leverage the the differences of multiple represen-
tations generated from identical input data, we can acquire more information about the original
data. The detail of this work is described in Chapter 5.

1.3.2 Identifying Recognition Errors

Task Introduction

Works had been done in the Confidence Measures (CM) (Jiang, 2005) domain focusing on eval-
uating the reliability of decoder output. Researchers have proposed computing a score that in-
dicates the reliability of a hypothesis. We propose to simplify this task to a binary classification
problem; each word generated from the ASR system can be classified into one of two classes:
correctly recognized or recognition error.

This simplification provides a clearer separation between decoder output. The advantage of
this separation is to make it easier to evaluate the performance based on additional features, such
as applying Word Burst as feature. Every word will be assigned to a label or correct or error.
For example, in the CM setting if a specific word is close to a rejection threshold, it is hard to
decide whether that word is recognized correctly or not. In our framework, there would be less
ambiguity. This makes the application of CM result easier, as it removes the need of identifying
the threshold for CM scores. In addition to that, instead of focusing on ASR system to address
the CM task, this approach attempt to leverage the information that belongs to the conversation,
which is a new source of information that can potentially be utilized.
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Current Challenge

Most of the work on CM focuses on leveraging the information from ASR system. The situation
of how the recording is created is not considered as a focus for addressing this problem. However,
if we already knows that the decoding target is conversational speech, there are information that
lies in conversation that can be leveraged in supporting our task of identifying recognition errors.

Our Approaches for the Challenge

As an extended application of Word Burst phenomenon, we apply it as a feature for improving
our performance. We aim to demonstrate that conversational feature can be useful for tasks other
than STD. In addition, the way to leverage Word Burst in STD has been criticized by researchers
in different domain for being too ad-hoc. We also identify a more systematic way of leveraging
Word Burst phenomenon in this task. The detail of the work will be describe in the Chpater 4.

1.3.3 Spoken Word Sense Induction

Task Introduction

Word Sense Disambiguation (WSD) is the task of identifying which sense of a word is used in
a statement, when the word has multiple meanings. Many approaches have been proposed to
address this problem, ranging from dictionary-based methods that use the knowledge encoded in
lexical resources to supervised machine learning methods with a classifier trained having a sense-
annotated corpus. (Yarowsky, 1995) Word Sense Induction (WSI) (Navigli, 2009) addresses the
same problem, except that WSI does not require any external resources such as dictionaries or
sense-annotated data, because it aims towards data driven approach. As a result, WSI can be
considered as an unsupervised clustering problem for multi-sense words. Spoken Word Sense
Induction (SWSI) enables WSI on human speech instead of natural language text. Since speech
data is noisier and (spontaneous) spoken language is less structured, we anticipate a greater
challenge in SWSI, compared with a text based WSI task. The state of the art in these fields is
described in Section 3.3.

Current Challenge

The challenges for WSI/SWSI coming from multiple perspectives. The high-level challenge
questions the fundamental nature of the problem. Is this a valid task? How are we going to
evaluate it? The low-level challenge is about whether the system can maintain the performance
when the context is noisy, since the context is the source of features for clustering.

From the high-level perspective, it is very difficult to define a specific word sense that belongs
to a specific keyword instance. Since the word sense perceived by humans is dependent on the
interpretation, there is not even a ground truth that can be accepted by every person. We believe
the definition of word sense is similar to a tree-like structure, where each end node represents a
word sense (Hovy et al., 2006). The deeper into the tree, the more sense (node) that is available
for a specific word, yet there is no optimal method for deciding the ideal depth.
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Since it is difficult to define the most appropriate ground truth, evaluating the WSI perfor-
mance is another challenge. One way for evaluating the performance is to use human-transcribed
word sense as ground truth, and try to map every clustered result into the ground truth. Although
this operationalizes the definition of word sense, two challenges remain:
• Widely accepted evaluation metrics: A recent workshop (Navigli and Vannella, 2013) pro-

vided several evaluation metrics for reporting performance, because individual metrics
have their limitations. Most metrics will be affected by the chance agreement between
clusters, which makes it even harder to compare between different numbers of assigned
clusters. (As the number of clusters is different, the chance agreement is also different.)
The lack of standardized evaluation metric will make the field difficult to compare the work
produced by different groups.

• How to map the generated cluster to specific word senses: Since SWSI places a word into
multiple clusters according ot the word sense, the mapping between the generated cluster
to specific word senses is another challenge. (Navigli and Vannella, 2013) uses an ideal
scenario, where the generated cluster and the word sense always maximize the cardinality
of the intersection. However, this is not the case for real-world applications.

From a more practical perspective, when performing clustering for our target term, can we
maintain the performance when the data is noisy? Is there a way of identifying a more robust
feature for the clustering? Since we target at SWSI, the noise in the context is inevitable, as
the noise can come from the recognition error from the ASR system or spontaneous spoken
language. As a result, we need to investigate real world noisy data to understand how it affects
our approach.

Our Approaches for the Challenge

For the two challenges of widely accepted evaluation metrics and mapping between the generated
cluster to specific word sense, we select the evaluation metric described by (Hubert and Arabie,
1985) that is not affected by chance agreement, and also does not require the mapping between
the generated cluster and a specific word sense, as the evaluation is based on the distribution of
clusters. We understand that we avoid those challenges instead of solving them, yet solving those
problems is beyond the scope of this thesis.

The low-level challenge is the main challenge we address in this thesis. We design a new
way of representing the context of a target term according to our observations for conversational
speech, that words that occur in similar contexts tend to have similar meanings. We also apply
the other part of the observation, which is that the same word occurring in very different contexts
is less likely to have the same meaning. We use the first part to create a word embedding space to
represent the relationship between different words, and the second part to separate the meaning
of identical words. The detail of this work is described in Chapter 6.

1.3.4 Motivation for selecting the tasks

There are several reasons why we select these particular tasks in this investigation.
First, these tasks focus on spoken data. Speech is one of the most common methods of
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communication for most people. And the most common form of communication is the best
target to start with.

Second, these tasks can address the challenge of existing approaches that we presented in
Section 1.1.1. Since these tasks have to process noisy data, this ensures that our approach can
be robust to noise. Limited Resources STD and identifying recognition errors have only a very
limited body of data available, and SWSI is not expect to use any labeled data, so our approach
will not require too much training data, which is the second challenge. In fact, our approach on
STD requires no training data. And since all of our approaches do not require training data, this
also makes the approaches’ portability to different languages more likely.

Third, these tasks focus on the smallest unit of our daily communication: the word. This can
avoid the situation where the approach provides improvement on larger units of communication,
yet the effect cannot be extended to the smallest unit. For example, a good retrieval model can
improve the retrieval performance on a larger segment (60 seconds or more) (Chiu and Rudnicky,
2014) of speech data, but it has limited improvement on identifying whether a specific word’s
presence is correctly identified or not.

Fourth, these tasks are focused on the problem of extracting or identifying useful information
from very large speech data sets, which fits the real-world scenario we described in the Motiva-
tion of the thesis. There are also real-world applications that can be derived from this research.
For STD, identifying query terms from huge collections can also help the user to retrieve useful
information from a speech corpus. Identifying recognition errors can help us process the recog-
nized result more carefully. Once the relevant instances are retrieved from the corpus, SWSI can
cluster the retrieved result into different groups in order to let the user access it more easily.

1.4 Summary of Thesis Contribution
This thesis investigates multiple phenomena in conversational speech and in automatic systems
that can be leveraged to support automatic systems to more effectively extract useful information
from very large speech collections. Overall, the most important contribution is that we identify
and apply these feature that are robust to noise, require no training data, and can easily adapt to
different languages. We show that our results generalize over three different tasks, STD, identi-
fying recognition errors, and SWSI. These features include Word Burst phenomenon, mismatch
between recognition hypothesis in different format, and Distributed Representations of Utter-
ances. Based on these features, several contributions are made:

In Chapter 4, we describe Word Burst rescoring and Unique Penalization rescoring, two al-
gorithms based on the Word Burst phenomenon. The critical feature we leverage is: A word that
already appears in a conversation is more likely to recur in close proximity, and the word that
appears alone without other identical words around is more likely to be a recognition error. We
designed rescoring algorithms to refine our ASR results to achieve better STD performance on
Limited Resource languages. We tested on six different datasets in different Limited Resource
languages, and our approach achieves significant improvements, which indicates that this phe-
nomenon can be observed in multiple languages. After the STD experiments, we leveraged Word
Burst as a language independent feature on identifying recognition errors. The experiments is
conducted on multiple languages and different ASR quality. We demonstrate that, even without
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parameter tuning on development data, Word Burst can be used to improve the identification of
potential recognition errors. The only limitation of the approach can be attributed to the charac-
teristics of the data, which we will also describe in the chapter.

In Chapter 5, we describe a strategy of integrating multiple noisy decoder output from the
same ASR system to improve STD performance. The key feature in this work is that differ-
ent forms of decoder output will have their unique and missing information about the original
information. If we can combine these different decoder output, we can leverage the feature of
mismatch between different decoder output by the STD systems. We tested on five different
datasets in different languages and the decoder output generated from three different ASR sys-
tems, and our approach can achieve significant improvements, which indicates that this can be
leveraged on different languages and different qualities of ASR systems.

In Chapter 6, we design a novel and robust method of feature extraction for SWSI. We lever-
age the relationship between the word and its context according to our observation in conver-
sational speech (when multiple identical words have been spoken in the conversation, the rela-
tionship between their meaning can be decided by their context) to create word embedding to
represent the similarity between words, and then project the utterance that our word belongs to
into the word embedding space to separate the meaning of identical words. Our experiments
are conducted on three different levels of ASR quality. We compare this approach with several
existing approaches and demonstrate that it achieves the best performance, regardless of the ASR
quality.

1.5 Thesis Organization
The reminder of this thesis is organized as follows:
• Chapter 2 introduces the related work for conversational features we discussed in the thesis.
• Chapter 3 describes the task-level related work, which includes ASR, STD, and SWSI.
• Chapter 4 presents the application of Word Burst phenomenon. We perform experiments

on different languages, using Word Burst rescoring and Unique Penalization rescoring
algorithms to improve STD performance, and Word Burst phenomenon as a feature to
improve identification of recognition errors. We also provide various analyses for our
approach, since the effectiveness of these approaches is sensitive to multiple factors.

• Chapter 5 presents our work on the leveraging the mismatch from a same ASR system as a
feature for STD in Limited Resources languages. We find that the improvement from this
approach is also independent of languages and ASR systems. We combine this approach
with existing multi-ASR system combination, and find that the improvement is additive
with it.

• Chapter 6 presents our work on SWSI by designing a novel and robust method of feature
extraction for the context of a target term to create Distributed Representation of utterances.
We compare our approach with several existing approaches and show that it achieves the
best performance, regardless of the ASR quality.

• Chapter 7 presents the conclusion and the future work.
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Chapter 2

Related Work for Conversational Features

In this chapter, we discuss the related work on conversational features. The approach we present
in the thesis leverages two different phenomena that can be observed in human conversations.
The first one is Word Burst, which is that a word that has been spoken recently in conversation is
more likely to recur in close proximity, the temporal information for word occurrence is the key
for this phenomena. The second one is that words that occur in similar contexts in conversation
tend to have similar meanings. We discuss earlier works for these two phenomena. Although we
are looking at these phenomena from different perspectives and applying it to different tasks, we
believe that the core ideas are similar.

2.1 Word Burst phenomenon

2.1.1 Word Recurrence in Dialogue Systems

There are research efforts in the dialogue system domain that focus on predicting what people
will say to a dialogue system. If we are able to predict what a user could say, the response of
the dialogue system can be better customized. (Barnett, 1973) propose “Thematic Memory” as
the model to predict what user will say in the incoming conversation. It is assumed that the user
will exhibit goal-directed behavior toward finding specific information relating to a universe that
is small compared with the every information that are available. Content words (item names and
values) contained in the most recent questions and answers are retained by the thematic memory
and proposed as highly likely to occur in the next utterance.

This work starts to identify the phenomenon that when a content word is spoken, it is more
likely to occur in close proximity of the same content word in a conversation. This phenomenon
is leveraged as a source of information for deciding the strategy for a dialogue system in this
work. Compare to how we leverage Word Burst, it focuses more on the turn taking informa-
tion (recent question, which is the last turn), not leveraging the temporal information which we
believe is useful.
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2.1.2 Word Recurrence in Automatic Speech Recognition (ASR) Systems

(Young et al., 1989) presents an integrated system that combines natural language processing
with speech understanding in the context of a problem-solving dialogue. It uses a variety of
pragmatic knowledge sources to dynamically generate expectations of what a user is likely to
say, which includes word recurrence. The way it leverages the recurrence is to transform this
context into word expectations that prime the speech recognition system for the next utterance.

Instead of the dialogue strategy, (Young et al., 1989) starts to leverage the phenomenon for
recognizing human speech. During the speech recognition, the word recurrence information is
used for ASR system to reduce the potential search space for the ASR result. This also expresses
a similar idea that identical words tend to occur in close proximity in conversational speech, thus
reducing the probability of a specific content word being recognized when it did not occurred.
This is similar to the penalization part for our Word Burst rescoring. However this work also
does not use any temporal information between different word tokens in their model, their focus
is still on whether the word occur in the recent utterances.

2.1.3 Word Recurrence and Further Investigation in Language Modeling

When an ASR system leverages word recurrence, the effects take place in the language model
component. Whether a word show up or not in previous context, the probability of the word in
language model changes according to the context. As a result, more research efforts are invested
in language modeling for leveraging this phenomenon. It also has another name called “Context-
Dependent Language Modeling”.

(Kupiec, 1989) introduces two complementary models that represent dependencies between
words in local and non-local contexts. The non-local context of word dependency considered
here is that of word recurrence. The non-local context is used to modify the word transition
probability, which is how language model affects the ASR result. (Kuhn and De Mori, 1990)
presents a language model that reflects short-term patterns of word use by means of a “cache
component”, combining with the traditional trigram language model. At this stage, the research
efforts start to go beyond identical words, this work also tries to model the relationship between
different words that are topically relevant. (Jelinek et al., 1991) describes a simple model based
on the trigram frequencies estimated from the partially dictated document that cache the recent
history of words, which is similar to the (Kuhn and De Mori, 1990). (Rosenfeld and Huang,
1992) describes a model that attempts to capture within-document word sequence correlations.
It used a similar strategy with the earlier cache-based language model, but it extend the coverage
of modeling from single word to sequence of words. However, this work also shows that most of
the improvement still comes from modeling the exact same word.

The idea that these works are trying to deliver is similar: despite the fact that a standard lan-
guage model can model the communicated information well, adding more temporal information
to the language model can achieve even better performance. Such temporal information includes
the recurrence of content words and some extension. The effect of the context will diminish when
the communication continues progressing, since the far distance in communication can indicate
that stored context might not be relevant anymore. The high-level idea presented here, which is
the occurrence of the word that are already observed can affect the probability of other words
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around itself, is similar to our approach. But regarding the implementation, the way these works
models the temporal information based on the word tokens created by the ASR systems. Our
approach models the temporal information based on the elapsed time in conversation, this is one
of the core difference. This concludes one of the major difference between conversational speech
and formal texts, that there are additional information in conversation such as word recurrence
and temporal distance between content words that can be utilized to achieve better understanding.

2.1.4 The Introduction of Word Burstiness

(Church and Gale, 1995) notes that real texts systematically exhibit this phenomenon: a word is
more likely to occur again in a document if it has already appeared in the document. Importantly,
the burstiness of a word and its semantic content are positively correlated; words that are more
informative are also more bursty. (Doyle and Elkan, 2009) leverages this phenomenon to improve
topic modeling performance. The phenomenon of burstiness is not limited to text; burstiness also
intuitively occurs in other types of data that have been modeled using topic models, including
gene expression (Airoldi et al., 2007) and computer vision data (Fei-Fei and Perona, 2005). If a
gene is transcribed once in a cell, then it is more likely to be transcribed again. And if a patch
with certain properties occurs once in an image, then it is more likely that similar patches will
occur again.

Word Burstiness is directly related to our approach in Chapter 4, although there are still
fundamental differences between our observation and this line of work. Word Burstiness only
relies on a binary condition: whether a specific word has presence in the document or not. It does
not include any temporal information in its consideration, as it was identified within documents
for Information Retrieval. Our Word Burst originates from our observations in conversational
speech, so the temporal information is critical for our approach.

2.1.5 Word Recurrence and Human Perception

Aside from all of the computer system publications we discussed above, there are also research
efforts to identify how humans perceive these phenomena in conversations. (Tulving and Schac-
ter, 1990) defines “Priming”, which is how humans process these word recurrences. Priming
is a non-conscious form of human memory that is concerned with the perceptual identification
of words and objects and that has been recognized as separate from other forms of memory or
memory systems. The evidence of Priming was showed from experiments including different
kinds of tasks, test, type of retrieval cues, kinds of materials and subject populations. Despite it’s
mostly observed in the experimental environment, this work assumes it occurs in everyday life.

This shows that the phenomenon we discussed in previous sections that had been leveraged in
multiple computer systems really exists in human perceptions. The research on human perception
validates the usefulness of this idea, and the challenge is how exactly to use it. Our approach
in this thesis attempts to allow computer systems to leverage this information by using it as a
feature for our tasks.

13



2.2 Context and Meaning
Our work in Chapter 6 explores the relationship between the words and their surrounding context
in conversational speech to identify the meaning of the words. This relationship was presented
long ago (Harris, 1954), and there are also multiple published works that leverage this hypothesis.

2.2.1 The Introduction of the Distributional Hypothesis
The Distributional Hypothesis (Harris, 1954) was first presented in 1954. The key concept is that
it is possible to define a linguistic structure solely in terms of the “distributions” (= patterns of
co-occurrences) of its elements. There is no parallel meaning-structure that can aid in describing
formal structure. Meaning is partly a function of distribution.

This is an earlier work that links the distribution of the elements in the data with actual
meaning that humans can interpret (Harris, 1954). Following this hypothesis, statistics computed
from data can be transformed into meaning that humans can understand. For example, words that
occur in the same contexts tend to have similar meanings. There are arguments against this, such
as that the words that show up in the same context just have similar usage instead of meaning.
(e.q.: red and green tend to occur in a very similar context since they are both colors, yet their
meaning is not the same). Still, many research efforts (Bengio et al., 2003; Elman, 1990; Hinton,
1984; Mikolov, 2012) have followed this hypothesis. Our work on Distributed Representations
of utterances in this thesis is following this concept.

2.2.2 Distributed Representation of Words
(Hinton, 1984) describes a type of representation in which each entity is represented by a pattern
of activity distributed over many computing elements, and each computing element is involved
in representing many different entities. Different entities correspond to different patterns of
activity over the very same group of computing elements. A partial description activate part of
the computing elements, and interactions between the computing elements complete the pattern,
thus generating the entity that fit the description the most. A new entity is “stored” by modifying
the interactions between the computing elements so as to create a new stable pattern of activity.
The main difference between Distributed Representation and conventional computer memory is
that the active patterns are not stored anywhere. They can be re-created by using the updated
connection strength between different computing elements.

This works turns the word in a large corpus into a point in a high-dimension vector space,
and the distance between different points in the space represents the relationships in meaning
between different words. This approach can be considered as a way of turning the Distributional
Hypothesis into a model that computer systems can use. Our work in Chapter 6 is an extension
and application of this representation.

2.2.3 Applications of Distributed Representation
Distributed Representation has become a successful paradigm in multiple applications, includ-
ing statistical language modeling (Bengio et al., 2003; Elman, 1990; Mikolov, 2012), parsing
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(Collobert and Weston, 2008), tagging (Turney et al., 2010), and machine translation (Zou et al.,
2013). (Bengio et al., 2003; Mikolov, 2012) all presented high-quality statistical language model-
ing performance, and each of them use different modeling architectures for creating a Distributed
Representation. (Bengio et al., 2003) report on experiments using neural networks for the prob-
ability function, showing on two text corpora that the proposed approach significantly improves
on state-of-the-art n-gram models, and that the proposed approach allows to take advantage of
longer contexts. (Mikolov, 2012) use a simpler skip-gram model for language modeling for Dis-
tributed Representation, as it requires much less computing resource yet still achieve high quality
result comparing with the other state-of-the-art approach. This model avoids matrix multiplica-
tion used in neural network training, and replaced it with a skip-gram model, while both of them
models the relationship between the word and its context. These positive results indicate that
distributed representation as a strategy for language modeling is really successful, regardless of
the detailed modeling architecture. (Collobert and Weston, 2008) presented a single convolu-
tional neural network architecture that, given a sentence, outputs a host of language processing
predictions: part-of-speech tags, chunks, named entity tags, semantic roles, semantically similar
words, and the likelihood that the sentence makes sense (grammatically and semantically) using a
language model. The entire network is trained jointly on all these tasks using weight-sharing, an
instance of multitask learning. All the tasks use labeled data except the language model which is
learnt from unlabeled text and represents a novel form of semi-supervised learning for the shared
tasks. (Turney et al., 2010) presents results on using distributed representations for semantic pro-
cessing of text. It survey three different types of Distributed Representation, which are based on
termdocument, wordcontext, and pairpattern matrices of the documents, for modeling the seman-
tic of a text document. These different modeling approached are applied to multiple applications
including document retrieval, document clustering, document classification and lots of other ap-
plications. (Collobert et al., 2011) proposes a unified architecture and learning algorithm that can
be applied to various natural language processing tasks using distributed representation includ-
ing part-of-speech tagging, chunking, named entity recognition, and semantic role labeling. This
versatility is achieved by trying to avoid task-specific engineering and therefore disregarding a lot
of prior knowledge. Instead of exploiting man-made input features carefully optimized for each
task, their system learns internal representations on the basis of vast amounts of mostly unlabeled
training data. (Zou et al., 2013) introduces bilingual word embeddings: semantic embeddings
associated across two languages in the context of distributed representation, and they leverage it
for phrase-based machine translation. They use a new objective function which embodies both
monolingual semantics and bilingual translation equivalence to learn bilingual embeddings.

All of these works demonstrate how distributed representation can benefit different forms
of natural language processing, especially from a semantic perspective. We will leverage this
representation for our Spoken Word Sense Induction task in Chapter 6.

2.3 Summary
In this chapter, we presented previous work that examined similar ideas to the two human-
oriented phenomena that we leverage in the thesis. For the Word Burst phenomenon, since
we observed it through conversational speech, we place emphasis on the temporal information,
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which is not the focus of previous works. For our work that leverages context to identify the
meaning of words, our approach is an application of Distributional Hypothesis to speech tasks.
Our work will be focus on spoken language and conversation, which means it will not be ap-
plied on formal text, and meaningless word in conversation will be expected. In general, our
work will have to be more robust on unclean (either from recognition error or how people talk in
conversation) data compare to well-formed text.
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Chapter 3

Component Technologies

In this chapter, we discuss the component technologies for this thesis. First, we will introduce
Automatic Speech Recognition (ASR). Most of the speech applications use ASR to convert audio
into text and then apply different processing. As a result, it can be considered as the foundation
for different speech applications. We then discuss the related technique for the Spoken Term
Detection (STD) task, which is on of the focus of this thesis. These component technologies
show how other people address the task we are working on, and the same task can be approach
from different directions. Last but not least, we will discuss the related work for the Spoken
Word Sense Induction (SWSI) task. From these component technologies, we can see that the
general idea in this task is similar, yet we discover a better model for context information. This
chapter maps the progress of the field for the task we are working on.

3.1 Automatic Speech Recognition
Automatic Speech Recognition (ASR) is a fundamental task in the speech processing community.
The purpose of ASR is to identify words spoken in the audio stream. Without this transformation,
the information contained in the audio stream cannot be easily represented in certain structures,
and it is also more difficult to transfer from one person to another (Brown et al., 2001). (Qin,
2013) presents the general framework for an ASR system, as shown in Figure 3.1. The following
section references the write up from (Qin, 2013). An ASR system generally includes two com-
ponents: the front-end and the decoder. The front-end extracts feature observation from the input
speech signal, so as to obtain an appropriate representation of speech. The decoder then outputs
decoder output according to the feature representation generated by the front-end. The mathe-
matical formulation introduced in (Jelinek, 1997) are as follows: The ASR system generate the
most probable word sequence W from the observed sequence O:

W = arg max
W

P (W |O) = arg max
W

P (W )P (O|W )

P (O)

P (W ) is the prior probability of the word sequence W , P (O|W ) is the likelihood of the
observation sequence O given the word sequence W , and P (O) is the probability of observing
O. Since P (O) is not a variable of W , the above equation can be written as
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W = arg max
W

P (W )P (O|W )

For P (O|W ) and P (W ), those probability can be estimated from the predefined acoustic and
language model, which are the components in the decoder.

The decoder output can be represented in several formats, with each format having its own
strengths and weaknesses. Since ASR is not the focus of this thesis, we will briefly introduce
each component in a standard ASR system, and the difference between decoder output.

Figure 3.1: General framework for an ASR system (from (Qin, 2013))

3.1.1 Front End

The input speech signal for the front-end is a time-domain sampled speech waveform. This is
commonly used for storing speech data. The ASR system tries to simulate how human hearing
works, which is based on the characteristics of speech sounds in both frequency and time domain.
As a result, a spectral representation of speech signal can be considered to be more appropriate
than the time-domain based representation of speech signal for ASR. Since a speech signal is
stationary within a short period of time but changes over a longer time (Rabiner and Juang, 1993),
we need to segment the input speech signal into small frames when extracting the features. A
commonly used frame length is 10 msec, which is considered as long enough to capture the rapid
transitions in speech yet has good enough time-domain resolution. The mel-frequency cepstral
coefficients (MFCCs) are one of the most popular feature representations in speech recognition,
as the mel-scale approximates the human auditory response better. (Davis and Mermelstein,
1980)

3.1.2 Decoder

Following the front-end feature extraction, the decoder computes the most probable word se-
quence from the extracted feature. A decoder make use of three knowledge sources, which are
acoustic model, language model, and dictionary, as shown in Figure 3.1 (Qin, 2013).
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Acoustic Model

An acoustic model is used in ASR system to represent the relationship between an audio signal
and the phonemes or other linguistic units that make up speech. The model is created by taking
audio recordings of speech, and their text transcriptions, and using software to create statistical
representations of the sounds that make up each word.

For the acoustic model, most decoders adopt hidden Markov models (HMMs) (Baum et al.,
1967; Baum and Petrie, 1966) to capture the acoustic characteristics of speech data. The HMM
parameters can be estimated by using the Baum-Welch (BW) algorithm (Baum et al., 1970), a
special case of the Expectation-Maximization (EM) algorithm (Dempster et al., 1977).

Language Model

The language model is used for obtaining the prior probability of a specific word sequence in
a language. In the formula that’s presented in section 3.1, it represent the P (W ). The most
commonly used language model is the n-gram language model. It uses a Markov model as
an approximation of the true underlying language. It is very helpful to discriminate acoustic
ambiguous speech and reduce the search space while decoding. For example, it is very difficult
to discriminate the following two utterances, “I OWE YOU TOO” and “EYE O U TWO” from
acoustic information. With the language model, we know that the first utterance is more likely
to happen in real life.

Dictionary

The dictionary is the third component in a decoder. It is the bridge between the acoustic model
and the language model. While the acoustic model and language model work by measuring
the different properties of speech in a language, the dictionary links both models with lexical
knowledge. The dictionary provides pronunciations of words that maps the relationship between
the decoded phones and words, so the decoder knows which HMMs to use for a certain word. It
also provides a list of words for the decoder. As a result, an ASR system can only recognize the
words present in the dictionary.

3.1.3 Recognition Hypothesis

The decoder generates decoder output based on the input speech data; these hypotheses can be
represented in different ways. Aside from the most commonly used lattice, which contains the
most information according to the decoder, there are two different decoder output that are also
common, single-best recognition hypothesis and confusion network. The single-best recognition
hypothesis contains only the most probable recognition result, and its the easiest to be used
by other application. The confusion network is a simplified version of lattice, which will be
introduced in the following sections. (Chelba et al., 2008) provides an illustration of how lattice
and confusion networks represent the same input speech, which are presented in Figures 3.2 and
3.3. The following sections references the write up from (Chen et al., 2013b) and (Mangu et al.,
2000).
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Lattice

Figure 3.2: An example lattice (from (Chelba et al., 2008))

Lattices are probability networks of the possible decoder output. A lattice contains a set of
word hypotheses with boundary times and transitions between different hypotheses (Ortmanns
et al., 1997). It can be found that a lattice tends to contain a large number of word hypotheses in-
cluding both the true hypotheses and the competing hypotheses. The 1-best decoding hypothesis
can be created by following the most probable path in the lattice.

Figure 3.2 is an example lattice. As presented in the figure, each edge in the lattice represents
a possible recognition hypothesis from a given starting and ending node, while the node in the
lattice is the possible word segmentation when selecting a specific path. Between nodes 0 and
2, it is possible that the recognized result is represented as “oh oh” by going through a path of 0
→ 1→ 2 or “oh” by the 0→ 2 path. These paths enable the recognition hypothesis to preserve
more context information. Another characteristic of lattices can be presented between nodes 10,
11, 12, and 13.There are many edges for the word “dog” between these nodes. This is because
their context is different, so the same word could appear in many different places in the lattice.
When the same word appears in the decoder output in different time or with different context,
the lattice will represent them as different edges.

Confusion networks

Figure 3.3: An example confusion network (from (Chelba et al., 2008))
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Confusion networks (Mangu et al., 1999, 2000) are another recognition hypothesis repre-
sentation. The motivation behind it is to remove the redundancy in the lattice yet still keep its
diversity. It is simpler and more compact compared with a lattice, since it consists of a number
of clusters connected sequentially, as shown in Figure 3.3. Each cluster consists of one or more
words associated with probabilities. A word in confusion network corresponds to one or more
arcs in the lattice, and its probability is the sum of the posterior probabilities of the arcs in the
lattice. Each cluster has a starting time and an ending time; these are calculated as weighted
averages of the starting and ending times of lattice nodes or arcs that correspond to words in
the cluster, and are then adjusted so that the ending time of each cluster is equal to the starting
time of the next cluster.The confusion network is an useful hypothesis representation because it
is much easier to search through it, and it contains less duplicated information compare to lattice.

It is possible to convert the lattice into a confusion network, but there are information losses
during the conversion, since a lattice contains deeper history information for a recognition hy-
pothesis compared with confusion networks. (Xu et al., 2011) presented a way of creating con-
fusion networks from lattice by using Minimum Bayes Risk decoding algorithm.

3.2 Spoken Term Detection
The experimental setup and evaluation metrics for the STD task were defined in 2006 (Fiscus
et al., 2007). Instead of searching the entire document, STD focuses on only detecting the pres-
ence of a specific query term. It sounds trivial when people look at it the first time, since a
brute force search on the single-best recognition hypothesis seems to handle this problem really
well. However, this is not the case when the ASR performance is limited. According to the
result presented in (Miller et al., 2007), when the ASR performance is decent (e.g. WER ¡ 15%),
searching on the single-best recognition hypothesis also has similar performance as searching on
a more complicated recognition hypothesis like lattice and confusion network. However, when
a high-quality ASR result is not available, searching into a more complicated recognition hy-
pothesis starts to have significantly better performance than performing brute force search on the
single-best hypothesis. As a result, most current STD research follows two different directions.
The first involves improving the ASR performance. If the perfect ASR is achievable, STD can
be considered as a solved problem. Second, when a high-quality ASR system is not available,
most research on STD focuses on searching in more complicated recognition representation like
lattice or confusion networks.

Figure 3.4 is the standard STD system architecture and evaluation pipeline presented in (Teje-
dor et al., 2015). The input speech is first processed with an ASR system, then the recognition
hypothesis enters a term searching system to identify the possible instances of our query term.
The detection result is then input into the evaluation tool to obtain the evaluation measurement;
the most common one is Actual Term Weighted Value (ATWV).

Term searching system in STD

Since we have already identified the need to search through a more complicated recognition
hypothesis, we introduce how STD search is done for two of the most common decoder output,
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Figure 3.4: Typical STD system architecture and evaluation pipeline (from (Tejedor et al., 2015))

lattice and confusion networks. There are discussions about how deep should we search with
the lattice/confusion network; it is a trade-off between the precision and the recall of the STD
system. The deeper we search into the recognition hypothesis, the better recall we can expect,
yet the precision will also be reduced, as more false alarms will be generated. The ideal search
strategy is still an open research question. Regarding the representation of different hypotheses,
different retrieval algorithms are applied to it.

If the hypotheses are represented in lattices, a Finite State Transducer (FST)-based search is
applied to the lattices. The entire retrieval can be separated into two parts: Indexing and Search.
At the indexing stage, the lattice of each utterance is expanded into a finite-state transducer, such
that each successful path in the expanded transducer represents a single word or a sequence of
words in the original lattice. The posterior score, start-time, and end-time of the corresponding
word or word sequence are then encoded as a 3-dimensional weight of the path. At the search
stage, in-vocabulary (IV) queries are usually compiled into linear finite-state acceptors (FSA),
with zero cost. Out-of-vocabulary (OOV) queries are mapped to IV queries (proxies) (Chen et al.,
2013b) according to phonetic similarity, which usually results in non-linear finite-state acceptors
with different cost for each proxy. Regardless of being IV or OOV queries, STD is done by
composing the query FSA with the index, and one can work out the posterior score, start-time,
and end-time from the weight of the resulting FST.

The term searching for confusion networks is carried out in another way. For single-word
queries, each occurrence of the query word in the confusion networks generates detection. The
starting and ending times of the detection are those of the cluster containing the word; the score
of the detection is the probability of the word. For multiple-word queries, dynamic programming
is used to find all paths in the confusion networks such that the words on the path form the query.
The paths may contain epsilon words, which means no recognition hypothesis is presented. Each
path generates detection result: the starting and ending times are those of the first and last clusters
in the path, and the score is the product of the probabilities of all of the words (including epsilon
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words) in the path. If multiple detections for the same query overlap, only the one with the
highest score is retained.

Research Progress in STD

The research progress in the STD task can be separated into two stages: Rich Resources Condi-
tion (Miller et al., 2007) and Limited Resources Condition (Miao and Metze, 2013). Rich Re-
sources STD is carried out for English, Chinese, and Arabic, which are considered as languages
with more resources available. STD systems under this condition do not have a limitation on the
amount of training data used for training ASR systems. As a result, a higher-quality recognition
result and better STD performance can be expected in the Rich Resources Condition.

In the Limited Resources Condition, the training data for the ASR system are limited to
10 hours, which leads to a relatively high WER (Miao et al., 2013). It is also being tested
on languages that do not have huge volumes of linguistic resources available such as Tagalog,
Cantonese, Assamese, etc. The bad decoder output heavily affect the performance of the term
searching system, since if the query words are not recognized correctly, the term searching sys-
tem needs to use a special strategy (like phone lattice search) to detect the OOV word. As a
result, research efforts (Chiu and Rudnicky, 2013; Chiu et al., 2014; Karakos et al., 2013) are
conducted to recover the damage from the Limited Resources Condition to make it as good as
the Rich Resources Condition.

There are two major approaches for the STD task, the query-by-example approach (Jansen
et al., 2010) and the ASR and term searching two stages approach (Mamou et al., 2013; Miller
et al., 2007).The two-stage approach is the current mainstream, yet we introduce both of them in
the following section after the task condition introduction.

3.2.1 Rich Resources Condition
The STD research in the Rich Resources Condition establishes the standard pipeline for STD
systems, since the ASR and term searching two stages approach that comes from SDR task has
overall better performance compared with the query-by-example (Wang et al., 2013) approach.
(Miller et al., 2007) presents an STD system that searches on word lattices. It estimates word
posteriors from the lattices and uses them to compute a detection threshold that minimizes the ex-
pected value of a user-specified cost function. For the OOV query, the system uses approximate
string matching on induced phonetic recognition hypothesis (James and Young, 1994). (Mamou
et al., 2007) presents a vocabulary-independent system that can process arbitrary queries, exploit-
ing the information provided by having both word recognition hypothesis and phonetic recogni-
tion hypothesis. This system is based on word confusion networks and phonetic lattices. (Vergyri
et al., 2007) reported their system for the STD 2006 task; they analyze the effectiveness of dif-
ferent index ranking schemes, and the utility of approaches to deal with OOV terms.

Despite those systems being different in detail, the overall structures are similar. The ASR
system and the term searching system are two indispensable components for a successful STD
system. Lattices and confusion networks have started being used as the better recognition hypoth-
esis instead of the one-best hypotheses, due to the rich information contained in them. Different
search strategies are applied to the OOV queries to compensate the inability of ASR systems to
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recognize OOV words. The most common approach is to perform search on a phonetic recog-
nition hypothesis instead of a word recognition hypothesis (Mamou et al., 2013; Miller et al.,
2007). These discoveries are still valid, as the state of the art STD systems still use a similar
pipeline and strategy.

The STD performance in the Rich Resources Condition can be good. The best system can
achieve around 80% of the maximum possible accuracy score in English. However, good results
demand high-quality ASR output. What if high-quality ASR results are not available? This
question leads STD research into the next stage: the Limited Resources Condition.

3.2.2 Limited Resources Condition
STD under the Limited Resources Condition has been proposed as a research challenge recently,
and a focus in the current speech community (Karakos et al., 2013; Mamou et al., 2013; Miao
et al., 2013). The ASR system with limited training data is unable to generate a high-quality
decoding result (e.g. when there is only 10 hours of training data available.) Hence, a low-
quality hypothesis limits the achievable performance for the term searching system, and ends up
having far worse STD performance compared with STD under the Rich Resources Condition.
The following are a few approaches people had proposed recently to improve STD under the
Limited Resources Condition.

Deep Neural Network-based Decoder

Deep Neural Networks (DNN) have been widely used in ASR recently as a better acoustic mod-
eling technique. (Dahl et al., 2012) first proposed a novel context-dependent (CD) model for
ASR. It introduced a pre-trained deep neural network hidden Markov model (DNN-HMM) hy-
brid architecture that trains the DNN to produce a distribution over senones (tied triphone states)
as its output. It provides significant improvement on the regular ASR task. (Miao and Metze,
2013; Miao et al., 2013; Zhang et al., 2014) further extend the usage of DNN with dropout and
maxout techniques to make it further robust under the Limited Resources Condition. Another
approach is to include multilingual information using the DNN from a Rich Resources language
to improve a Limited Resources language’s performance (Knill et al., 2013), it can be done by
training the deep learning model on language with richer resources, then applying the model on
the Limited Resource language. All of the related research provides solid improvement for ASR
under the Limited Resources Condition, yet the WER is still very high, as the Limited Resources
Condition severely degrades the decoding quality. As a result, this also inspires us to work on the
other part of the STD problem, as so many research efforts have already been invested in ASR,
yet the improvement is still limited.

Hypothesis Rescoring

Aside from improving ASR, one way to improve STD performance focuses on rescoring the
decoder output according to different features or information. (Mangu and Padmanabhan, 2001)
used transformation-based learning and lexical features to improve WER from the two best hy-
potheses in a CN confusion bin. Transformation-based learning requires a set of allowable trans-
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formation type and an objective function to pick the most idea transformation for the given data.
Similarly, (Allauzen, 2007) detects errors on broadcast news transcriptions using lexical, syn-
tactic, and contextual information. (Tur et al., 2013) trained conditional random fields using
CNs instead of the 1-best transcription to improve accuracy in slot-filling in semantic frames.
(Stoyanchev et al., 2012) used syntactic and prosodic features to identify mis-recognized words
to generate clarification questions in speech-to-speech translation. (Chen et al., 2011) proposed
graph-based re-ranking for STD by using acoustic similarity. (Mamou et al., 2013) proposed a
hypotheses rescoring algorithm based on the other retrieval results from the same query. The
concepts for most of these efforts are the same: Since the quality of hypotheses is bad, applying
other knowledge or information sources is beneficial for fixing the errors created by the bad ASR
system. Our work in Chapter 4 follows this line of thought, as we use our knowledge of the Word
Burst phenomenon in conversational speech as a source of information to perform recognition
hypothesis rescoring.

System Combination

The other way to improve STD performance without enhancing the ASR system focuses on
combining the ASR results from multiple systems to achieve a better STD result. The reason
why this approach can achieve better result is because different ASR systems usually have dif-
ferent parameters, and each usually has it’s own unique correct/error hypothesis. The diversity
from different systems can be integrated together to create a better result compared with each of
the individual systems. (Mangu et al., 2013) produces complementary STD systems and shows
that the performance of the combined system is 3 times better than the best individual system.
(Mamou et al., 2013) investigates the problem of extending data fusion methodologies from
Information Retrieval for Spoken Term Detection on Limited Resources Condition. (Karakos
et al., 2013) performs system combination, where the detections of multiple systems are merged
together, and their scores are interpolated with weights that are optimized using the evaluation
metrics. The combination technique combines the score for each detection to generate a new
detection list that combines the detection score from each individual system. The research shows
that the integration of diverse systems can contribute to better overall performance in STD, be-
cause the combined result has better recall for the target, yet still has a similar level of precision.
Our work in Chapter 5 follows this idea, as we use the different decoder output as a source of
new ways of combination from the same ASR system.

Morphology-based OOV detection

The goal for OOV detection is trying to break a word into a smaller unit, and performs the search
based on the smaller unit. Morphology has started to catch the attention of the STD research
community recently. The research on morphology in limited resource STD is mostly focused
on Turkish and Zulu. (Narasimhan et al., 2014) proposed using morphemes in STD for OOV
queries. The most common solution for OOV queries is to use phonetic search (Mamou et al.,
2007; Miller et al., 2007) instead of the regular word-based ASR result. However, the perfor-
mance is limited, because the phonetic unit is too small. This approach adds morphemes into the
vocabulary and performs a hybrid decoding. During the search, it converts the OOV keyword
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into a sequence of morphemes, and performs morpheme-based search on the hybrid decoding
result. It shows significant improvement on the Turkish OOV keyword search performance. Our
work in Chapter 4 also achieves better performance on Turkish, yet our improvement is on the
IV word, since our system does not process OOV words at all. (Chen et al., 2013a) proposed
morphology-driven lexicon expansion for STD systems. This approach models the productivity
of morphological phenomena, and is combined with a G2P system for OOV word reconstruc-
tion. The second pass decoding with reconstructed words shows better performance on STD in
Zulu. In general, most of these works that leverage sub-word units like phones or morphemes
can achieve improvements on the OOV keyword search, as the OOV keyword search is not cov-
ered in the standard ASR and term searching pipeline. Yet for the IV keyword, these approaches
usually will not be very helpful. Still, this can be considered as a reasonable solution specifically
for OOV words.

3.2.3 Query-by-example STD

The query-by-example approach focuses on pattern matching of spoken term queries at the
acoustic level. The motivation behind this line of research is as follows: If we can perform
signal-level matching between the speech template we already have and our target corpus, then
we can perform STD without any external resource, or the so-called “Zero Resource” condition
(Jansen et al., 2013) will be possible. The research (Hazen et al., 2009; Jansen et al., 2010;
Zhang and Glass, 2009) in this direction focuses on the condition where limited or no in-domain
training material is available and accurate ASR is unavailable. Query and the target corpus can
be represented in different parameterizations of the speech templates such as the raw MFCC
features or phonetic posteriorgrams generated by different phonetic recognizers. Query matches
in the target corpus are located using a modified dynamic time warping search between query
templates and target corpus.

Figure 3.5: An example system framework for a query-by-example STD system (from (Anguera
et al., 2013))

Figure 3.5 is an example of a query-by-example STD system’s framework that is presented
in (Anguera et al., 2013). The system performs feature extraction on both searching corpus and
spoken query. Post-processing can be applied to the extracted feature to make it more robust.
In this example system, it uses energy-based Voice Activity Detection (VAD) to trim off the
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silence/non-speech portion of the speech data. The processed data are then indexed and searched
with the DTW approach. When multiple instances of spoken query are available, the DTW
search will be performed on all different instances. After the search on multiple instances, the
system will merge the result and only output the one with the highest score.

However, there are several well-known issues in this approach, and those issues make this
approach difficult to compete with the current state-of-the-art ASR and term searching approach.
First, the robustness is not as good as the other ASR and term searching based approach. The
search completely depends on the acoustic template for the query. It can achieve decent per-
formance on the data recorded by the same speaker and in a similar environment. However,
the acoustics of the same word can be very different for many reasons: speakers, recording de-
vice/environment, the length of the word, etc. These acoustic variants limit the generality of
the searched result, since each query template only detects the part that sounds exactly like it-
self. Second, the computation is very expensive. This approach requires comparing each frame
of the speech to identify the distance of two speech templates. When processing with multiple
templates on a huge speech corpus, the computation requirement increases rapidly. Last but not
least, in order to perform STD with this approach, a speech template as query is needed. How-
ever, given the condition on which it claimed to focus, where limited or no in-domain training
material is available, it is difficult to obtain the required query speech template, especially when
you are searching on lots of different queries. As a result, this approach is mostly applied to the
situation where less query template are required.

Recently, (Lee et al., 2014) proposed a graph-based re-ranking approach based on the concept
that search results, which are acoustically similar to other results with higher confidence scores,
should have higher scores themselves. This follows the query-by-example idea, but uses the
acoustic information for rescoring the result coming from an ASR and term searching based
STD system. This avoids many issues that occur in the standard query-by-example STD setup,
as the acoustic distance is only computed on a small portion of data that is identified by the ASR
and term searching based system; computation is no longer a significant issue. Also, the ASR and
term searching based system will identify the possible location for the query and extract those
as templates, so that template generation is also done automatically. This approach provides
improvement on the STD performance for OOV words, since the ASR system cannot process it
at the word level, and phonetic transcription is more noisy. However, when the query is an IV
word, it cannot provide statistically significant improvement on the performance.

In general, the query-by-example based approach can provide good improvement on STD
when the standard ASR system cannot address that condition too well, such as on OOV words.
However, when the query can be processed within the standard pipeline, the query-by-example
approach becomes less effective. (Lee et al., 2014)

3.3 Spoken Word Sense Induction
SWSI is the task of automatically identifying the senses of spoken words without the need for
handcrafted resources or manually annotated data. A SWSI system usually includes two major
components: the ASR system and the Word Sense Induction (WSI) system. We already intro-
duced the ASR system earlier this chapter.In this section, we focus on the WSI system which is
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similar to a standard document clustering system.
Before discussing the related work for WSI, we first introduce Word Sense Disambiguation

(WSD), which can be considered as a precursor to the WSI task.

3.3.1 WSD

WSD is introduced in section 1.3.3. The result obtained from this task can impact other computer-
related writing, such as discourse and improving the relevance of search engines. The general
strategy addressing WSD is shown in in Figure 3.61. The figure demonstrates how a WSD sys-
tem disambiguate multiple instances of the word “kiwi” as the fruit or the bird that cannot fly in
Australia.

Figure 3.6: Illustrative example of the general framework for WSD task (from footnote 1)

We input the target word and its context into a WSD system, and the system leverages its
(usually human-labeled) resource to identify the sense of the given target word according to
the context. Since most of the approaches here require sense-tagged data provided by humans,
porting WSD systems from one language to another requires significant effort to collect the
required data. The following are a few approaches that have been presented to address the WSD
task.

1http://naviglinlp.blogspot.com/2012/05/lecture-14-project-presentation-and.html
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Supervised approach

Supervised WSD is similar to a standard Machine Learning classification task. It requires la-
beled training data to train a classifier for each target word. Support Vector Machines (SVMs)
is one of the most successful approaches so far (Zhong and Ng, 2010), because it can cope with
the high dimensionality of feature space properly. However, due to the fact that it cannot adapt
to new languages without retraining the classifier (which requires annotated data from the new
language), its generality is limited. (Khapra et al., 2009) tried to use a trained model from one
language to test on another language, and the WSD performance was poor, which demonstrated
the limitation on generality for the supervised WSD approach. These approaches can be con-
sidered as very standard Machine Learning applications, and good results can be achieved when
the appropriate training data are available. However, obtaining appropriate data is never an easy
task.

Knowledge-based approach

The knowledge-based approach uses existing knowledge resources with specific human-designed
rules for WSD. (Navigli and Lapata, 2010) proposed using Degree on WordNet (Fellbaum, 1998)
and BabelNet (Navigli and Ponzetto, 2010) to create a semantic graph and use the structure of the
graph for WSD. This approach has a similar limitation with the Supervised approach, which is
difficult to adapt to new languages due to the lack of existing data. Still, it is capable of achieving
good performance on an English WSD task (Navigli and Vannella, 2013). The lesson we learned
from these approaches is similar to what we learned in the supervised approaches: when the
appropriate training data are available, good WSD performance can be achieved in automatic
systems, yet the labeled training data might not always be available.

Semi-Supervised approach

(Yarowsky, 1995) presents the most famous Semi-Supervised method that uses a limited sense
inventory, a few sense-labeled examples, and an unlabeled corpus to create a WSD system. The
system uses the known example to predict the word sense for the word in the unlabeled corpus,
similar to the concept of relevance-feedback (Rocchio, 1971). This is one of the earliest works
to leverage the unannotated data to disambiguate the meaning of a keyword. It shows that with a
very limited amount of sense-tagged data, we can still achieve decent performance on the WSD
task. This can be considered as one of the pioneers for the WSI task, since removing the small
initial sense-tagged examples can make this approach meet the requirement for a WSI approach,
which does not use any human labeled data.

3.3.2 WSI
A WSI system can be considered to be an unsupervised WSD technique using Machine Learning
methods on raw data without relying on any external resources such as a dictionary or sense-
tagged data. The algorithm usually infers word sense from data by clustering keyword instances
following the Distributional Hypothesis (Harris, 1954), which is popularized with the phrase “a
word is characterized by the company it keeps” (Firth, 1968). Figure 3.7 (Liu et al., 2012) shows
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a general framework for a text clustering system, and for SWSI, the text just needs to be replaced
with the output generated by an ASR system.

Figure 3.7: A general framework for text clustering/WSI system (from (Liu et al., 2012))

The “Constructing feature space” block and the “Similarity comparision” blocks in the fig-
ure are two main steps for document clustering. The keyword identification step cleans up the
raw input data, including stop word removal and stemming. The feature space for clustering is
then extracted from the cleaned-up data, and the clustering is performed based on the extracted
feature. Most WSI systems extract the different senses of words following one of these two
approaches:

• Local approach: Cluster the instances of a keyword solely according to the context that
co-occurs with the keyword

• Global approach: Represent the instance of a keyword and its context according to a model
trained with a larger corpus. This approach usually requires more data but can achieve
better performance.

It is worth noting that including more unlabeled data into a WSI system can usually achieve
better performance, as there are more data available for learning. Since the distinction between
WSD and WSI involves whether the labeled resource such as a dictionary or sense-tagged data
are used, adding unlabeled data does not violate the definition of WSI. Still, in this thesis, we
do not focus on adding extra unlabeled data to our SWSI system, as our goal is to discover a
better way of representing the data. Most of the works in the field can be separated into a few
categories according to the clustering strategies.
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Simple Clustering approach

The assumption for this line of research is that words are semantically similar if they appear
in similar contexts. (Lin, 1998) used syntactic dependency statistics between words that occur
in a corpus to produce a set for each discovered sense of a target word. By defining a similar-
ity function, several clustering algorithms are applied to word feature vectors (Pantel and Lin,
2002), such as K-means, Bisecting K-means (Steinbach et al., 2000), Average-link, Buckshot,
and UNICON (Lin and Pantel, 2001). Clustering by committee (Pantel and Lin, 2002) also uses
syntactic contexts for the task of sense induction, but uses a similarity matrix to encode the simi-
larities between words. It relies on the notion of committees to output the different senses of the
word of interest. These approaches use simple methods to represent the context for each word
and standard clustering technique for the WSI task. The assumption still holds, yet there is more
research to be done on more complicated features or customized clustering techniques for the
WSI task.

Extended Clustering approach

This line of research considers that words tend to manifest one sense per collocation (Yarowsky,
1995). A good example of the extended clustering approach is the context-group discrimination
algorithm (Schütze, 1998) that is based on large matrix computation methods. (Pinto et al., 2007)
tried to improve the utility of small corpora through self-term expansion. (Brody and Lapata,
2009) frames the WSI task in a Bayesian context by considering contexts of ambiguous words to
be samples from a multinomial distribution. More recently, (Pedersen, 2013) reported their WSI
systems based on second order co-occurrence features. Generally speaking, these approaches
can be considered as an improvement on features or clustering algorithms for a simple clustering
approach. This is still one of the most popular approaches even for recent WSI systems, as the
intuition of it is clear and easy to understand. Our work in the thesis also belongs to this category,
as we aim to obtain a more robust feature for the SWSI task.

Graph-based approach

Most of the graph-based approaches assume that the semantics of a word are represented by
a co-occurrence graph, where nodes are co-occurrences and edges are co-occurrence relations.
The co-occurrences between words can be captured through the basis of grammatical relations
(In this paper, means different Part-of-Speech tagging pairs) (Widdows and Dorow, 2002) or
collocation relations (Véronis, 2004). HyperLex (Véronis, 2004) is considered as a good graph-
based algorithm, based on the identification of hubs in co-occurrence graphs that have to cope
with the need to tune a large number of parameters (Agirre et al., 2006). There are also multiple
clustering algorithms being proposed for the graph-based model, including Curvature Clustering
(Dorow et al., 2004); Squares, Triangle, and Diamonds (SquaT++) (Navigli and Crisafulli, 2010);
and Balanced Maximum Spanning Tree Clustering (B-MST) (Di Marco and Navigli, 2013).
These aim at identifying word meaning using the local structural properties of the co-occurrence
graph. Although concurrence can be considered as a way of representing the context, we separate
this into a different sub-section other than an extended clustering approach because there are
many research efforts invested in this phenomenon.
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Graphical Model / Optimization approach

Ever since its introduction, Latent Dirichlet Allocation (LDA) (Blei et al., 2003) has been applied
to many different language processing tasks. (Lau et al., 2013) presents a WSI system based on
LDA modeling. In order to decide the number of topics T, which is originally a parameter in
LDA, it relaxes this assumption by extending the model to be non-parametric, using a Hierar-
chical Dirichlet Process (Teh et al., 2006). These approaches achieved very good performance
in a recent WSI shared task (Navigli and Vannella, 2013). On the other hand, (Pedersen, 2013)
treated the WSI task as a submodular function maximization problem, which also achieved good
performance on WSI recently. These works model the context of target words with different
models, yet the general idea is still the same, using the context to identify different meaning.
They demonstrate that graphical models can be used as a better feature for clustering. These are
also part of the baseline system we present in our thesis.

Translation-based approach

Every WSI approach we described above requires monolingual data. When multilingual data
are available, research efforts have been undertaken to incorporate multilingual data for the WSI
task. Translation-based WSI involves augmenting the source language context with target lan-
guage equivalents. This approach assume the semantic information in the parallel corpus are
identical. It aims to capture more semantic info comparing to a single language by bridging the
parallel corpus with Machine Translation approach. (Apidianaki, 2008) uses a bilingual paral-
lel corpus to construct two dictionaries, where each word type is associated with its translation
equivalents. The lexicon is filtered in such a way that words and their translation equivalents
have matching POS tags and words appear in the translation lexicons for both dictionaries. The
result outperforms the baseline system presented in the paper, yet the paper only report the re-
sults on five keywords, which could be insufficient. Still, we anticipate that the effectiveness of
these categories of research will be limited, as a parallel corpus is not easy to obtain.

The comparison between our approach and these related works will be discussed in section
6.3.3.

3.4 Summary
In this chapter, we reviewed the task-level related literature for the thesis, including Automatic
Speech Recognition (ASR), Spoken Term Detection (STD), and Spoken Word Sense Induction
(SWSI). For the speech-oriented tasks we have introduced, the state of the field is already able to
produce a robust system for clean data if a substantial amount of training data is available, since
simple approaches that were explored earlier such as the n-gram language model can perform
very well under easier conditions. When processing on noisier data or when fewer training
data are available, the performance starts to drop as these modeling approaches are unable to
perform well under more difficult conditions. This is relevant to the goal for our thesis, which is
trying to identify a robust and easy-to-adapt method to process these noisy speech data. Some
research starts to introduce external knowledge such as context words or topics to improve the
performance under difficult conditions. This is commonly seen in the literature we discussed
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in this chapter. These kind of approaches base on a similar idea, that the performance for the
task could be improved if extra information are included in the model/algorithm. The context or
topic information can be extracted from a bigger corpus, which can let the knowledge benefiting
from larger amount of data. In our thesis, the external knowledge we introduce are the different
phenomena that we can discover in human conversation or automatic systems, as those do not
really require external training data to use.
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Chapter 4

Conversational Word Burst

4.1 Motivation
Recent advances in Spoken Term Detection (STD) focus on the Automatic Speech Recognition
(ASR) system. By improving the quality of ASR result, we can also achieve better performance
on STD task. However, the Word Error Rate (WER) for the ASR system is still relatively high in
several situations. One such condition is Limited Resources Condition, which limits the quantity
of training data for the ASR system. In Limited Resources Condition, limited amount (less than
10 hours) of training data are available, hence it is more challenging to create robust model from
it. This condition can also be observed in real world application when we are trying to search the
content in a less common language that have sufficient amount of data. It is also very difficult
to continue improving the ASR performance, as it is been explored by many researchers, with
diminishing returns. As a result, this thesis approaches the problem from a different perspective.
Once a decoding is produced, can we introduce external information to help us refine the noisy
recognition hypothesis? (Chiu and Rudnicky, 2013) The information we leverage also needs
to be language-independent, so that it can be apply to multiple languages. We think that Word
Burst phenomenon is one of the forms of external information that match this need, as it is how
humans organize their conversational speech. Word Burst describes the phenomenon in which
a word that has been spoken recently in conversation is more likely to recur in close proximity.
The structure of speech utterance should be consistent regardless of language; we can use this
information to identify whether part of the delivered information is not useful, and focus our
system more on the part that matches conversational structure. The reason why we believe it
can be an useful feature is because conversation typically have topics, and people will talk about
relevant topic for a period of time.

4.2 Our approach
Figure 4.1 shows where our approach fit into a standard STD pipeline. The ASR system output
lattices/confusion networks serve as decoder output for the incoming term detection/search step.
Our goal here is to leverage the Word Burst phenomenon to improve the quality of the recognition
hypothesis, aiming to achieve better STD performance. We rescore word hypotheses according
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Figure 4.1: The components in the standard STD pipeline used in the BABEL program (Karakos
et al., 2013; Mamou et al., 2013). See Chapter 3 for a discussion of the individual processing
steps.

to the Word Burst phenomenon. This thesis introduces two assumptions that flow from the
proprieties of the Word Burst phenomenon:
• The information that is delivered in close proximity tends to have elements that are relevant

to each other, so the same word is likely to cluster up within a small temporal window. This
is the key conversational feature in this thesis.

• A word that appears alone without other identical instances in close proximity tends to be
noise caused by recognition errors

These two assumptions are actually the flip side of the same coin. If the same word shows
up multiple times within a small time window, it means that all of these instances shares similar
context and hence they are all relevant, so these words could all be true. On the other hand, if a
word shows up by itself without any other identical word, this means the context may not seem
to be relevant for that word (so that there is no other instance of the same unit here), then it is
possibly a recognition error. We understand that these are very strong claims, and whether these
can contribute to our system also strongly depends on the data we employ. Still, the idea behind
these assumptions is that if we can anticipate the pattern of a word’s occurrences, then we can
use that knowledge to determine whether a machine-recognized output of a human conversation
violates these assumptions. If it does, then there could be recognition errors present, because we
do not expect people to typically talk in that way.

Given our assumption is based on time window, a common question that will show up is,
why we are using time window instead of token distance to model the relationship between a
word and its content? There are a few reasons for us to make this decision. (Bengio et al.,
2003) describes it uses word tokens to capture temporal structure between different words. Our
approach directly uses temporal information, which is more precisely on modeling the temporal
information. Moreover, our approach will be applied on to different languages, and the power
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of word tokens can varies between different languages. In an agglutinative language, a single
token can represent rich meaning that can only be described by multiple word tokens in other
languages. This makes word token being less ideal of a unit to capture the relationship between
a word and its context if we want to create an algorithm that works on different languages.
(Banerjee and Rudnicky, 2004) described “The tree learnt at the 20 second mark also revealed
the number of speaker changes to be the topmost node, implying that that is one of the most
important features for detecting the state of the meeting.”, indicating temporal window is a good
feature to understand the state of meeting. As a result, our algorithm uses time window instead
of token distances.

4.3 Word Burst and Unique Penalization Rescoring
We designed two different recognition hypothesis rescoring algorithms, the Word Burst Rescor-
ing and the Unique Penalization, to leverage the Word Burst phenomenon. The two assumptions:
“The information that is delivered in close proximity tends to be relevant to each other, so the
same word is likely to cluster up within a small temporal window” and “A word that appears
alone without other identical instances in close proximity is more likely to be noise” are im-
plemented in these rescoring algorithms. Word Burst rescoring focuses on identifying a good
balance between the two assumptions by increasing the hypothesis score of the word when it has
nearby identical instance and penalize the hypothesis score of the word when it doesn’t. Unique
Penalization rescoring focuses on trying to identify the most ideal context size for the penaliza-
tion part of the assumption. We select different context size to apply the penalty according to
whether a recognition hypothesis appears without other identical instance.

4.3.1 Word Burst Rescoring
We observe that conversations tend to focus on particular topics; the high likelihood of a con-
tent word related to the current topic occurring near other instances of the same word is called
Word Burst (Chiu and Rudnicky, 2013). More precisely, when in a conversation that touches on
specific topics, the content words within the same topic will tend to occur near each other. The
reason we emphasize content words is because the function words in spoken language occur too
frequently, and Word Burst cannot provide too much extra information because it already shows
up everywhere. A similar phenomenon was described by (Church and Gale, 1995); however
they focused on text materials, specifically under the Information Retrieval setup, which large
amount of well-formed documents are available. The current thesis explores this phenomenon in
the context of spontaneous conversations.

We define a “content” word in terms of frequency; that is, the most frequent words in an
available corpus are designated as “function” words. We take an existing vocabulary and (lim-
ited) text resources and use it to define a stop list as the most frequent words in the available
corpus; we experimented with lists that include 1 - 5% of the vocabulary, and a word not in the
stop list is considered as a content word. The benefit of this approach is that since we only have
a very limited amount of vocabulary available (due to the limited amount of training data we
have) in the Limited Resource Condition, it is not possible to identify all of the content words.
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However, since the function word or stop word will always show up frequently in any amount
of data because of the way humans speaks, identifying the common words that show up in any
corpus can give us a good idea about which words are less likely to be the content word. The
detail of deciding the size of stopword list will be discussed in the later Algorithm Development
section. The experiments are reported at section 4.6.1.

Evidence of Word Burst

The assumption in the Word Burst phenomenon is only an assumption if there is no actual ev-
idence to support it. Hence, we examined our data and showed several forms of evidence that
suggest that Word Burst exists in conversational speech.

Table 4.1: Content word window size / burst percentage.
10 sec 15 sec 20 sec 25 sec 30 sec

Cantonese 43.6 48.4 51.3 53.2 55.0
Pashto 35.7 40.2 43.3 45.7 47.9

Tagalog 40.7 45.0 48.0 50.0 51.6
Turkish 35.4 39.2 41.4 43.1 44.4

(Banerjee and Rudnicky, 2004) proposed using a window size of 20 seconds to detect the
topic state in meetings; we used this as a starting point for identifying Word Burst. Table 4.1
shows the percentage of content words that have another instance of the same word that appears
within 20 seconds. We exclude words from the top 1% and all singletons in the available corpus
and consider the rest of the word as content words. As can be observed, content words (as
defined) tend to occur in bursts. Among the different languages we analysis, Turkish has low
percentage of content word, since it is an agglutinative language, and word tends to recur in
morphological variants, hence it is harder to have Word Burst on Turkish.

Another form of evidence is to look at the distribution of a specific word in our data. Figure
4.2 provides a visual example, using the distribution of the Tagalog term magkano in our data.
In the graph, we can see that the words have the tendency to occur in bursts. However, this needs
to vary according to language. In an agglutinative language such as Turkish, words can appear
as morphological variants and thus require a longer stop-word list or a better way of normalizing
the word back into the simple form, instead of only performing exact word matching.

The reason why we did not leverage topical word information to identify Word Burst is that,
since we are processing data in the Limited Resources languages, we do not know the meaning
of the word token in those languages. Even if the topical word can be identified by a trained
topical models, it is difficult to train a high quality topical model with limited amount of training
data available (Which is the condition we are working with in this chapter.)

Algorithm Development Process

After we established that the Word Burst phenomenon exists, the next question is how to develop
an algorithm to leverage this phenomenon to improve the quality of recognition hypotheses.
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Figure 4.2: Term incidence for Tagalog magkano, which means “How much?” in English (x-axis
is time of conversation in seconds; each individual line represents separate conversations, and the
crosses on the lines are the locations where an instance of magkano occurs)

First, we believe leveraging context is very important, especially identical words that occurs
in the neighbors. That is how Word Burst phenomenon expect the distribution of the content
word. Therefore, every recognition hypothesis received a bonus if there are other instance of the
same word nearby within a predefined window size. If not, it receives penalty. Our proposed al-
gorithm is similar to how the Word Burstiness are leveraged in (Church and Gale, 1995), yet we
limit the effect of coocurrence bonus from full document to a localized context. This initial ver-
sion of the rescoring reduces our system’s performance, since after the rescoring the recognition
hypothesis score of stopwords usually received lots of bonus due to the high frequency it shows
up in the conversation. Our analysis in 4.3.1 defines Word Burst only focus on the content word,
since stop word usually occurs too frequent and is less informative for understanding the conver-
sational topics. As a result, a stop-word list is used to minimize the over-bonus problem. With
this setup, we are able to achieve positive result, which is reported in (Chiu and Rudnicky, 2013).
In addition, every rescoring algorithm is based on an existing system, it is also important to
find a balance between trusting the original system and rescoring to achieve better performance.
Receiving bonus from the recognition errors might cause false alarm being spread to other recog-
nition hypothesis, and there are always words that just tend to show up alone, penalizing every
word that does not have a instance of itself in neighbor will cause the overkill of the recognition
hypothesis score. As a result, we also introduce a threshold to determine whether or not to use
the rescoring algorithm or not. The threshold is computed by tuning on the development data.

Deciding how to apply the Word Burst phenomenon in our rescoring algorithm is also chal-
lenging. When having many different input features, computing a weighted sum as output be-
tween different input features is a common approach, which is similar to the computation used in
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Deep Neural Networks (Hinton et al., 2012). The first attempt was to add or subtract a fixed prob-
ability when these condition were met. The problem coming out of this approach is that, since
the score of recognition hypothesis is a probability, adding / subtracting a fixed value could let
the score go above 1 or below 0, which violate the property of probability. Of course this can be
fixed by bound the score to 0 and 1 if it goes beyond the bound after rescoring, but this approach
also has another limitation: it assume all the bonus and penalization are identical, and the only
thing matter is the number of occurrence of the other identical words. This is relatively far from
the concept of weighted sum of the input features, as the computation of the output result is not
affected by the property of other input contexts. This can be fixed by deciding the bonus/penalty
according to the property of context (other instance of the same word around rescoring target).

To include more information from the input features to get a better weighted sum for the
output, we investigated the features that can be used for rescoring, and we identify three features
that could be leveraged for our algorithm: the distance between our rescoring target and the other
instance, the probability of our context that will be leveraged for rescoring and the number of
instance around our rescoring target. The intuition behind these factors are described as follows:
The distance between our rescoring target and its context represent how the topical information
fades according to time, and the bonus should reach zero when it is at the border of our window
size. We did not find a function that’s better than linear on both performance and explanation, so
a linear function is been used as the function to represent the relationship on distance between
rescoring target and it’s context. The probability of the context indicates our confidence about
the context should also affect how much bonus the rescoring target can receive from its context.
Having a word that’s very likely there should gain more bonus comparing to having a word that
has much lower recognition probability around, since the latter is more likely to be a recognition
error.

A weighted sum is computed by multiplication on the input feature then summing up as the
output. To simulate this operation, we consider the score of the original hypothesis is always
given a weight of 1, and its context provided bonus based on its features that are described in the
last paragraph. To enhance the importance of multiple instance of identical words showing up in
near context, the score provided by the context is further multiplied with an extra factor, which
represents the fact that, if there are more instances of the same word occurring in a small region,
it is a even stronger indication that the word really exists there, so these extra instances should
receive a further bonus. With tuning on the development data, we obtained the power of e as
this extra bonus function, as the exponential grow represent the extra bonus for the same word
showing up in close proximity. When it’s lacking identical words in the context, we reduce the
weight for the original hypothesis, since it is violating the Word Burst assumptions.

After the rescoring, there’s a normalization step to normalize the probability of all hypotheses
that shows up in the same time. The normalization compute the sum of the rescored hypothesis
score and divide individual score to the sum to make sure the recognition hypothesis score is still
a probability, and being compatible the the search system we use. This is also useful for avoiding
score going above 1, which is commonly seen when there are several identical word clustered
together, as the weighted sum have no upper bound of the possible score. Through normalization
we can still maintain the relative relationship between different hypothesis yet bound the score
back to the probability space.

The parameter tuning process is the key to make Word Burst rescoring algorithm being ef-
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fective. Due to there being multiple parameters (window size, threshold, penalization or bonus
parameter) that need to be tuned, we use grid search on these parameters and evaluate the perfor-
mance on development data. While doing grid search, we only move one parameter with a small
constant while keeping other parameter fixed and see which value provide the best performance
on development data. We iterate through each parameter in this way to obtain a local optimal
parameter sets.

Rescoring Algorithm

Word Burst rescoring relies on our two assumptions: The same word is likely to cluster up within
a small temporal window, and a word that appears alone without other identical instances in close
proximity tends to be noise. When converting this assumption into the recognition hypothesis
rescoring algorithm, the algorithm manipulates the hypothesis score according to the presence of
the other identical words. For each hypothesis, if there is another hypothesis for the same word
temporally close, it is assigned a score bonus; if there is no other hypothesis of the same word
close to it, it receives a penalty. There are also exceptions for each case, which are described in
the following graph.

Figure 4.3: Concept of Word Burst Rescoring

Figure 4.3 illustrates Word Burst rescoring. The y-axis in this figure shows the probability of
each hypothesis. There are three cases A, B, and C to which we apply our rescoring algorithm.
There are A1 and A2 that are the same word as A. Both of them occur near A in time. Both B
and C have no nearby instance of the same word.

The transition in the figure shows how the rescoring algorithm works. There are three possi-
ble cases that are represented by hypotheses A, B, and C for Word Burst Rescoring. For hypoth-
esis A, the probability of A is boosted in proportion of A1’s probability. Although hypothesis A2
also occurs near A, the probability is below a threshold, possibly because A2 might be a recog-
nition error. Hence, hypothesis A2 does not boost A. Both hypotheses B and C are isolated, with
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no same-word neighbors. Since hypothesis B already has high probability, we assume that it is a
correct recognition. However, for hypothesis C, we penalize the probability, since it violates the
Word Burst assumption.

The algorithm uses probabilities from hypotheses to decide whether to apply rescoring or
not. This modification addresses some issues that might happen in the Word Burst assumption:
• Some hypotheses in the decoding result are recognition errors. Boosting probability ac-

cording to recognition errors degrades the quality of the decoding result. We assume that
very low p means an error.

• Some words do occur alone. These words can be assigned very high probability during
decoding. Penalizing all isolated word harms performance, so we do not do it.

The following formulas show the algorithm:
For each word x, xi and xj are two different hypotheses of the same word. The p′(xi) is the

probability after rescoring, and the p(xi) is the probability before rescoring. If there is no xj that
occurs close to xi, and the probability of xi is below the penalty threshold pt, then p′(xi) can be
computed as:

p′(xi) = p(xi) ∗ penalty(L)

where penalty(L) is the language-dependent penalty for each non-burst word.
If there is xj that occurs near xi, and the probability of xj is above the bonus threshold bt,

then p′(xi) can be computed as:

p′(xi) = p(xi) + b(xi)

where b(xi) is a bonus function computed from xi

b(xi) = (
∑
j

w(xi, xj) ∗ p(xj)) ∗ eS

where w(xi, xj) is the weight for Word Burst between xi and xj , and S is the sum of all
weights for different xj .

w(xi, xj) = 1− (dis(xi, xj)− windowsize)

S =
∑
j

w(xi, xj)

dis(xi, xj) is the time distance between instance xi and xj . windowsize is the maximum
time interval for a Word Burst. The thresholds pt, bt, penalty(L), andwindowsize are computed
from the development set.

Performing extra iterations of Word Burst rescoring does not achieve further improvement; as
a single iteration will significantly affect the probability distribution of each word in the hypothe-
ses, the rescored recognition hypothesis already has an extreme confidence for each hypothesis,
and the false alarm that would get penalized is already been penalized significantly. We tried
on our rescored result and none of them can benefit again from iterative application of the same
rescoring algorithm.
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Target Extension for Word Burst

Word Burst uses the recurrence of a word hypothesis for rescoring but relies on the recurrence of
the same word, thus is a problem in agglutinative languages where the hypothesis may reoccur,
but as a morphological variant. This phenomenon limits the detection of Word Bursts. Section
4.6.1 presents describes experiments on extension.

One solution is to find a way to extend the target set used for Word Burst rescoring. The hy-
pothesis can then be rescored based on the occurrence of hypotheses that belong to the set. There
are several ways to create hypothesis sets; we want to focus on simple language-independent
approaches, fitting the theme of the thesis. We present two different approaches to address this
problem.

The first approach is Substring-based target extension. A simple approach, for language
with alphabetical writing systems, is to use sub-string overlap. Each hypothesis is grouped with
the hypotheses that share a substring. This method accounts for some morphological variation,
since the hypotheses will likely share characters. For example, the hypothesis prepared and
preparation share a substring of prepar. The substring technique does not require language-
specific knowledge, which makes it easier to apply to alphabetic languages. For agglutinative
languages, we can tune substring length on development data.

The second approach is Morphology-based target extension. As a comparison, we evaluate
the use of language-dependent morphology to perform target extension. That is, we segment
each word in our dictionary into multiple sub-word segments. For example, the word unfriendly
is segmented into un-friend-ly. We form sets for Word Burst target extension according to the
overlap of sub-word segments.

4.3.2 Unique Penalization Rescoring

Unique Penalization rescoring focuses on the second assumption we presented at the beginning of
the chapter; a word that appears alone without other identical instances in close proximity tends
to be recognition error. In this set of experiments, we wish to identify: What is the appropriate
“close approximate”? The rescoring algorithm here is really simple: If a recognition hypothesis
only appears in the designed size of context once (unique), we consider it as a recognition error,
and hence reduce its recognition confidence score. In this section we examine the proper context
size that can support our assumption. The experiments are reported at section 4.6.2.

Three levels of Context

Since we are working with a recognition hypothesis from an ASR system, only the hypothesis
that has a high probability from the ASR system can be considered as a word that is really present
in the corpus. The corpus we use here will be described in section 4.5.1, which has 10 hours of
speech in six different languages. Unique Penalization asserts: If a keyword is really present,
it is likely to have at least one instance with high confidence score at a given level of context.
Otherwise, the instances of the keyword are all recognized with low confidence score only, which
is likely the result of recognition errors. We define three different levels of context:
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• Corpus: If a keyword is recognized confidently in the entire corpus once, we classify the
low confidence score instances of the keyword in the corpus as correct recognition results.

• Conversation: If a keyword is recognized confidently in a conversation once, we classify
the low confidence score instances of the keyword in the same conversation as correct.

• Speaker: If a keyword spoken by a speaker is recognized confidently once, we classify the
low confidence score instances of the keyword spoken by the same speaker as correct.

Since the data we have consist of conversational telephone speech, it is limited to two speak-
ers at most. The conversation context can be considered as twice the size of speaker context.
The corpus context represents the ASR system’s tendency to some extent, as it relies on whether
some of the words have ever been decoded confidently by the ASR system. If a word does not
have any instance of hypothesis that is recognized confidently, it is possible that the word really
did not exist in the corpus, or the ASR system does not tend to recognize that word.

Algorithm Development Process

After realizing the most of the gain from Word Burst rescoring coming from the false alarm
reduction (more detail will be discussed in section 4.7.1) in penalization step, we decide to further
investigate how to perform the penalization step in a better way. The problem with the predefined
window size is that it might require tuning to get the appropriate context size, we wish to use
natural boundaries to investigate the penalization part of the Word Burst Assumption. Since
we are working on conversational telephone speech, each phone call (conversation) is a natural
boundary, and if we consider each speaker may have his or her own set of word they will use,
separating different speakers becomes another context level (Speaker). If the data we worked on
has topical label of the conversation, it might be a good context size for multiple conversations
in the same topic. However, since that information is not available, we decided to use the entire
corpus as the largest context level.

The parameter tuning process is similar to how we did in Word Burst, yet since this algorithm
only has the penalization to tune, the process is simpler. We tune the penalization parameter that
has the best performance on the conversation level and applied that to all three different levels.
The reason why we pick all three levels using the parameter from conversation level is because
conversation level already shown the best performance on development data, and we expect the
testing data might have similar trend.

Rescoring Algorithm

Unique Penalization uses the context we described in the previous section for hypothesis rescor-
ing. According to our Unique Penalization assumption, we can partition all decoder output into
two groups: instances of keywords being classified as recognized correctly, and those classified
as recognition errors. For a word classified as a recognition error, we apply a penalty to its
recognition confidence score.

Unique Penalization relies on “high confidence words” to prevent the word from being clas-
sified as a recognition error. The “high confidence word” is decided by a threshold. The thresh-
old is the average of the top 50% highest posterior probabilities for a hypothesis per utterance.
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Hence, the threshold changes according to different utterances. This dynamic threshold can
preserve a “high confidence word” from every utterance, instead of only favoring some well-
recognized utterances. The words are classified as recognized correctly if they have an instance
above the threshold within the same level of context. By processing all hypotheses, every word is
classified as either recognized correctly or as a recognition error. The rescoring follows a simple
formula:

For each word that was classified as potentially a recognition error:

p′(w) = p(w) ∗ penalty(L)

In the formula, p′(w) is the new confidence score after Unique Penalization Rescoring. p(w)
is the original confidence of score before rescoring. penalty(L) is the language-specific penalty
that we obtained from tuning on development data. The confidence score for the word being clas-
sified as a correct recognition result does not have to be changed during the Unique Penalization
Rescoring.

4.3.3 Difference between our approaches and previous work

Both Word Burst and Unique Penalization capture the relationship between the repeated words
during conversation. Word Burst focuses more on manipulating the recognition hypothesis in a
smaller temporal window, while Unique Penalization focuses on varying the size of context at
three different levels to determine which is the most ideal setup for conversation speech. Both
approaches follow the similar intuition with the previous work on exploiting context for language
processing, yet there are a few major differences. First, most of the work done before (Kuhn and
De Mori, 1990; Kupiec, 1989) relies on a model for the content words, while our approach only
requires a limited amount of text for deciding a stop word list. Our approach does not require
knowledge/data on the content word (Jelinek et al., 1991) to leverage it; this makes it easy to
adapt to new languages. Second, the sources of context are different between our approaches
and the traditional context works. The earlier work obtains context from a sizable number of
text documents or well-structured spoken documents (Church and Gale, 1995), where the source
of context is of good quality and quantity. Our approach employ the context from the noisy
decoder output, and only the words within few seconds of each utterance. The quality and
quantity of the available context is not as good as in previous work, yet it can be leveraged with
far fewer requirements. In addition, Word Burst utilizes the context of temporary topics during
conversations, which is dependent on the time distance instead of the number of recognized word
tokens (Rosenfeld and Huang, 1992). This captures the degradation of specific topics regarding
times, since the silence during conversation leads to the end of a topic. While the traditional work
focuses on the token distance or whether it is in the same document, it does not put any focus on
time and silence. A 20-second silence is ignored in the previous works, yet it can mean the end of
current topic in the Word Burst setup. (Young et al., 1989) only considers the temporal distance
between different utterances, while our work also addresses the temporal distance within each.

The difference on strategy of leveraging Word Burst in our current work and previous work
also demonstrate the difference of Word Burst on text document (such as article or web page) and
conversational speech. First, the text version’s (Church and Gale, 1995) burst range is the entire
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document, while the conversational version has a more limited window for about 20 seconds.
This differences indicates the fact that it is more likely to have topic change in conversational
speech than in text documents, so the coverage of bursts in the conversational setup is more
limited. Second, the conversational version requires removed of stop words before applying
Word Burst. There are lots of meaningless word could be spoken in conversation, while the text
document usually are more clean. Third, the way we leverage Word Burst on conversational
speech includes both a bonus and the more likely content word and a penalty for the potential
errors, while in the text setup is focusing on the bonus only. Since the earlier Word Burst was
introduced in the Information Retrieval community, it focused mostly on text documents instead
of ASR results. The reduction of false alarm, which is the main contribution for our work, is not
the focus of the earlier research on textual Word Burst, as it does not expect errors to show up in
the textual document. We believe the Word Burst exists in these different form of data, yet the
details are different, so we need to leverage it with different ways.

4.4 Word Burst for Identifying Recognition Errors in Conver-
sational Speech

A potential drawback of Word Burst rescoring is that it requires intensive tuning to make it
effective. Since Word Burst rescoring benefits STD by reducing false alarms, we assume the
Word Burst should be a good feature for identifying recognition errors. In this section, we
describe an approach based on Conditional Random Field (CRF) (Lafferty et al., 2001) modeling
to leverage the Word Burst phenomenon as a feature for identifying potential recognition errors.
We demonstrate that, even without intensive parameter tuning on development data, Word Burst
can be used to improve the identification of potential recognition errors. We include this set
of experiments to demonstrate the generality of the Word Burst as a conversational feature, we
moreover show it can be leveraged without tuning on development data. The experiments are
reported at section 4.6.3.

CRF based sequential labeling for recognition errors

Lafferty et al. (Lafferty et al., 2001) introduced CRF, a framework for building probabilistic
models to segment and label sequence data. It proved to be a successful approach to many
Natural Language oriented sequential labeling tasks (Finkel et al., 2005; Jiang, 2005; Sha and
Pereira, 2003). We describe our strategy of using CRFs for labeling recognition errors.

Given the recognition hypothesis from a specific ASR system (and the reference, for identify-
ing the different types of recognition errors), we first compute its WER, and identify each type of
recognition error. From the recognition hypothesis, we can assign each word a label, depending
on whether it is an insertion error or a substitution error. Note that, since we are only labeling
the word that shows up, our approach does address deletion errors. Once words are given a label
of either recognized correctly or not, we can train a CRF model. For subsequent decoding by
the same ASR system, we perform sequential labeling from the CRF model we just trained. To
leverage our Word Burst as a feature for labeling recognition errors, we give each word an extra
dimension of feature which contains the Word Burst flag that could be True, False or Stop. This
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training process does not require grid search for different parameter for the model, which we
believe is less ad-hoc.

Word Burst as a language independent feature

Multiple features have been proposed to estimate ASR confidence (Benıtez et al., 2000; San-
Segundo et al., 2001), these features include different forms of acoustic scores from the ASR
system, the n-best list of recognition hypothesis, durations and language modeling scores. Most
of these works were focusing on the information from the ASR system, while the environment
and setting when the speech occurs is not considered. For example, there are no distinction
between processing a scripted recording or conversational telephone speech or broadcast news.

We leverage knowledge about human conversational speech to support our task. Word Burst,
a phenomenon we observed in conversation is an ideal candidate. Word Burst is only useful for
content words; common words recur for various reasons. Since we are not planning to introduce
any language specific information, we assume that the most frequent 1% words in our data are
stop words for that language. As a result, for each word, there could be three options for Word
Burst based features: True, False or Stop. True or false indicate whether the Word Burst occurs
for this word in the same utterance and the Stop indicate the word belongs to stop word list. We
also consider the Word Burst feature for the word before and after the current labeling word, in
order to provide richer contextual information.

This feature has some benefits. First, it can be applied to any language, as it only needs the
occurrence pattern in a conversation, it does not requires any language specific knowledge. Also,
since it does not rely on ASR system specific information (just the output), it can be used in
different systems. As well, reliance on the properties of conversation, means it can be applied to
recognition in any language.

Since the purpose of this work is to validate the Word Burst feature, there is no algorithm
development or parameter tuning process for this work. We simply use whether there are multiple
instance of the same word in a single sentence to represent word burst as a feature in standard
CRF sequential labeling, no parameter/algorithm change here, only one additional feature.

4.4.1 Difference between our approaches and previous work

Our focus on Word Burst, or the conversational context, is the main difference between our work
and the traditional CM works. While identifying new features, such as using phonetic recognition
result comparing with word recognition result, is already an approach that had been reported in
several papers (Benıtez et al., 2000; San-Segundo et al., 2001), these features only focus on the
ASR system side, and consider nothing about the context of the conversation. Our approach
is based on we knowing the recording is a conversational speech, hence the characteristic of
conversational speech can be leveraged within this task. We use recurrence of the identical
recognition hypothesis within close temporal distance as feature, which is also new compare to
the more common n-gram based approach. It’s about introducing a new feature that’s dedicated
to a specific type of recording.

47



4.5 Speech corpora and experimental design

In this section we will introduce the detail for our experiments, including the dataset we use in
both experiments, the experimental setup, the evaluation metrics and the tool we used. For the
STD under Limited Resource Condition, we also describe the distinction between two different
query sets, since these sets have different characteristics.

4.5.1 Dataset

For the rescoring experiment, we use six different conversational telephone speech recording
dataset from six different languages: Cantonese, Pashto, Tagalog, Turkish, Vietnamese and Zulu,
as provided by the IARPA BABEL program (Karakos et al., 2013; Mamou et al., 2013). For the
Word Burst target extension experiment, we focus on Zulu and Turkish, since we wish to confirm
the effect on multiple agglutinative languages. Each language has 10 hours of training data and
10 hours of development data. We use 5-fold cross validation (8 hours of development and 2
hours of testing data) for parameter tuning and evaluation. The tuning is done using grid search
over potential values of each parameters. For the final result, we used the parameter that achieved
the best performance on the development data.

For the identifying recognition error experiments, we run our experiments on five different
datasets, including two English datasets with different WERs, two Tagalog datasets with close
WER but different lexicon size, and a Zulu dataset. The reasons for selecting these languages
are: English is the language has the best overall ASR performance among these languages. How-
ever, even on English, it can still lead to relative high WER, hence our English experiments can
describe the limits of our approach on such data. The Tagalog experiments show the limitation
on a low resource language. When the WER increases due to the limited amount of training
data available, there is also another limitation on the vocabulary size. Both system use the same
acoustic model for decoding, yet using different language model with differernt vocabulary size.
Zulu is in the same space as Tagalog, yet being an agglutinative language also makes Word Burst
detection difficult. For the English dataset, we use YouTube “How To” videos (Yu et al., 2014)
which has a correct transcript but which was also artificially degraded to 20% WER and 40%
WER. This was also used in chapter 6.

4.5.2 Experiments setup

STD system description

Our STD system uses an ASR-search two-stage pipeline. The decoded hypotheses are repre-
sented as confusion networks, which is the default setup of our recognizer. Confusion networks
are generated from the combination of three different decoding systems (Finke et al., 1997). Both
Word Burst and Unique Penalization Rescoring are applied to every hypothesis in the confusion
network. Our search component outputs the location of queries in the confusion network, but it
skips OOV queries and only retrieves results for IV queries.
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Recognition error classification system description

We conducted our experiments using five different setups and in three different languages, using
several open-source toolkits. We use the CRFSuite toolkit 1 with its Python wrapper python-
CRFSuite 2. For the L1 and L2 coefficient penalty, we used 1.0 for L1 and 1e-3 for L2, recom-
mended for building a NER system on CoNLL 2002 data (Tjong Kim Sang and De Meulder,
2003). For creating the training data for the CRF modeling (which includes labeling which word
is incorrect in the decoded result), we use the Python toolkit asr-evaluation 3 which labels substi-
tution and insertion errors for the ASR result. This serve our purpose better as it provides more
detailed information about errors in the decoder output. For the evaluation metric, we report F1
score, along with precision and recall.

Evaluation Metrics

The evaluation metrics for STD is introduced in section 1.3.1. In this chapter, we focus on
the ATWV metric, which is computed from the mean of every query’s TWV score with a fixed
threshold for each query. This is the main evaluation metrics within the IARPA BABEL program.
One issue of the ATWV score is that it is really hard to interpret the result. Hence, we will also
provide IR based metric including precision, recall and F1 score. Note that one of the main
difference between IR metric and TWV based metric is that, for the IR metric, there is no special
weight on correct or error detection, yet within the TWV based setup, the correct detection and
false alarm has different weights.

For identifying recognition errors, we report standard classification result including F1 score,
precision and recall.

Code

We had published the code that had been used to completed the experiments on github. For the
experiments we described in this section, the Word Burst repository 4 contains the code for both
rescoring experiments, and the other repository 5 contains the code for identifying recognition
errors with Word Burst feature.

Original query set and Non-singleton query set for STD

ATWV is very sensitive to the characteristics of queries in the query set. For a query with
only 1 occurrence in the testing data, the TWV gain from a single correct detection is equal
to the penalty received from generating 36 false alarms. For queries with multiple instances,
this correct detection/false alarm differences are closer. Both of our approaches do not support
queries that only occur once in the entire testing data, so-called “singleton queries”. However,
the percentage of singleton queries in the original query set differs in each language. These are

1https://github.com/chokkan/crfsuite
2https://python-crfsuite.readthedocs.org/en/latest/
3https://github.com/belambert/asr evaluation
4https://github.com/jltchiu/Word-Burst
5https://github.com/jltchiu/Recogntion-Error-Classification
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Table 4.2: Singleton Query Distribution in different test languages
Language Singleton Query %
Cantonese 45

Pashto 35
Tagalog 38
Turkish 50

Vietnamese 54

Table 4.3: ATWV for Word Burst Rescoring with original query set
Language Baseline Word Burst ∆ ATWV (%)
Cantonese 0.114 0.122 +7

Pashto 0.073 0.103 +41
Tagalog 0.136 0.173 +27
Turkish 0.241 0.245 +2

Vietnamese 0.085 0.088 +3
Zulu 0.115 0.122 +6
Mean 0.127 0.142 +12

listed in Table 4.2. A 45% singleton query rate means that 45% of the queries occur only once
in the testing data. Accordingly, we also remove all singleton queries and present non-singleton
query set results separately.

4.6 Experimental results

4.6.1 Result: Word Burst Rescoring

Our experiments are conducted on six languages. We also report and compare the results on
two different query sets: the original query set and the non-singleton query set. We expect the
non-singleton query set to provide better insight into the effect of Word Burst rescoring, since the
differences between query sets are eliminated. The query with one one occurrence in the entire
corpus does not have “other instance of the same word” to trigger our rescroing. The IR metric
we reported also make our results more interpretable. The approach is introduced at section
4.3.1.

From the result shown in Table 4.4 and 4.6, we can see our improvement is mostly on better
precision for the detection. We will discuss more in the Analysis session. Comparing Table 4.3
with Table 4.5, we can observe that the improvements in non-singleton queries are larger and
more stable. This indicates that Word Burst is more useful in the condition without singleton
queries, because the word that shows up multiple times in conversation tend to be the one that
has topical meaning and can be observed with Word Burst phenomenon. The Vietnamese has the
largest ATWV difference between the original query set and the non-singleton query set, since it
has the highest singleton queries percentage. The Turkish performance is still limited because it
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Table 4.4: IR Metrics for Word Burst Rescoring with original query set

Language Baseline Word Burst
Precision Recall F-score Precision Recall F-score

Cantonese 0.47 0.20 0.28 0.53 0.18 0.27
Pashto 0.48 0.26 0.34 0.57 0.25 0.35

Tagalog 0.52 0.33 0.40 0.62 0.33 0.43
Turkish 0.65 0.30 0.41 0.64 0.30 0.41

Vietnamese 0.51 0.13 0.21 0.54 0.14 0.23
Zulu 0.44 0.20 0.28 0.49 0.21 0.29
Mean 0.51 0.24 0.32 0.57 0.24 0.33

Table 4.5: ATWV for Word Burst Rescoring with non-singleton query set
Language Baseline Word Burst ∆ ATWV (%)
Cantonese 0.107 0.118 +10

Pashto 0.067 0.101 +51
Tagalog 0.134 0.180 +34
Turkish 0.227 0.230 +1

Vietnamese 0.079 0.088 +11
Zulu 0.138 0.153 +11
Mean 0.125 0.144 +15

Table 4.6: IR Metrics for Word Burst Rescoring with non-singleton query set

Language Baseline Word Burst
Precision Recall F-score Precision Recall F-score

Cantonese 0.54 0.21 0.30 0.60 0.19 0.29
Pashto 0.54 0.27 0.36 0.62 0.26 0.37

Tagalog 0.57 0.33 0.42 0.66 0.34 0.45
Turkish 0.70 0.30 0.42 0.69 0.30 0.42

Vietnamese 0.58 0.14 0.22 0.61 0.15 0.26
Zulu 0.53 0.18 0.27 0.57 0.19 0.28
Mean 0.58 0.24 0.33 0.63 0.24 0.35
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Table 4.7: Paired t-test result for Word Burst Resorcing
Language Mean t p n
Cantonese +0.05 17.4 <0.001 3018

Pashto +0.09 33.6 <0.001 6830
Tagalog +0.04 11.3 <0.001 3188
Turkish -0.03 -22.3 <0.001 899

Vietnamese +0.03 18.7 <0.001 5260

Table 4.8: ATWV comparison between target extension approaches
Language Baseline SubString ∆ ATWV (%) Morphology ∆ ATWV (%)

Turkish 0.241 0.252 +5 0.245 +2
Zulu 0.115 0.122 +6 0.120 +5
Mean 0.123 0.187 +5 0.183 +3

is an agglutinative language, the word in Turkish could reoccur in conversation as morphological
variant, we conduct target extension experiments to deal address this issue.

We performed a paired t-test to confirm the improvement we obtained from our approach is
statistically significant except for Turkish, which does not have an improvement on the perfor-
mance but shows a significant decrease in the mean. The result is presented at Table 4.7. Also,
the Mean of Turkish changed in the different direction from other languages. It is because Turk-
ish is an agglutinative language, the word is less likely to occur in the exact same form. As a
result, the penalization threshold is very high, otherwise it will over penalize the result and hurt
ATWV. For other languages, the major change and gain on performance is on the penalization
part, where in Turkish, the main change is on the burst part and less effective compare to the
penalization. This result in our approach does not have significant improvement for Turkish.

Result: Word Burst Target Extension

We examined target extension on two different agglutinative languages, Turkish and Zulu. For
each language, we show the result with two different target extension approaches: Substring-
based target extension and Morphology-based target extension. This time, we focus this on
the original query set since we expect that the target extension can overcome singleton queries
by extension from the non-singleton queries. The purpose of target extension is to make the
approach useful even with singleton queries. The approach is introduced at section 4.3.1.

Table 4.9: IR metrics comparison between target extension approaches

Language Baseline SubString Morphology
Precision Recall F-score Precision Recall F-score Precision Recall F-score

Turkish 0.65 0.30 0.41 0.67 0.30 0.42 0.66 0.30 0.41
Zulu 0.44 0.20 0.28 0.49 0.21 0.29 0.48 0.20 0.29
Mean 0.55 0.25 0.35 0.58 0.26 0.36 0.57 0.25 0.35
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Table 4.10: ATWV for different levels of context with original query set
Language Baseline Speaker Conversation Corpus
Cantonese 0.114 0.116 0.116 0.113

Pashto 0.073 0.093 0.094 0.073
Tagalog 0.136 0.163 0.161 0.140
Turkish 0.241 0.242 0.242 0.241

Vietnamese 0.085 0.081 0.085 0.083
Mean 0.130 0.139 0.140 0.130

Table 4.11: F-score for different levels of context with original query set
Language Baseline Speaker Conversation Corpus
Cantonese 0.28 0.27 0.27 0.28

Pashto 0.34 0.33 0.34 0.34
Tagalog 0.40 0.39 0.39 0.40
Turkish 0.41 0.41 0.41 0.41

Vietnamese 0.21 0.21 0.21 0.21
Mean 0.33 0.32 0.32 0.33

Tables 4.8 and 4.9 shows how different target extension approaches affect ATWV. The pro-
posed substring-based extension outperforms the morphology-based target extension, although
both provide improvements on ATWV. Thus, target extension can restore the Word Burst effect.
And the gain is mostly obtained by achieving better precision. Interestingly, a simple procedure
that uses an orthographic substring match works better than the morphological decompositions
we used. There is more analysis for target extension in the Analysis section.

4.6.2 Result: Unique Penalization Rescoring
The Unique Penalization Rescoring experiments are conducted on the same five languages as
Word Burst Rescoring. For each language, we perform the experiment using all three levels of
context (Corpus, Conversation, and Speaker). We also report and compare the results on two
different query sets: the original query set and the non-singleton query set. We expect the non-
singleton query set to provide better insight into Unique Penalization, since the differences in
query sets are eliminated. The approach is introduced at section 4.3.2.

Tables 4.10 and 4.12 compare three different levels of context in five different languages,
with two different query sets. Unique Penalization Rescoring produces limited improvement on
Turkish, because it is an agglutinative language. It is harder for the same word to show up mul-
tiple times in an agglutinative language, so the penalty will be applied too often if the threshold
is not high. However, if the threshold is high, then the penalty will be hard to trigger, hence
lead to limited improvement. The rescoring algorithm for Unique Penalization does not affect
morphological variants of words. The Corpus context shows the least improvement. We discuss
the reasons for this in the Analysis section. The Speaker and Conversation are more appropriate
levels of context. These levels of context provide similar improvement in ATWV, although Con-
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Table 4.12: ATWV for different levels of context with non-singleton query set
Language Baseline Speaker Conversation Corpus
Cantonese 0.107 0.114 0.117 0.106

Pashto 0.067 0.093 0.094 0.067
Tagalog 0.134 0.167 0.166 0.137
Turkish 0.227 0.228 0.229 0.227

Vietnamese 0.079 0.081 0.084 0.077
Mean 0.123 0.137 0.138 0.123

Table 4.13: F-score for different levels of context with non-singleton query set
Language Baseline Speaker Conversation Corpus
Cantonese 0.30 0.28 0.29 0.30

Pashto 0.36 0.35 0.35 0.36
Tagalog 0.42 0.41 0.41 0.42
Turkish 0.42 0.42 0.42 0.42

Vietnamese 0.22 0.22 0.22 0.22
Mean 0.34 0.34 0.34 0.34

versation provides more consistent improvements. The improvement we achieved on Speaker
and Conversation setups are statistically significant in pair-wise t-test (p < 0.01) between the
baseline and Speaker, and the baseline with Conversation. The t value and mean/standard devia-
tion difference here follows the same trend as the t-test reported in the Word Burst experiments
(section 4.6.1).

Tables 4.11 and 4.13 shows the F-score of the results. We observed that, despite having im-
provements on ATWV with Unique Penalization, the F-score does not increase as was observed
in Word Burst Rescoring. We believe the reason is because F-score does not apply different
weights on correct detection and errors, while ATWV did. Our modification has very limited ef-
fect when the weight of every instance are equal, but still can have an impact in the ATWV-based
setup.

In Table 4.14, we show the relative improvement in ATWV on the Conversation level using
different query sets. The improvement on the non-singleton query set is more consistent and

Table 4.14: ATWV relative improvement (%) on different query sets in Conversation setup
Language Original Non-singleton Singleton Query %
Cantonese +1.8 +9.3 45

Pashto +28.8 +40.3 35
Tagalog +18.4 +23.9 38
Turkish +0.4 +0.9 50

Vietnamese +0.0 +6.3 54
Mean +7.6 +12.1 44.4
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Table 4.15: Tagalog High Vocabulary Size (WER81)
Baseline Precision Recall F1 Instance
Correct 0.59 0.35 0.44 7552
Error 0.59 0.79 0.68 8915

Word Burst Precision Recall F1 Instance
Correct 0.61 0.38 0.47 7552
Error 0.60 0.79 0.68 8915

Table 4.16: Tagalog Low Vocabulary Size (WER84)
Baseline Precision Recall F1 Instance
Correct 0.58 0.19 0.28 5557
Error 0.64 0.91 0.75 8790

Word Burst Precision Recall F1 Instance
Correct 0.57 0.19 0.28 5557
Error 0.64 0.91 0.75 8790

higher. Cantonese and Vietnamese have the most distinctive difference between the original
query set and the non-singleton query set. This difference is due to the high singleton query
percentage in the original query set. By eliminating the difference in the query set, we can
observe unbiased performance improvement on ATWV with Unique Penalization Rescoring.

4.6.3 Result: Identifying Recognition Errors

Tables 4.15 to 4.19 show the recognition error classification result on five different setups, the
WER of dataset is on the title of each table. By including Word Burst as a feature for our classifi-
cation task, we achieved statistically significant (with pair-wise t-test and p< 0.05) improvement
on either labeling correct or error in 2 out of 5 datasets, which are the Tagalog High Vocabulary
and YouTube WER40 dataset. There are three major conditions that will limit the effectiveness
of our features: WER of the decoder output, limited vocabulary size and agglutinative languages,
the detail of these limitation will be discussed in the Analysis section. The approach in is intro-
duced at section 4.4.

Table 4.17: Youtube (WER40)
Baseline Precision Recall F1 Instance
Correct 0.73 0.94 0.83 72566
Error 0.64 0.23 0.34 32175

Word Burst Precision Recall F1 Instance
Correct 0.74 0.92 0.82 72566
Error 0.62 0.29 0.39 32175
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Table 4.18: Youtube (WER20)
Baseline Precision Recall F1 Instance
Correct 0.85 1 0.92 92686
Error 0.59 0.02 0.03 16837

Word Burst Precision Recall F1 Instance
Correct 0.85 1 0.92 92686
Error 0.57 0.02 0.03 16837

Table 4.19: Zulu (WER81)
Baseline Precision Recall F1 Instance
Correct 0.58 0.25 0.35 3292
Error 0.76 0.93 0.84 8372

Word Burst Precision Recall F1 Instance
Correct 0.57 0.22 0.32 3292
Error 0.75 0.93 0.83 8372

4.7 Analysis

4.7.1 Tradeoffs between Correct Detections and False Alarms with Word
Burst rescoring

Table 4.20: Tradeoffs between Correct Detections (CD) and False Alarms (FA) in Unique Penal-
ization Rescoring and Word Burst Rescoring (Change in %)

Language Unique Penalization Word Burst
CD FA CD FA

Cantonese -7.9 -25.7 -7 -28
Pashto -9.1 -33.4 -3 -33

Tagalog -10.4 -42.0 +0 -35
Turkish -0.5 -3.1 +2 +4

Vietnamese -1.7 -11.4 +8 -4
Mean -5.9 -23.1 +0 -19

Table 4.20 shows that both Unique Penalization Rescoring and Word Burst Rescoring con-
tribute to more than 25% of false alarm reduction in three languages. The major difference is that
Unique Penalization Rescoring tends to “overkill” correct detections while Word Burst rescoring
has a better mechanism to preserve the correct detection. The threshold for deciding whether to
apply Word Burst rescoring avoids removing a correct detection, yet sacrifices some of the false
alarm reduction power. The value of the threshold was decided by tuning on the development
data with various parameter choices. However, in our evaluation setup, this value favors correct
detection much more than reducing false alarms. This reflects on the observed ATWV difference,
in that Word Burst rescoring generally has better ATWV improvement compared with Unique
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Penalization Rescoring. Although Word Burst rescoring resulted in fewer false alarms, correct
detection contributes to a higher ATWV score. The source of improvement for both approaches
are similar: reduction in false alarms.

The only exception in Table 4.20 is Turkish, which has lesser improvement compare to every
other language. Turkish is an agglutinative language. Hence, the word usually reoccur in in
morphological variants, making identical words showing up less frequent. The target extension
is our effort to let the morphological variants can still be captured. The correct detection / false
alarm trade-off for target extension is shown in the Table 4.21, where we compare Turkish to
Zulu, also an agglutative language.

Table 4.21: Correct Detection/ False Alarm tradeoff for two target extension approaches with
Word Burst Rescoring (Change in %)

Language Substring Morphology
CD FA CD FA

Turkish +3 -5 +1 -5
Zulu +1 -18 +1 -16
Mean +1 -18 +1 -11

Word Burst with target extension also contributes to additional correct detections and re-
duced false alarms, as shown in Table 4.21. This indicates that target extension can restore the
utility of conversation structure knowledge in agglutinative languages, since the pattern in ag-
glutinative languages with target extension is the same as the pattern with regular Word Burst in
non-agglutinative languages.

4.7.2 Applying our approaches on better-quality ASR results
We also tried our approach on data with lower WER. For the four languages on which we con-
ducted our experiments, we also have another ASR system that is trained on 80 hours of data
(compared with 10 hours of training data we presented in our Experiments section). This setup
is closer to STD under the Rich Resources Condition compared with our Limited Resources
Condition. The WER on 80 hours of training data ranges from 50% to 55%, while the WER for
10 hours of training data ranges from 60% to 70% for all of these four languages. Our approach
does not provide as much improvement as the result we presented in Table 4.22, even with the
newly tuned parameter. The ideal penalty(L) we obtained from development data is very close
to 1, which means that it is best not to perform any penalization when it does not match our
assumption. Since our main improvement on the Limited Resources Condition comes from the
reduction of false alarms, having the penalty(L) close to 1 indicates that we are not going to
achieve as much false alarm reduction.

This indicates the characteristic of our approach. If the ASR performance is already of good
quality, applying the assumption from Word Burst cannot always achieve better performance.
The reason behind it is cause we are still applying an assumption to data, and the assumption
will always have exceptions. When the exceptions happens, the rescoring algorithm will damage
the performance. Assuming that there is a perfect ASR recognition hypothesis available, any
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Table 4.22: Word Burst on 10 hours (High WER) and 80 hours (Low WER) of training data
Language 10hr Base Word Burst ∆ ATWV (%) 80hr Base Word Burst ∆ ATWV (%)
Cantonese 0.114 0.122 +7 0.322 0.324 +1

Pashto 0.073 0.103 +41 0.214 0.221 +0
Tagalog 0.136 0.173 +27 0.358 0.359 +0
Turkish 0.241 0.245 +2 0.385 0.383 -1

rescoring will potentially damage the quality of the recognition hypothesis unless it is not doing
anything. After all, all assumptions has exceptions, and the way we apply Word Burst is to
assume everything follows a specific structure. It can clean up parts of the data when they are
noisy, yet it will introduce extra errors when high-quality data are already available. This result
emphasizes that maximum benefit of these techniques will be found under conditions of limited
resource or poor recognition performance, emphasizing that structural properties can compensate
for poor baseline performance.

4.7.3 Words classified as errors in Unique Penalization Rescoring

Table 4.23: Percentage of words being classified as errors at different levels of context
Language Speaker Conversation Corpus
Cantonese 35.2 28.3 5.7

Pashto 41.4 34.8 8.2
Tagalog 50.8 42.8 9.7
Turkish 64.3 57.5 21.0

Vietnamese 43.4 36.1 8.4

Table 4.23 shows the percentage of words being classified as recognition errors in different
setups. These words are the main focus for Unique Penalization Rescoring. Except Turkish, all
languages exhibit similar trends. Turkish is the exception to this pattern due to its morphological
variation. The variation reduces the performance for classification of recognition error, since
the classification process does not consider morphological variants for words being recognized
confidently. This leads to a high percentage of words being recognized as recognition errors in
Turkish. The Corpus level only has a small portion of words being classified as recognition er-
rors, and the improvement on ATWV is also very limited. This leads to an important observation:
Defining a large context that includes too many confidently recognized words weakens Unique
Penalization Rescoring. The Corpus level of context classifies most of the words in the corpus as
being recognized correctly. Consequently, Unique Penalization Rescoring only works on a small
portion of data, and does not sufficiently impact ATWV. We recommend that most of the time
Word Burst rescoring is going to provide better and more consistent improvement over Unique
Penalization.
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4.7.4 Unsuccessful Word Burst target extension

In addition to the work we presented in Section 4.3.1, we also investigated other possible ap-
proaches to target extension. Since Word Burst relies on context, we examined other sources of
context-based information.

One source of context is Mutual Information (MI). We compute the pairwise MI for every
word that occurs in the training corpus within the selected window size. The window size is
the same as previously used in Word Burst rescoring. We incorporate this MI information in
the rescoring process. The words that were observed to co-occur in the training data receive
a bonus, while the words that never co-occur in the training data are penalized. This did not
work, as the MI we computed is from a limited training corpus (10 hours). This approach harms
correct detections, since the co-occurrence distribution is different from that of the training data.
In order to make it works better, we expect a bigger corpus for computing MI is necessary. The
MI computed from more data can better represent the co-occurrence of different words, and that
can be a better trigger for Word Burst rescoring.

We also examined Brown clustering (Brown et al., 1992) on the training corpus. Brown
clustering places all words in the training corpus into several clusters. The algorithm groups
items into classes, using a binary merging criterion based on the log-probability of a text under a
class-based language model. As a result, the output can be thought of not only as a binary tree but
perhaps more helpfully as a sequence of merges, terminating with one big class of all words. We
extend the Word Burst target to other words in the same cluster. This does not improve ATWV,
and is likely due to the fact that limited training data cannot create high-quality clusters.

We investigated LDA-based topic modeling (Blei et al., 2003) for target extension. The
assumption is that since we claim that the recurrence of the word is caused by the ongoing
discussion topics, if we can perform Word Burst based on the word that belongs to the same
topic, it should have positive results. Our topic model is trained on 80 hours of transcribed
speech in Tagalog, since a good topic model requires a reasonable volume of data to train, and
10 hours of transcribed speech is very limited. We trained with two different topic counts, 10
and 30. We then computed topic distributions and selected the top X words from each topic.
Among these selected words, each word has target extension to other selected words in the same
topic. Since this is an experimental setup, we focus on Tagalog, as it has a reasonably good
improvement for the standard Word Burst.

Table 4.24 shows the result for Word Burst target extension using word clustered from LDA
topic modeling. None of the target extensions with topic modeling outperform standard Word
Burst. When the numbers of the top X words we selected from each topic is low, it achieved
the same performance as standard Word Burst. After examination, this is because the target
extension is never triggered, and it just performs identically with standard Word Burst. When the
top X words is set to a higher value, the target extension starts to happen and the performance
starts to drop. This indicates that it is very difficult to provide gains outside of identical words
using target extension. (Rosenfeld and Huang, 1992) described a similar finding in their work
with “self triggering”.

Last but not least, since word embedding achieved good improvement on our work in Chapter
6, we also attempted to use word embedding as a way to expand our Word Burst target, and the
result is reported in Table 4.25. We created word embedding models in Tagalog according to the
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Table 4.24: Extending Word Burst with Topic Models
Number of Topics Top X Words ATWV

Baseline 0.136
Normal Word Burst 0.173
10 10 0.173
10 20 0.173
10 100 0.170
10 200 0.166
30 10 0.173
30 20 0.170
30 100 0.169
30 200 0.165

80 hours data we have in FullLP set, and aid clustering based on the location of the word in the
word embedding spaces. We expand the Word Burst target for every word form other instance
of itself to every other word belongs to the same cluster. The result is similar to the one obtained
using our LDA target expansion. The more targets each word can trigger Word Burst, the worse
the STD result will be. As a result, it is still difficult to use related word to perform Word Burst.
If we have an way of modeling semantics for every words, Word Burst with identical semantics
might be the first step go beyond identical words. Since that will be a closer approximation of
using on identical words, compare to related words.

Table 4.25: Extending Word Burst with Word Embedding
Number of clusters ATWV

Baseline 0.136
Normal Word Burst 0.173

10 0.073
30 0.118
50 0.135

100 0.145

4.7.5 Substring-based Target Extension on Other Languages
We also conducted experiments for substring-based target extension for Word Burst on non-
agglutinative languages. For a language like English, if two different words has matched sub-
string, then we consider Word Burst happened. For example. the word “interest” and “internet”
will be considered as Word Burst since they share a substring of “inter”. The experiments show
that target extension on non-agglutinative languages does not outperform regular Word Burst
rescoring. If we set the length of a substring too short, target extension triggers too many words,
leading to false alarms. On the other hand, if we set the length of a substring too long, very
few substring matches are possible and it has performance similar to Word Burst rescoring, since
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the target extension does not happen often enough with a requirement of a long substring. As
a result, we conclude that while target extension is beneficial for agglutinative languages, for
non-agglutinative languages we can simply apply Word Burst rescoring. Table 4.26 shows the
result on Tagalog.

Table 4.26: Substring-based Target Extension on Tagalog
Length of substring ATWV

Baseline 0.136
Normal Word Burst 0.173

3 0.081
4 0.082
5 0.095
6 0.122
7 0.123

The morphology of Turkish and Zulu are both prefix- and suffix-based. This matches our
assumption in proposing substring-based target extension. For languages that have infix-based
morphology, we expect the improvement from substring-based target extension to be limited.

4.7.6 Analysis on Identification for recognition errors with Word Burst
WER related analysis

The two experiments on the YouTube data demonstrate how WER affect the effectiveness of the
feature. When the WER is already low, training the CRF with a low WER data can not learn
the characteristics of the recognition error well, as the number of instance for correct and error
labels are also very different. (92686 correct vs 16837 error). However, when the training data
WER increased, the feature starts being effective, because there are more instances to train, and
also the distribution of labels is more balanced. With this observation, we also attempt to use the
CRF model trained on WER20 YouTube data to test on the WER40 YouTube data.

Table 4.27 shows the result of training the CRF model on the WER 20 data and then test it
on the WER 40 data. There is no significant difference on the performance of the classification
result. This indicates the model trained on WER 20 data is not robust enough even if applied to
WER 40 data. However, when the model is trained on the training data that has more recognition
errors, our feature can start being effective. Because the model trained with WER 40 data has
balanced training example compare to WER 20 data, which has less error examples.

Vocabulary size related analysis

The two experiments on the Tagalog data demonstrate another important factor for the feature to
work: it requires reasonable vocabulary size for the ASR system. Both setup has similar high
WER (81 vs 84, shown in Table 4.15 and 4.16), yet the difference on vocabulary size for the
language model is significant (21098 vs 5565). Although having a bigger vocabulary size does
not guarantee a better WER, it brings more variety on the training data for the CRF model. The
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Table 4.27: YouTube WER20 model on WER40 data
Baseline Precision Recall F1 Instance
Correct 0.70 1 0.82 72566
Error 0.71 0.01 0.03 32175

Word Burst Precision Recall F1 Instance
Correct 0.70 1 0.82 72566
Error 0.65 0.02 0.03 32175

distribution of the recognition errors on both training and testing data for the CRF model also
shows this phenomenon.

Table 4.28: Error Distribution on Tagalog setups for Identification of recognition errors
Insertion Deletion Substitution

Low Vocabulary Size-Test 1609 12575 7181
High Vocabulary Size-Test 2647 11493 6268
Low Vocabulary Size-Train 4858 35255 2932
High Vocabulary Size-Train 7693 32059 2189

Table 4.28 shows the difference on the distribution of recognition result on two different
datasets. The Low Vocabulary Size setup has a smaller vocabulary size. Hence, their decoding
result contains more deletion errors; since there is less potential approximate for some of the
words in the speech data. Note that for training the classifier for recognition errors, we can only
identify insertion errors and substitution errors. Having a bigger vocabulary size can increase the
amount of insertion and substitution errors, which makes more errors being able to be detected
by our approach.

Agglutinative Language related analysis

The experiment on Zulu setting is proposed as a comparison with the experiments with Tagalog
High Vocabulary Size system. Although the ASR result on both languages has 81% WER,
the effectiveness of the Word Burst is very different. Earlier work (Chiu and Rudnicky, 2013)
reported that Word Burst will have limited effectiveness on agglutinative language, since words
may to recur in other morphological form in those languages. Our experiments here suggested
similar results. We believe the key to make Word Burst useful for agglutinative languages is to
find a way to group every word’s morphological variants in the same group. The ultimate version
of this grouping will involve putting semantically similar words into the same group. However,
this is still an open problem even in English, because there is not a fixed set of semantic labels that
can be used in every situation. It is even more challenging if we are trying to address this problem
with a language independent approach. We believe the word that is spoken in the conversation is
only a token to express the semantics, and if we are able to capture the semantics, the different
word tokens that are used to provide same semantics should be treated equally.
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Translating Identification result into WER

One common question that follows from our better classification result is that: “Even if we are
able to identify the recognition better, can we convert this result into better WER”? We tried to
remove all of the word that we classified as recognition errors to see whether that will improve
the WER. The assumption is that, if we can remove enough insertion errors, then the WER can be
improved in this way. However, insertion errors are usually not the primary source of recognition
errors, and removing all words that’s been labeled as recognition errors will also remove some
correct words, it does not provide any improvement. As a result, we think the contribution of
our work is more on identifying what are the potential recognition errors, and has less to do with
fixing/recovering it.

4.8 Discussion

4.8.1 Contribution from this Chapter
The general contributions we made in this chapter are:
• We identify a Word Burst phenomenon that occurs in conversational speech. Word Burst

describes the phenomenon in which a word that has been spoken recently in conversation
is more likely to recur in close proximity. (4.3.1)

• We verify that our assumptions can be applied to multiple languages, which indicates that
Word Burst is not a language-dependent phenomenon. (4.6.1)

• We demonstrated that leveraging Word Burst can efficiently reduce or classify the noise in
the communicated information when the delivered information is noisy. (4.6.1)

• We also demonstrated that, in order to leverage Word Burst, it does not require a large
amount of data to train a model. Good improvement in performance can be achieved by
simply applying our knowledge to processing data. (4.6.1)

The task-specific contributions we described in this chapter are:
• We designed two different rescoring algorithms, Word Burst rescoring and Unique Penal-

ization rescoring, that improve STD under Limited Resources Conditions. We demonstrate
that these algorithms work for multiple languages. (4.3.1, 4.3.2)

• The rescoring algorithms we presented do not require large amounts of data to train the
model, which makes them easy to deploy to different languages. (4.6.1, 4.6.2)

• The effects of the presented algorithms are mostly related to false alarm reduction, these
rescoring algorithms can thus provide a simple way of cleaning up recognition errors.
(4.7.1)

• We described a target expansion technique for our rescoring algorithm to allow the effect
to extend to agglutinative languages, such as Turkish and Zulu. (4.3.1)

• When selecting the size of context for context-based processing, conversation is the best
sized unit of context to leverage, as opposed to using the entire corpus which combines
many different contexts. (4.3.2)
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• We determined that our proposed approach has limited effect on cleaner data. (4.7.2)
• We also identify how the incidence of the query term affects the effectiveness of the rescor-

ing algorithm in STD. If the query only occurs once in the testing data, then the rescoring
algorithm relying on the same word will not produce the desired effects. (4.6.1)

• We demonstrated that, Word Burst can also contribute to other tasks such as identifying
recognition errors by using it as a feature. (4.4)

4.8.2 Unresolved Issues

In addition to what we already presented in this chapter, we also identify several potential is-
sues that could be addressed in the future. Some of them could be addressed in the long run,
while others might shown some of the inherent limitation, and its harder to solve under current
directions.

Reduced effects on cleaner transcription

Our approaches work best on noisy data and less so on cleaner data. This shows that our ap-
proach is limited to data that produces low ASR accuracy. As we noted in the Analysis section,
if we perform rescoring on a perfect ASR transcription, it will harm the result if any rescor-
ing happens. The next question that will arise after this observation involves determining the
threshold of ASR quality to apply any rescoring algorithm. We believe that this is an important
question, that suits research issues, since there could be different ASR performance thresholds
for different rescoring algorithms. Our focus in this chapter has been to introduce the Word Burst
phenomenon for recognition hypothesis rescoring, we did not a detailed comparison of different
rescoring strategies. Hence, it is a possible direction for future work.

Recurrence of the same word

Our approach relies heavily on the recurrence of identical words. What if the word recurs in a
different morphological form, or even recurs as synonyms? We did propose the target extension
technique to address this problem, but we understand that this does not solve the core of the prob-
lem. The way we leverage Word Burst in this chapter is, “the same word is likely to cluster up
within a small temporal window”. What is the real communication unit in spoken language? We
think the actual unit is semantic, not the words. The word is just a representation of semantics,
hence using different words can still deliver the same communication unit (semantics). This the-
sis does not focus on semantics, since understanding semantics is another more challenging task.
Still, we believe there are some questions that can be investigated by following this path. Iden-
tifying the relationship between different words is a good example. Our target expansion is not
successful because we did not find a good model to represent the relationship between different
words. Once we obtain a good way to represent and quantify the relationship between identical
word and different words, the algorithm that leverage the identical words can be expanded to
incorporate information from different words.
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Singleton queries

Since our approach relies on the existence of multiple instances of the same word, when our
target only appears once in the corpus, the improvement for those queries becomes very limited.
Even with the well-known n-gram language model, people can challenge why it cannot address
Out-of-vocabulary (OOV) well. We acknowledge this limitation of unable to process OOV words
for our approach, and we think that exploring ways of addressing the instances that only show
up once in the corpus will be an interesting future direction. Still, for this thesis, we will focus
more on the target that follows our assumption: the same word that is likely to cluster up within
a small temporal window. To go further on this directions, identifying whether singleton word
demonstrate some special characteristic can help us predict or process singleton word in the
corpus more efficiently. Or we can try to use other more frequent word to estimate the activity
of the singleton word, and process according to the estimation. The fact that it only occurs once
in the corpus indicate we should put focus not of the word itself but other words that could be
related to it.

Parameter tuning on development data

Like other techniques, some training data is useful; the important bit is that there’s a global
phenomenon that can be leveraged, which we presented in this chapter. Our approach relies on
parameter tuning using development data. This leaves our approach open to the criticism that it
is not sufficiently robust because it requires tuning parameters by grid search for different data
sets. Still, due to the limited amount of training data we have, its difficult to train statistical
models, cause the training data we have could be biased and not able to represent the distribution
of test data. Since we are not using statistical models, without even tuning the parameters of the
development set, it will be an universal approach suitable for any data. It is difficult to solve
problem without a task specific information. In the end, what we use is a general phenomenon
tuned by task specific development data. In the STD task we have worked on in this chapter,
the WER on each language is different, and the properties for each language and query are also
different. The parameter tuning on development data is the necessary step to allow the algorithm
to understand how it should process this specific set of data. If we are aiming to build model
based on data, one possible way of doing that is to create a model from related domain that has
more data available. Then build a way to utilize that well-trained model to our target domain,
which might include transformation of trained model.

4.8.3 Future Work

Identify the real communication unit

As we discussed in the last section, identifying the most significant communication unit can be
the real challenge, and we believe it is still an open problem. A key challenge in this direction
is people has different interpretation of what semantic is, hence it’s very difficult to standardize
it. If we are able to identify the real semantics of the spoken word, when synonyms are present,
the synonyms can be “normalized” into the same semantic token. In that case, when a computer
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is processing human speech, it can have much better understanding and be more robust in rec-
ognizing what humans had spoken. This is because if we get the semantics right, the words are
not that significant anymore. We think this is an interesting direction that can follow our work in
this chapter. Once the semantic unit is explored and well defined, most of the language modeling
work that focus on word tokens can be applied to those semantic unit as well. Also that should
be able to affect many different language processing domain such as machine translation, since
no matter what language people use, the goal for verbal communication is always delivering
semantic information, and a generalized semantic unit should be able to represent all of them.

Beyond the identical communication unit

The Word Burst phenomenon described in this chapter works when we have identical communi-
cation units. However, the first part for our assumption is: “The information that is delivered in
close proximity tends to be relevant to each other”. We use this assumption to build up the rela-
tionship between the identical words, yet there is information that lies in the interactions between
different words. Our unsuccessful attempt at target extension tried to address this property by
using standard co-occurrence information such as mutual information and topic modeling. How-
ever, the Limited Resources Condition made it difficult to construct a robust model with a limited
amount of data. Finding a way to model the relationship between different communication units
without the need for a large amount of data for training is a possible future topic, as it can apply
to many applications. This will also address one of the limitations of the work we presented in
this chapter, singleton query. Even when a target word only occurs once in our entire testing cor-
pus, its context communication unit can still provide us with much information about it. In order
to move on in this direction, we think it might be necessary to have more relational information
to tie up the relationship between words compared to today’s n-gram language modeling. Most
of the language modeling nowadays focuses on the occurrence of words and their relationship
with the other words that are spoken around it, yet that definitely does not capture all the features
that make people speak out a word. The context beyond the word token such as the information
of the speakers should be all taken into consideration in order to achieve real understanding of
communication units.

Integration into ASR operations

In this chapter, Word Burst had been used as a heuristic for hypothesis rescoring, or a feature
in sequential labeling. It is also possible to use it in the standard ASR operational pipeline. A
straight forward way of applying it is to use it similar to the way how cache-based language
modeling is used, where the probably of the language models will be dynamic, and affected
by the conversational phenomena that occur in the recognized text. When a specific content
word shows up in recognized text, dynamically provide a boost (or penalty) on the probably of
that content word in the language models. In addition, it is possible to have multiple language
model prepared, and the ASR system can be switching between different language model to use
according to the current conversation. The switch of the language model can be triggered by
the occurrences of keyword, topic modeling, or even the user information (assuming the speaker
information is available.) As long as there is a way to dynamically modify the model used by
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the ASR system, leveraging conversational feature with the current ASR operation should be
possible to achieve.

Using Neural Networks with Conversational Features

Neural Network based model have received a great deal of attention recently. We will discuss
some of the potential approaches for integrating the conversational feature we introduced here
into Neural Network based models. The simplest approach would be to create an extra feature
dimension to represent the occurrence of specific conversational features. This will be similar to
our approach for identifying recognition errors, where extra feature dimensions will be created
by examining the raw data. For example, creating an extra dimension of features to represent
whether the Word Burst occurs in the input or not. In addition to create extra features from ex-
amining the data, it is also possible to provide extra labels with conversational information to the
input data. This direction includes labeling the conversational text with some extra conversation
based labels (for example: beginning of conversation/ middle of conversation / end of conversa-
tion), and let neural network system be trained based on these extra conversational features. The
key of using conversational information in neural network based model relies on finding a good
way to represent the feature in the way neural network can digest and be trained from.

4.9 Summary
In this chapter, we described how to leverage the Word Burst phenomenon for hypothesis rescor-
ing in Spoken Term Detection and for identifying recognition errors. We first discussed our
motivation for leveraging Word Burst; since it is difficult to improve the performance on the
ASR system, we decided to introduce structural knowledge about conversations to improve the
recognition hypothesis quality. Word Burst turns out to be a good source of information, since it
does not require large volumes of data to train and can be applied to multiple languages.

We then present two different rescoring algorithms, Word Burst rescoring and Unique Pe-
nalization rescoring. We also develop a target extension technique that can apply to Word Burst
rescoring, which extends the effect to agglutinative languages. We also show that Word Burst
has more general applications, such as a feature to identify recognition errors. For STD, our
experiments were conducted on five different languages, and our findings show that our ap-
proaches improved the STD performance, mostly on false alarm reduction. We then provide
analysis of different phenomena we observed in our experiments, and discuss the limitations of
our approach. For identification of recognition errors, we conducted experiments on three dif-
ferent languages and different WER. The presented work concludes that using the Word Burst
phenomenon can be beneficial to STD under the Limited Resources Condition and identifying
recognition errors. These will eventually lead to better extraction of knowledge from spoken
data.
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Chapter 5

Integration of Different Recognition
Hypotheses in Spoken Term Detection

5.1 Motivation

Aside from improving the quality of an Automatic Speech Recognition (ASR) system or using
Word Burst rescoring as we proposed in the previous chapter, the other way for improving Spo-
ken Term Detection (STD) performance under Limited Resources is to identify whether there
are useful features from the existing systems that have not been used (Chiu et al., 2014). The
standard pipeline for an STD system can be considered as a way of communicating information
through different system components. For example, lattices or confusion networks can both be-
ing used as decoder output. Is there any valuable information that is unique within each specific
structure? Does each structure has its own specific error pattern, that we can reduce the error
by leveraging other structure that has different error pattern? Can integrating different structure
benefit us, despite the fact that the ASR system is completely identical? We aim to investi-
gate whether there are unique information lies within each structure, and how can we leverage
those to achieve better STD performance. This research provides new direction for analysis on
the strength and weakness of each individual systems and new approach to combine different
systems to achieve best end results.

5.2 Our approach

Figure 5.1 shows where our approach locates within a standard STD pipeline. We use an ASR
system to output lattices/confusion networks (introduced in Section 3.1.3) as decoder output.
Instead of rescoring the hypothesis as in the last chapter, we perform term detection on each of the
decoder output individually, then introduce a decision process that performs system combination
on two different detection results. Both lattice and confusion networks have their own specific
error patterns, so our goal here is to integrate both structures to obtain results that have less errors
compare to each structure individually. In this way, we can achieve better STD performance with
the same ASR system. The assumptions in our approach are as follows:
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Figure 5.1: The components on which we focus in the standard STD pipeline for this chapter

• When the same information is communicated in different structures, there is unique infor-
mation that contained in each structure.

• Consequently, integrating the information from different structures delivered from the
same system can provide better understanding of the original data.

The intuition for leveraging this mismatch between the recognition hypothesis is as fol-
lows. When people are communicating information to various audiences, the way they structure
their information will be different. When communicating with a person who has broad domain
knowledge, the information can immediately go into detail and skip the unnecessary background
knowledge. On the other hand, for a person who is very unfamiliar with the field, we might want
to focus more on the general concepts and skip some details.

Considering the same situation, but now replacing the entire processwith an STD system, the
speech corpus we want to search is the original information, and the ASR system is the person
who knows this information. When delivering the original information to different people (in
the STD case, decoding the speech corpus into different decoder output), the delivered result
has a different structure. When presenting the recognition hypothesis as a lattice, it focuses
more on preserving context and historical information; this can be considered as one of the
approximations of the original information. On the other hand, when presenting as a confusion
network, its focus becomes representing the recognized result in a compact and aligned way,
which is another kind of approximation. There could be unique information available within
each of these approximations of the original information, because each structure has different
error patterns, as well as the correct patterns. Combining them can give us a more clear picture
of the original information compared with any of the individual sources of information. The key
observation is that there is information separate from the original generation of the information.
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5.3 Search and Combination Description
There are two search methods we are going to use for different structure of recognition hypothe-
ses. We aim to achieve improvement with the combination of the two different search results.

5.3.1 Finite-State Transducer (FST) Search
The lattice was first introduced in section 3.1.3 and can be considered as a FST. Lattices are
probability networks of the possible decoder output. A lattice contains a set of word hypotheses
with boundary times and transitions between different hypotheses (Ortmanns et al., 1997). It can
be found that a lattice tends to contain a large number of word hypotheses including both the
true hypotheses and the competing hypotheses. The 1-best decoding hypothesis can be created
by following the most probable path in the lattice.

FST search is conducted on the lattice generated from an ASR system. A more detailed
introduction of lattices is presented in Chapter 3. Since a lattice is a recognition hypothesis
that contains better context information and more information, searching through a complicated
lattice is considered more complicated. Our FST search pipeline is described in (Chen et al.,
2013a,b) is capable of both in vocabulary (IV) and out of vocabulary (OOV) search. We im-
plement the lattice indexing algorithm proposed in (Can and Saraclar, 2011) making use of the
Kaldi toolkit (Povey et al., 2011). The search is separated into two steps, indexing and search.

At the indexing stage, the lattice of each utterance is expanded into a finite-state transducer
(FST), such that each successful path in the expanded transducer represents a single word or a
sequence of words in the original lattice. The posterior score, start-time, and end-time of the
corresponding word or word sequence are then encoded as a 3-dimensional weight of the path.
Our implementation of the indexing algorithm relies on the fact that the lattices are define at
the word level, which is an essential part of our lattice generation procedure (Povey et al., 2012).
Otherwise, the indexing algorithm tends to blow up since the number of potential word sequences
grows exponentially with the sequence length, if we use sub-word level unit such as phonemes
to build up the lattice.

At the search stage, IV keywords are usually compiled into linear finite-state acceptors (FSA),
with zero cost. OOV queries are mapped to IV queries (proxies) (Chen et al., 2013b) according
to phonetic similarity, which usually results in non-linear finite-state acceptors with different cost
for each proxy. Regardless of being IV or OOV queries, STD is performed by composing the
query FSA with the index, and one can work out the posterior score, start-time, and end-time
from the weight of the resulting FST. In this work, we only focus on IV queries since most of the
queries in our keyword lists are in-vocabulary.

5.3.2 Confusion Network(CN) Search
CN search is conducted on the confusion network, which is also introduced in Chapter 3. A
confusion network is a more compact recognition hypothesis. As a result, searching through
a confusion network is much simpler. Still, we believe there could be unique information that
can be discovered in this compact recognition hypothesis, such as the extra link between word
hypothesis that are created when building the confusion networks.
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Our procedure for generating confusion networks is based on the Minimum Bayes Risk de-
coding algorithm of (Xu et al., 2011). STD is carried out on confusion networks as follows. For
single-word queries, each occurrence of the query word in the confusion networks generates a
detection. The starting and ending times of the detection are those of the cluster containing the
word; the score of the detection is the probability of the word. For multiple-word queries, dy-
namic programming is used to find all paths in the confusion networks such that the words on the
path form the query. The paths may contain epsilon words, which means no hypothesis during
the period of time of that path. Each path generates a different detection: the starting and ending
times are those of the first and last clusters in the path, respectively, and the score is the product
of the probabilities of all the words (including epsilon words) in the path. If multiple detections
for the same query overlap, only the one with the highest score is retained.

5.3.3 Algorithm Development Process

Different hypothesis representation were proposed as the format for ASR output. (Ortmanns
et al., 1997) proposed using lattice as the structure for recognition hypothesis, while (Mangu
et al., 1999) suggest confusion network as an alternative structure. The research following these
two structures both achieved successes, including (Miller et al., 2007) and (Mamou et al., 2007).
However, we did not find any work trying to compare two different approach directly. So our
first attempt is to do straight up comparison between two representations. After noticing that the
FST and CN searches have different strengths, we start to investigate approaches to leverage this
feature on mismatch. System combination as a popular way in STD community becomes the
way we choose to leverage this feature (Mamou et al., 2013).

The main parameter tuning that can happen in this experiment is the weight for the different
systems that we used to combine. However, we decided not to do any tuning on this parameter,
since the extra gain from tuning the weight of different systems does not contribute to the point
we want to make, which is each representation should have some unique information and we
could leverage them by combining different representations. The weight for the system that are
used for combination are always equally distributed.

5.3.4 Search Combination Techniques

After we obtained the detection result from two different search methods, we perform system
combination on it. Search results from different search methods are combined on a per-keyword
basis. For each keyword, its detections in all of the search results are pooled together. These
detections are regarded as nodes of a graph; an edge is drawn between two detections if they
overlap. Each connected component of this graph generates a combined detection. The reason
for this approach is to create every possible detection according to the pre-combined result. The
starting and ending times of the combined detection are calculated as the average of those of the
individual detections; the score of the combined detection is calculated with one of the following
three methods (Mamou et al., 2013):

• CombMAX: The score of the combined detection is the maximum of the scores of the
individual detections
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• CombSUM: The score of the combined detection is the sum of the scores of the individual
detections

• CombMNZ: The score of the combined detection is the sum of the scores of the individual
detections times the number of individual detections.

In CombSUM and CombMNZ, if the resultant score is greater than 1, it is clipped to 1. These
three methods showed most promising result in (Mamou et al., 2013), which is why we decided
to use them.

5.3.5 Difference between current approach and previous work

System combination is not a new concept in the STD task. See section 3.2.2 discussing the work
on system combination in Limited Resource Condition STD. The main difference between our
work and the previous work is that the previous work only focused on combining the results from
multiple ASR systems (Mamou et al., 2013; Mangu et al., 2013), while our combination is based
on the result from a single ASR system. With our approach, we are trying to explore the full po-
tential for a single ASR system. The insight we wish to provide is that, even with the same ASR
system, by leveraging the differences in decoder output, we can still yield additional improve-
ment. Aside from using single ASR system comparing with multiple ASR systems, our approach
can be considered as doing system combination in the different stages of the STD process, and
that is a hitherto unexplored location to do so. Previous work (Karakos et al., 2013; Mamou
et al., 2013; Mangu et al., 2013) perform system combination at the very end of the processing
pipeline, when the STD detection result from different ASR systems are created. Our approach
perform the combination right after the ASR is finished, but the decoder output is stored in dif-
ferent formats. This enable us to do combination on the different decoder output from the same
ASR system. In the previous work, the gain from the combination comes from different ASR
system configuration, while in our approach, it comes from different structure of the recognition
hypothesis. This is interesting becaues it showed that even training with identical training data,
if the result are in different type of representations, it still contains unique information that can
be used.

5.4 Dataset and experimental setup
We describe the details of our experiments in this section, including the dataset we use in our
experiments, the experimental setup, the evaluation metrics and the tool we used.

5.4.1 Dataset

We use five different datasets to test/assess the generality for our approach. Those are conversa-
tional (telephone) speech recorded in five different languages: Assamese, Bengali, Haitian, Lao,
and Zulu, as available in the IARPA BABEL program (Karakos et al., 2013; Mamou et al., 2013).
For each language, there are 10 hours of training data and 10 hours of development data. We
conduct our experiments using the development query sets and the development data.
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5.4.2 Experimental setup
STD system description

Our STD system uses an ASR and term searching two-stage pipeline, which is based on the
Kaldi1 toolkit (Povey et al., 2011). The decoded hypotheses are represented as lattices, and then
converted to confusion networks. Each search applies to the respective hypotheses representa-
tion, and the detection results are combined with different search combination techniques.

The following figure, Figure 5.2, shows the search combination pipeline that was used in our
experiments.

Figure 5.2: Search combination pipeline

Evaluation Metrics

The evaluation metrics for STD were introduced in section 1.3.1. The formula for Term Weighted
Value (TWV) is as follows:

TWV (θ) = 1− (PMiss(term, θ) + β ∗ PFA(term, θ))

In this chapter, we use two additional separate metrics based on TWV to describe the perfor-
mance of STD systems:

• Maximum Term Weighted Value (MTWV): MTWV is the maximum TWV computed over
the range of all possible values of the detection threshold. It estimates the performance for
the detection result ranking list without considering the right threshold.

• Supreme Term Weighted Value (STWV): STWV is the maximum TWV without consider-
ing false alarms. It is similar to lattice recall for a given query.

The metrics are computed on a per-query basis, and then averaged for reporting. Together,
these two metrics provide more information for the overall quality of our search results, as they
are not sensitive to specific detection threshold. With the appropriate detection threshold, the
ATWV (the metric used in the last chapter) is very close to the MTWV value, because that

1http://kaldi-asr.org/
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means the threshold for ATWV is been set close to the optimal place for ATWV, and MTWV is
result you get when you have the exact optimal threshold.

Because we are using different evaluation metrics, we think it will be difficult to express the
performance of our system with existing IR metrics (unlike chapter 4.) The reason of that is, in
chapter 4, we compute ATWV, which means we have a threshold for deciding hit and miss. With
the threshold being clear, it is also easy to compute the precision and recall. MTWV and STWV
are two metrics that only focus on the order of the result, hence the threshold is not available and
it is difficult to compute Precision, Recall and F-score. As a result, in this chapter we will focus
on reporting the TWV-based metric.

Code

We published the code that had been used to completed the experiments on github 2. Note that the
code in this repository requires the data and scoring script coming from IARPA BABEL program
to make it work, which must be obtained separately. But we still provide the code that conduct
the system combination, which we think can demonstrate the algorithm we used in experiments.
The code combines two or more different search results, and by feeding in search result creating
with different system configuration, we can preform the experiments reported this chapter.

Description of Experiments

We carried out three different sets of experiments. Each set was conducted on three different
decoding front ends: a Deep Neural Network (DNN) system, a Bottleneck Feature (BNF) system,
and a Perceptual Linear Prediction (PLP) system. Our search component only processes the IV
queries; for the OOV queries, it does not output any result, since the query turn will not be
presented in recognition hypotheses.

The first set of experiments compares the performance of the two different searches, FST
search and CN search. The second set of experiments combines the search results from FST
search and CN search to determine if we can obtain better STD performance. The final set
of experiments combines all of our results to determine whether the gain from the individual
systems is additive. The combination is also performed in different orders to note whether this
affects the final result. We did not expect that final result will change yet still provide these result
for completeness.

5.5 Experimental results

5.5.1 Comparison between FST and CN Searches
Figure 5.3 shows the MTWV for different system configurations on five different languages
(Assamese, Bengali, Haitian, Lao, and Zulu) and 3 different decoder front-ends: DNN, BNF, and
PLP. We performed a statistical analysis by fitting a general linear model to the data and found
statistically significant differences between languages, front-end features, and search methods,

2https://github.com/jltchiu/Combination
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Figure 5.3: System comparison between different ASR systems and search methods.

all at p<0.001. FST search generally outperforms CN search on every language except for Zulu.
This is due to the distribution of query length (the number of word tokens per query) in the Zulu
query set, as we will explain in section 5.6.1.

5.5.2 Combination of FST and CN searches
We evaluated three different techniques: CombMAX, CombSUM, and CombMNZ. CombSUM
appears to be the best way to combine FST and CN search; we believe that this is because it
considered the score for both inputs, which is better than the CombMax approach; it also gives
uniform weightings from both system, which is better than CombMNZ. The results shown in
Table 5.1 are averaged over front-ends. It is worth noting that the performance on each decoding
front-end shows the same trend as with the average performance. There are two observations
that are worth making. First, the search combination has less effect on Zulu. This is due to
the distribution of query length (see Table 5.3), which we will discuss in depth in section 5.6.1.
Second, CN search has better performance on Supreme Term Weighted Value (STWV) over FST
search. This is caused by the conversion from lattice to CN. The details for both observations are
discussed in the Analysis section.

5.5.3 Combination between decoding systems
The final set of experiments was carried out to determine whether the improvement from search
combination is additive to the existing ASR system combinations.
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Table 5.1: MTWV/STWV for search combination
Language Metric FST CN CombSUM

Assamese
MTWV 0.193 0.190 0.203
STWV 0.369 0.372 0.380

Bengali
MTWV 0.207 0.202 0.217
STWV 0.361 0.366 0.373

Haitian
MTWV 0.356 0.342 0.368
STWV 0.496 0.501 0.514

Lao
MTWV 0.342 0.330 0.358
STWV 0.474 0.476 0.492

Zulu
MTWV 0.101 0.105 0.107
STWV 0.235 0.236 0.236

Table 5.2: MTWV/STWV from search combination to ASR+IR system combination
Language Metric Single Best IR Combination IR+ASR Combination

Assamese
MTWV 0.219 0.229 0.248
STWV 0.430 0.441 0.465

Bengali
MTWV 0.226 0.234 0.258
STWV 0.407 0.417 0.445

Haitian
MTWV 0.394 0.402 0.423
STWV 0.564 0.576 0.597

Lao
MTWV 0.378 0.396 0.418
STWV 0.541 0.556 0.584

Zulu
MTWV 0.113 0.116 0.128
STWV 0.264 0.265 0.279

After combining the results from multiple searches, these results are further combined with
the results from different decoding systems to achieve even greater improvement, as is shown in
Table 5.2. The result is the average Maximum Term Weighted Value (MTWV) over all languages.
We select the DNN system as our single-best system. By search combination, we achieve better
performance on all five languages. If we combine the search combination results from other
decoding systems, we gain further improvement. This indicates that the improvement from sys-
tem combination comes from the diversity between systems. Although the BNF system and the
PLP system have slightly worse performance compared with the DNN system, combining them
nevertheless yields improvement. We also tested doing system combinations in different orders
but found that the order of combination does not have much impact on performance. The im-
provement from combining different decoding system have multiple causes. By using different
training data or features, each decoding systems will have its own unique error patterns, and
combining the result from multiple systems can create a result that utilize the strength of each
systems, which is usually beneficial as reported in previous works (Karakos et al., 2013; Mamou
et al., 2013; Mangu et al., 2013).
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5.6 Analysis

5.6.1 Search and query length distribution

During our experiments, we discovered that the improvement from search combinations varies
for different languages. Upon closer inspection, we found that the difference is due to the dis-
tributions of query length for each language. Each of the 5 languages has around 2,000 queries,
yet query length is distributed differently, as shown in Table 5.3.

Table 5.3: Distribution of query length in five languages
Length Assamese Bengali Haitian Lao Zulu

1 947 926 573 325 1857
2 850 877 953 902 109

3+ 162 167 398 698 19
Total 1959 1970 1924 1925 1985

The queries for Haitian and Lao have relatively low percentages of queries with length 1. On
the other hand, Zulu has extremely high percentage of queries with length 1. This distribution is
highly correlated with the result shown in Table 5.1, where it shows that the search combination is
more helpful for Haitian and Lao and less beneficial for Zulu. The statistical analysis indicates a
significant interaction (p< 0.01) between query length and search technique. Unlike the analysis
we presented in last chapter which focuses on the number of occurrences for the query word, the
analysis here focuses more on the length of query, and the occurrence is not the main focus here.

Figure 5.4: MTWV interactions for search methods and query length
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Figure 5.4 shows the interactions between search methods and the query length, averaged
over all languages and decoding systems. This analysis yields two findings.

First, CN search performs somewhat better on queries of length 1 word, while FST search
outperforms CN search on longer queries. Also, CN search has fewer false alarms compared
with FST search on the 1-word queries. This is a consequence of lattice to CN conversion, since
hypotheses in the lattice are merged or pruned during the conversion process. The false alarm hy-
pothesis can be pruned, or its probability can be suppressed by other well-recognized hypotheses
in the same confusion set. The conversion process does not have too much impact on correct de-
tections, since these are mostly preserved in the CN. As a result, the preserved correct detections
and the removed false alarms contribute to a better MTWV score. FST search outperforms CN
search on multi-word queries. This is because lattices can better preserve history information
for decoding hypotheses compared with CN. This observation provides an explanation for the
result shown in Figure 5.2, where FST search outperforms CN search on every language except
for Zulu. From Table 5.3, we can see the query set for Zulu is mostly composed of single-word
queries. We believe the overall difference in MTWV is caused by the imbalanced query set, not
by properties of the language. We believe the reason why Zulu query are mostly single word
query is because Zulu is an agglutinative language, and morphological variant of a word can
already express rich meaning. In this case, there is less need for having multi-word queries.

Second, search combination provides better performance on multi-word queries, compared
with single word queries. This matches our finding in section 5.5.2 that the improvement from
system combinations comes from the diversity of systems. FST search and CN search use dif-
ferent approaches to search on multi-word queries. This diversity contributes to the consistent
improvement over different languages and systems. For the single-word query, since there is
little difference between the two search approaches, the improvement for system combination
is limited due to the lack of diversity. This answers why the search combination has less effect
on Zulu. The Zulu query set is mostly single-word queries, and there is insufficient diversity
between the two different search approaches. The implication for system design on this is, the
performance gain from combination came from the part that the data is represented differently.
Combining multiple system that have similar representation does not have significant gain on
performances.

5.6.2 Search and ASR systems
Figure 5.5 shows the interactions between different ASR systems and search methods. The result
is the average MTWV over all languages and two different search methods. We have two obser-
vations according to this analysis. First, search combination provides consistent improvements
across different decoding systems. This indicates that the search combination is not sensitive to
the properties of decoding systems. Second, the difference on MTWV for CN and FST search
is correlated to the performance of the decoding system. The DNN system has the best overall
performance on the MTWV, and the difference between FST and CN search is the largest. On
the other hand, the PLP system has the worst performance on MTWV among the three systems.
The difference between FST and CN search is also the least in our experiment. This suggests that
FST and CN searches have similar performance on a weaker decoding result, and the difference
is larger when a higher-quality decoding result is available. But combining the different results
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Figure 5.5: MTWV interactions for search methods and ASR systems

can still achieve extra improvement.

5.6.3 The higher Supreme Term Weighted Value (STWV) in CN search

From Table 5.1, we can see that CN search consistently has higher Supreme Term Weighted
Value (STWV) compared with the FST search. This is because the creation of confusion net-
works gives rise to additional links between words. These links are only available during CN
search, and they contribute to the somewhat higher STWV. We use an example to describe this
link creation process.

Figure 5.6 shows an example of link creation during confusion network conversion. In the
lattice, we have two possible hypotheses, AB and CD, over the same time. If we use FST search,
we can only find the occurrence of AB or CD. However, if we create the confusion network from
the same lattice, we obtain two extra links, AD and CB. This phenomenon increases the STWV
for the CN system, yet does not have significant impact on the MTWV score. FST search still
produces a better MTWV score over multi-word queries.

5.7 Discussion

5.7.1 Contribution from this Chapter

The general contributions we made in this chapter include:

• We identify a phenomenon that delivering the original information through an ASR system
with different decoder output leads to different structure, and there could be unique feature
that has been stored in the mismatch of each structure. (5.5.1)
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Figure 5.6: Extra link created during CN conversion

• We also validate our assumption that combining the original information that is delivered
by same ASR system in different structures can give us a better picture of the original
information. (5.5.2)

• The improvement mostly comes from the difference between how the target processes the
data provided by the recognition hypothesis with the different structure. (5.5.2)

• We verify that our assumptions can be applied to multiple languages, which means that it
is not a language-dependent phenomenon. (5.5.2)

• We also showed that it works on different front end of the ASR systems for identical input
speech. (5.6.2)

• Even with multiple ASR systems, each ASR system can benefit from the technique we
described in this chapter, and combining multiple ASR systems still achieve even better
performance. (5.5.3)

The task-specific contributions we made in this chapter are:

• We designed a search system combination framework based on a single ASR system that
improves STD under Limited Resources Conditions for multiple languages. (5.4.2)

• Our approach consistently improves the STD result on different ASR systems, which
means that it can work on different qualities of ASR systems. (5.5.2)

• We also found that combining different ASR systems after we perform our search combi-
nation achieves even better results, making it an orthogonal improvement for the common
approach. (5.5.3)

• Our combination contributes most on multi-word query, on which the search strategy for
FST search and CN search has the most difference. It shows using different form of de-
coder output from same ASR system can still yield improvement. (5.6.1)

• The confusion network generation process could create a small amount of additional multi-
word path, which can improve the overall recall of the recognition hypothesis. (5.6.3)
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• We identify the performance gain from combination came from the part that the data is
represented differently. Combining multiple system that have similar representation does
not have significant gain on performances. (5.6.1)

5.7.2 Unresolved Issues

Single-word query

As we discussed in the Analysis section, the improvement due to our approach mostly comes
from multi-word query. For single-word query, it does not provide significant gain. The reason
for this is because both search approaches process single-word queries in a very similar way,
so there is not much difference between the two searches, and less unique information for each
search can be discovered through combination. This means that, for our approach to work, the
key is to combine different ways of saving/using information. A possible follow-up question for
this observation is whether it is possible to explore a systematic method for identifying differ-
ent approaches to process any task that can be used to combine and gain improvement like we
described in this chapter. Since the method of processing the information depends on each indi-
vidual task, and this thesis is focused on leveraging the difference in decoder output rather than
building a systematic combination pipeline, we believe this topic is a subject for future research.

Since our approach primarily works on multi-word queries, we should also compare with it
some Spoken Document Retrieval (SDR) approaches. There are many fundamental differences
between the two tasks. First, the size of multi-word query an STD task is about two to three
words, so that in total the time length of the search target will be less than 5 seconds, while
the smallest size for SDR retrieval is around 30 seconds, which is much longer. Most SDR
approaches require Retrieval Models (Chiu and Rudnicky, 2014), that are based on a significant
amount of context that is part of a larger document, while the STD does not address the context
at all. Second, STD focuses on matching the exact query, while SDR aims to find relevant
segments, which does not require exact matching. Due to these differences, we believe that these
approaches are not comparable.

Combining with more systems

In the experimental investigation section, we showed that the gain we observed from our search
combination can improve with the standard ASR combination. This means that even if we can
extract more information from a single ASR system, adding more ASR systems is still helpful for
identifying the original information. However, when there are far more ASR systems available,
does our approach, which can extract more information from a single ASR system, become
necessary? We think that when combining with additional ASR systems, the gain on the single
system with our approach could only provide marginal effect on the final multi-ASR system
combination result. We do our search combination based on the combined ASR result from 3
ASR systems and the performance gain is not significant:

This is because the most important gain from our approach comes from the difference be-
tween different structure of decoder output. For example, how lattice and confusion network
handle multi-word query differently. The more differences there are, the more improvement we
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Table 5.4: MTWV/STWV from search combination based on combined hypothesis
Language Metric Combined FST Search Combined CN Search Search combination from both

Assamese
MTWV 0.248 0.228 0.249
STWV 0.448 0.457 0.466

Bengali
MTWV 0.256 0.238 0.257
STWV 0.427 0.437 0.445

Haitian
MTWV 0.420 0.391 0.422
STWV 0.577 0.584 0.598

Lao
MTWV 0.413 0.387 0.418
STWV 0.562 0.567 0.584

Zulu
MTWV 0.125 0.124 0.126
STWV 0.276 0.279 0.279

can achieve. However, the difference will be more significant if it is from different ASR sys-
tems, cause it could have the difference from different training data or feature, and those will be
the key for improvement during combination. The original speech will have significantly better
approximation from the information provided by different ASR systems than from the different
decoder output provided by the same ASR system. Hence, we think it could be less effective
under that situation.

5.7.3 Future Work

Smart integration strategy

In this chapter, we have worked on the combination of STD results based on different decoder
output. The combination technique we use considered that both systems are equally important,
which is probably a non-optimal solution. For example, in our experimental setup, the FST
search has better performance on multi-word queries. With information like this, we can design a
better integration strategy according to the property of the query. For a new or unknown system, it
is also possible to design a task-specific or system-specific combination technique, which are not
addressed in this chapter. We focus more on “what” to combine rather than “how” to combine,
yet there is definitely a space for research on this problem, such as optimizing the weight of
different systems with certain defined objective functions.

Integration beyond Spoken Language

In this chapter, our integration has focused on spoken language, yet there are still different forms
of communication that can be explored and potentially integrated to better understand of the
original information. Is it possible to integrate the structure between the words spoken by a per-
son and his action or thoughts? For example, guessing emotion from the text a person generate?
(Alm et al., 2005) This topic bridges the speech community with other research communities,
and many research questions suggest themselves. Moreover, will the structure of spoken lan-
guage for a person be different when they are in a different emotion or mind state such as lying?
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Can a specific hand posture or shake of the head be correlated with certain words that are spo-
ken? We think that cross referencing/integrating different forms of communication can give us a
clearer picture of how human communication works. For example, when visual input and spoken
input are both available, the object that are seen in the visual input can be used to provide topical
information for support processing the spoken input.

5.8 Summary
In this chapter, we investigated the error patterns that we observed in different decoder outputs,
and use combinations to improve Spoken Term Detection. We first discussed the motivation for
our approach, if an ASR system can create different decoder output, each format of output might
have unique error/correct pattern. If we can capture the unique correct pattern in each of the de-
coder output, we can use them together by combination. We designed a STD search combination
technique based on this assumption, and determined whether it can provide consistent improve-
ment on the STD result. Our experiments were conducted on five different languages, and our
findings show that our approach improved STD results, mostly on multi-word query since the
search was processed differently in each individual system. We present an analysis covering
multiple perspectives, including how query and ASR systems interact with different ways of
system combination. The work in this chapter concludes that leveraging the mismatch of the
information delivered and processed in different structures can achieve better understanding of
the original data, even if the ASR system is identical.
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Chapter 6

Distributed Representation of Utterances

6.1 Motivation

In previous chapters, we address Spoken Term Detection (STD) problems with different ap-
proaches. However, there are fundamental problems for the STD task that still have not yet been
addressed. Even if the query term can be detected perfectly, the user still might be confused by a
multi-sense word. Detecting the same word does not guarantee that the user can find the content
he or she really needs, since the sense for query term that is not desired by the user is still not
useful. For example, when the word “bank” are detected in STD system, showing the user who
is looking for “river bank” the location of the word “financial bank” might not be useful, even
though they shared the same written form. As a result, in this chapter, we investigate a new tasl,
to the Spoken Word Sense Induction (SWSI) (Chiu et al., 2015). The goal of SWSI is to identify
which sense of a multi-sense word is used given the context of the spoken word and to allow
the user to select detections according to their needs. The difference between “induction” and
“disambiguation” is that induction task requires the condition of not using any external informa-
tion/knowledge. We construct the distributed representation of utterances by leveraging the word
and its context. The distributed representation turns the word in a large corpus into a point in a
high-dimension vector space, and the distance between different points in the space represents
the relationships in meaning between different words. We aim to improve our understanding of
query terms with this model.

6.2 Our approach

Figure 6.1 shows where our approach fits within a standard Word Sense Induction (WSI) pipeline.
Note that for SWSI, it is just necessary to replace the text document in the figure with the ASR
result. We leverage our knowledge of the relationship between word and its context to create a
better feature space to represent every spoken utterance, since we believe that good features are
the key to success in the SWSI task. We constructed our features based on two assumptions:

• The spoken words that show up with similar context should have similar meaning relative
to each other
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Figure 6.1: The components on which we focused in a standard WSI pipeline for this chapter

• If the spoken words occur in very different contexts, they are less likely to share the same
meaning even if the words are the same orthographically

We carefully avoid the use of the word “semantic”, since we believe that this might be a state-
ment that is too strong. We are simply modeling the similarity (how likely two different words
show up in similar context) of the word in the SWSI task, and we aim to separate different words’
semantics according to their similarity. The reason why we said that word is only an approxi-
mation unit is because we believe the actual unit of communication is semantic, as discussed in
Chapter 4. We leverage the relationship between the word and its context to create a vector space
(word embedding) that can represent the relationship between different words. Within the word
embedding, the distance between different words reflects how likely they show up in a similar
context. This vector space can help us to model the relationship between words. However, a
word can show up in very different context if it has multiple meanings, and this phenomenon can
not be represented well in the current word embedding, as every word is represented as a single
point in the space. As a result, we created another point in the space that represents the word
itself together with the utterance it belongs to. These utterance points can be used to identify the
meaning of difference instances of the identical word.

Our word embedding is trained on the ASR transcription of the data we want to perform
SWSI. This is significantly less data than typically way for training embedding. We picked
100 as the number of dimension for our word embedding training, which is the same with the
best parameter reported in (Dai et al., 2015). We did not focus on tuning between different
numbers of dimensions for word embedding, as our focus is on tuning the number of clusters
and comparing with different algorithms. Also, since we want to identify approach that can
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potentially be applied on the language without much data available, we did not explore the usage
of pre-trained embedding, as high quality embedding might not be available in every languages.
The positive result for our approach suggest it can be port to languages with insufficient data
available.

6.3 Extracting Features with Word Embedding

6.3.1 The Skip-gram Model

Figure 6.2: The architecture for Skip-gram model (reported in (Mikolov et al., 2013))

(Mikolov et al., 2013) recently introduced the Skip-gram model, and the illustrative archi-
tecture for the model is presented in Figure 6.2. Skip-gram models and other Neural Network
Language Models (NNLM) produce representations for each word in the training data according
to its surrounding words. Each word can be viewed as a point in a “Word Embedding” space,
and if there are two words that are located closely in this space, it means that those two words
tend to show up in similar surrounding word contexts in training data. The advantage of using
the skip-gram model instead of other NNLM is that the skip-gram model requires much less
computational resources yet it can still achieve good performance. The formal definition of the
skip-gram model is as follows:

Given a sequence of training words w1, w2, , wT , the objective of the skip-gram model is to
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maximize the average log probability

1

T

T∑
t=1

∑
−c≤j≤c

log p(wt+j|wt)

where c is the size of training context (which is a function of the center word wt). Larger c
results in more training examples and is more likely to achieve higher accuracy, yet it requires
more training time. The basic skip-gram formulation defines p(wt+j|wt) as

p(wO|wI) =
exp(v

′
wO

>
vwI

)∑W
w=1 exp(v′

wO

>vwI
)

where vw and v
′
w are the “input” and “output” vector representations of w, and W is the

number of words in the vocabulary.
This formula is difficult to use in practical applications since the cost of computing increases

with W , which is usually significant (i.e. the size of vocabulary). Instead, we use Negative
sampling (Mikolov et al., 2013) to replace the log p(wt+j|wt) in the original Skip-gram objec-
tive. The idea of Negative Sampling is to only update the weight of a small number of negative
words, instead of every negative words in the vocabulary during each training iteration, which
can significantly speed up the training process. The Negative sampling is defined by:

log σ(v
′

wO

>
vwI

) +
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Ewi Pn(w)[log σ(v
′

wO

>
vwI

)]

The task is to distinguish target word wO from draws from the noise distribution Pn(w) using
logistic regression with k negative samples for each data sample. We use k=5 in our experiments.

Another factor that will affect our training is the frequent words in our training data. Accord-
ing to Zipf’s law, the frequency of any word is inversely proportional to its rank in the frequency
table. This phenomenon causes frequent words to provide less information compared with rare
words. We perform a simple subsampling to counter this imbalance in word frequency. Each
word wi in the training data is discarded with probability computed by:

P (wi) = 1−

√
t

f(wi)

f(wi) is the frequency of word wi and t is a chosen threshold. In our experiments, we set t
as 10−4. This formula was chosen because although it subsamples words fairly aggressively, it
preserves a word’s rank according to its frequency. Others (Mikolov et al., 2013) have reported
that this approach significantly improves the accuracy of learned vectors for rarer words.

The Skip-gram model will produce a single point in the “Word Embedding” space for each
word in the training data. However, this is actually a limitation of the model, as each word is
forced to be represented as a single point. This is not an ideal situation, because if the w has
different meanings, it is likely to occur with very different surrounding words. The computed
single point for w is the average of all instances of w, which conflates the different meanings. If
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sense-labeled training data are available, then it would be possible to train multiple distributed
representations that differentiate the different meanings of the same word, yet such data would
not be available in a typical SWSI scenario, however.

Algorithm Development Process

As noted in the last section, the limitation of the existing Distributed Representation based model
is that each word is only represented as a single point, and that is not helpful for addressing our
task. However, in an usual WSI setup, the way to separate identical words is to leverage the other
word around it. We believe the same strategy can be applied to Distributed Representations, so
we set about to develop approach that can achieve this effect, by creating multiple points in the
Word Embedding space from more than one words. There is preliminary work from (Mikolov,
2012) which mentioned a way of creating Distributed Representations for units that is bigger
than word, mostly for documents and paragraph. We decided to adopt their technique for our
tasks.

The main parameter that requires tuning for our approach is the number of clusters. We un-
derstand that this is a challenging parameter to decide, so we reported the result on the parameter
we had tried. Deciding what is the optimal number to use is still an open question, so we provide
result on all potential settings. This parameter will be discussed more in the analysis section.

6.3.2 Distributed Representation of Utterances

In order to overcome the limitation of existing Skip-gram models, we use a distributed represen-
tation for utterances to differentiate the meaning of multiple instances of the same word. Our
intuition is that if we can obtain the distributed representation for the entire utterance, which
contains our target word and the surrounding words, we can then use that representation to dif-
ferentiate the meanings of a specific word. Thus, if the meaning of the utterance is different,
we can expect that even a different instance of the same word in an utterance is likely to have
a different sense. The SWSI task is usually considered to be a clustering task; clustering the
utterance instances can be a good approximation of clustering the words by sense.

We obtain the distributed representation of an utterance with the following setup: We assume
there is an extra “utterance token” at the beginning of each utterance. This token will be trained
with every other word in the sentence. So given a sequence of training words w1, w2, ..., wT in a
specific utterance, the objective of the distributed representation of the utterance is to maximize
the average log probability

N∑
t=1

log p(wt|u)

where N is the size of the entire utterance and u is the “utterance token”. This will map the
utterance into the same space with other words in the training data. The output of this repre-
sentation has multiple applications, it can be used as a representation of utterances for clustering
purpose like what we do here, or the cosine distance of different utterances can be computed to
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provide the relative relationship between different utterance, which gives us a better understand-
ing on the semantic level. Having utterances and word represented in the same space indicates
that we can use different number of words to communicate a specific semantic, which is true in
human conversations.

The intuition of this approach is to create new points in the vector space depending on the
whole utterance that our target word shows up. These new points models how different instance
of same word can show up in different context. In this way we are able to model a multi-sense
word with multiple points, instead of a single point in the vector space.

6.3.3 Difference between our approaches and previous work
Much previous work has been performed on the distributed representation of words (Bengio
et al., 2003; Hinton, 1984) as we discussed in Chapter 2. The purpose of all of these works is to
project words into a word embedding space in which the relative distance between words in the
space can represent the relationship between words (Mikolov, 2012). Our work also follows this
strategy to create the word embedding space, yet we focus on separating multiple instances of a
single word according to sense without any external information, which has not previously been
addressed. Most of the earlier word embedding applications assumes that each point in the word
embedding space can represent a specific word (Elman, 1990), yet in reality a multi-sense word
should have multiple points in the space to represent its most appropriate location. Our work in
this chapter leverages the concept of the utterance vector to separate multiple instances of the
identical words.

Another major difference between our work and the previous work is that most of the ear-
lier work trained the word embedding space with a very large corpus like the Wikipedia dump
(Mikolov, 2012; Turney et al., 2010). In our experiments, we trained the word embedding space
on the data that has been decoded by the ASR system. This means that our word embedding
space will have much less data to work with, yet it will not have any mismatch with the data we
are processing. Without a large corpus like Wikipedia to provide general contextual information
for words, it is possible that some multi-sense words will be considered as single sense, because
the there is not an example for every sense of that word in the data we are processing. We be-
lieve this is a strength and a weakness at the same time. The upside of our setup is that we will
not have irrelevant common background knowledge that affects our performance, so our system
will not have a strong tendency for the most common sense. However, the bad part is that our
space will be less robust and if the data are not sufficient, we cannot create a robust space for our
approach to work.

6.4 Experiments
We want to validate our hypothesis: “ Distributed Representation of utterances is a good feature
to separate the meaning of multi-sense word” with our experiments. This can be achieved by
comparing what we propose with approaches that had been reported before. We will introduce
the detail for our experiments in this section, including the dataset we use in our experiments,
the evaluation metrics and the tool we used, and the experimental setup.
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6.4.1 Dataset
We use 60 hours of YouTube “How To” video for our experiments. The reason we selected
YouTube video as our data is because this is a real-world data set, and the video we used as data
also has user-uploaded subtitles, which can be used as the reference transcription. The YouTube
video corpus (Yu et al., 2014) includes human transcription, allowing us to compute the WER
for ASR.

The ASR system we use to decode the speech is based on the Kaldi (Povey et al., 2011)
toolkit. We have two different setups of acoustic model training to simulate different WER,
which were 39.13% and 19.95% (nominally, 40% and 20%). Note that we do not intentionally
create model that will generate 20% and 40% WER, it just happens with the different training
data we use to create the acoustic model. The acoustic model of the 40% WER system is trained
on the Wall Street Journal corpus consisting of approximately 80 hours of broadcast news speech.
The 20% WER system’s acoustic model is trained on 360 hours of video data that are in the
same domain as the testing data. Speaker adaptive training (SAT) is conducted via feature-space
MLLR (fMLLR) on LDA+MLLT features. DNN inputs include spliced fMLLR features. All
decoding runs use a trigram language model that is trained from 480 hours of YouTube transcripts
(Yu et al., 2014). The 40% WER system is meant to simulate a mismatch between training and
testing data, common in real-world use cases; it is about the same level as reported in (Liao
et al., 2013). The 20% WER system represents a more controlled environment (or more accurate
ASR), as the mismatch between training data and testing data is much smaller. Together with the
human transcription that is nominally 0% WER, we expect that this can provide insight on how
ASR performance affects SWSI performance. The number of word tokens and the vocabulary
size are reported in the following table:

Table 6.1: Vocabulary size and number of tokens.
WER(%) 40 20 0

Vocabulary Size 55266 52377 55162
Number of tokens 715849 745402 742260

To select the target queries for our SWSI task, we adopted the query selection process used in
the SemEval-2013 WSI task (Navigli and Vannella, 2013). We selected those queries for which
a sense inventory exists as a disambiguation page in the English Wikipedia1. Additionally, the
queries we selected each have 3 senses among the WordNet 5,000 most common senses (Clark
et al., 2008) to ensure that the difficulties are comparable. Every query appears at least once in
our 60 hours of YouTube data. In total we selected 125 queries.

6.4.2 Evaluation Metrics
A variety of evaluation metrics (Hubert and Arabie, 1985; Jaccard, 1901; Rand, 1971; van Rijs-
bergen, 1979) are available for evaluating SWSI cluster quality. However, most of these will be
affected by chance agreement due to the number of clusters used. We therefore use the Adjusted

1http://en.wikipedia.org/wiki/Category:Disambiguation pages
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Rand Index (ARI) (Hubert and Arabie, 1985) as our evaluation metric, as it removes the effect
of the chance agreement; ARI was used in the SemEval-2013 WSI task. The intuition of ARI is
to penalize both false positive and false negative decisions during clustering. The formulation of
ARI is as follows:

ARI(CR, CI) =
RI(CR, CI)− E(RI(CR, CI))

maxRI(CR, CI)− E(RI(CR, CI))

In the formula, CR is the cluster assignment from the reference sense, and the CI is the
cluster assignment from the SWSI system. RI(CR, CI) is the Rand Index between CR and CI ,
and E(RI(CR, CI)) is the expected value of the RI. A random assignment of word sense (every
word is the same sense, or every word is a different sense) will achieve an ARI of 0. The standard
ARI ranges from -1 to 1, however we follow the presentation format used in the SemEval 2013
(Navigli and Vannella, 2013) WSI task and multiply the value by 100, to make it range from
-100 to +100. In the SemEval 2013 WSI tasks, most teams reported a resulting ARI between
2.5 to 7.1, with a single team has a result of 21.3. However, since the data are different, the ARI
numbers can not be directly compared between our tasks and the SemEval 2013 WSI tasks.

In addition to ARI, we also provided Adjusted Mutual Information (AMI) (Vinh et al., 2010)
as an extra metric. This is similar to standard Mutual Information based analysis for clustering
performance, yet also adjusted to remove the chance agreement. The formulation of AMI is as
follows:

AMI =
MI − E(MI)

max(H(CR), H(CI))− E(MI)

In the formula, H(CR) is the entropy for cluster assignment from the reference sense, and
H(CI) is the entropy for cluster assignment from the SWSI system. MI is the mutual informa-
tion between two cluster assignments, and E(MI) is the expectation of the mutual information
that can be calculated from the formula described in (Vinh et al., 2010).

Defining the reference cluster for our queries is also a challenge, as asking humans to label
the actual word sense would require significant resources. Instead, we use a WordNet-based
Word Sense Disambiguation (WSD) approach (Tan, 2014) to label the sense with the human
transcript (0% WER) as our reference sense.

For each of the query, we input the entire utterance that the query belongs to into the WSD
system to let it label the meaning. The number of reference clusters is decided by the number of
senses the WSD system assigned to our input utterances. For example, if the query is “bank”,
and there are two utterances “I went to deposit money in a nearby bank.” and “I was jogging at
river bank yesterday.”, the WSD system will assign two different meanings to the “bank” word
in both sentences. In this way, we label each “bank” word with different meaning, and use that
as reference for our experiments.

The reason for inputting the entire utterance is to provide enough context for WSD system
to disambiguate the meaning. The number of meanings, which is used in the Analysis section
later, is also obtained by the WSD result. If our query word is actually a recognition error
(which means it does not occur in the human transcription), the reference sense for that instance
is a specific sense of “Wrong Word” that only applies to recognition errors. Note that this is
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not part of our training process for distributed representation, but a modification on our ground
truth for evaluation. This arrangement can avoid the word that comes from recognition errors
being incorrectly assigned to any of the meaning by WSD system, and reduce the quality of our
reference. We sampled 100 examples of the reference created by this approach and examined
manually to ensure the quality of the reference. We find more than 80% of the labels are correct.

Code

The code that had been used to complete the experiments has been published on on github 2. The
repository contains the data we used to conduct the experiments, and the script we used for all
of the experiments reported in this chapter. For each folder, there is an execution script that can
runs the entire pipeline. The script relies on the toolkit that will be introduced in the next section.
Even without using the script, the data is also on the repository and is available to the research
community.

6.4.3 Experimental Setup

Our approach to using distributed representation of utterances for SWSI is straightforward. First,
we train the distributed representation using the entire 60 hours of ASR transcription. For each
of the utterances that contain the query word, we create a 100-dimension (parameters reported
in (Mikolov et al., 2013) ) utterance vector, and this vector is projected in the same space that
was constructed by the 60 hours of ASR transcription. The utterance vector is trained using
standard toolkit3 available from Google. We then perform repeated bisections clustering (Zhao
and Karypis, 2002) on the utterance vector according to a pre-defined number of desired clusters
using the CLUTO toolkit (Steinbach et al., 2000), and the MALLET toolkit (McCallum, 2002)
for the subsequent LDA-related processing. Since we do not know the ideal number of clusters,
we performed a grid-search on possible values; this is reported in section 6.5.1. All parameters
are default values unless otherwise specified.

In order to estimate how our SWSI approach compares to the other existing approaches, we
also conducted the same experiments using four different baseline systems:

Bag-of-Word (BOW) system: In the BOW system, each utterance is represented by its BOW
feature. We then perform repeated bisections clustering on the BOW feature (Pantel and Lin,
2002).

Latent Dirichlet Allocation feature (LDA-feature) system: Instead of using BOW as the
feature for each utterance, it first builds an LDA model with 100 topics (in order to match the
dimension numbers for word embedding) on the entire 60 hours of testing data. The reason to
pick 100 topics is to aim for similar dimension between our LDA features and word embedding
features, so the difference is more focused on the modeling algorithm. The repeated bisections
clustering uses the topic distribution of utterances as its feature.

Latent Dirichlet Allocation (LDA) system: Described in (Lau et al., 2013), the LDA system
trained the topic model only on the utterance in which the query occurs. The number of topics is

2https://github.com/jltchiu/SWSI
3https://code.google.com/p/word2vec/
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the desired cluster number, and each utterance is assigned to the topic that has the highest topical
probability. This is different from the LDA-feature system as the LDA-feature system use LDA
topic distributions as feature for repeated bisections clustering, while this system use the topic
label as clusters.

Hierarchical Dirichlet Processes (HDP) system: Also described in (Lau et al., 2013), the
HDP system is trained and clustered in a similar way to the LDA system. However, it does not
require any assignment for the topic (cluster) numbers, as the algorithm determines the number of
topics automatically. This is similar to the LDA system, which the topic label is the cluster. HDP
achieved the best performance in the SemEval-2013 WSI task (Navigli and Vannella, 2013).

We also evaluated our WordNet-based WSD system on the ASR transcription. This indicates
how an WSD system can perform given a widely-available knowledge source such as WordNet.

We conducted two different sets of experiments. The first set of experiments explores how
different approaches perform with different assignments of senses (clusters) on 40% WER data,
our expected real-world scenario. The second set of experiments compares how different ap-
proaches perform under different WER conditions. This shows how noise introduced by an ASR
system affects the SWSI performance for each approach.

6.5 Results

6.5.1 Comparison between WSI approaches
Figure 6.3 shows the ARI performance for our Skip-gram based SWSI system as compared to the
four baseline systems on 40% WER data. The WSD system is knowledge-based and indicates
the performance achievable with a human-produced resource such as WordNet. None of the
other approaches rely on external knowledge. We vary the number of clusters to determine
how different approaches interact with the number of clusters. The only exception is the HDP
system, as its algorithm will determine the most appropriate number of clusters using a data-
driven method. The result shows that, using distributed representation of utterances as feature
outperforms other existing feature when processing spoken data on three different level of WERs.
This is an encouraging result because it is not only a better modeling technique for clean data,
it also shows that it is robust to recognition errors, which is common in ASR systems. If there
are further speech understanding related task, distributed representation of utterances can be
considered as a robust feature.

The follow sentences are examples of clustering results of word clear when number of cluster
is set to 3 on 40% WER data:

Cluster one, the meaning of clear could be easy to perceive, understand, or interpret:
• The next step is to determine of the nail length and some nails are black some nails are

clear which makes a little easier to identify the quick or the red heart inside the nail (Wrong
meaning)

• And now and do our next one and place it on the opposite side I’m and the reason why
we’re putting it on the each of the sites first is because then when we put our ribbon on the
top it’s can a crossover and make a nice clear owner and I like when corners or I look all
that we’ve planted out every half
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Figure 6.3: ARI Comparison from different approaches with different numbers of clusters on
40% WER data.

• At that point and put it in neutral and let it and give it a quick dad to the throttle just to
clear the engine now they know holding on it you have to do a release (Wrong meaning)

• When they’re demonstrating the right way how to do an exercise they need to make sure
that they make a clear with our client that they understand what they’re doing before the
client goes out there and perform hte exercise

Cluster two, the meaning of clear could be transparent:

• See inside one of cool my little that off woman dualism use my grid and is move it mainly
clear should be

• We can use it to separate the top so we have a clear defined edge (Wrong meaning)
• So in this case right here with his blueberry peach flying it’s clear is not hobbling anymore

so it’s ready to take a and bottle
• This one actually has a clear liquin top and bottom

Cluster three, the meaning of clear could be free of any obstructions or unwanted objects:

• So in this particular case we’re going to be using baking soda salt end a clear vinegar
(Wrong meaning)

• On ornaments like this that are the characters I usually take a bowl of soapy water and one
of clear
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• You get a really really good sheet to get all the excess glaze off his you only really want a
nice thin layer of a clear glaze on two piece

• Because that’s also a clear area that I see quickly
This result shows that, despite not being perfect, we can still see similar meaning of the same

word clear showing up within the same cluster, even when the WER is as high as 40%.

Figure 6.4: AMI Comparison from different approaches with different numbers of clusters on
40% WER data.

The AMI result for 40% WER data is presented in the Figure 6.4. We removed the data
line of WSD data because it’s value is significantly higher (0.7246) than every other systems,
and its not possible to plot that within the same picture. In the AMI metrics, BOW become the
system that has the highest overall AMI, while our proposed approach have higher AMI when
the number of clusters goes up. However, we believe the difference in these approaches under
AMI metric is very limited, as the difference in value is very little.

6.5.2 Comparison between WER
Figure 6.5 shows the comparison between the SWSI systems at different WERs. This result
leads us to three conclusions. First, regardless of the varying WER, the Skip-gram based SWSI
always achieves the best performance. Second, the LDA-feature system achieves decent perfor-
mance in the 0% WER condition, but its performance is degraded significantly when noise (i.e.
misrecognitions) is present. The noise due to ASR error disrupting the topical distribution, and
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Figure 6.5: ARI Comparison with number of cluster = 3 on different Word Error Rates.

hence degrading the quality of the LDA topical distribution feature. Third, in contrast to gen-
eral expectation, reducing the WER does not directly translate into a significantly better SWSI
performance. We believe this is due to the presence of common locutions. Table 6.2 shows the
percentage of the context words around the query that are high frequency (top 1%). Despite
the significant difference in WER, the percentage of context consisting of frequently occurring
words is similar. This implies that words benefiting from the lower WER may not be the ones that
impact the meaning of the content. This also reflects human’s conversational behavior, which is
weighted towards high-frequency locutions. When people are having conversation, not hearing
the locutions clearly has little affect for the understanding of the utterance.

Figure 6.6 shows the comparison in the AMI metrics. Similar to the result we presented in
Figure 6.4, the difference between systems are limited. We removed the result of HDP in this
figure, as it’s performance on 0% WER (0.240) and 20% WER (0.022) are significantly higher
than most of the other systems and it will be difficult to plot it in the same picture. One thing
worth mentioning is that, even in the AMI setup, the lower WER still does not guarantee better
performance, as there are multiple systems with worst performance on 20% WER. Still, the
AMI difference between most of the proposed approached are still very limited, except for the
approach that can not be plotted in the figure, which has the real difference in the AMI setup.

With all the result presented in 6.5, we found the topic modeling based approach in general
have relatively unstable performance, we compared our experiments with classical Topic Mod-
eling experiments reported in (Blei et al., 2003) and found two fundamental differences. First,
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Figure 6.6: AMI Comparison with number of cluster = 3 on different Word Error Rates.

Table 6.2: Percentage of the context that is frequently occurring words.
WER (%) 40 20 0

% of context is frequent word 76.9 78.8 78.1

our data is human speech, which means even if it has 0% WER, the speaker might have stutter
or repetition in its utterances, which is still more noisy compare to the news document corpus.
Second, we use utterances in a similar way as (Blei et al., 2003) use documents in training LDA
models, each utterances is significantly shorter than a news article. As a result, each utterance
might not have enough data to train a robust topic model, which causes the unstable performance
we observed in this section.

6.6 Analysis

6.6.1 Exploring the Correct Number of Senses

Deciding the correct number of senses/clusters for the query word that shows up in our data is a
perennial challenge. In this section, we provide our observations on how the number of reference
senses interacts with the cluster numbers in the Skip-gram SWSI system.

Figure 6.5 shows the interaction between the number of assigned clusters and the number
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Figure 6.7: ARI Comparison for interaction between the number of assigned and reference clus-
ters.

of reference senses for three different levels of WER. The x axis shows the number of assigned
clusters minus the number of reference clusters. The large decrease on the X = 1 is due to
multiple instances of queries that have 2 meanings; assigning 1 sense to every word leads to an
ARI of 0. According to the result, we observe that assigning 1 or 2 extra clusters compared with
the reference sense inventory achieves the best performance.

With further examination, we discovered an interesting phenomenon in the distribution of
the results with those extra clusters. When the number of clusters are equal to the number of
sense we have, the errors are distributed in every clusters. However, when the extra clusters are
available, there will be distinct “correct clusters” that contains the result with same meaning, and
the extra cluster becomes “garbage collector” cluster that gathers most the words that meaning
can not be figure out clearly with our system. This contribute to better ARI performance as
shown in Figure 6.5. Comparing to let the errors being scattered in different clusters, having a
few more precise but smaller cluster will improve the ARI performance for our task. This also
implies while using our approach, assigning more clusters is generally a good idea comparing to
try to set for the exact number of word senses.

6.6.2 Experiments on even higher WER
(Liao et al., 2013) reported ASR experiments on different YouTube data and its performance are
around 20% or 40% WER depending on different test data. This work represents the state of the
art ASR performance on YouTube data. The reported result are close to the WER we conducted
experiments in this chapter, indicating we are showing how SWSI will work with state of the art
ASR systems. We believe these are the most meaningful data point, as this reflects how state of
the art understanding works with state of the art ASR. Intentionally create extra errors on ASR
results or using worse models to reduce the performance of ASR to achieve higher WER results
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in artificial errors that might be biased. We believe our experiments in this chapter represents how
our approach interact with different quality of ASR system that has no artificial errors included.
Intentionally doing experiments on higher WER that is worse than state of the ASR system can
be less meaningful, as we won’t understand whether the difference in SWSI performance are
cause by our artificial errors in ASR systems or our SWSI approach.

6.6.3 Experiments on varying data amounts

Our Skip-gram-based SWSI system achieves good performance on the Word Sense Induction
task, but there are some limitations. The distributed representation requires a sufficient amount
of training data to produce a stable vector space. We can show this to be the case by varying the
amount of data used to train the skip-gram model. We reduced the size of the video dataset to 30
hours and to 10 hours (which contains around 300,000 tokens and 100,000 tokens, respectively)
and comparing the performance with the original 60 hours of data. The SWSI performance with
Skip-gram system becomes less stable, and in generally inferior to the BOW system when smaller
amounts of data are used as can be seen the skip-gram advantage disappears as the amount of
training data decreases. We believe this is caused by insufficient training data can not produce a
robust distributed representation, hence limiting the performance. The result is shown at Table
6.3, the bold number is the higher ARI between the two.

Table 6.3: Experiments with different amounts of training data

Cluster numbers 60 Hours 30 Hours 10 Hours
Skip-gram BOW Skip-gram BOW Skip-gram BOW

2 3.31 1.07 1.47 2.16 3.36 1.91
3 3.23 1.23 1.51 2.72 1.57 2.67
4 3.07 2.17 2.29 2.25 2.67 2.71
5 2.80 2.22 1.52 2.25 2.28 2.44
6 2.79 2.39 1.99 1.85 2.07 1.84

6.7 Discussion

6.7.1 Contribution of this Chapter

The contributions we made in this chapter are:

• We validate Distributional Hypothesis for conversational speech: words that show up in
similar contexts tend to be similar to each other, and words that show up in very different
context are less likely to be similar to each other, even if they are the same word. This is
still valid when there are recognition errors in the context. (6.3.1)

• We describe a technique for separating identical words into multiple groups according to
the context. (6.3.2)
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• We also show that our approach is more robust to noise compared with existing approaches.
This robustness is beneficial for processing real data as most of them will be noisy. (6.5.1)

• We also disprove a common misunderstanding for speech understanding that reducing the
WER for speech does not guarantee better understanding, as a 0% WER transcript still has
lots of noise (meaningless words) coming from spoken languages. (6.5.2)

The low-level, task-specific contributions we made in this chapter are:

• We present the Spoken Word Sense Induction (SWSI) task, together with a procedure that
does not require human labeling for evaluation. (6.2, 6.4)

• We present an unsupervised approach based on Distributed Representation of utterances
that can separate the meaning of a specific target word without any label data. (6.3.2)

• We compared our approach with other existing approaches; our approach consistently out-
performs existing approaches regardless of different levels of noise in the data. (6.5.1)

• When the correct number of senses is unavailable, assigning a slightly greater number of
clusters compared with the correct number of senses for SWSI can still achieve reasonable
performance. (6.6.1)

• We identify the limitation of our approaches: when the testing data we used to create the
word embedding space are insufficient, we can not have a robust space that represents the
relationship between words well. (6.6.3)

6.7.2 Unresolved Issues

Requires data to create word embedding space

In the Analysis section, we describe a limitation of our approach, which is that it requires a
minimum amount of data to create the word embedding space. Note that these data are the
“testing” data we are going to process, so it still does not require any labeled data to build the
space. Still, when the testing data are insufficient, our approach cannot create a robust word
embedding space and hence the performance will drop significantly. People have challenged our
approach’s need to do parameter tuning on development data to achieve good performance. Any
algorithm requires information to learn the model, and our approach is not an exception. The
testing data we process can help us to create the word embedding space that is customized for
the testing domain so that it contains valuable information. Still, we believe that it is far easier to
find more unlabeled data to test instead of finding more labeled data for training. We understand
that this is a limitation of our approach, yet we believe that it is not a critical one. Our approach
is still useful because it provides a new way of feature extraction on data, and we validate this
feature is not only useful when the data is clean, but also robust when the data is noisy.

Mapping the cluster to real sense

SWSI only separates instances of target words into multiple clusters according to senses. We do
not have labels on each cluster to map our cluster to a specific sense in a dictionary. Also, with
our data-driven based approach, usually there will be a cluster that contains all of the instances
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for which the system does not know which cluster it should belong to (possibly due to the am-
biguous context those words have). As a result, mapping these clusters to the actual meaning of
the keyword is not an easy task if no human knowledge is available. We think this is a funda-
mental problem for all of the WSI-type problem, or even all of the clustering problems. A very
straightforward solution for this is to use a small amount of labeled data to bootstrap the system;
then all of the clustered data we created can have word sense labels, yet that will no longer be a
SWSI task, and there will be an entire research space for those problems. Another possible way
of doing this could be using the distribution of words in each cluster to predict what sense it maps
to. For example, if a word ended up having two different clusters of meaning, and one cluster is
significantly larger than the other one. If we know that the word actually have two senses, and
one sense happens more often than the other one, we can map the more common sense to the
larger cluster, while the less common sense to the smaller cluster.

The ideal number of clusters

For the WSI community or the clustering research community, there is always a question about
how to select the ideal number of clusters. Since we do not have any information available, it
is very difficult to identify the correct numbers of clusters for clustering. Some researches (Lau
et al., 2013) have proposed identifying the ideal number with a data-driven perspective, like the
HDP approach we mentioned as the baseline system in this chapter. However, those approaches
do not guarantee that the number of clusters generated will be correct. We think this topic is the
core problem in the clustering research, and there could be multiple theses on it; however, it will
probably still not be solved. In this thesis, we tend to avoid this question by using the evaluation
metrics computed from the distribution of the clusters, so the number of clusters will not have
too much impact on our evaluation.

6.7.3 Future Work

Embeddings beyond words

In this chapter, we use the word embedding to represent the relationship between different words
and utterances. We believe this embedding space is a good representation to maintain the rela-
tionship between different words, and it can be used to capture more valuable information, such
as user characteristics. Assuming that the speaker information also comes with the utterances
data, we can project every speaker into the vector space as a collection of points in the space,
which can be represented as a distribution in the vector space. With the user-specific distribu-
tion, and the existing vector spaces that contain the location of words and utterances, we can
discover what word or person is possibly more interesting to the user (closer in the space). The
fact that we are able to model different units in a same representation makes it easier to capture
the relationship between them, especially the unit that is not in the same space like a user and
the word he has spoken. With this representation, we believe we can model different forms of
communication delivered by humans in a more general and interactive framework, and the infor-
mation that flows through different forms of communication can be integrated to give us a better
understanding of what people want to communicate.
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Integration of word embedding and other applications

In this chapter, we explored the use of embedding for the other applications, such as identifying
possible ASR recognition errors. The experiments we reported were not successful, yet it still
suggests directions for the research forward toward another direction. “Given that we have this
embedding that models the relationship between different words, what other task can you apply
this information to improve it?” Applying this to other tasks successfully will show that we can
leverage the distributed representations for other problems as well.

6.8 Summary
In this chapter, we studied how to leverage the relationship between words and their contexts
to create Distributed Representations for utterances for Spoken Word Sense Induction (SWSI).
We first present our motivation for studying the SWSI task, since as the STD system will have
limitations when the query term is multi-sense word, we need to be able to separate the same
word according to its meaning so the user can have better access to the data he or she wants.
There are existing methods for performing this task, and we present an approach that can also
address this problem but is more robust to noise. Our approach relies on the relationship between
the word and its context for creating the word embedding space and separating a single word’s
multiple word senses. We conduct our experiments on the data collected from YouTube, and
there are multiple settings for ASR systems in order to simulate different levels of quality of ASR
performance. We compared our approach with approaches that have previously been proposed,
and our approach consistently outperforms the others for different values of ASR quality. This
shows that our approach is good for tasks particularly like SWSI, where the data are inevitably
noisy. The Analysis section discussed the fundamental questions for all of the clustering tasks,
the number of clusters, and some of the extra experiments we conducted during the process.
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Chapter 7

Conclusion and Future Work

In this thesis, we investigated multiple phenomena that can be observed in human conversations
and that to support human understanding of other people’s speech. We show that it is possible
to extract corresponding feature that support improved automatic processing of speech. First,
words that has been spoken recently in conversation is more likely to recur in close proximity.
We refer to those as the Word Burst phenomenon. Second, if an identical word had been spoken
in the conversation with very similar context, it tends to have similar meaning. In addition, we
also identify features presented in automatic processing: when the system store the processed
result in different representations, the mismatch between different representations contains in-
formation that can provide more accurate at expectation the original data. We investigate the use
of these features in three different tasks, Spoken Term Detection (STD), identifying recognition
errors and Spoken Word Sense Induction (SWSI). We expect these features will contribute better
understanding of human speech, in a variety of applications, such as intent detection(Xu and
Sarikaya, 2013) or lie detection(Etcoff et al., 2000).

7.1 Summary of results and contributions
We investigated three different language-independent features in this thesis: Conversational
Word Burst, differences in ASR hypotheses, and Distributed Representation of utterances. In
the following sections, the results and contributions of our investigations for each feature are
summarized.

7.1.1 Conversational Word Burst

For the Word Burst feature, we tried to refine the recognition hypothesis generated from an
Automatic Speech Recognition (ASR) system by rescoring hypotheses according to the phe-
nomenon’s occurrence in spoken conversation. We designed two different rescoring algorithms,
Word Burst rescoring and Unique Penalization rescoring. Word Burst rescoring focuses on words
that occur in close proximity, while Unique Penalization focuses on words that appear in a wider
context. In order to increase the generality of our approach, we proposed a target expansion tech-
nique that can be applied to Word Burst that extends the approach to agglutinative languages, in
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which identical word tokens are less likely to reoccur.
We conducted our experiments on multiple languages, and our rescoring algorithm achieved

improvements ranging from 2% to 40% relative in ATWV for different languages. For agglutina-
tive languages, by applying the target extension technique, we can improve our performance by
5% relative in ATWV. By carefully examining the results, we found that the gain mostly comes
from false alarm reduction, as our algorithm can reduce the score for incorrect decoder output.
On average, we can reduce 19% of the false alarms compared with the baseline system. How-
ever, we also identify multiple unresolved issues in our approaches. The effect of our rescoring
will be reduced if there are low Word Error Rate in pre-rescored hypothesis, as our rescoring
will harm the hypotheses that do not follow our assumption. Our approach shows limited per-
formance improvement for words that only occur once in the entire corpus, since our approach
relies on the presence of multiple instances. Our approach also requires the recurrence of the
same word, which is less likely to happen especially in agglutinative language.

For purpose of generality, we also added experiments on using Word Burst as a feature to
identify potential recognition errors in conversational speech. Language-specific information is
not used, nor is intensive tuning on development data. Moreover, to our knowledge, this is the
first use of information from conversational structure for identifying recognition errors. We also
investigated the limitations of the Word Burst feature, and show that under some circumstances,
the improvement derived from using the Word Burst feature will be limited. These limitations
include: When the systems already have low WER, when the system has limited vocabulary, or
when the target language is an agglutinative language.

The contribution we made regarding Word Burst can be separated into two levels. From the
high-level perspective, we identify the Word Burst phenomenon as a feature that we can leverage
to clean up communicated information. We also validate it as a language-independent phe-
nomenon, as it provides improvements on different languages. From more practical perspective,
we show that when performing STD with noisy ASR results, applying our proposed rescoring
algorithm achieves performance improvement mostly on false alarm reduction. We can also use
Word Burst as a feature to identify recognition error. We think this is one of the applications for
which the Word Burst phenomenon can be useful.

7.1.2 Integration of Different Recognition Hypotheses in Spoken Term De-
tection

We investigate how structural mismatch between different recognition hypotheses can be used to
improve the STD performance with system combination. Our assumption is that each recognition
hypothesis structure has its own specific error/correct pattern, and we can use system combina-
tion on different structure to achieve overall better performance, while the ASR system is trained
with the same data. We compared two different popular search methods, Finite-State Transducer
(FST) search and Confusion Network (CN) search; each of these correspond to a popular for-
mat of recognition hypotheses: lattice and confusion networks. We describe a few techniques to
combine the search results.

We performed different sets of experiments to validate our assumptions. All of the experi-
ments were conducted on five different languages to ensure that our approach is general across
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languages. The first set of experiments compares the performance of two different search ap-
proaches. The FST search has better performance on multi-word query, while the CN search has
better performance on single-word query. Then we performed the search combination, and our
combination achieved 5% relative improvement compare to the FST search system. Finally, we
combined our approach together with the standard multi-ASR combination, and from that the
improvement is still additive. In addition to the positive result, we also identified some unre-
solved issues. The gain from our approach mostly comes from the difference between the two
search methods, which are mostly on the multi-word query. The gain on single-word query with
our approach is very limited. Another limitation is that, the gain from applying our approach to
a single ASR system becomes marginal if we further combine with multiple ASR systems. Dif-
ferent ASR systems have much more significant differences, and those differences could cover
the gain we have for a single ASR system.

We identify that there are unique information in each recognition hypotheses. By leveraging
those structural mismatch, we can have better understanding of the original information that are
processed by ASR system. It is a phenomenon that is not intrinsic to data, as we can gain im-
provement on different language and different decoder configuration. The improvement we get is
mostly related to the queries which both search algorithms differ, which are multi-word queries.
The presented experiments represent a way of leveraging the unique information contained in
each recognition hypotheses structure.

7.1.3 Distributed Representation of utterance
Finally we discussed is the extraction of better features for the SWSI task. By creating a word
embedding space that follows the Distributional Hypothesis, we can project words in our target
audio into a high-dimensional vector space. We then create an utterance vector that represents
every utterance in the same space, and use the utterance vector to cluster multiple instances of
the same word. For every instance of a target word for which we want to perform SWSI, we
represent each instance of the target word as the utterance vector it belongs to, and the clustering
is based on the utterance vector. This approach enables us to separate different meanings of the
same word, originally a single point in the vector space.

The experiments were conducted on 60 hours of YouTube video. We selected YouTube
video as our data because it constitutes real-world data, instead of carefully curated, clean data.
The YouTube video also comes with user-uploaded subtitles that can be used as the reference
transcription to evaluate the quality of our ASR system. We compare our approach with multiple
existing baselines on three different levels of ASR performance, 40% WER, 20% WER, and 0%
WER.

Our approach outperforms every baseline systems regardless of ASR performance. The pos-
itive result indicate it is a feature that can provide good performance. Moreover, it is very robust
to noise, since its good performance is still present when the data become noisy. This robustness
makes it a good feature to use on spoken data. We also found that, by deciding the number of
clusters to be slightly more than the number actual senses, we can achieve better performance
comparing to assigning the cluster number equal to the number of sense. A few limitations of our
approach are also discussed. When the data are insufficient, the created word embedding will not
have good performance. Also, with our approach, there is still not a good way to automatically
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map our clusters to the actual meaning of words.
We separate the contribution we made into two parts. With respect to the high-level con-

tribution, we showed that the Distributional Hypothesis can be used to create a representation
that models the relationship between different words. Moreover, to extend our representation
to a larger unit (in this chapter, it is from word to utterance), we are able to separate different
instances of the same word. Our work shows that our approach can help to robustly identify the
meaning of the word (SWSI). When we use our feature on the actual task, there are more em-
pirical contributions. First, we present the SWSI task and introduce a way to evaluate it without
human labeling for evaluation. Second, we present an unsupervised approach that can be used to
separate the meanings of a specific word. Our approach gives better performance and is more ro-
bust compared with the previously reported approach. Our result suggests that for future speech
processing research, the feature we propose can separate different meanings of a word in a robust
way. Using context is the primary way of separating meaning, yet building “word embedding”
space with context could be a better way of using context compare with LDA or bag of words as
the feature.

7.2 Future Work

In this thesis, we described different features that can be used to search or understand spoken
data. The feature we propose are not depending on the characteristics of specific languages,
rather they are features that are present in the natural structure of conversation. We believe this
leads in an interesting direction, which is leveraging features that are more generic and indepen-
dent from simply the content of conversation. In addition to what we described in this thesis, we
provide some additional directions that we believe could constitute the next step towards fuller
incorporation of conversational features into the tasks we studied.

Identify the semantic unit

Our work on Word Burst uses identical word token as the key for the algorithm. The reason
why we use identical word is because it is most likely to have the same semantics. However, we
believe that, even if the word tokens are different, if the semantic units are the same, we should
still observe the recurrence of the semantic unit. If there is a way that can convert a sentence
into a sequence of semantic units, lots of the language processing algorithms such as Word Burst
rescoring can be expand to the semantic unit. Also, if the semantic unit is defined, then language
should not be an issue, since the words in different languages should be able to convert to this
fix set of semantic units. One possible way of approaching this problem is to first define a fixed
set of semantic units, then try to describe everything human can say within that limited set of
units. We believe this is a challenging future directions, yet finding out a good way to represent
semantics will be a revolutionary progress in the research community. One possibility would be
an adaptation of the word embedding approach to this problem.
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Beyond the identical word

In Chapter 4, we tried to leverage the recurrence of identical words for recognition hypothesis
rescoring. A very reasonable extension is to extend this approach to model the relationship
between the word. Since there are properties that can describe the occurrence of the identical
word, the co-occurrence of different words will likely contain useful information. We made
several attempts in Chapter 4 to identify this property, but we have not yet achieved a successful
result. In our opinion, the concurrence of different words can be addressed in multiple ways. We
can try to model the occurrence in the close distance like how the n-gram language mode works,
or consider a more global occurrence like how topic models affect the understanding of the data.
In either way, if we can successfully model the relationship between different words, we might
even be able to process words that are rare or unknown, as the context will still provide us much
information. There are existing tools like word2vec (Mikolov et al., 2013) that are trying to
model this relationship, yet the result of their modeling is hard to interpret and use in other tasks,
as we show in our experiments.

Integration beyond Spoken Language

Although this thesis has mostly focused on spoken language, leveraging the phenomena we dis-
cussed in this thesis to different forms of communication such as visual or tactile communication
can help us to gain a better understanding of the information that is intended to be delivered. One
benefit for integrating from multiple sources of information is that it can also be used to detect
the mismatch between different forms of communication, which can possibly identify lying, a
phenomenon we work very hard to detect within a single form of communication. When some-
one is talking to you yet their facial expression seems nervous, the understanding of their spoken
language should be changed. If the conversational system is part of a robot, when receiving a
petting pat on the head, the system should also know that it is probably talking to someone who
is friendly. Communication itself is a multi-dimensional interaction with people, and only by
integrating the information from each perspective can we reconstruct the whole picture for the
information that is intended to be delivered. This will also bridge the research from different
fields together to attempt to understand how communication really works between humans.

Smart integration strategy System combination is always a way to provide a better result
for an existing task. Still, if an automatic or a more optimal way of fusing the systems can
be explored, then we can save significant engineering efforts. To date, there have not been
many research efforts addressing this question, yet we believe this will yield significant impact,
especially in industrial applications. After all, combination of systems is one of the simplest
ways of leveraging the strength of multiple systems, and a smart strategy for doing so can be
helpful on many problems that require system combination to push the performance. A possible
way for addressing this problem could be designing some objective function, and automatically
tune the system like doing gradient descend on parameters to optimize for the objective function.
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Embeddings beyond words

We present our approach in Chapter 6 by projecting words and utterances into a word embed-
ding space. The embedding can preserve the relationship between different units that have been
projected into the space, yet in our work we only focus on words and utterances. We believe that
different kinds of units can be introduced and also projected into the space, to obtain the relation-
ship between different units. For example, if the speaker information from all of the utterances
are all available, then we can project the speaker into the space, and all of the utterances/words
that are more related to that point can be considered as a possible interest for that speaker. In this
way, we can try to project information from different dimensions into the same space. Hence, our
embedding can cover more complicated information compared with the original word/utterance-
only information. The ability to make the information from different dimensions interact within
the same embedding space is the strength of this approach, yet we believe that it can be a good
way to incorporate multiple forms of information for better understanding of communication.
Another approach could be integrating time or location information into the embeddings. If the
words that are used to train a model has time or location labeled, then even the same word spo-
ken at different location or time will be different points in the space. For example, the word
“football” could be used to create embeddings, yet if we have location information available,
we might know that the “football” spoken in Europe might have a very different meaning from
the “football” spoken in USA. That will enable us model context that are beyond the content of
conversation.

Integration of word embedding and other applications

The only application to which we had applied word embedding successfully in this thesis is
the SWSI task. We did attempt to use embedding for other applications (which is reported in
Chapter 6), yet we could not achieve any significant improvements. Research questions remain
about what we can do with this embedding other than the SWSI task. In the Related Work
section, we discuss multiple other tasks that had been presented by researchers to apply word
embedding, such as statistical language modeling, parsing, tagging or machine translation. The
word embedding is considered as a good model for capture the relationship between different
words. The model gives a the word a continuous space to represent its relationship, instead of the
dictionary type information which is a hard decision (like the words are synonyms or antonyms).
Still, with the noise coming from the spoken data, applying the embedding trained from noisier
data will be a challenge we need to address in the future. After all, despite the fact that there
will be more data available, most of the data we collect will not be clean. Our experiments show
that word embedding is ideal for processing noisy data in SWSI compare to other modeling
approaches, so applying this embedding to other applications should be a reasonable next step to
pursue.

Identifying Intention

Our thesis has addressed different phenomena that can help us to extract more useful informa-
tion, yet there is more to human communication. Why do humans seek to communicate? There is
probably always an “intention” behind any activity, and that can be a next step after we achieve
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understanding about these phenomena. When the human has different intentions in mind, the
actions they demonstrate will probably be different, so is it possible to model that? Or can we
predict the intention based on the phenomenon that we can observe from their action/speech?
We believe that there is an entire space that has not yet been explored, and many research oppor-
tunities lie within it. The phenomena we presented in this thesis can be considered as features of
human activities, and we believe that it is useful to better understand human activities according
to these features. In order to achieve this goal, we can label utterances with pre-defined intent la-
bels, and then train statistical classifier with different types of features. Word based feature such
as bag of word could be used, and additional features including information about conversation,
speaker, environment, context, topics can also be used for training the classifier. In this setup,
we will be able to identify other people’s intention as long as their intent is one of the label that
our classifier can predict. In the end, its really a way of making our systems more intelligent by
using better feature from better sources.
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