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Abstract
Artificial Intelligence (AI) technologies affect many facets of our daily lives.

AI systems help us manage our shopping lists, type emails faster, and answer our
curious search queries. However, current AI systems have limited agency in the
world – i.e., they lack the embodied sensory experience of the world that is often
referred as embodied AI. Hopefully, in the near future, embodied AI systems will
allow autonomous vehicles to mobilize the visually impaired in our communities,
enable robots in providing company for our elderly, and facilitate virtual agents in
cooperatively teaching our children complex concepts in mixed reality settings. The
imminent manifestation of embodied AI in the physical world necessitates research
that models the interaction between natural language and physical referents. This
technical challenge has been dubbed ‘language grounding’ and is the central focus of
this thesis.

In studying language grounding, we identify and define three core challenges, and
then describe novel methods, analyses, and experiments that to attempt to address
each in turn. First, we address spatial grounding with the goal of linking language
mentions of objects with their spatial locations in the world. We study this problem
in the context of a fully-observable representation of the world. Second, we study the
problem of sequential grounding, where observations of the world are partial (e.g.,
restricted to a limited field-of-view) and unfold over time as a result of the actions
of the system. Partial observation makes language grounding more challenging,
increasing the difficulty of accurate interpretation – e.g., an utterance may refer to
something not currently in the view of the system. Third, we tackle the problem of
imbuing agents with the same types of prior knowledge that humans assume and rely
upon to disambiguate linguistic utterances when communicating. Human speakers
tend to vastly underspecify spatial information when communicating with others as
they omit many details that they expect the listener to know already. This poses a
technical challenge for language grounding: how do our agents leverage general and
situated prior knowledge of the world? In this thesis, we present contributions in
the form of methods, resources, and tools to strengthen our understanding of these
technical challenges and to make progress towards their eventual solutions.
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Chapter 1

Introduction

Let us imagine a language . The language is meant to serve
for communication between a builder A and an assistant B.
A is building with building-stones; there are blocks, pillars,
slabs and beams. B has to pass the stones, and that in the
order in which A needs them. For this purpose they use a
language consisting of the words ’block’, ’pillar’, ’slab’,
’beam’. A calls them out; –B brings the stone which he has
learnt to bring at such-and-such a call. – Conceive this as a
complete primitive language.

Ludwig Wittgenstein, Philosophical Investigations

Artificial Intelligence (AI) systems have permeated our daily lives over the past decade. We
now use voice-activated devices to manage our calendars, playlists, compose emails, or query
our favorite restaurants’ business hours. Although AI systems can handle these complex tasks,
they are static devices that operate with limited knowledge about their environment. They are
static in the sense that they do not move around or change the location of other objects. Their
knowledge of the environment around them is limited, using mostly text or speech as input. The
next generation of AI systems, namely embodied AI, will require new capabilities to surpass
these static AI systems. An embodied AI system exists in a physical (or virtual) environment. It
perceives multi-modal sensory stimuli – e.g. visual input in the form of point clouds of a LIDAR,
RGB, infrared or depth input of a camera, and the speech signal. These embodied AI systems are
often capable of acting on the environment, either by moving through it or moving things in it.

These new embodied AI systems are likely to become a part of our daily lives, just like
their older static counterparts. For instance, we have seen great advances in the capabilities
of autonomous vehicles for transportation and logistics. In the future, robots could be useful
assistants in the household, helping the elderly take care of daily chores. We might use drones
to pick up and deliver packages, or even record our memorable experiences from above. Virtual
agents might assist in teaching children about geography or biology. One common denominator in
all these use cases of embodied AI is the need to communicate with humans about the environment
– e.g., giving directions, or referring to a specific physical objects.

The central question this thesis considers is how can we better enable AI systems to
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‘Could you bring my pills? 
They should be on top of 
the nightstand on the left 
of the bed?’

‘Then turn around and 
pick up the blue blanket 
lying on the ottoman.’

2

‘Also, on your way back 
could you get me some 
water?’

3

You can place them on 
the coffee table here.’

4

Could you bring my pills? They 
should be on top of the night stand 
on the left of the bed? Then turn 
around and pick up the blue blanket 
lying on the ottoman. Also, on your 
way back could you get me some 
water? You can place them on the 
coffee table here.

Figure 1.1: An illustration for a complex task for an embodied AI system given four instructions.
Colored dashed lines show desired trajectory for the robot starting position (0) for the instruction in
the same color. Colored numbers in parentheses represent the expected endpoint for the instruction
in the same color.

naturally communicate while referring to the world and acting upon it? We focus on
language grounding, the process of linking units of language (i.e., words, phrases, sentences) to
actions of the system (i.e., moving in the world, changing perceptual field) and visual input (i.e.,
photographic sensory perception). To highlight the technical challenges involved in addressing this
process, we use the following scenario as a motivating example: An older person is communicating
with an AI robot to get assistance at home. This scenario is depicted in Figure 1.1. As a starting
point, the robot should be able to identify and localize mentioned objects (i.e. pills, night stand,
blue blanket, ottoman, some water, coffee table). Further, the robot needs to recognize how objects
are spatially related to each other (i.e. on top, on the left, lying on, on). In the first instruction (1),
the user does not mention the room to go to – instead, the robot must infer the room. In the second
instruction (2), the robot needs to have a spatial understanding of the environment it operates in –
i.e., when facing the nightstand, the ottoman would be behind it. The third instruction (3) also
does not mention the destination explicitly. The robot needs to decide where to get water after
leaving the room. One path leads to the kitchen, and the other leads to the bathroom; the robot
could reason, “would they use the phrase on the way back if the path leads to the kitchen?.” This
reasoning could eliminate an unnecessary visit to the bathroom.

Language grounding has many applications in various fields such as robotics, autonomous
driving, and virtual reality. To study this important topic, we use three specific technical tasks, cor-
responding to each of the high-level challenges outlined above: referring expression recognition,
vision-and-language navigation, and remote object localization. The goal of referring expressions
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is to unambiguously target one specific object in the world. In the first instruction (1) of Figure 1.1,
the second sentence is an example of a referring expression which unambiguously describes the
pills. The goal of vision-and-language navigation is to help navigate an embodied AI system in
the world with natural language instructions to a target location. The first (1), third (3), and fourth
(4) instructions in Figure 1.1 are example instructions for the vision-and-language navigation task
such that the robot needs to visit bedroom, kitchen, and living room to complete the instruction.
Remote object localization combines the previous two tasks into one: given a high-level natural
language instruction sequence (e.g. (1)) the embodied AI system needs to navigate to a remote
location in the world and choose the correct object in that remote location.

All the technical challenges illustrated in this scenario are defined in the following section.
After describing these technical challenges, Section 8.1 provides an overview of the main contri-
butions.

1.1 Technical Challenges
This thesis aims to study language grounding – the linguistic phenomenon by which words are
linked to to the world. To better understand and model language grounding, we provide scaffolding
for this problem in the form of three core technical challenges, described below.

Spatial Grounding To properly link words with elements of the world, we first need to under-
stand the spatial relationships between objects in the world. Humans naturally take advantage of
the spatial structure of the world to unambiguously refer to a specific object. As an example, let
us revisit the first instruction (1) mentioned in Figure 1.1. First, to complete this instruction, the
system needs to identify all objects mentioned in the text, i.e., pills, nightstand, bed. But how can
these pieces of text be grounded to objects detected in visual input? Also, how are all mentioned
objects related to each other? Next, the system needs to identify spatial structures between objects,
i.e., on top on the left. These spatial structures are cross-object relationships that tie each of
objects mentions to one another. How can an AI system model cross-object relationships as part
of the language grounding process? Given the complexity of this problem, let us start with a
scenario where the AI system has access to all the visual information upfront. We do this by
studying language grounding in the context of a static visual field – i.e., a single image – using
the task of image-based referring expression recognition.

We define two main research questions within this challenge:

Q1.1 First, we want to better understand how recent neural network architectures perform the
task of language grounding: How much of the world’s spatial structure is explicitly integrated
into these recent models?

Q1.2 We are interested in building new models that explicitly learn to reason about the world’s
spatial structure, including physical relationships between objects: How can we model cross-
object relationships while referring to the visual world?
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Sequential Grounding In real-world scenarios, people do not see the whole world at once but
instead explore it sequentially by re-orienting themselves or moving in the world. This challenge
is two-fold: First, grounding needs to be done using our current partial view (and potentially, with
the history of our previous observations). The partial view of the world will increase the level
of ambiguity between words and the world since the words may refer to something out-of-view.
For instance, for instruction two (2) in Figure 1.1, after completing the first instruction, the robot
faces the nightstand and does not see the ottoman and the blue blanket. Second, we need to
link words with the most accurate action to reach our goal (e.g., reaching a specific location in
the house) in addition to linking words to the world. The correct interpretation of the natural
language input depends on correct sequences of actions. There could be many alternatives
when grounding natural language to actions and the world, but only a small fraction of action
sequences are intended by the user – or lead to the users intended outcome. For instance, in
the third instruction (3), the user’s phrase “on your way back” make sense only when moving
from bedroom to kitchen on the way back to the living room but not moving from bedroom to
bathroom. In realistic scenarios, both cases need to be handled together (partial view and rel-
evance to the next action). To get a clearer understanding of both cases, we study them in two steps:

Q2.1 How do people express themselves when only partial views are available to them? What
are the defining characteristics of human language when referring to actions in a partially observed
world?

Q2.2 How can we build a computational model that can reason about and operate in a partially
observed environment?

Prior Knowledge for Grounding When communicating with other people, what is not said
can be nearly as informative as as what is said. According to Grice’s maxim of quantity [70], we
prefer to be as informative as possible, but not more. In communicating with the embodied AI
systems, this maxim implies that we would prefer to tell the AI system just enough information.
We cannot give an extremely detailed description of how to complete a task or all the knowledge
about the world. Instead, we expect the AI system to have some prior knowledge about the
world. This phenomenon is sometimes referred to as common-sense knowledge. For instance, in
Figure 1.1, the user does not even specify the names of the rooms, based on our common sense we
can infer that. What kind of prior knowledge is relevant to interpreting language referring to the
world? We focus on two types of prior knowledge. (1) General knowledge refers to the generic
common-sense people have when referring to objects and locations (e.g., refrigerators are usually
in kitchens). (2) Situated knowledge refers to knowledge about things specific to the situation
(e.g., the ottoman being next to the bed in the example figure, but it may very well be in living
room in a specific house). To study these two types of prior knowledge, we focus on knowledge
related to objects and their spatial locations, given their prominence in human language when
referring to the world.
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First, we study the general a priori knowledge of objects, understanding generic knowledge
about objects, their properties, and more specifically, spatial locations of objects. For instance,
if we observe a table, we expect to see chairs around it, especially in a dining room. So, if we
are looking for chairs, we naturally look close to the table to find them. This kind of generic
knowledge is often referred to as common-sense. While humans accumulate this knowledge over
long periods of time, can we build methods to help AI systems to start learning as well? To make
this tractable, we focus on specific knowledge about objects and their locations.

Second, we study situated knowledge which is the understandings specific to the current
environment – i.e., which objects appear in the environment and in what spatial configuration.
When a person gives directions in their own house, they are likely to take advantage of knowledge
about the specific layout of the house. While giving instructions to someone else, they would
imagine moving around in the specific environment and use this knowledge to simplify instructions.
To interpret such instruction, the AI system needs to ground language to the environment that has
not been described explicitly.

To see how these two types of prior knowledge work together, let us revisit instructions in
Figure 1.1. The first instruction (1) “Could you bring my pills? They should be on top of the
nightstand on the left of the bed?” does not mention which room to go. A general knowledge
like “nightstand are likely to appear in bedrooms” gives us a hint about the human’s intention.
On the other hand, the situated knowledge is about aligning our understanding of this specific
bedroom and how objects are located specifically in this bedroom. Let us look at the second
instruction “Then turn around and pick up the blue blanket lying on the ottoman.” In this example,
human assumes that the robot is looking at the nightstand after completing the first instruction
(1) and know that the ottoman is behind the robot. Based on their understanding of the bedroom
(i.e., situated knowledge), they use the phrase “turn around.” Using all this prior knowledge is a
seamless process for humans, but how can an embodied AI system learn this general and situated
knowledge? Our research questions are then:

Q3.1 How can an AI system acquire generic knowledge about the spatial properties of objects
and take advantage of it when grounding language to the world?

Q3.2 How can an AI system use situated knowledge specific to its current environment when
interpreting language input?

The following section gives an overview of this thesis’s contributions to address the technical
challenges described in this section.

1.2 Thesis Contributions
• The Role of Language in Language Grounding. We first build an understanding on how

state of the art systems use language for the referring expression recognition ( Q1.1) by
presenting a detailed empirical analyses of the state-of-the-art systems. The goal of this task
is to identify the object in an image referred to by a natural language expression. We find
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strong evidence that even sophisticated and linguistically motivated models for this task
may ignore the important properties of language instead relying on shallow correlations
introduced by unintended biases in the data selection and annotation process. This work
was published at NAACL 2018 and described in Chapter 2.

• Modeling Cross-Object Relationships. We introduce GroundNet to address cross-object
relationships for spatial grounding ( Q1.2). GroundNet is an approach for building neural
networks for referring expression recognition tasks based on the input referring expressions’
syntactic structure. We show that GroundNet’s syntax-based approach aids the localization
of all object mentions and all relationships between mentioned objects. This study was
published at AAAI 2018 and is explained in Chapter 3.

• A Novel Benchmark For Referring Expression Recognition in 360° Images. We build a
benchmark with all challenging characteristics of the sequential grounding to study Q2.1
in more depth. Our dataset is the first large-scale language grounding benchmark that has
fine-grained alignments between partial observations of a 3D image, expert actions, and
natural language instructions. This work was presented at ACL 2020 and is described in
Chapter 4.

• Reasoning About Alternatives for Vision-and-Language Navigation. We introduce a
pragmatic reasoning model based on the Rational Speech Act. The model can reason about
alternative interpretations of natural language input for a sequential grounding task ( Q2.2).
Our work is the first application of the pragmatic reasoning in a photo-realistic vision-and-
language environment. This work was published at NeuRIPS 2018 and is explained in
Chapter 5,

• General Knowledge of Objects for Referring Expression Recognition in Partially-
Observed Scenes. We introduce HOLM, Hallucinating Objects with Language Models,
to address the challenge of partial observability to study Q3.1. HOLM uses large pre-
trained language models (LMs) to infer object hallucinations for the unobserved part of the
environment. This work will appear at ACL 2022 and is described in Chapter 6.

• Situated Knowledge for Remote Embodied Visual Referring Expression. We introduce
OSMaN, Object-based Simple Map Navigator for remote object localization to study Q3.2.
OSMAN has the situated knowledge of objects, their locations, and how these locations are
connected to each other. OSMAN uses this knowledge for navigating to a target location
and predicting a target object. This work is described in Chapter 7.

Next in Chapter 2, we start exploring research questions regarding the spatial grounding.
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Chapter 2

The Role of Language in Language
Grounding

Science, my boy, is made up of mistakes, but they are
mistakes which it is useful to make, because they lead little
by little to the truth.

Jules Verne

Spatial referring expressions are part of our social life (“Please drop me at the blue house next
to the red mailbox.”) and also part of professional interactions (“Could you pass the small scalpel
to the right of the forceps?”). These natural language expressions are uttered to locate an object in
the visual world uniquely. We understand such expressions by identifying mentioned objects and
resolve described spatial relationships between objects using their visual input. However, how do
machines operationalize such a process? This chapter aims to understand how state-of-the-art
neural network models address the referring expression recognition task. We do this by probing
the performance of models by perturbing their natural language input. We presented the work
described in this chapter in the following publication:

• Volkan Cirik, Taylor Berg-Kirkpatrick, and Louis-Philippe Morency, “Visual Referring
Expression Recognition: What Do Systems Actually Learn?”, In Proceedings of the 2018
Conference of the North American Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 2 (Short Papers), ACL, pp. 781-787,
2018.

The code for reproducing experiments in this chapter is publicly available on Github1.

1https://github.com/volkancirik/neural-sieves-refexp
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2.1 Overview

There has been increasing interest in modeling natural language in the context of a visual ground-
ing. Several benchmark datasets have recently been introduced for describing a visual scene with
natural language [32], describing or localizing specific objects in a scene [105, 146], answering
natural language questions about the scenes [13], and performing visually grounded dialogue
[46]. Here, we focus on referring expression recognition (RER) – the task of identifying the
object in an image that is referred to by a natural language expression produced by a human
[41, 93, 97, 105, 146, 160, 183, 239].

Recent work on RER has sought to make progress by introducing models that are better
capable of reasoning about linguistic structure [93, 160] – however, since most of the state-of-
the-art systems involve complex neural parameterizations, what these models actually learn has
been difficult to interpret. This is concerning because several post-hoc analyses of related tasks
[1, 49, 67, 99, 243] have revealed that some positive results are actually driven by superficial biases
in datasets or shallow correlations without deeper visual or linguistic understanding. Evidently, it
is hard to be completely sure if a model is performing well for the right reasons.

To increase our understanding of how RER systems function, we present several analyses
inspired by approaches that probe systems with perturbed inputs [102] and employ simple models
to exploit and reveal biases in datasets [26]. First, we investigate whether systems that were
designed to incorporate linguistic structure actually require it and make use of it. To test this,
we perform perturbation experiments on the input referring expressions. Surprisingly, we find
that models are robust to shuffling the word order and limiting the word categories to nouns and
adjectives. Second, we attempt to reveal shallower correlations that systems might instead be
leveraging to do well on this task. We build two simple systems called Neural Sieves: one that
completely ignores the input referring expression and another that only predicts the category of
the referred object from the input expression. Again, surprisingly, both sieves are able to identify
the correct object with surprising precision in top-2 and top-3 predictions. When these two
simple systems are combined, the resulting system achieves precisions of 84.2% and 95.3% for
top-2 and top-3 predictions, respectively. These results suggest that to make meaningful progress
on grounded language tasks, we need to pay careful attention to what and how our models are
learning, and whether our datasets contain exploitable bias.

FC → Softmax

Sieve I

FuseFC

Sieve II

“red luggage bottom left”

biLSTM →Attention

FC→Sigmoid

Figure 2.1: Overview of Neural Sieves. Sieve I filters object types having multiple instances.
Sieve II filters objects of one category mentioned in referring expression. Objects of the same
category have the same color frames. Best seen in color.
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2.2 Analysis by Perturbation
In this section, we analyze how the state-of-the-art referring expression recognition systems
utilize linguistic structure. We conduct experiments with perturbed referring expressions where
various aspects of the linguistic structure are obscured. We perform three types of analyses: the
first one studying syntactic structure (Section 2.2.2), the second one focusing on the importance
of word categories (Section 2.2.3), and the final one analyzing potential biases in the dataset
(Section 2.2.4).

2.2.1 Analysis Methodology
To perform our analysis, we take two state-of-the-art systems CNN+LSTM-MIL [160] and
CMN [93] and train them from scratch with perturbed referring expressions. We note that
the perturbation experiments explained in next subsections are performed on all train and test
instances. All experiments are done on the standard train/test splits for the Google-Ref dataset
[146]. Systems are evaluated using the precision@k metric, the fraction of test instances for
which the target object is contained in the model’s top-k predictions. We provide further details of
our experimental methodology in Section 2.3.1.

2.2.2 Syntactic Analysis by Permuting Word Order
In English, the word order is important for correctly understanding the syntactic structure of
a sentence. Both models we analyze use Recurrent Neural Networks (RNN) [53] with Long
Short-Term Memory (LSTM) cells [84]. Previous studies have shown that recurrent architectures
can perform well on tasks where word order and syntax are important: for example, tagging [123],
parsing [205], and machine translation [16]. We seek to determine whether recurrent models for
RER depend on syntactic structure.
Premise 1: Randomly permuting the word order of an English referring expression will obscure
its syntactic structure.
We train CMN and CNN+LSTM-MIL with shuffled referring expressions as input and evaluate
their performance.

Model No Perturbation Shuffled ∆

CMN .705 .675 -.030
LSTM+CNN-MIL .684 .630 -.054

Table 2.1: Results for Shuffling Word Order for Referring Expressions. ∆ is the difference
between no perturbation and shuffled version of the same system.

Table 2.1 shows accuracies for models with and without shuffled referring expressions. The
column with ∆ shows the difference in accuracy compared to the best performing model without
shuffling. The drop in accuracy is surprisingly low. Thus, we conclude that these models do not
strongly depend on the syntactic structure of the input expression and may instead leverage other,
shallower, correlations.
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2.2.3 Lexical Analysis by Discarding Words
Following the analysis presented in Section 2.2.2, we are curious to study what other aspects
of the input referring expression may be essential for the state-of-the-art performance. If the
syntactic structure is largely unimportant, it may be that spatial relationships can be ignored.
Spatial relationships between objects are usually represented by prepositional phrases and verb
phrases. In contrast, simple descriptors (e.g. green) and object types (e.g. table) are most often
represented by adjectives and nouns, respectively. By discarding all words in the input that are
not nouns or adjectives, we hope to test whether spatial relationships are actually important to the
state-of-the-art models. Notably, both systems we test were specifically designed to model object
relationships.
Premise 2: Keeping only nouns and adjectives from the input expression will obscure the
relationships between objects that the referring expression describes.

Table 2.2 shows accuracies resulting from training and testing these models on only the nouns
and adjectives in the input expression. Our first observation is that the accuracies of models drop
the most when we discard the nouns (the rightmost column in Table 2.2). This is reasonable since

Models Noun & Adj (∆) Noun (∆) Adj (∆)

CMN .687 (-.018) .642 (-.063) .585 (-.120)
LSTM+CNN-MIL .644 (-.040) .597 (-.087) .533 (-.151)

Table 2.2: Results with discarded word categories. Numbers in parentheses are ∆, the difference
between the best performing version of the original model.

nouns define the types of the objects referred to in the expression. Without nouns, it is extremely
difficult to identify which objects are being described. Second, although both systems we analyze
model the relationship between objects, discarding verbs and prepositions, which are essential in
determining the relationship among objects, does not drastically reduce their performance (the
second column in Table 2.2). This may indicate the superior performance of these systems does
not specifically come from their modeling approach for object relationships.

2.2.4 Bias Analysis by Discarding Referring Expressions
Goyal et al. [67] show that some language and vision datasets have exploitable biases. Could
there be a dataset bias that is exploited by the models for RER?
Premise 3: Discarding the referring expression entirely and keeping only the input image creates
a deficient prediction problem: achieving high performance on this task indicates dataset bias.

We train CMN by removing all referring expressions from train and test sets. We call this
model “image-only” since it ignores the referring expression and will only use the input image.
We compare the CMN “image-only” model with the state-of-the-art configuration of CMN and
a random baseline. Table 2.3 shows precision@k results. The “image-only” model is able to
surpass the random baseline by a large margin. This result indicates that the dataset is biased,
likely as a result of the data selection and annotation process. During the construction of the
dataset, Mao et al. [146] annotate an object box only if there are at least 2 to 4 objects of the
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Model P@1 P@2 P@3 P@4 P@5

CMN .705 .926 .979 .993 .998
CMN “image-only” .411 .731 .885 .948 .977
Random Baseline .204 .403 .557 .669 .750

Table 2.3: Results with discarded referring expressions. Surprisingly, the top-2 prediction (73.1%)
of the “image-only” model is better than the top prediction of the state-of-the-art (70.5%).

same type in the image. Thus, only a subset of object categories ever appears as targets because
some object types rarely occur multiple times in an image. In fact, out of 90 object categories in
MSCOCO, 43 of the object categories are selected as the target objects less than 1% of the time
they occur in images. This potentially explains the relative high performance of the “image-only”
system.

2.2.5 Discussion
The previous analyses indicate that exploiting bias in the data selection process and leveraging
shallow linguistic correlations with the input expression may go a long way towards achieving high
performance on this dataset. First, it may be possible to simplify the decision of picking an object
to a much smaller set of candidates without even considering the referring expression. Second,
because removing all words except for nouns and adjectives only marginally hurt performance
for the systems tested, it may be possible to further reduce the set of candidates by focusing
only on simple properties like the category of the target object rather than its relations with the
environment or with adjacent objects.

2.3 Neural Sieves
We introduce a simple pipeline of neural networks, Neural Sieves, that attempt to reduce the set of
candidate objects down to a much smaller set that still contains the target object given an image, a
set of objects, and the referring expression describing one of the objects.

Sieve I: Filtering Unlikely Objects. Inspired by the results from Section 2.2.4, we design an
“image-only” model as the first sieve for filtering unlikely objects. For example in Figure 2.1, Sieve
I filters out the backpack and the bench from the list of bounding boxes since there is only one
instance of these object types. We use a similar parameterization of one of the baselines (CMNLOC)
proposed by Hu et al. [93] for Sieve I and train it by only providing spatial and visual features
for the boxes, ignoring the referring expression. More specifically, for visual features rvis of a
bounding box of an object, we use Faster-RCNN [181]. We use 5-dimensional vectors for spatial
features rspat = [xmin

WV
, ymin

HV
, xmax

WV
, ymax

WV
, Ar

AV
] where Ar is the size and [xmin, ymin, xmax, ymax] are

coordinates for bounding box r and AV , WV , HV are the area, the width, and the height of the
input image V . These two representations are concatenated as rvis,spat = [rvisrspat] for a bounding
box r.

11



We parameterize Sieve I with a list of bounding boxes R as the input with a parameter set ΘI

as follows:
sI = W score

I rvis,spat (2.1)
fI(R; ΘI) = softmax(sI) (2.2)

Each bounding box is scored using a matrix W score
I . Scores for all bounding boxes are then fed

to softmax to get a probability distribution over boxes. The learned parameter ΘI is the scoring
matrix W score

I .

Sieve II: Filtering Based on Objects Categories After filtering unlikely objects based only
on the image, the second step is to determine which object category to keep as a candidate for
prediction, filtering out the other categories. For instance, in Figure 2.1, only instances of suitcases
are left as candidates after determining which type of object the input expression is talking about.
To perform this step, Sieve II takes the list of object candidates from Sieve I and keeps objects
having the same object category as the referred object. Unlike Sieve I, Sieve II uses the referring
expression to filter bounding boxes of objects. We again use the baseline model of CMNLOC from
the previous work [93] for the parametrization of Sieve II with a minor modification: instead of
predicting the referred object, we make a binary decision for each box of whether the object in the
box is the same category as the target object.

More specifically, we parameterize Sieve II as follows:
r̂vis,spat = W vis,spat

II rvis,spat (2.3)

zII = r̂vis,spat ⊙ fatt(T ) (2.4)
ẑII = zII/ || zII ||2 (2.5)
sII = W score

II ẑs2 (2.6)
fII(T,R; ΘII) = sigmoid(sII) (2.7)

We encode the referring expression T into an embedding with fatt(T ) which uses an attention
mechanism [16] on top of a 2-layer bidirectional LSTM [188].

We project bounding box features rvis,spat to the same dimension as the embedding of referring
expression (Eq 2.3). Text and box representations are element-wise multiplied to get zII as a
joint representation of the text and bounding box (Eq 2.4). We L2-normalize to produce ẑII
(Eq 2.5, 2.6). Box scores sII are calculated with a linear projection of the joint representation
(Eq 2.6) and fed to the sigmoid function for a binary prediction for each box. The learned
parameters ΘII are W vis,spat

II ,W score
II , and parameters of the encoding module fatt.

2.3.1 Filtering Experiments
We are interested in determining how accurate these simple neural sieves can be. High accuracy
here would give a possible explanation for the high performance of more complex models.

Dataset. For our experiments, we use Google-Ref [146] which is one of the standard benchmarks
for referring expression recognition. It consists of around 26K images with 104K annotations. We
use their Ground-Truth evaluation setup where the ground truth bounding box annotations from
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Model precision@k Accuracy

CMN 1 .705
CMN 2 .926
CMN 3 .979

LSTM+CNN-MIL 1 .684
LSTM+CNN-MIL 2 .907
LSTM+CNN-MIL 3 .972

Neural Sieve I 1 .401
Neural Sieve I 2 .712
Neural Sieve I 3 .866

Neural Sieve I + II 1 .488
Neural Sieve I + II 2 .842
Neural Sieve I + II 3 .953

Table 2.4: Precision@k accuracy for Neural Sieves and state-of-the-art systems. Note that even
without using the referring expression, Sieve I is able to reduce the number of candidate boxes
to 3 for 86.6% of the instances. When we further predict the type of objects with Sieve II, the
number of candidate boxes is reduced to 2 for 84.2% of the instances.

MSCOCO [127] are provided to the system as a part of the input. We used the split provided by
Nagaraja et al. [160] where splits have disjoint sets of images. We use precision@k for evaluating
the performance of models.

Implementation Details. To train our models, we used stochastic gradient descent for 6 epochs
with an initial learning rate of 0.01 and multiplied by 0.4 after each epoch. Word embeddings
were initialized using GloVe [169] and finetuned during training. We extracted features for
bounding boxes using the fc7 layer output of Faster-RCNN VGG-16 network [181] pre-trained
on MSCOCO dataset [127]. Hyperparameters such as hidden layer size of LSTM networks were
picked based on the best validation score. For perturbation experiments, we did not perform
any grid search for hyperparameters. We used hyperparameters of the previously reported best
performing model in the literature.

Baseline Models. We compare Neural Sieves to the state-of-the-art models from the literature.
LSTM + CNN - MIL Nagaraja et al. [160] score target object-context object pairs using LSTMs
for processing the referring expression and CNN features for bounding boxes. The pair with the
highest score is predicted as the referred object. They use Multi-Instance Learning for training the
model. CMN [93] is a neural module network with a tuple of object-relationship-subject nodes.
The text encoding of tuples is calculated with a two-layer bi-directional LSTM and an attention
mechanism [16] over the referring expression.
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2.3.2 Results
Table 2.4 shows the precision scores. The referred object is in the top-2 candidates selected
by Sieve I 71.2% of the time and in the top-3 predictions 86.6% of the time. Combining both
sieves into a pipeline, these numbers further increase to 84.2% for top-2 predictions and to 95.3%
for top-3 predictions. Considering the simplicity of Neural Sieve approach, these are surprising
results: two simple neural network systems, the first one ignoring the referring expression, the
second predicting only object type, are able to reduce the number of candidate boxes down to 2
on 84.2% of instances.

2.4 Related Work
Referring expression recognition and generation is a well studied problem in intelligent user
interfaces [23], human-robot interaction [24, 55, 227], and situated dialogue [107]. Kazemzadeh
et al. [105] and Mao et al. [146] introduce two benchmark datasets for referring expression
recognition. Several models that leverage linguistic structure have been proposed. Nagaraja et al.
[160] propose a model where the target and supporting objects (i.e. objects that are mentioned
in order to disambiguate the target object) are identified and scored jointly. The resulting model
is able to localize supporting objects without direct supervision. Hu et al. [93] introduce a
compositional approach for the RER task. They assume that the referring expression can be
decomposed into a triplet consisting of the target object, the supporting object, and their spatial
relationship. This structured model achieves state-of-the-art accuracy on the Google-Ref dataset.
Cirik et al. [41] propose a type of neural modular network [12] where the computation graph is
defined in terms of a constituency parse of the input referring expression.

Previous studies on other tasks have found that the state-of-the-art systems may be successful
for reasons different than originally assumed. For example, Chen et al. [27] show that a simple
logistic regression baseline with carefully defined features can achieve competitive results for
reading comprehension on CNN/Daily Mail datasets [82], indicating that more sophisticated
models may be learning relatively simple correlations. Similarly, Gururangan et al. [72] reveal
bias in a dataset for semantic inference by demonstrating a simple model that achieves competitive
results without looking at the premise.

2.5 Conclusion
We have analyzed two RER systems by variously perturbing aspects of the input referring
expressions: shuffling, removing word categories, and finally, by removing the referring expression
entirely. Based on this analysis, we proposed a pipeline of simple neural sieves that captures
many of the easy correlations in the standard dataset. Our results suggest that careful analysis is
important both while constructing new datasets and while constructing new models for grounded
language tasks. The techniques used here may be applied more generally to other tasks to give
better insight into what our models are learning and whether our datasets contain exploitable
bias.
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Chapter 3

Modeling Cross-Object
Relationships

Syntax, my lad. It has been restored to the highest place in
the republic.

John Steinbeck

In this chapter, we further study spatial grounding in the referring expression recognition task.
We build a computational model that explicitly reasons the spatial structure of objects. The work
described in this chapter first appeared in the following publication:

• Volkan Cirik, Taylor Berg-Kirkpatrick, and Louis-Philippe Morency, “Using Syntax To
Ground Referring Expressions In Natural Images”, In Proceedings of the AAAI Conference
on Artificial Intelligence, vol. 32, no. 1. 2018.

The code for reproducing experiments in this chapter is publicly available on Github1.

1https://github.com/volkancirik/groundnet
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3.1 Introduction

Spatial referring expressions are part of our everyday social life (“Please drop me at the blue
house next to the red mailbox.”) and also part of professional interactions (“Could you pass the
small scalpel to the right of the forceps?”). These natural language expressions are designed to
uniquely locate an object in the visual world. The process of grounding referring expressions into
visual scenes involves many intermediate challenges. As a first step, we want to locate all the
objects mentioned in the expression. While one of these mentions refers to the target object, the
other mentions (i.e. supporting object mentions) are also important because they were included
by the author of the referring expression in order to disambiguate the target. In fact, [70] argued
that supporting objects will only be mentioned when they are necessary for disambiguation. As
a second step, we want to identify the spatial relationships between these objects. Is the target
to the left of the supporting object? Is it beneath it? To make effective use of an identified
supporting object, we must understand how this object is related to the target. And finally, for
many natural referring expressions, the process is recursive: a supporting object may itself be
identified by a relationship with another supporting object. As a result, models that reason about
referring expressions must respect this hierarchy, processing sub-expressions before attacking
larger expressions. Modeling this compositionality is critical to designing recognition systems
that behave in an interpretable way and can justify their decisions.

In this chapter, we introduce GroundNet, the first dynamic neural architecture for referring
expression recognition that takes full advantage of syntactic compositionality. Past approaches,
such as the Compositional Neural Network (CMN) model [93], have relied on limited syntactic
information in processing referring expressions – for example, CMN tracks a single supporting
object – but have not modeled linguistic recursion and therefore is incapable of tracking multiple
supporting objects. As shown in Figure 1, our GroundNet framework relies on a syntactic parse of
the input referring expression to dynamically create a computation graph that reflects the recursive
hierarchy of the input expression. As a result, our approach tracks intermediate localization
decisions of all supporting objects. Following the approach of [11, 12], this computation graph is
translated into a neural architecture that keeps interpretable information at each step of the way,
as can be seen in Figure 3.1d.

We additionally introduce a new set of annotations that specify the correct locations of
supporting objects in a portion of the standard benchmark dataset, GoogleRef [146] to evaluate the
interpretability of models for referring expression recognition. Using these additional annotations,
our empirical evaluations demonstrate that GoundNet substantially outperforms the state-of-the-art
at intermediate predictions of the supporting objects, yet maintains comparable accuracy at target
object localization. These results demonstrate that syntactic compositionality can be successfully
used to improve interpretability in neural models of language and vision.

3.2 GroundNet

In this section, we explain the motivation of GroundNet, how we generate the computation graph
for GroundNet, and finally detail the neural modules that we use for computing the localization
the referring expressions.
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(a) An example referring expression from our vali-
dation set “half of a sandwich on the right side of a
plate nearest a coffee mug”. Orange boxes are region
candidates and green box is the referred bounding
box.

(b) The parse tree for the referring expression in (a)

half sandwich

Intersect

Relate

on right side 

Locate

plate

Relate

Locate

coffee mug

nearest

Intersect

Locate

(c) Computation graph for the parse tree in (b)

(d) Grounding of objects in (a) with the computation
graph in (c). The more visible objects have higher
probabilities. Note that the model is able to ground
supporting objects like the coffee mug.

Figure 3.1: An Overview of GroundNet. An referring expression (a) is first parsed (b). Then, the
computation graph of neural modules is generated using the parse tree (c). Each node localizes
objects present in the image (d).

3.2.1 Motivation

A referring expression disambiguates a target object using the object’s discriminative features
such as color, size, texture etc., and their relative position to other supporting objects. Figure 3.1a
shows a canonical example from our task w one half of a sandwich is referred by “half of a
sandwich on the right side of a plate nearest a coffee mug”. Here the sandwich is disambiguated
using relative clauses (e.g. “the right side of” , “nearest”) and the supporting objects (e.g “plate”,
“coffee mug”). We observe that there is a correspondence between the linguistic compositional
structure (i.e. the parse tree) of the referring expression and the process of resolving a referring
expression. In Figure 3.1b, we see that the target object and supporting objects have a noun phrase
(NP) on the parse tree of the referring expression. Also, the relative positioning of objects in
the image (e.g. being on the right, or near) correspond to prepositional phrases (PP) on the tree.
We design GroundNet based on this observation to localize the target object by modeling the

17



compositional nature of the language. The compositionality principle states that the meaning of a
constituent is a function of (i) its building blocks and (ii) the recursive rules to combine them. In
our case, the building blocks for the GroundNet is grounding of objects i.e. the probability of how
likely an object is for word phrases. The combining rules are defined by the parse tree describing
what these objects are and how they are related to each other.

GroundNet models the processing of a referring expression in a computation graph (see
Figure 3.1c) based on the parse tree of the referring expression (see Figure 3.1b). Nodes of the
computation graph have 3 different types aiming to capture the necessary computations for local-
izing the target object. Locate nodes ground a noun phrase (“half sandwich”, “plate”,“coffee
mug”), i.e. pointing how likely that a given noun phrase refers to an object present in the image.
For example, in Figure 3.1d, Locate node of the phrase “half sandwich” outputs higher proba-
bilities for both halves of sandwiches compared to other objects. Prepositional phrases (“on right
side”,“nearest”) correspond to Relate nodes in the computation tree. Relate nodes calculate
how likely objects are related to the grounding of objects with given prepositional phrase. For
instance, in Figure 3.1c, the Relate node of “nearest” computes how likely the objects are
related to the grounding of “coffee mug” with the relation “nearest”. We convert the phrases
coming from branches in the parse tree to Intersect nodes. It simply intersects two sets of
groundings so that objects that have high likelihood in both branches will have high probabilities
for the output (see the root node in Figure 3.1d). Since each node of this computation graph
outputs a grounding for its subgraph, GroundNet is interpretable as a whole. At each node, we can
visualize how model’s multiple predictions for objects propagates through the computation graph.

In following sections, we detail how we generate the computation graph and the neural
modules used in GroundNet.

3.2.2 Generating a Computation Graph
GroundNet processes the referring expression with a computation graph (Figure 3.1c) based on to
the parse tree (Figure 3.1b) of the referring expression. First, we parse the referring expression
with Stanford Parser [145]. Then, we generate the computation graph (see Figure 3.1b, 3.1c for
an example) for a parse tree with a recursive algorithm (see Algorithm 1).

Algorithm 1: Generate Computation Tree
1: procedure GenerateComputationTree(tree)
2: left NP = FindNP(tree.left)
3: right NP = FindNP(tree.right)
4: if left NP == ”” then

return (Locate tree.text)
5: Relate = FindPP(tree, [left NP, right NP])
6: left cg = GenerateComputationTree(left NP)
7: right cg = GenerateComputationTree(right NP)
8: return (Intersect (left cg) (Relate right cg))
9: end procedure

Above, the function FindNP finds the noun-phrase with the largest word span of given root
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node for left and right branches (line 2, 3). If the tree does not have an NP subtree, it returns a
Locate node (line 4).

FindPP extracts the words between noun-phrases to model the relationship between them
and returns a Relate node (line 5). For both left and right branches of the parse tree, the same
algorithm is recursively called (lines 6, 7). Finally, the sub-computation graphs of left and right
branches are merged (line 8) into an Intersect node.

Each node in the computation graph is decorated with the phrase T using the text span, i.e.
constituents, of the corresponding parse tree node. We filter out the function words such as
determiners ‘a‘ and ‘the‘. For instance, the Locate on the left in Figure 3.1c has the span
of words “half sandwich” from the corresponding noun phrase “the half of a sandwich” in
Figure 3.1b.

In the following section, we explain the set of neural modules that we design for performing
the localization of the referring expression on a composed computation graph.

3.2.3 Neural Modules
We operationalize the computational graph for a referring expression into an end-to-end neural
architecture by designing neural modules that represent each node of our graph. First, let us
introduce the notation for referring expression task. For each referring expression, (I, R,X) are
inputs where I is an image, R is the set of bounding boxes ri of objects present in the image I ,
and X is a referring expression disambiguating a target object in bounding box r∗. Our aim is to
predict r∗ processing the referring expression in a computational graph with neural modules. In
addition to (I, R,X), neural modules use the output of other neural modules and the text span T
of the computation node.

We detail parameterization of neural modules in following subsections and visualize them in
Figure 3.2 for clarity.

Attend

This module induces a text representation for Locate and Relate nodes. It takes the words
{wi}|T |

i=1 and embeds them to a word vector {ei}|T |
i=1. A 2-layer bidirectional LSTM network [188]

processes embedded words. Both forward and backward layer representations are concatenated
for both layers into a single hidden representation for each word as follows:

hi = [h
(1,fw)
i h

(1,bw)
i h

(2,fw)
i h

(2,bw)
i ] (3.1)

The attention weights are computed with a linear projection using W a:

ai =
exp(W ahi)∑|T |
i=1 exp(W

ahi)
(3.2)

The output of Attend is the weighted average of word vectors ei where the weights are attentions
ai.

fa(T ; Θa) =

|T |∑
i=1

aiei (3.3)
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|R|

X = “half of a sandwich on 
the right side of a plate 
near the coffee mug”

T = “nearest”

|R|x|R|

Attend fa(T)

Figure 3.2: Illustrations of GroundNet’s neural modules. Upper left shows an example referring
expression and the input for Relate node (upper right, highlighted in red) of a small section of a
computation tree. Modules take inputs from module’s text span T , the set of bounding boxes R,
and output probabilities of other nodes pi. Best seen in color.

The learned parameters Θa of this module are the parameters of 2-layer bidirectional LSTM and
scoring matrix W a.

Locate

This module predicts which object is referred to for a text span, i.e. noun phrase, in the referring
expression. It computes the probability distribution over bounding boxes using the output of
Attend and feature representations of bounding boxes. For instance in Figure 3.1c, Locate
node with input “half sandwich” localizes objects by scoring each bounding box. Locate node
does so by scoring how well the text span “half sandwich” matches the content of each bounding
box.

To represent a bounding box r, we use spatial and visual features. First, visual features rvis
for the bounding box are extracted using a convolutional neural network [181]. Second, spatial
features represent position and size of the bounding box. We have 5-dimensional vectors for spatial
features rspat = [xmin

WI
, ymin

HI
, xmax

WI
, ymax

WI
, Sr

SI
] where Sr is the size and [xmin, ymin, xmax, ymax] are

coordinates for bounding box r and SI , WI , HI are area, width, and the height of the input image
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I . These two representations are concatenated as rvis,spat = [rvisrspat] for a bounding box r.
We follow the previous work [93] for parametrization of Locate.

r̂vis,spat = W loc
vis,spatrvis,spat (3.4)

zloc = r̂vis,spat ⊙ fa(T ) (3.5)
ẑloc = zloc/ || zloc ||2 (3.6)

sloc = W loc
scoreẑloc (3.7)

ploc = softmax(sloc) (3.8)
floc(T,R; Θloc) = ploc (3.9)

First, rvis,spat is projected to the same dimension as the text representation coming from the
Attend (Eq 3.4). Text and box representations are element-wise multiplied to get zloc for a joint
representation of the text and bounding box. We normalize with L2-norm into ẑloc (Eq 3.5, 3.6).
Localization score sloc is calculated with a linear projection of the joint representation (Eq 3.7).
Localization scores are fed to softmax to form a probability distribution ploc over boxes. The
learned parameters Θloc of this module are the matrices W loc

vis,spat and W loc
score.

Relate

predicts how likely an object relates to the other objects with some relation described by the node’s
text span. For instance, the relation “nearest” in Figure 3.1d holds for half-sandwich pairs, and a
half-sandwich and coffee mug pair. Since the incoming Locate node to Relate outputs a high
probability for the coffee mug, only objects near to coffee mug have a high probability. GroundNet
does so by first computing a relationship score matrix for boxes and multiplying the scoring
matrix with the grounding input. We do not define a set of relationships for Relate, instead,
model learns how objects relate to each other using module’s text representation. Specifically, this
module computes a relationship score matrix Srel of size R×R consisting of scores for box i and
j as follows:

r̂i,j = W rel
spatri,j (3.10)

zrel = r̂i,j ⊙ fa(T ) (3.11)
ẑloc = zrel/ || zrel ||2 (3.12)

Srel[i, j] = W rel
scoreẑrel (3.13)

prel = Srelp (3.14)
frel(T,R, p; Θrel) = prel (3.15)

Above, spatial representations of boxes are concatenated as ri,j = [ri,spat, rj,spat] and projected
into the same dimension as text representation (Eq 3.10). Similar to Locate, text and box
representations are fused with element-wise multiplication and L2-normalization (Eq 3.11, 3.12),
then box pair is scored linearly (Eq 3.13).

Finally, the probability distribution prel over bounding boxes is calculated as prel = Srelploc.
The learned parameters Θrel of this module are the matrices W rel

spat and W rel
score.
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Intersect

This module combines groundings coming from two branches of the computation graph by simply
multiplying object probabilities and normalizing it to form a probability distribution. In the
following section, we explain our experimental setup.

3.3 Experiments
Now, we detail our experimental setup. In our experiments, we are interested in following research
questions:

• (RQ1) How successful models are incorporating the syntax and how important the dynamic
and modular computation in exploiting the syntactic information?

• (RQ2) What are the accuracies of models for supporting objects and how these accuracies
change depending on the syntactic information?

Now, we explain datasets used for our experiments.

Referring Expression Dataset. We use the standard Google-Ref [146] benchmark for our
experiments. Google-Ref is a dataset consisting of around 26K images with 104K annotations.
We use ”Ground-Truth” evaluation setting where the ground truth bounding box annotations from
MSCOCO [127] are used.

Supporting Objects Dataset. We also investigate the performances of models in terms of
interpretability. We measure the interpretability of a model by its accuracy on both target and
supporting objects. To this end, we introduce a new set of annotations on Google-Ref dataset.
First, we run a pilot study on MTurk where all bounding boxes and the referring expression
present to annotators2. Our in-house annotator has an agreement of 0.75 - a standard metric in
word alignment literature [68, 164] with three turkers on a small validation set of 50 instances.
Overall, our annotator labeled 2400 instances – but only 1023 had at least one supporting object
bounding box.

We remind that the training data does not have any annotations for supporting objects. Models
should be able to predict supporting objects using only target object supervision and text input.
We should emphasize that our work is the first to report quantitative results on supporting object
for the referring expression task and we will release our annotation for future studies. Next, we
provide details of our implementation.

Implementation Details. We trained GroundNet with backpropagation. We used stochastic
gradient descent for 6 epochs with and initial learning rate of 0.01 and multiplied by 0.4 after each
epoch. Word embeddings were initialized with GloVe [169] and finetuned during training. We
extracted features for bounding boxes using fc7 layer output of Faster-RCNN VGG-16 network
[181] pre-trained on MSCOCO dataset [127]. Hidden layer size of LSTM networks was searched
over the range of {64,128,...,1024} and picked based on best validation split which is 2,5% of

2We did not provide the parse trees to not bias the annotators.
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Model Syntax Dynamic Computation Modularity Object Relationship Supporting(%) Accurac(%)

LSTM+CNN - MMI 60.7
LSTM+CNN - MMI+visdif ✓ 64.0
LSTM+CNN - MIL ✓ 15.0 67.3
CMN ✓ ✓ 11.1 69.7

Recursive NN ✓ ✓ 51.5
CMN-syntax guided ✓ ✓ ✓ 53.5

GroundNet ✓ ✓ ✓ ✓ 60.6 65.7
GroundNet-syntax-guided Locate ✓ ✓ ✓ ✓ 60.0 66.7
GroundNet-free-form ✓ ✓ ✓ ✓ 10.6 68.9

Table 3.1: The accuracy of models with the support of syntax, dynamic computation, modularity,
relationship modeling, and supporting object predictions. Our model is the first syntax-based
model with successful results and achieves the best results in supporting object localization.

training data separated from training split. Following the previous work [93], we used official
validation split as the test. We initialized all parameters of the model with Xavier initialization
[64] and used weight decay rate of 0.0005 as regularization. We implemented our model using
PyTorch3 and plan to release our code for public use. Next, we explain models used in our
experiments.

Baseline Models. We compare GroundNet to the recent models from the literature. Recur-
siveNN [197] uses the recursive structure of syntactic parses of sentences to retrieve images
described by the input sentence. The text representation of a referring expression is recursively
calculated following the parse tree of the referring expression. The text representation at root
node is jointly scored with bounding box representations and the highest scoring box is predicted.
LSTM + CNN - MMI [146] uses LSTMs processing the referring expression and CNN for
extracting features for bounding boxes and the whole image. Model is trained with Maximum
Mutual Information training. LSTM + CNN - MMI+visdif [239] introduce contextual features for
a bounding box by calculating differences between visual features for object pairs. LSTM + CNN
- MIL4 [160] scores object-supporting object pairs. The pair with the highest score is predicted.
They use Multi Instance Learning for training the model. CMN5 [93] is a neural module network
with a tuple of object-relationship-subject nodes. The text representation of tuples are calculated
with an attention mechanism [16] over the referring expression. We also report results for CMN -
syntax guided when a parse tree is used for extracting the object-relationship-subject tuples.

GroundNet with varying level of syntax. We investigate the effect of the syntax varying
the level of use of the syntactic structure for GroundNet. GroundNet is the original model
presented in the previous section where each node in computation graph uses the node’s text span
for Attend. For GroundNet-syntax-guided Locate model, Locate nodes use the node’s

3https://pytorch.org
4Originally the authors use a new test split, whereas, we report results for the standard split of the dataset for this

model.
5We report results for our reimplementation of this model where we did hyperparameter search the same as our

model.
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text span as an input to the Attend module. Whereas for Relate nodes can use all referring
expression for inducing the text representation. For GroundNet-free-form model, Both Locate
and Relate nodes use all of the referring expression as the input to Attend. Next, we explain
our evaluation metrics used in our experiments.

Evaluation. To evaluate models for referring expression task we use the standard metric of
accuracy. For evaluation of supporting objects, when there are multiple supporting objects, we
consider a supporting object prediction as accurate only if at least one supporting object is correctly
classified. To evaluate approaches modeling the supporting objects we use following methods.
For LSTN+CNN-MIL, we use the context object of the maximum scoring target-context object
pair as the supporting object. For CMN, we use the object with the maximum object score of a
subject-relation-object tuple as the prediction for the supporting object. For GroundNet, we use
the object with maximum probability as a prediction for intermediate nodes in the computation
graph. In the following section, we discuss results of our experiments.

3.4 Results

We presented overall results in Table 3.1 for the compared models. We now discuss columns of
the Table 3.1.

(RQ1) Syntax, Dynamic Computation, and Modularity. GroundNet variations achieve the
best results among syntax-based models. “Recursive NN” homogeneously processes the referring
expression throughout the parse tree structure. On the other hand, GroundNet modularly parame-
terizes multi-modal processing of localization and relationships. “CMN - syntax guided” has a
fixed computation graph of a subject-relation-object tuple, whereas, GroundNet has a dynamic
computation graph for each instance, thus, a varying number of computation nodes are induced.
When compared to other syntax-based approaches, GroundNet results show that a dynamic and
modular architecture is essential to achieve competitive results with a syntax-based approach.

(RQ2) Syntax for Supporting Objects. Our model achieves the highest accuracy on localizing
the supporting objects when its modules are guided by syntax. “LSTM+CNN-MIL” and CMN
does not exploit the syntax of the referring expression and poorly perform in localizing supporting
objects. When we relax the syntactic guidance of GroundNet by letting all modules to attend to all
of the referring expression, “GroundNet-free-form” also performs poorly on localizing supporting
objects. These results suggest that leveraging syntax is essential in localizing supporting objects
and there might be a tradeoff between being interpretable and being accurate for models. We
qualitatively show a couple of instances from test set GroundNet and CMN in Figure 3.3. As an
example, for the first instance, both GroundNet and CMN successfully predict the target object.
GroundNet is able to localize both supporting objects (i.e. the girl and the disc) mentioned in the
referring expression, whereas, CMN fails to localize the supporting objects. Next, we review the
previous work related to GroundNet.
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3.5 Related Work
Grounding Referential Expressions. The most of the recent work [61, 97, 146, 160, 183, 239]
addresses grounding referential expression task with a fixed computation graph. In earlier studies
[61, 97, 146, 183], the bounding boxes are scored based on their CNN and spatial features along
with features for the whole image. Since each box is scored in isolation, these methods ignore the
object relationships. More recent studies [93, 160, 239] show that modeling relationship between
objects improves the accuracy of models. GroundNet has a dynamic computation graph and
models the relationship between objects.

Modular Neural Architectures. Neural Module Networks (NMN) [11, 12] is a general frame-
work for modeling compositionality of language using neural modules. A computation graph with
neural modules as nodes is generated based on a parse tree of the input text. GroundNet shares the
principles of this framework. We design GroundNet for referring expression task restricting each
node grounded in the input image which keeps network interpretable throughout the computation.

Compositional Neural Network (CMN) [93] is also an instant of NMN aiming to remove
language parser from the generation of computation graph by inducing text representations to
localization and relationship modules using an attention mechanism. Their computation graph is
fixed to the subject-relation-subject tuple but the input is dynamically constructed for modules.
Our model, on the other hand, can handle multiple relationships mentioned in referring expressions
(see the first row of Figure 3.3).

Syntax for Vision. Golland et al. [65] introduce a game-theoretic model successfully leverages
syntax for grounding reference expressions for synthetic scenes. [39] use the visual context
for solving prepositional phrase attachment resolution (PPAR) for sentences describing a scene.
Unlike our model, their model relies on multiple parse trees and multiple segmentations of an
image coming from a black-box image segmenter. Our model can also be extended to address
PPAR setting where we only need to ground-truth object annotations for roots of multiple parse
trees for the input sentences. [220] introduce a model localizing phrases in sentences that describe
an image. However, their model relies on the annotation of phrase-object pairs. GroundNet only
uses target object annotations and there is no supervision for supporting objects. [230] aim to
address localization of phrases on region masks. Similar to our approach, they do not rely on
ground-truth masks during training. However, unlike GroundNet, their model does not model
relationship between objects.

3.6 Conclusion
In this chapter, we present GroundNet, a compositional neural module network designed for the
task of grounding referring expressions. We also introduce a new auxiliary task and an annotation
for localizing the supporting objects.

Our experiments on a standard benchmark show that GroundNet is the first model that
successfully incorporates syntactic information for the referring expression task. This syntactic
information helps GroundNet achieve state-of-the-art results in localizing supporting objects.
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Our results show that recent models are unsuccessful at localizing supporting objects. This
suggests that current solutions to referring expression task come with an interpretability-accuracy
trade-off. Our approach substantially improves supporting object localization, while maintaining
high accuracy, thus representing a new and more desirable point along the trade-off trajectory.

Acknowledgements
This project was partially supported by Oculus and Yahoo InMind research grants. The authors
would like to thank anonymous reviewers and the members of MultiComp Lab at CMU for their
valuable feedback.

26



Referring Expression GroundNet CMN

“a white color car behind a girl
catching a disc”

white color car

behind

girl catching

disc

subject object

“the man walking behind the
bench”

man walking behind

bench

subject object

“a man going before a lady carrying
a cellphone”

man

going before

lady carrying

cell phone

subject object

Figure 3.3: Qualitative Results for GroundNet. Bounding boxes and referring expressions to target
object (in green boxes) on the left. GroundNet predictions in the middle and CMN predictions are
on the right. GroundNet localizes not only the target object but also supporting objects (e.g. disc
and girl in the first row, bench in the second).
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Chapter 4

A Novel Benchmark For Referring
Expression Recognition in 360°
Images

Nothing has such power to broaden the mind as the ability
to investigate systematically and truly all that comes under
thy observation in life.

Marcus Aurelius

In the previous two chapters, we studied spatial grounding in static images. However, in the
real world, humans explore the world sequentially by moving in the world or changing our heads’
pitch and yaw. In this chapter, we aim to understand how people use language when they process
partial visual information about the world. To this end, we build a novel large-scale language
grounding benchmark with human participants using 360◦ images. The work described in this
chapter was presented in the following publication:

• Volkan Cirik, Taylor Berg-Kirkpatrick, and Louis-Philippe Morency, “Refer360◦: A Refer-
ring Expression Recognition Dataset in 360◦ Images”, In Proceedings of the 58th Annual
Meeting of the Association for Computational Linguistics, ACL, pp.7189-7202, 2020.

The code for reproducing experiments in this chapter is publicly available on Github1.

1https://github.com/volkancirik/refer360
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4.1 Overview

Imagine a scenario in which you are asked to retrieve medication from a bathroom. “First, face the
sink, then find the second drawer in the cabinet to your left. The pills should be inside that drawer
behind the toothbrush.” Interpreting instruction sequences in order to locate targets in novel

look	towards	the	
door	leading	
outside	the	cafe.

notice the silver and black coffee
pot closest to you on the bar. see
the black trash bin on the floor
in front of the coffee pot.

waldo is on the face of the
trash bin about 1 foot off
the floor and also slightly
on the brown wood.

0

1
2

3

Random	Starting	Point

Figure 4.1: An example from Refer360° . Orange frames represent the field-of-view (FoV) of the
follower after interpreting each instruction. Numbers in the frames represent the sequential order.
Green lines show how FoVs change continuously. After each instruction, the follower changes the
FoV to align with what the instruction describes. Please see Figure 4.2a to see the correct location
of Waldo.

environments is challenging for AI systems (e.g. personal robots and self-driving cars). First,
the system needs to ground the instructions into visual perception [7, 90]. This often requires
identification of the mentioned object [172] through physical relationships with surrounding
objects [41, 93]. Second, since human visual perception has limited field-of-view, instructions are
often sequential: First, the correct FoV should be identified before searching for the final target.
In many situations, the target location is not visually unique (e.g. in the middle of a plain wall),
and several intermediate instructions are required. To study these challenges, we introduce a novel
dataset, named Refer360°, for the task of localizing a target in 360° scenes given a sequence of
instructions.

Figure 4.1 presents an example scenario from Refer360° . For this scenario, finding the target
location requires first finding the door leading outside, then looking at the coffee pot, and finally
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Dataset Target Location Selection Field of View (FoV) Action Space Intermediate Steps

Refer360° Random Points Dynamic with partial FoV 4 Directions ✓

Touchdown-SDR [30] Human Selected Points Oracle: Holistic & Static, 360°scenes ✗ ✗

Google-Ref [146] Annotated Objects 2D Images ✗ ✗

Ref-UNC [105] Annotated Objects 2D Images ✗ ✗

Table 4.1: Comparison of referring expression datasets, including our proposed Refer360° dataset.
Refer360° poses a more challenging scenario where the system observes only a partial and
dynamic FoV. Refer360° also has includes explicit alignments between intermediate instruction
steps and human follower actions which can be used as an auxiliary evaluation metric or source of
supervision.

finding the trash can, which is the nearest object to the target. Here, instructions are given from
the perspective of a partial field of view (FoV) of the scene, and these FoVs can dynamically be
changed. Thus, the correct interpretation of the sequence of instructions will require reasoning
about what is currently visible in the FoV (e.g., grounding of objects) but also what is not visible
yet. These scenarios will often require adjusting the FoV based on intermediate instructions. An
important feature of the Refer360° dataset is that the target location is not an object; instead, it
can be any point in the scene, which makes the grounding task more challenging since it is harder
to describe a location when we cannot readily refer to it with the name of an object.

Refer360° consists of 17,137 instruction sequences with ground-truth actions to complete
these instructions in 360° scenes. Refer360° has some unique characteristics which differentiate it
from prior work. First, Refer360° allows the scene to be viewed through a partial FoV that can be
dynamically changed as instructions are followed. This is in contrast with existing 360° scene-
based datasets such as Touchdown-SDR [30] and 2D image-based referring expression datasets
[97, 105, 146], where the visual input is either fixed, corresponding to a holistic, oracle-like
view, or consists of fixed, cardinal FoVs. The partial and dynamic FoV in Refer360° poses new
challenges for language grounding (see Figure 4.2a, 4.2b, and 4.2c for an illustrative comparison).
For instance, the mentioned objects may not be visible in the current FoV, and language may refer
to the FoV itself. Further, since our annotators generate instructions while observing a partial
and dynamic FoV, and do so for a follower whose first FoV will be initially located at random,
the instruction following task is strongly sequential. To interpret the sequence of instructions to
find the target correctly, a follower must reason about the sequence of FoVs referenced by the
instructor.

Second, unlike other datasets, the target locations in Refer360° are randomly distributed and
thus may occur anywhere – not just on predetermined objects. As a result, target locations are
less prone to bias [1, 42, 49, 67, 99]. These random locations lead to more linguistically complex
instructions, as shown in our analyses – when instead annotators choose the target location, they
are likely to be biased towards locations that are more easily described (e.g. on top of a named
object). Table 4.1 shows a comparison of similar datasets. In the following section, we motivate
Refer360° dataset in more detail.
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Partial	FoV

(a) An example scene from the Refer360° dataset. Note that both annotators and systems cannot
observe the shaded area. They only observe a partial field of view which can be updated dynamically.

(b) An example scene from Touchdown-SDR where
the bullseye is pointing to the target location. Instruc-
tions for this instance are “a black doorway with red
brick to the right of it, and green brick to the left of it.
it has a light just above the doorway, and on that light
is where you will find touchdown.”

(c) An example image from Google-Ref
dataset with the referring expression “a
young elephant nudges its head into that
of a slightly taller one.”.

Figure 4.2: Examples are from (a) Refer360° (b) Touchdown-SDR, and (c) Google-Ref datasets.
In Refer360° , the target location could be any random location on the image. In (b), annotators
chose an existing object as the target location. In (c), boxes for objects were used as targets.
Refer360° also seeks to increase the complexity of instruction following, making it more realistic
by introducing a partial and dynamic FoV rather than providing a holistic oracle-like view of the
image.

4.2 Motivation
The vision behind Refer360° is to build systems that perform localization of any point in 3D
space, bringing us closer to human-like reasoning. This is an important milestone towards better
collaboration between AI systems (e.g. personal robots) and humans, allowing them to act within
the same space. It might also pave the way for AI-agents interacting with virtual worlds. The
Refer360° dataset was designed to address three technical challenges towards this vision.

First, learning environments we create need to reflect the characteristics of human’s perception
of 3D space. In such an environment, the agent only observes a partial FoV of the scene. This
requires adjusting the FoV in accordance with instructions so that current view and instructions
are aligned. The agent’s FoV can be changed in a continuous manner, moving smoothly left, right,
up, and down. This is analogous to a real-world robot performing motor actions to change its
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camera position, or a human changing their head’s pitch and yaw. Further, real scenes are 3D,
but the FoV is represented in 2D in our task. Thus, interpreting some instructions will require
inferences about depth.

Second, the paradigm of 360°scenes with partial FoV will almost always necessitate instruc-
tions that consist of multiple intermediate steps. As the first intermediate step, the follower
and instructor need to find a common referential FoV. Then, the instructor can continue giving
guidance towards the target location, often by identifying objects that are physically related to the
target location. This multi-step process can serve as a natural benchmark for measuring whether
systems achieve localization through a human-like process of progressively getting closer to the
target location by interpreting intermediate steps. In other words, this setup may helps researchers
make sure that our systems are arriving at the referred location for the right reasons.

Third, since any point in the scene could be of interest, instructions will be more complex:
many points in the scene will not correspond to easily named objects, and thus, when such points
are allowed as targets, more sophisticated instructions will be required to unambiguously refer
to them. The instructor may rely on description of physical relationships with the closest easily
named locations in the scene [42, 93, 160]. For instance, in Figure 4.2a, the target location is on
the side of a trash bin, which is difficult to unique describe with a single word or a short phrase. In
this case, the instructor may use the distance to the floor or to another object in the scene in order
to describe the exact location of the target. This will additionally introduce description of degree
(e.g. ‘slightly above’, ‘a few inches away from’) rather than more discrete spatial relationships
(e.g. ‘on top of the desk’).

4.3 Refer360° Dataset
In this section, we describe the details of the Refer360° dataset, a vision-and-language benchmark
for localizing a target point in a panoramic image. Refer360° consists of 17137 instruction
sequences that describe randomly distributed target locations in 2,000 panoramic scenes from the
SUN360 [231] dataset. We first explain the annotation procedure for collecting and validating the
instruction sequences. Later, we discuss the statistics of the Refer360° dataset.

4.3.1 Annotation Procedure
Annotation of the Refer360° dataset was carried out in three stages on Amazon Mechanical Turk
with two tasks, namely a description task and a finding task. First we describe the two tasks in
more detail.

Description Task. Our main goal is to collect instructions for finding any point in a 360° image.
Annotators started this task looking at the ceiling of the 360° image with a random yaw2. We
asked them to find the target location for which we use an icon of Waldo. Target locations are
choosen randomly – we discuss the details of this design choice in Section 4.3.2. The target can
be at any longitude and can have a latitude within a range of 45 degrees from the top and bottom

2We wanted to avoid introducing any bias by beginning the same position each time for each scene.
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of the 360 image. This restriction in latitude is made for two reasons: (1) visual distortions happen
at extreme points, and (2) during the finding task, the starting point is the “ceiling” of the 360
image. Annotators were asked to give instructions to find the target location using at least three
instructions. Please see Figure 4.3 to see a screenshot of the user interface we build for this task.

Finding Task. We design this task to verify the quality of instruction sequences provided by
annotators in the description task. We asked annotators to complete the instruction sequences
sentence by sentence. The initial field of view of annotators is always pointing at the ceiling of
the 360° image with a random yaw. We asked annotators to change the FoV after each instruction
so that the center of the FoV points to the location the intermediate instruction is describing. After
moving the FoV to the correct position, annotators clicked a button to read the next instruction.
We recorded the spherical coordinates of the center of the FoV after each instruction. As a result,
our annotations include aligned intermediate steps that find the target location. After the final
instruction, the annotators predicted the target location by changing the center of FoV or clicking
on the FoV.

We collected and verified the quality of our data in three stages using description and finding
tasks. In the first stage, we sought a pool of annotators providing high-quality annotations. For
the second, aimed to collect a large number of annotations and verify their quality. In the third
stage, we further verified instruction sequences that were not verified in the second stage.

Stage I. In this stage, we asked annotators to complete the finding task for four different scenes.
We wrote the instruction sequences for this stage’s finding task to give annotators an example
of instruction sequences for describing the target location. Then, annotators completed the
description task for 4 different scenes. A total of 256 annotators participated in this first stage. We
manually inspected each instruction sequences provided by these annotators for their quality of
descriptions of the target location and reduced the pool of annotators to 86.

Stage II. In this stage, for each annotation session, we asked annotators first to find the target
location for four different scenes, and later, describe the target location four times for different
scenes3. We used the finding task to verify the quality of the instruction sequences. If an annotator
predicts the target location within a radius of 11 degrees in spherical coordinates, which is roughly
equal to the size of the Waldo icon we used, we counted that instance as verified.

Stage III. After the second stage, we have some instructions where the annotators could not find
the target accurately. This could mean either the instructions are not clear, or it is actually harder
to find the target location with these instruction sequences. In the third stage, we did another
round of the finding tasks to verify these harder instruction sequences.

After these three stages, we have a total of 17137 instruction sequences in which at least one
annotator was able to find the target location accurately.

3Annotators never observed their own instruction sequences while doing the finding tasks.
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Annotation Stage # of Annotators # of Collected Instructions # of Verified Instructions

Stage I: Hiring 256 854 n\a
Stage II: Collection & Verification 86 20630 14062
Stage III: Verification 86 n\a 3073

Table 4.2: Statistics for data collection stages. Stage I is for hiring annotators. Stage II is for
collecting and verifying the instructions. Last stage is further verifying hard instances that are not
verified II.

Scene Type Scene Location # of Images

Restaurant Indoor 500
Shop Indoor 250
Expo Showroom Indoor 250
Living Room Indoor 250
Bedroom Indoor 250
Street Outdoor 250
Plaza Courtyard Outdoor 250

Table 4.3: Statistics for Panoramic Images used in Refer360° dataset.

Payment and Incentive Structure One session of annotation consisted of finding task for 4
scenes and describing task for 4 scenes which took about 15 minutes to complete on average. The
base pay for one session was $2.25. For each instruction sequence that was accurately found by
another annotator, we paid a bonus of $0.10 to both the annotator who found the location and
the annotator who wrote the instruction sequence. Thus, for both the finding and describing task
annotators have an interest in performing the task accurately. Next, we provide statistics of the
Refer360° dataset.

4.3.2 Dataset Statistics
We split our presentation of dataset statistics into two parts: namely, scene statistics and language
statistics.

Scene Statistics: To investigate the challenges in localizing a target location for both indoor
and outdoor scenes as well as for different kinds of indoor and outdoor scene categories, we use
seven scene categories from the SUN360 [231] dataset. We use total of 2,000 scenes. Table 4.3
shows the distribution of scene categories that comprise the Refer360° dataset.

We want to analyze the richness of the scenes in the Refer360° dataset and compare it with
Touchdown-SDR. The domain of the scenes will affect the instruction one needs to use to describe
a target location. To be more specific, when annotators give instructions, they use supporting
objects as anchor points to help guide the attention of the follower. Thus, the availability of a
rich set of objects is essential for describing the target location. Since the annotation of objects
in 360° images is a laborious task itself, we use an off-the-shelf object detection method [6] to
annotate scenes with objects. We split 360° images into 12 different 2D images covering the 360°
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view4. This provides us a proxy to analyze the kind of objects usually observed in 360° images in
Touchdown-SDR and Refer360° .

Dataset Avg # of Objects Object Type PPL

Touchdown-SDR 93.81 15.93
Refer360° 62.44 42.93

Table 4.4: Statistics for detected objects per image in Touchdown-SDR and Refer360° . On
average, Refer360° images contain fewer of objects. However, these objects are from a wider
variety of object types.

Table 4.4 shows the average number of objects and the perplexity of the distribution of detected
objects per 360° scene used in Refer360° and Touchdown-SDR datasets. As expected, the average
number of detected objects in Touchdown-SDR scenes is higher than in Refer360° because all
scenes depict outdoor settings from Google’s StreetView API. However, this analysis shows that
Refer360° has much larger diversity of object types and therefore will likely have greater lexical
diversity in instructions.

Scenes Dataset Avg. Text Length Vocab. Size Size

360° Refer360° 43.80 11220 17137
360° Touchdown-SDR 26.97 5705 9325

2D Guess What?! 24.99 27713 160745
2D Google-Ref 8.46 12108 142210
2D Refer-UNC 3.51 21305 414138

Table 4.5: Language statistics for Refer360° dataset and other referring expression recognition
datasets.

Language Statistics: Refer360° contains a total of 17137 instruction sequences (8.57 per scene)
describing target locations. Table 4.5 shows language statistics for Refer360° and other referring
expression recognition datasets. Refer360° is bigger than Touchdown-SDR, yet, smaller than
other datasets. This is because it is a more time-intensive and costly process to annotate and
validate 360° images compared with 2D images.

Figure 4.5 shows the distribution of text length for the instructions. Compared to other
referring expression recognition and image captioning datasets, Refer360° contains the longest
instructions on average. This is a result of two differences with previous tasks. First, previous
datasets use the entire scene as a single field of view. Thus, there is reduced need to describe how
to find the target location sequentially. In Touchdown-SDR, the recognition system or human
annotator needs to find an FoV that includes the target location. In Refer360° , the finding task
is carried out sequentially; thus, each instruction needs to be completed accurately to be able

4We fixed the confidence threshold for detection of objects to 0.5 and maximum number of objects to 20.
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Split # of Instances

Train 13287
Validation Seen 900
Validation Unseen 1009
Test Seen 900
Test Unseen 1041

Table 4.6: Statistics for dataset splits in Refer360° dataset.

to find the target location. Second, in Refer360° , the target location is randomly distributed in
scenes. As seen in Table 4.7, when the target location is randomly selected, the target location is
on average further from other objects (we discuss this in more detail in Section 4.4.1).

Dataset Splits: We use a similar train, validation, and test split strategy as the Room-to-Room
dataset [7]. We reserve a subset of images from each scene category for validation and test
splits for unseen scene evaluation i.e. these scenes are not observed in the train split to study
generalization capabilities of models. The remaining scenes are pooled together for training,
validation, and test splits for seen scenes evaluation. Table 4.6 shows statistics for the splits.
Following the previous studies, the ground-truth annotations for test splits will not be released.

4.4 Analyses
We conduct four analyses of the Refer360° dataset. First, we investigate if the random selection
process of target locations can mitigate possible bias issues. Recent studies [1, 49, 67, 99]
show that design decisions for collecting annotations may introduce bias into datasets. High-
capacity machine learning models can exploit these issues which hinders the meaningful progress
towards real language understanding [42, 243]. Second, we study whether each instruction in
an instruction sequence is critical in finding the target location, or whether some instruction
sequences are overcomplete. It may be very well the case that, by just understanding the last
instruction, one can easily locate the target location. Third, we perform a qualitative analysis
of Refer360° to provide the types of linguistic reasoning required to find the target location
accurately. Finally, we analyze the performance of the state-of-the-art on Refer360° .

4.4.1 Target Locations
The selection method for the target location plays a crucial role in the kind of language one
needs to use to describe that location. Earlier studies on referring expression recognition datasets
[97, 105, 146, 198] select the target location as object boxes annotated by humans. In Touchdown-
SDR [30] instead, annotators decide the location of the target rather than choosing one of the
pre-defined lists of object boxes.

In our initial iterations for the data collection, we followed this procedure. However, we
observed that in many cases, annotators chose the most salient, or unique object or region in
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the image. Figure 4.6 compares the distribution of instruction sequence lengths for random and
manual selection of targets.

This could introduce a location bias to the dataset – i.e. if annotators get to select the target
location, they may choose targets that are easy to describe, sometimes leading to trivial or
uninteresting examples, and more broadly to artificially simple language overall. For instance,
if there is only one pink object in the scene, annotators usually preferred describing that region
rather than some other obscure location in the scene. Instead of letting annotators decide where to
place targets in the scene, we randomly picked a target location in the scene and asked them to
describe how to find that location. As a result, our instruction sequences are complex as we show
next.

Comparison Touchdown-SDR Refer360°

The perplexity of the distribution of
an object that the target is located on 9.53 17.86
The perplexity of the distribution
of the closest objects 17.80 46.84
The average distance to
the closest objects 8.64 23.88

Table 4.7: Statistics for target locations image in Touchdown-SDR and Refer360° . Target is
located on or near the wider variety of objects and further away from other objects.

To measure the differences in instructions for randomly or manually choosen targets, we
compute three quantities. First, we compute the variety of objects that the target is located on
using the perplexity of object frequencies. Similarly, we also compute the variety of objects
closest to the target objects. Since we use objects near to the target location as anchor points,
this is also another useful metric. The higher the perplexity of both metrics, the harder it is to
predict the target location using just the object type or the closest object. Third, we measure the
average distance between the target location and the nearest object. The closer the target location
to another object, the easier it is to describe using the closest object as an anchor point.

Instructions Average Distance Accuracy
Last Sentence 73.01 0.37
Last 2 Sentences 42.32 0.63
All Sentences 11.35 0.88

Table 4.8: Results for instruction ablation human study. Annotators need all instructions to
complete the task accurately.

Table 4.7 shows statistics for target locations in Touchdown-SDR and Refer360° . For both
perplexity metrics, we observe that the target is located near or inside a wider variety of objects in
Refer360° . Also, on average, the target location is further away from other objects for Refer360°
. These statistics show that randomly choosing the target location helps us address possibly bias
towards simple instructions and makes recognition more challenging.
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Phenomenon c µ Example from Refer360°

Coreference 96 1.6 on the very upper left corner of the blue part of that window
Comparison 15 0.1 the smaller building to the right of the spire
Sequencing 13 0.1 go right just a smidge and then go up above
Counting 30 0.3 shaped like a football and has 3 silver legs
Egocentric Spatial Mention 46 0.6 find the shelves with books nearest to you
Allocentric Spatial Mention 35 0.5 waldo is sitting on the right side of the window
Direction 92 1.6 look at the knife on the wall to the left
Temporal Condition 13 0.1 turn right until you see a mirror on the wall
3D understanding 22 0.2 counter with the two bar stools sitting in front of it
Inexact/Approximate Language 28 0.2 in front of the white strip at the bottom slightly off center
More than 2 Supporting Objects 47 0.5 now look on the floor in between the table and the chair

Table 4.9: Linguistic analysis of 100 randomly sampled examples from Refer360° . We annotate
each example for the presence and count of each phenomenon. c is the total number of instructions
out of the 100 containing at least one example of the phenomenon. µ is the mean number of times
each phenomenon appears per instruction sequence.

4.4.2 Ablation of Instruction Sentences

While collecting instructions, we asked annotators to describe the target location using at least
three and at most five sentences. It might be possible to find the target location using only the last
instruction, which may make the first sentences unnecessary. Such redundancy makes it harder
to study the core challenges of grounding instructions to visual perception and actions. Thus,
we conducted an ablation study with the same pool of annotators using 1K instructions from the
dataset. Here we check whether Refer360° has strong dependencies between instructions.

We ran two ablation studies to examine the necessity of using all instruction sentences. For
the first study, we ran a finding task with the same pool of annotators, where we provided only the
final instruction. For the second study, similarly, we ran another finding task where we provided
only the penultimate and the final instruction. We compare the average euclidean distance between
the predicted locations and the target location, and the accuracy, i.e. for what percentage of the
time the distance between the predicted location and the target location is less than 11 degrees.

Table 4.8 shows the result of our ablation analysis. Annotators’ performance significantly
dropped when they can only read the last instruction. They could find the target object only 37%
of the time. Using the penultimate instruction helped them a lot, and they achieved 63% accuracy.
The best performance is achieved when they observe the full instructions. These results show that
each instruction is necessary for accurately finding the target location.

4.4.3 Linguistic Phenomena Observed

Before designing a system to address a language-related task, it is important the understand
different kinds of linguistic phenomena observed in the task. We follow the procedure described
in Touchdown-SDR [30], and added a few novel phenomena including 3D understanding, inexact
language, and the use of more than two supporting objects as linguistic phenomena. Table 4.9
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shows the result of our analyses for 100 randomly sampled instances. Refer360° requires reasoning
for a rich set of linguistic phenomenon including the resolution of the coreference chains, counting
objects, a rich set of spatial language phenomena such as multiple-supporting object mentions
and 3D scene understanding.

4.4.4 Localization Experiments

Our analyses in the previous subsections suggest that Refer360° poses several challenges. In
Section 4.4.1, we show that since the target locations are randomly chosen, it is harder to exploit
possible location bias. In Section 4.4.2, we show that it is essential to model the sequential nature
of the instructions. Section 4.4.3 shows that there are lots of interesting linguistic phenomena
observed in Refer360° . We want to verify these claims by training the state-of-the-art model and
measure its performance on our Refer360° dataset.

We use the same experimental setup in Touchdown-SDR using the scenes provided in the
concurrent work [150], where we slice 360scene into 8 FoVs covering the scene. We pass each of
these FoVs to a pre-trained model [80], and extract features from fourth to the last layer before
classification to get a feature map representation of the FoVs. We concatenate 8 FoV slices to a
single tensor to represent the 360° scene.

We use the LingUNet model [19, 30, 156], which performs the state-of-the-art results on
TouchDown-SDR dataset. LingUNet is an image-to-image encoder-decoder model where a
language and image representations are fused to predict a probability over the input image.
Instructions are fed to bi-directional Long Short-Term Memory (LSTM) recurrent neural network
to induce a language representation. To induce fused image-text representations, the input image
tensor is passed to a convolutional neural network conditioned on the test representations. The
fused representation is then fed to deconvolution layers to predict the location of the target. We
use the same accuracy and distance metrics described in Section 4.4.2.

Dataset Accuracy (%) Distance

Touchdown-SDR (reported) 26.1 708
Touchdown-SDR (replication) 23.5 715
Refer360° 13.0 1235

Table 4.10: Results for the LingUNet on two benchmark datasets. Since LinGUNet designed for
observing the full instruction set and the holistic view of the scene, and it performs significantly
worse on Refer360° .

As we can see in Table 4.10, LingUNet performs significantly worse on Refer360° 5. This
might be due to the difference we highlighted in earlier sections. First and foremost, instructions
must be completed sequentially. However, LingUNet does not model the sequential nature of
the task for Refer360° , rather uses all instruction sequence and oracle-view of the 360° scene.

5We used publicly available code provided by authors to run the experiments. We could not replicate the exact
numbers reported in the paper, yet, we use exactly the same setup for both Refer360° and Touchdown-SDR for a fair
comparison.
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Second, the scenes in Touchdown-SDR is from a single domain, but in Refer360° , we have a
richer set of scenes for both indoor and outdoor.

4.5 Related Work

Referring expression recognition. Grounding a short phrase or a sentence into a visual modality
such as video [4, 109] or imagery [114, 171, 172, 238] is a well studied problem in intelligent user
interfaces [23], human-robot interaction [24, 55, 227], and situated dialogue [107]. Kazemzadeh
et al. [105], Hu et al. [89], and Mao et al. [146] introduce two benchmark datasets for the real-
world 2D images. Nagaraja et al. [160] propose a model where the target and supporting objects
(i.e. objects that are mentioned in order to disambiguate the target object) are identified and scored
jointly. Hu et al. [93] introduce a compositional approach where they assume that the referring
expression can be decomposed into a triplet consisting of the target object, the supporting object,
and their spatial relationship. Similarly, Cirik et al. [41] propose a type of neural modular network
[12] where the grounding of referring expression depends on the parse tree of the input referring
expression to learn to ground an unconstrained number of supporting objects.

360° Scenes. Although 360° scenes are well studied in the computer vision domain [200, 226,
231, 232, 233, 236, 241], few studies explore the challenges of 360°scenes in the context of
language grounding. Chou et al. [37] introduce a dataset where 360° videos are narrated. They
address the task of predicting the field of view for the given narration. Anderson et al. [7] introduce
the vision and language navigation task for simulated indoor environments where an agent is
placed in a location in a house and follows the instructions to go to a target location. Here the agent
observes a discretized view of the current location (i.e. the 360° scene is split into a fixed number
of field of views). The most related work to Refer360° is Touchdown [30] which introduces
two tasks: a vision and language navigation task and a spatial description resolution (SDR) task
(i.e. a referring expression recognition task for a simulated outdoor environment). In contrast
with Touchdown, in our setup instructors, followers, and learning systems observe a partial FoV
of the scene, but they can change the FoV continuously to explore the scene. This approach yields
instructions with a stronger sequential dependencies and with stronger reference to the FoV itself.
We demonstrate some of these differences in analysis in Section 4.4. Concurrent work studies
visual question answering [36] and object detection [38] for 360°scenes. Another concurrent
study [175] combines vision-and-language navigation and referring expression recognition into
one task where the system is asked to localize the referred object after navigating to another point
in a real images of rendered buildings.

4.6 Conclusion

We designed Refer360° to study 3D spatial language understanding for real scenes. We collected a
fine-grained set of annotations that support study at many levels of language grounding. Refer360°
is a versatile dataset and enables investigation along three axes:
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• Language: Refer360° enables modeling tasks that study single instruction, multiple in-
structions, or interactive language where the next instruction is revealed only after reaching
an intermediate milestone.

• Vision: Refer360° enables modeling tasks that try to predict targets at different granularities:
at the object level if trying to identify the closest object to the target, at the region level in a
similar style to Touchdown-SDR, and finally, at the pixel level.

• Action: Refer360° enables modeling tasks where the action space is static with the whole
360 image given upfront, where the action space consists of a sequence of discrete choices
between fixed views, and when the action space is continuous, consisting of angles for
rotation.

In our experiments, we presented one of these scenarios (single instruction, static, and pixel-
level) since it was the closest to the pre-existing Touchdown-SDR system. However, one can also
study a much larger number of scenarios and modeling tasks using Refer360° .

Acknowledgements
We are thankful to anonymous ACL conference reviewers for providing valuable feedback. We
thank members of MultiComp Lab at CMU and Berg Lab at UCSD for useful discussions. We
thank Howard Chen for helping us replicate their experiments. This material is partially supported
by Siemens and the National Science Foundation. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the author(s) and do not necessarily
reflect the views of Siemens or the National Science Foundation, and no official endorsement
should be inferred.

42



Figure 4.3: Screenshot of Amazon Mechanical Turk interface for finding task. We ask annotators
to complete each instruction before moving to the next one. To do so change the bullseye where
they think the instruction is describing.

Figure 4.4: Screenshot of Amazon Mechanical Turk interface for describing task. We ask
annotators to first find Waldo themselves, then give detailed insturctions one by one so that anyone
starting from a random field-of-view find it.
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Chapter 5

Reasoning About Alternatives for
Vision-and-Language Navigation

In our reasonings concerning matter of fact, there are all
imaginable degrees of assurance, from the highest certainty
to the lowest species of moral evidence. A wise man,
therefore, proportions his belief to the evidence.

David Hume

In a partially observed world, natural language instructions only identify few coarse-grained
actions (e.g., go to kitchen take a left after the table) rather than providing fine-grained actions
(e.g., turn 37◦ to the left and move 3.21 meters). Thus, there could be many interpretations of the
given instruction, but the human user intends only a few. An embodied AI system then needs to
reason about its actions and their possible consequences. In this chapter, we study this challenging
reasoning problem. The work described in this chapter appeared in the following publication:

• Daniel Fried, Ronghang Hu, Volkan Cirik, Anna Rohrbach, Jacob Andreas, Louis-Philippe
Morency, Taylor Berg-Kirkpatrick, Kate Saenko, Dan Klein, Trevor Darrell, , “Speaker-
Follower Models for Vision-and-Language Navigation”, In Advances in Neural Information
Processing System, Curran Associates, Inc., volume 31, 2018.

This is a equal contribution publication where DF, RH, VC led and worked on developing
ideas, running experiments, and writing the manuscript. The code for reproducing experiments in
this chapter is publicly available on Github1.

1https://github.com/ronghanghu/speaker follower
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5.1 Overview

In the vision-and-language navigation task [8], an agent is placed in a realistic environment, and
provided a natural language instruction such as “Go down the stairs, go slight left at the bottom
and go through door, take an immediate left and enter the bathroom, stop just inside in front of
the sink”. The agent must follow this instruction to navigate from its starting location to a goal
location, as shown in Figure 5.1 (left). To accomplish this task the agent must learn to relate the
language instructions to the visual environment. Moreover, it should be able to carry out new
instructions in unseen environments.

Even simple navigation tasks require nontrivial reasoning: the agent must resolve ambiguous
references to landmarks, perform a counterfactual evaluation of alternative routes, and identify
incompletely specified destinations. While a number of approaches [151, 157, 223] have been
proposed for the various navigation benchmarks, they generally employ a single model that learns
to map directly from instructions to actions from a limited corpus of annotated trajectories.

In this chapter we treat the vision-and-language navigation task as a trajectory search problem,
where the agent needs to find (based on the instruction) the best trajectory in the environment to
navigate from the start location to the goal location. Our model involves an instruction interpreta-
tion (follower) module, mapping instructions to action sequences; and an instruction generation
(speaker) module, mapping action sequences to instructions (Figure 5.1), both implemented with
standard sequence-to-sequence architectures. The speaker learns to give textual instructions for
visual routes, while the follower learns to follow routes (predict navigation actions) for provided
textual instructions. Though explicit probabilistic reasoning combining speaker and follower
agents is a staple of the literature on computational pragmatics [56], application of these models
has largely been limited to extremely simple decision-making tasks like single forced choices.

We incorporate the speaker both at training time and at test time, where it works together
with the learned instruction follower model to solve the navigation task (see Figure 5.2 for an
overview of our approach). At training time, we perform speaker-driven data augmentation where
the speaker helps the follower by synthesizing additional route-instruction pairs to expand the
limited training data. At test time, the follower improves its chances of success by looking ahead
at possible future routes and pragmatically choosing the best route by scoring them according
to the probability that the speaker would generate the correct instruction for each route. This
procedure, using the external speaker model, improves upon planning using only the follower
model. We construct both the speaker and the follower on top of a panoramic action space that
efficiently encodes high-level behavior, moving directly between adjacent locations rather than
making low-level visuomotor decisions like the number of degrees to rotate (see Figure 5.3).

To summarize our contributions: We propose a novel approach to vision-and-language nav-
igation incorporating a visually grounded speaker–follower model, and introduce a panoramic
representation to efficiently represent high-level actions. We evaluate this speaker–follower model
on the Room-to-Room (R2R) dataset [8], and show that each component in our model improves
performance at the instruction following task. Our model obtains a final success rate of 53.5%
on the unseen test environment, an absolute improvement of 30% over existing approaches. Our
code and data are available at http://ronghanghu.com/speaker_follower.

1
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Follower Speaker

Route r: left-to-right, top-to-bottom

Human Instruction d:
Go down the stairs, go
slight left at the
bottom and go through
door, take an
immediate left and
enter the bathroom,
stop just inside in front
of the sink.

Generated  
Instruction d:
Walk down the 

stairs. Turn left at 
the bottom of the 

stairs. Walk through 
the doorway and 

wait in the 
bathroom.

Route r: left-to-right, top-to-bottom
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Figure 5.1: The task of vision-and-language navigation is to perform a sequence of actions
(navigate through the environment) according to human natural language instructions. Our
approach consists of an instruction follower model (left) and a speaker model (right).

5.2 Instruction Following with Speaker-Follower Models

To address the task of following natural language instructions, we rely on two models: an
instruction-follower model of the kind considered in previous work, and a speaker model—a
learned instruction generator that models how humans describe routes in navigation tasks.

Specifically, we base our follower model on the sequence-to-sequence model [8], computing
a distribution PF (r | d) over routes r (state and action sequences) given route descriptions d.
The follower encodes the sequence of words in the route description with an LSTM [84], and
outputs route actions sequentially, using an attention mechanism [16] over the description. Our
speaker model is symmetric, producing a distribution PS(d | r) by encoding the sequence of
visual observations and actions in the route using an LSTM, and then outputting an instruction
word-by-word with an LSTM decoder using attention over the encoded input route (Figure 5.1).

We combine these two base models into a speaker-follower system, where the speaker supports
the follower both at training time and at test time. An overview of our approach is presented
in Figure 5.2. First, we train a speaker model on the available ground-truth navigation routes
and instructions. (Figure 5.2 (a)). Before training the follower, the speaker produces synthetic
navigation instructions for novel sampled routes in the training environments, which are then
used as additional supervision for the follower, as described in Sec. 5.2.1 (Figure 5.2 (b)). At
follower test time, the follower generates possible routes as interpretations of a given instruction
and starting context, and the speaker pragmatically ranks these, choosing one that provides a good
explanation of the instruction in context (Sec. 5.2.2 and Figure 5.2 (c)). Both follower and speaker
are supported by the panoramic action space in Sec. 5.2.3 that reflects the high-level granularity
of the navigational instructions (Figure 5.3).

5.2.1 Speaker-Driven Data Augmentation

The training data only covers a limited number of navigation instruction and route pairs, D =
(d1, r1) . . . (dN , rN). To allow the agent to generalize better to new routes, we use the speaker to
generate synthetic instructions on sampled new routes in the training environments. To create
a synthetic training set, we sample a collection of M routes r̂1, . . . , r̂M through the training
environments, using the same shortest-path approach used to generate the routes in the original
training set [8]. We then generate a human-like textual instruction d̂k for each instruction r̂k by
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Figure 5.2: Our approach combines an instruction follower model and a speaker model. (a) The
speaker model is trained on the ground-truth routes with human-generated descriptions; (b) it
provides the follower with additional synthetic instruction data to bootstrap training; (c) it also
helps the follower interpret ambiguous instructions and choose the best route during inference.
See Sec. 5.2 for details.

performing greedy prediction in the speaker model to approximate d̂k =d PS(d | r̂k).
These M synthetic navigation routes and instructions S = (d̂1, r̂1), . . . , (ŝM , r̂M) are com-

bined with the original training data D into an augmented training set S ∪ D (Figure 5.2(b)).
During training, the follower is first trained on this augmented training set, and then further
fine-tuned on the original training set D. This speaker-driven data augmentation aims to overcome
data scarcity issue, allowing the follower to learn how to navigate on new routes following the
synthetic instructions.

5.2.2 Speaker-Driven Route Selection
We use the base speaker (PS) and follower (PF ) models described above to define a pragmatic
follower model. Drawing on the Rational Speech Acts framework [56, 66], a pragmatic follower
model should choose a route r through the environment that has high probability of having
caused the speaker model to produce the given description d: rPS(d | r) (corresponding to a
rational Bayesian follower with a uniform prior over routes). Such a follower chooses a route
that provides a good explanation of the observed description, allowing counterfactual reasoning
about instructions, or using global context to correct errors in the follower’s path, which we call
pragmatic inference.

Given the sequence-to-sequence models that we use, exactly solving the maximization problem
above is infeasible; and may not even be desirable, as these models are trained discriminatively
and may be poorly calibrated for inputs dissimilar to those seen during training. Following
previous work on pragmatic language generation and interpretation [10, 58, 158, 196], we use a
rescoring procedure: produce candidate route interpretations for a given instruction using the base
follower model, and then rescore these routes using the base speaker model (Figure 5.2(c)).

Our pragmatic follower produces a route for a given instruction by obtaining K candidate
paths from the base follower using a search procedure described below, then chooses the highest
scoring path under a combination of the follower and speaker model probabilities:

r∈R(d)PS(d | r)λ · PF (r | d)(1−λ) (5.1)

where λ is a hyper-parameter in the range [0, 1] which we tune on validation data to maximize the
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accuracy of the follower.2

Candidate route generation To generate candidate routes from the base follower model, we
perform a search procedure where candidate routes are produced incrementally, action-by-action,
and scored using the probabilities given by PF . Standard beam search in sequence-to-sequence
models (e.g. [205]) forces partial routes to compete based on the number of actions taken. We
obtain better performance by instead using a state-factored search procedure, where partial output
sequences compete at the level of states in the environment, where each state consists of the
agent’s location and discretized heading, keeping only the highest-scoring path found so far to
each state. At a high-level, this search procedure resembles graph search with a closed list, but
since action probabilities are non-stationary (potentially depend on the entire sequence of actions
taken in the route), it is only approximate, and so we allow re-expanding states if a higher-scoring
route to that state is found.

At each point in our state-factored search for searching and generating candidates in the
follower model, we store the highest-probability route (as scored by the follower model) found so
far to each state. States contain the follower’s discrete location and heading (direction it is facing)
in the environment, and whether the route has been completed (had the STOP action predicted).
The highest-scoring route, which has not yet been expanded (had successors produced), is selected
and expanded using each possible action from the state, producing routes to the neighboring states.
For each of these routes r with final state s, if s has not yet been reached by the search, or if r is
higher-scoring under the model than the current best path to s, r is stored as the best route to s.
We continue the search procedure until K routes ending in distinct states have predicted the STOP

action, or there are no remaining unexpanded routes.
Since route scores are products of conditional probabilities, route scores are non-increasing,

and so this search procedure generates routes that do not pass through the same state twice—which
we found to improve accuracy both for the base follower model and the pragmatic rescoring
procedure, since instructions typically describe acyclic routes.

We generate up to K = 40 candidate routes for each instruction using this procedure, and
rescore using Eq. 5.1. In addition to enabling pragmatic inference, this state-factored search
procedure improves the performance of the follower model on its own (taking the candidate route
with highest score under the follower model), when compared to standard greedy search (see
Fig 5.4).

5.2.3 Panoramic Action Space

The sequence-to-sequence agent in [8] uses low-level visuomotor control (such as turning left or
right by 30 degrees), and only perceives frontal visual sensory input. Such fine-grained visuomotor
control and restricted visual signal introduce challenges for instruction following. For example in
Figure 5.3, to “turn left and go towards the sofa”, the agent needs to perform a series of turning

2In practice, we found best performance with values of λ close to 1, relying mostly on the score of the speaker
to select routes. Using only the speaker score (which corresponds to the standard RSA pragmatic follower) did
not substantially reduce performance compared to using a combination with the follower score, and both improved
substantially upon using only the follower score (corresponding to the base follower).
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go towards this direction!

turn left turn left turn left turn left go forward

instruction: … Turn left and go towards the sofa ...

Low-level 
visuomotor space

Panoramic
action space 

Figure 5.3: Compared with low-level visuomotor space, our panoramic action space (Sec. 5.2.3)
allows the agents to have a complete perception of the scene, and to directly perform high-level
actions.

actions until it sees a sofa in the center of its view, and then perform a “go forward” action. This
requires strong skills of planning and memorization of visual inputs. While a possible way to
address this challenge is to learn a hierarchical policy such as in [45], in our work we directly
allow the agent to reason about high-level actions, using a panoramic action space with panoramic
representation, converted with built-in mapping from low-level visuomotor control.

As shown in Figure 5.3, in our panoramic representation, the agent first “looks around” and
perceives a 360-degree panoramic view of its surrounding scene from its current location, which
is discretized into 36 view angles (12 headings × 3 elevations with 30 degree intervals – in our
implementation). Each view angle i is represented by an encoding vector vi. At each location, the
agent can only move towards a few navigable directions (provided by the navigation environment)
as other directions can be physically obstructed (e.g. blocked by a table). Here, in our action
space the agent only needs to make high-level decisions as to which navigable direction to go
to next, with each navigable direction j represented by an encoding vector uj . The encoding
vectors vi and uj of each view angle and navigable direction are obtained by concatenating an
appearance feature (ConvNet feature extracted from the local image patch around that view angle
or direction) and a 4-dimensional orientation feature [sinψ; cosψ; sin θ; cos θ], where ψ and θ
are the heading and elevation angles respectively. Also, we introduce a STOP action encoded by
u0 =

−→
0 . The agent can take this STOP action when it decides it has reached the goal location (to

end the episode).
To make a decision on which direction to go, the agent first performs one-hop visual

attention to look at all of the surrounding view angles, based on its memory vector ht−1.
The attention weight αt,i of each view angle i is computed as at,i = (W1ht−1)

T W2vt,i and
αt,i = exp(at,i)/

∑
i exp(at,i).

The attended feature representation vt,att =
∑

i αt,ivt,i from the panoramic scene is then used
as visual-sensory input to the sequence-to-sequence model (replacing the 60-degree frontal appear-
ance vector in [8]) to update the agent’s memory. Then, a bilinear dot product is used to obtain the
probability pj of each navigable direction j: yj = (W3ht)

T W4uj and pj = exp(yj)/
∑

j exp(yj).
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The agent then chooses a navigable direction uj (with probability pj) to go to the adjacent
location along that direction (or u0 to stop and end the episode). We use a built-in mapping that
seamlessly translates our panoramic perception and action into visuomotor control such as turning
and moving.

5.3 Experiments

5.3.1 Experimental Setup
Dataset We use the Room-to-Room (R2R) vision-and-language navigation dataset [8] for our
experimental evaluation. In this task, the agent starts at a certain location in an environment and is
provided with a human-generated navigation instruction, that describes a path to a goal location.
The agent needs to follow the instruction by taking multiple discrete actions (e.g. turning, moving)
to navigate to the goal location, and executing a “stop” action to end the episode. Note that
differently from some robotic navigation settings [168], here the agent is not provided with a goal
image, but must identify from the textual description and environment whether it has reached the
goal.

The dataset consists of 7,189 paths sampled from the Matterport3D [25] navigation graphs,
where each path consists of 5 to 7 discrete viewpoints and the average physical path length is 10m.
Each path has three instructions written by humans, giving 21.5k instructions in total, with an
average of 29 words per instruction. The dataset is split into training, validation, and test sets.
The validation set is split into two parts: seen, where routes are sampled from environments seen
during training, and unseen with environments that are not seen during training. All the test set
routes belong to new environments unseen in the training and validation sets.

Evaluation metrics Following previous work on the R2R task, our primary evaluation metrics
are navigation error (NE), measuring the average distance between the end-location predicted
by the follower agent and the true route’s end-location, and success rate (SR), the percentage of
predicted end-locations within 3m of the true location. As in previous work, we also report the
oracle success rate (OSR), measuring success rate at the closest point to the goal that the follower
has visited along the route, allowing the agent to overshoot the goal without being penalized.

Implementation details Following [8] and [223], we produce visual feature vectors v using
the output from the final convolutional layer of a ResNet [80] trained on the ImageNet [186]
classification dataset. These visual features are fixed, and the ResNet is not updated during
training. To better generalize to novel words in the vocabulary, we also experiment with using
GloVe embeddings [169], to initialize the word-embedding vectors in the speaker and follower.

In the baseline without using synthetic instructions, we train follower and speaker models using
the human-generated instructions for routes present in the training set. The training procedure for
the follower model follows [8] by training with student-forcing (sampling actions from the model
during training, and supervising using a shortest-path action to reach the goal state). We use the
training split in the R2R dataset to train our speaker model, using standard maximum likelihood
training with a cross-entropy loss.
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Data Pragmatic Panoramic Validation-Seen Validation-Unseen

# Augmentation Inference Space NE ↓ SR ↑ OSR ↑ NE ↓ SR ↑ OSR ↑

1 6.08 40.3 51.6 7.90 19.9 26.1

2 ✓ 5.05 46.8 59.9 7.30 24.6 33.2
3 ✓ 5.23 51.5 60.8 6.62 34.5 43.1
4 ✓ 4.86 52.1 63.3 7.07 31.2 41.3

5 ✓ ✓ 4.28 57.2 63.9 5.75 39.3 47.0
6 ✓ ✓ 3.36 66.4 73.8 6.62 35.5 45.0
7 ✓ ✓ 3.88 63.3 71.0 5.24 49.5 63.4

8 ✓ ✓ ✓ 3.08 70.1 78.3 4.83 54.6 65.2

Table 5.1: Ablations showing the effect of each component in our model. Rows 2-4 show the
effects of adding a single component to the baseline system (Row 1); Rows 5-7 show the effects
of removing a single component from the full system (Row 8). NE is navigation error (in meters);
lower is better. SR and OSR are success rate and oracle success rate (%); higher is better. See Sec.
5.3.2 for details.

In speaker-driven data augmentation (Sec. 5.2.1), we augment the data used to train the
follower model by sampling 178, 000 routes from the training environments. Instructions for
these routes are generated using greedy inference in the speaker model (which is trained only
on human-produced instructions). The follower model is trained using student-forcing on this
augmented data for 50, 000 iterations, and then fine-tuned on the the original human-produced
data for 20, 000 iterations. For all experiments using pragmatic inference, we use a speaker weight
of λ = 0.95, which we found to produce the best results on both the seen and unseen validation
environments.

5.3.2 Results and Analysis
We first examine the contribution from each of our model’s components on the validation splits.
Then, we compare the performance of our model with previous work on the unseen test split.

Component Contributions

We begin with a baseline (Row 1 of Table 5.1), which uses only a follower model with a non-
panoramic action space at both training and test time, which is equivalent to the student-forcing
model in [8].3

Speaker-driven data augmentation We first introduce the speaker at training time for data
augmentation (Sec. 5.2.1). Comparing Row 1 (the baseline follower model trained only with the

3Note that our results for this baseline are slightly higher on val-seen and slightly lower on val-unseen than those
reported by [8], due to differences in implementation details and hyper-parameter choices.
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original training data) against Row 2 (training this model on augmented data) in Table 5.1, we see
that adding the augmented data improves success rate (SR) from 40.3% to 46.8% on validation
seen and from 19.9% to 24.6% on validation unseen, respectively. This higher relative gain on
unseen environments shows that the follower can learn from the speaker-annotated routes to better
generalize to new scenes.

Note that given the noise in our augmented data, we fine-tune our model on the original
training data at the end of training as mentioned in Sec. 5.2.1. We find that increasing the amount
of augmented data is helpful in general. For example, when using 25% of the augmented data,
the success rate improves to 22.8% on validation unseen, while with all the augmented data the
success rate reaches 24.6% on validation unseen, which is a good balance between performance
and computation overhead.

Pragmatic inference We then incorporate the speaker at test time for pragmatic inference (Sec.
5.2.2), using the speaker to rescore the route candidates produced by the follower. Adding this
technique brings a further improvement in success rate on both environments (compare Row 2,
the data-augmented follower without pragmatic inference, to Row 5, adding pragmatic inference).
This shows that when reasoning about navigational directions, large improvements in accuracy
can be obtained by scoring how well the route explains the direction using a speaker model.
Importantly, when using only the follower model to score candidates produced in search, the
success rate is 49.0% on val-seen and 30.5% on val-unseen, showing the importance of using the
speaker model to choose among candidates (which increases success rates to 57.2% and 39.3%,
respectively).

In Figure 5.4, we also investigate the effect of beam size K and compare our state factored and
greedy search. The success rate increases but saturates when we increase the number of candidate
routes. Also, our state-factored search (indicated in triangle points) show superior performance
compared to standard greedy search (indicated in star points).

Panoramic action space Finally, we replace the visuomotor control space with the panoramic
representation (Sec. 5.2.3). Adding this to the previous system (compare Row 5 and Row 8)
shows that the new representation leads to a substantially higher success rate, achieving 70.1%
and 54.6% success rate on validation seen and validation unseen, respectively. This suggests
that directly acting in a higher-level representation space makes it easier to accurately carry out
instructions. Our final model (Row 8) has over twice the success rate of the baseline follower in
the unseen environments.

Importance of all components Above we have shown the gain from each component, after
being added incrementally. Moreover, comparing Rows 2-4 (adding each component indepen-
dently to the base model) to the baseline (Row 1) shows that each component in isolation provides
large improvements in success rates, and decreases the navigation error. Ablating each component
(Rows 5-7) from the full model (Row 8) shows that each of them is important for the final
performance.
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Figure 5.4: The success rate of our model using different numbersK of route candidates (generated
by state-factored search) for pragmatic inference. Stars show the performance of greedy inference
(without search, and hence without pragmatics). While performance increases with number of
candidates up through 40 on val unseen, the success rate tends to saturate. We note improvements
both from the state-factored search procedure (comparing the stars to the circle and triangle
points at K = 1) as well as from having more candidates to choose from in pragmatic inference
(comparing larger values of K to smaller).

Qualitative results Here we provide qualitative examples further explaining how our model
improves over the baseline. The intuition behind the speaker model is that it should help the agent
more accurately interpret instructions specifically in ambiguous situations. Figure 5.14 shows
how the introduction of a speaker model helps the follower with pragmatic inference.

Figure 5.5 v.s. 5.6 show the step-wise navigation trajectory of the base follower (without
pragmatic inference) and the follower model with pragmatic inference, on the val seen split.
Figure 5.7 v.s. Figure 5.8 and Figure 5.9 v.s. Figure 5.10 show the trajectory of the agent without
and with pragmatic inference (using the speaker model) on the val unseen split. The speaker helps
disambiguate vague instructions by globally measuring how likely a route can be described by the
instruction.

We also visualize the image attention (attention weights αt,i of each view angle i in our
panoramic action space in Section 5.2.3), and the textual attention on the input instructions from
the sequence-to-sequence model in Figures 5.11, 5.12 and 5.13.

Comparison to Prior Work

We compare the performance of our final model to previous approaches on the R2R held-out
splits, including the test split which contains 18 new environments that do not overlap with any
training or validation splits, and are only seen once at test time.

The results are shown in Table 5.2. In the table, “Random” is randomly picking a direction and
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Validation-Seen Validation-Unseen Test (unseen)

Method NE ↓ SR ↑ OSR ↑ NE ↓ SR ↑ OSR ↑ NE ↓ SR ↑ OSR ↑ TL ↓

Random 9.45 15.9 21.4 9.23 16.3 22.0 9.77 13.2 18.3 9.89
Student-forcing [8] 6.01 38.6 52.9 7.81 21.8 28.4 7.85 20.4 26.6 8.13

RPA [223] 5.56 42.9 52.6 7.65 24.6 31.8 7.53 25.3 32.5 9.15

ours 3.08 70.1 78.3 4.83 54.6 65.2 4.87 53.5 63.9 11.63
ours (challenge participation)* – – – – – – 4.87 53.5 96.0 1257.38

Human – – – – – – 1.61 86.4 90.2 11.90

Table 5.2: Performance comparison of our method to previous work. NE is navigation error (in
meters); lower is better. SR and OSR are success rate and oracle success rate (%) respectively
(higher is better). Trajectory length (TL) on the test set is reported for completeness. *: When
submitting to the Vision-and-Language Navigation Challenge, we modified our search procedure
to maintain physical plausibility and to comply with the challenge guidelines. The resulting
trajectory has higher oracle success rate while being very long.

going towards that direction for 5 steps. “Student-forcing” is the best performing method in [8],
using exploration during training of the sequence-to-sequence follower model. “RPA” [223] is a
combination of model-based and model-free reinforcement learning (see also Sec. 5.4 for details).
“ours” shows our performance using the route selected by our pragmatic inference procedure,
while “ours (challenge participation)” uses a modified inference procedure for submission to
the Vision-and-Language Navigation Challenge. Prior work has reported higher performance
on the seen rather than unseen environments [8, 223], illustrating the issue of generalizing to
new environments. Our method more than doubles the success rate of the state-of-the-art RPA
approach, and on the test set achieves a final success rate of 53.5%. This represents a large
reduction in the gap between machine and human performance on this task.

5.4 Related Work
Natural language instruction following Systems that learn to carry out natural language
instructions in an interactive environment include approaches based on intermediate structured
and executable representations of language [14, 29, 73, 137, 210] and approaches that map directly
from language and world state observations to actions [9, 21, 151, 157]. The embodied vision-and-
language navigation task studied in this chapter [8] differs from past situated instruction following
tasks by introducing rich visual contexts. Recent work [223] has applied techniques from model-
based and model-free reinforcement learning [225] to the vision-and-language navigation problem.
Specifically, an environment model is used to predict a representation of the state resulting from
an action, and planning is performed with respect to this environment model. Our work differs
from this prior work by reasoning not just about state transitions, but also about the relationship
between states and the language that describes them—specifically, using an external speaker
model to predict how well a given sequence of states explains an instruction.

Pragmatic language understanding A long line of work in linguistics, natural language
processing, and cognitive science has studied pragmatics: how linguistic meaning is affected
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by context and communicative goals [69]. Our work here makes use of the Rational Speech
Acts framework [56, 66], which models the interaction between speakers and listeners as a
process where each agent reasons probabilistically about the other to maximize the chances of
successful communicative outcomes. This framework has been applied to model human use of
language [57], and to improve the performance of systems that generate [10, 43, 146, 216] and
interpret [142, 214, 240] referential language. Similar modeling tools have recently been applied
to generation and interpretation of language about sequential decision-making [58]. The present
work makes use of a pragmatic instruction follower in the same spirit. Here, however, we integrate
this with a more complex visual pipeline and use it not only at inference time but also at training
time to improve the quality of a base listener model.

Semi- and self-supervision The semi-supervised approach we use is related to model bootstrap-
ping techniques such as self-training [149, 190] and co-training [20] at a high-level. Recent work
has used monolingual corpora to improve the performance of neural machine translation models
structurally similar to the sequence-to-sequence models we use [71, 80, 191]. In a grounded navi-
gation context, [81] use a word-prediction task as training time supervision for a reinforcement
learning agent. The approach most relevant to our work is the SEQ4 model [116], which applies
semi-supervision to a navigation task by sampling new environments and maps (in synthetic
domains without vision), and training an autoencoder to reconstruct routes, using language as
a latent variable. The approach used here is much simpler, as it does not require constructing a
differentiable surrogate to the decoding objective.

Semi-supervised data augmentation has also been widely used in computer vision tasks. In
Data Distillation [179], additional annotation for object and key-point detection is obtained by
ensembling and refining a pretrained model’s prediction on unannotated images. Self-play in
adversarial groups of agents is common in multi-agent reinforcement learning [195, 201]. In
actor-critic approaches [206, 207] in reinforcement learning, a critic learns the value of a state
and is used to provide supervision to the actor’s policy during training. In this chapter, we use
a speaker to synthesize additional navigation instructions on unlabeled new routes, and use this
synthetic data from the speaker to train the follower.

Grounding language in vision Existing work in visual grounding [98, 146, 161, 170, 184] has
addressed the problem of passively perceiving a static image and mapping a referential expression
to a bounding box [98, 146, 170] or a segmentation mask [95, 128, 238], exploring various
techniques including proposal generation [31] and relationship handling [41, 94, 161, 221]. In
our work, the vision-and-language navigation task requires the agent to actively interact with the
environment to find a path to the goal following the natural language instruction. This can be seen
as a grounding problem in linguistics where the language instruction is grounded into a trajectory
in the environment but requires more reasoning and planning skills than referential expression
grounding.
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5.5 Conclusion
The language-and-vision navigation task presents a pair of challenging reasoning problems: in
language, because agents must interpret instructions in a changing environmental context; and in
vision, because of the tight coupling between local perception and long-term decision-making.
The comparatively poor performance of the baseline sequence-to-sequence model for instruction
following suggests that more powerful modeling tools are needed to meet these challenges. In this
chapter, we have introduced such a tool, showing that a follower model for vision-and-language
navigation is substantially improved by carefully structuring the action space and integrating an
explicit model of a speaker that predicts how navigation routes are described. We believe that
these results point toward further opportunities for improvements in instruction following by
modeling the global structure of navigation behaviors and the pragmatic contexts in which they
occur.
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Instruction:
Walk down and turn right. Walk a bit, and turn right towards the door. Enter inside, and stop in

front of a zebra striped rug.

rear: -180 degree left: -90 degree front: 0 degree right: +90 degree rear: +180 degree

Navigation steps of the panorama agent. The red arrow shows the direction chosen by the agent to go next.

Figure 5.5: Follower without pragmatic inference on val seen. The instruction involves an
ambiguous “walk a bit” command. Without pragmatic reasoning by the speaker, the follower
failed to predict how much to move forward, stopping at a wrong location without entering the
door.
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Instruction:
Walk down and turn right. Walk a bit, and turn right towards the door. Enter inside, and stop in

front of a zebra striped rug.

rear: -180 degree left: -90 degree front: 0 degree right: +90 degree rear: +180 degree

Navigation steps of the panorama agent. The red arrow shows the direction chosen by the agent to go next.

Figure 5.6: Follower with pragmatic inference on val seen. With the help of the speaker, the
follower could disambiguate “walk a bit” to move the right amount to the correct location. It then
turned right and walked into the door to stop by the “zebra stripped rug”.59



Instruction:
Walk past hall table. Walk into bedroom. Make left at table clock. Wait at bathroom door

threshold.

rear: -180 degree left: -90 degree front: 0 degree right: +90 degree rear: +180 degree

Navigation steps of the panorama agent. The red arrow shows the direction chosen by the agent to go next.
Figure 5.7: Follower without pragmatic inference on val unseen. The command “walk into
bedroom” is ambiguous since there are two bedrooms (one on the left and one on the right). The
follower could not decide which bedroom to enter, but went into the wrong room with no “table
clock”.
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Instruction:
Walk past hall table. Walk into bedroom. Make left at table clock. Wait at bathroom door

threshold.

rear: -180 degree left: -90 degree front: 0 degree right: +90 degree rear: +180
degree

Navigation steps of the panorama agent. The red arrow shows the direction chosen by the agent to go next.

Figure 5.8: Follower with pragmatic inference on val unseen. The speaker model helps resolve
the ambiguous “walk into bedroom” command (there are two bedrooms), allowing the follower to
enter the correct bedroom on the right, where it could see a “table clock”.
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Instruction:
Enter the bedroom and make a slight right. Walk across the room near the foot of the bed. Turn

right at the end of the rug. Wait near the mirror.

rear: -180 degree left: -90 degree front: 0 degree right: +90 degree rear: +180
degree

Navigation steps of the panorama agent. The red arrow shows the direction chosen by the agent to go next.

Figure 5.9: Follower without pragmatic inference on val unseen. Although making a right turn
as described, the follower fails to turn right at the correct location, and stopped at the door instead
of the mirror. The route taken by the follower would be better described as “...wait near the door”
by a human, which the speaker could learn to capture.
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Instruction:
Enter the bedroom and make a slight right. Walk across the room near the foot of the bed. Turn

right at the end of the rug. Wait near the mirror.

rear: -180 degree left: -90 degree front: 0 degree right: +90 degree rear: +180
degree

Navigation steps of the panorama agent. The red arrow shows the direction chosen by the agent to go next.

Figure 5.10: Follower with pragmatic inference on val unseen. Using the speaker to measure
how likely a route matches the provided description, the follower made the right turn at the correct
location “the end of the rug”, and stopped near the mirror.
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Instruction: Go through the dooorway on the right, continue straightacross the hallway and into
the room ahead. Stop near the shell.

Figure 5.11: Image and textual attention visualization on val unseen (best viewed at 200%). At
each step, the textual attention is shown at the top, and the 1st, 2nd and 3rd most attended view
angles are shown in red, orange and yellow boxes, respectively (the number in the parenthesis
shows the attention weight). The red arrow shows the direction chosen by the agent to go next.64



Instruction: Walk through the kitchen, enter the dining room, walk to the doorway to the right of
the dining room table, wait at the glass table.

Figure 5.12: Image and textual attention visualization on val unseen (best viewed at 200%). At
each step, the textual attention is shown at the top, and the 1st, 2nd and 3rd most attended view
angles are shown in red, orange and yellow boxes, respectively (the number in the parenthesis
shows the attention weight). The red arrow shows the direction chosen by the agent to go next.65



Instruction: Walk up stairs. Turn left and walk to the double doors by the living room.

Figure 5.13: Image and textual attention visualization on val unseen (best viewed at 200%). At
each step, the textual attention is shown at the top, and the 1st, 2nd and 3rd most attended view
angles are shown in red, orange and yellow boxes, respectively (the number in the parenthesis
shows the attention weight). The red arrow shows the direction chosen by the agent to go next.
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instruction: 
Go through the door on 
the right and continue 
straight. Stop in the next 
room in front of the bed.

(a) orange: trajectory 
without pragmatic 
inference

(b) green: trajectory 
with pragmatic 
inference

top-down 
overview of 
trajectories

Step
1

Step
2

Step
3

Step
4

(a) navigation steps without pragmatic inference; red arrow: direction to go next

Step
1

Step
2

Step
3

Step
4

(b) navigation steps with pragmatic inference; red arrow: direction to go next

Figure 5.14: Navigation examples on unseen environments with and without pragmatic inference
from the speaker model (best visualized in color). (a) The follower without pragmatic inference
misinterpreted the instruction and went through a wrong door into a room with no bed. It then
stopped at a table (which resembles a bed). (b) With the help of a speaker for pragmatic inference,
the follower selected the correct route that enters the right door and stopped at the bed.
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Chapter 6

General Knowledge of Objects for
Referring Expression Recognition in
Partially-Observed Scenes

A hallucination is a fact, not an error; what is erroneous is a
judgment based upon it.

Bertrand Russell

In this chapter, we study how an embodied AI system could acquire general knowledge about
objects and use this knowledge for language grounding. We introduce Hallucinating Object with
Language Models, or HOLM, that extracts spatial knowledge about objects using large pre-trained
language models for language grounding systems.

The work described in this chapter will appear in the following publication:
• Volkan Cirik, Louis-Philippe Morency, and Taylor Berg-Kirkpatrick,, “HOLM: Halluci-

nating Objects with Language Models for Referring Expression Recognition in Partially-
Observed Scenes ”, In Proceedings of the 60th Annual Meeting of the Association for
Computational Linguistics, ACL, 2022.

The code for reproducing experiments in this chapter is publicly available on Github1.

1https://github.com/volkancirik/holm
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6.1 Overview

One of the fundamental challenges in building AI systems physically present in the world
is addressing the issue of partial observability, the phenomenon where the entire state of the
environment is not known or available to the system. People cope with partial observability by
reasoning about what is not immediately visible (see example in Figure 6.1). People use their
general knowledge about the world and adapt their knowledge to specific situations. General
knowledge about kitchens can help to know approximately where to look for pans or utensils in a
kitchen that has never been seen before. How can an AI system build general knowledge about
objects and their environment to help with a similar task? Even more interestingly, can we gather
this information from language, using readily available resources such as language models trained
on a large collection of unlabeled text?

↗

↗

↗

↗

Figure 6.1: Illustration of our main contri-
bution: Hallucinating Objects. Knowledge
about object relationships is helpful when
navigating in an unknown and partially ob-
served environment. In the example above,
the TV is not visible, but the couch hints that
a TV might be in front of it because usually
couches face TVs.

In this chapter, we introduce a method called
HOLM, Hallucinating Objects with Language
Models, for reasoning about the unobserved parts
of the environment. Inspired by the recent suc-
cesses of large pre-trained language models (LM)
extracting knowledge about the real world, we pro-
pose a methodology based on spatial prompts to ex-
tract knowledge from language models about object.
HOLM extracts spatial knowledge about objects in
the form of affinity scores of objects, i.e., how often
a pair of objects are observed together. This knowl-
edge of objects are combined with observed spatial
layout to hallucinate what might appear in the un-
observed part of the scene. We evaluate our HOLM
approach on Dynamic Referring Expression Recog-
nition (dRER) task where the goal is to find a target
location by dynamically adjusting the field of view
(FoV) in partially observed 360° scenes. We exam-
ine how HOLM compares with the state-of-the-art
approaches on two publicly available datasets to
study generalization for both indoor and outdoor
settings.

6.2 Dynamic Referring Expression Recognition (dRER) Task

dRER task is designed to localize a target location in a dynamically observed 360° scene given
natural language instruction. Unlike conventional referring expression recognition, which refers
to an object in a static visual input, in dRER, only a partial view of the scene is provided in a
field of view. However, the system can adjust the field of view to find the described point in
the scene. In Figure 6.2, we illustrate the dRER task and motivate our method. On top, natural
language instruction is given. In the middle, the spherical view of the scene is illustrated – the
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Figure 6.2: Illustration of the dRER task with an example of language instruction and its
recognition in four steps.
The agent adjusts its FoV by looking at different directions and navigate on the graph in the
spherical view. Note that objects mentioned in bold in the instruction are not visible at all until
timestep 4. Thus, the agent needs to reason about possible locations of the mentioned object using
its partial view of the scene.

agent explores only some portion of a 360° scene. FoVs on the sphere represented as square
nodes form a graph. By navigating to a neighboring node, the agent adjusts its FoV and observes
a different view of the scene. Note that objects mentioned in the instruction “oven” and “range
hood” are not visible until the fourth timestep. Thus, to perform well on this task, it is essential to
reason about where objects might appear.

The dRER task can be formulated as a Markov Decision Process (MDP) [88] M = ⟨S,A, Ps, r⟩
where S is the visual state space, A is the discrete action space 2, Ps is the unknown environment
probability distribution from which the next state is drawn, and r ∈ is the reward function. For a
time step t, the agent observes an image st ∈ S, and performs and action at ∈ A. As a result of
this action, the environment generates a new observation st+1 ∼ Ps(· | st, at) as the next state.

2For computational efficiency, we picked discrete action space. It could be continuous as well.
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Input: FoV with 
Object Detections

“Find the oven. 
The target is 
above the oven 
on the range 
hood.’’

Near the <object> there is __
on the left of <object> there is __
Under the <object> there is __
.
.
.
near the <object> I see a __

Spatial Prompts Affinity Scores
Free-form Text
Proin id elementum libero. Vestibulum 
ante ipsum primis in faucibus orci 
luctus et ultrices posuere cubilia 
curae; Curabitur at sem nec urna 
hendrerit placerat ac id purus. Integer 
fringilla mauris a tellus pharetra 
interdum. Cras ac accumsan ante.

Cras ac accumsan ante. Integer eu nisl 
tempor, pretium dolor in, placerat purus. 
Praesent eu bibendum magna. Integer sed 
aliquet diam, ut porttitor ipsum. Maecenas 
dictum lacus nec odio tempor dignissim. 
Curabitur maximus sagittis accumsan. 
Donec ornare lacinia nibh vel fringilla. 
Interdum et malesuada fames ac ante ipsum 
primis in faucibus. Integer congue quam 
tempor, dictum elit et, lobortis massa.

Curabitur dictum euismod tempus. Praesent 
maximus mauris ligula, sed facilisis velit 
tincidunt at. Aliquam rutrum malesuada est 
a commodo. Morbi semper odio ut orci 
vehicula aliquet. Morbi sodales, risus nec 
porttitor viverra, leo nisi gravida nunc, id 
gravida massa sem egestas quam. Fusce 
rutrum augue quis erat dapibus sodales ac 
id tortor. Nullam molestie feugiat lobortis. 

.. Then I picked up 
some cheese from 
the fridge to add 
on top of the 
lasagna in the 
oven …..

Hypotheses for Actions

↗

Action: Right

?
Couch

Action: Left

?
Fridge

Output: Hallucinated 
Objects in Next FoVs

Action: Right

Action: Left

Merging Hypotheses and 
Affinity Scores

Object 
Hallucination

Fridge ↔ ?

Couch ↔ ?

Object 
Hallucination

Large Pre-trained LM

Language 
Model

Figure 6.3: HOLM for the dRER task. (Top) We use language models trained on a large amount
of text by prompting with the spatial relationship of objects to calculate co-occurrence statistics
of objects. (Bottom) The flow of our hallucination method. We determine objects of interest for
each action. Then, we combine objects of interest and co-occurrence table to hallucinate objects,
i.e. what might appear after performing an action.

This interaction continues sequentially and ends when the agent performs a special STOP action
or a pre-defined maximum episode length is reached. The resolution process is successful if the
agent ends the episode at the target location.

In dRER, instructions are represented as N sequence of sentences represented as x = {xi}Ni=1.
Each instruction sentence xi consists of a sequence of Li words, xi = [xi,1, xi,2, ..., xi,Li

, ]. The
training dataset DE = {X , T } consists of M pairs of the instruction sequence x ∈ X and its
corresponding expert trajectory τ ∈ T . The agent learns to navigate by learning a policy π via
maximum likelihood estimation (MLE):

max
θ

Lθ(X , T ) , where

Lθ(X , T ) = log πθ(T |X )

Lθ(X , T ) =
1

M

M∑
k=1

log πθ(τ
k|xk)

(6.1)

6.3 HOLM
In dRER, the system only observes the current FoV and does see the resulting FoV before taking
any actions. Thus, it is essential to reason what might appear in a future observation using what is
currently visible to the system. Our core intuition is that objects visible in the current FoV and
their locations in the FoV give us a clue about what might appear if a particular action is taken.
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Here, we propose an approach for reasoning about future observations using what is visible and
some general knowledge of objects. Let us go through the illustration in Figure 6.3 to explain
our HOLM method. In the top panel, we feed spatial prompts to pre-trained language models
to extract knowledge about objects in the form of affinity scores. In the bottom panel, we see
the input of the system where there are natural language instructions, an FoV of the scene, and
detected objects. Next, we calculate which objects are relevant to each action. For instance, couch
detections are on the right side; thus, they are relevant to the right action. Similarly, the fridge is
relevant for the left action because it is on the left side. Then on the third step, using the affinity
score of a pair of objects, we predict what might appear after performing an action. For right
action, our model hallucinates a tv and tv-stand might appear because the couch and tv have a
high affinity score according to the LM.

6.3.1 Affinity Scores from Language Models

Language models process a large amount of text to learn regularities in natural language. They do
so by predicting the next word or masked token given a sequence of words. Our intuition is that
objects that frequently appear in an environment close to each other will have similar language
usage. Thus, we hypothesize that language models’ capability of learning affinity scores of words
in language also reflects objects’ spatial properties. In Figure 6.3’s top panel, we illustrate how
we extract this capability. We query language models trained on a large amount of free-form text
with spatial relationship prompts. These spatial prompts aim to capture the usage of words when
they appear together in the world. An example of these prompt templates is “Near the o1, there is

” where o1 ∈ O is an object label where O is a set of object labels. If object o1 co-occurs with
o2 with high frequency, the language model would provide a high probability for the phrase “Near
the o1, there is o2”. Using all pairs in O and K spatial prompt templates, we generate queries q.
Please see Table 6.1 for the full list of spatial prompt templates.

We then calculate affinity scores Co1,o2 , i.e., observing o2 when o1 is present as follows:

Co1,o2 =
K∑
i=1

pLM(o2|qi) (6.2)

Where pLM(o2|q) is a language model that calculates the probability of observing a token o2
given a prefix sequence of tokens q.

6.3.2 Object Hallucination

Our main idea behind HOLM is to reason about what might be observed in a future observation
by combining (1) which objects are visible in the current observation and (2) what we know about
the spatial properties of those objects. We explain the details of our approach in this section.

Let pa ∈ R|O| be the vector of probabilities of observing an object among a set of all objects
O after performing an action a. We calculate pa as follows:

pa = (pFoV ⊙ 1a)C (6.3)
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near the object there is
near the object I see a
near the object there should be a
the object near the object is
on the left of object there is
on the right of object there is
on top of object there is
under the object there is
across the object there is
close the object there is

Table 6.1: Spatial Prompt Templates

Where pFoV ∈ R|O| is a vector of confidence values for objects detected in the current FoV. We
use an off-the-shelf object detection system [6] to calculate pFoV. C is the affinity scores of size
|O| × |O|. C represents how often a pair of object appear in a spatial relationship and represents
the general knowledge of objects. 1a ∈ {0, 1}|O| is a binary vector representing spatially related
objects for a direction a. This vector is calculated with an indicator function to determine whether
an object is spatially related to action a.

We calculate the indicator function as follows. First, we separate the FoV into 4 imaginary
regions called quadrants where each quadrant determines how a region in observed FoV is spatially
relevant for canonical directions (i.e., up, down, left, right). In other words, quadrants are “hot-
spots” for each direction i.e., the left side of the image is more relevant to the right side of the
image if we are interested in what might appear on the left. For 8 directions (left, right, down,
up, down-left, down-right, up-left, up-right), we calculate how much each objects’ bounding box
overlaps with these quadrants. If intersection-over-union is above a fixed threshold we keep this
object for the hallucination process.

6.4 Experiments

We designed our experiments to study and evaluate our proposed HOLM approach under four
different research questions. RQ1: What is the performance of HOLM when compared to other
state-of-the-art approaches? RQ2: what is the impact of LM as a source of knowledge for
HOLM when compared to other more conventional sources (e.g., images)? RQ3: How essential
are external sources of data for learning knowledge about objects compared to in domain data?
RQ4: How accurate is HOLM for predicting objects in future observations? RQ5: How do
annotation-free language-based knowledge sources i.e., LMs and word embeddings compare for
HOLM?

The following section explains the details of experimental setup. Our results are presented
and discussed in Section 6.4.2.
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6.4.1 Experimental Setup
To study the research questions previously mentioned, we identified two publicly available datasets
and specific state-of-the-art methods as baselines to compare with.

Datasets. We selected the following two datasets to see if our method generalizes to both indoor
and outdoor settings. The Refer360° dataset [40] consists of 17K natural language instructions
and ground-truth trajectory pairs for localizing a target point in 360° scenes. The ground-truth
trajectories are annotated by human annotators in the form of successive FoVs in partially observed
360° scenes. The dataset uses a subset of the SUN360 dataset [231] as the source of scenes and
these scenes are from both indoor and two outdoor locations.

Touchdown [30] consists of 9K natural language instruction and ground-truth location pairs for
360° scenes on Google Streetview. Unlike the Refer360° dataset, Touchdown does not have expert
trajectories – only expert predictions for the target location are provided. Thus, we generated
ground-truth trajectories by calculating shortest path trajectories between a randomly selected
starting point 3 and the target location.

Baselines Models. We compare our method with the state-of-the-art models and also few simple
baselines (i.e., no parameter learning.

• The Self Monitoring Navigation Agent (SMNA) [143] model is trained with a co-grounding
module where both visual and textual input is attended at the same time. The agent also
measures its progress with a progress monitor module.

• FAST [106] stands for Frontier Aware Search with backTracking. The FAST model learns
to score partial trajectories of an agent for efficiently backtracking to a previous location
after a mistake.

• Speaker-Follower [59] uses a sequence-to-sequence speaker model to re-rank a follower
model’s candidate trajectories. This pragmatic reasoning model has been shown to improve
navigation agents’ performance significantly.

• LingUNet [156] is an image-to-image encoder-decoder model for learning image-to-image
mappings conditioned on language. We should emphasize that, unlike the previous methods,
LingUNet is not a navigation model; instead, it predicts regions over an image.

• RANDOM agent randomly picks an action.
• STOP agent predicts the starting FoV as the target FoV.
For a fair comparison, the same model was used as the basis for all the compared model.

For our proposed approach HOLM is used to enhance the SMNA baseline by hallucinating
objects for unseen regions. After getting object hallucinations for each neighboring FoVs, we
use the sum of word embeddings for object labels as the input representation for the neighboring
FoV. In the oracle “Next FoV” scenario, we use ground-truth FoVs to do the same process.
For a fair comparison, we use SMNA as the base agent for learning to recover from a mistake
during navigation process with FAST and as the follower model for pragmatic reasoning with
Speaker-Follower.

3Following [40], we set the initial random point to be a fix heading and random yaw.
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Method Oracle Refer360° Touchdown

Stop Agent 14.1 0.0
Random Agent 12.1 6.8

SMNA [143] 27.1 45.9
+ HOLM (this work) 32.2 49.8

SMNA [143] Next FoV 33.5 50.2
LingUNet* [30] Full Panorama 21.4 47.2

Table 6.2: FoV accuracy results for Refer360° and Touchdown with no hallucination baseline,
best performing models, and Next FoV oracle model, i.e. the ability to look ahead for neighbor
FoVs, and observing full 360° scenes. Our method outperforms the baseline models from the
literature.

Evaluation Metrics. Our main evaluation metric for methods is FoV accuracy: the percentage
of the time the target location is visible in the final FoV. The FoV accuracy sets an upper bound
on the localization accuracy for predicting the pixel location of the target point, i.e., if the target is
not visible, it is impossible to predict the exact location. Thus, we focus on this metric to compare
systems. Since the main training objective is to find the any FoV where the target object is visible,
unlike Touchdown [30] we do not report pixel-level distance to the target location.

Implementation. All models are trained for 100K iterations. We use Adam [112] for optimiza-
tion with a learning rate 0.0001 and weight decay parameter 0.0005 [119]. For each model, we
perform a grid-search over their hyperparameters (e.g., number of hidden units, number of layers,
dropout rate) and pick the best performing model based on validation score 4. All models are
implemented using PyTorch [167] and publicly available.

To speed up the training procedure, we used fixed a grid of FoVs for all 360° images where
each FoV is connected to its neighboring FoVs. This grid forms the navigation graph depicted
in the Figure 6.2. We use 30° of separation between successive FoVs which provides enough
overlap to reveal relevant information about successive FoVs yet distant enough so that the model
needs to reason about future steps. We then pre-calculated the rectilinear projection of each of the
FoVs on the grid for all scenes.

6.4.2 Results and Discussion
In this section we present and discuss experimental results and analyses.

(RQ1) HOLM Improves performance. Our main results are presented in Table 6.2. In
the first row block, we see that simple non-learning baselines fail to perform on the dRER. In
the second row block, we compare our method with the baseline where the agent does not have
any visual input from the next FoVs. HOLM improves the baseline by hallucinating objects for
the next FoVs. In the third row block, we provide results for oracle scenarios. For SMNA, we
feed ground-truth FoV as the input of the system. This result sets the upper bound on HOLM,

4For Refer360° we use validation unseen split. Touchdown does not have seen-unseen distinction.
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Method Beam Search Refer360° Touchdown

Baseline SMNA [143] 27.1 45.9
+ HOLM (this work) +5.1 +3.9

+ FAST [106] -6.4 +4.7
+ Speaker-Follower [59] -4.6 -11.1

Table 6.3: FoV accuracy results for Refer360° and Touchdown for methods using beam search or
single candidate trajectory. HOLM consistently improves the baseline and does not use multiple
trajectories.

because it cannot achieve better hallucination than the ground-truth FoVs. However, HOLM
achieves pretty close to this upper bound and show that it can provide useful predictions for this
task. For LinGUNet, we feed the full 360° scenes as the visual input. Since LingUNet is not a
navigation agent i.e. predicts the target location using full 360° scenes, we calculate FoV accuracy
by drawing an FoV around the prediction, which explains ’*’.

In Table 6.3, we compare HOLM with FAST and Speaker-Follower methods, both of which
use beam search. During the beam search, these methods use multiple trajectories while deciding
on a trajectory. However, this is not plausible in a real-world scenario, i.e. a robot would not
generate many trajectories before performing action. HOLM, on the other hand completes the
task on a single trajectory while predicting possible future states. FAST improves SMNA for
Touchdown but not for Refer360° , which might be due to the richness of scenes in Refer360°
whereas in Touchdown , the scenes are always in the same domain. Speaker-Model’s decreases the
score for SMNA possibly due to the Speaker models’ poor performance where the BLEU score is
around 6. HOLM consistently improves for both datasets and does not perform any expensive
look-ahead operations such as beam search.

Knowledge Type Human Annotation Affinity Scores Refer360° Touchdown

Baseline Uniform 27.8 45.2
Baseline Diagonal 29.3 45.9
Visual VisualGenome 30.8 48.4
Knowledge Base WordNet 29.5 48.4
Pre-trained LM XLM 32.2 49.8

Table 6.4: FoV accuracy results for Refer360° and Touchdown for different methods for calculating
affinity scores for HOLM. XLM-based affinity scores achieve the best performance.

(RQ2) Pre-trained LM produces better affinity scores compared to other sources. In
Table 6.4, we compare several baseline methods for calculating the affinity scores. First, we
use uniform (i.e., each object pair has the same affinity score) and identity matrix (i.e., object
x can only have affinity score with itself) baselines. We also study calculating affinity scores
using data annotated by humans. First, we use object annotations in VisualGenome [118].
VisualGenome provides a large collection of fine-grained annotations for objects and their spatial
relationships. Second, ideally we would like to use human annotations for calculating the affinity
score. However, this requires annotation of |O|2 annotations. Instead, as a proxy, we use WordNet
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[155], a knowledge-base hierarchy annotated by experts. We use NLTK [18] to calculate the
WordNet similarity to extract the affinity scores between objects. XLM-based HOLM achieves
the best results among these baselines. This result shows that without using human annotations,
we can extract useful knowledge about objects using pre-trained LMs.

Method Data Source Refer360° Touchdown

HOLM with XLM External 32.2 49.8
HOLM with Objects Counts Internal 30.3 48.7
Hallucinating with 3-Layer MLP Internal 27.5 46.3

Table 6.5: FoV accuracy results for Refer360° and Touchdown when task data is used for object
hallucination. The limitation of the domain data can be addressed using external resources such
as pre-trained LMs.

(RQ3) External sources may provide better information compared to task data. In
Table 6.5, we compare methods that only use task data for object hallucination and HOLM with
external sources such as pre-trained LM. For the second row in the table), we use the BUTD model
[6] to annotate training images with object bounding boxes. Using bounding boxes of objects, we
calculate affinity scores. For the third row in the table, we design a model that takes FoV and an
object type as an input and predicts a direction (i.e., hallucinate where it might appear) as output.
We pass the final feature map layer of 152-layer ResNet[80] as input to a 3-layer feed-forward
neural network to predict objects that might appear in neighboring FoVs. This model achieves an
F1 score of 40.3 for direction prediction. Both of these methods improve over the SMNA baseline
but are worse than the pre-trained LM. This result indicates that task data may have limitations,
and external sources such as a pre-trained LM may provide a signal for knowledge about objects.

Knowledge Type Affinity Scores Refer360° Touchdown

Visual VisualGenome P 1.4 R 55.3 F1 2.7 P 1.5 R 55.2 F1 2.9
Knowledge Base WordNet P 1.3 R 55.4 F1 2.6 P 1.4 R 55.3 F1 2.8
Pre-trained LM XLM P 2.0 R 49.5 F1 3.9 P 2.2 R 63.2 F1 4.3

Table 6.6: Precision (P), Recall (R), and F1 scores for Refer360° and Touchdown for hallucinating
objects in neighboring FoVs. Similar to the downstream task results, pre-trained LM performs the
best.

(RQ4) Accuracy of HOLM translates to dRER So far, we measure the performance of
HOLM for the downstream dRER task. We can also measure how accurate HOLM is at predicting
the presence of an object in neighboring FoVs. We annotate each neighboring ground-truth FoVs
with detections from BUTD. If the pia for object oi ∈ O is above 1

|O| , we count that as a prediction
of an object in the neighboring FoV after performing action a. In Table 6.6, we provide precision,
recall, and F1 score for the performance of different methods for calculating affinity scores for
HOLM. XLM achieves the best performance among the methods we compare. We conclude that
the performance for the intrinsic task (i.e., predicting the presence of objects) translates to dRER
performance.
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Method Model Refer360° Touchdown

Baseline SMNA 27.1 45.9

W
E + HOLM with FastText [153] 31.6 46.8

+ HOLM with GloVe [169] 31.0 49.2
+ HOLM with word2vec [154] 29.3 46.2

L
M

+ HOLM with GPT3 [22] 31.1 46.3
+ HOLM with Roberta [135] 30.3 46.0
+ HOLM with XLM [44] 32.2 49.8

Table 6.7: FoV accuracy results for Refer360° and Touchdown for models processing unlabeled
text. WE and LM are abbreviations for word embeddings and language models. All hallucination-
based methods perform better than the baseline. XLM achieves the best performance in both
datasets.

(RQ5) Both word embeddings and LMs are good sources of general knowledge of objects
In Table 6.7, we compare word embedding methods and different language models. We use
cosine similarities between pairs of objects to calculate the affinity scores. For language models,
we compare Open AI’s GPT3 [22] using their online API5. We use Transformers Library [228]
for RoBERTa [135] and XLM [44]. All methods consistently improve over the baseline SMNA
model, however, we achieve the best performance using XLM. This result indicates that we can
extract useful knowledge about objects with methods relying on large amount of unlabeled text.

6.5 Related Work
Our work on dRER is closely related to previous studies focusing on Referring Expression
Recognition (RER), Vision-and-Language Navigation (VLN), and methods we propose are
related to pre-training language models for vision-and-language tasks, model-based reinforcement
learning, and co-occcurrence modeling for computer vision. We review these studies in this
section.

RER is the task of localizing a target object or a point in an image described by a natural
language expression. The most of existing datasets poses the task in 2D images with objects as
being the target [2, 35, 105, 133, 146, 198, 239]. Several lines of work are proposed to address
RER. In joint embedding approaches [47, 61, 98, 132, 134, 142, 146, 160, 239, 240, 242, 244],
object representations and referring expression representations separately learned and projected
into a joint space. Modular approaches learn specialized neural network modules for object
localization or relationships among objects. They computationalize the recognition process
either with a pre-defined composition of modules [92, 238] or with external parsers [41, 129].
Another line of work is to learn inter-object relationships representations via graph neural networks
[136, 222, 234, 235]. Recent success in masked pre-training approaches [48] also showed progress
in the RER task and achieved state-of-the-art results [34, 104, 139, 140].

In Touchdown [30] and Refer360° [40] the target is a point not an object in a 360° image. In

5https://beta.openai.com/
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the dRER setup, we also use 360° images of Touchdown and Refer360° , but we do not provide
the full panoramic view of the scene. Instead, in a more realistic scenario, the agent observes a
partial and dynamic view of the scene, i.e. the agent needs to adjust its FoV to find the target
location. Closer to our work, in REVERIE [175] an embodied setup is proposed where the agent
needs to first navigate to a location where the target object is visible. Similar to Touchdown and
Refer360° , at the final position, the full 360° view is visible to the agent. Unlike ours and similar
to 2D image-based RER, the target is an object rather than a point in the scene.

VLN is a vision-and-language task where an agent in a simulated environment observes a
visual input and is given a natural language instruction to navigate to a target location. The earlier
work [28, 144, 193] studies the task with synthetic images or in a very small scale [219]. Anderson
et al. [8] proposes Room-to-room (R2R) benchmark and revisit VLN task with a modern look.
In R2R, the agent observes panoramic scans of a house [25] and needs to carry out the natural
language instruction. EnvDrop [209] model shows generalization to unseen environments by
dropping visual features. PREVALENT [78] tackles the data sparsity problem with a pre-training
scheme. Hong et al. [85] show that a pre-trained multi-modal can be enhanced with a memory
state for the VLN task by recurrently feeding a contextualized state feature after each time step.
dRER also poses a navigation task where locations in physical space in VLN correspond to FoVs
in a fixed location. In dRER, a trajectory of the agent corresponds to its resolution process for
finding the goal location.

Pre-trained models for Vision-and-Language has been recently studied after the huge
success of transformer-based models [215] in NLP [22, 44, 48, 135, 173, 180, 204]. Numerous
studies extend these approaches to the multimodal domain [96, 126, 139, 174, 199, 203, 208].
They achieve the-state-of-the-art results in several tasks such as image captioning, text-to-image
retrieval, or referring expression recognition. Our work differs from these studies in the sense that
the previous approaches use large scaled paired image-text data [33, 51, 101, 178, 187] to learn
efficient representations [60, 115] for visual and textual modalities whereas we are interested in
spatial information learned in unimodal text representations.

Language priors for vision were explored in recent studies. Lu et al. [138] use word
embeddings in a language module to learn a representation for a object-predicate-object triplet for
visual relationship detection task. Kiela et al. [111] propose an approach to extend pre-trained
transformer-based LMs for multimodal tasks. Similarly, Lu et al. [141], Tsimpoukelli et al.
[213] show that pre-trained LMs can be finetuned to perform well in few-shot settings for image
classification and open-domain Visual Question Answering [148]. Marino et al. [147] also show
that multimodal transformer architectures capture implicit knowledge for a pair of objects. Our
work differs from these studies (1) we use only unimodal models, (2) we do not finetune models –
we do not update models during training. The most similar work to ours, Scialom et al. [189] show
that pre-trained LMs can perform reasonably well on Visual Question Generating [159, 237] out
of the box. One difference is that we use object labels rather than object features or the appearance
of objects to query the language model; however, they use object features as a visual token to the
language model. Prompts we use in our work shares similarities with prompts designed in PIQA
[166], but our work is evaluated in a multimodal setup. In contrast, PIQA is evaluated for textual
commonsense reasoning tasks.

Hallucination idea is also related the work on predicting future observations in long horizons
[217] which has been studied in the context of learning planning [76] and acquiring skills for
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control problems [75], and efficient policy learning [74], and vision-and-language navigation
[113]. All these approaches are interested in longer horizons; however, in our work, we study
predicting single-step future observation. More recent work [91, 182, 185] study view synthesis
from a single visual observation. Unlike these approaches, HOLM does not generate pixel-level
views rather abstractions of views with object labels.

Affinity scores are mainly studied in computer vision tasks in the form of object co-occurrences.
Previous studies have shown that object co-occurrences are efficient representations of visual prior
for object categorization for object segmentation [62, 122, 177] and zero shot object-recognition
[152]. Our work differs from these studies: we do not calculate co-occurrence statistics, i.e. we do
not count the frequency of times they appear together; instead, we calculate a probability measure
using language models.

6.6 Conclusion
In this chapter, we showed that prior knowledge about objects extracted from LMs and used
as affinity scores for predicting future observations. Our experiments showed that our HOLM
approach improves over various baselines from the literature. Surprisingly, our model which
used general knowledge from LMs outperformed models with knowledge from human-annotated
data showing that LMs learn useful knowledge about the world without requiring any visual
observation from the real world. We also showed that out approach generalizes to both indoor and
outdoor scenarios.

Future work will explore the use of general knowledge in other domains such as vision-
and-language navigation [7] and dialog [212]. We also believe general knowledge of objects
would be handy in complex scenarios such as manipulating objects in a simulated environment
[194]. Another interesting direction would be to study the capability of transferring knowledge
from indoor to outdoor settings and vise versa. Finally, the success of PREVALENT [78] and
other pre-training approaches for VLN could stem from their ability to implicitly encode prior
knowledge about objects. Hopefully, future studies examines this phenomenon.
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Chapter 7

Situated Knowledge for Remote
Embodied Visual Referring
Expression

Neo : Are you saying I have to choose whether Trinity
lives or dies?
The Oracle : No, you’ve already made the choice. Now you
have to understand it.

The Matrix Reloaded, 2003

In the previous chapter, we studied from a more general perspective how the prior knowledge
of objects gives the AI system a hint on which objects might appear in the environment. In this
chapter, we explore a different type of prior knowledge. This prior knowledge is the one the AI
system has from its previous exploration of the current environment. We call this second type
situated knowledge; the knowledge belongs to a particular situation or context. Our first goal in
this chapter is to show how an AI system situated in a specific environment with the knowledge
of previously seen objects and their locations can be more efficient and accurate in completing
natural language instructions. Second, we show how to acquire situated knowledge when it is not
available with an exhaustive search. Our analyses will also demonstrate that complex models are
not always needed when situated knowledge is available. These analyses help us better understand
what challenges still require future research.

The code for reproducing experiments described in this chapter is publicly available on
Github1.

1https://github.com/volkancirik/OSMaN
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7.1 Overview

Imagine giving some directions to a tourist in your hometown. Before the GPS-augmented
cell phone era, we would draw a map on paper highlighting all critical landmarks and showing
directions about what to do when they see those landmarks. The tourist can then follow the
instructions we give by matching what they observe in the city with what was written on the map.
Our prior knowledge about our neighborhood (i.e., where things are) would help us develop a
navigation route without having to explore the neighborhood again. We call this type of prior
knowledge situated knowledge. Situated knowledge is about a specific situation or context. In this
thesis, the embodied AI system’s environment sets the situation and context. Thus, for embodied
AI systems, situated knowledge consists of knowing “what” and “where” in an environment –
which would be a powerful tool when navigating and interacting with humans. Our first goal
in this chapter is to understand the role of situated knowledge for the vision-language task. For
instance, a prior on where the ottomans are usually might hint that they can often be in living
rooms near a chair, as we discussed in Chapter 6, but ottomans could also be used in almost any
room in the house. Thus an ottoman could be in the bedroom for a specific home. The knowledge
about this would simplify the navigation for the AI system. But, this type of knowledge may not
be readily available or too expensive to acquire. In that case, the AI system should situate itself in
the environment to acquire the knowledge needed to complete its goal. This brings us to our first
research question for this chapter: (Q1) How can an AI system use situated knowledge about its
environment for language grounding, and how can it acquire such knowledge?

A second important goal of this chapter is to understand the limitation and potential of situated
knowledge for vision-language navigation. To that end, we keep our design of the situated agent
(1) modular and (2) simple. Modularity (1) helps us categorize different phenomena required
to build a performant vision-language system. Simplicity (2) gives us the flexibility to change
variables for the vision-language system. With a modular and simple design, we use our model as
a lens to analyze and understand challenging phenomena for vision-language tasks. This analysis
will help researchers gear their efforts towards future directions, which brings us to the second
research question for this chapter: (Q2) How can we build a simple situated vision-language
navigation system to uncover some insights about the vision-language navigation tasks?

This chapter studies these research questions and shows how an AI system can benefit
from situated knowledge during navigation and remote object localization tasks and identify
potential future directions using a simple-yet performant baseline model. To study situated
knowledge in vision-language navigation benchmarks, we focus on the dataset known as Remote
Embodied Visual referring Expression in Real Indoor Environments, or REVERIE[175]. This task
conveniently ties the previous chapters in the following ways. In the REVERIE task, the agent is
placed in the same simulated environment as in Chapter 5 and instructed to identify an object that
is remotely located in the environment. To complete a REVERIE instruction, the agent moves
in this simulated environment by performing navigation actions. At the end of the navigation,
the agent recognizes the referring expression by predicting a bounding box for an object as in
Chapters 2 and 3. However, the agent observes a 360° view of the house in that terminal location,
similar to Chapters 4 and 6.

Our study has three main contributions.
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1. We introduce Object-centric Situated Map Navigator, or OSMaN2, a simple yet strong base-
line for the REVERIE. Our empirical analyses show that an agent with situated knowledge
of objects achieves state-of-the-art performance. It does so without any training by just
using simple and intuitive heuristics we designed for vision-language navigation tasks.

2. We show how to acquire situated knowledge when it is not readily available. Our experi-
ments show that our exhaustive search method that only relies on an object detector is more
accurate than the complex neural networks for remote object localization.

3. We introduce REVERIE-DeLiRE3, a subset of the REVERIE for which OSMaN and other
systems from the literature struggle the most. We identify the key aspects of REVERIE-
DeLiRE which points to the future directions for vision-language navigation and remote
object localization.

7.2 OSMaN: Object-centric Situated Map Navigator
The REVERIE task is designed to identify an object in a remote location in a simulated house
given natural language instruction. An example instruction for this task could be “go upstairs,
enter the bedroom, and bring my water bottle which is on the nightstand”.4 To accomplish this
task, an embodied AI system should have very sophisticated capabilities: processing potential
ambiguity in natural language instruction, recognizing complex and diverse visual environments,
and challenging long-horizon action planning. While a complex problem, our intuition is that
simple capabilities may bring us a long way in addressing this task in the presence of situated
knowledge. In this task, situated knowledge consists of (1) where objects are located and (2) how
locations of these objects are connected. We highlight three capabilities required to solve the task
with situated knowledge:

1. The system should identify what the goal is from the natural language instruction. For
example, the system needs to extract “water bottle” from the full instruction. In many
navigation tasks, this goal may be a location or an object.

2. The system must decide whether the goal (e.g., the water bottle) is present in its situated
knowledge. Thus, the system needs to compare the goal object with objects present in the
situated knowledge.

3. Once the goal object is found in the situated knowledge, the AI system navigates efficiently
using situated knowledge of the environment (i.e., how locations of objects are connected)
to reach the object’s location and identify the object.

We argue that having situated knowledge of the environment – i.e., where objects are and how
to go from one location to another – would simplify the complex remote object localization task
into a simple search problem. We propose OSMaN, a heuristics-based model operationalizing
these three capabilities in three modules by relying on situated knowledge of the environment.

2Osman is a common name in Turkey. Ottoman Empire means Osman’s Empire in Turkish.
3Derailing and Limiting Referring Expressions. Rêverie is French word for dreaming and “délire” means delirium,

wild idea, or lunacy.
4Note that the agent only needs to correctly identify the object in the REVERIE rather than performing object

manipulation actions.
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Figure 7.1: (Left) Situated knowledge in the form of object detections at each location in the
environment and the connection between these locations. (Right) Steps OSMaN takes for remote
object localization. OSMaN extracts the goal object, scores each candidate object with textual and
semantic similarity, chooses the highest-scoring object and location and navigates to the object’s
location using known connections, i.e., the environment map.

Let us go through Figure 7.1 to illustrate how OSMaN uses situated knowledge for remote
object localization. We illustrate OSMaN’s situated knowledge of the environment on the left: it
knows how locations are connected with a map of the environment and which objects appear in
those locations On the right, we show OSMaN’s steps for remote object localization. OSMaN
first extracts the goal object from the full instruction as a word token. Second, this goal token is
used for scoring the similarity between all objects in the environment. The object with the highest
similarity score is chosen as the goal object. Third, OSMaN navigates to the location of the goal
object and predicts the goal object.

The following sections explain how we implement this process via three modules. We want to
keep our design as simple as possible for each of these modules. With simplification, OSMaN
helps us understand the limitations and potentials of each of these modules for designing a situated
agent for vision-language navigation tasks.

7.2.1 FIND GOAL

Natural language instructions describe a target location or object in detail in vision-language
navigation tasks. Our intuition is that complex instruction can be summarized as a high-level
goal. This high-level goal could be enough to complete the task in the presence of situated
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Figure 7.2: Dependency parse of an instruction. In FIND GOAL, we use the first noun phrase of
the root as the goal object.

knowledge. For instance, an instruction like “Go upstairs, then go to the blue family room and find
the family picture on a horse at the top left corner above the TV” has detailed information about
the intermediate steps but could possibly be summarized with the end goal of finding “the family
picture.” If the AI system already knows the location of “the family picture,” this high-level goal
could be enough.

To extract the end goal, we design a simple module FIND GOAL. First, we discard the
intermediate steps and find the goal object’s clause For above example, we are left with “find the
family picture on a horse at the top left corner above the TV” after this discarding. Then, we use
an off-the-shelf dependency parsing tool[87] to parse the instruction. This gives us the dependency
relationship between each word in the instruction. An example of how FIND GOAL uses the
dependency parse tree is in Figure 7.2. We return the root token’s first noun phrase dependent.
We find that the first noun phrase is the target object due to the imperative nature of the task. Our
FIND GOAL module correctly identifies the target object as “the family picture” for the above
example. We annotated a small subset of 100 instances in the training data and observed that this
module is accurate for 77% of the time, which is surprisingly accurate considering its simplicity

7.2.2 SCORE OBJECTS

Algorithm 1:Scoring Objects’ Similarity to The Goal Phrase
1: procedure SCORE OBJECT(goal, object)
2: if goal = object then

return 3 //Exact Match Score
3: else if substring(goal, object)=True then

return 2 //Sub-string Score
4: else if edit distance(goal, object) >= edit threshold then

return 1 //Edit-Distance Score
5:
6: emb goal = embedding lookup(goal)
7: emb obj = embedding lookup(object)
8: cosine sim = cosine distance(emb, emb goal)
9: if cosine sim >= emb threshold then

return cosine sim //Semantic Similarity Score Score
10: return 0 //Non-Matching Score
11: end procedure
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Figure 7.3: OSMaN-Exhaustive’s process of situating itself in the environment. At each location,
it detects and records objects. Then explores other locations and keeps track of adjacency
information between successive locations. At the end of this process OSMaN-Exhaustive knows
what objects are visible and where, and knows how to navigate from any start location to any
target location.

Once OSMaN has a high-level goal described in a short phrase, it scores all objects present in
the environment. We use the text and semantic similarity of the goal phrase and the object label.
In the SCORE module, we use a simple multi-step scoring function described in Algorithm 1.
The scoring function outputs the highest score when an object label and the goal phrase are
exact matches. The second highest score is given when the goal phrase and the object label
are sub-strings. The third highest score is for the edit distance between the goal phrase and the
object label is above some fixed threshold. Finally, we use the cosine similarity between the word
embeddings [169] of the goal phrase and the object label to capture synonyms or words capturing
similar semantics in different word forms.

7.2.3 NAVIGATE&PREDICT

Another component of the situated knowledge is knowing ‘where’, i.e., where objects are located
in the environment and how these locations are connected. Here, we assume that OSMaN has
this knowledge of the environment. In practice, this means that an embodied AI system like a
household robot would be pre-loaded with the information of where objects are in the house and
the map of the house. Later, we also show that OSMaN can acquire this situated knowledge even
when it is unavailable.

In the previous step, SCORE OBJECT outputs the highest-scoring object to predict remote
object localization. Since OSMaN has the situated knowledge of the environment, it has access to
the location of this object. Also, OSMaN knows how locations in the environment are connected.
Thus, the navigation trajectory to the goal location can easily be calculated via a shortest path
algorithm [50].
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7.2.4 OSMaN-Exhaustive Acquiring Situated Knowledge with Exhaustive
Search

When the agent has situated knowledge of the environment (i.e., where objects are and the map
of the environment), OSMaN’s process of a vision-language task boils down to calculating the
shortest path between starting location and the goal location. Since this knowledge may not be
known a priori, we propose a simple extension of OSMaN, namely OSMaN-Exhaustive, which
can obtain situated knowledge required for remote object localization by exploration.

To learn where objects are and how locations of these objects are connected, OSMaN-
Exhaustive builds the map of the environment. This process is visualized in Figure 7.3. OSMaN-
Exhaustive explores the environment using the depth-first search algorithm. At each location,
the model does two things: (1) it records the objects present in those locations using either
ground-truth objects or an object detector, and (2) While exploring, OSMaN-Exhaustive keeps
track of the connections between successive locations in an adjacency graph to create a map of
the environment. After visiting all locations in the environment, the agent returns to the original
location, having obtained situated knowledge of the environment. We should emphasize that this
is an exhaustive search baseline – i.e., OSMaN-Exhaustive visits all locations in the environment.
It is practical and straightforward but not maximally efficient, which aligns well to keep OSMaN
as simple as possible.

7.3 Experiments

Our primary motivation in this section is to empirically analyze the use of situated knowledge
– both its potential and limitations. We also want to use OSMaN to uncover potential future
directions through its simplicity. Thus, we designed our experiments to answer the following
research questions(RQ):

• RQ1: Does situated knowledge of objects and their locations help? To answer this question,
we compare the performance of our simple model OSMaN empowered with the situated
knowledge of the environment with state-of-the-art approaches.

• RQ2: Can a system obtain situated knowledge, and how does it compare to providing
ground-truth situated knowledge upfront? To address this question, we compare different
configurations of OSMaN where situated knowledge is acquired through exploring the
environment.

• RQ3: What are the potential and limitations of situated knowledge? We make several
simplifying assumptions for OSMaN, but these could be limiting factors. To answer this
question, we design oracle experiments where ground-truth information is provided to
OSMaN to demonstrate an upper bound on performance.

• RQ4: What are the challenging phenomena in vision-language systems for existing ap-
proaches and OSMaN? We do pair-wise analyses of a state-of-the-art system and OSMaN to
identify such cases. We find a challenging subset where both of these models fail similarly,
namely REVERIE-DeLiRE.
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7.3.1 Experimental setup

Dataset. To examine the research questions previously mentioned, we work on the REVERIE
dataset [175]. The REVERIE has 10.5K instructions in 60 scenes for training. The validation set
includes seen and unseen splits to evaluate generalization and has 4.9K instruction in 56 scenes
for seen and 3.5K instructions for 10 scenes. The test set includes 6.3K instructions in 16 scenes.
There are total of 4653 objects in the dataset. The ground-truth trajectories and annotations
of objects are collected via crowdsourcing human annotators. The REVERIE is built on top
of the previous vision-language navigation benchmark, Room2Room [7], and shares the same
simulation and evaluation setup. At each location in a scene, the agent observes a panoramic view
of the environment. Following the literature[7], for each location in the environment, we divide
the panoramic view of the agent into 36 field-of-views. The agent needs to predict one of the
navigable views for moving. The agent predicts a bounding box for the goal object for object
localization.

Baseline Models. We compare OSMaN with best-performing models from the literature, where
each of them uses complex sequence-to-sequence neural architectures [163, 205].

• Navigator-Pointer [175] is the first model proposed for REVERIE. The main idea of
the Navigator-Pointer model is that the navigation and referring expression recognition
processes should interact with each other. The Pointer module predicts top-3 objects at a
location in the environment, and these predictions are fed to the Navigator module.

• RBERT [86] is a Transformer-based navigation model. First, the model encodes language
instruction via a language-based Transformer which generates an embedding for each word
token. To get a representation for visual input, it uses feature maps of Resnet-152 [80]. For
extracting bounding boxes of objects, it uses Faster-RCNN [181]. To keep track of the state
of the agent, a state embedding from the previous timestep is also used. Textual, visual, and
state representations are then fed to a multi-layer transformer. The final layer of transformer
outputs predictions for actions and objects and the agent’s state.

• The Self Monitoring Navigation Agent (SMNA) [143] model has two modules: one for
language and the other for vision for encoding textual and visual information, respectively.
On top of these, SMNA uses a co-grounding module where both visual and textual input is
attended at the same time. The agent also measures its progress with a progress monitor
module.

• Frontier Aware Search with backtracking (FAST) [106] model is trained to score partial
trajectories of the model to backtrack to a previous location. We use SMNA as the base
agent for training FAST. FAST has two versions. In “short” version, the agent backtracks
only when it revisits a location. In “long” version, the agent always backtracks to the highest
scoring partial trajectory using a re-ranker.

Evaluation Metrics. We measure accuracy and efficiency for comparing systems both of them
are desired properties of a vision-language system, i.e., they need to be accurate and efficient at
completing the task. We use symbols % and� represent accuracy and efficiency for metrics,

90



respectively, in our results. We report the mean scores of 5 runs for each setup and the variances
for any metrics do not exceed 0.005 due to the deterministic nature of our heuristic-based modules.

• For navigation, we use Success Rate (SR), i.e., the percentage of the time the system ends
up in a location where the target object is visible.

• We use Success Rate Weighted by Path Length (SPL) to measure the efficiency of the
system by weighing the length of the navigation path [5].

• Coverage weighted by Length Score (CLS) [100] measures how well the predicted path
covers the ground-truth path. We use this metric for pairwise analyses of two systems.

• For remote object localization, we use Remote Grounding Success (RGS), i.e., the percent-
age of the time the predicted object ID is the same as the ground-truth object.

• Similar to SPL, with the Remote Grounding Success rate weighted by navigation Path
Length (RGSPL), we calculate the grounding efficiency by weighing the RGS with the path
length of the agent.

Implementation. OSMaN does not have any parameters to train. However, we find hyper-
parameters such as similarity thresholds for SCORE OBJECT using validation seen via grid
search.

To equip OSMaN-Exhaustive with situated knowledge of objects, we use the state-of-the-
art object detection system Detectron2[229]. Following the literature[7], for each location in
the environment, we divide the panoramic view of the agent into 36 field-of-views. We feed
these field-of-views to the Detectron2 and extract bounding boxes of objects and their predicted
labels. Since REVERIE has its own object label set, we fine-tuned a model trained on the Visual
Genome dataset[118] for 330K iterations. We excluded scenes in validation unseen and test sets
to prevent contamination. This model has an accuracy of 58.5% in predicting correct labels for
the ground-truth labels for REVERIE object annotations. We provide the situated knowledge
to OSMaN in two forms. For the map of the environment, we use adjacency matrix for each
location in the house. We either provide the ground-truth in the case of OSMaN or the adjacency
matrix learned during the exhaustive search for OSMaN-Exhaustive. For situated knowledge of
objects, we provide a dictionary to the system where each location in the map has a list of objects
visible in each locations in the environment. We both report results in the original studies and our
replications for the main results. We train SMNA, FAST, and RBERT agents from scratch for
our replications. All models are trained for 100K iterations. We use Adam [112] for optimization
with a learning rate 0.0001 and weight decay parameter 0.0005 [119].

7.3.2 Results and Discussion
(RQ1) Situated knowledge helps OSMaN achieve the state-of-the-art performance. We
present results for the experiments where we compared OSMaN with the state-of-the-art in
Table 7.1. OSMaN surpasses complex neural architectures by a large margin without training a
single parameter for navigation and remote object localization. As of February 2022, OSMaN
holds the first position on the official leaderboard of the dataset5. We should also note that

5https://eval.ai/web/challenges/challenge-page/606/leaderboard/1683
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Model
Validation Seen Validation Unseen Test

Navigation Grounding Navigation Grounding Navigation Grounding
SR SPL RGS RGSPL SR SPL RGS RGSPL SR SPL RGS RGSPL

% � % � % � % � % � % �
SMNA [143] 41.3 39.6 30.1 29.0 8.2 6.4 4.5 3.6 5.8 4.5 3.1 2.4
FAST-Short [106] 45.1 40.2 31.4 28.1 10.1 6.2 6.2 4.0 14.2 8.7 7.1 4.5
Navigator-Pointer [175] 50.5 45.5 32.0 28.8 14.4 7.2 7.8 3.9 19.9 11.6 11.3 6.1
RBERT [86] 51.8 48.0 38.2 35.6 30.7 24.9 18.8 15.3 29.6 24.0 16.5 13.5
OSMaN (this work) 60.9 58.9 43.5 41.8 53.4 51.3 36.0 34.6 50.2 47.8 34.7 33.0

Table 7.1: Comparison of OSMaN with the-state-of-the-art. Symbols % and� represent accuracy
and efficiency for metrics, respectively. OSMaN achieves the best results for all evaluation
settings and metrics. However, OSMaN is the only model that has access to ground-truth situated
knowledge (Please see Table 7.2 for more results where all models have access the same sources
of information).

Model
Situated Knowledge

Validation Seen Validation Unseen
Navigation Grounding Navigation Grounding

Objects Map SR SPL RGS RGSPL SR SPL RGS RGSPL

% � % � % � % �
OSMaN Ground-Truth Labels Ground-Truth 60.9 58.9 43.5 41.8 53.4 51.3 36.0 34.6
OSMaN-Predicted Predicted Labels Ground-Truth 53.8 52.1 37.0 35.8 37.6 36.2 20.2 19.5
OSMaN-Exhaustive Predicted Labels Next Location 53.9 1.4 37.0 1.0 37.8 1.0 20.4 1.0
SMNA [143] Predicted Labels Next Location 41.3 39.6 30.1 29.0 8.2 6.4 4.5 3.6
FAST-Short [106] Predicted Labels Next Location 45.1 40.2 31.4 28.1 10.1 6.2 6.2 4.0
Navigator-Pointer [175] Predicted Labels Next Location 50.5 45.5 32.0 28.8 14.4 7.2 7.8 3.9
RBERT [86] Predicted Labels Next Location 51.8 48.0 38.2 35.6 30.7 24.9 18.8 15.3

Table 7.2: Varying the source of situated knowledge for OSMaN. In top-2 rows, OSMaN has
access to ground-truth map of the environment. Below that, all models only have access to
navigable next locations. Black and underlined numbers denote the best and runner-up results for
each column, respectively. Even when OSMaN needs to build situated knowledge from scratch it
is more accurate than the state-of-the-art approaches (third row).

OSMaN does not suffer from overfitting as much as learning-based agents and it is performance
is consistent for all evaluation setups. There is more than a 50% decline in their performance for
learning-based agents when evaluated in validation unseen and test splits. We designed OSMaN
as a simple heuristics-based baseline system to process situated knowledge and it performs
surprisingly well. However, OSMaN is the only model that has access to the ground-truth situated
knowledge, in the next experimental result we address this by comparing other models with
OSMaN and its variants where all models have access to the same sources of information in the
environment.

(RQ2) OSMaN-Exhaustive can acquire situated knowledge and is competitive with OSMaN
in terms of grounding accuracy. We compare variants of OSMaN where it uses ground-truth
and acquired or predicted situated knowledge in Table 7.2. In the first row, OSMaN performs best
accuracy and efficiency with readily available situated knowledge of objects and a map of the
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Model
Intermediate Output

Validation Seen Validation Unseen
Navigation Grounding Navigation Grounding

Object Label Object Location SR SPL RGS RGSPL SR SPL RGS RGSPL

% � % � % � % �
OSMaN FIND GOAL SCORE OBJECTS 60.9 58.9 43.5 41.8 53.4 51.3 36.0 34.6
OSMaN-Oracle Oracle SCORE OBJECTS 73.6 +12.7 71.3 +12.4 56.4 +12.9 54.3 +12.5 71.0 +17.6 68.3 +17.0 55.8 +19.8 53.7 +19.1

OSMaN-Oracle FIND GOAL Oracle 89.1 +28.2 89.1 +30.2 65.6 +22.1 65.6 +23.8 83.4 +30.0 83.4 +32.1 58.3 +22.3 58.3 +23.7

OSMaN-Oracle Oracle Oracle 99.6 +38.7 99.6 +40.7 76.3 +32.8 76.3 +34.5 98.9 +45.5 98.9 +47.6 76.7 +40.7 76.7 +42.1

Table 7.3: Oracle experiments for OSMaN where the ground-truth feature is fed to the system.
OSMaN modules are accurate and straightforward, but there is still room for improvement. Each
oracle feature improves all metrics significantly. Numbers in green show the difference between
OSMaN and the oracle version for each metric in their columns.

environment. In the second row, we have OSMaN-Predicted, where the system uses predicted
labels of objects. Both the navigation and remote grounding accuracies drop as expected in this
setup. However, we should note that it still performs better than neural architectures. In the third
row, OSMaN-Exhaustive uses predicted labels for objects and builds the environment map by
exploration.

This results in low-efficiency numbers since this is a brute-force approach and the system
needs to visit all nodes in the house to build the map of the environment. This result shows that
OSMaN-Exhaustive can acquire situated knowledge but not efficiently. However, it still achieves
state-of-the-art results in SR and RGS with only an object detector and heuristics and there is no
learning involved.

(RQ3) There is still a lot of room to use situated knowledge. In Table 7.3, we report results for
oracle experiments. We feed oracle features to OSMaN instead of using its modules. These setups
correspond to OSMaN-Oracle models, which set the upper bound on OSMaN’s performance. As
expected for all OSMaN-Oracle models, we observe an improvement over the baseline OSMaN.
This suggests that if we design more accurate FIND GOAL or SCORE OBJECTS modules,
OSMaN performance will improve substantially. We should note that even when we have oracle
features of goal object label and its location, the upper bound on RGS is less than 100% due
to ambiguity of objects in end locations – i.e., there are many objects of the same type. Thus,
OSMaN has limited capacity to reach the perfect performance, and it needs to employ a referring
expression recognition system such as we discussed in Chapter 3.

(RQ4): A pair of models uncover a challenging subset of the REVERIE. In Figure 7.4,
we plot the CLS scores of OSMaN on the x-axis and RBERT on the y-axis for data points
in validation unseen split. We choose RBERT because of its high performance, and it is
orthogonal to our approach (heuristics-based vs. neural architecture). We also overlay the
percentage of the cases for four quadrants. For instance, the top-right quadrant shows cases
where both RBERT and OSMaN perform better than the 0.5 CLS score, which corresponds
to 27% of the validation unseen split. However, we are interested in the lower-left quad-
rant where both RBERT and OSMaN fail to achieve good performance. RBERT, a high-
capacity neural architecture, and OSMaN, a heuristic-based situated agent, both fail on a rel-
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SMNA FAST RBERT OSMaN (this work)
SR SPL RGS RGSPL SR SPL RGS RGSPL SR SPL RGS RGSPL SR SPL RGS RGSPL

REVERIE 13.7 6.0 7.9 3.1 15.0 5.4 7.1 2.0 29.4 24.4 19.4 16.0 53.4 51.3 36.0 34.6
REVERIE-DeLiRE 11.8 4.6 5.6 1.9 11.7 3.7 5.5 1.5 9.0 4.4 5.6 2.9 3.5 3.4 2.3 2.3
Performance ∆ 1.9 1.4 2.3 1.2 3.3 1.7 1.6 0.5 20.4 20.0 13.8 13.1 49.9 47.9 33.7 32.3

Table 7.4: Comparison of models on REVERIE and our proposed REVERIE-DeLiRE. We
identify REVERIE-DeLiRE with OSMaN and RBERT, where they perform poorly. All models’
performances drop when evaluated in the REVERIE-DeLiRE subset.

atively large subset of the validation unseen split. We call this subset REVERIE-DeLiRE.

Comparing CLS Scores

R
B

ER
T

OSMaN

Figure 7.4: Comparison of CLS
(i.e., coverage of ground-truth
path) scores for OSMaN and
RBERT[86]. Purple circles
represent a datum in valida-
tion unseen split. Numbers at
each quadrant show the percent-
age of the data. The lower-
left quadrant in purple square
shows REVERIE-DeLiRE in-
stances for which RBERT and
OSMaN perform poorly.

We also evaluate the performance of FAST and SMNA on the
REVERIE-DeLiRE. In Table 7.3, we report the results. For all
systems their performance drops significantly for this subset.
As expected the performance drops more for both OSMaN and
RBERT. Two orthogonal approaches both fail in this subset.
High-capacity Transformers and situated knowledge of the en-
vironment are not good enough for performing well on this
subset. Curiously we ask what do we need then? Hopefully,
this result inspires future research to focus on this challenging
subset.

7.4 Related Work
The work presented in this chapter is related to the previous
work on Referring Expression Recognition (RER), Vision-and-
Language Navigation (VLN).

RER poses the task of localizing a target point or object
described by a natural language phrase in a visual input. The
majority of existing benchmarks studies this task with object
bounding boxes as target in 2D images [2, 35, 105, 133, 146,
198, 239]. More recently, in Touchdown [30] and Refer360°
[40] the target is a pixel point in a 360° image. In Chapter 6, we
studied dRER, where the system observes a partial and dynamic
view of the scene and needs to change its view to predict the
target pixel point.

VLN is the task of following natural language instructions
in a simulated environment. The earlier work [28, 144, 193] is based on synthetics images in
small environments. More recently, Anderson et al. [8] introduce Room-to-room (R2R) where
observes panoramic photo-realistic scans of a house [25] and a large-scale human annotations for
natural language instructions. Variations of this setup study VLN in multi-lingual [120], outdoor
[30, 83], dialog [77, 162, 212], and continuous settings [117]. In addition to the methods we
described in Section 7.3, many other studies are proposed for VLN. Several of these are based
on the sequence-to-sequence neural architectures [16, 205, 218]. As we present in Chapter 5, we
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study this task with two sequence-to-sequence models: Speaker and Follower. The Speaker model
is trained to generate instruction given a trajectory. The Follower model’s possible trajectories are
re-ranked using the speaker model. EnvDrop [209] introduces the concept of modality dropping
for generalization to unseen environments. PREVALENT [78] uses a variety of pre-training tasks
to address the data sparsity problem.

7.5 Conclusion
This chapter studied how situated knowledge of objects and the environment could be helpful
for the remote object localization task. We introduced OSMaN, a performant yet straightforward
heuristics-based model that relies on situated knowledge, and empirically analyzed this model
in the REVERIE benchmark. OSMaN achieves the state-of-the-art remote object localization
performance when situated knowledge is readily available to the system. Even when OSMaN
acquires the situated knowledge with a brute force algorithm, it still surpasses complex neural
architectures in remote grounding accuracy. We also identify potential avenues for improving
shortconings of OSMaN. First, FIND GOAL could be improved by using an end-to-end approach
rather than a heuristic-based approach. For instance, T5 [180] can be fine-tuned for predicting
the goal object. Second, with a state-of-the-art referring expression recognition system [104],
OSMaN could improve both accuracy and efficiency by producing more accurate intermediate
outputs. Third, with a better search algorithm OSMaN could be more efficient when building the
map of the environment. Using OSMaN, we also introduced REVERIE-DeLiRE, a challenging
subset for the benchmark task. We show that OSMaN and the state-of-the-art models struggle in
REVERIE-DeLiRE. Our analyses on this subset help us better understand the challenges of the
task and point the way for future research.
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Chapter 8

Conclusion and Discussion

In this thesis, we studied language grounding – i.e., the linguistic phenomena of linking language
to the world. This research on language grounding was scaffolded in three technical challenges.
First, in spatial grounding, we linked mentions of objects and spatial relationships to referents
in visual input. Second, in sequential grounding, we studied the process of relating language
units to spatial relationships and actions the AI system needs to take in the world in partially
observed environments. Third, we examined how prior knowledge, either general knowledge or
situated knowledge, can benefit language grounding systems. To conclude, we first give a brief
overview of the contributions of this thesis. Then we discuss the broader impact of our work and
its limitations. Lastly, we talk about the future work that can build on top of this thesis.

8.1 Thesis Contributions

Here are the main contributions of this thesis:
• We studied spatial grounding in the referring expression recognition (RER) task. We

introduced a technique to uncover biases in a popular RER dataset. We showed that state-
of-the-art approaches could exploit this annotation bias rather than modeling cross-object
spatial relationships of objects. To model cross-object spatial relationships, we introduced
GroundNet. GroundNet uses syntax to detect object mentions and the relationship between
objects. We showed that GroundNet accurately identifies all object mentions and uses the
spatial relationship of objects effectively

• To study sequential grounding, we introduced a versatile benchmark: Refer360° dataset.
We examined annotated data from visual (e.g. where the target locations are located and
their spatial relationship to neighboring objects) and linguistic phenomena (e.g. frequency
of coreference, egocentric mentions). We also introduced a general model Speaker-Follower
for sequential grounding tasks and examined this model in vision-language navigation.
Speaker-Follower is built on the Rational Speech Act framework[56, 66] and has substan-
tially improved in vision-language navigation.

• We studied the use of a priori knowledge for grounding. For general knowledge of objects,
we proposed HOLM. HOLM relies on large pre-trained LMs to hallucinate objects using the
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spatial locations of objects. We showed that LMs capture valuable spatial knowledge about
objects. More importantly, vision-language models benefit from this spatial knowledge
extracted from LMs with HOLM. We also studied the use of situated knowledge for
language grounding. We demonstrated that a complex vision-language task becomes a
simple search problem in the presence of situated knowledge. We also showed how to
acquire such situated knowledge when it is not readily available.

• In addition to ideas, findings, conceptual frameworks, our work produced a lot of valuable
artifacts for the research community. We open-sourced all our empirical setups for all
studies: machine learning models, evaluation scripts, simulators, data annotations, tools to
annotate data, and more. Hopefully, further research can build on top of our findings and
tools we open-sourced.

8.2 Broader Impact and Limitations
In this section, we would like to contextualize our work in its impact on the research field and its
limitations and discuss the future work that might address these limitations.

In Chapter 2, we introduced perturbation analyses for referring expression recognition task
(RER) [176]. The follow-up and the concurrent work showed that we could design challenging
baselines to uncover issues in benchmarks [72, 100, 211]. Similarly, more recent work explores
the idea of dynamic benchmarking [110] i.e., benchmarks that evolve in time to capture long-tail
phenomena to improve models. However, design of such baselines or analyses all relies on a
human expert. Future work may address this issue by automatically identifying and categorizing
linguistic or visual phenomena that a model exploits or fails to capture and create specific baseline
systems or analyses for each of these automatically detected categories.

In Chapter 3, we introduced GroundNet, a syntax-based approach for linking objects mentions
and spatial relationships to visual input. The main limitations of our work were (1) its reliance on
an off-the-shelf parser and (2) its fixed lexicon of neural modules. Akula et al. [3] showed this
limitation and highlighted that modern architectures surpass our syntax-based approach due to
their flexibility in forming multi-modal representations. The follow-up work [103, 130] addressed
the first limitation and studied learning computation graphs for neural modules rather than using
computation graphs determined by a parse-tree. However, the fixed lexicon of human-designed
neural modules is still yet to be addressed. Instead, future work could address this by designing a
non-parametric method where the number of modules and their designs are learned during training.
Finally, a recent study [125] shows that syntax could be helpful in sequential grounding tasks, thus,
we hope that GroundNet will be explored in vision-language navigation [7] or vision-language
dialog [212] tasks.

In Chapter 4, we proposed a novel benchmark, Refer360° which is a versatile dataset to
study natural language understanding, computer vision, and language grounding from different
perspectives. An open research question relevant to this work is how a model can form a 360°
representation of its environment. Such representation would require an understanding of the
depth of space and continuity of 2D visual observation.

In Chapter 5, we introduced the Speaker-Follower model, a pragmatic reasoning model for
vision-language navigation. Many follow-up approaches [78, 143, 209] adopted our proposed
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high-level action space and have used our data augmentation technique. Kurita and Cho [121]
extended our approach and showed that the Speaker model can be used at each timestep during
navigation for Bayesian reasoning for alternative actions. The main limitation of the Speaker-
Follower model is that it relies on the instructions generated for data augmentations and scored by
the Speaker model for reasoning. The Speaker model often hallucinates objects i.e., generating
objects mentions that are not present. Future work can address this by enforcing object mentions
that are faithful to the environment. Finally, future work could explore the Speaker-Follower
model in more interactive language grounding tasks [162, 165, 212].

In Chapter 6, we introduced HOLM for enhancing language grounding systems with general
knowledge of objects. HOLM relies on the existing pre-trained language model. The main
limitation of HOLM is the hallucinations are conditioned on only current visual information.
In future work, HOLM could generate these hallucinations conditioned on the previous visual
observations, actions the system has taken, and language instructions.

In Chapter 7, we proposed OSMaN as a strong baseline for remote object localization. OSMaN
relies on situated knowledge of the environment. The main limitation of OSMaN is that if situated
knowledge is not present, OSMaN-Brute acquires situates itself in the environment with a brute
force approach. Future work could address this issue with a heuristic-based search algorithm [79]
which could potentially increase the efficiency of OSMaN.

8.3 Future Research Directions

We identified and studied three core challenges in language grounding research. However, future
work could explore other aspects that could advance the field. Here, we give a brief overview of
potential avenues for advancing language grounding.

Multi-lingual Language Grounding. One shared limitation of the work presented in this thesis
is that all benchmarks we used are in English. However, further research is needed to adapt and
improve the models we introduced in other languages. For instance, GroundNet relies on parse
trees, but much of the spatial relationships are in suffixes for morphologically rich languages
such as Turkish. To address this issue, models could extract spatial relationships from sub-word
units. Another example would be for OSMaN we designed our heuristics for instructions in
English, however, for other languages, we need to adapt our heuristics to capture the grammatical
and sub-word structures. Several multi-lingual multimodal benchmarks are available to extend
our work to other languages [17, 52, 63, 108, 120, 131, 202]. Another potential limitation is
that object detectors we use for visual input rely on (1) annotators in English-speaking western
cultures and (2) a fixed lexicon for the labels of objects. However, both objects and how people
refer to those objects change in different languages, cultures, and demographics. Further research
could focus on these currently invisible dimensions and potentially uncover a more inclusive and
holistic view of challenges in language grounding.

Complex Interactions. With the recent advances in building more sophisticated simulated
environments [165, 194], we can study more complex interactions with the environment. In
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these novel scenarios, the agent can manipulate objects in the environment. Thus, the non-
stationary nature of the environment (i.e., objects can be manipulated and moved) poses exciting
challenges for embodied AI systems. The future work can build on top the work we presented in
this thesis to address complex interactions for language grounding. Potential future directions
include reasoning about alternative action spaces with novel techniques for pragmatic reasoning
(Chapter 5), hallucinating potential outcome of more complex actions (Chapter 6), or acquiring
situated knowledge of affordances of objects (Chapter 7).

Data Augmentation For Language Grounding. The abundance of compute power and data
resulted in the recent boom in AI research [108]. Even though recent efforts aim to scale up the
vision-language benchmarks [120, 192], we are still far from reaching diminishing returns in
terms for the amount of data. Our work in Chapter 5 shows that data augmentation is a viable
approach in improving language grounding systems’ performance. Thus, we can address the
data scarcity issue with the advances in generative modeling. Recent studies show substantial
improvement in natural language generation [22, 180] and image generation [54]. Combining
the large collection of unlabeled multi-modal data available on the web and better multi-modal
generative models could result in abundance of multi-modal data to augment the datasets we train
language grounding models on.

More Prior Knowledge In this thesis, we used focused on a narrow definition of knowledge.
In Chapter 6, the general knowledge was based on the spatial properties of objects and their
co-occurrences. In Chapter 7, we defined situated knowledge as the spatial location of objects
and how these locations are connected to each other. We showed that we could improve or design
language grounding systems with prior knowledge. Further research can extend our definitions of
knowledge to different types such as physics, social, or historical. As a starting point, knowledge
of the world’s physics [15, 124, 224] could be helpful when a language grounding agent interacts
in a more complex environment. An accurate model of the physics of objects would reduce the
search space when reasoning about actions described in natural language instructions.
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