
End-to-End Learning with

Text & Knowledge Bases

Bhuwan Dhingra

CMU-LTI-20-002

May 13, 2020

Language Technologies Institute
School of Computer Science
Carnegie Mellon University

5000 Forbes Ave., Pi�sburgh, PA 15213
www.lti.cs.cmu.edu

�esis Committee:
William W. Cohen (co-chair)

Ruslan Salakhutdinov (co-chair)
Graham Neubig

Michael Collins (Columbia, Google)

Submi�ed in partial ful�llment of the requirements

for the degree of Doctor of Philosophy

in Language and Information Technologies

© 2020, Bhuwan Dhingra

www.lti.cs.cmu.edu

Keywords: natural language processing, machine learning, knowledge representation, knowl-
edge bases, reading comprehension, question answering, deep learning

Dedicated to Prof Amitabha Mukherjee,

who inspired me to pursue a career in research.

iv

Abstract
Deep learning has been tremendously successful on tasks where the output

prediction depends on a small, relatively clean input, such as a single image or
a passage of text. But for many tasks, such as answering factoid questions or fact
veri�cation, the output depends on a broader context, or background knowledge,
which goes beyond the input. Despite the best e�orts to automatically create large
knowledge bases, in most domains a majority of the information is only available in
raw unstructured text. Harnessing this knowledge requires �ne-grained language
understanding at the document level, and scalable reasoning procedures to aggre-
gate information across documents. While neural networks excel at the former, it
is not clear how to scale them for the la�er. On the other hand, symbolic represen-
tations such as knowledge graphs support scalable reasoning algorithms, but these
are di�cult to integrate with gradient-based learning.

�is thesis develops methods which leverage the strength of both neural and
symbolic approaches. Speci�cally, we augment raw text with symbolic structure
about entities and their relations from a knowledge graph, and learn task-speci�c
neural embeddings of the combined data structure. We also develop algorithms for
doing multi-step reasoning over the embeddings in a di�erentiable manner, leading
to end-to-end models for answering complex queries. Along the way we develop
variants of recurrent and graph neural networks suited to modeling textual and
multi-relational data, respectively, and use transfer learning to improve generaliza-
tion. �rough a series of experiments on factoid question answering, task-oriented
dialogue, language modeling, and relation extraction, we show that our proposed
models perform complex reasoning over rich �ne-grained information.

vi

Acknowledgments
I am grateful to my advisers William Cohen and Russ Salakhutdinov. �eir

insight and knowledge, combined with the astonishing amount of trust they placed
in me, is what made this research possible. William is a role model for the academic
I aspire to be: brilliant, kind and funny. Beyond machine learning, he taught me the
importance of taking it easy and having a sense of humor. Russ is one of the most
brilliant researchers I have met and, at the same time, a compassionate mentor. His
humility will continue to guide me well beyond my PhD.

�e nice thing about studying at CMU is the number of world-class faculty you
have the opportunity to learn from. I had the chance to collaborate with a few,
including Zachary Lipton, Graham Neubig and Alan Black, who all contributed to
my development as a researcher. I would like to thank all my teachers, in par-
ticular Roni Rosenfeld, Larry Wasserman and Ryan Tibshirani, whose styles have
in�uenced my own teaching philosophy. I would like to thank Michael Collins for
serving on my thesis commi�ee and providing valuable feedback. I’m also grateful
to Stacey Young, who provides tireless support to the students in the department,
and always remains available to help.

None of the research in this thesis was carried out in a vacuum, and I would
like to thank an exceptional group of collaborators: Zhilin Yang, Manzil Zaheer,
Danish, Qiao Jin, Hanxiao Liu, Katie Mazaitis, Haitian Sun, Vidhisha Balachandran,
Dheeraj Rajagopal, and Lidong Bing. I was also fortunate to have multiple industry
internships and would like to acknowledge my mentors: Lihong Li, Jianfeng Gao,
Yun-Nung Chen, Li Deng, George Dahl, Christopher Shallue, Mohammad Norouzi,
Manaal Faruqui, Ankur Parikh and Dipanjan Das. Funding for this thesis came
from NSF, Google, Apple, Microso�, NVIDIA, and a PhD fellowship from Siemens.

My time in Pi�sburgh was made signi�cantly more enjoyable by the group
of friends I made: Chaitanya, Sushil, Vikesh, Shrimai, Ankush, Devendra, Kan-
thashree, Bijit, Priyank, Rama, Leo and Bernie. I am indebted to my mom Rama,
dad Krishan and sister Nivedita for their unwavering support and love in all my
endeavours. Finally, I will always remember Pi�sburgh as the place where I found
my most precious prize, my wife Rolly, whose in�nite love and patience keeps me
going even in the toughest times.

viii

Contents

1 Introduction 1
1.1 Contributions . 3
1.2 �esis Outline . 5

2 Background 7
2.1 Prior Work . 7

2.1.1 Symbolic Knowledge Representation . 7
2.1.2 Knowledge Bases . 8
2.1.3 Factoid �estion Answering . 10

2.2 Relevant Methods . 12
2.2.1 Representing Text . 12
2.2.2 Representing Graphs . 15
2.2.3 Retrieval . 16

I Learning to Read 19

3 Reading Comprehension 21
3.1 Overview . 22
3.2 Gated-A�ention Reader . 23
3.3 Extending with Coreference . 27
3.4 Experiments . 30

3.4.1 Cloze-style QA . 30
3.4.2 Reasoning Tasks . 37

3.5 Related Work . 42
3.5.1 Neural Network Readers . 42

ix

3.5.2 Linguistic Biases in Deep Learning . 43
3.6 Discussion . 44

4 Transfer Learning 47
4.1 Overview . 47
4.2 Analysis of Word Embeddings . 49

4.2.1 Reading Comprehension Setup . 49
4.2.2 Pretraining Methods . 50
4.2.3 Performance Comparison . 51
4.2.4 Handling OOV tokens . 53

4.3 Cloze Pretraining . 54
4.3.1 System . 55
4.3.2 Experiments . 57
4.3.3 Analysis . 59

4.4 Discussion . 61

II Learning with Knowledge Graphs 63

5 Open-Domain QA 65
5.1 Overview . 65
5.2 Retrieval . 67
5.3 GRAFT-Nets . 69
5.4 Experiments & Results . 74

5.4.1 Datasets . 74
5.4.2 Main Results . 75
5.4.3 Analysis . 78

5.5 Discussion . 80

6 Multi-turn QA 81
6.1 Overview . 81
6.2 Probabilistic KB Lookup . 83
6.3 KB-InfoBot . 85
6.4 End-to-End Training . 88
6.5 Experiments & Results . 90

x

6.5.1 Models & Data . 90
6.5.2 Simulated User Evaluation . 92
6.5.3 Human Evaluation . 94

6.6 Related Work . 95
6.7 Discussion . 96

III Text as a Virtual Knowledge Base 99

7 Lazy Slot-Filling 101
7.1 Overview . 101
7.2 Virtual Knowledge Base . 103

7.2.1 Preliminaries . 103
7.2.2 Dual Encoder . 104
7.2.3 Training & Inference . 105
7.2.4 Generalizing to Unseen Relations . 106

7.3 Experiments & Results . 107
7.3.1 Setup . 107
7.3.2 Generalization to Unseen Entities . 109
7.3.3 Generalization to Unseen Relations . 111
7.3.4 Further Analysis . 112

7.4 Discussion . 113

8 Di�erentiable Reasoning 117
8.1 Overview . 117
8.2 Di�erentiable Reasoning over a KB of Indexed Text 119

8.2.1 Di�erentiable Multi-Hop Reasoning . 120
8.2.2 E�cient Implementation . 122
8.2.3 Pretraining . 125

8.3 Experiments . 126
8.3.1 METAQA: Multi-Hop �estion Answering with Text 126
8.3.2 WikiData: Multi-Hop Slot-Filling . 129
8.3.3 HotpotQA: Multi-Hop Information Retrieval 132
8.3.4 HotpotQA: End-to-End Answer Extraction 134

8.4 Discussion . 135

xi

9 Conclusions 137
9.1 Summary of Contributions . 137
9.2 Key Ideas . 139
9.3 Future Work . 140

Bibliography 145

xii

List of Figures

2.1 (Le�) A binary fact and (Right) an N-ary fact represented in graphical form in a
KB. �e N-ary fact introduces a dummy node to connect the di�erent arguments
of the relation position-held. 9

3.1 Example questions which require coreference-based reasoning from the bAbi
dataset [227] (top) and Wikihop dataset [223] (bo�om). Coreferences are in
bold, and the correct answers are underlined. 23

3.2 Gated-A�ention Reader. Dashed lines represent dropout connections. 24
3.3 Forward (le�) and Backward (right) Coref-RNN layers. Mary and she are coref-

erent. 27
3.4 Alternative view of Coref-RNNs as a memory network. Each memory cell cor-

responds to a coreference cluster, and read / write operations are performed on
it when a token from that cluster is encountered in the text. 29

3.5 Performance in accuracy with and without the Gated-A�ention module over
di�erent training sizes. p-values for an exact one-sided Mcnemar’s test are given
inside the parentheses for each se�ing. 34

3.6 Layer-wise a�ention visualization of GA Reader trained on WDW-Strict. 36
3.7 (Le�) Accuracy of GA w/ C-GRU as coreference annotations are removed for

bAbi task 3. (Right) Expected probability of correct answer (exp (−loss)) on
Validation set as training progresses on Wikihop dataset for 1K, 5K and the full
training datasets. 40

4.1 Test set accuracies and std error on the Who-Did-What dataset for Stanford AR
and GA Reader, trained a�er initializing with word vectors induced from di�er-
ent corpora. Without controlling for the initialization method, di�erent conclu-
sions may be drawn about which architecture is superior. Corpus 1: BookTest
dataset [8], Corpus 2: Wikipedia + Gigaword. 48

xiii

4.2 Test set accuracy and std error for GA Reader and Stanford AR on WDW (le�,
middle-le�) and CBT-NE (middle-right, right) when trained a�er initializing
with pre-trained embeddings induced from di�erent corpora (Table 4.1), or ran-
domly . 51

4.3 Test set accuracy and std error on (le�) WDW when initialized with o�-the-
shelf GloVe embeddings of di�erent sizes, (right) CBT-NE when initialized with
embeddings trained on BT corpus a�er removing a fraction of stopwords (red),
or using di�erent window sizes (green). 52

4.4 Test set accuracy and std error for GA Reader on WDW (le�) and CBT-NE (right)
when trained a�er assigning di�erent cuts of the vocabulary with word vectors.
Min frequency refers to the minimum count of a word type for it to be included
in the vocabulary. 53

4.5 Descriptions of the features extracted from the questions. 59
4.6 Regression coe�cients, along with std-errors, when predicting F1 score of cloze

model, or sl model, or the di�erence of the two, from features computed from
S�AD dev set questions. 60

4.7 Performance gain with pretraining for di�erent subsets of question types. . . . 61

5.1 (Le�) To answer a question posed in natural language, GRAFT-Net considers a
heterogeneous graph constructed from text and KB facts, and thus can leverage
the rich relational structure between the two information sources. (Right) Em-
beddings are propagated in the graph for a �xed number of layers (L) and the
�nal node representations are used to classify answers. 66

5.2 Illustration of the heterogeneous update rules for entities (Le�) and text docu-
ments (Right). 70

5.3 Directed propagation of embeddings in GRAFT-Net. A scalar PageRank score
pr

(l)
v is maintained for each node v across layers, which spreads out from the

seed node. Embeddings are only propagated from nodes with pr(l)
v > 0. 72

5.4 Le�: E�ect of directed propagation and query-based a�ention over relations for
the Web�estionsSP dataset with 30% KB and 100% KB. Right: Hits@1 with
di�erent rates of fact-dropout on and WikiMovies and Web�estionsSP. 79

6.1 An interaction between a user looking for a movie and the KB-InfoBot. An
entity-centric knowledge base is shown above the KB-InfoBot (missing values
denoted by X). 82

xiv

6.2 High-level overview of the end-to-end KB-InfoBot. Components with trainable
parameters are highlighted in gray. 86

6.3 Performance of KB-InfoBot versions when tested against humans. (Le�) Success
rate, with the number of test dialogues indicated on each bar, and the p-values
from a two-sided permutation test. (Right) Distribution of the number of turns
in each dialogue (di�erences in mean are signi�cant with p < 0.01). 94

6.4 Sample dialogues between users and the KB-InfoBot (RL-So� version). Each
turn begins with a user u�erance followed by the agent response. Rank denotes
the rank of the target movie in the KB-posterior a�er each turn. 95

7.1 �e TARDIS model for answering queries by extracting a span from a given sen-
tence. [CLS] is a special token appended to the beginning of each sequence.
We train the model to predict [CLS] when the sentence does not contain the
answer. �e double arrow indicates that the parameters of BERT are shared be-
tween the sentence and query. For the probing experiments (§7.3.4), the BERT
model (shaded red boxes) parameters are kept �xed. 102

7.2 Restricted se�ing: Micro-averaged F1 score on unseen relations, averaged across
10 folds, as the number of tail type seeds provided for each relation increases.
For each relation, we repeat the experiment for 3 di�erent randomly selected
sets of tail type seeds and show the average and standard deviation (shaded blue
region) here. 111

8.1 DrKIT answers multi-hop questions by iteratively mapping an input set of entities X
(�e Grateful Dead, Bob Dylan) to an output set of entities Y (Dylan & the Dead, Amer-

ican beauty, …) which are related to any input entity by some relation R (album by). . . 119

8.2 Runtime on a single K80 GPU when using ragged representations for implementing
sparse-matrix vector product, vs the default sparse-matrix times dense vector product
available in TensorFlow. |N | > 105 leads to OOM for the la�er. 123

8.3 Hits @1 vs �eries/sec during inference on MetaQA (le�) and WikiData (mid-
dle) tasks, measured on a single CPU server with 6 cores. MSR: Multi-step Re-
triever model from Das et al. [46] (we only show Q/sec). 127

8.4 E�ect of varying number of nearest neighbors K during MIPS on the Hits@1

performance. 128

xv

8.5 Macro-avg accuracy on lazy slot-�lling. We split the results based on frequency
of the relations in our WikiData training data. DrKIT-all spans refers to a variant
of our model which selects from all spans in the corpus, instead of only entity-
linked mentions. 131

xvi

List of Tables

3.1 Cloze-style QA dataset statistics. 30
3.2 Hyperparameter se�ings for each dataset. dim() indicates hidden state size of

GRU. 31
3.3 Validation/Test accuracy (%) on CNN, Daily Mail and CBT. Results marked with

“†” are cf previously published works. Results marked with “‡” were obtained
by training on a larger training set. Best performance on standard training sets
is in bold, and on larger training sets in italics. 33

3.4 Validation/Test accuracy (%) on WDW dataset for both “Strict” and “Relaxed”
se�ings. Results with “†” are cf previously published works. 34

3.5 Performance of several model variants on WDW dataset without using qe-
comm feature and with �xed L(w). (Le�) Gating functions in the GA module.
(Middle) Number of hops K . (Right) Model variants. 35

3.6 Accuracy on bAbi-1K, averaged across all 20 tasks. Following previous work
we run each task for 10 random seeds, and report the Avg and Max (based on
the dev set). A task is considered failed if its Max performance is < 0.95. 37

3.7 Breakdown of task-wise performance on bAbi dataset. Tasks where C-GRU is
signi�cant be�er / worse than either GRU or QRNs are highlighted. 39

3.8 Accuracy on Wikihop for di�erent number of training examples. Follow: subset
annotated as answer follows from the given passages. Follow + multiple: subset
annotated as requiring multiple passages for answering. Follow + single: subset
annotated as requiring one passage for answering. †p = 0.057 using Mcnemar’s
test compared to GA w/ GRU. 41

3.9 Accuracy on LAMBADA test set, averaged across two runs with random initial-
izations. context: passages for which the answer is in context. overall: full test
set for comparison to prior work. †p < 0.0001 using Mcnemar’s test compared
to GA w/ GRU. 42

xvii

4.1 Details of corpora used for training word embeddings. OTS: O�-�e-Shelf em-
beddings provided with GloVe / word2vec. Corpus size is in # of tokens. 50

4.2 An example constructed cloze. 55

4.3 A holistic view of the performance of our system compared against baseline
systems on S�AD and TriviaQA. Column groups represent di�erent fractions
of the training set used for training. 58

4.4 5-fold cross-validation results on BioASQ Task 5b. ∗Our SL experiments showed
be�er performance than what was reported in Wiese et al. [230]. 58

5.1 Statistics of all the retrieved subgraphs∪qGq for WikiMovies-10K and Web�es-
tionsSP. 74

5.2 Hits@1 / F1 scores of GRAFT-Nets (GN) compared to KV-MemNN (KV) in KB
only (-KB), early fusion (-EF), and late fusion (-LF) se�ings. 75

5.3 Hits@1 / F1 scores compared to SOTA models using only KB or text: MIN-
ERVA [42], R2-AsV [221], Neural Symbolic Machines (NSM) [129], DrQA [26],
R-GCN [177] and KV-MemNN [135]. *DrQA is pretrained on S�AD. #Re-
implemented. 77

5.4 Examples from Web�estionsSP dataset. Top: �e model misses a correct an-
swer. Bo�om: �e model predicts an extra incorrect answer. 78

5.5 Non-Heterogeneous (NH) vs. Heterogeneous (H) updates on Web�estionsSP . 79

6.1 Movies-KB statistics for four splits. Refer to Section 6.2 for description of columns. 92

6.2 Performance comparison. Average (±std error) for 5000 runs a�er choosing
the best model during training. T: Average number of turns. S: Success rate. R:
Average reward. 93

7.1 A slot-�lling query with a distantly supervised positive sentence and a shared-
entity and shared-relation negative each. 105

7.2 Restricted se�ing: Micro-averaged precision, recall and F1 on a held-out set of
queries about unseen entities over unseen documents. All models are trained
using only shared-entity negatives (§7.2.3). 109

7.3 Lazy slot-�lling: micro- and macro-averaged (over relation types) accuracies of
lazy slot-�lling for TARDIS trained on entity negatives (E-Neg), random nega-
tives (Random-Neg), and both entity and relation negatives (E+R-Neg). 109

xviii

7.4 Restricted se�ing: Micro-averaged precision, recall and F1 on unseen relations
and unseen entities. �e results are averaged across 10 folds, where in each fold
a di�erent subset of relations are held out for testing. �e TARDIS models are
trained only on shared-entity negatives. + Tail type seeds denotes the zero-shot
setup described in §7.2.4. 110

7.5 Lazy slot-�lling: Micro- and Macro-averaged accuracies on unseen relations,
using the TARDIS model. All models are trained on both negative types (E+R-
Neg). We exclude any query whose answer is among the tail type seeds from
the evaluation. 111

7.6 Probing experiments: Micro-averaged precision, recall and F1 for pre-trained
BERT (uncased BERT-Base) vs Fine-tuned BERT (trained with the TARDIS model
using entity and relation negatives E+R-Neg). 112

7.7 Lazy slot-�lling predictions about unseen relations from the dual encoder model.
We show the retrieved sentence and answer (in bold) from the NL Relation
model trained on E+R-Neg, and the one which additionally uses 3 tail type seeds. 115

8.1 MetaQA (le�) and WikiData (right) Hits @1 for 1-3 hop sub-tasks. ots: o�-the-
shelf without re-training. †: obtained from Sun et al. [197]. cascade: adapted to
multi-hop se�ing by repeatedly applying Eq. 8.3. pre: pre-trained on slot-�lling.
e2e: end-to-end trained on single-hop and multi-hop queries. 127

8.2 Ablation study for di�erent components of DrKIT. 128

8.3 WikiData multi-hop slot-�lling dataset . 129

8.4 Le�: Retrieval performance on the HotpotQA benchmark dev set. Q/s denotes
the number of queries per second during inference on a single 16-core CPU.
Accuracy @k is the fraction where both the correct passages are retrieved in
the top k. †: Baselines obtained from Das et al. [47]. For DrKIT, we report
the performance when the index is pretrained using the WikiData KB alone,
the HotpotQA training questions alone, or using both. ∗: Measured on di�erent
machines with similar specs. Right: Overall performance on the HotpotQA task,
when passing 10 retrieved passages to a downstream reading comprehension
model [246]. ‡: From Das et al. [47]. �: From Qi et al. [159]. †: Results on the
dev set. 132

xix

8.5 O�cial leaderboard evaluation on the test set of HotpotQA. #Bert refers to the
number of calls to BERT [51] in the model. s/Q denotes seconds per query (using
batch size 1) for inference on a single 16-core CPU. Answer, Sup Fact and Joint
are the o�cial evaluation metrics for HotpotQA. ∗: �is is the minimum number
of BERT calls based on model and hyperparameter descriptions in the respective
papers. †: Computed using code released by authors, using a batch size of 1. ‡:
Estimated based on the number of BERT calls, using 0.8s as the time for one
call (without considering overhead due to other computation in the model). �:
One call to a 5-layer Transformer, and one call to BERT. 134

xx

Chapter 1

Introduction

�e driver of the power of intelligent systems is the knowledge the systems have
about their universe of discourse, not the sophistication of the reasoning process
the systems employ.

– Edward Feigenbaum [37]

�e goal of Arti�cial Intelligence (AI) is to build systems which can reason about their
surroundings, but reasoning is only possible if the system has a representation of those sur-
roundings. A representation, in this sense, is a substitute for the real world; an abstract thing
which enables a person or a program to determine consequences internally by thinking, rather
than externally by acting [49]. Hence, intelligent systems which aim to operate in an open
environment, perform complex tasks, and engage with people in natural conversations, must
store real-world information in a data structure which is amenable to algorithmic manipulation.
Such a data structure is called a knowledge representation.

In this thesis we are interested in intelligent systems which use knowledge representa-
tions derived from large collections of data to answer user queries. Much of collective human
knowledge resides on the internet today, in unstructured and semi-structured forms such as
text, images, tables and lists. While half the world’s population has access to the internet, and
consequently this knowledge, no one can reasonably navigate it without the help of tools such
as search engines and question answering systems. Internally, these tools must convert the un-
derlying data to a representation which allows retrieving information based on the semantics

of a query. Further, since the data may be incomplete, i.e. not all information may be wri�en
explicitly, we would also like this representation to support di�erent forms of reasoning. In this
case reasoning is the ability to derive facts which are implied from the facts which are known.
So if our data contains the facts that “Barack Obama graduated from Columbia University in

1

1983”, and “Columbia University is located in New York”, the system should be able to reason
that the answer to “Where did Barack Obama live in 1982?” is probably “New York”.

Data structures which organize information in a structured format are commonly known
as Knowledge Bases (KBs). Among these, the most widely used format today is a knowledge
graph [18, 188]. �e nodes in this graph are real-world concepts (or entities), and typed edges
represent relationships between those entities. �e edge types are drawn from a �xed vocabu-
lary, also known as predicates, and each instance of a relationship is called a fact. Graphs are
an a�ractive data structure since reasoning (or inference) over their contents can o�en be mod-
eled as a path-�nding problem. So we can answer an information-seeking query by identifying
the entities it mentions (entity linking) [70, 167], followed by the relations it asks for and any
other constraints it speci�es (semantic parsing) [15, 129, 250]. �e entities, relations and con-
straints together specify a path which leads to the answer. Searching for this path can be done
e�ciently using well studied graph algorithms. Knowledge graphs have recently dominated
industry applications—e.g. Google’s graph1 organizes information relevant to search queries,
and the goal of the Semantic Web e�ort [16] is to organize the internet in a similar manner. In
this thesis, as is o�en done in the NLP community, we will use the more general term KBs to
refer to the speci�c format of a knowledge graph.

�ere are, however, some limitations with this type of knowledge representation, which
form the focus of this thesis. (1) To allow accurate semantic parsing, KBs usually limit the
number of allowed predicates they contain. Consequently, the vast majority of information in
a domain cannot be encoded in the KB.2 (2) �e information extraction pipelines which are used
to populate KBs typically favor precision over recall. Hence, even facts which can be encoded
in a KB are o�en missing [136]. (3) �e world changes with time, and so do its entities and
their relationships. Detecting these changes for updating a KB involves a delay. (4) Reasoning
algorithms over KBs are generally symbolic, and hence di�cult to integrate with gradient-based
deep learning. �is makes it di�cult to build systems which learn to reason over the contents
of a KB using only downstream task data.

To address these limitations, we develop methods which directly treat a text corpus as a

knowledge base. Speci�cally, we answer queries by extracting spans from text and reasoning
over them on-the-�y. People typically share information via text, be it in the form of news

1https://developers.google.com/knowledge-graph
2One example of this can be observed by comparing the Wikipedia article of an entity with its corresponding

WikiData page. �e la�er is a structured KB and only encodes up to a dozen facts about even the most popular
entities, whereas Wikipedia articles may contain hundreds of facts.

2

https://developers.google.com/knowledge-graph

reports, blog posts, scienti�c articles, online forums or encyclopedia entries. Hence, in most
domains it is relatively easy to collect a text corpus providing richer and more up-to-date infor-
mation than a structured knowledge base. �e challenge lies in understanding natural language
to �nd answers to queries, since now instead of a closed set of predicates we must deal with
an open set of textual pa�erns. �e approaches we present here leverage advances in neural
language modeling [13] to perform this complex task using labeled question and answer pairs.
�e underlying knowledge representation consists of learned feature vectors for all spans in the
corpus, in some cases accompanied with extra symbolic structures like sparse inverted indexes.
We also discuss neural modules which implement reasoning procedures over these represen-
tations, and can be trained end-to-end using the labeled data. Importantly, instead of replacing
KBs altogether, we develop techniques which leverage their structure to improve generalization
and reasoning over text.

Concretely, this thesis a�empts to answer the following research questions:
1. How should we map text spans and their contexts to a representation of their meaning?

Speci�cally, which neural architectures learn representations e�ciently from data? And,
do linguistically motivated inductive biases improve generalization?

2. How can we model dependencies between multiple passages and documents? Can we
incorporate a graph structure similar to KBs for utilizing long-range context in the rep-
resentation learning process? Can this be made scalable?

3. How can we combine representation learning with symbolic reasoning to answer com-
plex queries? Are there di�erentiable implementations for the la�er which allow end-to-
end optimization of the former?

1.1 Contributions

In this section we outline the core contributions of this thesis.

Reading Comprehension (Chapters 3 & 4). �e standard pipeline for answering queries
against a corpus proceeds in two steps—retrieving relevant passages likely to contain the an-
swer, followed by reading those passages to extract the answer [26, 55, 221]. Models designed
for the la�er task must deal with complex linguistic phenomena such as paraphrasing, coref-
erence, logical entailment, syntactic and semantic dependencies, and so on [24]. We present a
neural network architecture, called Gated-A�ention (GA) Reader, for this task which employs

3

a novel a�ention mechanism [7] to construct query-dependent representations of the passage.
We show that such representations outperform query-independent ones, as well as those ob-
tained via other forms of a�ention. Recurrent Neural Networks (RNNs) are widely used for
modeling text sequences but have di�culty capturing long-term dependencies in the input [12],
such as those when there are coreferent mentions in the input text. Hence, we develop Coref-

RNNs, which explicitly model coreferent mentions detected by an external system. To improve
the e�ciency of these models, we also develop a simple yet highly e�ective semi-supervised
learning technique which leverages unlabeled semi-structured documents. We show that these
methods show strong performance on many standard benchmarks for language understanding.
�e content of these chapters appeared in the proceedings of ACL 2017 [54], and as two short
papers in NAACL 2018 [56, 57].

Joint Representations of KBs and Text (Chapter 5). Retrieving and reading text is a �ex-
ible approach for answering the bulk of open-domain questions, but can be bri�le when pre-
sented with new pa�erns at test time [102]. It also cannot handle complex questions whose
answers need to be aggregated from many documents, since these may not be retrieved in the
�rst place [200]. Hence we develop a model, called Gra�-Net, for extracting answers from a
combined graph data structure consisting of text linked to a structured KB via entity mentions
[63]. In one direction, the KB provides background knowledge for the concepts mentioned in
the text, and in the other direction, the text adds missing edges between entities in the KB. We
show that this combination improves over both text-only and KB-only methods, while being
applicable across a wide range of KB completeness se�ings. �is chapter �rst appeared in the
proceedings of EMNLP 2018 [196].

Multi-Step Retrieval over KBs (Chapter 6). For complex information needs, users may
not be able to form a complete well-formed query to the system in a single turn. Instead, a
multi-turn se�ing makes more sense, where the user starts with an under-speci�ed query, and
the system responds with follow-up questions to locate the information requested. We explore
this problem when the underlying knowledge source is an entity-centric KB, i.e. facts in the
KB specify a�ributes of a list of entities. We introduce a probabilistic framework for computing
the posterior distribution over the contents of the KB, given belief states derived from the user
inputs. We use this framework to build a modular dialogue system and train it end-to-end

using reinforcement learning over feedback provided by the users. We experiment with both
simulated and real users at the task of retrieving movies from a movie database. �is chapter

4

�rst appeared in the proceedings of ACL 2017 [53].

Text as a Virtual Knowledge Base (Chapters 7 & 8). Recent advances in contextual repre-
sentation learning [51, 156, 247] suggest a new paradigm for interacting with textual knowledge.
Instead of retrieving and reading a few passages given a query, we create an o�ine index of
contextual embeddings for all important spans in the corpus, which we call a Virtual Knowledge
Base. Instead of entities, this KB stores information at a mention level, with a higher recall since
the embeddings encode an open class of textual relations. Given a query, we leverage e�cient
algorithms for maximum inner product search (MIPS) [1, 103, 181] to retrieve relevant spans
from the KB. We also develop a di�erentiable operator for traversing paths of relations in the
embedding space, and show its application to multi-hop question answering [246]. Part of this
work �rst appeared in the proceedings of ICLR 2020 [59].

1.2 �esis Outline

We begin by giving an overview of prior work in Chapter 2, and outline some general tech-
niques used throughout the thesis. �e next 6 chapters (3-8) are divided into three parts. �e
�rst part (3 and 4) explores machine reading—the task of understanding language—through
the lens of question answering over small contexts. �e second part (5 and 6) shi�s the focus
towards structured KBs, and explores how these can be combined with text for question an-
swering and dialogue. �e last part (7 and 8) introduces Virtual Knowledge Bases derived from
contextual representations of text, and discusses methods for pre-training and extracting an-
swers from them. Concluding remarks and a discussion of future research directions is included
in Chapter 9.

5

6

Chapter 2

Background

�is chapter is divided into two parts. Section 2.1 situates this thesis in the context of prior
work, and section 2.2 introduces some relevant techniques and algorithms which are used in
subsequent chapters.

2.1 Prior Work

We start with a brief history of knowledge representation (§ 2.1.1) and highlight its close con-
nections to First Order Logic (FOL). We then discuss methods for constructing and reasoning
over large-scale knowledge bases (§ 2.1.2). �is is followed by an overview of work which has
explored answering open-domain factoid questions (§ 2.1.3).

2.1.1 Symbolic Knowledge Representation

Formally, Knowledge Representation (KR) is the study of meaning and how it can be expressed
in a language such that we can compute with it. O�en, the computation that we are interested
in is inference—deriving what is true based on what is known. Hence, a natural choice for
the language of knowledge is First Order Logic (FOL), with its sophisticated machinery for
reasoning and inference. Indeed, much of the history of KR has been concerned with building
programs implementing some subset of FOL suited for a particular application. We refer the
reader to Brachman and Levesque [22] for a detailed description of several such variants.

�e earliest example of automated reasoning over a formal language is the pioneering work
of Alan Newell and Herbert Simon on the Logic �eorist [148] and the General Problem Solver
[149]. �ese were the �rst programs to separate the knowledge of a system from the procedures

7

for using it, notably deriving proofs for 38 theorems from the PrincipiaMathematica and solving
problems like the Tower of Hanoi.1 Techniques for general problem solving, however, had
limited success on complex real-world problems. Hence, the 60s and 70s saw increased e�ort
on building Expert Systems—programs engineered to solve speci�c problems in a domain [99].
�eir high-level design, consisting of a knowledge base encoding facts and rules about the
domain and an inference engine for deriving new facts from them, continues to in�uence much
of the work in AI today [82]. MYCIN was one such system for diagnosing medical conditions
[186], though it was never used in practice. Around this time similar ideas were also explored
for natural language understanding, e.g. in the system SHRDLU [234].

An alternate line of work has looked at representing knowledge using frames [140]. A
frame is an abstract structured type, with slots whose values relate it to other frames, and
methods which describe how it behaves in di�erent contexts. Frames are closely related to
classes in object-oriented programming, and their representation power can be described in
terms of logic [90, 108]. Frame semantics [72] applies the same ideas to language understanding
by constructing frames associated with words [9].

Levesque and Brachman [120] pointed out a fundamental limitation with symbolic knowl-
edge representations—the more expressive a language is, in terms of the kinds of facts it can
express, the harder it is to do automated reasoning with it, in terms of the tractability of compu-
tation. One of the goals of this thesis is to explore whether we can overcome this limitation via
approximate reasoning, where the answer returned is correct only with a probability. Hence,
we consider the most expressive language for representing knowledge we know of—natural
language—and develop neural representations and reasoning procedures for answering ques-
tions over it. While our focus is entirely on English, the methods we present should be more
generally applicable to other natural languages as well.

2.1.2 Knowledge Bases

�is thesis is concerned with storing encyclopedic knowledge—relatively unambiguous facts
about people, places and things in domains such as science, politics, geography, history and en-
tertainment. �e most common format for storing this type of information is a graph-structured
knowledge base. We will concern ourselves with the simplest form of such a KB, denoted as
K = (N , E ,R), where the nodesN represent the set of entities in the KB, and the edges E are
triples (s, r, o) which denote that relation r ∈ R holds between the subject s ∈ N and object

1https://en.wikipedia.org/wiki/TowerofHanoi

8

https://en.wikipedia.org/wiki/Tower_of_Hanoi

Barack	

Obama	

President	

of	
 USA	

position-held
Barack	

Obama	

President	

of	
 USA	

position-held

Jan	
 20,	

2009	

Jan	
 20,	

2017	

subject object

start-time

end-time

Figure 2.1: (Le�) A binary fact and (Right) an N-ary fact represented in graphical form in a KB.
�e N-ary fact introduces a dummy node to connect the di�erent arguments of the relation
position-held.

o ∈ N . Borrowing terminology from FOL, the relations inR are also called predicates, and the
triples in E are also called facts. Together,R and N denote the schema of the KB, and de�ne a
strict limit on the information which can be populated in the KB.

Note that the above formulation only allows for binary predicates. A workaround for pop-
ulating higher order predicates is to introduce dummy nodes which connect the di�erent ar-
guments of a predicate.2 An example is shown in Figure 2.1, and we use this workaround in
Chapter 5. Some entities in the KB may correspond to types, such as Person and Organiza-
tion, and instances of a type can be connected to it via the Is-A relation. Types can be organized
into hierarchies using relations such as Subclass-Of. Several large KBs have been constructed
to hold general knowledge through a mix of collaborative community e�ort and automatic re-
lation extraction pipelines [142]. In the research community, some widely used KBs of this sort
are Freebase [18], Wikidata [212] and NELL [141].

Knowledge Base Completion (KBC). Despite the best e�orts, however, these KBs remain
highly incomplete, i.e. most entities have only a few predicates populated [136]. In many cases
these missing facts can be inferred from other facts which are known about the entity, e.g. if we
know (Melinda Gates, Founder, Gates Foundation) and (Gates Foundation, Headqar-
ters, Seattle), then we can reasonably infer that (Melinda Gates, Works-In, Seattle). �is
task is called Knowledge Base Completion, and has been the focus of many approaches over
the years. �ese include classical statistical relational learning approaches [75, 113, 117] and
their recent neural counterparts [161, 162], compositional vector space models [43, 85, 147], and
learning interpretable rules via reinforcement learning [45, 131, 185, 239]. Recently, an intrigu-

2In Freebase [18] these are known as Compound Value Types (CVTs).

9

ing line of work has looked at “neuralizing” symbolic operations like relation following [35, 36]
and backward chaining [139, 171] for doing inference over KBs. In Chapter 8 we will extend
this last line of work to do reasoning over text.

Joint Representations of KBs & Text. �e vast majority of facts missing from a KB may
not be inferrable from other facts present in the KB. Further, many interesting facts may not be
encodable using the predicates allowed by the schema of the KB, and in fact much of human
knowledge is intrinsically hard to express in the form of tuples, such as common sense and
procedural knowledge. Unstructured text o�ers a rich complement for these limitations, and
joint representations of KBs and text have been explored for relation extraction and KBC [41,
88, 118, 169, 205, 210]. �e key idea behind these works is to represent both text sentences and
KB facts in a shared feature space which captures an open class of predicates, termed Universal

Schema. In Chapter 5, we will introduce a novel model based on Graph Convolution Networks,
which allows learning richer representations by exchanging information between text and facts
in a query-dependent manner.

2.1.3 Factoid�estion Answering

A fundamental issue in learning with knowledge is the ability to automatically retrieve relevant
knowledge from a large source, as required by the task at hand. �is is potentially useful for
many complex AI systems—detecting fake news, automating scienti�c discoveries, medical di-
agnosis etc.—but these rely on several other capabilities well. Instead, in this thesis we will use
factoid question answering (QA) as benchmark for measuring progress towards learning with
knowledge. Given a natural language query q and a knowledge source G, which can be a KB
or a text corpus or both, our goal will be to extract a natural language answer a. In some cases,
we will consider semi-structured queries which are not strictly natural language, but never-
theless have a string representation (e.g. (Melinda Gates, Works-In, ?) can be represented
as “Melinda Gates . Works In ?”). We will also consider cases where the query has multiple
ground truth answersA = {a1, a2, . . .} (e.g. “Which Fortune 500 companies are headquartered
in Sea�le?”).

�e term factoid simply means that the questions are about facts, or assertions which are
true given the knowledge source. In the case of a KB, it is usually assumed that some subset
of all the possible facts T ⊂ N × N × R is true, and the observed facts are a subset of all
the true facts. Hence, any fact which is not in the KB may be true or false, but every fact in

10

the KB is de�nitely true. For text corpora, this is more di�cult, since text assertions may be
open to interpretation, and sometimes di�erent assertions in the same corpus may contradict
each other. While this is an important issue for text-based QA systems, we will side-step it here
and instead assume that each question has exactly one unambiguous set of answers which are
spans in the corpus. De�ned in this manner, systems can be easily evaluated on their QA ability
by measuring the accuracy of their answers. Collecting data for these type of questions is also
much easier than those with longer subjective answers. �e methods presented in this thesis
all assume a supervised se�ing, where we have access to a (potentially large) collection of QA
pairs for training, however in Chapter 4 we will also show how unlabeled text can be used in
the process.

Knowledge-Based �estion Answering. Traditional approaches for answering questions
against a knowledge base rely on two components – (1) a semantic parser which maps ques-
tions to a logical form, e.g. λx.∃y.Founder(Melinda Gates,y).Headqarters(y, x); and (2)
a query language for executing the logical form against the KB to compute the answer [14, 114,
168, 258, 259]. A challenging se�ing in KB-QA is learning from denotations, where the log-
ical forms are latent during training and must be inferred from question answer pairs [130].
Recently, deep learning has also been applied to KB-QA. For simple questions where the logi-
cal forms contain only a single predicate, memory networks have shown strong performance
[21, 100]. For complex questions where the logical forms involve reasoning over multiple pred-
icates, reinforcement learning has been used [42, 129]. To deal with incomplete KBs, Gardner
and Krishnamurthy [73] additionally use features extracted from text and an open-vocabulary
semantic parser, and Ryu et al. [172] use a pipelined system for aggregating evidence from
both unstructured and semi-structured sources. Das et al. [44] encode both KB facts and text
sentences into a common embedding space [169] and use Key-Value Memory Networks (KV-
MemNNs) for reasoning over it [135]. In Chapter 5 we will show that this can be improved by
using Graph Convolution Networks (GCNs) instead [110].

Text-Based�estion Answering. Using text corpora as a knowledge source for answering
open-domain questions goes back to the QA track evaluations of the Text REtrieval Conference
(TREC) [211]. Early systems used a pipeline consisting of question parsing, answer type deter-
mination, document retrieval, answer candidate generation, and answer reranking [143]. Many
of these components were further re�ned for the famous IBM Watson system which beat hu-
man participants on the Jeopardy! quiz show [71]. However, such heavily engineered pipelines

11

are di�cult to replicate outside the domain in which they are developed.3 Recent years have
seen the application of deep learning to this task, reducing the number of components in the
pipeline to two – (1) a text retriever for identifying passages of text relevant to the question,
and (2) a reading comprehension model to extract the answer span from the relevant passages
[26, 164, 217, 218, 221]. �e retriever is typically implemented using a fast and shallow method,
such as TFIDF, while complex neural network models have been developed for reading compre-
hension [81, 98, 179, 184, 255]. �e la�er rely on large-scale training datasets such as S�AD
[166], TriviaQA [104] and Natural �estions [115]. In Chapters 3 and 4 we will present one
such model and methods for training it.

2.2 Relevant Methods

In this section we outline the common tools and techniques used throughout the thesis, includ-
ing neural models for contextually representing text (§ 2.2.1) and nodes in a graph (§ 2.2.2), as
well as shallow retrieval methods (§ 2.2.3).

2.2.1 Representing Text

�e power of neural networks lies in learning features of data given labels for a particular
task. For textual data, we will assume the data is in the form of a sequence of words s =

w1, w2, . . . , wN , where each wi comes from a �xed vocabulary V and can be represented as a
one-hot vector, i.e. wi ∈ {0, 1}V . Depending on the application, we will either represent the
entire sequence as a single �xed size vector hs ∈ Rd, or as a sequence of vectors h1, h2, . . . , hN ,
s.t. hi ∈ Rd, where d is the embedding size. In the la�er case, we are interested in contextual
representations, i.e. hi should be a function of the meaning of wi in the context of s. Below we
discuss two widely used parametric models for deriving these vectors.

Recurrent Neural Networks (RNNs). An RNN computes the contextual representations of
tokens by initializing a hidden vector h0 and recursively computing:

hi = f(wi, hi−1), ∀i = 1, . . . , N. (2.1)

Note that a single RNN only captures le�-sided context. In order to capture right-sided context
in the representation as well, we can use bi-directional RNNs, by initializing both h0 and hN+1,

3Watson required “3 years of intense research and development by a core team of about 20 researchers” [71].

12

and computing:

hli = f l(wi, hi−1), hri = f r(wi, hi+1), hi = [hli;h
r
i], ∀i = 1, . . . , N.

Here we concatenate hli and hri to obtain the �nal representation forwi. �e functions f l, f r are
neural networks with trainable parameters—in the simplest case feedforward layers [66]. Such
“vanilla” RNNs have di�culties in learning dependencies between tokens far apart in the input
sequence when trained using error backpropagation [12], since gradients may either explode
or vanish when repeatedly multipled across time-steps. Two variants of RNNs are widely used
to combat this issue.

LSTM Networks [97] use a mechanism called the Constant Error Carousel (CEC), which
has an internal memory cell with a linear connection to itself across time-steps. �is allows
gradients to �ow over long distances. �e update equations for an LSTM depend on a number
of intermediate states and are given by:

xi = WVwi,

Fi = σ(WF [hi−1;xi] + bF),

Ii = σ(WI [hi−1;xi] + bI),

Oi = σ(WO[hi−1;xi] + bO),

c̃i = tanh(Wc[hi−1;xi] + bc),

ci = Fi � ci−1 + Ii � c̃i,
hi = Oi � tanh(ci).

(2.2)

�e �rst step above converts the one-hot word representation wi to a word embedding xi, by
slicing a column from large matrixWV . Here σ is the sigmoid function and� denotes element-
wise multiplication. F, I, O are forget, input and output gates, respectively, and ci is the internal
memory state. WV ∈ Rd×|V|;WF ,WI ,WO,Wc ∈ Rd×2d; bF , bI , bO, bc ∈ Rd are all learnable
parameters.

GRU Networks [29] use a simpler mechanism to combat vanishing gradients. Starting from
the word embeddings xi:

ri = σ(Wr[hi−1;xi] + br),

zi = σ(Wz[hi−1;xi] + bz),

h̃i = tanh(Wh[ri � hi−1;xi] + bh),

hi = (1− zi)� hi−1 + zi � h̃i.

(2.3)

Here, ri is called the reset gate, and zi the update gate. Wr,Wz,Wh ∈ Rd×2d; br, bz, bh ∈ Rd are
the learnable parameters.

In practice, both these variants are used almost interchangeably. Further, multiple layers of
each may be stacked on top of each other where the output hi from one layer forms the input for

13

the next layer. In the rest of this thesis, we will use X = [x1, . . . , xN] to denote the sequence
of word embeddings; and H =

←→
LSTM(X) or H =

←→
GRU(X), where H = [h1, . . . , hN], to

denote the full output of a (possibly multi-layer) bidirectional LSTM or GRU on top of it. In
certain cases we will also use hN =

−→
LSTM(X) or hN =

−→
GRU(X) to denote the �nal output

embedding (corresponding to xN) from a unidirectional le�-to-right LSTM or GRU.

Transformer Networks. �e sequential nature of computation within an RNN prohibits
parallelization across the length of the input. Also, despite improved gradient backpropagation
in LSTMs and GRUs, modeling long-range dependencies still requires propagating signals for
long distances. To overcome these limitations, Vaswani et al. [209] proposed the Transformer
Network, which replaces recurrent connections with self-a�ention. �e key idea is to model
pairwise dependencies between all tokens in the input, followed by token-speci�c averages.

Starting again with a sequence of word embeddings X , we derive three di�erent linear
projections—queries Q, keys K and values V . �e queries and keys are compared to derive
a�ention scores between each pair of tokens, which are subsequently used to compute an av-
eraged output representation of each token. �e basic idea is as follows:

qi = WQxi, ki = WKxi, vi = WV xi, ∀i = 1, . . . , N

h̃i = WO

N∑
j=1

exp(qTi kj)∑
j′ exp(qTi kj′)

vj
(2.4)

Let H̃ = [h̃1, . . . , h̃N] be a column-wise stacked version of the hidden states above. �en the
output of the transformer layer is given by H = LayerNorm(X + H̃), where LayerNorm()

is a layer normalization transformation [6]. In practice, H̃ is computed across multiple heads,
by taking multiple projections of the input embeddings, and concatenating the outputs of self-
a�ention. WQ,WK ,WV ,WO ∈ Rd×d are all learnable parameters. Similar to RNNs, multiple
transformer layers can be stacked on top of each other such that the output of one layer forms
the input of the next one. �e complexity of one layer is O(N2d), compared to O(Nd2) for an
RNN, but importantly this can be parallelized across the N inputs.

Note that the summation in the self-a�ention mechanism does not depend on the positions
of the di�erent tokens in the input. In order to utilize the order of the sequence, the input word
embeddings are summed with positional embeddings, which can be computed in multiple ways
(see Vaswani et al. [209] for details). Transformer Networks have shown superior performance,
both in terms of speed and accuracy, across a wide range of NLP tasks recently. While the
methods presented in Chapters 3-6 use RNN variants, since they were developed before the

14

introduction of Transformers, in practice they can be easily replaced. In Chapters 7-8, we use
Transformers.

2.2.2 Representing Graphs

Besides text, we will also be interested in deriving neural representations of graphical data
[128, 173]. �e standard approach for this involves using some variant of Graph Convolution

Networks (GCNs) [110], which apply a convolution operation to local neighborhoods in the
graph to derive node features. Many of these variants can be seen as special cases of the Message
Passing Neural Network (MPNN) framework introduced by Gilmer et al. [78]. Given a directed
or undirected graph G = (N , E), where N is the set of nodes, and E : N × N → {0, 1} is a
set of edges, the goal is compute node representations hv ∀v ∈ N . �e basic recipe for these
models is as follows:

1. Initialize node representations h(0)
v .

2. For l = 1, . . . , T update node representations

h(l)
v = φ

h(l−1)
v ,

∑
v′∈N(v)

h
(l−1)
v′

 ,

whereN(v) denotes the neighbours of v, based on incoming edges, and φ is a parametric
neural network layer.

Here T is the number of layers in the model and corresponds to the maximum length of the
paths along which information should be propagated in the graph. Once the propagation is
complete the �nal layer representations h(T)

v can be used to do tasks like node classi�cation
[110], or aggregated to an overall graph representation [64].

Relational GCNs. �e KB formulation discussed above, is an instance of a multi-relational

graph since its edges are typed, i.e. they map subject and object nodes to the relation between
them E : N ×N → R. In this case, we need to take into account the types of the edges when
updating node representations [178]:

h(l)
v = φ

h(l−1)
v ,

∑
R∈R

ψR

 ∑
v′∈NR(v)

h
(l−1)
v′

 . (2.5)

Here ψR is a relation-speci�c parametric layer, and NR(v) are nodes connected to v through
relation R. Typically, for each relation we will also add its inverse to the graph, so that in-
formation can propagate from subjects to objects, as well as vice versa. In Chapter 5 we will

15

introduce an extension of relational-GCNs which can handle a heterogeneous graph consisting
of both KB facts and text sentences.

2.2.3 Retrieval

�e neural models discussed in the previous section all scale linearly with the input size. Hence,
when trying to answer queries against a large knowledge source, we will o�en rely on shallow
retrieval strategies to select a small relevant portion of it before running a more complex model.
Here, we discuss general techniques for selecting subsets of text corpora and KBs based on a
query.

TFIDF Search. Given a set of documents S = {s1, s2, . . .}, and a query q we can select the
top-K relevant documents by de�ning a similarity function F (q)TF (si) between the query
and each document. Here F (x) ∈ RV denotes a TFIDF vector constructed from the sequence
of words in x as follows:

F (x)i = log(1 + tf(wi, x)) log(idf(wi,S)) ∀i = 1, . . . , |V|.

Here, tf(wi, x) is the term-frequency, or the count of wi in x, and idf(wi,S) is the inverse

document frequency, computed as [26]:

ni = |{s ∈ S : wi ∈ s}|,

idf(wi,S) =
|S| − ni + 0.5

ni + 0.5
.

In practice, for a given document or query the TFIDF vector F (x) will mostly consist of zeros
since the term frequency will be 0 for most words in V . Hence, e�cient algorithms for se-
lecting the top-K relevant documents based on the above similarity function depend on either
constructing an inverted index mapping words to the documents containing them,4 or by us-
ing sparse matrix multiplication. Retrieval performance typically improves by expanding the
vocabulary to include higher order n-grams, but this comes at a cost of increased computation.

Entity Linking. Given a text passage or a query s and the nodes in a KB N , o�en we are
interested in identifying a subset of nodes which are mentioned in s. If we are only interested
in identifying the entities, but not the actual spans of text which refer to them, this can be
framed as a text retrieval problem. �e name of each entity in the KB can be considered as

4https://lucene.apache.org/

16

https://lucene.apache.org/

a document, and the top K entities which match a query can be retrieved using the TFIDF
procedure described above. �e number of entities retreived from N trades o� precision with
recall. If we are also interested in the exact span of text which refers to an entity, we can proceed
in two steps. First, a named entity recognition (NER) system can be run to identify the entities
in text. Next, the identi�ed entities can each be linked separately to the nodes in the KB. Richer
signals, based on hyperlinks, can be used when linking to Wikipedia, e.g. as done in the TagMe
system [70].

Algorithm 1: Personalized Pagerank.
Input : Adjacency matrix ŴK, starting distribution ev.
Output: Pagerank scores p∗v.

r0 = (1− γ)ev;
p∗v = r0;
for t = 1, 2, . . . until convergence: do

rt = γŴKrt−1;
p∗v = p∗v + rt;

end
Return p∗v.

Personalized Pagerank [89]. Given the subset of nodes in a KB relevant to the query, de-
noted as Nq, we can model a spreading activation process starting from these to identify a
subgraph relevant to the query. Essentially, we compute a score called pagerank, which mea-
sures the similarity of any v ∈ N to the nodes in Nq, and retain the ones with the maximum
scores. In order to compute these scores, we represent our KB graph using an adjacency matrix
WK of size |N | × |N |, s.t. WK[i, j] = 1 i� there is an edge from node j to node i. Let ŴK be a
column-normalized version of this matrix. �en the pagerank scores are given by a distribution
p∗v ∈ R|N |, s.t.

p∗v = (1− γ)ev + γŴKp
∗
v.

Here, ev ∈ R|N | is a uniform starting distribution over the nodes in Nq, and γ is a hyperpa-
rameter controlling how the weights spread starting from the initial set of nodes. A simple
procedure for computing p∗v, based on power iteration, is outlined in Algorithm 1 [34]. �e
basic idea consists of uniformly distributing some mass on the nodes in Nq, and at each step

17

distributing the mass of a node to its neighbors. �e algorithm is guaranteed to converge. We
can also use a weighted version of ŴK which determines the relative importance of edges.

Maximum Inner Product Search. In Chapters 7 & 8 we will consider methods which di-
rectly retrieve answers by comparing a dense embedding of the query eq ∈ Rd to a large set
of embeddings E ⊂ Rd. An exact search will scale linearly with the number of points in E,
but approximate search can be done in sub-linear time. �e basic idea behind these techniques
comes from Locality Sensitive Hashing [79], where the points in E are mapped to buckets using
hash functions such that nearby points, based on some distance metric, end up in the same
bucket. �is involves computing an o�ine index from all the embeddings in E. At inference
time, the query is also mapped to one such bucket, and an exact search is then done over the
points only within that bucket. We refer readers to Shrivastava and Li [187] and Andoni et al.
[1] for a detailed discussion of the algorithms.

18

Part I

Learning to Read

19

Chapter 3

Reading Comprehension

A fundamental challenge in using text as a source of knowledge lies in understanding natural
language. In this chapter we will focus on machine reading, the autonomous understanding of
text [68], from the perspective of answering questions posed over a text passage. Standardized
QA tests are useful benchmarks for measuring both machine and human reading comprehen-
sion [33], and in this chapter we will leverage large-scale training data to build systems for
this task with minimal manual engineering. For now, we will assume that given a question, we
know the passage which contains its answer. Later, in Chapter 5 we will relax this assumption.
�e work described in this chapter �rst appeared in the following two publications:

• Bhuwan Dhingra, Hanxiao Liu, Zhilin Yang, William Cohen, and Ruslan Salakhutdinov.
Gated-a�ention readers for text comprehension. In Proceedings of the 55th AnnualMeeting

of the Association for Computational Linguistics (Volume 1: Long Papers), pages 1832–1846,
2017

• Bhuwan Dhingra, Qiao Jin, Zhilin Yang, William Cohen, and Ruslan Salakhutdinov. Neu-
ral models for reasoning over multiple mentions using coreference. In Proceedings of

the 2018 Conference of the North American Chapter of the Association for Computational

Linguistics: Human Language Technologies, Volume 2 (Short Papers), pages 42–48, 2018

Code for reproducing the experiments in this chapter is available on GitHub.1,2

1https://github.com/bdhingra/ga-reader
2https://github.com/bdhingra/coref-gru

21

https://github.com/bdhingra/ga-reader
https://github.com/bdhingra/coref-gru

3.1 Overview

Speci�cally, the task we are interested in involves tuples of the form (s, q, a, C), where the goal
is to �nd the answer a to the question q from the candidates C with the document s as context.
Both the question q and document s are sequences of words (tokens). �e candidate answers
C may be extracted from a separate pipeline and known before-hand, or they may consist of
all spans in s up to a maximum length. Either way, we will assume each candidate c ∈ C has
at least one token which also appears in s. In the last few years, several large-scale reading
comprehension datasets have been released which �t this de�nition [94, 95, 104, 151, 166].

Deep learning models which leverage this data outperform traditional shallow approaches
on this task [94]. �ese models learn contextual representations of the tokens in the document,
which are matched with a representation of the question to compute the probability of each
token whether it answers the question. Two factors which have been shown to be important
in this design are: (1) Multi-hop architectures [183, 190, 228], which allow a model to scan the
document and the question iteratively in multiple passes. (2) A�ention mechanisms [25, 94],
borrowed from the machine translation literature [7], which allow the model to focus on ap-
propriate subparts of the document based on the query. Intuitively, the multi-hop architecture
allows the reader to incrementally re�ne token representations, and the a�ention mechanism
re-weights di�erent parts in the document according to their relevance to the query.

In § 3.2 we introduce a neural architecture which combines these two aspects in a com-
plementary manner. Our main contribution is a novel a�ention mechanism, called Gated-
A�ention (GA), which gates the evolving representations of tokens in the document across
hops. More speci�cally, unlike the conventional use of a�ention which aggregates either to-
ken [25, 94, 95, 106] or sentence [194, 228] representations, the GA module instead updates the
representations based on the query, using an element-wise multiplication operation. Since this
keeps the sizes of the representations unchanged, it can be applied in between the multiple lay-
ers of the model, which enables learning conditional token representations w.r.t. the question,
and leads to more accurate answer selection (§ 3.4).

�e layers themselves are based on RNNs introduced in the last chapter to compute the
document token representations. RNN layers have a bias towards sequential-recency [65], i.e.
a tendency to favor short-term dependencies. �is leads to poor performance on problems
which require reasoning about information in di�erent parts of the text. One important form
of reasoning for �estion Answering (QA) models is the ability to aggregate information from
multiple mentions of entities, which we term as coreference-based reasoning. Coreference is the

22

Context: […] mary got the football there […] mary went to the bedroom […]
mary travelled to the hallway […]
�estion: where was the football before the hallway ?

Context: Louis-Philippe Fiset […] was a local physician and politician in the
Mauricie area […] is located in the Mauricie region of �ebec, Canada […]
�estion: country of citizenship – louis-philippe �set ?

Figure 3.1: Example questions which require coreference-based reasoning from the bAbi dataset
[227] (top) and Wikihop dataset [223] (bo�om). Coreferences are in bold, and the correct an-
swers are underlined.

phenomenon where di�erent expressions in the text refer to the same underlying real-world
entity. Figure 3.1 shows examples.

A�ention mechanisms like GA alleviate part of the issue, but empirical studies suggest
RNNs with a�ention also have di�culty modeling long-term dependencies [40]. �is problem
becomes even more severe when training data is scarce, and inductive biases play an impor-
tant role. Hence, in § 3.3, we explore using an external coreference resolution system to model
coreferent dependencies in an RNN. Coreference resolution has seen a gradual increase in ac-
curacy over the years [62, 119, 235], and we propose to use coreference annotations to adapt
the standard RNN layer by introducing a bias towards coreferent-recency. Speci�cally, we in-
troduce a term in the update equations for GRUs which depends on the hidden state of the
coreferent antecedent of the current token (if it exists). �is way hidden states are propagated
along coreference chains and the original sequence in parallel.

3.2 Gated-Attention Reader

�e contextual representations in GA reader, namely the embeddings of words in the document,
are iteratively re�ned across hops using bidirectional GRUs until reaching a �nal a�ention-sum
module [106] which maps the contextual representations in the last hop to a probability distri-
bution over candidate answers. In reading comprehension tasks, ideally, the semantic meaning
carried by the contextual embeddings should be aware of the query across hops. As an exam-
ple, human readers are able to keep the question in mind during multiple passes of reading, to
successively mask away information irrelevant to the query. Hence, we propose a �ne-grained
a�ention model, called gated-a�ention, which a�ends to components of the semantic represen-

23

Bi
-­‐G
RU

	

(document)

(query)

…

Bi-­‐GRU	

Bi
-­‐G
RU

	

…

Bi-­‐GRU	

…

Bi
-­‐G
RU

	

K Layers

Bi-­‐GRU	

<,>	

	

<,>	

	

<,>	

…

 So
-m

ax
	

Ag
gr
eg
a5

on
	

Em
be

d	

Obama

met

prague

…

Embed	
 X visited prague

x
(0)
1

x
(0)
2

x
(0)
|s| S

(1)
|s|

S
(1)
1

S
(1)
2

x
(1)
1

x
(1)
2

x
(1)
|s| S

(2)
|s|

S
(2)
2

S
(2)
1 S

(K)
1

S
(K)
2

S
(K)
|s|

�1

�2

�|s|

	

GA	

	

	

GA	

	

	

GA	

	

	

GA	

	

	

GA	

	

	

GA	

	

Pr(Obama|s, q)

Figure 3.2: Gated-A�ention Reader. Dashed lines represent dropout connections.

tation of the document being built up by the GRU. Gated-a�ention is implemented via multi-

plicative interactions between the query and the contextual embeddings, and is applied in each
layer as a �ltering process. �e �lters weigh individual components of the vector representation
of each token in the document separately.

�e design of gated-a�ention layers is motivated by the e�ectiveness of multiplicative in-
teraction among vector-space representations, e.g., in various types of recurrent units [97, 238]
and in relational learning [111, 242]. While other types of compositional operators are possi-
ble, such as concatenation or addition [141], we found that multiplication has strong empirical
performance.

Preliminaries

Let X(0) = [x
(0)
1 , x

(0)
2 , . . . x

(0)
|s|] denote the token embeddings of the document, which are also

inputs at layer 1 for the document reader below, and Y = [y1, y2, . . . y|q|] denote the token em-
beddings of the query. �ese embeddings can come from a pre-trained word embedding table,
or initialized randomly. Here |s| and |q| denote the document and query lengths respectively.

Multi-Hop Architecture

Fig. 3.2 illustrates the Gated-A�ention (GA) reader. �e model reads the document and the
query overK layers, where layer k receives the contextual embeddingsX(k−1) of the document
from the previous layer. �e document embeddings are transformed by taking the full output

24

of a document Bi-GRU (indicated in blue in Fig. 3.2):

S(k) =
←→

GRU
(k)

s (X(k−1)). (3.1)

At the same time, a layer-speci�c query representation is computed as the full output of a
separate query Bi-GRU (indicated in green in Figure 3.2):

Q(k) =
←→

GRU
(k)

q (Y). (3.2)

Next, Gated-A�ention is applied to S(k) and Q(k) to compute inputs for the next layer X(k).

X(k) = GA(S(k), Q(k)),

where GA is de�ned in the following subsection.

Gated-Attention Module

For brevity, let us drop the superscript k in this subsection as we are focusing on a particular
layer. Let Si be the representation of the i-th token in s at this layer. �e GA module forms
a token-speci�c representation of the query q̃i using so� a�ention, and then multiplies the
query representation element-wise with the document token representation. Speci�cally, for
i = 1, . . . , |s|:

αi = so�max(Q>Si), (3.3)

q̃i = Qαi,

xi = Si � q̃i. (3.4)

Here, so�max is a normalization function de�ned over a sequence as follows:

so�max(a1, a2, . . .)i =
exp(ai)∑
i′ exp(ai′)

.

X = [x1, . . . , x|s|] forms the input for the next layer’s bidirectional GRU.

Answer Prediction

We consider both natural questions, which typically start with a wh-word, and cloze questions,
which are regular sentences but with a missing token which needs to be �lled out. For the for-
mer, let q(K) = [qf|q|; q

b
0] be the output of the �nal layer query Bi-GRU, obtained by concatenating

25

the �nal states of the forward and backward GRUs. For the la�er, let q(K) = [qf` ; qbT−`+1] be an
intermediate output of the �nal layer query Bi-GRU at the location ` of the cloze token in the

query. Also, let S(K) =
←→

GRU
(K)

s (X(K−1)) be the full output of �nal layer document Bi-GRU.
To obtain the probability that a particular token in the document answers the query, we

take an inner-product between these two, and pass it through a so�max layer:

γ = so�max((S(K))T q(K))

where vector γ ∈ R|s| de�nes a probability distribution over the |s| tokens in the document.
�e probability of a particular candidate c ∈ C as being the answer is then computed by aggre-
gating the probabilities of all document tokens which appear in c and renormalizing over the
candidates:

Pr(c|s, q) ∝
∑
i∈I(c,s)

γi (3.5)

where I(c, s) is the set of positions where a token in c appears in the document s. �is aggrega-
tion operation is the same as the pointer sum a�ention applied in the AS Reader [106]. Finally,
the candidate with maximum probability is selected as the answer:

a∗ = argmaxc∈C Pr(c|s, q).

During the training phase, given a dataset D, model parameters are updated w.r.t. a cross-
entropy loss between the predicted probabilities and the true answers:

L =
∑

(s,q,a,C)∈D

− log Pr(a|s, q).

Further Enhancements

Character-level Embeddings: Given a token w from the document or query, its vector space
representation can be computed as x = [L(w);C(w)]. L(w) retrieves the word-embedding
for w from a lookup table L ∈ Rd×V , whose columns hold a vector for each unique token
in the vocabulary. We can also utilize a character composition model C(w) which generates
an orthographic embedding of the token. Such embeddings have been shown to be helpful
for tasks like Named Entity Recognition [243] and dealing with OOV tokens at test time [52].
�e embedding C(w) is generated by taking the �nal output of a Bi-GRU applied to character
embeddings in the token and applying a linear transformation:

z =
←→

GRUc(w),

C(w) = Wz + b.

26

Mary went … she

…

…

Mary went … she

…

…

hf
bi

hf
i

xihf
i�1

hb
i

hb
i+1

hb
i0:bi0=i

xi

Figure 3.3: Forward (le�) and Backward (right) Coref-RNN layers. Mary and she are coreferent.

�estion Evidence CommonWord Feature (qe-feature): Li et al. [124] proposed a simple token
level indicator feature which signi�cantly boosts reading comprehension performance in some
cases. For each token in the document we construct a one-hot vector fi ∈ {0, 1}2 indicating
its presence in the query. �is vector can be incorporated into the GA reader by assigning a
feature lookup table F ∈ RnF×2 (we use nF = 2), taking the feature embedding ei = Ffi and
appending it to the inputs of the last layer document BiGRU as, [x

(K)
i ; ei] for all i. We conduct

our experiments both with and without this feature.

3.3 Extending with Coreference

Next, we discuss how to extend the above model with coreference information to improve its
modeling of long-term dependencies. We will focus on the recurrent layer (Eq. 2.3), and keep
the rest of the model unchanged. Speci�cally, we introduce the concept for coreferent-recency,
in contrast to sequential-recency inherent in RNNs.

Coref-RNNs. Suppose we are given an input sequence s1, s2, . . . along with their word vec-
torsx1, x2, . . . and annotations for the most recent coreferent antecedent for each token b1, b2, . . .,
where bi ∈ {0, . . . , i− 1} and bi = 0 denotes the null antecedent (for tokens not belonging to
any cluster). Further, we assume all tokens belonging to a mention in a cluster belong to that
cluster, and there are B clusters in total. We can use an o�-the-shelf coreference tool, such as
Stanford CoreNLP,3 to obtain these annotations.

3https://stanfordnlp.github.io/CoreNLP/

27

https://stanfordnlp.github.io/CoreNLP/

�e update rule in any RNN takes the same basic form given by (from Eq. 2.1):

hi = f(Wxi + Uhi−1 + c).

�e bias for sequential-recency comes from the second termUhi−1. In this work we add another
term to introduce a bias towards coreferent-recency instead:

hi = f(Wxi + αiUφs(hi−1) + (1− αi)U ′φc(hbi) + c),

where hbi is the hidden state of the coreferent antecedent of si (with h0 = 0), φs and φc are
non-linear functions applied to the hidden states coming from the sequential antecedent and
the coreferent antecedent, respectively, and αi is a scalar weight which decides the relative
importance of the two terms based on the current input (so that, for example, pronouns may
assign a higher weight for the coreferent state). When bi = 0, αi is set to 1, otherwise it is
computed using a key-based addressing scheme [135], as αi = so�max(xTi k), where k is a
trainable key vector. In this work we use simple slicing functions φs(x) = x[1 : d/2], and
φc(x) = x[d/2 : d] which decompose the hidden states into a sequential and a coreferent
component, respectively. Figure 3.3 (le�) shows an illustration of the layer.

Coref-GRU (C-GRU). �e above extension to RNNs can be applied to any recurrent layer;
here we will focus on GRU cells (Eq. 2.3). For simplicity, we introduce the variable mi which
concatenates the sequential and coreferent hidden states:

mi = [αiφs(hi−1); (1− αi)φc(hbi)].

�en the update equations are given by:

ri = σ(W rxi + U rmi + cr),

zi = σ(W zxi + U zmi + cz),

h̃i = tanh(W hxi + ri � Uhmi + ch),

hi = (1− zi)�mi + zi � h̃i.

�e a�ention parameter αi is given by:

αi =
expxiik1

expxiik1 + expxiik2

,

where k1 and k2 are trainable key vectors.

28

Mary went … she

…

…

Memory

hf
bi

hf
i

xihf
i�1

Figure 3.4: Alternative view of Coref-RNNs as a memory network. Each memory cell corre-
sponds to a coreference cluster, and read / write operations are performed on it when a token
from that cluster is encountered in the text.

Connection to Memory Networks. Coref-RNNs can be viewed as special cases of memory
networks [194] with a memory state Mi at each time step which is a B × d matrix (Figure 3.4).
�e rows of this memory matrix correspond to the state of each coreference cluster at time step
i. �e main di�erence between Coref-RNNs and a typical memory network such as EntNets
[91] is that we use coreference annotations to read and write from the memory rather than let
the model learn how to access the memory. With Coref-RNNs, only the content of the memories
needs to be learned. As we shall see in § 3.4, this turns out to be a useful bias in a low-data
regime.

Bidirectional C-GRU. To extend to the bidirectional case, a second layer is fed the same
sequence in the reverse direction (Figure 3.3). Now the coreferent state at time-step i comes
from the immediate descendent of a token, i.e. hi′ , where bi′ = i and i′ > i. Outputs from the
two layers are then concatenated in a similar manner to bidirectional LSTMs and GRUs.

Complexity. �e resulting layer has the same time-complexity as that of a regular RNN layer.
�e memory complexity increases since we have to keep track of the hidden states for each
coreference cluster in the input. If there are B clusters and N is the batch size, the resulting
complexity is by O(N |S|Bd).

29

CNN Daily Mail CBT-NE CBT-CN WDW-Strict WDW-Relaxed

train 380,298 879,450 108,719 120,769 127,786 185,978
validation 3,924 64,835 2,000 2,000 10,000 10,000

test 3,198 53,182 2,500 2,500 10,000 10,000
vocab 118,497 208,045 53,063 53,185 308,602 347,406

max doc length 2,000 2,000 1,338 1,338 3,085 3,085

Table 3.1: Cloze-style QA dataset statistics.

3.4 Experiments

3.4.1 Cloze-style QA

We start by experimenting with synthetic queries, where a token or an entity is masked in a
sentence and must be predicted from a separate context. Such queries can o�en be constructed
automatically using smart heuristics and minimal e�ort, and are also easy to evaluate in terms of
accuracy of predicting the masked token. For these datasets we use regular RNNs; experiments
evaluating Coref-RNNs are presented in the next three subsections.

Datasets

We evaluate the GA reader on �ve large-scale datasets. �e �rst two, CNN and Daily Mail news
stories consist of articles from the popular CNN and Daily Mail websites [94].4 A query over
each article is formed by removing an entity from the short summary which follows the article.
Further, entities within each article were anonymized to make the task purely a comprehension
one. N-gram statistics, for instance, computed over the entire corpus are no longer useful in
such an anonymized corpus.

�e next two datasets are formed from two di�erent subsets of the Children’s Book Test
(CBT) [95].5 Documents consist of 20 contiguous sentences from the body of a popular chil-
dren’s book, and queries are formed by deleting a token from the 21st sentence. We only focus
on subsets where the deleted token is either a common noun (CBT-CN) or named entity (CBT-
NE) since simple language models already give human-level performance on the other types
[95].

4https://github.com/deepmind/rc-data
5https://research.fb.com/downloads/babi/

30

https://github.com/deepmind/rc-data
https://research.fb.com/downloads/babi/

Hyperparameter CNN Daily Mail CBT-NE CBT-CN WDW-Strict WDW-Relaxed

Dropout 0.2 0.1 0.4 0.4 0.3 0.3

dim(
←→
GRU∗) 256 256 128 128 128 128

Table 3.2: Hyperparameter se�ings for each dataset. dim() indicates hidden state size of GRU.

�e �nal dataset is Who Did What (WDW) [151], constructed from the LDC English Gi-
gaword newswire corpus.6 First, article pairs which appeared around the same time and with
overlapping entities are chosen, and then one article forms the document and a cloze query
is constructed from the other. Missing tokens are always person named entities. �estions
which are easily answered by simple baselines are �ltered out, to make the task more challeng-
ing. �ere are two versions of the training set—a small but focused “Strict” version and a large
but noisy “Relaxed” version. We report results on both se�ings which share the same validation
and test sets.

Implementation Details

�e model was implemented using the �eano [204] and Lasagne Python libraries.7 We used
stochastic gradient descent with ADAM updates for optimization, which combines classical
momentum and adaptive gradients [109]. �e batch size was 32 and the initial learning rate
was 5×10−4 which was halved every epoch a�er the second epoch. �e same se�ing is applied
to all models and datasets. We also used gradient clipping with a threshold of 10 to stabilize
GRU training [153]. We set the number of layers K to be 3 for all experiments. �e number
of hidden units for the character GRU was set to 50. �e remaining two hyperparameters—
size of document and query GRUs, and dropout rate—were tuned on the validation set, and
their optimal values are shown in Table 3.2. In general, the optimal GRU size increases and the
dropout rate decreases as the corpus size increases.

�e word lookup table was initialized with 100d GloVe vectors [155] and OOV tokens at
test time were assigned unique random vectors (we discuss these choices in more detail in the
next chapter).8 We empirically observed that initializing with pre-trained embeddings gives
higher performance compared to random initialization for all datasets. Furthermore, for smaller
datasets (WDW and CBT) we found that �xing these embeddings to their pretrained values led

6https://tticnlp.github.io/whodidwhat/
7https://lasagne.readthedocs.io/en/latest/
8http://nlp.stanford.edu/projects/glove/

31

 https://tticnlp.github.io/who_did_what/
https://lasagne.readthedocs.io/en/latest/
http://nlp.stanford.edu/projects/glove/

to higher test performance, possibly since it avoids over��ing. We do not use the character
composition model for CNN and Daily Mail, since their entities (and hence candidate answers)
are anonymized to generic tokens. For other datasets the character lookup table was randomly
initialized with 25d vectors. All other parameters were initialized to their default values as
speci�ed in the Lasagne library.

Performance Comparison

Tables 3.3 and 3.4 show a comparison of the performance of GA Reader with previously pub-
lished models. �e numbers reported for GA Reader are for single models, though we compare
to both ensembles and single models from prior work. We present 4 variants of the GA Reader,
using combinations of whether the qe-feature is used or not, and whether the word lookup
table L(w) is updated during training or �xed to its initial value.

Interestingly, we observe that feature engineering leads to signi�cant improvements for
WDW and CBT datasets, but not for CNN and Daily Mail datasets. We note that anonymiza-
tion of the la�er datasets means that there is already some feature engineering (it adds hints
about whether a token is an entity), and these are much larger than the other four. In machine
learning it is common to see the e�ect of feature engineering diminish with increasing data
size. Similarly, �xing the word embeddings provides an improvement for WDW and CBT, but
not for CNN and Daily Mail. �is is not surprising given that the la�er datasets are larger and
less prone to over��ing.

Comparing with prior work, on the WDW dataset the basic version of the GA Reader out-
performs all previously published models when trained on the Strict se�ing. By adding the
qe-feature the performance increases by 3.2% and 3.5% on the Strict and Relaxed se�ings re-
spectively. On the CNN and Daily Mail datasets the GA Reader leads to an improvement of
3.2% and 4.3% respectively over the best previous single models, as well as ensemble models.
For CBT-NE, GA Reader with the qe-feature outperforms all previous single and ensemble mod-
els except the AS Reader trained on the much larger BookTest Corpus [8]. Lastly, on CBT-CN
the GA Reader with the qe-feature outperforms all previously published single models except
the NSE, and AS Reader trained on a larger corpus. For each of the 4 datasets on which GA
achieves the top performance, we conducted one-sample proportion tests to test whether GA
is signi�cantly be�er than the second-best baseline. �e p-values are 0.319 for CNN,<0.00001

for DailyMail, 0.028 for CBT-NE, and<0.00001 for WDW. Hence, GA signi�cantly outperforms
all other baselines on 3 out of those 4 datasets at the 5% level.

32

Model
CNN Daily Mail CBT-NE CBT-CN

Val Test Val Test Val Test Val Test

Humans (query) † – – – – – 52.0 – 64.4
Humans (context + query) † – – – – – 81.6 – 81.6

LSTMs (context + query) [95] † – – – – 51.2 41.8 62.6 56.0
Deep LSTM Reader [94] † 55.0 57.0 63.3 62.2 – – – –
A�entive Reader [94] † 61.6 63.0 70.5 69.0 – – – –
Impatient Reader [94] † 61.8 63.8 69.0 68.0 – – – –
MemNets [228] † 63.4 66.8 – – 70.4 66.6 64.2 63.0
AS Reader [106] † 68.6 69.5 75.0 73.9 73.8 68.6 68.8 63.4
DER Network [112] † 71.3 72.9 – – – – – –
Stanford AR (relabeling) [25] † 73.8 73.6 77.6 76.6 – – – –
Iterative A�entive Reader [190] † 72.6 73.3 – – 75.2 68.6 72.1 69.2
EpiReader [207] † 73.4 74.0 – – 75.3 69.7 71.5 67.4
AoA Reader [39] † 73.1 74.4 – – 77.8 72.0 72.2 69.4
ReasoNet [184] † 72.9 74.7 77.6 76.6 – – – –
NSE [145] † – – – – 78.2 73.2 74.3 71.9
BiDAF [179] † 76.3 76.9 80.3 79.6 – – – –

MemNets (ensemble) [228] † 66.2 69.4 – – – – – –
AS Reader (ensemble) [106] † 73.9 75.4 78.7 77.7 76.2 71.0 71.1 68.9
Stanford AR (relabeling,ensemble) [25] † 77.2 77.6 80.2 79.2 – – – –
Iterative A�entive Reader (ensemble) [190] † 75.2 76.1 – – 76.9 72.0 74.1 71.0
EpiReader (ensemble) [207] † – – – – 76.6 71.8 73.6 70.6

AS Reader (+BookTest) [8] † ‡ – – – – 80.5 76.2 83.2 80.8
AS Reader (+BookTest,ensemble) [8] † ‡ – – – – 82.3 78.4 85.7 83.7

GA (update L(w)) 77.9 77.9 81.5 80.9 76.7 70.1 69.8 67.3
GA (�x L(w)) 77.9 77.8 80.4 79.6 77.2 71.4 71.6 68.0
GA (+qe-feature, update L(w)) 77.3 76.9 80.7 80.0 77.2 73.3 73.0 69.8
GA (+qe-feature, �x L(w)) 76.7 77.4 80.0 79.3 78.5 74.9 74.4 70.7

Table 3.3: Validation/Test accuracy (%) on CNN, Daily Mail and CBT. Results marked with “†”
are cf previously published works. Results marked with “‡” were obtained by training on a
larger training set. Best performance on standard training sets is in bold, and on larger training
sets in italics.

33

Model
Strict Relaxed

Val Test Val Test

Human [151] † – 84 – –

A�entive Reader [151] † – 53 – 55
AS Reader [151] † – 57 – 59
Stanford AR [151] † – 64 – 65
NSE [145] † 66.5 66.2 67.0 66.7

GA (update L(w)) 67.8 67.0 67.0 66.6
GA (�x L(w)) 68.3 68.0 69.6 69.1
GA (+qe-feature, update L(w)) 70.1 69.5 70.9 71.0
GA (+qe-feature, �x L(w)) 71.6 71.2 72.6 72.6

Table 3.4: Validation/Test accuracy (%) on WDW dataset for both “Strict” and “Relaxed” se�ings.
Results with “†” are cf previously published works.

 0.66

 0.68

 0.7

 0.72

 0.74

 0.76

 0.78

50%
 (<0.01)

75%
 (<0.01)

100%
 (<0.01)

CNN (w/o qe-comm feature)

No Gating
With Gating

 0.66

 0.68

 0.7

 0.72

 0.74

 0.76

 0.78

50%
 (0.07)

75%
 (0.13)

100%
 (<0.01)

CNN (w qe-comm feature)

No Gating
With Gating

 0.6
 0.61
 0.62
 0.63
 0.64
 0.65
 0.66
 0.67
 0.68
 0.69
 0.7

50%
 (0.28)

75%
 (<0.01)

100%
 (<0.01)

WDW (w/o qe-comm feature)

No Gating
With Gating

 0.6
 0.61
 0.62
 0.63
 0.64
 0.65
 0.66
 0.67
 0.68
 0.69
 0.7

50%
 (<0.01)

75%
 (0.42)

100%
 (0.27)

WDW (w qe-comm feature)

No Gating
With Gating

Figure 3.5: Performance in accuracy with and without the Gated-A�ention module over di�er-
ent training sizes. p-values for an exact one-sided Mcnemar’s test are given inside the paren-
theses for each se�ing.

Ablations

In this section we do an ablation study to see the e�ect of Gated A�ention. We compare the
GA Reader as described here to a model which is exactly the same in all aspects, except that it
passes document embeddingsD(k) in each layer directly to the inputs of the next layer without
using the GA module. In other words X(k) = D(k) for all k > 0. �is model ends up using only
one query GRU at the output layer for selecting the answer from the document. We compare

34

Gating
Accuracy

Val Test

Sum 64.9 64.5
Concatenate 64.4 63.7
Multiply 68.3 68.0

K
Accuracy

Val Test

1 – 57
2 65.6 65.6
3 68.3 68.0
4 68.3 68.2

Model
Accuracy

Val Test

GA 68.3 68.0
−char 66.9 66.9
−qry-a�n 65.7 65.0
+corpus-emb 64.0 62.5

Table 3.5: Performance of several model variants on WDW dataset without using qe-comm
feature and with �xed L(w). (Le�) Gating functions in the GA module. (Middle) Number of
hops K . (Right) Model variants.

these two variants both with and without the qe-feature on CNN and WDW datasets for three
subsets of the training data - 50%, 75% and 100%. Test set accuracies for these se�ings are shown
in Figure 3.5. On CNN when tested without feature engineering, we observe that GA provides
a signi�cant boost in performance compared to without GA. When tested with the feature it
still gives an improvement, but the improvement is signi�cant only with 100% training data. On
WDW-Strict, which is a third of the size of CNN, without the qe-feature we see an improvement
when using GA versus without using GA, which becomes signi�cant as the training set size
increases. When tested with the feature on WDW, for a small data size without GA does be�er
than with GA, but as the dataset size increases they become equivalent. We conclude that GA
provides a boost in the absence of feature engineering, or as the training set size increases.

Next we look at the question of how to gate intermediate document reader states from the
query, i.e. what operation to use in Eq. 3.4. Table 3.5 (Le�) shows the performance on WDW
dataset for three common choices: sum (x = s + q), concatenate (x = s‖q) and multiply
(x = s� q). Empirically we �nd element-wise multiplication does signi�cantly be�er than the
other two.

In Table 3.5 (Middle) we show the e�ect of varying the number of hopsK of the GA Reader
on the �nal performance. We note that for K = 1, our model is equivalent to the AS Reader
without any GA modules. We see a steep and steady rise in accuracy as the number of hops is
increased fromK = 1 to 3, which remains constant beyond that. �is is a common trend in ma-
chine learning as model complexity is increased, however we note that a multi-hop architecture
is important to achieve high performance on this task.

Table 3.5 (Right) shows accuracy on WDW by removing one component at a time. �e

35

Figure 3.6: Layer-wise a�ention visualization of GA Reader trained on WDW-Strict.

steepest reduction is observed when we replace pretrained GloVe vectors with those pretrained
on the corpus itself (“+corpus-emb”). GloVe vectors were trained on a large corpus of about 6
billion tokens [155], and provide an important source of prior knowledge for the model. Note
that the strongest baseline on WDW, NSE [146], also uses pretrained GloVe vectors, hence
the comparison is fair in that respect. Next, we observe a substantial drop when removing
token-speci�c a�entions over the query in the GA module (“−qry-a�n”), which allow gating
individual tokens in the document only by parts of the query relevant to that token rather than
the overall query representation. Finally, removing the character embeddings, which were only
used for WDW and CBT, leads to a reduction of about 1% in the performance (“−char”).

Analysis

To gain an insight into the reading process employed by the model we analyzed the a�ention
distributions at intermediate layers of the reader. Figure 3.6 shows an example from the valida-
tion set of WDW dataset. In each �gure, the le� and middle plots visualize a�ention over the
query (equation 3.3) for candidates in the document a�er layers 1 & 2 respectively. �e right
plot shows a�ention over candidates in the document of the cloze placeholder in the query
(XXX) at the �nal layer. �e full document, query and correct answer are shown at the bo�om.

A generic pa�ern observed in such examples is that in intermediate layers, candidates in the
document (shown along rows) tend to pick out salient tokens in the query which provide clues

36

about the cloze token, and in the �nal layer the candidate with the highest match with these
tokens is selected as the answer. In Figure 3.6 there is a high a�ention of the correct answer
on �nancial regulatory standards in the �rst layer, and on us president in the second layer. �e
incorrect answer, in contrast, only a�ends to one of these aspects, and hence receives a lower
score in the �nal layer despite the n-gram overlap it has with the cloze token.

3.4.2 Reasoning Tasks

In this section we focus on three datasets (bAbi, Wikihop, LAMBADA) which explicitly require
reasoning over long-term dependencies in the text, and experiment with using either GRU or
Coref-GRU layers in the GA Reader for these tasks.

BAbi

Method Avg Max # failed

EntNets [91] – 0.704 15
QRN [180] – 0.901 7

Bi-GRU 0.727 0.767 13
Bi-C-GRU 0.790 0.831 12
GA w/ GRU 0.764 0.810 10
GA w/ GRU + 1-hot 0.766 0.808 9
GA w/ C-GRU 0.870 0.886 5

Table 3.6: Accuracy on bAbi-1K, averaged across all 20 tasks. Following previous work we run
each task for 10 random seeds, and report the Avg and Max (based on the dev set). A task is
considered failed if its Max performance is < 0.95.

Dataset. Our �rst set of experiments are on the 1K training version of the synthetic bAbi AI
tasks [227]. �e passages and questions in this dataset are generated using templates, removing
many complexities inherent in natural language, but it still provides a useful testbed for us since
some tasks are speci�cally constructed to test the coreference-based reasoning we tackle here.

Implementation. We use a hidden state size of 64, batch size of 32, and learning rate 0.01

which is halved a�er every 120 updates. We also use dropout with rate 0.1 at the output of

37

each layer. �e maximum number of coreference clusters across all tasks was B = 13. Since
the passages are generated synthetically, we use a prede�ned dictionary of named entities to
extract the coreference clusters. Half of the tasks in this dataset are extractive, meaning the
answer is present in the passage, whereas the other half are classi�cation tasks, where the
answer is in a list of candidates which may not be in the passage. For the extractive tasks, we
use the a�ention sum layer as described in the previous section. For the classi�cation tasks we
replace this with a so�max layer for predicting one of the classes. We extracted coreference
clusters using an exact string match against a prede�ned set of entities.

Results. Table 3.6 shows a comparison of EntNets [91], �ery Reduction Networks (QRNs)
[180] and our models. QRNs employ a recurrent network over sentences in the text which
jointly updates the query and sentence representations. We also include the results for a single
layer version of GA Reader to enable fair comparison with EntNets. We denote this model sim-
ply as Bi-GRU, or Bi-C-GRU if using Coref-GRUs, since there is no Gated-A�ention mechanism
in this case. In each case we see clear improvements of using C-GRU layers over GRU layers.
Interestingly, EntNets, which have> 99% performance when trained with 10K examples, only
reach 70% (c.f. Hena� et al. [91]) performance with 1K training examples. �e Bi-C-GRU model
signi�cantly improves on this baseline, which shows that, with less data, coreference annota-
tions can provide a useful bias for a memory network on how to read and write memories.

A break-down of task-wise performance is given in Table 3.7. Comparing C-GRU to the
GRU based method, we �nd that the main gains are on tasks 2 (two supporting facts), 3 (three
supporting facts) and 16 (basic induction). All these tasks require aggregation of information
across sentences to derive the answer. Comparing to the QRN baseline, we found that C-GRU
was signi�cantly worse on task 15 (basic deduction). On closer examination we found that this
was because our simplistic coreference module which matches tokens exactly was not able to
resolve “mice” to “mouses” and “cats” to “cat”. On the other hand, C-GRU was signi�cantly
be�er than QRN on task 16 (basic induction).

We also include a baseline which uses coreference features as 1-hot vectors appended to
the input word vectors (GA w/ GRU + 1-hot). �is provides the model with information about
the coreference clusters, but does not improve performance, suggesting that the regular GRU
is unable to track the given coreference information across long distances to solve the task. On
the other hand, in Figure 3.7 (le�) we show how the performance of GA w/ C-GRU varies as we
remove gold-standard mentions from coreference clusters, or if we replace them with random
mentions (GA w/ random-GRU). In both cases there is a sharp drop in performance, showing

38

Task QRN
GA w/
GRU

GA w/
C-GRU

1: Single Supporting Fact 1.000 0.997 1.000
2: Two Supporting Facts 0.993 0.345 0.990
3: �ree Supporting Facts 0.943 0.558 0.982
4: Two Argument Relations 1.000 1.000 1.000
5: �ree Argument Relations 0.989 0.989 0.993
6: Yes/No �estions 0.991 0.962 0.976
7: Counting 0.904 0.946 0.976
8: Lists / Sets 0.944 0.947 0.964
9: Simple Negation 1.000 0.991 0.990
10: Inde�nite Knowledge 1.000 0.992 0.986
11: Basic Coreference 1.000 0.995 0.996
12: Conjunction 1.000 1.000 0.996
13: Compound Coreference 1.000 0.998 0.993
14: Time Reasoning 0.992 0.895 0.849
15: Basic Deduction 1.000 0.521 0.470
16: Basic Induction 0.470 0.488 0.999
17: Positional Reasoning 0.656 0.580 0.574
18: Size Reasoning 0.921 0.908 0.896
19: Path Finding 0.213 0.095 0.099
20: Agent’s Motivation 0.998 0.998 1.000

Average 0.901 0.810 0.886

Table 3.7: Breakdown of task-wise performance on bAbi dataset. Tasks where C-GRU is signif-
icant be�er / worse than either GRU or QRNs are highlighted.

that speci�cally using coreference for connecting mentions is important.

Wikihop

Dataset. Next we apply our model to the Wikihop dataset [222], which is speci�cally con-
structed to test multi-hop reading comprehension across documents. Each instance in this
dataset consists of a collection of passages (p1, . . . , pN), and a query of the form (h, r) where
h is an entity and r is a relation. �e task is to �nd the tail entity t from a set of provided
candidates C.

39

0.0 0.1 0.2 0.3 0.4
% removed coreferences

0.5

0.6

0.7

0.8

0.9

1.0

A
cc

ur
ac

y

GA w/ GRU
GA w/ random­GRU
GA w/ C­GRU

Training progress
0.0

0.1

0.2

0.3

0.4

0.5

V
al

id
at

io
n

ex
p

(−
lo
ss

)

full C-GRU

full GRU

5K C-GRU

5K GRU

1K C-GRU

1K GRU

Figure 3.7: (Le�) Accuracy of GA w/ C-GRU as coreference annotations are removed for bAbi
task 3. (Right) Expected probability of correct answer (exp (−loss)) on Validation set as training
progresses on Wikihop dataset for 1K, 5K and the full training datasets.

Implementation. As preprocessing we concatenate all documents in a random order, and
extract coreference annotations from the Berkeley Entity Resolution system [62] which gets
about 62% F1 score on the CoNLL 2011 test set. We only keep the coreference clusters which
contain at least one candidate from C or an entity which co-occurs with the head entity h. We
use a hidden state size of 64, batch size 16, and learning rate of 0.0005 which was halved every
2500 updates. �e maximum number of coreference clusters was set to 50 for this dataset.
We used dropout of 0.2 in between the intermediate layers, and initialized word embeddings
with Glove [155]. We also used character embeddings, which were concatenated with the word
embeddings, of size 10. �ese were output from a CNN layer with 50 �lters each of width 5.
We also used the qe-feature when processing the documents.

Results. We report results in Table 3.8 when using the full training set, as well as when
using a reduced training set of sizes 1K and 5K, to test the model under a low-data regime. In
Figure 3.7 we also show the training curves of exp (−loss) on the validation set. We see higher
performance for the C-GRU model in the low data regime, and be�er generalization throughout
the training curve for all three se�ings. �is supports our conjecture that the GRU layer has
di�culty learning the kind of coreference-based reasoning required in this dataset, and that the
bias towards coreferent recency helps with that. However, perhaps surprisingly, given enough
data both models perform comparably. �is could either indicate that the baseline learns the
required reasoning pa�erns when given enough data, or, that the bias towards corefence-based
reasoning hurts performance for some other types of questions. Indeed, 9% of the questions are

40

Method
Follow

Follow
+single

Follow
+multiple

Overall

Dev Dev Dev Dev Test

1K Training Set

GA w/ GRU 0.307 0.332 0.287 0.263 –
GA w/ C-GRU 0.355 0.370 0.354 0.330 –

5K Training Set

GA w/ GRU 0.382 0.385 0.390 0.336 –
GA w/ C-GRU 0.452 0.454 0.460 0.401 –

Full Training Set

BiDAF – – – – 0.429
GA w/ GRU 0.606 0.615 0.604 0.549 –
GA w/ C-GRU 0.614 0.616 0.614 0.560† 0.593

Table 3.8: Accuracy on Wikihop for di�erent number of training examples. Follow: subset
annotated as answer follows from the given passages. Follow + multiple: subset annotated as
requiring multiple passages for answering. Follow + single: subset annotated as requiring one
passage for answering. †p = 0.057 using Mcnemar’s test compared to GA w/ GRU.

answered correctly by the baseline but not by C-GRU, however, we did not �nd any consistent
pa�erns among these in our analyses.

LAMBADA

Dataset. �e LAMBADA dataset [152] is a broad-context language modeling task, consisting
of passages from novels, 4-5 sentences long, where the last word needs to be predicted. Inter-
estingly, though, the passages are �ltered such that human volunteers were able to predict the
missing token given the full passage, but not given only the last sentence. Hence, predicting
these tokens involves a broader understanding of the whole passage. Analysis of the questions
suggests that around 20% of the questions need coreference understanding to answer correctly
[30].

41

Method overall context

Chu et al. [30] 0.4900 –
GA w/ GRU 0.5398 0.6677
GA w/ GRU + 1-hot 0.5338 0.6603
GA w/ C-GRU 0.5569 0.6888†

Table 3.9: Accuracy on LAMBADA test set, averaged across two runs with random initializa-
tions. context: passages for which the answer is in context. overall: full test set for comparison
to prior work. †p < 0.0001 using Mcnemar’s test compared to GA w/ GRU.

Implementation. We use a hidden state size of 256, batch size of 64, and learning rate of
0.0005 which was halved every 2 epochs. Word vectors were initialized with Glove, and dropout
of 0.2 was applied a�er intermediate layers. �e maximum number of coreference clusters in
this dataset was 15. We use the same setup as Chu et al. [30] which formulated the problem as
a reading comprehension one by treating the last sentence as query, and the remaining passage
as context to extract the answer from. In this manner only 80% of the questions are answer-
able, but the performance increases substantially compared to pure language modeling based
approaches. For this dataset we used Stanford CoreNLP to extract coreferences [32], which
achieved 0.63 F1 on the CoNLL test set.

Results. Table 3.9 shows a comparison of the GA w/ GRU baseline and GA w/ C-GRU models.
We see a signi�cant gain in performance when using the layer with coreference bias. Further-
more, the 1-hot baseline which uses the same coreference information, but with sequential
recency bias fails to improve over the regular GRU layer. While the improvement for C-GRU is
small, it is signi�cant, and we note that questions in this dataset involve several di�erent types
of reasoning out of which we only tackle one speci�c kind.

3.5 Related Work

3.5.1 Neural Network Readers

Several architectures introduced in Hermann et al. [94] employ LSTM units to compute a com-
bined document-query representation, which is used to rank the candidate answers. �ese in-
clude the DeepLSTM Reader, the A�entive Reader, and the Impatient Reader, each of which use

42

di�erent methods for mixing representations of the query and document with standard a�en-
tion mechanisms. �e architecture of the A�entive Reader was simpli�ed in Stanford A�entive

Reader, where shallower recurrent units were used with a bilinear form for the query-document
a�ention [25]. �e A�ention-Sum (AS) Reader [106] further extended this with a scheme named
pointer-sum, to aggregate �nal-layer scores of the same entity (Eq. 3.5). Building on the AS
Reader, the A�ention-over-A�ention (AoA) Reader [39] introduces a two-way a�ention mecha-
nism where the query and the document are mutually a�entive to each other.

Memory Networks (MemNets) were proposed in Weston et al. [228], where each sentence
in the document is encoded to a memory by aggregating nearby words. A�ention over the
memory slots given the query is used to compute an overall memory and to renew the query
representation over multiple iterations, allowing certain types of reasoning over the salient
facts in the memory and the query. Neural Semantic Encoders (NSE) [145] extended MemNets
by introducing a write operation which can evolve the memory over time during the course of
reading. Iterative reasoning has been found e�ective in several more recent models, including
the Iterative A�entive Reader [190] and ReasoNet [183]. �e la�er allows dynamic reasoning
steps and is trained with reinforcement learning.

Other related works include Dynamic Entity Representation network (DER) [112], which
builds dynamic representations of the candidate answers while reading the document, and ac-
cumulates the information about an entity by max-pooling; EpiReader [207], which consists
of two networks, where one proposes a small set of candidate answers, and the other reranks
the proposed candidates conditioned on the query and the context; and Bi-Directional A�ention

Flow network (BiDAF) [179], which adopts a multi-stage hierarchical architecture along with a
�ow-based a�ention mechanism. Bajgar et al. [8] showed a 10% improvement on the CBT cor-
pus [95] by training the AS Reader on an augmented training set of about 14 million examples,
making a case for the community to exploit data abundance.

3.5.2 Linguistic Biases in Deep Learning

An alternative line of work has looked at incorporating linguistic structure into deep learning
for NLP. Ji et al. [101] presented a generative model for jointly predicting the next word in the
text and its gold-standard coreference annotation. �e di�erence in our work is that we look
at the task of reading comprehension, and also work in the more practical se�ing of system
extracted coreferences. EntNets [91] also maintain dynamic memory slots for entities, but do
not use coreference signals and instead update all memories a�er reading each sentence, which

43

leads to poor performance in the low-data regime (c.f. Table 3.6). Here we claim that coreference
can provide a useful inductive bias to the model about which memories to use at a particular
time-step, and our experiments show a large improvement over EntNets in the low data regime.
Yang et al. [248] model references in text as explicit latent variables, but limit their work to text
generation. Wang et al. [214] also noted the importance of reference resolution for reading
comprehension, and we compare our model to their one-hot pointer reader.

Some works have also used syntax, in the form of dependency trees, to replace the sequential
recency bias in RNNs with a syntactic recency bias [27, 160, 198, 199]. However, syntax only
looks at dependencies within sentence boundaries, whereas Coref-GRUs focus on longer ranges.
Our resulting layer is structurally similar to GraphLSTMs [154], with an additional a�ention
mechanism over the graph edges. However, while Peng et al. [154] found that using coreference
did not lead to any gains for the task of relation extraction, here we show that it has a positive
impact on the reading comprehension task.

3.6 Discussion

In this chapter, we looked at neural architectures for reading comprehension—the task of an-
swering questions about a small passage of text. We presented a multiplicative a�ention mech-
anism for modeling interactions between the passage and query, and incorporated it into a
multi-layer recurrent neural network model. We also presented an extension of RNNs which
incorporates coreference signals when computing text representations, and showed its utility
on tasks involving reasoning.

All our experiments were carried out on synthetic data, where either the queries, the con-
text passages, or both were constructed automatically by applying heuristics to some available
source of unlabeled data. �is was dictated largely by the lack of availability of hand-annotated
data at the time this research was carried out. Since then, several large-scale QA datasets have
been made publicly available which were constructed either using crowd-sourcing (e.g. Squad
[166]), or by harnessing data created for other purposes (e.g. TriviaQA [104], RACE [116] and
Natural �estions [115]). Arguably, these datasets capture a more natural distribution of ques-
tions that people ask, and do not su�er from some of the biases inherent in synthetic data.9

While other authors have applied the GA Reader to these and other tasks with favorable results
(see, e.g. Lai et al. [116], Yang et al. [244], and Chaplot et al. [23]), the state-of-the-art methods

9For example, Kaushik and Lipton [107] showed how in some cases even models trained without either of the
query or passage can achieve comparable performance.

44

today all use variants of Transformer Networks pretrained using large amounts of unlabeled
text [51]. We explore one such pre-training strategy in the next chapter.

Jia and Liang [102] showed that, for a wide range of models, adding distractor text to the
context passage, which does not answer the query but shares surface similarity with it, can lead
to a signi�cant decrease in performance. �is bri�leness arises, in part, due to the so-called over-
sensitivity of deep neural networks with millions of parameters, and, in part, due to the purely
statistical methods for training them, which are bound to �t to spurious correlations in the data.
We expect the models presented in this chapter to also su�er from these limitations, and how to
overcome them remains an open research question. Another source of bri�leness in the Coref-
RNN layer comes from propagation of errors from the external coreference resolution system.
As we show in Figure 3.7 (Le�), an increase in the error of the coreference annotations results
in a decrease in the performance gains due to using them. To our knowledge, other systems
which have incorporated linguistic signals into deep learning successfully, e.g. LISA [192], all
rely on gold-standard annotations at training time. How to best utilize system-extracted signals,
a more practical se�ing, also remains an open question.

A practical limitation with the methods presented in this chapter is that we assume that
the gold-standard passage containing the answer is known beforehand. Ultimately, we are
interested in open-domain question answering, and instead this must be identi�ed from a large
pool of candidate passages, e.g. using a TFIDF based retrieval system. Many works have focused
on this se�ing [26, 31, 55, 219], which presents some new challenges for the reading system,
such as deciding when the passage contains an answer and aggregating con�dence scores across
passages. We explore this se�ing in more detail in Chapters 5, 7 and 8.

We focused on coreference-based reasoning, which requires aggregating information from
multiple mentions of the same entity in a context. Since our work, the �oref dataset [48]
has been constructed speci�cally to test this kind of reasoning. More generally, reasoning over
coreferences is an instance of multi-hop reasoning where multiple facts need to be aggregated in
order to answer a query. We will explore multi-hop reasoning in more detail in Chapters 5 and
8. Another important form of reasoning, which we do not tackle here, is numerical operations
over text, e.g. as captured in the DROP dataset [61].

45

46

Chapter 4

Transfer Learning

�e methods presented in the previous chapter, and deep learning models in general, hinge on
the availability of large annotated datasets. However, large domain speci�c annotated datasets
are limited and expensive to construct. In this chapter, we explore strategies for transfer learn-
ing which exploit unlabeled data to pretrain di�erent parts of the network. First, we focus on
how to e�ectively use pre-trained word embeddings, especially for tokens which are not in the
training vocabulary. Next, we introduce a technique which exploits the structure of unlabeled
documents to pretrain the entire network. We envision a system where the end user speci�es
a set of unlabeled documents with a few labelled QA examples over them, and we discuss tech-
niques to maximize reading comprehension performance in such a se�ing. �e work presented
in § 4.3 �rst appeared in the following publication:

• Bhuwan Dhingra, Danish Danish, and Dheeraj Rajagopal. Simple and e�ective semi-
supervised question answering. In Proceedings of the 2018 Conference of the North Ameri-

can Chapter of the Association for Computational Linguistics: Human Language Technolo-

gies, Volume 2 (Short Papers), pages 582–587, 2018

4.1 Overview

Many statistical models for tasks related to machine reading employ the following recipe. 1) To-
kens in the document and question are represented using word vectors obtained from a lookup
table; 2) a text encoder, such as an RNN or Transformer, augmented with an a�ention mecha-
nism updates these vectors to produce contextual representations; and 3) an output layer uses
these contextual representations to classify the start and end of the answer span in the docu-
ment. �e combined number of learnable parameters in these modules is typically on the order

47

Figure 4.1: Test set accuracies and std error on the Who-Did-What dataset for Stanford AR and
GA Reader, trained a�er initializing with word vectors induced from di�erent corpora. With-
out controlling for the initialization method, di�erent conclusions may be drawn about which
architecture is superior. Corpus 1: BookTest dataset [8], Corpus 2: Wikipedia + Gigaword.

of at least a few million, and hence many labeled examples are required to train them. Unfor-
tunately, practitioners looking to build QA systems for speci�c applications may not have the
resources to collect thousands of questions on corpora of their choice, and these models su�er
when training data is limited (c.f. Table 4.3).

Semi-supervised learning methods utilize unlabeled data in addition to labeled training data
to improve performance. Here we will discuss methods where the unlabeled data is in the form
of text documents (without any associated QA pairs). Speci�cally, we discuss strategies for
transfer learning, where we pretrain parts of the neural network reader on an auxiliary loss
function over the unlabeled documents, and then, using the parameter values from this step as
initialization, �ne-tune the network on the labeled data. �ese strategies are motivated by the
low cost of obtaining a large number of text documents in most domains.

We start by focusing on the �rst step above, where it is ubiquitous to pretrain the lookup
table of word vectors in an unsupervised manner [134, 155]. �rough a series of detailed exper-
iments, we study e�ect of using di�erent pretraining methods, unlabled corpora, embedding
dimensions, as well other design choices, on the �nal reading comprehension performance. We
also explore how to best deal with out-of-vocabulary (OOV) tokens, i.e. words which are en-
countered for the �rst time during testing. We show that these seemingly minor choices can
lead to substantial di�erences in the �nal performance of the reader. Furthermore, these dif-
ferences can be much larger than the gains reported due to architectural improvements. As a
concrete example, in Figure 4.1 we compare the performance of two models—Stanford A�entive
Reader (AR) [25] and Gated A�ention (GA) Reader [54]—on the Who-Did-What dataset [151],
initialized with word embeddings trained on di�erent corpora. Clearly, comparison between

48

architectures is meaningful only under a controlled initialization method.
Next we discuss transfer learning for the other two steps in the model—contextual repre-

sentations for the text and answer selection. We present a semi-supervised QA system which
consists of three stages. First, we construct cloze-style questions (predicting missing spans of
text) from the unlabeled corpus; next, we use the generated clozes to pre-train a powerful neu-
ral network model for extractive QA [31]; and �nally, we �ne-tune the model on the small set
of provided QA pairs. Our cloze construction process builds on a typical writing phenomenon
and document structure: an introduction precedes and summarizes the main body of the article.
Many large corpora follow such a structure, including Wikipedia, academic papers, and news
articles. We hypothesize that we can bene�t from the un-annotated corpora to be�er answer
various questions—at least ones that are lexically similar to the content in base documents and
directly require factual information.

We apply the proposed system on three datasets from di�erent domains – S�AD [166],
TriviaQA-Web [104] and the BioASQ challenge [208]. We observe signi�cant improvements
in a low-resource se�ing across all three datasets. For S�AD and TriviaQA, we a�ain an
F1 score of more than 50% by merely using 1% of the training data. Our system outperforms
the approaches for semi-supervised QA presented in Yang et al. [245], and a baseline which
uses the same unlabeled data but with a language modeling objective for pretraining. In the
BioASQ challenge, we outperform the best performing system from previous year’s challenge,
improving over a baseline which does transfer learning from the S�AD dataset. Our analysis
reveals that questions which ask for factual information and match to speci�c parts of the
context documents bene�t the most from pretraining on automatically constructed clozes.

4.2 Analysis of Word Embeddings

4.2.1 Reading Comprehension Setup

We experiment with two benchmarks from di�erent domains—Who-Did-What (WDW) [151]
constructed from news stories, and the Children’s Book Test (CBT) [95] constructed from chil-
dren’s books. For CBT we only consider the questions where the answer is a named entity
(CBT-NE). Among the numerous models proposed for these benchmarks (see § 3.5 for a list),
we pick two – the simple, but competitive, Stanford AR from Chen et al. [25], and the high-
performing GA Reader from the previous chapter. �e Stanford AR consists of single-layer
Bidirectional GRU encoders for both the document and the query, followed by a bilinear a�en-

49

Emb. Corpus Domain Size Vocab

OTS
Wiki + Gigaword /
GoogleNews

Wiki /
News

6B /
100B

400K /
3M

WDW Who-Did-What News 50M 91K
BT BookTest Fiction 8B 1.2M
CBT Children’s BookTest Fiction 50M 48K

Table 4.1: Details of corpora used for training word embeddings. OTS: O�-�e-Shelf embed-
dings provided with GloVe / word2vec. Corpus size is in # of tokens.

tion operator for computing a weighted average representation of the document. �e original
model, which was developed for the anonymized CNN / Daily Mail datasets, used an output
lookup table Wa to select the answer. However, without anonymization the number of answer
candidates can become very large. Hence, we instead select the answer from the document
representation itself, followed by the a�ention-sum mechanism.

For the WDW dataset we use hidden state size d = 128 for the GRU and dropout with
0.3 probability. For CBT-NE dataset we use d = 128 and dropout with 0.4 probability. �e
Stanford AR has only 1 layer as proposed in the original paper, while the GA Reader has 3

layers. For Stanford AR dropout is applied to the input of the layer, and for GA Reader it
is applied in between layers. Embeddings sizes for the word vectors were set to dw = 100

for all experiments, except those using o�-the-shelf word2vec embeddings. To enable a fair
comparison, we utilize the qe-feature for Stanford AR, which was used in the implementation
of GA Reader. Since our purpose is to study the e�ect of word vectors, we do not use character
embeddings in our experiments. We train the models using the ADAM [109] optimizer with an
initial learning rate of 0.0005, which is halved every epoch a�er the �rst 3 epochs. We track
performance on the validation set, and select the model with the highest validation accuracy
for testing.

4.2.2 Pretraining Methods

Two popular methods for inducing word embeddings from text corpora are GloVe [155] and
word2vec [134].1 �ese packages also provide o�-the-shelf (OTS) embeddings trained on large

1�is work was carried out before the introduction of ELMo [156] and BERT [51]

50

Figure 4.2: Test set accuracy and std error for GA Reader and Stanford AR on WDW (le�,
middle-le�) and CBT-NE (middle-right, right) when trained a�er initializing with pre-trained
embeddings induced from di�erent corpora (Table 4.1), or randomly

corpora.2 While the GloVe package provides embeddings with varying sizes (50-300), word2vec
only provides embeddings of size 300. We also train three additional embeddings, listed in
Table 4.1, including those trained on the target datasets themselves. In summary, we test with
two in-domain corpora for WDW: one large (OTS) and one small (WDW), and two in-domain
corpora for CBT: one large (BT) and one small (CBT).

When training word vectors we retain the default se�ings provided with the GloVe and
word2vec packages, with the only exception that window size was set to 10 for both (to ensure
consistency). For word2vec, we used skip-gram architecture with hierarchical so�max, and sub-
sampled frequent words with a threshold 10−3 (see Mikolov et al. [134] for details). For GloVe,
we used 15 iterations when training on the small WDW and CBT corpora, and 50 iterations
for the large BT corpus. In any corpus, words occurring less than 5 times were �ltered before
training the word vectors. Previous studies [121] have shown that hyperparameter choices
may have a signi�cant impact on downstream performance. However, training a single RC
model can take anywhere from several hours to several days, and tuning hyperparameters for
the embedding method on this downstream task is both infeasible and rarely done in practice.
Instead, our goal is to provide guidelines to researchers using these methods out-of-the-box.

4.2.3 Performance Comparison

We repeat each experiment twice with di�erent random seeds and report the average test set
accuracy across the two runs. Figure 4.2 shows a reading comprehension performance for GA
Reader and Stanford AR a�er initializing with various pre-trained embeddings, and also a�er

2�e word2vec package contains embeddings for both capitalized and lowercase words. We convert all words
to lowercase, and if a word has both lowercase and uppercase embeddings we use the lowercase version.

51

Figure 4.3: Test set accuracy and std error on (le�) WDW when initialized with o�-the-shelf
GloVe embeddings of di�erent sizes, (right) CBT-NE when initialized with embeddings trained
on BT corpus a�er removing a fraction of stopwords (red), or using di�erent window sizes
(green).

initializing randomly. We see consistent results across the two datasets and the two models.

�e �rst observation is that using embeddings trained on the right corpora can improve
anywhere from 3-6% over random initialization. However, the corpus and method used for
pre-training are important choices: for example word2vec embeddings trained on CBT per-
form worse than random. Also note that in every single case, GloVe embeddings outperform
word2vec embeddings trained on the same corpora. It is di�cult to claim that one method is
be�er than the other, since previous studies [121] have shown that these methods are sensitive
to hyperparameter tuning. However, if used out-of-the-box, GloVe seems to be the preferred
method for pre-training.

�e single best performance is given by o�-the-shelf GloVe embeddings (dw = 100) in
each case, which outperform o�-the-shelf word2vec embeddings (dw = 300). To understand
if the di�erence comes from the di�ering dimension sizes, we plot the performance of GloVe
embeddings as the dimension size is increased in Figure 4.3 (le�). Performance drops as the
embedding dimension size is increased (most likely due to over-��ing); however even at dw =

300, GloVe embeddings outperform word2vec embeddings.

On both test datasets embeddings trained on formal domains, like news (OTS, WDW), per-
form at least as well as those trained on informal ones, like �ction (BT, CBT). �is is surprising
for CBT-NE dataset which is itself constructed from the informal domain of children’s books.
For example, WDW (50M tokens) does signi�cantly be�er than CBT-NE (50M tokens) in 3 out of
the 4 cases, and also signi�cantly be�er than the much larger BT (8B tokens) in one se�ing (and
comparably in other se�ings). A key distinguishing feature between these two domains is the

52

Figure 4.4: Test set accuracy and std error for GA Reader on WDW (le�) and CBT-NE (right)
when trained a�er assigning di�erent cuts of the vocabulary with word vectors. Min frequency

refers to the minimum count of a word type for it to be included in the vocabulary.

fraction of text composed of stopwords – WDW consists of 54% stopwords while BT consists of
68% stopwords. Both GloVe and word2vec induce word vectors by minimizing the Euclidean
distance between vectors of frequently co-occurring words. Co-occurrence with stopwords,
however, provides li�le meaningful information about the distributional semantics of a word,
and hence corpora with a high percentage of these may not produce high-quality vectors. �is
e�ect may be mitigated during pre-training by either, (1) removing a fraction of stopwords from
the corpus, (2) increasing the window size for counting co-occuring words. Figure 4.3 (right)
shows the e�ect of both these methods on downstream RC performance. �ere is an improve-
ment as the fraction of stopwords decreases or the window size increases, upto a certain limit.
In fact, with proper tuning, BT embeddings give roughly the same performance as OTS GloVe,
emphasizing the importance of hyperparameter tuning when training word vectors. �ere is
also evidence that stopword removal can be bene�cial when training word vectors, however
this needs further veri�cation on other downstream tasks.

4.2.4 Handling OOV tokens

In this section we study some common techniques for dealing with OOV tokens at test time.
Based on the results from the previous section, we conduct this study using only the o�-the-
shelf GloVe pre-trained embeddings. Let the training and test vocabularies be denoted by VT
and VE , respectively, i.e. the collection of all the unique words in the corpus. Further, let VG
denote the vocabulary of the corpus on which o�-the-shelf Glove embeddings are trained. Also
de�ne VTn = {t ∈ VT : #t > n} where #t denotes the count of token t in the training corpus.

53

Before training a neural network for RC, the developer must �rst decide on the set of words V
which will be assigned word vectors. Any token outside V is treated as an OOV token (denoted
by UNK) and is assigned the same �xed vector.

By far the most common technique in NLP literature [25, 183] for constructing this vocab-
ulary is to decide on a minimum frequency threshold n (typically 5-10) and set V = VTn . Out
of these, vectors for those which also appear in VG are initialized to their GloVe embeddings,
and the rest are randomly initialized. Remaining tokens in VT and those in VE − VT are all
assigned the UNK vector, which is itself updated during training. �is method ignores the fact
that many of the words assigned as UNK may have already trained embeddings available in
VG. Hence, here we propose another strategy of constructing the vocabulary as V = VTn ∪VG.
�en at test time, any new token would be assigned its GloVe vector if it exists, or the vector for
UNK. A third approach is motivated by the fact that many of the RC models rely on computing
a �ne-grained similarity between the document and query tokens. Hence, instead of assigning
all OOV tokens a common UNK vector, it might be be�er to assign them untrained but unique
random vectors. �is can be done by se�ing the vocabulary to V = VTn ∪VE ∪VG. �en at test
time any new token will be assigned its GloVe vector if it exists, or a random vector. Note that
for this approach access to VE at training time is not needed.

Figure 4.4 shows a comparison of all three approaches with varying n for the GA Reader
on WDW and CBT-NE datasets. A gap of 3% and 11% between the best and worst se�ing for
WDW and CBT-NE respectively clearly indicates the importance of using the correct se�ing.
�e commonly used method of se�ing V = VTn is not a good choice for RC, and gets worse as n
is increased. It performs particularly poorly for the CBT-NE dataset, where∼ 20% of the test set
answers do not appear in the training set (compared to only ∼ 1.5% in WDW). �e other two
approaches perform comparably for WDW, but for CBT-NE assigning random vectors rather
than UNK to OOV tokens gives be�er performance. �is is also easily explained by looking at
fraction of test set answers which do not occur in VT0 ∪VG: it is∼ 10% for CBT-NE, and < 1%

for WDW. Since in general it is not possible to compute these fractions without access to the
test set, we recommend se�ing V = VTn ∪ VE ∪ VG.

4.3 Cloze Pretraining

�e previous section focused on pretraining the word embedding layer. Here we present a gen-
eral semi-supervised technique for pretraining the entire reading comprehension architecture.

54

Passage (P) : Autism is a neurodevelopmental disorder characterized by
impaired social interaction, verbal and non-verbal communication,
and …restricted and repetitive behavior. Parents usually notice signs
in the �rst two years of their child’s life. �ese signs o�en develop
gradually, though some children with autism reach their developmen-
tal milestones at a normal pace and then regress.
�estion (Q) : People with autism tend to be a li�le aloof with li�le to
no .
Answer (A) : social interaction

Table 4.2: An example constructed cloze.

4.3.1 System

At a high-level, our system proceeds in three steps. First we generate a set of cloze-style ques-
tions from the unlabeled data automatically. Next, we pretrain an existing model to answer
these questions. Finally, we �ne-tune the model on a small amount of labeled data for the
task we care about. We focus on the S�AD, TriviaQA, and BioASQ datasets in this section
(described in detail below).

Cloze Generation. Many web documents follow a template—they begin with an introduc-
tion that provides an overview and a brief summary for what is to follow. We assume such
a structure while constructing our cloze style questions. When there is no clear demarcation,
we treat the �rst K% of the document as the introduction (K is a hyperparameter, in our case
20%). While noisy, this heuristic generates a large number of clozes given any corpus, which
we found to be bene�cial for semi-supervised learning despite the noise.

We use a standard NLP pipeline based on Stanford CoreNLP3 (for S�AD, TrivaQA and
PubMed) and the BANNER Named Entity Recognizer4 (only for PubMed articles) to identify en-
tities and phrases. Assume that a document comprises of introduction sentences {q1, q2, ...qn},
and the remaining passages {s1, s2, . . . , sm}. Additionally, let’s say that each sentence qi in
introduction is composed of words {w1, w2, ...wlqi}, where lqi is the length of qi. We consider
a match(qi, sj), if there is an exact string match of a sequence of words {wk, wk+1, ..wlqi} be-
tween the sentence qi and passage sj . If this sequence is either a noun phrase, verb phrase,

3h�ps://stanfordnlp.github.io/CoreNLP/
4h�p://banner.sourceforge.net

55

adjective phrase or a named entity in sj , as recognized by CoreNLP or BANNER, we select it as
an answer span a. Additionally, we use sj as the passage and form a cloze question q̂i from the
answer bearing sentence qi by replacing a with a placeholder. As a result, we obtain passage-
question-answer (sj, q̂i, a) triples (Table 4.2 shows an example). As a post-processing step, we
prune out (s, q, a) triples where the word overlap between the question (Q) and passage (P) is
less than 2 words (a�er excluding the stop words).

�e process relies on the fact that answer candidates from the introduction are likely to
be discussed in detail in the remainder of the article. In e�ect, the cloze question from the
introduction and the matching paragraph in the body forms a question and context passage
pair. We create two cloze datasets, one each from Wikipedia corpus (for S�AD and TriviaQA)
and PubMed academic papers (for the BioASQ challenge), consisting of 2.2M and 1M clozes
respectively. From manually analyzing 100 cloze questions each, we were able to answer 76

from the Wikipedia set and 80 from the PubMed set using the information in the passage. In
most cases the cloze paraphrased the information in the passage, which we hypothesized to be
a useful signal for the downstream QA task.

We also investigate the utility of forming subsets of the large cloze corpus, where we select
the top passage-question-answer triples, based on the di�erent criteria, like i) Jaccard similarity
of answer bearing sentence in introduction and the passage ii) the TFIDF scores of answer
candidates and iii) the length of answer candidates. However, we empirically �nd that we were
be�er o� using the entire set rather than these subsets.

Pre-training. We make use of the generated cloze dataset to pre-train an expressive neural
network designed for the task of reading comprehension. We work with two neural network
models—the GA Reader, and BiDAF + Self-A�ention (SA) model from Clark and Gardner [31].5

A�er pretraining, the performance of BiDAF+SA on a dev set of the (Wikipedia) cloze questions
is 0.58 F1 score and 0.55 Exact Match (EM) score. �is implies that the cloze corpus is neither
too easy, nor too di�cult to answer.

Fine Tuning. We �ne tune the pre-trained model, from the previous step, over a small set of
labeled question-answer pairs. As we shall later see, this step is crucial, and it only requires a
handful of labelled questions to achieve a signi�cant proportion of the performance typically
a�ained by training on tens of thousands of questions.

5https://github.com/allenai/document-qa

56

https://github.com/allenai/document-qa

4.3.2 Experiments

Datasets. We apply our system to three datasets from di�erent domains. S�AD [166] con-
sists of questions whose answers are free form spans of text from passages in Wikipedia articles.
We follow the same se�ing as in Yang et al. [245], and split 10% of training questions as the
test set, and report performance when training on subsets of the remaining data ranging from
1% to 90% of the full set. We also report the performance on the dev set when trained on the
full training set. We compare and study four di�erent se�ings:

1. SL: �e Supervised Learning se�ing, which is only trained on the supervised data.

2. GDAN : �e best performing model from Yang et al. [245].

3. LM: Pretraining on language modeling and �ne-tuning on the supervised data.

4. Cloze: Pretraining on the Cloze dataset and �ne-tuning on the supervised data.
GDAN trains an auxiliary neural network to generate questions from passages by reinforce-

ment learning, and augment the labeled dataset with the generated questions to train the QA
model. �e LM and Cloze methods use exactly the same data for pretraining, but di�er in the
loss functions used. We report F1 and EM scores on our test set using the o�cial evaluation
scripts provided by the authors of the dataset. Since the GA Reader uses bidirectional RNN
layers, when pretraining the LM we had to mask the inputs to the intermediate layers partially
to avoid the model being exposed to the labels it is predicting. �is results in a only a sub-
set of the parameters being pretrained, and leads to a poor performance for this baseline (see
Table 4.3). �is limitation has since been addressed by Devlin et al. [51], by introducing the
Masked Language Modeling (MLM) objective (more discussion on this below).

TriviaQA [104] comprises of over 95K web question-answer-evidence triples. Like S�AD,
the answers are spans of text. Similar to the se�ing in S�AD, we create multiple smaller sub-
sets of the entire set. For our semi-supervised QA system, we use the BiDAF+SA model [31]—the
highest performing publicly available system for TrivaQA. Here again, we compare the super-
vised learning SL se�ings against the pretraining on Cloze set and �ne tuning on the supervised
set. We report F1 and EM scores on the dev set.6

We also test on the BioASQ 5b dataset, which consists of question-answer pairs from PubMed
abstracts. We use the publicly available system7 from Wiese et al. [230], and follow the exact
same setup as theirs, focusing only on factoid and list questions. For this se�ing, there are only

6We use a sample of dev questions, which is the default se�ing for the code by Clark and Gardner [31]. Since
our goal is only to compare the models, this is not problematic.

7https://github.com/georgwiese/biomedical-qa

57

https://github.com/georgwiese/biomedical-qa

899 questions for training. Since this is already a low-resource problem we only report results
using 5-fold cross-validation on all the available data. We report Mean Reciprocal Rank (MRR)
on the factoid questions, and F1 score for the list questions. �e reader is referred to Wiese
et al. [230] for details.

Model Method
0 0.01 0.05 0.1 0.2 0.5 0.9 1

F1 EM F1 EM F1 EM F1 EM F1 EM F1 EM F1 EM F1 EM

S�AD

GA SL – – 0.0882 0.0359 0.3517 0.2275 0.4116 0.2752 0.4797 0.3393 0.5705 0.4224 0.6125 0.4684 – –
GA GDAN – – – – – – 0.4840 0.3270 0.5394 0.3781 0.5831 0.4267 0.6102 0.4531 – –
GA LM – – 0.0957 0.0394 0.3141 0.1856 0.3725 0.2365 0.4406 0.2983 0.5111 0.3589 0.5520 0.3964 – –
GA Cloze – – 0.3090 0.1964 0.4688 0.3385 0.4937 0.3588 0.5575 0.4126 0.6086 0.4679 0.6302 0.4894 – –

BiDAF+SA SL – – 0.1926 0.1018 0.4764 0.3388 0.5639 0.4258 0.6484 0.5031 0.7044 0.5615 0.7287 0.5874 0.8069 0.7154
BiDAF+SA Cloze 0.0682 0.032 0.5042 0.3751 0.6324 0.4862 0.6431 0.4995 0.6839 0.5413 0.7151 0.5767 0.7369 0.6005 0.8080 0.7186

TRIVIA-QA

BiDAF+SA SL – – 0.2533 0.1898 0.4215 0.3566 0.4971 0.4318 0.5624 0.5077 0.6867 0.6239 0.7131 0.6617 0.7291 0.6786
BiDAF+SA Cloze 0.1182 0.0729 0.5521 0.4807 0.6245 0.5614 0.6506 0.5893 0.6849 0.6281 0.7196 0.6607 0.7381 0.6823 0.7461 0.6903

Table 4.3: A holistic view of the performance of our system compared against baseline systems
on S�AD and TriviaQA. Column groups represent di�erent fractions of the training set used
for training.

Main Results Table 4.3 shows a comparison of the discussed se�ings on both S�AD and
TriviaQA. Without any �ne-tuning (column 0) the performance is low, probably because the
model never saw a real question, but we see signi�cant gains with Cloze pretraining even with
very li�le labeled data. �e BiDAF+SA model, exceeds an F1 score of 50% with only 1% of the
training data (454 questions for S�AD, and 746 questions for TriviaQA), and approaches 90%

of the best performance with only 10% labeled data. �e gains over the SL se�ing, however,
diminish as the size of the labeled set increases and are small when the full dataset is available.

Method Factoid MRR List F1

SL∗ 0.242 0.211
S�AD pretraining 0.262 0.211
Cloze pretraining 0.328 0.230

Table 4.4: 5-fold cross-validation results on BioASQ Task 5b. ∗Our SL experiments showed
be�er performance than what was reported in Wiese et al. [230].

58

AL Answer Length
ALP Answer Location in Passage
ALSP Answer Location in Sentence
ARC Answer Rareness w.r.t Cloze corpus
ARS Answer Rareness w.r.t Squad corpus
ASL Answer Sentence Length
DL Document Length
FA Frequency of Answer in Passage
LOQP Lexical Overlap Question and Passage
LOQS Lexical Overlap Question and Answer Sentence
LSQP Lexical Similarity Question and Passage
LSQS Lexical Similarity Question and Answer Sentence
PRC Passage Rareness w.r.t Cloze corpus
PRS Passage Rareness w.r.t Squad corpus
QL Question Length
QRC Question Rareness w.r.t Cloze corpus
QRS Question Rareness w.r.t Squad corpus

Figure 4.5: Descriptions of the features extracted from the questions.

Cloze pretraining outperforms the GDAN baseline from Yang et al. [245] using the same
S�AD dataset splits. Additionally, we show improvements in the 90% data case unlike GDAN.
Our approach is also applicable in the extremely low-resource se�ing of 1% data, which we sus-
pect GDAN might have trouble with since it uses the labeled data to do reinforcement learning.
Furthermore, we are able to use the same cloze dataset to improve performance on both S�AD
and TriviaQA datasets.

On the BioASQ dataset (Table 4.4) we again see a signi�cant improvement when pretraining
with the cloze questions over the supervised baseline. �e improvement is smaller than what
we observe with S�AD and TriviaQA datasets—we believe this is because questions are gen-
erally more di�cult in BioASQ. Wiese et al. [230] showed that pretraining on S�AD dataset
improves the downstream performance on BioASQ. Here, we show a much larger improve-
ment by pretraining on cloze questions constructed in an unsupervised manner from the same
domain.

4.3.3 Analysis

Next, we try to gain an understanding as to which types of questions bene�t the most from
cloze-pretraining.

59

AL
ALP

ALSP
ARC

ARS ASL DL FA
LOQP

LOQS
LSQP

LSQS
PRC PRS QL

QRC
QRS

−0.05

0.00

0.05

0.10

C
o

effi
ci

en
ts

Regression Analysis

ycloze

ysl

ycloze − ysl

Figure 4.6: Regression coe�cients, along with std-errors, when predicting F1 score of cloze
model, or sl model, or the di�erence of the two, from features computed from S�AD dev set
questions.

Regression Analysis. To understand which types of questions bene�t from pre-training, we
pre-speci�ed certain features, listed in Figure 4.5, for each of the dev set questions in S�AD,
and then performed linear regression to predict the F1 score for that question from these fea-
tures. We predict the F1 scores from the cloze pretrained model (ycloze), the supervised model
(ysl), and the di�erence of the two (ycloze−ysl), when using 10% of labeled data. �e coe�cients
of the ��ed model are shown in Figure 4.6 along with their std errors. Positive coe�cients in-
dicate that a high value of that feature is predictive of a high F1 score, and a negative coe�cient
indicates that a small value of that feature is predictive of a high F1 score (or a high di�erence
of F1 scores from the two models in the case of ycloze − ysl).

�e two strongest e�ects we observe are that a high lexical overlap between the question
and the sentence containing the answer is indicative of high boost with pretraining, and that a
high lexical overlap between the question and the whole passage is indicative of the opposite.
�is is hardly surprising, since our cloze construction process is biased towards questions which
have a similar phrasing to the answer sentences in context. Hence, test questions with a similar
property are answered correctly a�er pretraining, whereas those with a high overlap with the
whole passage tend to have lower performance. �e pretraining also favors questions with short
answers because the cloze construction process produces short answer spans. Also passages
and questions which consist of tokens infrequent in the S�AD training corpus receive a large
boost a�er pretraining, since the unlabeled data covers a larger domain.

60

ABBR
HUM

LOC
ENTY

NUM
DESC

0.0

0.1

0.2

0.3

0.4

0.5

0.6

y
cl
oz
e
−
y
sl

Conditional Performance - Question Classes

None IN
WHO

WHAT

WHERE
HOW

WHEN
WHICH

WHY
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

y
cl
oz
e
−
y
sl

Conditional Performance - ”WH” Question Types

Figure 4.7: Performance gain with pretraining for di�erent subsets of question types.

Performance on question types. Figure 4.7 shows the average gain in F1 score for di�erent
types of questions, when we pretrain on the clozes compared to the supervised case. �is
analysis is done on the 10% split of the S�AD training set. We consider two classi�cations of
each question – one determined on the �rst word (usually a wh-word) of the question and one
based on the output of a separate question type classi�er8 adapted from [125]. We use the coarse
grain labels namely Abbreviation (ABBR), Entity (ENTY), Description (DESC), Human (HUM),
Location (LOC), Numeric (NUM) trained on a Logistic Regression classi�cation system . While
there is an improvement across the board, we �nd that abbreviation questions in particular
receive a large boost. Also, ”why” questions show the least improvement, which is in line
with our expectation, since these usually require reasoning or world knowledge which cloze
questions rarely require.

4.4 Discussion

In this chapter we looked at techniques for transfer learning from unsupervised data to the task
of reading comprehension / QA. Following standard practice at the time, we discussed methods
for pre-training the word embedding layer separately from a novel method for pre-training
the entire network. However, recent advances have led to a uni�ed framework for pretraining
using language modeling which we brie�y discuss here.

Peters et al. [156] and McCann et al. [133] proposed contextualized word embeddings as
an alternative to �xed word embeddings like Glove and word2vec. �e former trained two
LMs, one from le� to right and one from right to le� in a text sequence, and used their hidden
representations as the contextual embeddings of tokens in a sentence, known as ELMo (Embed-
dings from Language Models). By replacing regular word embeddings with these, they showed
a large improvement on several benchmark NLP tasks, including reading comprehension. �e

8h�ps://github.com/brmson/question-classi�cation

61

limitation with ELMo, however, is that it utilizes transfer learning only for the word embedding
layer, or the �rst step noted in the introduction of this chapter. Radford et al. [163] and Devlin
et al. [51] proposed neural architectures based on Transformers [209], which could be entirely
pretrained using language modeling, and �ne-tuned for di�erent tasks with signi�cantly be�er
results than just pretraining the word embeddings.

BERT, from Devlin et al. [51], in particular, addressed an important limitation with how LM
pretraining was used in this chapter, by introducing the Masked LM (MLM) objective, which can
utilize bidirectional contexts when predicting a token. MLM can be viewed as a combination
of the cloze and LM objectives, and proceeds by masking out tokens in the input which are
predicted from the context around them. Our cloze-based objective can be viewed as a precursor
to BERT, with two main di�erences. First, our objective masks salient spans (such as named
entities) instead of randomly selected tokens. Recent work [86, 105], in fact, has shown that
a similar strategy for BERT is also e�ective. Second, we predict the masked out span using
a di�erent context from the same document, in a manner similar to reading comprehension
tasks, whereas BERT predicts it from the same context in which the span appears. �is further
simpli�es the construction of the pretraining data, and allows BERT to be trained on a much
larger collection of tokens, a key factor in its superior performance.9

We also discussed strategies for handling OOV tokens at test time. BERT, and other related
models, use WordPiece tokenization [237], which composes representations of rare words from
there frequently occurring sub-parts. In this manner, both the embedding of the sub-parts and
the composition function are pretrained on the LM objective on large amounts of data. �is
works well in practice, though a detailed investigation of how the intermediate representations
in BERT capture word meanings is missing from the literature.

9BERT is trained on 3.3B words, as opposed to the 2.2M clozes we construct here. Each cloze ranges from 1-5
tokens.

62

Part II

Learning with Knowledge Graphs

63

Chapter 5

Open-Domain QA

So far we have looked at answering questions against a small given passage. In a practical set-
ting, however, given a question we do not know which passage contains the answer, and instead
must search for it in a potentially large corpus. Further, some of the information of interest may
be already organized in knowledge bases (KBs), and we would like to utilize these as well in our
QA system. Hence, in this chapter, we turn to the practical problem of open-domain QA, where,
given a question, we need to �nd its answer in a large knowledge source. Speci�cally, we will
focus on the case where the knowledge source consists of text and a (potentially incomplete)
knowledge graph. �e work presented in this chapter �rst appeared in:

• Haitian Sun*, Bhuwan Dhingra*, Manzil Zaheer, Kathryn Mazaitis, Ruslan Salakhutdinov,
and William W. Cohen. Open domain question answering using early fusion of knowl-
edge bases and text. In Proceedings of the 2018 Conference on Empirical Methods in Natural

Language Processing, Brussels, Belgium, October 31 - November 4, 2018, pages 4231–4242,
2018

Code for reproducing the experiments in this chapter is available on Github.1

5.1 Overview

While there has been much interest in training end-to-end deep neural networks for open-
domain QA, most existing models answer questions using a single information source: either
text from an encyclopedia, or a single KB. Intuitively, the suitability of an information source
for QA depends on both its coverage and the di�culty of extracting answers from it. A large text

1https://github.com/OceanskySun/GraftNet

65

https://github.com/OceanskySun/GraftNet

Figure 5.1: (Le�) To answer a question posed in natural language, GRAFT-Net considers a het-
erogeneous graph constructed from text and KB facts, and thus can leverage the rich rela-
tional structure between the two information sources. (Right) Embeddings are propagated in
the graph for a �xed number of layers (L) and the �nal node representations are used to classify
answers.

corpus has high coverage, but the information is expressed using many di�erent text pa�erns.
As a result, models which operate on these pa�erns (e.g. the GA Reader from Chapter 3) do not
generalize beyond their training domains [58, 229] or to novel types of reasoning [200, 222], and
are easily fooled by adversarial inputs [102]. KBs, on the other hand, su�er from low coverage
due to their inevitable incompleteness and restricted schema [136], but are easier to extract
answers from, since they are constructed precisely for the purpose of being queried.

In practice, some questions are best answered using text, while others are best answered
using KBs. A natural question, then, is how to e�ectively combine both types of information.
Surprisingly li�le prior work has looked at this problem, and in this chapter we focus on a
scenario in which a large-scale KB [5, 18] and a text corpus are available, but neither is su�cient
alone for answering the questions of interest.

A naı̈ve option, in such a se�ing, is to take state-of-the-art QA systems developed for each
source, and aggregate their predictions using some heuristic [11, 71]. We call this approach late

fusion, and show that it can be sub-optimal, as models have limited ability to aggregate evidence
across the di�erent sources. Instead, we focus on an early fusion strategy, where a single model
is trained to extract answers from a question subgraph (see Fig 5.1, le�) containing relevant KB
facts as well as text sentences. Early fusion allows more �exibility in combining information
from multiple sources.

To enable early fusion, we propose a novel graph convolution based neural network, called

66

GRAFT-Net (Graphs of Relations Among Facts and Text Networks), speci�cally designed to op-
erate over heterogeneous graphs of KB facts and text sentences. We build upon recent work on
graph representation learning [110, 177], but propose two key modi�cations to adopt them for
the task of QA. First, we propose heterogeneous update rules that handle KB nodes di�erently
from the text nodes: for instance, LSTM-based updates are used to propagate information into
and out of text nodes. Second, we introduce a directed propagation method, inspired by per-
sonalized Pagerank in IR [89], which constrains the propagation of embeddings in the graph to
follow paths starting from seed nodes linked to the question. Empirically, we show that both
these extensions are crucial for the task of QA. An overview of the model is shown in Figure 5.1.

We evaluate these methods on a new suite of benchmark tasks for testing QA models when
both KB and text are present. Using WikiMovies [135] and Web�estionsSP [251], we con-
struct datasets with a varying amount of training supervision and KB completeness, and with
a varying degree of question complexity. We report baselines for future comparison, including
Key Value Memory Networks [44, 135], and show that our proposed GRAFT-Nets have superior
performance across a wide range of conditions. We also show that GRAFT-Nets are compet-
itive with the several high-performing systems developed speci�cally for the text-only QA or
KB-only QA, while being applicable to both.

5.2 Retrieval

Task Description

We assume access to a knowledge base, denoted asK = (N , E ,R), whereN is the set of entities
in the KB, and the edges E are triplets (s, r, o) which denote that relation r ∈ R holds between
the subject s ∈ V and object o ∈ V . We also assume access to a text corpus S , which is a set
of documents {s1, . . . , s|S|} where each document is a sequence of words si = (w1, . . . , w|si|).
We further assume that an (imperfect) entity linking system has been run on the collection of
documents whose output is a set L of links (v, sp) connecting an entity v ∈ N with a word at
position p in document s, and we denote with Ls the set of all entity links in document s. For
entity mentions spanning multiple words in s, we include links to all the words in the mention
in L.

�e task is, given a natural language question q = (w1, . . . , w|q|), extract its answers {a}q
from G = (K,S,L). �ere may be multiple correct answers for a question. Here we will assume
that the answers are entities from either the documents or the KB. We are interested in a wide

67

range of se�ings for answering the questions, where the KB K varies from highly incomplete
to complete, and we will introduce datasets for testing our models under these se�ings.

To solve this task we proceed in two steps. First, we extract a subgraph Gq ⊂ G which
contains the answer to the question with high probability. �e goal for this step is to ensure high
recall for answers while producing a graph small enough to �t into GPU memory for gradient-
based learning. Next, we use our proposed model GRAFT-Net to learn node representations in
Gq, conditioned on q, which are used to classify each node as being an answer or not. Training
data for the second step is generated using distant supervision. �e entire process mimics the
search-and-read paradigm for text-based QA [55].

�estion Subgraphs

We retrieve the subgraph Gq using two parallel pipelines – one over the KB K which returns a
set of entities, and the other over the corpus S which returns a set of documents. �e retrieved
entities and documents are then combined with entity links to produce a graph with exactly
one connected component.

KBRetrieval. To retrieve relevant entities from the KB we �rst perform entity linking on the
question q, producing a set of seed entities, denotedNq. Next we run the Personalized PageRank
(PPR) method (§ 2.2.3) around these seeds to identify other entities which might be an answer to
the question. �e edge-weights around Nq are distributed equally among all edges of the same
type, and they are weighted such that edges relevant to the question receive a higher weight
than those which are not. Speci�cally, we average word vectors to compute a relation vector
from the surface form of the relation, and a question vector from the words in the question, and
use cosine similarity between these as the edge weights. A�er running PPR we retain the top
E entities v1, . . . , vE by PPR score, along with any edges between them, and add them to Gq.

Text Retrieval. We use Wikipedia as the corpus and retrieve text at the sentence level, i.e.
documents in S are de�ned along sentences boundaries.2 We perform text retrieval in two
steps: �rst we retrieve the top 5 most relevant Wikipedia articles, using TFIDF search (§ 2.2.3);
then we populate a Lucene3 index with sentences from these articles, and retrieve the top D
sentences s1, . . . , sD, based on the words in the question. For the sentence-retrieval step, we
found it bene�cial to include the title of the article as an additional �eld in the Lucene index. As

2�e term document will always refer to a sentence in this chapter.
3https://lucene.apache.org/

68

https://lucene.apache.org/

most sentences in an article talk about the title entity, this helps in retrieving relevant sentences
that do not explicitly mention the entity in the question. We add the retrieved documents, along
with any entities linked to them, to the subgraph Gq.

�e �nal question subgraph is Gq = (Nq, Eq,R+), where the vertices Nq consist of all the
retrieved entities and documents, i.e. Nq = {v1, . . . , vE} ∪{s1, . . . , sD}. �e edges are all
relations from K among these entities, plus the entity-links between documents and entities,
i.e.

Eq = {(s′, o, r) ∈ E : s′, o ∈ Nq, r ∈ R} ∪ {(v, sp, rL) : (v, sp) ∈ Ls, s ∈ Vq},

where rL denotes a special “linking” relation. R+ = R∪{rL} is the set of all edge types in the
subgraph.

5.3 GRAFT-Nets

�e question q and its answers {a}q induce a labeling of the nodes in Nq: we let yv = 1 if
v ∈ {a}q and yv = 0 otherwise for all v ∈ Nq. �e task of QA then reduces to performing
binary classi�cation over the nodes of the graph Gq. In this section we present an extension to
the Graph Convolution Network (GCN) model discussed in § 2.2.2 suited for this task.

�ere are two di�erences in our se�ing from previously studied graph-based classi�cation
tasks. �e �rst di�erence is that, in our case, the graph Gq consists of heterogeneous nodes. Some
nodes in the graph correspond to KB entities which represent symbolic objects, whereas other
nodes represent textual documents which are variable length sequences of words. �e second
di�erence is that we want to condition the representation of nodes in the graph on the natural
language question q. Below we discuss mechanisms for dealing with both these di�erences.

Node Initialization

Nodes corresponding to entities are initialized using �xed-size vectors h(0)
v = xv ∈ Rd, where

xv can be pre-trained KB embeddings or random, and d is the embedding size. Document
nodes in the graph describe a variable length sequence of text. Since multiple entities might
link to di�erent positions in the document, we maintain a variable length representation of the
document in each layer. �is is denoted by H(l)

s ∈ R|s|×d. Given the words in the document
(w1, . . . , w|s|), we initialize its hidden representation as:

H(0)
s = LSTM(w1, w2, . . . , w|s|),

69

Chabertvoiced by Lacey during ...

LSTM -- layer l-1

LSTM -- layer l

Lacey Chabert

...

FFN

...Chabert

Lacey Chabert

Q. Who voiced Meg in Family Guy?

voiced... by Lacey during ...

LSTM

CVT1

Entity Update Text Update

Figure 5.2: Illustration of the heterogeneous update rules for entities (Le�) and text documents
(Right).

where LSTM refers to a long short-term memory unit. We denote the p-th row of H(l)
s , corre-

sponding to the embedding of p-th word in the document s at layer l, as H(l)
s,p.

Heterogeneous Updates

Node representations in GRAFT-Nets are derived using the same high-level procedure as GCNs,
outlined in § 2.2.2, but with di�erent update rules for entities and documents, as illustrated in
Figure 5.2 and described below.

Entities. LetM(v) = {(s, p)} be the set of positions p in documents swhich correspond to a
mention of entity v. �e update for entity nodes involves a single-layer feed-forward network
(FFN) over the concatenation of four states:

h(l)
v = FFN




h
(l−1)
v

h
(l−1)
q∑

r

∑
v′∈Nr(v) α

v′
r ψr(h

(l−1)
v′)∑

(s,p)∈M(v) H
(l−1)
s,p


 . (5.1)

�e �rst two terms correspond to the entity representation and question representation (details
below), respectively, from the previous layer. �e third term aggregates the states from the en-
tity neighbours of the current node,Nr(v), a�er scaling with an a�ention weight αv′r (described
in the next section), and applying relation speci�c transformations ψr. �e last term aggregates

70

the states of all tokens that correspond to mentions of the entity v among the documents in the
subgraph. Note that the update depends on the positions of entities in their containing docu-
ment.

Previous work on Relational-GCNs [177] used a linear projection for ψr. For a batched
implementation, this results in matrices of sizeO(B|Rq||Eq|d), whereB is the batch size, which
can be prohibitively large for large subgraphs. �is is because we have to use adjacency matrices
of size |Rq|× |Eq|× |Eq| to aggregate embeddings from neighbours of all nodes simultaneously.
Hence in this work we use relation vectors xr for r ∈ Rq instead of matrices, and compute the
update along an edge as:

ψr(h
(l−1)
v′) = pr

(l−1)
v′ FFN

(
xr, h

(l−1)
v′

)
. (5.2)

Here pr(l−1)
v′ is a PageRank score used to control the propagation of embeddings along paths

starting from the seed nodes, which we describe in detail in the next section. �e memory
complexity of this is O(B(|Fq|+ |Eq|)d), where |Fq| is the number of facts in the subgraph Gq.

Documents. Let L(s, p) be the set of all entities linked to the word at position p in document
s. �e document update proceeds in two steps. First we aggregate over the entity states coming
in at each position separately:

H̃(l)
s,p = FFN

H(l−1)
s,p ,

∑
v∈L(s,p)

h(l−1)
v

 . (5.3a)

Here h(l−1)
v are normalized by the number of outgoing edges at v. Next we aggregate states

within the document using a unidirectional LSTM:

H(l)
s = LSTM(H̃(l)

s). (5.3b)

Conditioning on the�estion

For the parts described thus far, the graph learner is largely agnostic of the question. We in-
troduce dependence on question in two ways: by a�ention over relations, and by personalized
propagation.

To represent q, let wq1, . . . , w
q
|q| be the words in the question. �e initial representation is

computed as:
h(0)
q = LSTM(wq1, . . . , w

q
|q|) ∈ Rd, (5.4)

71

Figure 5.3: Directed propagation of embeddings in GRAFT-Net. A scalar PageRank score pr(l)
v is

maintained for each node v across layers, which spreads out from the seed node. Embeddings
are only propagated from nodes with pr(l)

v > 0.

where we extract the �nal state from the output of the LSTM. In subsequent layers the ques-
tion representation is updated as h(l)

q = FFN
(∑

v∈Nq
h

(l)
v

)
, where Nq denotes the seed entities

mentioned in the question.

Attention over Relations. �e a�ention weight in the third term of Eq. 5.1 is computed
using the question and relation embeddings:

αv
′

r = so�max(xTr h
(l−1)
q),

where the so�max normalization is over all outgoing edges from v′, and xr is the relation vector
for relation r. �is ensures that embeddings are propagated more along edges relevant to the
question.

Directed Propagation. By iteratively aggregating states from the neighbors, the represen-
tations learned by our model, and in fact any variant of GCNs, encode paths around a node
in the graph. Let c be the average in-degree of a node in Gq, then the number of such paths
encoded in the representation is cT , where T is the number of iterations for which the propa-
gation is run. For graphs with both textual and relational edges, c can easily go up to 50-100,
and consequently, the number of paths encoded can blow up. �is poses a challenge in the
se�ing of learning from denotations since the model can pick up spurious correlations between
the question and paths around the answers to that question. To deal with this, we introduce a
mechanism for limiting the number of paths encoded in node representations.

72

Many questions require multi-hop reasoning, which follows a path from a seed node men-
tioned in the question to the target answer node. To encourage such a behaviour when propa-
gating embeddings, we develop a technique inspired from personalized PageRank (§ 2.2.3). �e
propagation starts at the seed entities Nq mentioned in the question. In addition to the vector
embeddings h(l)

v at the nodes, we also maintain scalar “PageRank” scores pr(l)
v which measure

the total weight of paths from a seed entity to the current node, as follows:

pr(0)
v =

 1
|Nq | if v ∈ Nq,

0 otherwise,

pr(l)
v = (1− λ)pr(l−1)

v + λ
∑
r

∑
v′∈Nr(v)

αv
′

r pr
(l−1)
v′ .

Notice that we reuse the a�ention weights αv′r when propagating PageRank, to ensure that
nodes along paths relevant to the question receive a high weight. �e PageRank score is used
as a scaling factor when propagating embeddings along the edges in Eq. 5.2. For l = 1, the
PageRank score will be 0 for all entities except the seed entities, and hence propagation will
only happen outward from these nodes. For l = 2, it will be non-zero for the seed entities
and their 1-hop neighbors, and propagation will only happen along these edges. Figure 5.3
illustrates this process.

Training & Inference

�e �nal representations h(T)
v ∈ Rd, are used for binary classi�cation to select the answers:

Pr (v ∈ {a}q|Gq, q) = σ(wTh(T)
v + b), (5.5)

where σ is the sigmoid function. Training uses binary cross-entropy loss over these probabil-
ities. To encourage the model to learn a robust classi�er, which exploits all available sources
of information, we randomly drop KB edges from the graph during training with probability
p0. We call this fact-dropout. It is usually easier to extract answers from the KB than from the
documents, so the model tends to rely on the former, especially when the KB is complete. �is
method is similar to DropConnect [213].

73

Dataset # train/dev/test # entities # relations # documents # question words

WikiMovies-10K 10K/10K/10K 43,233 9 79,728 1759
Web�estionsSP 2848/250/1639 528,617 513 235,567 3781

Table 5.1: Statistics of all the retrieved subgraphs ∪qGq for WikiMovies-10K and Web�estion-
sSP.

5.4 Experiments & Results

5.4.1 Datasets

WikiMovies-10K. �is dataset consists of 10K randomly sampled training questions from
the WikiMovies dataset [135], along with the original test and validation sets. We sample the
training questions to create a more di�cult se�ing, since the original dataset has 100K questions
over only 8 di�erent relation types, which is unrealistic in our opinion. In § 5.4.2 we also
compare to the existing state-of-the-art using the full training set.

We use the KB and text corpus constructed from Wikipedia released by Miller et al. [135].
For entity linking we use simple surface level matches, and retrieve the top 50 entities around
the seeds to create the question subgraph. We further add the top 50 sentences (along with their
article titles) to the subgraph using Lucene search over the text corpus. �e overall answer recall
in our constructed subgraphs is 99.6%.

Web�estionsSP [251]. �is dataset consists of 4737 natural language questions posed over
Freebase [18] entities, split up into 3098 training and 1639 test questions. We reserve 250

training questions for model development and early stopping. We use the entity linking outputs
from S-MART4 and retrieve 500 entities from the neighbourhood around the question seeds in
Freebase to populate the question subgraphs.5 We further retrieve the top 50 sentences from
Wikipedia with the two-stage process described earlier. �e overall recall of answers among
the subgraphs is 94.0%.

Table 5.1 shows the combined statistics of all the retreived subgraphs for the questions in
each dataset. �ese two datasets present varying levels of di�culty. While all questions in
WikiMovies correspond to a single KB relation, for Web�estionsSP the model needs to aggre-

4https://github.com/scottyih/STAGG
5A total of 13 questions had no detected entities. �ese were ignored during training and considered as

incorrect during evaluation.

74

https://github.com/scottyih/STAGG

Model Text Only
KB + Text

10 % 30% 50% 100%

WikiMovies-10K

KV-KB – 15.8 / 9.8 44.7 / 30.4 63.8 / 46.4 94.3 / 76.1
KV-EF 50.4 / 40.9 53.6 / 44.0 60.6 / 48.1 75.3 / 59.1 93.8 / 81.4
GN-KB – 19.7 / 17.3 48.4 / 37.1 67.7 / 58.1 97.0 / 97.6
GN-LF

73.2 / 64.0


74.5 / 65.4 78.7 / 68.5 83.3 / 74.2 96.5 / 92.0

GN-EF 75.4 / 66.3 82.6 / 71.3 87.6 / 76.2 96.9 / 94.1
GN-EF+LF 79.0 / 66.7 84.6 / 74.2 88.4 / 78.6 96.8 / 97.3

Web�estionsSP

KV-KB – 12.5 / 4.3 25.8 / 13.8 33.3 / 21.3 46.7 / 38.6
KV-EF 23.2 / 13.0 24.6 / 14.4 27.0 / 17.7 32.5 / 23.6 40.5 / 30.9
GN-KB – 15.5 / 6.5 34.9 / 20.4 47.7 / 34.3 66.7 / 62.4
GN-LF

25.3 / 15.3


29.8 / 17.0 39.1 / 25.9 46.2 / 35.6 65.4 / 56.8

GN-EF 31.5 / 17.7 40.7 / 25.2 49.9 / 34.7 67.8 / 60.4
GN-EF+LF 33.3 / 19.3 42.5 / 26.7 52.3 / 37.4 68.7 / 62.3

Table 5.2: Hits@1 / F1 scores of GRAFT-Nets (GN) compared to KV-MemNN (KV) in KB only
(-KB), early fusion (-EF), and late fusion (-LF) se�ings.

gate over two KB facts for∼30% of the questions, and also requires reasoning over constraints
for∼7% of the questions [129]. For maximum portability, QA systems need to be robust across
several degrees of KB availability since di�erent domains might contain di�erent amounts of
structured data; and KB completeness may also vary over time. Hence, we construct an addi-
tional 3 datasets each from the above two, with the number of KB facts downsampled to 10%,
30% and 50% of the original to simulate se�ings where the KB is incomplete. We repeat the
retrieval process for each sampled KB.

5.4.2 Main Results

Compared Models

Our main baseline is the work of Das et al. [44], which a�empts an early fusion strategy for
QA over KB facts and text. �eir approach is based on Key-Value Memory Networks (KV-

75

MemNNs) [135] coupled with a universal schema [169] to populate a memory module with
representations of KB triples and text snippets independently. �e key limitation for this model
is that it ignores the rich relational structure between the facts and text snippets. We compare
the following variants of their model and ours:

• KV-KB is the Key Value Memory Networks model but using only KB and ignoring the
text.

• KV-EF (early fusion) is the same model with access to both KB and text as memories. For
text we use a BiLSTM over the entire sentence as keys, and entity mentions as values. �is
re-implementation shows be�er performance on the text-only and KB-only WikiMovies
tasks than the results reported previously (see Table 5.3).6

• GN-KB is the GRAFT-Net model ignoring the text.

• GN-LF is a late fusion version of the GRAFT-Net model: we train two separate models,
one using text only and the other using KB only, and then ensemble the two.7

• GN-EF is our main GRAFT-Net model with early fusion.

• GN-EF+LF is an ensemble over the GN-EF and GN-LF models, with the same ensembling
method as GN-LF.

We report Hits@1, which is the accuracy of the top-predicted answer from the model, and the
F1 score. To compute the F1 score we tune a threshold on the development set to select answers
based on binary probabilities for each node in the subgraph.

Performance

Table 5.2 presents a comparison of the above models across all datasets. GRAFT-Nets (GN)
shows consistent improvement over KV-MemNNs on both datasets in all se�ings, including KB
only (-KB), text only (-EF, Text Only column), and early fusion (-EF). Interestingly, we observe
a larger relative gap between the Hits and F1 scores for the KV models than we do for our GN
models. �is is because the a�ention for KV is normalized over the memories, which are KB
facts (or text sentences): hence the model is unable to assign high probabilities to multiple facts
at the same time. On the other hand, in GN, we normalize the a�ention over types of relations
outgoing from a node, and hence can assign high weights to all the correct answers.

6For all KV models we tuned the number of layers {1, 2, 3}, batch size {10, 30, 50}, model dimension {50, 80}.
We also use fact dropout regularization in the KB+Text se�ing tuned between {0, 0.2, 0.4}.

7For ensembles we take a weighted combination of the answer probabilities produced by the models, with the
weights tuned on the dev set. For answers only in text or only in KB, we use the probability as is.

76

Method
WikiMovies (full) Web�estionsSP
kb doc kb doc

MINERVA 97.0 / – – – –
R2-AsV – 85.8 / – – –
NSM – – – / 69.0 –
DrQA* – – – 21.5 / –
R-GCN# 96.5 / 97.4 – 37.2 / 30.5 –
KV 93.9 / – 76.2 / – – / – – / –
KV# 95.6 / 88.0 80.3 / 72.1 46.7 / 38.6 23.2 / 13.0
GN 96.8 / 97.2 86.6 / 80.8 67.8 / 62.8 25.3 / 15.3

Table 5.3: Hits@1 / F1 scores compared to SOTA models using only KB or text: MINERVA
[42], R2-AsV [221], Neural Symbolic Machines (NSM) [129], DrQA [26], R-GCN [177] and KV-
MemNN [135]. *DrQA is pretrained on S�AD. #Re-implemented.

We also see a consistent improvement of early fusion over late fusion (-LF), and by ensem-
bling them together we see the best performance across all the models. In Table 5.2 (right), we
further show the improvement for KV-EF over KV-KB, and GN-LF and GN-EF over GN-KB, as
the amount of KB is increased. �is measures how e�ective these approaches are in utilizing
text plus a KB. For KV-EF we see improvements when the KB is highly incomplete, but in the
full KB se�ing, the performance of the fused approach is worse. A similar trend holds for GN-
LF. On the other hand, GN-EF with text improves over the KB-only approach in all se�ings.
As we would expect, though, the bene�t of adding text decreases as the KB becomes more and
more complete.

Comparison to Specialized Methods

In Table 5.3 we compare GRAFT-Nets to state-of-the-art models that are speci�cally designed
and tuned for QA using either only KB or only text. For this experiment we use the full Wiki-
Movies dataset to enable direct comparison to previously reported numbers. For DrQA [26],
following the original paper, we restrict answer spans for Web�estionsSP to match an entity
in Freebase. In each case we also train GRAFT-Nets using only KB facts or only text sentences.
In three out of the four cases, we �nd that GRAFT-Nets either match or outperform the existing
state-of-the-art models. We emphasize that the la�er have no mechanism for dealing with the
fused se�ing.

77

�estion Correct Answers Predicted Answers

what language do most people speak in afghanistan
Pashto language,
Farsi (Eastern Language)

Pashto language

what college did john stockton go to Gonzaga University
Gonzaga University,
Gonzaga Preparatory School

Table 5.4: Examples from Web�estionsSP dataset. Top: �e model misses a correct answer.
Bo�om: �e model predicts an extra incorrect answer.

�e one exception is the KB-only case for Web�estionsSP where GRAFT-Net does 6.2%

F1 points worse than Neural Symbolic Machines [129]. Analysis suggested three explanations:
(1) In the KB-only se�ing, the recall of subgraph retrieval is only 90.2%, which limits overall
performance. In an oracle se�ing where we ensure the answers are part of the subgraph, the F1
score increases by 4.8%. (2) We use the same probability threshold for all questions, even though
the number of answers may vary signi�cantly. Models which parse the query into a symbolic
form do not su�er from this problem since answers are retrieved in a deterministic fashion.
If we tune separate thresholds for each question the F1 score improves by 7.6%. (3) GRAFT-
Nets perform poorly in the few cases where there is a constraint involved in picking out the
answer (for example, “who �rst voiced Meg in Family Guy”). If we ignore such constraints, and
consider all entities with the same sequence of relations to the seed as correct, the performance
improves by 3.8% F1. Heuristics such as those used by Yu et al. [256] can be used to improve
these cases. Figure 5.4 shows examples where GRAFT-Net fails to predict the correct answer
set exactly.

5.4.3 Analysis

Heterogeneous Updates. We tested a non-heterogeneous version of our model, where in-
stead of using �ne-grained entity linking information for updating the node representations
(M(v) and L(s, p) in Eqs. 5.1 & 5.3a), we aggregate the document states across all its positions
as
∑

pH
(l)
s,p and use this combined state for all updates. Without the heterogeneous update, all

entities v ∈ L(s, ·) will receive the same update from document s. �erefore, the model cannot
disambiguate di�erent entities mentioned in the same document. �e result in Table 5.5 shows
that this version is consistently worse than the heterogeneous model.

78

0 KB 0.1 KB 0.3 KB 0.5 KB 1.0 KB
NH 22.7 / 13.6 28.7 / 15.8 35.6 / 23.2 47.2 / 33.3 66.5 / 59.8
H 25.3 / 15.3 31.5 / 17.7 40.7 / 25.2 49.9 / 34.7 67.8 / 60.4

Table 5.5: Non-Heterogeneous (NH) vs. Heterogeneous (H) updates on Web�estionsSP

0 20 40 60 80 100
Epoch

0

10

20

30

40

50

60

70

Hi
ts

@
1

100% KB + Directed + Attention
100% KB + Attention
100% KB
30% KB + Directed + Attention
30% KB + Attention
30% KB

75

80

85

90

Hi
ts

@
1

WikiMovies-10K (50% KB)

0.0 0.2 0.4 0.6 0.8 1.0
Fact dropout

25

30

35

40

Hi
ts

@
1

WebQuestionsSP (30% KB)

Figure 5.4: Le�: E�ect of directed propagation and query-based a�ention over relations for
the Web�estionsSP dataset with 30% KB and 100% KB. Right: Hits@1 with di�erent rates of
fact-dropout on and WikiMovies and Web�estionsSP.

Conditioning on the�estion. We performed an ablation test on the directed propagation
method and a�ention over relations. We observe that both components lead to be�er per-
formance. Such e�ects are observed in both complete and incomplete KB scenarios, e.g. on
Web�estionsSP dataset, as shown in Figure 5.4 (le�).

Fact Dropout. Figure 5.4 (right) compares the performance of the early fusion model as we
vary the rate of fact dropout. Moderate levels of fact dropout improve performance on both
datasets. �e performance increases as the fact dropout rate increases until the model is unable
to learn the inference chain from KB.

79

5.5 Discussion

In this chapter we investigated QA using text combined with an incomplete KB, a task which
has received limited a�ention in the past. We discussed two broad approaches to solving this
problem—“late fusion” and “early fusion”, and showed that early fusion approaches perform
be�er. We also introduced a novel early-fusion model, called GRAFT-Net, for classifying nodes
in subgraph consisting of both KB entities and text documents. GRAFT-Net builds on recent
advances in graph representation learning but includes several innovations which improve per-
formance on this task. GRAFT-Nets are a single model which achieve performance competitive
to state-of-the-art methods in both text-only and KB-only se�ings, and outperform baseline
models when using text combined with an incomplete KB.

�ere are, however, limitations with the approach. First, GRAFT-Nets are limited to ques-
tions whose answers are entities in the KB. In principle, this can be easily extended to include
all spans in the text, using a similar mechanism to that used in Chapter 3, but it is unclear how
this will a�ect model performance. Secondly, and more importantly, the subgraph retrieval pro-
cess, which relies on heuristics and an external entity linking system, is error prone and limits
the overall performance. �is is particularly limiting when dealing with multi-hop questions
whose answers may lie across passages—a �nding observed by Sun et al. [197].

PullNet [197] and CogQA [60] are two models which build on our work to deal with the
second limitation above. Both of these iteratively expand the question sub-graph, starting from
only the entities in the question (Nq here) by learning which entity nodes to expand based on
the question at each step. In the end a similar classi�cation step to ours is used to identify the
answer. PullNet, in particular, improves on our approach when dealing with multi-hop ques-
tions. A general theme used in these works for improving passage retrieval is that connections
between di�erent passages in a text corpus can be modeled using entity links to a KB [138]. We
will discuss this idea in more detail in Chapter 8.

As LM pretraining is becoming increasingly popular for NLP tasks, one line of work has also
looked at extending prediction in state-of-the-art LMs with facts from KBs [132, 157], or knowl-
edge from text [86]. A broader research agenda is concerned with connecting KBs with deep
learning for various NLP tasks, e.g. information extraction [240], machine translation [144],
and natural language inference [220]. In the next chapter, we present a method for utilizing
KBs with reinforcement learning for dialogue.

80

Chapter 6

Multi-turn QA

�e previous chapter focused on the se�ing where we learn to answer a single �xed query from
the user. Implicitly, this assumes that the user will provide a coherent, well-formed and com-
plete query to the system in one pass. In practice, for complex information needs, users may
prefer a sequence of short and simple queries, each of which may be incomplete, but together
specify a unique answer. Hence, in this chapter we focus on a multi-turn QA, where the user
starts with an under-speci�ed query, and the agent responds with follow-up questions to pre-
cisely locate the information requested. We will focus on a reinforcement learning framework
for this purpose, and make the simplifying assumption that the underlying knowledge source
is a small entity-centric KB, described below. �is work �rst appeared in:

• Bhuwan Dhingra, Lihong Li, Xiujun Li, Jianfeng Gao, Yun-Nung Chen, Faisal Ahmed, and
Li Deng. Towards end-to-end reinforcement learning of dialogue agents for information
access. In Proceedings of the 55th Annual Meeting of the Association for Computational

Linguistics, ACL 2017, Vancouver, Canada, July 30 - August 4, Volume 1: Long Papers, pages
484–495, 2017

Code for the experiments in this chapter is available on Github.1

6.1 Overview

We focus on KB-InfoBots, a dialogue agent that helps users navigate a KB in search of an en-
tity, as illustrated by the example in Figure 6.1. Conventional dialogue systems are composed
of several modules, which perform the functions of natural language understanding, tracking

1https://github.com/MiuLab/KB-InfoBot

81

https://github.com/MiuLab/KB-InfoBot

Movie=?
Actor=Bill Murray

Release Year=1993

Find me the Bill Murray’s movie.

I think it came out in 1993.

When was it released?

Groundhog Day is a Bill Murray
movie which came out in 1993.

KB-InfoBotUser

Entity-Centric Knowledge Base

Movie Actor
Release

Year

Groundhog Day Bill Murray 1993

Australia Nicole Kidman X

Mad Max: Fury Road X 2015

Figure 6.1: An interaction between a user looking for a movie and the KB-InfoBot. An entity-
centric knowledge base is shown above the KB-InfoBot (missing values denoted by X).

user beliefs, formulating a dialogue policy and generating natural language. Reinforcement
Learning (RL) has been explored to leverage user interactions so train all these components
[74, 123, 225], which can potentially lead to systems that adapt with time. At the same time,
there is also interest in end-to-end dialogue systems, which combine feature extraction and
policy optimization using deep neural networks.

For task-oriented dialogue applications, as is the case here, during the interaction the agent
must also query a KB to retrieve information, and use that information to formulate its response
to the user. One approach for doing so is by performing semantic parsing on the input to con-
struct a symbolic query representing the beliefs of the agent about the user goal. We call such
an operation a Hard-KB lookup. �is approach has two drawbacks: (1) the retrieved results do
not carry any information about uncertainty in semantic parsing, and (2) the retrieval opera-
tion is non di�erentiable, and hence the parser and dialog policy are trained separately. �is
makes online end-to-end learning from user feedback di�cult once the system is deployed. For
example, Wen et al. [225] introduced a modular neural dialogue agent, which used a Hard-KB
lookup, and hence required separate labeled data to train the di�erent modules.

Here we propose a probabilistic framework for computing the posterior distribution of the
user target over a knowledge base, which we term a So�-KB lookup (§ 6.2). �is distribution
is constructed from the agent’s belief about the a�ributes of the entity being searched for. �e
dialogue policy network, which decides the next system action, receives as input this full dis-
tribution instead of a handful of retrieved results. We show in our experiments that this frame-
work allows the agent to achieve a higher task success rate in fewer dialogue turns. Further, the

82

retrieval process is di�erentiable, allowing us to construct an end-to-end trainable KB-InfoBot,
all of whose components are updated online using RL.

Reinforcement learners typically require an environment to interact with, and hence static
dialogue corpora cannot be used for their training. Running experiments on human subjects,
on the other hand, unfortunately is too expensive. A common workaround in the dialogue
community [175, 176, 254] is to instead use user simulators which mimic the behavior of real
users in a consistent manner. For training KB-InfoBot, we adapt the publicly available2 simula-
tor described in Li et al. [126]. We evaluate several versions of KB-InfoBot with the simulator
and on real users, and show that the proposed So�-KB lookup helps the reinforcement learner
discover be�er dialogue policies. Initial experiments on the end-to-end agent also demonstrate
its strong learning capability.

6.2 Probabilistic KB Lookup

We �rst list our assumptions about the underlying knowledge base that the dialogue agent
can access, and then describe a probabilistic framework for querying the KB given the agent’s
beliefs over the �elds in the KB.

Entity-Centric Knowledge Base (EC-KB)

In § 2.1.2 we introduced KBs as a collection of triples of the form (s, r, o), where s is the subject,
r the relation, and o the object. For KB-InfoBot, we further assume that this is entity-centric

(EC-KB) [262], which means that all subjects are of a single type (such as movies or persons),
and the relations correspond to a�ributes of these head entities. Such KBs are quite common,
and can be converted to a table format whose rows correspond to the unique head entities,
columns correspond to the unique relation types (slots henceforth), and some entries may be
missing. An example is shown in Figure 6.1.

Notations and Assumptions

Let T denote the KB table described above and Ti,j denote the jth slot-value of the ith entity.
1 ≤ i ≤ N and 1 ≤ j ≤ M . We let Vj denote the vocabulary of each slot, i.e. the set of
all distinct values in the j-th column. We denote missing values from the table with a special
token and write Ti,j = Ψ. Mj = {i : Ti,j = Ψ} denotes the set of entities for which the value

2https://github.com/MiuLab/TC-Bot

83

https://github.com/MiuLab/TC-Bot

of slot j is missing. Note that the user may still know the actual value of Ti,j , and we assume
this lies in Vj . We do not deal with new entities or relations at test time.

We assume a uniform prior G ∼ U [{1, ...N}] over the rows in the table T , and let binary
random variables Φj ∈ {0, 1} indicate whether the user knows the value of slot j or not. �e
agent maintains M multinomial distributions ptj(v) for v ∈ Vj denoting the probability at turn
t that the user constraint for slot j is v, given their u�erances U t

1 till that turn. �e agent also
maintains M binomials qtj = Pr(Φj = 1) which denote the probability that the user knows the
value of slot j.

We assume that column values are independently distributed to each other. �is is a strong
assumption but it allows us to model the user goal for each slot independently, as opposed
to modeling the user goal over KB entities directly. Typically maxj |Vj| < N and hence this
assumption reduces the number of parameters in the model.

So�-KB Lookup

Let ptT (i) = Pr(G = i|U t
1) be the posterior probability that the user is interested in row i of

the table, given the u�erances up to turn t. We assume all probabilities are conditioned on
user inputs U t

1 and drop it from the notation below. From our assumption of independence of
slot values, we can write ptT (i) ∝ ∏M

j=1 Pr(Gj = i), where Pr(Gj = i) denotes the posterior
probability of user goal for slot j pointing to Ti,j . Marginalizing this over Φj gives:

Pr(Gj = i) =
1∑

φ=0

Pr(Gj = i,Φj = φ) (6.1)

= qtj Pr(Gj = i|Φj = 1) + (1− qtj) Pr(Gj = i|Φj = 0).

For Φj = 0, the user does not know the value of the slot, and from the prior:

Pr(Gj = i|Φj = 0) =
1

N
, 1 ≤ i ≤ N. (6.2)

For Φj = 1, the user knows the value of slot j, but this may be missing from T , and we again
have two cases. For the case when i ∈Mj , we can write (dropping the condition on Φj = 1 for
brevity):

Pr(Gj = i) = Pr(Gj ∈Mj) Pr(Gj = i|Gj ∈Mj)

=
|Mj|
N

1

|Mj|
=

1

N
, (6.3)

84

where we assume all missing values to be equally likely, and estimate the prior probability of the
goal being missing from the count of missing values in that slot. For the case when i = v 6∈Mj :

Pr(Gj = i) = Pr(Gj 6∈Mj) Pr(Gj = i|Gj 6∈Mj)

=

(
1− |Mj|

N

)
× ptj(v)

Nj(v)
, (6.4)

where the second term comes from taking the probability mass associated with v in the belief
tracker and dividing it equally among all rows with value v. Here, Nj(v) is the count of value
v in slot j. Combining the above, we get:

Pr(Gj = i|Φj = 1) =

 1
N
, i ∈Mj

ptj(v)

Nj(v)

(
1− |Mj |

N

)
, i 6∈Mj

(6.5)

Combining Eqs. 6.1, 6.2, and 6.5 gives us the procedure for computing the posterior over KB
entities.

6.3 KB-InfoBot

We claim that the So�-KB lookup method has two bene�ts over the Hard-KB method. First,
it helps the agent discover be�er dialogue policies by providing it more information from the
language understanding unit. Second, it allows end-to-end training of both dialogue policy and
language understanding in an online se�ing. In this section we describe several agents to test
these claims.

Overview

Figure 6.2 shows an overview of the components of the KB-InfoBot. At each turn, the agent
receives a natural language u�erance ut as input, and selects an action at as output. �e action
space, denoted by A, consists of M + 1 actions — request(slot=i) for 1 ≤ i ≤ M will ask the
user for the value of slot i, and inform(I) will inform the user with an ordered list of results I
from the KB. �e dialogue ends once the agent chooses inform.

We adopt a modular approach, typical to goal-oriented dialogue systems [225], consisting
of: a belief tracker module for identifying user intents, extracting associated slots, and tracking
the dialogue state [28, 87, 92, 93, 249]; an interface with the database to query for relevant
results (So�-KB lookup); a summary module to summarize the state into a vector; and a dialogue

85

Belief Trackers

Policy Network Beliefs Summary

Soft-KB
Lookup

KB-InfoBot

User

User
Utterance

System
Action

Figure 6.2: High-level overview of the end-to-end KB-InfoBot. Components with trainable
parameters are highlighted in gray.

policy which selects the next system action based on current state [254]. We assume the agent
only responds with dialogue acts. A template-based Natural Language Generator (NLG) can be
constructed for converting dialogue acts into natural language.

Belief Trackers

�e InfoBot consists of M belief trackers, one for each slot, which get the user input xt and
produce two outputs, ptj and qtj , which we shall collectively call the belief state: ptj is a multino-
mial distribution over the slot values v, and qtj is a scalar probability of the user knowing the
value of slot j. We describe two versions of the belief tracker.

Hand-Cra�ed Tracker. We �rst identify mentions of slot-names (such as “actor”) or slot-
values (such as “Bill Murray”) from the user input ut, using token-level keyword search. Let
{w ∈ x} denote the set of tokens in a string x3, then for each slot in 1 ≤ j ≤M and each value
v ∈ Vj , we compute its matching score as follows:

stj[v] =
|{w ∈ ut} ∩ {w ∈ v}|

|{w ∈ v}| (6.6)

A similar score btj is computed for the slot-names. A one-hot vector reqt ∈ {0, 1}M denotes
the previously requested slot from the agent, if any. qtj is set to 0 if reqt[j] is 1 but stj[v] = 0

∀v ∈ Vj , i.e. the agent requested for a slot but did not receive a valid value in return, else it is
set to 1.

Starting from an prior distribution p0
j (based on the counts of the values in the KB), ptj[v] is

updated as:
ptj[v] ∝ pt−1

j [v] + C
(
stj[v] + btj + 1(reqt[j] = 1)

)
(6.7)

3We use the NLTK tokenizer available at http://www.nltk.org/api/nltk.tokenize.html

86

http://www.nltk.org/api/nltk.tokenize.html

Here C is a tuning parameter, and the normalization is given by se�ing the sum over v to 1.

Neural Belief Tracker. For the neural tracker the user input ut is converted to a vector
representation xt, using a bag of n-grams (with n = 2) representation. Each element of xt is
an integer indicating the count of a particular n-gram in ut. We let Vn denote the number of
unique n-grams, hence xt ∈ NV n

0 .
Recurrent neural networks have been used for belief tracking [93, 225] since the output

distribution at turn t depends on all user inputs till that turn. We use a GRU (§ 2.2.1) for each
tracker, which, starting from h0

j = 0 computes htj =
−→

GRU(x1, . . . , xt). htj ∈ Rd can be in-
terpreted as a summary of what the user has said about slot j till turn t. �e belief states are
computed from this vector as follows:

ptj = so�max(W p
j h

t
j + cpj)

qtj = σ(WΦ
j h

t
j + cΦ

j) (6.8)

Here W p
j ∈ RVj×d, cpj ∈ RVj , WΦ

j ∈ Rd and cΦ
j ∈ R, are trainable parameters.

So�-KB Lookup + Summary

�is module uses the So�-KB lookup described in section 6.2 to compute the posterior ptT ∈ RN

over the EC-KB from the belief states (ptj , qtj). Collectively, outputs of the belief trackers and
the so�-KB lookup can be viewed as the current dialogue state internal to the KB-InfoBot. Let
st = [pt1, p

t
2, ..., p

t
M , q

t
1, q

t
2, ..., q

t
M , p

t
T] be the vector of size

∑
j Vj+M+N denoting this state. It

is possible for the agent to directly use this state vector to select its next action at. However, the
large size of the state vector would lead to a large number of parameters in the policy network.
To improve e�ciency we extract summary statistics from the belief states, similar to Williams
and Young [231].

Each slot is summarized into an entropy statistic over a distribution wtj computed from
elements of the KB posterior ptT as follows:

wtj(v) ∝
∑

i:Ti,j=v

ptT (i) + p0
j(v)

∑
i:Ti,j=Ψ

ptT (i) . (6.9)

Here, p0
j is a prior distribution over the values of slot j, estimated using counts of each value in

the KB. �e probability mass of v in this distribution is the agent’s con�dence that the user goal
has value v in slot j. �e two terms in Eq. 6.9 correspond to rows in KB which have value v,
and rows whose value is unknown (weighted by the prior probability that an unknown might

87

be v). �en the summary statistic for slot j is the entropy H(wtj). �e KB posterior ptT is also
summarized into an entropy statistic H(ptT).

�e scalar probabilities qtj are passed as is to the dialogue policy, and the �nal summary
vector is s̃t = [H(p̃t1), ..., H(p̃tM), qt1, ..., q

t
M , H(ptT)]. Note that this vector has size 2M + 1.

Dialogue Policy

�e dialogue policy’s job is to select the next action based on the current summary state s̃t and
the dialogue history. We present a hand-cra�ed baseline and a neural policy network.

Hand-Cra�ed Policy. �e rule based policy is adapted from Wu et al. [236]. It asks for the
slot ĵ = arg minj H(p̃tj) with the minimum entropy, except if – (i) the KB posterior entropy
H(ptT) < αR, (ii)H(p̃tj) < min(αT , βH(p̃0

j), (iii) slot j has already been requestedQ times. αR,
αT , β, Q are tuned to maximize reward against the simulator.

Neural Policy Network. For the neural approach, similar to Williams and Zweig [232] and
Zhao and Eskenazi [261], we use an RNN to allow the network to maintain an internal state
of dialogue history. Speci�cally, we use a GRU unit followed by a fully-connected layer and
so�max nonlinearity to model the policy π over actions in A (W π ∈ R|A|×d, cπ ∈ R|A|):

htπ =
−→

GRU(s̃1, ..., s̃t) (6.10)

π = so�max(W πhtπ + cπ) . (6.11)

During training, the agent samples its actions from the policy to encourage exploration. If
this action is inform(), it must also provide an ordered set of entities indexed by I = (i1, i2, . . . , iR)

in the KB to the user. �is is done by sampling R items from the KB-posterior ptT . �is mimics
a search engine type se�ing, where R may be the number of results on the �rst page.

6.4 End-to-End Training

Parameters of the neural components (denoted by θ) are trained using the REINFORCE algo-
rithm [233]. We assume that the learner has access to a reward signal rt throughout the course
of the dialogue, details of which are in the next section. We can write the expected discounted
return of the agent under policy π as follows:

J(θ) = E

[
H∑
t=0

γtrt

]
. (6.12)

88

Here, the expectation is over all possible trajectories τ of the dialogue, θ denotes the trainable
parameters of the learner, H is the maximum length of an episode, and γ is the discounting
factor. We also use a baseline reward signal b, which is the average of all rewards in a batch, to
reduce the variance in the updates [83]. We can use the likelihood ratio trick [80] to write the
gradient of the objective as follows:

∇θJ(θ) = E

[
∇θ log pθ(τ)

H∑
t=0

γt(rt − b)
]
, (6.13)

where pθ(τ) is the probability of observing a particular trajectory under the current policy.
With a Markovian assumption, we can write

pθ(τ) = p(s0)
H∏
k=0

p(sk+1|sk, ak)πθ(ak|sk), (6.14)

where θ denotes dependence on the neural network parameters. From 6.13,6.14 we obtain

∇θJ(θ) = Ea∼π
[H∑
k=0

∇θ log πθ(ak)
H∑
t=0

γt(rt − b)
]
, (6.15)

If we need to train both the policy network and the belief trackers using the reinforcement
signal, we can view the KB posterior ptT as another policy. During training then, to encourage
exploration, when the agent selects the inform action we sample R results I = (i1, i2, . . . , iR)

from the following distribution to return to the user:

µ(I) = ptT (i1)× ptT (i2)

1− ptT (i1)
× · · · . (6.16)

�is formulation also leads to a modi�ed version of the episodic REINFORCE update rule [233].
Speci�cally, Eq. 6.14 now becomes,

pθ(τ) =

[
p(s0)

H∏
k=0

p(sk+1|sk, ak)πθ(ak|sk)
]
µθ(I), (6.17)

Notice the last term µθ above, which is the posterior of a set of results from the KB. From
Eqs. 6.13 and 6.17 we obtain

∇θJ(θ) = Ea∼π,I∼µ
[(
∇θ log µθ(I) +

H∑
k=0

∇θ log πθ(ak)
) H∑
t=0

γt(rt − b)
]
. (6.18)

Eq. 6.18 gives us the update rule for optimizing the objective in Eq. 6.12, but in practice we
found that, in the case of end-to-end learning, the agent almost always fails if starting from

89

random initialization. In this case, credit assignment is di�cult for the agent, since it does not
know whether the failure is due to an incorrect sequence of actions or incorrect set of results
from the KB. Hence, at the beginning of training we have an Imitation Learning (IL) phase where
the belief trackers and policy network are trained to mimic the hand-cra�ed agents. Assume
that p̂tj and q̂tj are the belief states from a rule-based agent, and ât its action at turn t. �en the
loss function for imitation learning is:

L(θ) = E

[∑
j

D(p̂tj||ptj(θ)) +H(q̂tj, q
t
j(θ))− log πθ(â

t)

]

D(p||q) and H(p, q) denote the KL divergence and cross-entropy between p and q respectively.
�e expectations are estimated using a mini-batch of dialogues of size B. For optimizing the
loss, in the IL phase we use vanilla SGD updates [96] and in the RL phase we use RMSProp [96].

6.5 Experiments & Results

Previous work in KB-based QA has focused on single-turn interactions and is not directly com-
parable to the present study. Instead we compare di�erent versions of the KB-InfoBot described
above to test our claims.

6.5.1 Models & Data

KB-InfoBot versions

We have described two belief trackers, (A) Hand-Cra�ed and (B) Neural, and two dialogue
policies, (C) Hand-Cra�ed and (D) Neural.

Rule agents use the hand-cra�ed belief trackers and hand-cra�ed policy (A+C). RL agents
use the hand-cra�ed belief trackers and the neural policy (A+D). We compare three variants of
both sets of agents, which di�er only in the inputs to the dialogue policy. �e No-KB version
only takes entropy H(p̂tj) of each of the slot distributions. �e Hard-KB version performs a
hard-KB lookup and selects the next action based on the entropy of the slots over retrieved
results. �is is the same approach as in Wen et al. [225], except that we take entropy instead
of summing probabilities. �e So�-KB version takes summary statistics of the slots and the
KB posterior described in § 6.3. At the end of the dialogue, all versions inform the user with
the top results from the KB posterior ptT , hence the di�erence only lies in the policy for action
selection. Lastly, the E2E agent uses the neural belief tracker and the neural policy (B+D), with

90

a So�-KB lookup. For the RL agents, we also append q̂tj and a one-hot encoding of the previous
agent action to the policy network input.

We use GRU hidden state size of d = 50 for the RL agents and d = 100 for the E2E, a learning
rate of 0.05 for the imitation learning phase and 0.005 for the reinforcement learning phase, and
minibatch size 128. For the rule agents, hyperparameters were tuned to maximize the average
reward of each agent in simulations. For the E2E agent, imitation learning was performed for
500 updates, a�er which the agent switched to reinforcement learning. �e input vocabulary
is constructed from the NLG vocabulary and bigrams in the KB, and its size is 3078.

User Simulator

Training reinforcement learners is challenging because they need an environment to operate in.
In the dialogue community it is common to use simulated users for this purpose [4, 38, 174, 175].
In this work we adapt the publicly-available user simulator presented in Li et al. [126] to follow
a simple agenda while interacting with the KB-InfoBot.

At the beginning of each dialogue, the simulated user randomly samples a target entity
from the EC-KB and a random combination of informable slots for which it knows the value of
the target. �e remaining slot-values are unknown to the user. �e user initiates the dialogue
by providing a subset of its informable slots to the agent and requesting for an entity which
matches them. In subsequent turns, if the agent requests for the value of a slot, the user complies
by providing it or informs the agent that it does not know that value. If the agent informs results
from the KB, the simulator checks whether the target is among them and provides the reward.

We convert dialogue acts from the user into natural language u�erances using a separately
trained natural language generator (NLG). �e NLG is trained in a sequence-to-sequence fash-
ion, using conversations between humans collected by crowd-sourcing. It takes the dialogue
actions (DAs) as input, and generates template-like sentences with slot placeholders via an
LSTM decoder. �en, a post-processing scan is performed to replace the slot placeholders with
their actual values, which is similar to the decoder module in Wen et al. [224, 226]. In the LSTM
decoder, we apply beam search, which iteratively considers the top k best sentences up to time
step t when generating the token of the time step t + 1. For the sake of the trade-o� between
the speed and performance, we use the beam size of 3 in the following experiments.

�ere are several sources of error in user u�erances. Any value provided by the user may
be corrupted by noise, or substituted completely with an incorrect value of the same type (e.g.,
“Bill Murray” might become just “Bill” or “Tom Cruise”). �e NLG described above is inher-

91

KB-split N M maxj |V j| |Mj|

Small 277 6 17 20%
Medium 428 6 68 20%

Large 857 6 101 20%
X-Large 3523 6 251 20%

Table 6.1: Movies-KB statistics for four splits. Refer to Section 6.2 for description of columns.

ently stochastic, and may sometimes generate u�erances irrelevant to the agent request. By
increasing the temperature of the output so�max in the NLG we can increase the noise in user
u�erances.

During training, the simulated user also provides a reward signal at the end of each dialogue.
�e dialogue is a success if the user target is in topR = 5 results returned by the agent; and the
reward is computed as max(0, 2(1− (r− 1)/R)), where r is the actual rank of the target. For a
failed dialogue the agent receives a reward of−1, and at each turn it receives a reward of−0.1

to encourage short sessions.4 �e maximum length of a dialogue is 10 turns beyond which it is
deemed a failure.

Movies-KB

We use a movie-centric KB constructed using the IMDBPy package.5 We constructed four dif-
ferent splits of the dataset, with increasing number of entities, whose statistics are given in
Table 6.1. �e original KB was modi�ed to reduce the number of actors and directors in order
to make the task more challenging, since otherwise only knowing one slot-value may be suf-
�cient for determining the movie.6 We randomly remove 20% of the values from the agent’s
copy of the KB to simulate a scenario where the KB may be incomplete. �e user, however, may
still know these values.

6.5.2 Simulated User Evaluation

We compare each of the discussed versions along three metrics: the average rewards obtained
(R), success rate (S) (where success is de�ned as providing the user target among topR results),

4A turn consists of one user action and one agent action.
5http://imdbpy.sourceforge.net/
6We restricted the vocabulary to the �rst few unique values of these slots and replaced all other values with a

random value from this set.

92

http://imdbpy.sourceforge.net/

Agent
Small KB Medium KB Large KB X-Large KB

T S R T S R T S R T S R

No KB
Rule 5.04 .64 .26±.02 5.05 .77 .74±.02 4.93 .78 .82±.02 4.84 .66 .43±.02
RL 2.65 .56 .24±.02 3.32 .76 .87±.02 3.71 .79 .94±.02 3.64 .64 .50±.02

Hard KB
Rule 5.04 .64 .25±.02 3.66 .73 .75±.02 4.27 .75 .78±.02 4.84 .65 .42±.02
RL 3.36 .62 .35±.02 3.07 .75 .86±.02 3.53 .79 .98±.02 2.88 .62 .53±.02

So� KB
Rule 2.12 .57 .32±.02 3.94 .76 .83±.02 3.74 .78 .93±.02 4.51 .66 .51±.02
RL 2.93 .63 .43±.02 3.37 .80 .98±.02 3.79 .83 1.05±.02 3.65 .68 .62±.02
E2E 3.13 .66 .48±.02 3.27 .83 1.10±.02 3.51 .83 1.10±.02 3.98 .65 .50±.02

Max 3.44 1.0 1.64 2.96 1.0 1.78 3.26 1.0 1.73 3.97 1.0 1.37

Table 6.2: Performance comparison. Average (±std error) for 5000 runs a�er choosing the best
model during training. T: Average number of turns. S: Success rate. R: Average reward.

and the average number of turns per dialogue (T). For the RL and E2E agents, during training
we �x the model every 100 updates and run 2000 simulations with greedy action selection to
evaluate its performance. �en a�er training we select the model with the highest average re-
ward and run a further 5000 simulations and report the performance in Table 6.2. For reference
we also show the performance of an agent which receives perfect information about the user
target without any errors, and selects actions based on the entropy of the slots (Max). �is can
be considered as an upper bound on the performance of any agent [236].

In each case the So�-KB versions achieve the highest average reward, which is the metric all
agents optimize. In general, the trade-o� between minimizing average turns and maximizing
success rate can be controlled by changing the reward signal. Note that, except the E2E version,
all versions share the same belief trackers, but by re-asking values of some slots they can have
di�erent posteriors ptT to inform the results. �is shows that having full information about the
current state of beliefs over the KB helps the So�-KB agent discover be�er policies. Further,
reinforcement learning helps discover be�er policies than the hand-cra�ed rule-based agents,
and we see a higher reward for RL agents compared to Rule ones. �is is due to the noisy natural
language inputs; with perfect information the rule-based strategy is optimal. Interestingly, the
RL-Hard agent has the minimum number of turns in 2 out of the 4 se�ings, at the cost of a
lower success rate and average reward. �is agent does not receive any information about
the uncertainty in semantic parsing, and it tends to inform as soon as the number of retrieved
results becomes small, even if they are incorrect.

Among the So�-KB agents, we see that E2E>RL>Rule, except for the X-Large KB. For E2E,

93

RL­Hard

Rule­Soft

RL­Soft

E2E­Soft
0.4

0.5

0.6

0.7

0.8

0.9

1.0

S
uc

ce
ss

 R
at

e

p=0.01

ns

p=0.03

109

105 121

103

RL­Hard

Rule­Soft

RL­Soft

E2E­Soft
1

2

3

4

5

6

7

8

9

10

T

ur
ns

Figure 6.3: Performance of KB-InfoBot versions when tested against humans. (Le�) Success
rate, with the number of test dialogues indicated on each bar, and the p-values from a two-sided
permutation test. (Right) Distribution of the number of turns in each dialogue (di�erences in
mean are signi�cant with p < 0.01).

the action space grows exponentially with the size of the KB, and hence credit assignment gets
more di�cult. �e di�culty of a KB-split depends on number of entities it has, as well as the
number of unique values for each slot (more unique values make the problem easier). Hence
we see that both the “Small” and “X-Large” se�ings lead to lower reward for the agents, since
maxj |Vj |

N
is small for them.

6.5.3 Human Evaluation

We further evaluate the KB-InfoBot versions trained using the simulator against real subjects.7

In each session, in a typed interaction, the subject was �rst presented with a target movie
from the “Medium” KB-split along with a subset of its associated slot-values from the KB. To
simulate the scenario where end-users may not know slot values correctly, the subjects in our
evaluation were presented multiple values for the slots from which they could choose any one
while interacting with the agent. Subjects were asked to initiate the conversation by specifying
some of these values, and respond to the agent’s subsequent requests, all in natural language.
We test RL-Hard and the three So�-KB agents in this study, and in each session one of the agents
was picked at random for testing. In total, we collected 433 dialogues, around 20 per subject.
Figure 6.3 shows a comparison of these agents and Figure 6.4 shows some sample dialogues

7Graduate students at Carnegie Mellon University, and researchers at Microso�.

94

Turn Dialogue Rank Dialogue Rank Dialogue Rank

1
can i get a movie directed by maiellaro

75
find a movie directed by hemecker

7
peter greene acted in a family comedy - what was it?

35
request actor request actor request actor

2
neal

2
i dont know

7
peter

28
request mpaa_rating request mpaa_rating request mpaa_rating

3
not sure about that

2
i dont know

7
i don't know that

28
request critic_rating request critic_rating request critic_rating

4
i don't remember

2
7.6

13
the critics rated it as 6.5

3
request genre request critic_rating inform

5
i think it's a crime movie

1
7.9

23
inform request critic_rating

6
7.7

41
inform

Figure 6.4: Sample dialogues between users and the KB-InfoBot (RL-So� version). Each turn
begins with a user u�erance followed by the agent response. Rank denotes the rank of the target
movie in the KB-posterior a�er each turn.

from RL-So�.
In comparing Hard-KB versus So�-KB lookup methods we see that both Rule-So� and RL-

So� agents achieve a higher success rate than RL-Hard, while E2E-So� does comparably. �ey
do so in an increased number of average turns, but achieve a higher average reward as well.
Between RL-So� and Rule-So� agents, the success rate is similar, however the RL agent achieves
that rate in a lower number of turns on average. RL-So� achieves a success rate of 74% on the
human evaluation and 80% against the simulated user, indicating minimal over��ing. However,
all agents take a higher number of turns against real users as compared to the simulator, due to
the noisier inputs.

�e E2E gets the highest success rate against the simulator, however, when tested against
real users it performs poorly with a lower success rate and a higher number of turns. Since it
has more trainable components, this agent is also most prone to over��ing. In particular, the
vocabulary of the simulator it is trained against is quite limited (V n = 3078), and hence when
real users provided inputs outside this vocabulary, it performed poorly.

6.6 Related Work

�is work was motivated by the neural GenQA [252] and neural enquirer [253] models for
querying KBs via natural language in a fully “neuralized” way. However, the key di�erence is
that these systems assume that users can compose a complicated, compositional natural lan-
guage query that can uniquely identify the element/answer in the KB. �e research task is to
“parse” the query, i.e., turning the natural language query into a sequence of SQL-like opera-

95

tions. Instead we focus on how to query a KB interactively without composing such complicated
queries in the �rst place. Our work is motivated by the observations that (1) users are more
used to issuing simple queries of length less than 5 words [191]; (2) in many cases, it is unrea-
sonable to assume that users can construct compositional queries without prior knowledge of
the structure of the KB to be queried.

Dialogue agents can also interface with the database by augmenting their output action
space with prede�ned API calls [19, 127, 232, 261]. �e API calls modify a query hypothesis
maintained outside the end-to-end system which is used to retrieve results from this KB. �is
framework does not deal with uncertainty in language understanding since the query hypoth-
esis can only hold one slot-value at a time. Wu et al. [236] presented an entropy minimization
dialogue management strategy for InfoBots. �e agent always asks for the value of the slot with
maximum entropy over the remaining entries in the database, which is optimal in the absence
of language understanding errors, and serves as a baseline against our approach. Reinforce-
ment learning neural turing machines (RL-NTM) [257] also allow neural controllers to interact
with discrete external interfaces. �e interface considered in that work is a one-dimensional
memory tape, while in our work it is an entity-centric KB.

6.7 Discussion

�is chapter discussed end-to-end trainable dialogue agents for information access. We intro-
duced a di�erentiable probabilistic framework for querying a database given the agent’s beliefs
over its �elds (or slots). We showed that such a framework allows the downstream reinforce-
ment learner to discover be�er dialogue policies by providing it more information. We also
presented an E2E agent for the task, which demonstrates a strong learning capacity in simula-
tions but su�ers from over��ing when tested on real users.

Given these results, we propose the following deployment strategy that allows a dialogue
system to be tailored to speci�c users via learning from agent-user interactions. �e system
could start o� with an RL-So� agent (which gives good performance out-of-the-box). As the
user interacts with this agent, the collected data can be used to train the E2E agent, which has
a strong learning capability. Gradually, as more experience is collected, the system can switch
from RL-So� to the personalized E2E agent.

Following our work, Eric et al. [67] proposed a sequence transduction model for training
end-to-end task-oriented dialogue agents. Instead of explicitly maintaining beliefs over the
user intents, their model directly maps a hidden state computed from the user u�erances to a

96

distribution over the KB contents via a key-value a�ention mechanism. While this approach
lacks the interpretability of modular agents, it bene�ts from fewer hand-designed components,
and may be preferable in data rich se�ings.

�e main limitation of KB-Infobots is scalability, since we compute a posterior distribution
over the entire KB, which may be prohibitive for large KBs. In general, this may be addressed
by using retrieval techniques similar to those discussed in the previous chapter, so that we can
limit tha analysis to a subset of the KB relevant to the user input at the �rst time-step. However,
this may introduce cascading errors—hence in the next two chapters, the last part of this thesis,
we explore whether we can directly answer queries against a large knowledge source, without
retrieval.

97

98

Part III

Text as a Virtual Knowledge Base

99

Chapter 7

Lazy Slot-Filling

�e neural models presented in this thesis so far have all been restricted to processing relatively
small contexts composed of text and KB facts, retrieved using shallow methods such as TFIDF.
�is was dictated largely due to memory constraints imposed by GPUs, the preferred hardware
for training these models. �is two-step retrieve-plus-read pipeline, however, is not suitable for
answering queries which require aggregating information from several passages at once, since
all those passages may not be retrieved in the �rst step. Further, the retrieval step assumes
access to a natural language query in the �rst place, which may not be the case when the
knowledge interface is part of a larger system, and the query to it may be implicitly represented
using, for example, a vector representation.

In the last part of this thesis, we propose a knowledge representation, called a Virtual Knowl-
edge Base, which allows answering queries scalably against an entire text corpus. Virtual KBs
combine dense contextual representations of text spans with a sparse index mapping entities
to their mentions. In this chapter, we show how to train the dense representations, and answer
simple queries against the virtual KB using maximum inner product search (which we term
lazy slot-�lling). In the next chapter, we will show how the additional sparse structure about
entities enables fast multi-hop reasoning over the virtual KB.

7.1 Overview

One simple operation on a structured KB is to retrieve triples that match some partial descrip-
tion: for instance from the query HeadqarteredInCity(Microsoft, ?) one might retrieve
the “�ller” Seattle. �ese queries are called here slot-�lling queries. Because large KBs are
o�en incomplete [136], relation extraction methods—e.g., Socher et al. [189]–are o�en used to

101

[CLS] FC Eindhoven play their home games at
Jan Luowers Stadion, on the southern part of the city.

(sentence)

[CLS] FC Eindhoven . home venue ?

(query)

BERT BERT

Transformer Transformer

[CLS]

FC Eindhoven

Jan Luowers Stadion

Contextual Span Representations

Query Start Query End

Maximize
Inner Product

Span Start Span End

Query Representation

Figure 7.1: �e TARDIS model for answering queries by extracting a span from a given sen-
tence. [CLS] is a special token appended to the beginning of each sequence. We train the
model to predict [CLS] when the sentence does not contain the answer. �e double arrow
indicates that the parameters of BERT are shared between the sentence and query. For the
probing experiments (§7.3.4), the BERT model (shaded red boxes) parameters are kept �xed.

populate KBs. Here we propose an alternative: instead of performing relation extraction, we
instead directly treat a large corpus as a KB, and learn to answer slot-�lling queries on-the-�y
using the corpus. Concretely, a query consists of a relation and a head entity, provided by the
user as text, and the answer to a query is a subspan of the indexed corpus. We call this task
lazy slot-�lling (by analogy to “lazy evaluation” in programming languages) to emphasize that
the “slot-�lling” queries are answered without a pre-extracted KB .

Our work is motivated by Seo et al. [181], who formulated the task of phrase-indexed question-
answering (PIQA). In PIQA an arbitrary natural-language question is answered with a span from
a corpus, and further, the span must be retrieved using a small number of maximal inner product
search (MIPS) queries. A important limitation of PIQA is that it is unclear what sort of infor-
mation the indexed corpus should store, since any question at all could, in principle, be posed
by a user. Here we de�ne a clear goal for the index—it needs to record how entity mentions in
the corpus are related. �is has similarities with how information is stored in a structured KB,
but with the key di�erence that instead of using discrete edges to represent relations, we use

102

continuous embeddings computed from text, which can capture arbitrary �ne-grained seman-
tics. We also opt for representing all mentions in the corpus, which does not lead to any loss of
information. By analogy, we term the index a Virtual KB.

Restricting the information in the index naturally restricts the kind of queries it can be
used to answer, compared to PIQA. However, we will show that, through the use of pretrained
word embeddings, it generalizes to both unseen relations during training and arbitrary natural
language queries. �e main bene�ts of this restriction, on the other hand, are easier procedures
for sampling negatives during training, and an algorithm for extending to multi-hop queries,
which we discuss in the next chapter.

We �rst present an architecture for learning the contextual representations in the index,
called TARDIS (Tokens And Relations in a Dual-encoder Index for Slot-�lling, Fig. 7.1). It relies
on a dual-encoder [77] system based on BERT [51]: given a slot-�lling query, two probe vectors
are constructed, one used to retrieve the �rst token of the answer span, and one to retrieve the
last. Using the relation extraction data from Levy et al. [122], we show the applicability of
TARDIS representations in the lazy slot-�lling se�ing, where queries are answered against the
entire corpus using MIPS. We also present results on relations unseen during training, and
propose a novel scheme for describing them by a handful of instances of the slot values they
accept (e.g., for “occupation” this could be “scientist” or “politician”). We show that this scheme
outperforms the approach of Levy et al. [122], which used question templates to describe a new
relation.

7.2 Virtual Knowledge Base

7.2.1 Preliminaries

Let S = {pi}i be a corpus, which is a collection of text blocks (sentences in this chapter). Let
K = {(s, r, o)}j be a KB, i.e., a collection of triples describing relation r between the head entity
s and the tail entity o. �e relations in the seed KB come from a �xed set R, and have string
names (e.g., “educated at”, “member of sports team”). A slot-�lling query is of the form (s, r, ?)

where the task is to �nd the missing tail entity in the triple. Our goal is to answer such queries
by extracting spans from S . We are interested in queries which ask about a seen relation r ∈ R,
but a head entity unseen in K (i.e., in generalizing to unseen entities) as well as queries about
an unseen relation r /∈ R and unseen head entity (the “zero-shot” se�ing).

We answer slot-�lling queries through a dual encoder model (§ 7.2.2) that encodes the

103

answer-containing sentence and query separately, followed by an inner product between the
two. �e model is trained to extract the answer spans from sentences which contain them (pos-
itives), and predict No-Answer on those which do not (negatives) (§ 7.2.3). At test time, all
spans in the corpus are encoded sentence-by-sentence into their contextual representations,
and stored in the virtual KB o�ine. �eries are answered against these representations by
encoding them separately and running MIPS (§ 7.2.3).

7.2.2 Dual Encoder

Figure 7.1 shows an overview of the Dual Encoder that builds on top of the BERT model [51].
We use BERT-base, which is a 12-layer Transformer network, pretrained on a large unsuper-
vised text corpus, which produces contextual representations of an input sequence of tokens.
Given a sentence p, we prepend a special token [CLS] to it and split it using using WordPiece
tokenization [237] to produce a sequence (w0, w1, . . . , wN). �is is encoded through BERT as
follows:

Hp = [h0, . . . , hN] = BERT(w0, . . . , wN), (7.1)

where hi ∈ Rd, and h0 corresponds to the representation of the special [CLS] token. We refer
the reader to Devlin et al. [51] for more details.

We consider all spans in the sentence up to a maximum length L as possible answers to
a slot-�lling query. For a span (i, j) which starts at token i and ends at token j, we take its
representation as:

H(i,j)
p = [Hp(i);Hp(j)], (7.2)

i.e. a concatenation of the BERT outputs at token i and token j. �is simple scheme allows
e�cient inference since it decomposes into two separate inner product searches, as described
below.

For the query, we use a string representation q which concatenates the name of the head
entity and the name of the relation (e.g. “Microso�, headquarters?”). �is is passed through the
same BERT-base model as the sentence to obtain the contextual representationsHq. We further
process these query representations into a start (qst) and an end (qen) vector, respectively, by
passing them through two separate 2-layer Transformer networks:

Hst = Transformerst(Hq),

qst = Hst[0], (7.3)

104

�ery (Neil Herron, occupation, rugby union player)

Positive Instance Neil Herron is a Sco�ish rugby union player at the Centre position.
Shared-entity Negative Neil Herron played for West of Scotland and Glasgow Hawks.
Shared-relation Negative William Paston, 2nd Earl of Yarmouth was a British peer and politician.

Table 7.1: A slot-�lling query with a distantly supervised positive sentence and a shared-entity
and shared-relation negative each.

and analogously for qen. �e architecture of the Transformer network is identical to that of
BERT, but it is randomly initialized. A�er the �nal layer, we take the output vector corre-
sponding to position 0 (i.e., the [CLS] token). Similar to span representations, the �nal query
representation is a concatenation of the start and end vectors.

Given these representations, we model the probability of a span (i, j) being the answer as:

Pr(a = (i, j)) ∝ exp
(
[qst; qen]TH(i,j)

p

)
, (7.4)

i.e. an inner-product between the query and span representations. Ideally, the normalization
would be over all spans in the sentence, however this is O(N2) in sentence length. Hence, we
adopt a common practice in extractive QA [46, 179] and, during training, normalize the start
and end probabilities separately.

7.2.3 Training & Inference

To support inference over a large corpus, we also train over negative instances, i.e. query-
sentence pairs where the sentence does not contain the answer. �is is necessary to drive
down the inner product score (Eq. 7.4) between the query and spans in irrelevant sentences in
the corpus. For these instances, we use the [CLS] span to mean No-Answer, and train the
model to predict this for negative instances.

�e choice of negatives is crucial for avoiding false positives at inference time. �e struc-
tured nature of the slot-�lling task allows us to create two types of targeted negative instances
for a given query (s, r, ?), as shown in Table 7.1. In shared-entity negatives (E-Neg) the query
is paired with a sentence mentioning the subject entity s, but in a di�erent relation r′ with
a di�erent tail entity o′. In shared-relation negatives (R-Neg) the sentence mentions di�erent
head and tail entities s′ and o′ but the same relation r. Levy et al. [122] only used shared-entity
negatives for training relation extraction systems. Here, we will show that for lazy slot-�lling,
both kinds of negatives are important.

105

Given a dataset of positive as well as negative instances, we train the dual encoder model
by minimizing the negative log likelihood of the correct span in Eq. 7.4. A�er training we index
every sentence p ∈ S in the corpus using the �ne-tuned BERT (Eq. 7.1). �e total size of the
index is O(|S|Nd).

At test time, answering queries against the corpus S leads to the following search problem:

â = arg max
p∈S,i 6=0,j 6=0
j>i,j−i<L

qTstHp(i) + qTenHp(j) (7.5)

In this search we exclude [CLS] tokens, so at test time the model never returns No-Answer.
We perform the search in two steps similar to Seo et al. [182]. First we use only qst to maximize
the �rst term in Eq. 7.5, retaining the top 500 sentence and token index pairs. For this we use
FAISS [103], an e�cient similarity search library which scales to millions of sentences. �en we
maximize Eq. 7.5 only for the spans within these top 500 sentences. In preliminary experiments,
we found that this two-stage search results in a negligible drop in accuracy and is much more
e�cient than enumerating representations of all possible spans.

7.2.4 Generalizing to Unseen Relations

In the zero-shot se�ing, the query is a relation r′ /∈ R not seen in the training data. Because
relations are speci�ed in text, some zero-shot generalization does occur, due to the use of pre-
trained contextual representations. In preliminary analysis, we found zero-shot generalization
was best for unseen relations whose tail entities o have the same type as some of the training
relations. For example, if the screenwriter relation was seen in training, the system might gen-
eralize to the director relation, but the generalization was poor for unseen relations like gender
and occupation, which have unique types for their tail entities.

Levy et al. [122] reformulated zero-shot slot-�lling as a reading comprehension task, by
assuming that unseen relations were described by question templates (e.g., “What does x do for
a living?”). �estions, however, provide only coarse-grained type information. In this work we
propose a di�erent zero-shot se�ing: for a new relation r, the user speci�es n tail type seeds,
(mr

1, . . . ,m
r
n) , of the same type as the expected answer. (E.g., for occupation these might be

“politician”, “scientist”, and “soccer player”.) We show that for even n = 3 such seeds can
provide much larger gains in the zero-shot se�ing than question templates.

To use the tail type seeds, we leverage the insight that BERT’s contextual representations
cluster entities of the same �ne-grained type together (see § 7.3.4). Let M r denote the set of all
mentions of any mr

k (k = 1 . . . n) in the corpus, each of which is a tuple (p, i, j), detected using

106

an exact string match. We ensure thatM r contains an equal number of mentions of each of the
n instances. We de�ne the tail type representations for r as:

qrst =
1

|M r|
∑

(p,i,j)∈Mr

Hp(i), (7.6)

qren =
1

|M r|
∑

(p,i,j)∈Mr

Hp(j), (7.7)

When tail type seeds are provided we replace the query in Eq. 7.5 with q′st and q′en below:1

q′st = qst + qrst,

q′en = qen + qren. (7.8)

Note that the tail type seeds are only used during inference, so training remains unchanged.
�e idea of using a few sample instances to specify a type, as we do in the tail type instances
representation for a relation, is closely related to the task of set expansion [76, 215]. Set expan-
sion has been previously used for a number of tasks, including answering list questions [216],
but not zero-shot slot-�lling questions.

7.3 Experiments & Results

7.3.1 Setup

Data. We use the slot-�lling data released by Levy et al. [122], which consists of triples (s, r, o)

from WikiData [212] distantly aligned with sentences in the Wikipedia article of the head entity
swhich mention both s and o. �ere are 120 di�erent relations in the data. �e data consists of
shared-entity negatives (E-Neg, § 7.2.3); we further augment it with shared-relation negatives
(R-Neg) by randomly pairing triples with sentences from the dataset aligned to other triples
with the same relation. Overall, we end up with 1M training, 1000 validation, and 10K test
instances, out of which half are positive, and a quarter each are shared-relation and shared-
entity negatives.

Experimental Settings. We begin by studying generalization to unseen entities (§ 7.3.2) and
unseen relations (§ 7.3.3) following the methods of Levy et al. [122]. For the la�er, we do ten-fold

1We experimented with di�erent weights for combining the two query representations, but found an equal-
weighted sum to work best across relations.

107

cross validation, each time training on one subset of relations and testing on the remaining ones.
We �rst consider the restricted se�ing: queries are paired with positive and negative sentences,
each mentioning the subject entity, and we report precision, recall and F1 scores of relation
extraction. We then consider the lazy slot-�lling se�ing, where queries must be answered using
retrieval from the full corpus, and report the accuracy of answering queries. While our dual
encoder setup can scale to the entire Wikipedia, and we present such experiments in the next
chapter, here we test it on a smaller corpus by collecting the full Wikipedia articles of the subject
entities of each query in the dev and test sets. Depending on the benchmark, this creates a
corpus of 200K-400K sentences. For experiments on unseen relations, we randomly select 3 tail
type seeds from all the unique tail entities o present in the data. We report results both with
and without queries whose answers are among these tail type seeds, for comparison to prior
work.

Implementation Details. We use the uncased BERT-Base model2, with 12 layers, 12 a�en-
tion heads, and 768-dim hidden state sizes. �e 2-layer Transformer models for further en-
coding the query into start and end representations are also 768-dim with 12 a�ention heads.
Training is done with batches of 32 and a learning rate of 0.00003. Similar to BERT, we use the
Adam optimizer. �e maximum length of sentences is set to 64, and longer sentences are split
into chunks using a sliding window with stride 16.3 Answer spans are restricted to a maximum
length of L = 10 tokens (WordPieces). We use n = 3 tail type seeds and analyze the e�ect
of this choice in Figure 7.2. During training, we track the performance on the validation set
in the restricted se�ing to do early stopping. �e number of shared-entity and shared-relation
negatives is always kept equal.

Compared Systems. We compare our TARDIS model to the BiDAF reading comprehension
model of [179]. We consider two variants of each system: the NL Relation variant, where the
query consists of the natural language relation name only; and the Multiple Templates variant
from Levy et al. [122], where the relation is converted to a natural language query during
both training and testing using crowd-sourced templates (e.g. occupation becomes “What is X’s
job?”). When evaluating on unseen relations, we also evaluate TARDIS using 3 tail type seeds
as in Eq. 7.8. In the lazy slot-�lling se�ing, we focus on the TARDIS models, and additionally
study the di�erent choices of negatives during training (Random-, E-, E+R-Neg).

2https://github.com/google-research/bert
3Any chunk which does not end up containing the answer is trained to predict No-Answer.

108

https://github.com/google-research/bert

Model Prec Rec F1

BiDAF [122]

NL Relation 0.882 0.910 0.896
Multiple Templates 0.877 0.913 0.894

TARDIS Dual Encoder (this work)

NL Relation 0.934 0.959 0.946

Table 7.2: Restricted se�ing: Micro-averaged precision, recall and F1 on a held-out set of queries
about unseen entities over unseen documents. All models are trained using only shared-entity
negatives (§7.2.3).

Model
Micro
Avg

Macro
Avg

NL Relation (E-Neg) 0.035 0.044
NL Relation (Random-Neg) 0.890 0.738
NL Relation (E+R-Neg) 0.891 0.847

Table 7.3: Lazy slot-�lling: micro- and macro-averaged (over relation types) accuracies of lazy
slot-�lling for TARDIS trained on entity negatives (E-Neg), random negatives (Random-Neg),
and both entity and relation negatives (E+R-Neg).

7.3.2 Generalization to Unseen Entities

For the �rst restricted-se�ing experiment, we train on all relations, and test on new entities
and sentences at test time. Table 7.2 shows that the TARDIS models perform best, even without
multiple templates. Levy et al. [122] estimated an upper bound of close to 0.9 in this se�ing,
a�ributing some errors to mismatches in answer spans (e.g. “1982” v. “December, 1982”). We
noticed that the dual encoder model rarely made such errors, leading a higher performance
than the BiDAF model.

Table 7.3 shows the performance of TARDIS in the more challenging lazy slot-�lling se�ing.
Training using the shared-entity negatives in this se�ing is not su�cient, since the retrieval
method quickly learns to �nd sentences with the correct relation but the wrong tail entity—a
situation not possible in the restricted se�ing—leading to average accuracy below 5%. �is is
remedied by introducing shared-relation negatives as well.

109

Model Prec Rec F1

BiDAF [122]

NL Relation 0.405 0.286 0.334
Multiple Templates 0.436 0.364 0.396

TARDIS Dual Encoder (�is Work)

NL Relation 0.601 0.489 0.538
+ 3 Tail type seeds 0.607 0.613 0.609

Multiple Templates 0.605 0.510 0.552
+ 3 Tail type seeds 0.606 0.612 0.609

Table 7.4: Restricted se�ing: Micro-averaged precision, recall and F1 on unseen relations and
unseen entities. �e results are averaged across 10 folds, where in each fold a di�erent subset
of relations are held out for testing. �e TARDIS models are trained only on shared-entity
negatives. + Tail type seeds denotes the zero-shot setup described in §7.2.4.

Above we argued that discarding the constraint that question are slot-�lling queries might
make constructing an index very hard—since any question is possible, it would be hard for
system to guess what information to encode and index. For lazy slot-�lling, in contrast, it
is clear what should be encoded: the contextual representation for the tokens in every entity
mention should include information about the entity type, and the relationships of that mention
to other entities in the same document. Unsurprisingly, performance on this task is much higher
than on the unconstrained variant, PIQA: the best result reported by Seo et al. [181] for exact
match accuracy is only 0.527.

We also compare to simply randomly sampling negatives (one for each positive instance):
this works well for relations with many instances but fails for relations with few instances, as
seen from the high micro-average (averaging prediction problems) but relatively lower macro-
average (averaging accuracy for each relation). �is is because random negatives are more
likely to contain distractor entities of the types required by common relations (e.g., countries)
but unlikely to contain distractor entities for uncommon types (e.g., vessel class, taxon rank).

110

0 1 3 5 10
Type Instances

0.52

0.53

0.54

0.55

0.56

0.57

0.58

0.59

0.60

M
ic

ro
-F

1

Figure 7.2: Restricted se�ing: Micro-averaged F1 score on unseen relations, averaged across 10

folds, as the number of tail type seeds provided for each relation increases. For each relation,
we repeat the experiment for 3 di�erent randomly selected sets of tail type seeds and show the
average and standard deviation (shaded blue region) here.

Model
Micro
Avg

Macro
Avg

NL Relation 0.370 0.369
+ 3 Tail type seeds 0.399 0.398

Multiple Templates 0.376 0.372
+ 3 Tail type seeds 0.411 0.406

Table 7.5: Lazy slot-�lling: Micro- and Macro-averaged accuracies on unseen relations, using
the TARDIS model. All models are trained on both negative types (E+R-Neg). We exclude any
query whose answer is among the tail type seeds from the evaluation.

7.3.3 Generalization to Unseen Relations

For the second restricted-se�ing experiment, we train on ten folds, each time holding out 24

relations (out of 120) for testing, 12 for validation, and the use the rest for training. Table 7.4
shows that the TARDIS models improve substantially on prior work in this zero-shot se�ing:
for example, the NL Relation variant of TARDIS improves the F1 score of BiDAF from 0.334

to 0.538. �e type-instance speci�cation of a relation additionally improves performance to
0.609—higher than the performance with multiple templates, which requires crowdsourcing.

Table 7.5 shows the performance of TARDIS in the lazy-slot �lling se�ing on unseen rela-

111

BERT-Model Prec Rec F1

BERT-Base

NL Relation (E-Neg) 0.844 0.856 0.850
NL Relation (R-Neg) 0.692 0.733 0.715

Fine-tuned BERT (as in TARDIS)

NL Relation (E-Neg) 0.866 0.887 0.876
NL Relation (R-Neg) 0.829 0.864 0.846

Table 7.6: Probing experiments: Micro-averaged precision, recall and F1 for pre-trained BERT
(uncased BERT-Base) vs Fine-tuned BERT (trained with the TARDIS model using entity and
relation negatives E+R-Neg).

tions, trained with both shared-entity and shared-relation negatives. On this more challeng-
ing task, the addition of the tail type seeds improves macro-averaged accuracy by about three
points, over either the relation name alone or the multiple-template description used in prior
work.

7.3.4 Further Analysis

Figure 7.2 shows that much of the gain from tail type seeds is obtained from a single instance,
and that performance is not improved much by providing more than 3 tail type seeds.4 Figure 7.2
also shows that the standard deviation of the micro-F1 is quite low as the underlying set of tail
type seeds is varied. It is slightly higher when only 1 tail type seed is used.

Table 7.7 gives a number of examples of answers for the same question before and a�er the
addition of tail type seeds. As we would expect, the tail type seeds primarily help in identifying
the exact answer span, in some cases via explicit cues, such as “navy” or “cemetery”, and in oth-
ers implicitly by entity types, such as programming languages. For some queries the inclusion
of tail types also helps retrieve the correct answer-containing sentence. We also note that the
overall performance of the best model in the zero-shot unseen-relation case for lazy slot-�lling
is comparable to the best prior result for relation extraction in the restricted se�ing of Levy

4In the �gure we use NL Relation inputs to the dual encoder model, and train and test it on both shared-entity
and shared-relation negatives, so the accuracies reported are expected to be slightly di�erent from the results in
the table.

112

et al. [122].
Finally, to compare the representations learned by the BERT model �ne-tuned on the lazy

slot-�lling task, we design two probing experiments. In each experiment, we keep the pa-
rameters of the BERT model being probed �xed and only train the query-start and query-end
Transformer networks (see Figure 7.1). Similar to Tenney et al. [202], we use a weighted av-
erage of the layers of BERT here rather than only the top-most layer, where the weights are
learned on the probing task.

In the �rst experiment, we train and test on shared-entity negatives (E-Neg). Good perfor-
mance here means the BERT model being probed encodes �ne-grained entity-type information
reliably.5 As shown in Table 7.6, BERT-Base performs well on this task, suggesting it encodes
�ne-grained types well.

In the second experiment, we train and test only on shared-relation negatives (R-Neg). Good
performance here means that the BERT model encodes entity co-occurrence information reliably.
In this probe task, we see a large performance drop for BERT-Base, suggesting it does not en-
code entity co-occurrence information well. �e good performance of the TARDIS model on
both experiments suggests that �ne-tuning on the lazy slot �lling task primarily helps the con-
textual representations to also encode entity co-occurrence information, in addition to entity
type information.

7.4 Discussion

Just like a structured KB, the principle behind a virtual KB is to preprocess unstructured textual
data into a format such that queries can be answered easily and quickly against it. �e di�erence
between the two is that one extracts a discrete set of entities and relations from text, while the
other embeds all spans in a continuous space of contextual representations. We have shown
that the la�er approach can generalize to unseen entities and relations at test time, which the
former cannot. �e key ingredient which allows this generalization is the pretrained BERT
language model. A similar result was shown by Levy et al. [122], but using pretrained word
embeddings.

We experimented with a relatively small-scale se�ing of 200K sentences. Seo et al. [182]
showed that for larger corpora, dense embeddings alone are not su�cient for accurate retrieval
of answers, and extended the index with sparse embeddings. We will also adopt this approach

5A reasonable heuristic for solving this task is to simply detect an entity with the correct type in the given
sentence, since all sentences contain the subject entity.

113

in the next chapter to scale up. While our focus was on constructing the virtual KB from text
alone, it is conceptually straightforward to extend the idea to a combination of text and KBs, in
a se�ing similar to Chapter 5.

Traditional KBs are useful beyond just slot-�lling. In particular, by aggregating information
along entity nodes, they allow several forms of compositional and numerical reasoning over
their contents. Developing a similar machinery for virtual KBs is the natural next step, and this
will be our focus in the next chapter. It will also be interesting to see how virtual KBs can be
integrated into models for tasks beyond QA, such as language modeling.

114

�
er
y
&
A
ns

w
er

Ta
il
ty
pe

se
ed

s
Pr

ed
ic
ti
on

s

Q.
A

lis
on

El
iz

ab
et

h
Ta

yl
or

,
ed

uc
at

ed
at

?
A

.c
ol

um
bi

a
un

iv
er

sit
y

O
hi

o
St

at
e

Un
iv

er
sit

y,
Co

lle
ge

N
ot

re
D

am
e

de
Ja

m
ho

ur
,

Un
iv

er
sit

y
of

D
ur

ha
m

N
L
Re
la
tio

n:
al

iso
n

el
iz

ab
et

h
ta

yl
or

is
a

gr
ad

ua
te

of
co

lu
m
bi
a
un

iv
er
si
ty

,s
ch

oo
lo

ft
he

ar
ts

an
d

ha
sh

ad
th

re
e

so
lo

…

+
ty
pe

se
ed
s:

al
iso

n
el

iz
ab

et
h

ta
yl

or
is

a
gr

ad
ua

te
of

co
lu
m
bi
a
un

iv
er
si
ty

,s
ch

oo
lo

ft
he

ar
ts

an
d

ha
sh

ad
th

re
e

so
lo

…

Q.
M

ar
tin

W
ag

ho
rn

,m
ili

ta
ry

br
an

ch
?

A
.r

oy
al

na
vy

Lu
�w

a�
e,

Un
ite

d
St

at
es

N
av

y,
Pa

ki
st

an
N

av
y

N
L
Re
la
tio

n:
m

ic
ha

el
w

ad
de

ll
(2

2
de

ce
m

be
r1

92
2

–
22

m
ay

20
15

)
w

as
a

br
iti

sh
ar

m
y

o�
ce

ro
ft

he
50

th
ro
ya

lt
an

k
re
gi
m
en

t…

+
ty
pe

se
ed
s:

m
ar

tin
w

ag
ho

rn
(d

ie
d

17
de

ce
m

be
r1

78
7

)
w

as
an

o�
ce

ro
ft

he
ro
ya

ln
av

y
.

Q.
Jo

hn
H

ic
kl

in
H

al
l,

pl
ac

e
of

bu
ria

l?
A

.r
iv

er
vi

ew
ce

m
et

er
y

A
rli

ng
to

n
Ce

m
et

er
y,

Po
w

az
ki

Ce
m

et
er

y,
Ga

te
of

H
ea

ve
n

Ce
m

et
er

y

N
L
Re
la
tio

n:
jo

hn
hi

ck
lin

ha
ll

di
ed

in
po

rtl
an

d
,o

re
go

n
,

an
d

w
as

in
te

rr
ed

at
riv

er
vi

ew
ce

m
et

er
y

in
po

rt
la
nd

.

+
ty
pe

se
ed
s:

jo
hn

hi
ck

lin
ha

ll
di

ed
in

po
rtl

an
d

,o
re

go
n

,
an

d
w

as
in

te
rr

ed
at

ri
ve

r
vi
ew

ce
m
et
er
y

in
po

rtl
an

d
.

Q.
As

ci
iD

oc
,p

ro
gr

am
m

in
g

la
ng

ua
ge

?
A

.p
yt

ho
n

Go
,

M
oc

kl
isp

,
O

Ca
m

l

N
L
Re
la
tio

n:
th

e
m

ai
n

la
ng

ua
ge

is
sp

an
is
h

.

+
ty
pe

se
ed
s:

as
ci

id
oc

w
as

cr
ea

te
d

in
…

w
ri�

en
in

th
e
py

th
on

pr
og

ra
m

m
in

g
la

ng
ua

ge
to

co
nv

er
tp

la
in

te
xt

�l
es

to
…

Ta
bl

e
7.7

:L
az

y
slo

t-�
lli

ng
pr

ed
ic

tio
ns

ab
ou

tu
ns

ee
n

re
la

tio
ns

fro
m

th
e

du
al

en
co

de
rm

od
el

.W
e

sh
ow

th
e

re
tri

ev
ed

se
nt

en
ce

an
d

an
sw

er
(in

bo
ld

)f
ro

m
th

e
N

L
Re

la
tio

n
m

od
el

tra
in

ed
on

E+
R-

N
eg

,a
nd

th
e

on
e

w
hi

ch
ad

di
tio

na
lly

us
es

3
ta

il
ty

pe
se

ed
s.

115

116

Chapter 8

Di�erentiable Reasoning

Traditional Knowledge Bases organize information around entities, which makes it easy to
reason over their contents. For example, given a query like “When was the Grateful Dead’s lead

singer born?”, one can identify the entity Grateful Dead and the path of relations LeadSinger,
BirthDate to e�ciently extract the answer—provided that this information is present in the
KB. In this chapter, we develop a model for answering such questions against the virtual KB
described in the previous chapter. In addition to accuracy of the model, we will also focus on
speed and scalability—an important consideration in practical se�ings. �is work �rst appeared
as:

• Bhuwan Dhingra, Manzil Zaheer, Vidhisha Balachandran, Graham Neubig, Ruslan Salakhut-
dinov, and William W Cohen. Di�erentiable reasoning over a virtual knowledge base. In
Proceedings of the International Conference on Learning Representations, 2020

Code to reproduce the experiments in this chapter is open-sourced.1

8.1 Overview

Answering complex queries, like the one above, is di�cult for existing open-domain QA sys-
tems that �rst retrieve and then encode documents from the corpus in a query-dependent fash-
ion [26, 51]. If the passages stating that “Jerry Garcia was the lead singer of the Grateful Dead”

and “Jerry Garcia was born in 1942” are far apart in the corpus, it is di�cult for systems that
retrieve and read a single passage to �nd an answer—even though in this example, it might be
easy to answer the question a�er the relations were explicitly extracted into a KB. More gener-

1http://www.cs.cmu.edu/bdhingra/pages/drkit.html

117

http://www.cs.cmu.edu/~bdhingra/pages/drkit.html

ally, complex questions involving sets of entities or paths of relations may require aggregating
information from multiple documents, which is expensive.

One step towards e�cient QA is the virtual KB approach presented in the previous chap-
ter, and also explored in PIQA [181, 182], where spans in the text corpus are associated with
question-independent contextual representations and then indexed for fast retrieval. Natural
language questions are then answered by converting them into vectors that are used to per-
form maximum inner product search (MIPS) against the index. �is can be done e�ciently
using approximate algorithms [187]. However, this approach cannot be directly used to answer
complex queries, since by construction, the information stored in the index is about the local
context around a span—it can only be used for questions where the answer can be derived by
reading a single passage.

Here we address this limitation by extending the virtual KB with a sparse structure connect-
ing a prede�ned set of entities to their mentions in the text (Figure 8.1). Using this additional
structure, we introduce an e�cient, end-to-end di�erentiable framework for doing complex QA
over a large text corpus. Speci�cally, we consider “multi-hop” complex queries which can be
answered by repeatedly executing a “so�” version of the operation below, de�ned over a set of
entities X and a relation R:

Y = X.follow(R) = {x′ : ∃x ∈ X s.t. R(x, x′) holds} (8.1)

In past work so�, di�erentiable versions of this operation were used to answer multi-hop ques-
tions against an explicit KB [36]. Here we propose a more powerful neural module which ap-
proximates this operation against an indexed corpus (the virtual KB). In our module, the input
X is a sparse-vector representing a weighted set of entities, and the relationR is a dense feature
vector, e.g. a vector derived from a neural network over a natural language query. X and R
are used to construct a MIPS query used for retrieving the top-K spans from the index. �e
output Y is another sparse-vector representing the weighted set of entities, aggregated over
entity mentions in the top-K spans.

For multi-hop queries, the output entities Y can be recursively passed as input to the next
iteration of the same module. �e weights of the entities in Y are di�erentiable w.r.t the MIPS
queries, which allows end-to-end learning without any intermediate supervision. We discuss an
implementation based on sparse-matrix-vector products, whose runtime and memory depend
only on the number of spans K retrieved from the index. �is is crucial for scaling up to large
corpora, providing up to 15x faster inference than existing state-of-the-art multi-hop and open-
domain QA systems. �e system we introduce is called DrKIT (for Di�erentiable Reasoning

118

Question: When was the Grateful Dead and Bob Dylan album released?

Virtual KB: Pretrained
mention representations

Aggregate
mentions
to entities

Dylan & the Dead

American beauty

The times they …

BOW	
 Emb	
 Query	
 Enc	
 +

2nd hop

Sparse
matrix set
product

Top-k
inner
product
search

Context
Bob Dylan is American singer-
songwriter.

Grateful Dead formed in 1965
in Palo Alto, CA.

Dylan & the Dead is a live album by
Bob Dylan and Grateful Dead

Linked KB Facts
Bob Dylan, country, ?
Bob Dylan, profession, ?

Grateful Dead, founded, ?
Grateful Dead, located, ?

Dylan & the Dead, performer, ?
Dylan & the Dead, performer, ?

Expand
entities to
mentions

Dense query vector

First hop
answers

Entities

Mentions

f(M)

Z0

Z1

B

C
Figure 8.1: DrKIT answers multi-hop questions by iteratively mapping an input set of entities X (�e

Grateful Dead, Bob Dylan) to an output set of entities Y (Dylan & the Dead, American beauty, …) which
are related to any input entity by some relation R (album by).

over a Knowledge base of Indexed Text).
We test DrKIT on the MetaQA benchmark for complex question answering, and show that

it improves on prior text-based systems by 5 points on 2-hop and 9 points on 3-hop questions,
reducing the gap between text-based and KB-based systems by 30% and 70%, respectively. We
also test DrKIT on a new dataset of multi-hop slot-�lling over Wikipedia articles, and show
that it outperforms DrQA [26] and PIQA [182] adapted to this task. Finally, we apply DrKIT to
multi-hop information retrieval on the HotpotQA dataset [246], and show that it signi�cantly
improves over a BERT-based reranking approach, while being 10x faster.

8.2 Di�erentiable Reasoning over a KB of Indexed Text

We want to answer a question q using a text corpus as if it were a KB. We start with the set of
entities z in the question q, and would ideally want to follow relevant outgoing relation edges
in the KB to arrive at the answer. To simulate this behaviour on text, we �rst expand z to a

119

set of co-occurring mentions m (say using TFIDF). Not all of these co-occurring mentions are
relevant for the question q, so we train a neural network which �lters the mentions based on a
relevance score of q tom. �en we can aggregate the resulting set of mentionsm to the entities
they refer to, ending up with an ordered set z′ of entities which are answer candidates, very
similar to traversing the KB. Furthermore, if the question requires more than one hop to answer,
we can repeat the above procedure starting with z′. �is is depicted pictorially in Figure 8.1.

We begin by �rst formalizing this idea in a probabilistic framework in § 8.2.1. In § 8.2.2, we
describe how the expansion of entities to mentions and the �ltering of mentions can be per-
formed e�ciently, using sparse-matrix products and MIPS algorithms [103]. Lastly, we discuss
a pretraining scheme based on the previous chapter for constructing a virtual KB of mention
representations suited for this task in § 8.2.3.

8.2.1 Di�erentiable Multi-Hop Reasoning

We denote the given corpus as S = {s1, s2, . . .}, where each sk = (s1
k, . . . , s

Nk
k) is a sequence of

tokens. We start by running an entity linker over the corpus to identify mentions of a �xed set of
entitiesN . Each mentionm is a tuple (vm, km, im, jm) denoting that the text span simkm , . . . , s

jm
km

in document km mentions the entity vm ∈ N , and the collection of all mentions in the corpus
is denoted asM. Note that typically |M| � |N |.

We assume aweakly supervised se�ing where during training we only know the �nal answer
entities A ∈ N for a T -hop question. We denote the latent sequence of entities which answer
each of the intermediate hops as z0, z1, . . . , zT ∈ N , where z0 is mentioned in the question,
and zT = A. We can recursively write the probability of an intermediate answer as:

Pr(zt|q) =
∑
zt−1∈E

Pr(zt|q, zt−1) Pr(zt−1|q). (8.2)

Here Pr(z0|q) is the output of an entity linking system over the question, and Pr(zt|q, zt−1)

corresponds to a single-hop model which answers the t-th hop, given the entity from the pre-
vious hop zt−1, by following the appropriate relation. Eq. 8.2 models reasoning over a chain of
latent entities, but when answering questions over a text corpus, we must reason over entity
mentions, rather than entities themselves. Hence Pr(zt|q, zt−1) needs to be aggregated over all
mentions of zt, which yields

Pr(zt|q) =
∑
m∈M

∑
zt−1∈N

Pr(zt|m) Pr(m|q, zt−1) Pr(zt−1|q). (8.3)

120

�e interesting term to model in the above equation is Pr(m|q, zt−1), which represents the
relevance of mention m given the question and entity zt−1. Following the analogy of a KB,
we �rst expand the entity zt−1 to co-occuring mentions m and use a learned scoring function
to �nd the relevance of these mentions. Formally, let F (m) denote a TFIDF vector for the
document containing m, G(zt−1) be the TFIDF vector of the surface form of the entity from the
previous hop, and φt(m, z, q) be a learnt scoring function (di�erent for each hop). �us, we
model Pr(m|q, zt−1) as

Pr(m|q, zt−1) ∝ 1{G(zt−1) · F (m) > ε}︸ ︷︷ ︸
expansion to co-occurring mentions

×φt(m, zt−1, q)︸ ︷︷ ︸
relevance �ltering

. (8.4)

Another equivalent way to look at our model in Eq. 8.4 is that the second term retrieves men-
tions of the correct type requested by the question in the t-th hop, and the �rst term �lters
these based on co-occurrence with zt−1. When dealing with a large set of mentions m, we will
typically retain only the top-K relevant mentions. We will show that this joint modelling of
co-occurrence and relevance is important for good performance, as was also observed by Seo
et al. [182].

�e other term le� in Eq. 8.3 is Pr(z|m), which is 1 if mentionm refers to the entity z else 0,
based on the entity linking system. In general, to compute Eq. 8.3 the mention scoring of Eq. 8.4
needs to be evaluated for all latent entity and mention pairs, which is prohibitively expensive.
However, by restricting φt to be an inner product we can implement this e�ciently (§ 8.2.2).

To highlight the di�erentiability of the proposed overall scheme, we can represent the com-
putation in Eq. 8.3 as matrix operations. We pre-compute the inner products between TFIDF
vectors (§ 2.2.3) for all entities and mentions into a sparse matrix, which we denote as an
|N |× |M|matrix B[v,m] = 1

(
G(v)TF (m) > ε

)
. �en entity expansion to co-occuring men-

tions can be done using a sparse-matrix by sparse-vector multiplication between B and zt−1.
For the relevance scores, let TK(φt(m, zt−1, q)) denote the top-K relevant mentions en-

coded as a sparse vector in R|M|. Finally, the aggregation of mentions to entities can be formu-
lated as multiplication with another |M|×|N | sparse-matrix C , which encodes coreference, i.e.
C[m, v] = 1 if mention m corresponds to the entity n. Pu�ing all these together, using � to
denote element-wise product, and de�ning Zt = [Pr(zt = v1|q); . . . ; Pr(zt = v|N ||q)], we can
observe that for large K (i.e., as K → |M|), Eq. 8.3 becomes equivalent to:

Zt = so�max
([
ZT
t−1B � TK(φt(m, zt−1, q))

]
C
)
. (8.5)

Note that every operation in above equation is di�erentiable and between sparse matrices and
vectors: we will discuss e�cient implementations in § 8.2.2. Further, the number of non-zero

121

entries in Zt is bounded by K , since we �ltered (the element-wise product in Eq. 8.5) to top-K
relevant mentions among TFIDF based expansion and since each mention can only point to a
single entity in C . �is is important, as it prevents the number of entries in Zt from exploding
across hops (which might happen if, for instance, we added the relevance and TFIDF scores
instead).

We can viewZt−1, Zt as weighted multisets of entities, and φt(m, z, q) as implicitly selecting
mentions which correspond to a relation R. �en Eq. 8.5 becomes a di�erentiable implemen-
tation of Zt = Zt−1.follow(R), i.e. mimicking the graph traversal in a traditional KB. We thus
call Eq. 8.5 a textual follow operation.

Training and Inference. �e model is trained end-to-end by optimizing the cross-entropy
loss between ZT , the weighted set of entities a�er T hops, and the ground truth answer set
A.2 We use a temperature coe�cient λ when computing the so�max in Eq, 8.5 since the inner
product scores of the top-K retrieved mentions are typically high values, which would other-
wise result in very peaked distributions of Zt. We also found that taking a maximum over the
mentions of an entity in Eq. 8.3 works be�er than taking a sum. �is corresponds to optimizing
only over the most con�dent mention of each entity, which works for corpora like Wikipedia
that do not have much redundancy. A similar observation was made by Min et al. [137] in
weakly supervised se�ings.

8.2.2 E�cient Implementation

Sparse TFIDF Mention Encoding. To compute the sparse-matrix B for entity-mention ex-
pansion in Eq. 8.5, the TFIDF vectors F (m) and G(v) are constructed over unigrams and bi-
grams, hashed to a vocabulary of 16M buckets. We ignore the bo�om 160 buckets in terms of
IDF scores to encourage sparsity. While F computes the vector from the whole passage around
mention m, G only uses the surface form of entity v. �is corresponds to retrieving all men-
tions in a document using v as the query. We limit the number of retrieved mentions per entity
by retrieving a maximum of P paragraphs per entity.

E�cient Entity-Mention expansion. �e expansion from a set of entities to mentions oc-
curring around them can be computed using the sparse-matrix by sparse-vector productZT

t−1B.
A simple lower bound for multiplying a sparse |N | × |M| matrix, with maximum µ non-zeros

2We optimize against a uniform distribution over the elements of A.

122

10
2

10
3

10
4

10
5

10
6

|E| = Num entities

10
1

10
0

10
1

10
2

10
3

m
ill

is
e
c

sparse x sparse

sparse x dense

Figure 8.2: Runtime on a single K80 GPU when using ragged representations for implementing sparse-
matrix vector product, vs the default sparse-matrix times dense vector product available in TensorFlow.
|N | > 105 leads to OOM for the la�er.

in each row, by a sparse |N | × 1 vector with K non-zeros is Ω(Kµ). Note that this lower
bound is independent of the size of matrix B, or in other words independent of the number of
entities or mentions. To a�ain the lower bound, the multiplication algorithm must be vector
driven, because any matrix-driven algorithms need to at least iterate over all the rows. Instead
we slice out the relevant rows from B. To enable this our solution is to represent the sparse-
matrix B as two row-wise lists of variable-sized lists of the indices and values of the non-zero
elements, respectively. �is results in a “ragged” representation of the matrix [203] which can
be easily sliced corresponding to the non-zero entries in the vector in O(log |N |) time. We are
now le� with K sparse-vectors with at most µ non-zero elements in each. We can add these
K sparse-vectors weighted by corresponding values from the vector ZT

t−1 in O(K max{K,µ})
time. Moreover, such an implementation is feasible with deep learning frameworks such as
TensorFlow. We tested the scalability of our approach by varying the number of entities for a
�xed density of mentions µ (estimated from Wikipedia). Figure 8.2 compares our approach to
the default sparse-matrix times dense-vector product available in TensorFlow.

E�cient top-K mention relevance �ltering: To make computation of Eq. 8.5 feasible, we
need an e�cient way to get top-K relevant mentions related to an entity in zt−1 for a given
question q, without enumerating all possibilities. To do this, we follow the lazy slot-�lling
procedure outlined in the last chapter by restricting the scoring function φt(m, zt−1, q) to an
inner product. In this manner we can leverage e�cient approximate MIPS algorithms (§ 2.2.3).
Let f(m) be a dense encoding ofm, and gt(q, zt−1) be a dense encoding of the question q for the
t-th hop, both in Rp. �ese are computed in a similar manner to the last chapter (more details

123

below). �en the scoring function φt(m, zt−1, q) becomes

φt(m, zt−1, q) = f(m)Tgt(q, zt−1), (8.6)

We precompute the mention embeddings into a single large matrix f(M) = [f(m1); f(m2); . . .],
and index it for e�cient MIPS retrieval [1, 103, 187]. Although this matrix will be very large for
a realistic corpus, we can use MIPS to retrieve the top-K values e�ciently since we are only
interested the top scoring mentions. �e complexity of this �ltering step using MIPS is roughly
O(Kp polylog|M|).

Mention and �estion Encoders. Mentions are encoded in a similar manner as the last
chapter (Eq. 7.2), but using BERT-large instead of BERT-base [51]. To limit the size of the em-
beddings, and consequently the size of eventual virtual KB, we also linearly project the mention
embeddings from BERT. Suppose mentionm appears in passage s, starting at position i and end-
ing at position j. �en f(m) = W T [Hs

i ;H
s
j], where Hs is the sequence of embeddings output

from BERT, and W is a linear projection to size p.
�e queries are also encoded similarly, but with a smaller BERT-like model with only 4

Transformer layers [209], producing the output sequence Hq. Following Eq. 7.3, for each hop
t = 1, . . . , T , we add two additional Transformer layers on top of Hq, and take their [CLS]
encodings as the start and end vectors, Hq

st and Hq
en, respectively. We concatenate the two and

de�ne g̃t(q) = V T [Hq
st;H

q
en]. Finally, to condition on current progress we add the embeddings

of zt−1. Speci�cally, we use entity embeddings E ∈ R|N |×p, to construct an average embedding
of the set Zt−1, as ZT

t−1E, and de�ne:

gt(q, zt−1) ≡ g̃t(q) + ZT
t−1E. (8.7)

To avoid a large number of parameters in the model, we compute the entity embeddings as an
average over the word embeddings (�rst layer in BERT) of the tokens in the entity’s surface
form. �e computational cost of the question encoder gt(q) is O(p2).

Complexity. Our total computational complexity to answer a query is Õ(K max{K,µ} +

Kp + p2) (almost independent to number of entities or mentions!), with O(µ|N | + p|M|)
memory to store the pre-computed matrices and mention index.3

3Following standard convention, in Õ notation we suppress poly log dependence terms.

124

8.2.3 Pretraining

Ideally, we would like to train the mention encoder f(m) end-to-end using labeled QA data only.
However, this poses a challenge when combined with approximate nearest neighbor search,
since a�er every update to the parameters of f , one would need to recompute the embeddings
of all mentions inM. We thus adopt a staged training approach: we �rst pre-train a mention
encoder f(m), borrowing ideas from the previous chapter, and then compute and index embed-
dings for all mentions once, keeping these embeddings �xed when training the downstream QA
task. Unlike the lazy slot-�lling task, however, note that here the queries to the index (Eq. 8.7)
consist of two parts—one derived from a natural language description g̃t(q), and the other from
the entities in the previous hop ZT

t−1E. Hence, we adapt the pretraining procedure accordingly.
Speci�cally, assume we are given an open-domain KB consisting of facts (e1, R, e2) spec-

ifying that the relation R holds between the subject e1 and the object e2. �en for a corpus
of entity-linked text passages {sk}, we automatically identify tuples (s, (e1, R, e2)) such that s
mentions both e1 and e2. Using this data, we learn to answer slot-�lling queries in a reading
comprehension setup, where the query q is constructed from the surface form of the subject
entity e1 and a natural language description of R (e.g. “Jerry Garcia. birth place?”), and the an-
swer e2 needs to be extracted from the passage s. Using string representations in q ensures our
pre-training setup is similar to the downstream task. In pretraining, we use the same scoring
function as in previous section, but over all spans m in the passage:

φ(m, e1, q) ∝ exp {f(m) · g(q, e1)} . (8.8)

Similar to lazy slot-�lling, during training, we normalize the start and end probabilities of
picking out the correct spanm separately. We use a similar set of negatives as listed in Table 7.1,
augmented with some randomly generated ones which pair queries with random text passages
from the corpus.

For the multi-hop slot-�lling experiments below, we used WikiData [212] as our KB, Wikipedia
as the corpus, and SLING [170] to identify entity mentions. We restrict s to be from the
Wikipedia article of the subject entity to reduce noise. Overall we collected 950K pairs over
550K articles. For the experiments with MetaQA, we supplemented this data with the corpus
and KB provided with MetaQA, and string matching for entity linking. We use BERT-large in
this chapter, which has 24 layers, 16 a�ention heads in each layer, and an embedding dimension
of 1024.4

4https://github.com/google-research/bert.

125

https://github.com/google-research/bert

8.3 Experiments

8.3.1 METAQA: Multi-Hop�estion Answering with Text

Dataset. We �rst evaluate DrKIT on the MetaQA benchmark for multi-hop question answer-
ing [260]. MetaQA consists of around 400K questions ranging from 1 to 3 hops constructed by
sampling relation paths from a movies KB [135] and converting them to natural language us-
ing templates. �e questions cover 8 relations and their inverses, around 43K entities, and are
paired with a corpus consisting of 18K Wikipedia passages about those entities. �e questions
are all designed to be answerable using either the KB or the corpus, which makes it possible to
compare the performance of our virtual KB QA system to a plausible upper bound system that
has access to a complete KB. We used the same version of the data as Sun et al. [197].

Details. We use p = 400 dimensional embeddings for the mentions and queries, and 200-
dimensional embeddings each for the start and end positions. �is results in an index of size
750MB. When computing B, the entity to mention co-occurrence matrix, we only retain men-
tions in the top P = 50 paragraphs matched with an entity, to ensure sparsity. Further we
initialize the �rst 4 layers of the question encoder with the Transformer network from pre-
training. For the �rst hop, we assign Z0 as a 1-hot vector for the least frequent entity detected
in the question using an exact match. �e number of nearest neighbors K and the so�max
temperature λ were tuned on the dev set of each task, and we found K = 10000 and λ = 4

to work best. We pretrain the index on a combination of the MetaQA corpus, using the KB
provided with MetaQA for distance data, and the WikiData corpus.

Results. Table 8.1 shows the accuracy of the top-most retrieved entity (Hits@1) for the sub-
tasks ranging from 1-3 hops, and compares to the state-of-the-art systems for the text-only
se�ing on these tasks. DrKIT outperforms the prior state-of-the-art by a large margin in the
2-hop and 3-hop cases. �e strongest prior method, PullNet [196, 197], uses a graph neural net-
work model with learned iterative retrieval from the corpus to answer multi-hop questions. It
uses the MetaQA KB during training to identify shortest paths between the question entity and
answer entity, which are used to supervise the text retrieval and reading modules. DrKIT, on
the other hand, has strong performance without such supervision, demonstrating its capability
for end-to-end learning. (Adding the same intermediate supervision to DrKIT does not even
consistently improve performance—it gives DrKIT a small li� on 1- and 2-hop questions but
does not help for 3-hop questions.)

126

MetaQA

Model 1hop 2hop 3hop

DrQA (ots) 0.553 0.325 0.197

KVMem† 0.762 0.070 0.195
Gra�Net† 0.825 0.362 0.402
PullNet† 0.844 0.810 0.782

DrKIT (e2e) 0.844 0.860 0.876
DrKIT (strong sup.) 0.845 0.871 0.871

WikiData

Model 1hop 2hop 3hop

DrQA (ots, cascade) 0.287 0.141 0.070
PIQA (ots, cascade) 0.240 0.118 0.064

PIQA (pre, cascade) 0.670 0.369 0.182
DrKIT (pre, cascade) 0.816 0.404 0.198

DrKIT (e2e) 0.834 0.469 0.244
–BERT index 0.643 0.294 0.165

Table 8.1: MetaQA (le�) and WikiData (right) Hits @1 for 1-3 hop sub-tasks. ots: o�-the-shelf
without re-training. †: obtained from Sun et al. [197]. cascade: adapted to multi-hop se�ing
by repeatedly applying Eq. 8.3. pre: pre-trained on slot-�lling. e2e: end-to-end trained on
single-hop and multi-hop queries.

0 5 10 15 20 25
Q/sec

0.70

0.75

0.80

0.85

0.90

Hi
ts

 @
1

MSR 3-hop
PullNet 3-hop
DrKIT 3-hop

MSR 2-hop
PullNet 2-hop
DrKIT 2-hop

0 5 10 15 20
Q/sec

0.0

0.1

0.2

0.3

0.4

0.5

Hi
ts

 @
1

PIQA-RT 2-hop
DrKIT 2-hop

PIQA-RT 3-hop
DrKIT 3-hop

Figure 8.3: Hits @1 vs �eries/sec during inference on MetaQA (le�) and WikiData (middle)
tasks, measured on a single CPU server with 6 cores. MSR: Multi-step Retriever model from
Das et al. [46] (we only show Q/sec).

DrKIT’s architecture is driven, in part, by e�ciency considerations: unlike PullNet, it is
designed to answer questions with minimal processing at query time. Figure 8.3 compares the
tradeo�s between accuracy and inference time of DrKIT with PullNet as we varyK , the number
of dense nearest neighbors retrieved. �e runtime gains of DrKIT over PullNet range between
5x-15x. Figure 8.4 further shows the e�ect of varying K on the accuracy of the system. We
note that K must be somewhere between 5-10K for our approach to be e�ective.

127

2000 4000 6000 8000 10000
K = Num nearest neighbors

0.6

0.7

0.8

Hi
ts

 @
1

MetaQA 1hop
MetaQA 2hop
MetaQA 3hop

Figure 8.4: E�ect of varying number of nearest neighbors K during MIPS on the Hits@1

performance.

Ablations 1hop 2hop 3hop

DrKIT 0.844 0.860 0.876

–Sum over mentions (Eq. 8.3) 0.837 0.823 0.797
–λ = 1 0.836 0.752 0.799
–w/o TFIDF 0.845 0.548 0.488
–BERT index 0.634 0.610 0.555

Incomplete KB for pretraining

25% KB 0.839 0.804 0.830
50% KB 0.843 0.834 0.834
(50% KB-only) 0.680 0.521 0.597

Table 8.2: Ablation study for di�erent components of DrKIT.

Analysis. Table 8.2 shows ablations on DrKIT for the MetaQA data. First, we empirically
con�rm that taking a sum instead of max over the mentions of an entity hurts performance.
So does removing the so�max temperature (by se�ing λ = 1). Removing the TFIDF compo-
nent from Eq. 8.4, leads a large decrease in performance for 2-hop and 3-hop questions. �is is
because the TFIDF component constrains the end-to-end learning to be along reasonable paths
of co-occurring mentions, preventing the search space from exploding. �e results also high-
light the importance of the pretraining method of § 8.2.3, as DrKIT over an index of BERT
representations without pretraining is 23 points worse in the 3-hop case. We also check the

128

performance when the KB used for pre-training is incomplete. Even with only 50% edges re-
tained, we see good performance—be�er than PullNet and the state-of-the-art for a KB-only
method (in italics).

We analyzed 100 2-hop questions correctly answered by DrKIT and found that for 83, the
intermediate answers were also correct. �e other 17 cases were all where the second hop asked
about genre, e.g. “What are the genres of the �lms directed by Justin Simien?”. We found that
in these cases the intermediate answer was the same as the correct �nal answer—essentially
the model learned to answer the question in 1 hop and copy it over for the second hop. Among
incorrectly answered questions, the intermediate accuracy was only 47%, so the mistakes were
evenly distributed across the two hops.

8.3.2 WikiData: Multi-Hop Slot-Filling

�e MetaQA dataset has been fairly well-studied, but has limitations since it is constructed
over a small KB. In this section we consider a new task, in a larger scale se�ing with many
more relations, entities and text passages. �e new dataset also lets us evaluate performance
in a se�ing where the test set contains documents and entities not seen at training time, an
important issue when devising a QA system that will be used in a real-world se�ing, where the
corpus and entities in the discourse change over time, and lets us perform analyses not possible
with MetaQA, such as extrapolating from single-hop to multi-hop se�ings without retraining.

Task #train #dev #test |Ntest| |Mtest| |Stest| Example

1hop 16901 2467 10000 216K 1.2M 120K
Q. Mendix, industry?
A. Enterprise So�ware

2hop 163607 398 9897 342K 1.9M 120K
Q. 2000 Hel van het Mergelland, winner,
place of birth?
A. Bert Grabsch→ Lutherstadt Wi�enberg

3hop 36061 453 9899 261K 1.8M 120K

Q. Magni�cent!, record label, founded by,
date of death?
A. Prestige→ Bob Weinstock→
14 Jan 2006

Table 8.3: WikiData multi-hop slot-�lling dataset

129

Dataset. We sample two subsets of Wikipedia articles, one for pre-training (§ 8.2.3) and end-
to-end training, and one for testing. For each subset we consider the set of WikiData entities
mentioned in the articles, and sample paths of 1-3 hop relations among them, ensuring that any
intermediate entity has an in-degree of no more than 100. �en we construct a semi-structured
query by concatenating the surface forms of the head entity with the path of relations (e.g.
“Helene Gayle, employer, founded by, ?”). �e answer is the tail entity at the end of the path,
and the task is to extract it from the Wikipedia articles. In the last chapter, we focused on
a single-hop, static corpus se�ing, whereas here our task considers a dynamic se�ing which
requires the system to traverse the corpus. For each se�ing, we create a dataset with 10K
articles, 120K passages, > 200K entities and 1.5M mentions, resulting in an index of size about
2GB. Details of the collected dataset are shown in Table 8.3.

Baselines. We adapt two publicly available open-domain QA systems for this task – DrQA5

[26] and PIQA6 [182]. While DrQA is relatively mature and widely used, PIQA is recent, and
similar to our setup, since it also answers questions with minimal computation at query time.
PIQA also uses MIPS queries, similar to the lazy slot-�lling setup of the last chapter, with an
additional sparse component in the index, but cannot be used to answer multi-hop queries.
We thus also consider a cascaded architecture which repeatedly applies Eq. 8.3, using either of
PIQA or DrQA to compute Pr(zt|q, zt−1) against the corpus, retaining at most k intermediate
answers in each step. We tune k in the range of 1-10, since larger values make the runtime
infeasible. Further, since these models were trained on natural language questions, we use the
templates released by Levy et al. [122] to convert intermediate questions into natural text.7 We
test o�-the-shelf versions of these systems, as well as a version of PIQA re-trained on our our
slot-�lling data.8 We compare to a version of DrKIT trained only on single-hop queries (§ 8.2.3)
and similarly cascaded, and one version trained end-to-end on the multi-hop queries.

Results. Table 8.1 (right) lists the Hits @1 performance on this task. O�-the-shelf open-
domain QA systems perform poorly, showing the challenging nature of the task. Re-training
PIQA on the slot-�lling data improves performance considerably, but DrKIT trained on the

5https://github.com/facebookresearch/DrQA
6https://github.com/uwnlp/denspi
7For example, “Helene Gayle. employer?” becomes “Who is the employer of Helene Gayle?”
8We tuned several hyperparameters of PIQA on our data, eventually picking the sparse �rst strategy, a sparse

weight of 0.1, and a �lter threshold of 0.2. For the S�AD trained version, we also had to remove paragraphs
smaller than 50 tokens since with these the model failed completely.

130

https://github.com/facebookresearch/DrQA
https://github.com/uwnlp/denspi

Rare Frequent All
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

H
it

s
@

1

PIQA

PIQA-retrained

DrKIT-all spans

DrKIT-entities

Figure 8.5: Macro-avg accuracy on lazy slot-�lling. We split the results based on frequency of
the relations in our WikiData training data. DrKIT-all spans refers to a variant of our model
which selects from all spans in the corpus, instead of only entity-linked mentions.

same data improves on it. A large improvement over these cascaded architectures is seen with
end-to-end training, which is made possible by the di�erentiable operation introduced in this
paper. We also list the performance of DrKIT when trained against an index of �xed BERT-
large mention representations. While this is comparable to the re-trained version of PIQA,
it lags behind DrKIT pre-trained using the KB, once again highlighting the importance of lazy
slot-�lling style pretraining. We also plot the Hits @1 against �eries/sec for cascaded versions
of PIQA and DrKIT in Figure 8.3 (middle). We observe runtime gains of 2x-3x to DrKIT due to
the e�cient implementation of entity-mention expansion of §8.2.2.

Analysis. In order to understand where the accuracy gains for DrKIT come from, we con-
duct further experiments on the lazy slot-�lling data constructed in the previous chapter. We
report results on 2 subsets of relations in addition to all relations. �e Rare subset comprises of
relations with frequencies < 5 in the training data while the Frequent subset contains the rest.
PIQA trained on S�AD only gets 30% macro-avg accuracy on this data, but this improves to
46% when re-trained on our slot-�lling data. Interestingly, a version of DrKIT which selects
from all spans in the corpus performs similarly to PIQA (50%), but when using entity linking
it signi�cantly improves to 66%. It also has 55% accuracy in answering queries about rare
relations.

131

Model Q/s
Accuracy

@2 @5 @10 @20

BM25† – 0.093 0.191 0.259 0.324
PRF-Task† – 0.097 0.198 0.267 0.330
BERT re-ranker† – 0.146 0.271 0.347 0.409
Entity Centric IR† 0.32∗ 0.230 0.482 0.612 0.674

DrKIT (WikiData)
4.26∗

0.355 0.588 0.671 0.710
DrKIT (Hotpot) 0.385 0.595 0.663 0.703
DrKIT (Combined) 0.383 0.603 0.672 0.710

Model EM F1

Baseline† 0.288 0.381
+EC IR‡ 0.354 0.462
+Golden Ret� 0.379 0.486
+DrKIT† 0.357 0.466

Table 8.4: Le�: Retrieval performance on the HotpotQA benchmark dev set. Q/s denotes
the number of queries per second during inference on a single 16-core CPU. Accuracy @k is
the fraction where both the correct passages are retrieved in the top k. †: Baselines obtained
from Das et al. [47]. For DrKIT, we report the performance when the index is pretrained using
the WikiData KB alone, the HotpotQA training questions alone, or using both. ∗: Measured
on di�erent machines with similar specs. Right: Overall performance on the HotpotQA task,
when passing 10 retrieved passages to a downstream reading comprehension model [246]. ‡:
From Das et al. [47]. �: From Qi et al. [159]. †: Results on the dev set.

8.3.3 HotpotQA: Multi-Hop Information Retrieval

Dataset. HotpotQA [246] is a recent dataset of over 100K crowd-sourced multi-hop questions
and answers over introductory Wikipedia passages. We focus on the open-domain fullwiki

se�ing where the two gold passages required to answer the question are not known in advance.
�e answers are free-form spans of text in the passages, not necessarily entities, and hence our
model which selects entities is not directly applicable here. Instead, inspired by recent works
[47, 159], we look at the challenging sub-task of retrieving the passages required to answer the
questions, from a pool of 5.23M. �is is a multi-hop IR task, since for many questions at least
one passage may be 1-2 hops away from the entities in the question. Further, each passage
is about an entity (the title entity of that Wikipedia page), and hence retrieving passages is
the same as identifying the title entities of those passages. We apply DrKIT to this task of
identifying the two entities for each question, whose passages contain the information needed
to answer that question. �en we pass the top 10 passages identi�ed this way to a standard
reading comprehension architecture from Yang et al. [246] to select the answer span.

132

Setup. We use the Wikipedia abstracts released by Yang et al. [246] as the text corpus.9 �e
total number of entities is the same as the number of abstracts, 5.23M, and we consider hyper-
links in the text as mentions of the entities to whose pages they point to, leading to 22.8M total
mentions in an index of size 34GB. For pretraining the mention representations, we compare
using the WikiData KB as described in § 8.2.3 to directly using the HotpotQA training questions,
with TFIDF based retrieved passages as negative examples. We set B[v,m] = 1 if either the
entity v is mentioned on the page of the entity denoted by m, or vice versa. For entity linking
over the questions, we retrieve the top 20 entities based on the match between a bigram based
TFIDF vector of the question with a similar vector derived from the surface form of the entity
(same as the title of the Wiki article). We found that the gold entities that need to be retrieved
are within 2 hops of the entities linked in this manner for 87% of the dev examples.

Unlike the MetaQA and WikiData datasets, however, for HotpotQA we do not know the
number of hops required for each question in advance. Instead, we run DrKIT for 2 hops for
each question, and then take a weighted average of the distribution over entities a�er each hop
Z∗ = π0Z0+π1Z1+π2Z2. Z0 consists of the entities linked to the question itself, rescored based
on an encoding of the question, since in some cases one or both the entities to be retrieved are
in this set.10 Z1 and Z2 are given by Eq. 8.5. �e mixing weights πi are the so�max outputs of
a classi�er on top of another encoding of the question, learnt end-to-end on the retrieval task.
�is process can be viewed as so� mixing of di�erent templates ranging from 0 to 2 hops for
answering a question, similar to NQL [36].

Results. We compare our retrieval results to those presented in Das et al. [47] in Table 8.4
(Le�). We measure the accuracy @k retrievals, which is the fraction of questions for which
both the required passages are in the top k retrieved ones. We see an improvement in accuracy
across the board, with much higher gains @2 and @5. �e main baseline is the entity-centric
IR approach which runs a BERT-based re-ranker on 200 pairs of passages for each question.
Importantly, DrKIT also improves by over 10x in terms of queries per second during inference.
Note that the inference time is measured using a batch size of 1 for both models for fair compar-
ison. DrKIT can be easily run with batch sizes up to 40, but the entity centric IR baseline cannot
due to the large number of runs of BERT for each query. When comparing di�erent datasets
for pretraining the index, there is not much di�erence between using the WikiData KB, or the

9https://hotpotqa.github.io/wiki-readme.html
10For example, for the question “How are elephants connected to Gajabrishta?”, one of the passages to be

retrieved is “Gajabrishta” itself.

133

https://hotpotqa.github.io/wiki-readme.html

System
Runtime Answer Sup Fact Joint

#Bert s/Q EM F1 EM F1 EM F1

Baseline [246] – – 25.23 34.40 5.07 40.69 2.63 17.85
Golden Ret [159] – 1.4† 37.92 48.58 30.69 64.24 18.04 39.13
Semantic Ret [150] 50∗ 40.0‡ 45.32 57.34 38.67 70.83 25.14 47.60
HGN [69] 50∗ 40.0‡ 56.71 69.16 49.97 76.39 35.63 59.86
Rec Ret [3] 500∗ 133.2† 60.04 72.96 49.08 76.41 35.35 61.18

DrKIT + BERT 1.2� 1.3 42.13 51.72 37.05 59.84 24.69 42.88

Table 8.5: O�cial leaderboard evaluation on the test set of HotpotQA. #Bert refers to the num-
ber of calls to BERT [51] in the model. s/Q denotes seconds per query (using batch size 1) for
inference on a single 16-core CPU. Answer, Sup Fact and Joint are the o�cial evaluation metrics
for HotpotQA. ∗: �is is the minimum number of BERT calls based on model and hyperparam-
eter descriptions in the respective papers. †: Computed using code released by authors, using
a batch size of 1. ‡: Estimated based on the number of BERT calls, using 0.8s as the time for
one call (without considering overhead due to other computation in the model). �: One call to
a 5-layer Transformer, and one call to BERT.

HotpotQA questions. �e la�er has a be�er accuracy @2, but overall the best performance is
when using a combination of both.

In Table 8.4 (right), we check the performance of the baseline reading comprehension model
from Yang et al. [246], when given the passages retrieved by DrKIT. While there is a signi�-
cant improvement over the baseline which uses a TFIDF based retrieval, we see only a small
improvement over the passages retrieved by the entity-centric IR baseline, despite the signi�-
cantly improved accuracy @10 of DrKIT. Among the 33% questions where the top 10 passages
do not contain both the correct passages, for around 20% the passage containing the answer
is also missing. We conjecture this percentage is lower for the entity-centric IR baseline, and
the downstream model is able to answer some of these questions without the other supporting
passage.

8.3.4 HotpotQA: End-to-End Answer Extraction

In this section, we build an end-to-end pipeline for answering HotpotQA questions. We use
DrKIT to identify the top 5 passages which are likely to contain the answer to a question. We

134

then train a separate model to extract the answer from a concatenation of these passages. �is
model is a standard BERT-based architecture used for S�AD (see Devlin et al. [51] for details),
with a few modi�cations. First, to handle boolean questions, we train a 3-way classi�er on top
of the [CLS] representation from BERT to decide whether the question has a “span”, “yes”
or “no” answer, respectively. During inference, if this classi�er has the highest probability on
“span” we extract a start and end position similar to Devlin et al. [51], else we directly answer
as “yes” or “no”.

Second, to handle supporting fact prediction, we prepend each sentence in the concatenated
passages passed to BERT with a special symbol [unused0], and train a binary classi�er on
top of the representation of each of these symbols output from BERT. �e binary classi�er is
trained to predict 1 for sentences which are supporting facts and 0 for sentences which are
not. During inference, we take all sentences for which the output probability of this classi�er
is greater than 0.5 as supporting facts.

�e training loss is an average of the loss for the 3-way classi�er (Lcls), the sum of the losses
for the supporting fact classi�ers (Lsp), and the losses for the start and end positions of span
answers (Lst, Len):

L = (Lcls + Lsp + Lst + Len)/4 (8.9)

We train the system on 5 passages per question provided in the distractor se�ing of HotpotQA—
2 gold ones and 3 negatives from a TFIDF retriever. We keep the gold passages at the beginning
for 60% of the examples, and randomly shu�e all passages for the rest, since during inference
the correct passages are likely to be retrieved at the top by DrKIT. Other hyperparameters
include batch size 32, learning rate 5 × 10−5, number of training epochs 5, and a maximum
combined passage length 512.

Table 8.5 shows the performance of this system on the HotpotQA test set, compared with
other recently published models.11 In terms of accuracy, DrKIT+BERT reaches a modest score
of 42.88 joint F1, but is considerably faster (up to 100x) than the models which outperform it.

8.4 Discussion

Neural �ery Language (NQL) [36] de�nes di�erentiable templates for multi-step access to a
symbolic KB, in which relations between entities are explicitly enumerated. �e motivation
behind this work was to extend those ideas to a se�ing where relations are de�ned implicitly

11As of February 23, 2020: https://hotpotqa.github.io/.

135

https://hotpotqa.github.io/

in text. We contrast this with the extensive line of work on Knowledge Graph embeddings
[20, 50, 241], which also uses neural representations, but derives them from a limited set of
relations in a symbolic KB. Such embeddings o�en allow generalization to unseen facts using
relation pa�erns, but text corpora are more complete in the information they contain.

Talmor and Berant [200] also examined answering compositional questions by treating a
text corpus (in their case the entire web) as a KB. However their approach consists of parsing
the query into a computation tree, and running a black-box QA model on its leaves separately,
which cannot be trained end-to-end. �is is analogous to semantic parsing, but the logical form
derived from the question is executed using an open-domain QA model, rather than a query
language. Our approach lies somewhere in between—the sparse entity set and relation vectors
we derive from the question e�ectively form a semantic parse, and the textual follow operation
constitutes a simple query language. However, this semantic parse is latent and we show that
it can be learned e�ciently even against a large knowledge source. An interesting direction
of future work would to be integrate this with tasks other than QA, which also need to reason
over background knowledge, e.g. language modeling and dialogue.

�ere is also a question remaining as to whether this approach can work at a much larger
web-scale. �e largest index we construct consisted of all abstracts on Wikipedia (∼ 34GB).
Even extending this to full Wikipedia articles would result in a 5x increase, and extending to the
entire web may be infeasible outside industrial se�ings. Hence, one direction for future work
would be to explore methods for compressing the virtual KB—either by reduce the embedding
size of the representations, or by removing redundancy, e.g. by clustering the mentions.

Traditional KBs are useful beyond just following paths of relations, and can be used for
numerical operations like �nding the maximum or minimum value of a property, or counting
the number of entities which satisfy a property. Hence, another direction of future work would
be to build such operations over the virtual KB.

136

Chapter 9

Conclusions

In this thesis we studied methods for reading and reasoning over textual knowledge, focusing
on factual information, and primarily on Wikipedia, but also on news articles and biomedical
abstracts. We developed neural network models for representing text passages as a collection
of dense feature vectors which can be used to classify answers to natural language questions.
By leveraging external entity linking tools we also incorporated symbolic knowledge graphs
into the process for answering the questions. Finally, we proposed a novel representation for
textual knowledge in the form of a virtual KB, which o�ers some of the basic functionality
of traditional KBs, such as slot-�lling and multi-hop reasoning, but also generalizes to unseen
entities and unseen relations. �e models presented in this thesis advanced the state-of-the-art
for several benchmarks for reading comprehension and open-domain question answering at
the time they were introduced.

In this chapter, we start by summarizing the key contributions of this thesis in § 9.1, followed
by a discussion of the key ideas in § 9.2. �en we conclude by outlining some directions for
future work in § 9.3.

9.1 Summary of Contributions

Reading Comprehension. In Chapter 3 we introduced a novel a�ention mechanism, called
Gated-A�ention, and incorporated it into a standard neural network architecture based on
RNNs. We showed that introducing this a�ention mechanism leads to a substantial improve-
ment in performance on 5 benchmarks for answering questions against a text passage. We also
introduced Coref-RNNs, an extension to standard RNNs, which model recurrence both along
the input sequence as well as coreference chains detected by an external system. Replacing

137

standard RNNs with Coref-RNNs in the reading model leads to further improvements on the
WikiHop [223], bAbi [227] and LAMBADA [152] datasets, which require aggregating informa-
tion from multiple sentences in the passage linked together by coreferent mentions. In Chap-
ter 4, we discussed methods for transfer learning from unlabeled text to the reading models.
We analyzed several design choices when pretraining word embeddings, and proposed a novel
pretraining objective, based on structure of the unlabeled documents, for the other components
of the model. We showed that the la�er leads to a huge improvement on Squad [166], TriviaQA
[104] and BioASQ when the supervised data is limited.

QA over KBs and Text. In Chapter 5 we studied the practical se�ing of answering questions
against an large text corpus and an incomplete KB. We introduced a two-step model, called
Gra�-Net, which consists of a retrieval step followed by a graph-comprehension step. In par-
ticular, for the la�er step, we adapted a commonly used neural architecture, graph convolution
networks, to the open-domain QA se�ing by: (i) introducing heterogeneous update rules for
handling text sentences and KB facts; and (ii) introducing an inductive bias in the form of di-
rected propagation for restricting the model to only encode paths relevant to the question. We
showed the e�ectiveness of the overall pipeline on a several KB se�ings—ranging from having
no KB, to an incomplete KB, to a fully complete one—by comparing to several baselines from
prior work on the WikiMovies [135] and Web�estionsSP [14] benchmarks. We showed that
representing the text and KB jointly, which we call early fusion, leads to substantial improve-
ments over models which represent them separately.

Multi-turn QA using Reinforcement Learning. In Chapter 6 we developed a model for
answering user queries in a multi-turn interaction. We discussed a modular neural network, and
proposed to use reinforcement learning for training it from user feedback. We also identi�ed an
important limitation—prior approaches for accessing the underlying KB rely on constructing
a symbolic query which is not di�erentiable. We addressed this limitation by developing a
so� method for computing a posterior distribution over the KB contents, and used statistics
computed from the distribution to decide the next agent action. We also discussed a two-stage
training strategy for the agent, consisting of an imitation learning step which emulates a rule-
based agent, followed by reinforcement learning based on feedback from a user simulator. We
showed gains in succesfully answering queries in fewer turns by using the so� posterior over
the KB over the symbolic query approach.

138

Virtual Knowledge Base. In Chapters 7 we introduced virtual KBs, which store pretrained
contextual representations of spans in a corpus. In Chapter 8 we further extended these by
linking together the mention spans using cooccurrence and coreference relations in a graph
represented as a sparse matrix. We show that virtual KBs can emulate important features of
a traditional KB, such as slot-�lling and multi-hop reasoning, while maintaining a fast speed
of inference. We also showed that virtual KBs can generalize to queries about unseen entities
and relations during training, and also allow training a so� semantic parser from denotations.
We establish a new state-of-the-art on the MetaQA [260] dataset, and show competitive perfor-
mance on HotpotQA [246], while being an order of magnitude faster than prior approaches.

9.2 Key Ideas

Architectural Inductive Biases. A recurring theme in the methods presented in this thesis
is that we can build inductive biases into deep learning models to be�er adapt them to certain
tasks. An inductive bias is an assumption in the learning algorithm which prioritizes one set of
solutions over another [10]. In machine learning, inductive biases can take many forms, such
as the prior distribution in bayesian learning, or regularization terms in the loss function. In
deep learning, an important type of inductive bias is encoded in the architecture of the neural
network itself. �e classic example of an architectural inductive bias is the use of convolutions
for representing images in CNNs, which lends invariance towards the translation of objects
within the image.

�roughout this thesis we have introduced many inductive biases for representing text,
knowledge graphs, and answering questions. �e Gated-A�ention mechanism and Coref-RNNs
(Chapter 3) introduce biases for learning query-dependent representations which also encode
coreferent-recency. Similarly, the directed propagation method (Chapter 5) biases graph net-
works for encoding only paths which start at an entity mentioned in the question. Entropy
statistics computed over the belief states of KB-InfoBot (Chapter 6) provide another bias for the
dialogue policy network to not over�t on speci�c values of the distributions.

Graph Structures for Reasoning. Reasoning can be loosely de�ned as the ability to derive
new information from what is known. Reasoning over text o�en involves aggregating informa-
tion from multiple passages. To enable this aggregation, at various points in this thesis we relied
on connecting text spans across passages in a graph structure using entity linking and corefer-
ence relations. Depending on the se�ing, we introduced several methods for representing the

139

resulting graph structure.
In Chapter 3, a�er augmenting a text sequence with coreference relations we end up with

two Directed-Acyclic Graphs (DAGs), one from le� to right and another from right to le� in the
sequence. Coref-RNNs generalize the idea of recurrence to DAGs, while being more e�cient
than general graph networks. In Chapter 5, a�er linking text passages to a KB, we end up with
a general graph with cycles, for which we used the more general graph network approach. �e
virtual KB augmented with entity structure in Chapter 8 can be viewed as a bi-partite graph,
with text passages on one side linked to entities on the other. �e textual-follow operation
introduced there essentially hops from entities to passages with which they are connected, and
then back to co-occurring entities, with an inner-product based scoring step in between. In
each of these cases, the graph structure provides an inductive bias for learning representations
suited for reasoning across text passages.

Di�erentiable Computation. Deep learning relies on stochastic gradient descent for opti-
mizing the parameters of neural networks which generate representations of data. However,
operations for manipulating structured data, e.g. running SQL queries, are not di�erentiable,
and hence training networks which learn to execute such operations is challenging. Hence,
in this thesis we develop di�erentiable counterparts to a few such operations. �e basic idea
behind these counterparts is to replace the discrete results of the operation by a so� probability
distribution over all possible results, such that the weights of the distribution are computed in
a di�erentiable manner from the inputs of the operation.

One such counterpart was introduced in Chapter 6, where we replaced select SQL state-
ments against a table with the so�-KB lookup. Another counterpart was introduced in Chap-
ter 8, where we replaced the discrete relation-following operation with a so�er version in
DrKIT. �ese ideas contribute to the broader theme of neural-symbolic learning, an ongoing
research e�ort towards combining symbolic logic and deep learning [17].

9.3 Future Work

�e thesis of this research has been that, through the use of machine learning, text corpora can
replace knowledge bases for serving information needs. While we have made much progress,
realizing this goal requires extending existing methods and addressing several limitations, which
we highlight here.

140

Beyond �estion Answering. �roughout, our focus has been on various forms of QA.
However, traditional KBs are used for all sorts of automated decision making tasks. In particular,
it will be interesting to see whether the virtual KB framework can be integrated with end-to-end
learning for tasks which implicitly depend on real-world knowledge, e.g. detecting fake news,
intelligent tutoring, and automatic customer support. As a concrete next step, we can extend
state-of-the-art language models [51, 86] with an operation which can construct queries to the
virtual KB, and use the retrieved facts to predict the next token.

Other types of Reasoning. �e DrKIT model introduced in Chapter 8 answers natural lan-
guage questions by parsing them to so� logical forms and then executing the logical forms
against the virtual KB. However, the logical forms were restricted to relatively simple templates,
e.g. in the 2-hop case λx.∃yR1(e, y)R2(y, x). �is limits the class of questions our system can
handle, and more complex information needs require executing richer logical forms. In par-
ticular, an important direction for future work is to develop di�erentiable implementations of
reasoning operations beyond relation following. We outline some ideas below:

1. Set intersection & union: Many questions involve taking an intersection or union of
sets of intermediate answers, e.g. “Which movies have starred both Tom Hanks and Julia
Roberts?”, or “Which Pi�sburgh restaurants serve either Chinese or Indian food?”. �ese
operations can be easily implemented using the sparse vector representation for weighted
sets of entities introduced in Chapter 8. Suppose vX1 and vX2 are sparse vectors for setsX1

andX2. �en we can model their intersection as vX1∩X2 = vX1�vX2 (� is an elementwise
product), and union as vX1∪X2 = max (vX1 , vX2) or vX1∪X2 = vX1 + vX2 [36].

2. N-ary relation following: Real-world KBs encode rich N -ary relations with quali�ers,
such as start and end times, over predicates. �is is useful for answering questions like
“Which club did Cristiano Ronaldo play for in 2007?”. One way to answer such queries
using text is to rede�ne the relation to a more �ne-grained version (e.g. member-of-club-

in-2007 as opposed to member-of-club), and, in fact, this may be learned end-to-end by
the relation-following operation. But a more principled approach would allow following
a speci�ed slot starting from an arbitrary number of entities which �ll other slots in an
N -ary relation.

3. Mathematical reasoning: In this thesis we ignored an important class of numerical
operations which are useful for answering questions such as “Which was the last album
released by Metallica?”. One approach involves augmenting a neural model with a set of

141

discrete operations, and searching among them for a sequence which produces the correct
answer [2, 61]. Di�erentiable implementations of these operations would allow searching
in an end-to-end manner without relying on heuristics which are commonly employed
to prune the search space. While recent work [84] has explored such implementations,
these are currently limited to at most a few text passages.

4. Negation: Certain questions require identifying sets of entities which do not satisfy a
relation, e.g. “Which platinum albums have not won a Grammy?”. If every negated in-
stance was explicitly wri�en in the text, we may have answered this by conceiving of
a negated relation type (e.g. not-awarded-prize), but this will rarely be the case. When
dealing with small sets of entities, we may be able to invert the con�dence scores of the
set of entities which do satisfy the relation. But recall that, in DrKIT, we only retrieved
the top K entities which satis�ed a relation. Hence, this naı̈ve approach will treat all
other entities outside the top K as equally likely to not satisfy the relation. It is not clear
at this point how these di�culties may be addressed.

Other types of Knowledge. In this thesis we have largely modeled explicit factual knowl-
edge, the kind which appears in encyclopedias or news articles, and which can typically be
expressed as relations and a�ributes of entities. Other forms of knowledge are more implicit,
such as commonsense or social and cultural norms, and this is usually harder to express in terms
of entities or relations. �is kind of knowledge is best expressed in natural language statements,
but is rarely found in encyclopedias. Instead, an intriguing line of work has recently discussed
using language models, trained on web-scale corpora, as repositories of commonsense knowl-
edge [165, 206].

Language models have also been touted as KBs themselves, since they exhibit some capacity
to encode common facts [158]. But they also have limitations – (i) di�erent queries which are
semantically the same can lead to di�erent answers from LMs, demonstrating their bri�leness;1

(ii) they su�er with queries which involve reasoning [201]; and (iii) it is not clear how to add or
remove facts from LMs, since it is not clear where they derive their knowledge from in the �rst
place. �e explicit methods for representing knowledge discussed in this thesis do not su�er
from these limitations, and hence combining the two approaches has potential.

1�is can be easily veri�ed by playing around with one: https://transformer.huggingface.
co/doc/gpt2-large.

142

https://transformer.huggingface.co/doc/gpt2-large
https://transformer.huggingface.co/doc/gpt2-large

Uncertain & Dynamic Knowledge. �e methods discussed here all assume an unchanging
corpus from when training the model to when it is tested. We also assumed that the queries of
interest have a �xed unambiguous answer given the knowledge source. Practical situations in
which users a�empt to access knowledge, however, are much more dynamic and uncertain. For
example, noteworthy news events, such as Donald Trump’s impeachment trial, or the COVID-
19 pandemic, are recorded in corpora where information changes from day-to-day. Building a
question answering system over such corpora involves unique challenges, such as aggregating
contradictory information, modeling trustworthiness of sources, and distribution shi� from
train to test, to name a few. Tackling these issues requires new models, but also new benchmarks
which go beyond the static se�ing of existing datasets.

Of particular importance is the ability to model the con�dence of an extracted answer, a
relatively understudied aspect of text-based QA. Typically in machine learning, con�dence is
estimated as the posterior probability of a prediction given the input, and in supervised learning
this is modeled directly. Clark and Gardner [31] discuss several strategies for calibrating the
con�dence scores of answers extracted from multiple documents. �e underlying documents
themselves are assumed to be completely correct, and the only source of error is the model
itself. In a practical se�ing, however, there may be an error associated with the documents as
well (e.g. incorrect edits on Wikipedia, misinformation in news). One way to account for this
error is to associate a prior probability to each document in the corpus, which roughly captures
the truthfulness of its information. �is is similar in spirit to probabilistic databases [193], which
associate to each fact in the KB a probability whether it is correct or not, and during inference
propagate it to the con�dence of the �nal answer. Developing a similar framework when using
text as a knowledge source is an important direction for future research.

143

144

Bibliography

[1] Alexandr Andoni, Piotr Indyk, �ijs Laarhoven, Ilya Razenshteyn, and Ludwig Schmidt.
Practical and optimal lsh for angular distance. In Advances in Neural Information Process-

ing Systems, pages 1225–1233, 2015. 1.1, 2.2.3, 8.2.2

[2] Daniel Andor, Luheng He, Kenton Lee, and Emily Pitler. Giving bert a calculator: Finding
operations and arguments with reading comprehension. In Proceedings of the 2019 Confer-

ence on Empirical Methods in Natural Language Processing and the 9th International Joint

Conference on Natural Language Processing (EMNLP-IJCNLP), pages 5949–5954, 2019. 3

[3] Akari Asai, Kazuma Hashimoto, Hannaneh Hajishirzi, Richard Socher, and Caiming
Xiong. Learning to retrieve reasoning paths over wikipedia graph for question answer-
ing. In International Conference on Learning Representations, 2020. 8.3.4

[4] Layla El Asri, Jing He, and Kaheer Suleman. A sequence-to-sequence model for user
simulation in spoken dialogue systems. arXiv preprint arXiv:1607.00070, 2016. 6.5.1

[5] Sören Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard Cyganiak, and
Zachary Ives. Dbpedia: A nucleus for a web of open data. In Karl Aberer, Key-Sun Choi,
Natasha Noy, Dean Allemang, Kyung-Il Lee, Lyndon Nixon, Jennifer Golbeck, Peter Mika,
Diana Maynard, Riichiro Mizoguchi, Guus Schreiber, and Philippe Cudré-Mauroux, edi-
tors, �e Semantic Web, pages 722–735, Berlin, Heidelberg, 2007. Springer Berlin Heidel-
berg. ISBN 978-3-540-76298-0. 5.1

[6] Jimmy Lei Ba, Jamie Ryan Kiros, and Geo�rey E Hinton. Layer normalization. arXiv

preprint arXiv:1607.06450, 2016. 2.2.1

[7] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by
jointly learning to align and translate. arXiv preprint arXiv:1409.0473, 2014. 1.1, 3.1

[8] Ondrej Bajgar, Rudolf Kadlec, and Jan Kleindienst. Embracing data abundance: Booktest
dataset for reading comprehension. arXiv preprint arXiv:1610.00956, 2016. (document),

145

3.4.1, 3.4.1, 3.5.1, 4.1

[9] Collin F Baker, Charles J Fillmore, and John B Lowe. �e berkeley framenet project.
In Proceedings of the 17th international conference on Computational linguistics-Volume 1,
pages 86–90. Association for Computational Linguistics, 1998. 2.1.1

[10] Peter W Ba�aglia, Jessica B Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinicius
Zambaldi, Mateusz Malinowski, Andrea Tacche�i, David Raposo, Adam Santoro, Ryan
Faulkner, et al. Relational inductive biases, deep learning, and graph networks. arXiv

preprint arXiv:1806.01261, 2018. 9.2

[11] Petr Baudiš. Yodaqa: a modular question answering system pipeline. In POSTER 2015-

19th International Student Conference on Electrical Engineering, 2015. 5.1

[12] Yoshua Bengio, Patrice Simard, and Paolo Frasconi. Learning long-term dependencies
with gradient descent is di�cult. IEEE transactions on neural networks, 5(2):157–166,
1994. 1.1, 2.2.1

[13] Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Jauvin. A neural prob-
abilistic language model. Journal of machine learning research, 3(Feb):1137–1155, 2003.
1

[14] Jonathan Berant, Andrew Chou, Roy Frostig, and Percy Liang. Semantic parsing on Free-
base from question-answer pairs. In Proceedings of the 2013 Conference on Empirical Meth-

ods in Natural Language Processing, pages 1533–1544, Sea�le, Washington, USA, Octo-
ber 2013. Association for Computational Linguistics. URL https://www.aclweb.
org/anthology/D13-1160. 2.1.3, 9.1

[15] Jonathan Berant, Andrew Chou, Roy Frostig, and Percy Liang. Semantic parsing on
freebase from question-answer pairs. In Proceedings of the 2013 Conference on Empirical

Methods in Natural Language Processing, pages 1533–1544, 2013. 1

[16] Tim Berners-Lee, James Hendler, Ora Lassila, et al. �e semantic web. Scienti�c american,
284(5):28–37, 2001. 1

[17] Tarek R Besold, Artur d’Avila Garcez, Sebastian Bader, Howard Bowman, Pedro
Domingos, Pascal Hitzler, Kai-Uwe Kühnberger, Luis C Lamb, Daniel Lowd, Priscila
Machado Vieira Lima, et al. Neural-symbolic learning and reasoning: A survey and
interpretation. arXiv preprint arXiv:1711.03902, 2017. 9.2

[18] Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie Taylor. Freebase: a

146

https://www.aclweb.org/anthology/D13-1160
https://www.aclweb.org/anthology/D13-1160

collaboratively created graph database for structuring human knowledge. In Proceedings

of the 2008 ACM SIGMOD international conference on Management of data, pages 1247–
1250. AcM, 2008. 1, 2.1.2, 2, 5.1, 5.4.1

[19] Antoine Bordes and Jason Weston. Learning end-to-end goal-oriented dialog. arXiv

preprint arXiv:1605.07683, 2016. 6.6

[20] Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Oksana
Yakhnenko. Translating embeddings for modeling multi-relational data. In Advances

in neural information processing systems, pages 2787–2795, 2013. 8.4

[21] Antoine Bordes, Nicolas Usunier, Sumit Chopra, and Jason Weston. Large-scale simple
question answering with memory networks. arXiv preprint arXiv:1506.02075, 2015. 2.1.3

[22] Ronald Brachman and Hector Levesque. Knowledge representation and reasoning. 2004.
2.1.1

[23] Devendra Singh Chaplot, Kanthashree Mysore Sathyendra, Rama Kumar Pasumarthi,
Dheeraj Rajagopal, and Ruslan Salakhutdinov. Gated-a�ention architectures for task-
oriented language grounding. In �irty-Second AAAI Conference on Arti�cial Intelligence,
2018. 3.6

[24] Eugene Charniak. Toward a model of children’s story comprehension. PhD thesis, Mas-
sachuse�s Institute of Technology, 1972. 1.1

[25] Danqi Chen, Jason Bolton, and Christopher D Manning. A thorough examination of the
cnn/daily mail reading comprehension task. In ACL, 2016. 3.1, 3.4.1, 3.5.1, 4.1, 4.2.1, 4.2.4

[26] Danqi Chen, Adam Fisch, Jason Weston, and Antoine Bordes. Reading wikipedia to an-
swer open-domain questions. In ACL, 2017. (document), 1.1, 2.1.3, 2.2.3, 3.6, 5.3, 5.4.2,
8.1, 8.1, 8.3.2

[27] Huadong Chen, Shujian Huang, David Chiang, and Jiajun Chen. Improved neural ma-
chine translation with a syntax-aware encoder and decoder. ACL, 2017. 3.5.2

[28] Yun-Nung Chen, Dilek Hakkani-Tür, Gokhan Tur, Jianfeng Gao, and Li Deng. End-to-
end memory networks with knowledge carryover for multi-turn spoken language un-
derstanding. In Proceedings of �e 17th Annual Meeting of the International Speech Com-

munication Association, 2016. 6.3

[29] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi
Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase representations using

147

rnn encoder-decoder for statistical machine translation. ACL, 2015. 2.2.1

[30] Zewei Chu, Hai Wang, Kevin Gimpel, and David McAllester. Broad context language
modeling as reading comprehension. EACL, 2017. 3.4.2, 3.4.2, 3.4.2

[31] Christopher Clark and Ma� Gardner. Simple and e�ective multi-paragraph reading com-
prehension. In ACL, 2018. 3.6, 4.1, 4.3.1, 4.3.2, 6, 9.3

[32] Kevin Clark and Christopher D Manning. Entity-centric coreference resolution with
model stacking. In Proceedings of the 53rd Annual Meeting of the Association for Compu-

tational Linguistics and the 7th International Joint Conference on Natural Language Pro-

cessing (Volume 1: Long Papers), volume 1, pages 1405–1415, 2015. 3.4.2

[33] Peter Clark and Oren Etzioni. My computer is an honor student—but how intelligent is
it? standardized tests as a measure of ai. AI Magazine, 37(1):5–12, 2016. 3

[34] William W Cohen. Graph walks and graphical models, volume 5. Citeseer, 2010. 2.2.3

[35] William W Cohen. Tensorlog: A di�erentiable deductive database. arXiv preprint

arXiv:1605.06523, 2016. 2.1.2

[36] William W Cohen, Ma�hew Siegler, and Alex Hofer. Neural query language: A knowl-
edge base query language for tensor�ow. arXiv preprint arXiv:1905.06209, 2019. 2.1.2, 8.1,
8.3.3, 8.4, 1

[37] National Research Council. De�ning a Decade: Envisioning CSTB039;s Second 10

Years. �e National Academies Press, Washington, DC, 1997. ISBN 978-0-309-
05933-6. doi: 10.17226/5903. URL https://www.nap.edu/catalog/5903/

defining-a-decade-envisioning-cstbs-second-10-years. 1

[38] Heriberto Cuayáhuitl, Steve Renals, Oliver Lemon, and Hiroshi Shimodaira. Human-
computer dialogue simulation using hidden markov models. In Automatic Speech Recog-

nition and Understanding, 2005 IEEE Workshop on, pages 290–295. IEEE, 2005. 6.5.1

[39] Yiming Cui, Zhipeng Chen, Si Wei, Shijin Wang, Ting Liu, and Guoping Hu. A�ention-
over-a�ention neural networks for reading comprehension. ACL, 2017. 3.4.1, 3.5.1

[40] Michał Daniluk, Tim Rocktäschel, Johannes Welbl, and Sebastian Riedel. Frustratingly
short a�ention spans in neural language modeling. ICLR, 2017. 3.1

[41] Rajarshi Das, Arvind Neelakantan, David Belanger, and Andrew McCallum. Chains of
reasoning over entities, relations, and text using recurrent neural networks. In EACL,
2016. 2.1.2

148

https://www.nap.edu/catalog/5903/defining-a-decade-envisioning-cstbs-second-10-years
https://www.nap.edu/catalog/5903/defining-a-decade-envisioning-cstbs-second-10-years

[42] Rajarshi Das, Shehzaad Dhuliawala, Manzil Zaheer, Luke Vilnis, Ishan Durugkar, Akshay
Krishnamurthy, Alex Smola, and Andrew McCallum. Go for a walk and arrive at the
answer: Reasoning over paths in knowledge bases using reinforcement learning. arXiv
preprint arXiv:1711.05851, 2017. (document), 2.1.3, 5.3

[43] Rajarshi Das, Arvind Neelakantan, David Belanger, and Andrew McCallum. Chains of
reasoning over entities, relations, and text using recurrent neural networks. In EACL,
2017. 2.1.2

[44] Rajarshi Das, Manzil Zaheer, Siva Reddy, and Andrew McCallum. �estion answering
on knowledge bases and text using universal schema and memory networks. In ACL,
2017. 2.1.3, 5.1, 5.4.2

[45] Rajarshi Das, Shehzaad Dhuliawala, Manzil Zaheer, Luke Vilnis, Ishan Durugkar, Akshay
Krishnamurthy, Alex Smola, and Andrew McCallum. Go for a walk and arrive at the
answer: Reasoning over paths in knowledge bases using reinforcement learning. In ICLR,
2018. 2.1.2

[46] Rajarshi Das, Shehzaad Dhuliawala, Manzil Zaheer, and Andrew McCallum. Multi-step
retriever-reader interaction for scalable open-domain question answering. In ICLR, 2019.
(document), 7.2.2, 8.3

[47] Rajarshi Das, Ameya Godbole, Dilip Kavarthapu, Zhiyu Gong, Abhishek Singhal, Mo Yu,
Xiaoxiao Guo, Tian Gao, Hamed Zamani, Manzil Zaheer, and Andrew McCallum. Multi-
step entity-centric information retrieval for multi-hop question answering. In Pro-

ceedings of the 2nd Workshop on Machine Reading for �estion Answering, pages 113–
118, Hong Kong, China, November 2019. Association for Computational Linguistics.
doi: 10.18653/v1/D19-5816. URL https://www.aclweb.org/anthology/

D19-5816. (document), 8.4, 8.3.3, 8.3.3

[48] Pradeep Dasigi, Nelson F. Liu, Ana Marasović, Noah A. Smith, and Ma� Gardner. �oref:
A reading comprehension dataset with questions requiring coreferential reasoning. In
Proc. of EMNLP-IJCNLP, 2019. 3.6

[49] Randall Davis, Howard Shrobe, and Peter Szolovits. What is a knowledge representation?
AI magazine, 14(1):17, 1993. 1

[50] Tim De�mers, Pasquale Minervini, Pontus Stenetorp, and Sebastian Riedel. Convolu-
tional 2d knowledge graph embeddings. In �irty-Second AAAI Conference on Arti�cial

Intelligence, 2018. 8.4

149

https://www.aclweb.org/anthology/D19-5816
https://www.aclweb.org/anthology/D19-5816

[51] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training
of deep bidirectional transformers for language understanding. In NAACL, 2018. (docu-
ment), 1.1, 3.6, 1, 4.3.2, 4.4, 7.1, 7.2.2, 7.2.2, 8.1, 8.2.2, 8.5, 8.3.4, 9.3

[52] Bhuwan Dhingra, Zhong Zhou, Dylan Fitzpatrick, Michael Muehl, and William W. Co-
hen. Tweet2vec: Character-based distributed representations for social media. In
Proceedings of the 54th Annual Meeting of the Association for Computational Linguis-

tics, ACL 2016, August 7-12, 2016, Berlin, Germany, Volume 2: Short Papers, 2016. URL
http://aclweb.org/anthology/P/P16/P16-2044.pdf. 3.2

[53] Bhuwan Dhingra, Lihong Li, Xiujun Li, Jianfeng Gao, Yun-Nung Chen, Faisal Ahmed, and
Li Deng. Towards end-to-end reinforcement learning of dialogue agents for information
access. In Proceedings of the 55th Annual Meeting of the Association for Computational

Linguistics, ACL 2017, Vancouver, Canada, July 30 - August 4, Volume 1: Long Papers, pages
484–495, 2017. 1.1

[54] Bhuwan Dhingra, Hanxiao Liu, Zhilin Yang, William Cohen, and Ruslan Salakhutdinov.
Gated-a�ention readers for text comprehension. In Proceedings of the 55th Annual Meet-

ing of the Association for Computational Linguistics (Volume 1: Long Papers), pages 1832–
1846, 2017. 1.1, 4.1

[55] Bhuwan Dhingra, Kathryn Mazaitis, and William W Cohen. �asar: Datasets for ques-
tion answering by search and reading. arXiv preprint arXiv:1707.03904, 2017. 1.1, 3.6,
5.2

[56] Bhuwan Dhingra, Danish Danish, and Dheeraj Rajagopal. Simple and e�ective semi-
supervised question answering. In Proceedings of the 2018 Conference of the North Ameri-

can Chapter of the Association for Computational Linguistics: Human Language Technolo-

gies, Volume 2 (Short Papers), pages 582–587, 2018. 1.1

[57] Bhuwan Dhingra, Qiao Jin, Zhilin Yang, William Cohen, and Ruslan Salakhutdinov. Neu-
ral models for reasoning over multiple mentions using coreference. In Proceedings of the

2018 Conference of the North American Chapter of the Association for Computational Lin-

guistics: Human Language Technologies, Volume 2 (Short Papers), pages 42–48, 2018. 1.1

[58] Bhuwan Dhingra, Danish Pruthi, and Dheeraj Rajagopal. Simple and e�ective semi-
supervised question answering. In Proceedings of the 2018 Conference of the North Amer-

ican Chapter of the Association for Computational Linguistics: Human Language Tech-

nologies, NAACL-HLT, New Orleans, Louisiana, USA, June 1-6, 2018, Volume 2 (Short

150

http://aclweb.org/anthology/P/P16/P16-2044.pdf

Papers), pages 582–587, 2018. URL https://aclanthology.info/papers/
N18-2092/n18-2092. 5.1

[59] Bhuwan Dhingra, Manzil Zaheer, Vidhisha Balachandran, Graham Neubig, Ruslan
Salakhutdinov, and William W Cohen. Di�erentiable reasoning over a virtual knowl-
edge base. In Proceedings of the International Conference on Learning Representations,
2020. 1.1

[60] Ming Ding, Chang Zhou, Qibin Chen, Hongxia Yang, and Jie Tang. Cognitive graph for
multi-hop reading comprehension at scale. In ACL, 2019. 5.5

[61] Dheeru Dua, Yizhong Wang, Pradeep Dasigi, Gabriel Stanovsky, Sameer Singh, and Ma�
Gardner. DROP: A reading comprehension benchmark requiring discrete reasoning over
paragraphs. In Proc. of NAACL, 2019. 3.6, 3

[62] Greg Durre� and Dan Klein. Easy victories and uphill ba�les in coreference resolution.
In EMNLP, pages 1971–1982, 2013. 3.1, 3.4.2

[63] Greg Durre� and Dan Klein. A joint model for entity analysis: Coreference, typing, and
linking. Transactions of the association for computational linguistics, 2:477–490, 2014. 1.1

[64] David K Duvenaud, Dougal Maclaurin, Jorge Iparraguirre, Rafael Bombarell, Timothy
Hirzel, Alán Aspuru-Guzik, and Ryan P Adams. Convolutional networks on graphs for
learning molecular �ngerprints. In Advances in neural information processing systems,
pages 2224–2232, 2015. 2.2.2

[65] Chris Dyer. Should neural network architecture re�ect linguistic structure? CoNLL
Keynote, 2017. URL http://www.conll.org/keynotes-2017. 3.1

[66] Je�rey L Elman. Finding structure in time. Cognitive science, 14(2):179–211, 1990. 2.2.1

[67] Mihail Eric, Lakshmi Krishnan, Francois Chare�e, and Christopher D Manning. Key-
value retrieval networks for task-oriented dialogue. In Proceedings of the 18th Annual

SIGdial Meeting on Discourse and Dialogue, pages 37–49, 2017. 6.7

[68] Oren Etzioni, Michele Banko, and Michael J Cafarella. Machine reading. In AAAI, vol-
ume 6, pages 1517–1519, 2006. 3

[69] Yuwei Fang, Siqi Sun, Zhe Gan, Rohit Pillai, Shuohang Wang, and Jingjing Liu. Hierar-
chical graph network for multi-hop question answering. arXiv preprint arXiv:1911.03631,
2019. 8.3.4

[70] Paolo Ferragina and Ugo Scaiella. Fast and accurate annotation of short texts with

151

https://aclanthology.info/papers/N18-2092/n18-2092
https://aclanthology.info/papers/N18-2092/n18-2092
http://www.conll.org/keynotes-2017

wikipedia pages. IEEE so�ware, 29(1):70–75, 2012. 1, 2.2.3

[71] David Ferrucci, Eric Brown, Jennifer Chu-Carroll, James Fan, David Gondek, Aditya A
Kalyanpur, Adam Lally, J William Murdock, Eric Nyberg, John Prager, et al. Building
watson: An overview of the deepqa project. AI magazine, 2010. 2.1.3, 3, 5.1

[72] Charles J Fillmore. Frame semantics and the nature of language. Annals of the New York

Academy of Sciences, 280(1):20–32, 1976. 2.1.1

[73] Ma� Gardner and Jayant Krishnamurthy. Open-vocabulary semantic parsing with both
distributional statistics and formal knowledge. In AAAI, pages 3195–3201, 2017. 2.1.3

[74] M Gašić, Catherine Breslin, Ma�hew Henderson, Dongho Kim, Martin Szummer, Blaise
�omson, Pirros Tsiakoulis, and Steve Young. On-line policy optimisation of bayesian
spoken dialogue systems via human interaction. In 2013 IEEE International Conference on

Acoustics, Speech and Signal Processing, pages 8367–8371. IEEE, 2013. 6.1

[75] Lise Getoor and Ben Taskar. Introduction to statistical relational learning. MIT press, 2007.
2.1.2

[76] Zoubin Ghahramani and Katherine A Heller. Bayesian sets. In Advances in neural infor-

mation processing systems, pages 435–442, 2006. 7.2.4

[77] Daniel Gillick, Alessandro Presta, and Gaurav Singh Tomar. End-to-end retrieval in con-
tinuous space. arXiv preprint arXiv:1811.08008, 2018. 7.1

[78] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl.
Neural message passing for quantum chemistry. ICML, 2017. 2.2.2

[79] Aristides Gionis, Piotr Indyk, Rajeev Motwani, et al. Similarity search in high dimensions
via hashing. In Vldb, volume 99, pages 518–529, 1999. 2.2.3

[80] Peter W Glynn. Likelihood ratio gradient estimation for stochastic systems. Communi-

cations of the ACM, 33(10):75–84, 1990. 6.4

[81] Yichen Gong and Samuel R Bowman. Ruminating reader: Reasoning with gated multi-
hop a�ention. arXiv preprint arXiv:1704.07415, 2017. 2.1.3

[82] Alex Graves, Greg Wayne, and Ivo Danihelka. Neural turing machines. arXiv preprint

arXiv:1410.5401, 2014. 2.1.1

[83] Evan Greensmith, Peter L Bartle�, and Jonathan Baxter. Variance reduction techniques
for gradient estimates in reinforcement learning. Journal of Machine Learning Research,
5(Nov):1471–1530, 2004. 6.4

152

[84] Nitish Gupta, Kevin Lin, Dan Roth, Sameer Singh, and Ma� Gardner. Neural module
networks for reasoning over text. arXiv preprint arXiv:1912.04971, 2019. 3

[85] Kelvin Guu, John Miller, and Percy Liang. Traversing knowledge graphs in vector space.
In EMNLP, 2015. 2.1.2

[86] Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat, and Ming-Wei Chang. Realm:
Retrieval-augmented language model pre-training. arXiv preprint arXiv:2002.08909, 2020.
4.4, 5.5, 9.3

[87] Dilek Hakkani-Tür, Gokhan Tur, Asli Celikyilmaz, Yun-Nung Chen, Jianfeng Gao,
Li Deng, and Ye-Yi Wang. Multi-domain joint semantic frame parsing using bi-directional
RNN-LSTM. In Proceedings of �e 17th Annual Meeting of the International Speech Com-

munication Association, 2016. 6.3

[88] Xu Han, Zhiyuan Liu, and Maosong Sun. Joint representation learning of text and knowl-
edge for knowledge graph completion. arXiv preprint arXiv:1611.04125, 2016. 2.1.2

[89] Taher H Haveliwala. Topic-sensitive pagerank. In Proceedings of the 11th international

conference on World Wide Web, pages 517–526. ACM, 2002. 2.2.3, 5.1

[90] Patrick J Hayes. �e logic of frames. In Readings in arti�cial intelligence, pages 451–458.
Elsevier, 1981. 2.1.1

[91] Mikael Hena�, Jason Weston, Arthur Szlam, Antoine Bordes, and Yann LeCun. Tracking
the world state with recurrent entity networks. arXiv preprint arXiv:1612.03969, 2016. 3.3,
3.4.2, 3.4.2, 3.5.2

[92] Ma�hew Henderson. Machine learning for dialog state tracking: A review. Machine

Learning in Spoken Language Processing Workshop, 2015. 6.3

[93] Ma�hew Henderson, Blaise �omson, and Steve Young. Word-based dialog state tracking
with recurrent neural networks. In Proceedings of the 15th Annual Meeting of the Special

Interest Group on Discourse and Dialogue (SIGDIAL), pages 292–299, 2014. 6.3, 6.3

[94] Karl Moritz Hermann, Tomas Kocisky, Edward Grefenste�e, Lasse Espeholt, Will Kay,
Mustafa Suleyman, and Phil Blunsom. Teaching machines to read and comprehend. In
Advances in neural information processing systems, pages 1693–1701, 2015. 3.1, 3.4.1, 3.4.1,
3.5.1

[95] Felix Hill, Antoine Bordes, Sumit Chopra, and Jason Weston. �e goldilocks principle:
Reading children’s books with explicit memory representations. ICLR, 2016. 3.1, 3.4.1,

153

3.4.1, 3.5.1, 4.2.1

[96] Geo�rey Hinton, N Srivastava, and Kevin Swersky. Lecture 6a overview of mini–
batch gradient descent. Coursera Lecture slides h�ps://class. coursera. org/neuralnets-2012-
001/lecture,[Online, 2012. 6.4

[97] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation,
9(8):1735–1780, 1997. 2.2.1, 3.2

[98] Minghao Hu, Yuxing Peng, and Xipeng Qiu. Mnemonic reader for machine comprehen-
sion. arXiv preprint arXiv:1705.02798, 2017. 2.1.3

[99] Peter Jackson. Introduction to expert systems. Addison-Wesley Longman Publishing Co.,
Inc., 1998. 2.1.1

[100] Sarthak Jain. �estion answering over knowledge base using factual memory networks.
In Proceedings of the NAACL Student Research Workshop, pages 109–115, 2016. 2.1.3

[101] Yangfeng Ji, Chenhao Tan, Sebastian Martschat, Yejin Choi, and Noah A Smith. Dynamic
entity representations in neural language models. EMNLP, 2017. 3.5.2

[102] Robin Jia and Percy Liang. Adversarial examples for evaluating reading comprehension
systems. In Empirical Methods in Natural Language Processing (EMNLP), 2017. 1.1, 3.6,
5.1

[103] Je� Johnson, Ma�hijs Douze, and Hervé Jégou. Billion-scale similarity search with gpus.
arXiv preprint arXiv:1702.08734, 2017. 1.1, 7.2.3, 8.2, 8.2.2

[104] Mandar Joshi, Eunsol Choi, Daniel S. Weld, and Luke Ze�lemoyer. Triviaqa: A large scale
distantly supervised challenge dataset for reading comprehension. In Proceedings of the

55th Annual Meeting of the Association for Computational Linguistics, Vancouver, Canada,
July 2017. Association for Computational Linguistics. 2.1.3, 3.1, 3.6, 4.1, 4.3.2, 9.1

[105] Mandar Joshi, Danqi Chen, Yinhan Liu, Daniel S Weld, Luke Ze�lemoyer, and Omer Levy.
Spanbert: Improving pre-training by representing and predicting spans. Transactions of
the Association for Computational Linguistics, 8:64–77, 2020. 4.4

[106] Rudolf Kadlec, Martin Schmid, Ondrej Bajgar, and Jan Kleindienst. Text understanding
with the a�ention sum reader network. ACL, 2016. 3.1, 3.2, 3.2, 3.4.1, 3.5.1

[107] Divyansh Kaushik and Zachary C Lipton. How much reading does reading comprehen-
sion require? a critical investigation of popular benchmarks. In EMNLP, 2018. 9

[108] Michael Kifer, Georg Lausen, and James Wu. Logical foundations of object-oriented and

154

frame-based languages. Journal of the ACM (JACM), 42(4):741–843, 1995. 2.1.1

[109] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014. 3.4.1, 4.2.1

[110] �omas N Kipf and Max Welling. Semi-supervised classi�cation with graph convolu-
tional networks. 2017. 2.1.3, 2.2.2, 2.2.2, 5.1

[111] Ryan Kiros, Richard Zemel, and Ruslan R Salakhutdinov. A multiplicative model for
learning distributed text-based a�ribute representations. In Advances in Neural Informa-

tion Processing Systems, pages 2348–2356, 2014. 3.2

[112] Sosuke Kobayashi, Ran Tian, Naoaki Okazaki, and Kentaro Inui. Dynamic entity rep-
resentations with max-pooling improves machine reading. In NAACL-HLT, 2016. 3.4.1,
3.5.1

[113] Stanley Kok and Pedro Domingos. Statistical predicate invention. In ICML, 2007. 2.1.2

[114] Tom Kwiatkowski, Eunsol Choi, Yoav Artzi, and Luke Ze�lemoyer. Scaling semantic
parsers with on-the-�y ontology matching. In EMNLP, 2013. 2.1.3

[115] Tom Kwiatkowski, Jennimaria Palomaki, Olivia Red�eld, Michael Collins, Ankur Parikh,
Chris Alberti, Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee, et al. Natural
questions: a benchmark for question answering research. Transactions of the Association
for Computational Linguistics, 7:453–466, 2019. 2.1.3, 3.6

[116] Guokun Lai, Qizhe Xie, Hanxiao Liu, Yiming Yang, and Eduard Hovy. Race: Large-scale
reading comprehension dataset from examinations. arXiv preprint arXiv:1704.04683, 2017.
3.6

[117] Ni Lao, Tom Mitchell, and William Cohen. Random walk inference and learning in a
large scale knowledge base. In EMNLP, 2011. 2.1.2

[118] Ni Lao, Amarnag Subramanya, Fernando Pereira, and William W Cohen. Reading the
web with learned syntactic-semantic inference rules. In Proceedings of the 2012 Joint Con-

ference on Empirical Methods in Natural Language Processing and Computational Natural

Language Learning, pages 1017–1026. Association for Computational Linguistics, 2012.
2.1.2

[119] Kenton Lee, Luheng He, Mike Lewis, and Luke Ze�lemoyer. End-to-end neural corefer-
ence resolution. EMNLP, 2017. 3.1

[120] Hector J Levesque and Ronald J Brachman. Expressiveness and tractability in knowledge

155

representation and reasoning 1. Computational intelligence, 3(1):78–93, 1987. 2.1.1

[121] Omer Levy, Yoav Goldberg, and Ido Dagan. Improving distributional similarity with
lessons learned from word embeddings. Transactions of the Association for Computational

Linguistics, 3:211–225, 2015. 4.2.2, 4.2.3

[122] Omer Levy, Minjoon Seo, Eunsol Choi, and Luke Ze�lemoyer. Zero-shot relation extrac-
tion via reading comprehension. In Proceedings of the 21st Conference on Computational

Natural Language Learning (CoNLL 2017), pages 333–342, 2017. 7.1, 7.2.3, 7.2.4, 7.3.1, 7.3.1,
7.3.1, 7.3.2, 7.3.2, 7.3.3, 7.3.4, 7.4, 8.3.2

[123] Jiwei Li, Will Monroe, Alan Ri�er, Michel Galley, Jianfeng Gao, and Dan Jurafsky. Deep
reinforcement learning for dialogue generation. EMNLP, 2016. 6.1

[124] Peng Li, Wei Li, Zhengyan He, Xuguang Wang, Ying Cao, Jie Zhou, and Wei Xu. Dataset
and neural recurrent sequence labeling model for open-domain factoid question answer-
ing. arXiv preprint arXiv:1607.06275, 2016. 3.2

[125] Xin Li and Dan Roth. Learning question classi�ers. In Proceedings of the 19th international

conference on Computational linguistics-Volume 1, pages 1–7. Association for Computa-
tional Linguistics, 2002. 4.3.3

[126] Xiujun Li, Zachary C Lipton, Bhuwan Dhingra, Lihong Li, Jianfeng Gao, and Yun-Nung
Chen. A user simulator for task-completion dialogues. arXiv preprint arXiv:1612.05688,
2016. 6.1, 6.5.1

[127] Xuijun Li, Yun-Nung Chen, Lihong Li, and Jianfeng Gao. End-to-end task-completion
neural dialogue systems. arXiv preprint arXiv:1703.01008, 2017. 6.6

[128] Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel. Gated graph sequence
neural networks. ICLR, 2016. 2.2.2

[129] Chen Liang, Jonathan Berant, �oc Le, Kenneth D Forbus, and Ni Lao. Neural symbolic
machines: Learning semantic parsers on freebase with weak supervision. ACL, 2017.
(document), 1, 2.1.3, 5.4.1, 5.3, 5.4.2

[130] Percy Liang and Christopher Po�s. Bringing machine learning and compositional se-
mantics together. Annu. Rev. Linguist., 1(1):355–376, 2015. 2.1.3

[131] Xi Victoria Lin, Richard Socher, and Caiming Xiong. Multi-hop knowledge graph rea-
soning with reward shaping. In EMNLP, 2018. 2.1.2

[132] Robert Logan, Nelson F Liu, Ma�hew E Peters, Ma� Gardner, and Sameer Singh. Barack’s

156

wife hillary: Using knowledge graphs for fact-aware language modeling. In Proceedings

of the 57th Annual Meeting of the Association for Computational Linguistics, pages 5962–
5971, 2019. 5.5

[133] Bryan McCann, James Bradbury, Caiming Xiong, and Richard Socher. Learned in trans-
lation: Contextualized word vectors. arXiv preprint arXiv:1708.00107, 2017. 4.4

[134] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Je� Dean. Distributed
representations of words and phrases and their compositionality. In Advances in neural

information processing systems, pages 3111–3119, 2013. 4.1, 4.2.2

[135] Alexander Miller, Adam Fisch, Jesse Dodge, Amir-Hossein Karimi, Antoine Bordes, and
Jason Weston. Key-value memory networks for directly reading documents. arXiv

preprint arXiv:1606.03126, 2016. (document), 2.1.3, 3.3, 5.1, 5.4.1, 5.4.2, 5.3, 8.3.1, 9.1

[136] Bonan Min, Ralph Grishman, Li Wan, Chang Wang, and David Gondek. Distant super-
vision for relation extraction with an incomplete knowledge base. In NAACL, 2013. 1,
2.1.2, 5.1, 7.1

[137] Sewon Min, Danqi Chen, Hannaneh Hajishirzi, and Luke Ze�lemoyer. A discrete hard
em approach for weakly supervised question answering. In EMNLP, 2019. 8.2.1

[138] Sewon Min, Danqi Chen, Luke Ze�lemoyer, and Hannaneh Hajishirzi. Knowledge
guided text retrieval and reading for open domain question answering. arXiv preprint

arXiv:1911.03868, 2019. 5.5

[139] Pasquale Minervini, Matko Bošnjak, Tim Rocktäschel, Sebastian Riedel, and Edward
Grefenste�e. Di�erentiable reasoning on large knowledge bases and natural language.
In AAAI, 2020. 2.1.2

[140] Marvin Minsky. A framework for representing knowledge. 1974. 2.1.1

[141] Je� Mitchell and Mirella Lapata. Vector-based models of semantic composition. In ACL,
pages 236–244, 2008. 2.1.2, 3.2

[142] Makoto Miwa and Mohit Bansal. End-to-end relation extraction using lstms on sequences
and tree structures. In Proceedings of the 54th Annual Meeting of the Association for Com-

putational Linguistics (Volume 1: Long Papers), pages 1105–1116, 2016. 2.1.2

[143] Dan Moldovan, Marius Pasca, Sanda Harabagiu, and Mihai Surdeanu. Performance is-
sues and error analysis in an open-domain question answering system. In Proceedings

of the 40th Annual Meeting of the Association for Computational Linguistics, pages 33–40,

157

Philadelphia, Pennsylvania, USA, July 2002. Association for Computational Linguistics.
doi: 10.3115/1073083.1073091. URL https://www.aclweb.org/anthology/
P02-1005. 2.1.3

[144] Diego Moussallem, Mihael Arčan, Axel-Cyrille Ngonga Ngomo, and Paul Buitelaar.
Augmenting neural machine translation with knowledge graphs. arXiv preprint

arXiv:1902.08816, 2019. 5.5

[145] Tsendsuren Munkhdalai and Hong Yu. Neural semantic encoders. EACL, 2017. 3.4.1,
3.4.1, 3.5.1

[146] Tsendsuren Munkhdalai and Hong Yu. Reasoning with memory augmented neural net-
works for language comprehension. ICLR, 2017. 3.4.1

[147] Arvind Neelakantan, Benjamin Roth, and Andrew McCallum. Compositional vector
space models for knowledge base completion. In ACL, 2015. 2.1.2

[148] Allen Newell and Herbert A. Simon. �e logic theory machine-a complex information
processing system. IRE Trans. Information �eory, 2:61–79, 1956. 2.1.1

[149] Allen Newell, John C Shaw, and Herbert A Simon. Report on a general problem solving
program. In IFIP congress, volume 256, page 64. Pi�sburgh, PA, 1959. 2.1.1

[150] Yixin Nie, Songhe Wang, and Mohit Bansal. Revealing the importance of semantic re-
trieval for machine reading at scale. In Proceedings of the 2019 Conference on Empirical

Methods in Natural Language Processing and the 9th International Joint Conference on Nat-

ural Language Processing (EMNLP-IJCNLP), pages 2553–2566, 2019. 8.3.4

[151] Takeshi Onishi, Hai Wang, Mohit Bansal, Kevin Gimpel, and David McAllester. Who did
what: A large-scale person-centered cloze dataset. EMNLP, 2016. 3.1, 3.4.1, 3.4.1, 4.1, 4.2.1

[152] Denis Paperno, Germán Kruszewski, Angeliki Lazaridou, �an Ngoc Pham, Ra�aella
Bernardi, Sandro Pezzelle, Marco Baroni, Gemma Boleda, and Raquel Fernández. �e
lambada dataset: Word prediction requiring a broad discourse context. ACL, 2016. 3.4.2,
9.1

[153] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the di�culty of training recur-
rent neural networks. ICML (3), 28:1310–1318, 2013. 3.4.1

[154] Nanyun Peng, Hoifung Poon, Chris �irk, Kristina Toutanova, and Wen-tau Yih. Cross-
sentence n-ary relation extraction with graph lstms. Transactions of the Association for

Computational Linguistics, 5:101–115, 2017. 3.5.2

158

https://www.aclweb.org/anthology/P02-1005
https://www.aclweb.org/anthology/P02-1005

[155] Je�rey Pennington, Richard Socher, and Christopher D. Manning. Glove: Global
vectors for word representation. In Empirical Methods in Natural Language Pro-

cessing (EMNLP), pages 1532–1543, 2014. URL http://www.aclweb.org/

anthology/D14-1162. 3.4.1, 3.4.1, 3.4.2, 4.1, 4.2.2

[156] Ma�hew E Peters, Mark Neumann, Mohit Iyyer, Ma� Gardner, Christopher Clark, Ken-
ton Lee, and Luke Ze�lemoyer. Deep contextualized word representations. arXiv preprint
arXiv:1802.05365, 2018. 1.1, 1, 4.4

[157] Ma�hew E Peters, Mark Neumann, Robert Logan, Roy Schwartz, Vidur Joshi, Sameer
Singh, and Noah A Smith. Knowledge enhanced contextual word representations. In Pro-

ceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and

the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP),
pages 43–54, 2019. 5.5

[158] Fabio Petroni, Tim Rocktäschel, Patrick Lewis, Anton Bakhtin, Yuxiang Wu, Alexander H
Miller, and Sebastian Riedel. Language models as knowledge bases? 2019. 9.3

[159] Peng Qi, Xiaowen Lin, Leo Mehr, Zijian Wang, and Christopher D. Manning. Answering
complex open-domain questions through iterative query generation. In 2019 Conference

on Empirical Methods in Natural Language Processing and 9th International Joint Con-

ference on Natural Language Processing (EMNLP-IJCNLP), 2019. URL https://nlp.
stanford.edu/pubs/qi2019answering.pdf. (document), 8.4, 8.3.3, 8.3.4

[160] Feng Qian, Lei Sha, Baobao Chang, Lu-chen Liu, and Ming Zhang. Syntax aware lstm
model for chinese semantic role labeling. arXiv preprint arXiv:1704.00405, 2017. 3.5.2

[161] Meng � and Jian Tang. Probabilistic logic neural networks for reasoning. In NeurIPS,
2019. 2.1.2

[162] Meng �, Yoshua Bengio, and Jian Tang. Gmnn: Graph markov neural networks. In
ICML, 2019. 2.1.2

[163] Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving lan-
guage understanding by generative pre-training. URL h�ps://s3-us-west-2. amazon-

aws. com/openai-assets/researchcovers/languageunsupervised/language understanding pa-

per. pdf, 2018. 4.4

[164] Martin Raison, Pierre-Emmanuel Mazaré, Rajarshi Das, and Antoine Bordes. Weaver:
Deep co-encoding of questions and documents for machine reading. arXiv preprint

arXiv:1804.10490, 2018. 2.1.3

159

http://www.aclweb.org/anthology/D14-1162
http://www.aclweb.org/anthology/D14-1162
https://nlp.stanford.edu/pubs/qi2019answering.pdf
https://nlp.stanford.edu/pubs/qi2019answering.pdf

[165] Nazneen Fatema Rajani, Bryan McCann, Caiming Xiong, and Richard Socher. Explain
yourself! leveraging language models for commonsense reasoning. In Proceedings of the

57th Annual Meeting of the Association for Computational Linguistics, pages 4932–4942,
2019. 9.3

[166] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100,000+
questions for machine comprehension of text. 2016. 2.1.3, 3.1, 3.6, 4.1, 4.3.2, 9.1

[167] Lev Ratinov, Dan Roth, Doug Downey, and Mike Anderson. Local and global algo-
rithms for disambiguation to wikipedia. InACL, 2011. URLhttp://cogcomp.org/
papers/RRDA11.pdf. 1

[168] Siva Reddy, Oscar Täckström, Michael Collins, Tom Kwiatkowski, Dipanjan Das, Mark
Steedman, and Mirella Lapata. Transforming dependency structures to logical forms for
semantic parsing. Transactions of the Association for Computational Linguistics, 4:127–
140, 2016. 2.1.3

[169] Sebastian Riedel, Limin Yao, Andrew McCallum, and Benjamin M Marlin. Relation ex-
traction with matrix factorization and universal schemas. In Proceedings of the 2013 Con-

ference of the North American Chapter of the Association for Computational Linguistics:

Human Language Technologies, pages 74–84, 2013. 2.1.2, 2.1.3, 5.4.2

[170] Michael Ringgaard, Rahul Gupta, and Fernando CN Pereira. Sling: A framework for
frame semantic parsing. arXiv preprint arXiv:1710.07032, 2017. 8.2.3

[171] Tim Rocktäschel and Sebastian Riedel. End-to-end di�erentiable proving. In NeurIPS,
2017. 2.1.2

[172] Pum-Mo Ryu, Myung-Gil Jang, and Hyun-Ki Kim. Open domain question answer-
ing using wikipedia-based knowledge model. Information Processing and Manage-

ment, 50(5):683 – 692, 2014. ISSN 0306-4573. doi: h�ps://doi.org/10.1016/j.ipm.2014.04.
007. URL http://www.sciencedirect.com/science/article/pii/

S0306457314000351. 2.1.3

[173] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Mon-
fardini. �e graph neural network model. IEEE Transactions on Neural Networks, 20(1):
61–80, 2009. 2.2.2

[174] Jost Schatzmann, Blaise �omson, Karl Weilhammer, Hui Ye, and Steve Young. Agenda-
based user simulation for bootstrapping a pomdp dialogue system. In Human Language

Technologies 2007: �e Conference of the North American Chapter of the Association for

160

http://cogcomp.org/papers/RRDA11.pdf
http://cogcomp.org/papers/RRDA11.pdf
http://www.sciencedirect.com/science/article/pii/S0306457314000351
http://www.sciencedirect.com/science/article/pii/S0306457314000351

Computational Linguistics; Companion Volume, Short Papers, pages 149–152. Association
for Computational Linguistics, 2007. 6.5.1

[175] Jost Schatzmann, Blaise �omson, and Steve Young. Statistical user simulation with a
hidden agenda. Proc SIGDial, Antwerp, 273282(9), 2007. 6.1, 6.5.1

[176] Konrad Sche�er and Steve Young. Automatic learning of dialogue strategy using dia-
logue simulation and reinforcement learning. In Proceedings of the second international

conference on Human Language Technology Research, pages 12–19. Morgan Kaufmann
Publishers Inc., 2002. 6.1

[177] Michael Schlichtkrull, �omas N Kipf, Peter Bloem, Rianne van den Berg, Ivan Titov,
and Max Welling. Modeling relational data with graph convolutional networks. arXiv

preprint arXiv:1703.06103, 2017. (document), 5.1, 5.3, 5.3

[178] Michael Schlichtkrull, �omas N Kipf, Peter Bloem, Rianne Van Den Berg, Ivan Titov,
and Max Welling. Modeling relational data with graph convolutional networks. In ESWC,
2018. 2.2.2

[179] Minjoon Seo, Aniruddha Kembhavi, Ali Farhadi, and Hannaneh Hajishirzi. Bidirectional
a�ention �ow for machine comprehension. ICLR, 2017. 2.1.3, 3.4.1, 3.5.1, 7.2.2, 7.3.1

[180] Minjoon Seo, Sewon Min, Ali Farhadi, and Hannaneh Hajishirzi. �ery-reduction net-
works for question answering. ICLR, 2017. 3.4.2, 3.4.2

[181] Minjoon Seo, Tom Kwiatkowski, Ankur P Parikh, Ali Farhadi, and Hannaneh Hajishirzi.
Phrase-indexed question answering: A new challenge for scalable document comprehen-
sion. EMNLP, 2018. 1.1, 7.1, 7.3.2, 8.1

[182] Minjoon Seo, Jinhyuk Lee, Tom Kwiatkowski, Ankur P Parikh, Ali Farhadi, and Han-
naneh Hajishirzi. Real-time open-domain question answering with dense-sparse phrase
index. ACL, 2019. 7.2.3, 7.4, 8.1, 8.1, 8.2.1, 8.3.2

[183] Yelong Shen, Po-Sen Huang, Jianfeng Gao, and Weizhu Chen. Reasonet: Learning to stop
reading in machine comprehension. arXiv preprint arXiv:1609.05284, 2016. 3.1, 3.5.1, 4.2.4

[184] Yelong Shen, Po-Sen Huang, Jianfeng Gao, and Weizhu Chen. Reasonet: Learning to stop
reading in machine comprehension. In Proceedings of the 23rd ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, pages 1047–1055. ACM, 2017. 2.1.3,
3.4.1

[185] Yelong Shen, Jianshu Chen, Po-Sen Huang, Yuqing Guo, and Jianfeng Gao. Reinforce-

161

walk: Learning to walk in graph with monte carlo tree search. In NeurIPS, 2018. 2.1.2

[186] Edward H Shortli�e and Bruce G Buchanan. A model of inexact reasoning in medicine.
Mathematical biosciences, 23(3-4):351–379, 1975. 2.1.1

[187] Anshumali Shrivastava and Ping Li. Asymmetric lsh (alsh) for sublinear time maximum
inner product search (mips). In Advances in Neural Information Processing Systems, pages
2321–2329, 2014. 2.2.3, 8.1, 8.2.2

[188] Amit Singhal. Introducing the knowledge graph: things, not strings, May
2012. URL https://googleblog.blogspot.com/2012/05/

introducing-knowledge-graph-things-not.html. 1

[189] Richard Socher, Danqi Chen, Christopher D Manning, and Andrew Ng. Reasoning with
neural tensor networks for knowledge base completion. In Advances in neural informa-

tion processing systems, pages 926–934, 2013. 7.1

[190] Alessandro Sordoni, Phillip Bachman, and Yoshua Bengio. Iterative alternating neural
a�ention for machine reading. arXiv preprint arXiv:1606.02245, 2016. 3.1, 3.4.1, 3.5.1

[191] Amanda Spink, Dietmar Wolfram, Major BJ Jansen, and Te�o Saracevic. Searching the
web: �e public and their queries. Journal of the Association for Information Science and

Technology, 52(3):226–234, 2001. 6.6

[192] Emma Strubell, Patrick Verga, Daniel Andor, David Weiss, and Andrew McCallum.
Linguistically-informed self-a�ention for semantic role labeling. In Proceedings of the

2018 Conference on Empirical Methods in Natural Language Processing, pages 5027–5038,
2018. 3.6

[193] Dan Suciu, Dan Olteanu, Christopher Ré, and Christoph Koch. Probabilistic databases.
Synthesis lectures on data management, 3(2):1–180, 2011. 9.3

[194] Sainbayar Sukhbaatar, Jason Weston, Rob Fergus, et al. End-to-end memory networks.
In Advances in Neural Information Processing Systems, pages 2431–2439, 2015. 3.1, 3.3

[195] Haitian Sun*, Bhuwan Dhingra*, Manzil Zaheer, Kathryn Mazaitis, Ruslan Salakhutdinov,
and William W. Cohen. Open domain question answering using early fusion of knowl-
edge bases and text. In Proceedings of the 2018 Conference on Empirical Methods in Natural

Language Processing, Brussels, Belgium, October 31 - November 4, 2018, pages 4231–4242,
2018.

[196] Haitian Sun, Bhuwan Dhingra, Manzil Zaheer, Kathryn Mazaitis, Ruslan Salakhutdinov,

162

https://googleblog.blogspot.com/2012/05/introducing-knowledge-graph-things-not.html
https://googleblog.blogspot.com/2012/05/introducing-knowledge-graph-things-not.html

and William W Cohen. Open domain question answering using early fusion of knowl-
edge bases and text. In EMNLP, 2018. 1.1, 8.3.1

[197] Haitian Sun, Tania Bedrax-Weiss, and William W Cohen. Pullnet: Open domain ques-
tion answering with iterative retrieval on knowledge bases and text. In EMNLP, 2019.
(document), 5.5, 8.3.1, 8.3.1, 8.1

[198] Swabha Swayamdipta. Learning Algorithms for Broad-Coverage Semantic Parsing. PhD
thesis, Carnegie Mellon University Pi�sburgh, PA, 2017. 3.5.2

[199] Kai Sheng Tai, Richard Socher, and Christopher D Manning. Improved semantic repre-
sentations from tree-structured long short-term memory networks. ACL, 2015. 3.5.2

[200] A. Talmor and J. Berant. �e web as a knowledge-base for answering complex questions.
In North American Association for Computational Linguistics (NAACL), 2018. 1.1, 5.1, 8.4

[201] Alon Talmor, Yanai Elazar, Yoav Goldberg, and Jonathan Berant. olmpics–on what lan-
guage model pre-training captures. arXiv preprint arXiv:1912.13283, 2019. 9.3

[202] Ian Tenney, Patrick Xia, Berlin Chen, Alex Wang, Adam Poliak, R �omas McCoy, Na-
joung Kim, Benjamin Van Durme, Samuel R Bowman, Dipanjan Das, et al. What do you
learn from context? probing for sentence structure in contextualized word representa-
tions. ICLR, 2019. 7.3.4

[203] tf.RaggedTensors. TensorFlow Ragged Tensors, 2018. URL https://www.

tensorflow.org/guide/raggedtensors. 8.2.2

[204] �eano Development Team. �eano: A Python framework for fast computation of
mathematical expressions. arXiv e-prints, abs/1605.02688, May 2016. URL http:

//arxiv.org/abs/1605.02688. 3.4.1

[205] Kristina Toutanova, Danqi Chen, Patrick Pantel, Hoifung Poon, Pallavi Choudhury, and
Michael Gamon. Representing text for joint embedding of text and knowledge bases. In
EMNLP, 2015. 2.1.2

[206] Trieu H Trinh and �oc V Le. A simple method for commonsense reasoning. arXiv

preprint arXiv:1806.02847, 2018. 9.3

[207] Adam Trischler, Zheng Ye, Xingdi Yuan, and Kaheer Suleman. Natural language com-
prehension with the epireader. EMNLP, 2016. 3.4.1, 3.5.1

[208] George Tsatsaronis, Georgios Balikas, Prodromos Malakasiotis, Ioannis Partalas,
Ma�hias Zschunke, Michael R Alvers, Dirk Weissenborn, Anastasia Krithara, Sergios

163

https://www.tensorflow.org/guide/ragged_tensors
https://www.tensorflow.org/guide/ragged_tensors
http://arxiv.org/abs/1605.02688
http://arxiv.org/abs/1605.02688

Petridis, Dimitris Polychronopoulos, et al. An overview of the bioasq large-scale biomed-
ical semantic indexing and question answering competition. BMC bioinformatics, 16(1):
138, 2015. 4.1

[209] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Łukasz Kaiser, and Illia Polosukhin. A�ention is all you need. In Advances in

Neural Information Processing Systems, pages 5998–6008, 2017. 2.2.1, 2.2.1, 4.4, 8.2.2

[210] Patrick Verga, David Belanger, Emma Strubell, Benjamin Roth, and Andrew McCallum.
Multilingual relation extraction using compositional universal schema. NAACL, 2016.
2.1.2

[211] Ellen M Voorhees and Dawn M Tice. Building a question answering test collection. In
Proceedings of the 23rd annual international ACM SIGIR conference on Research and devel-

opment in information retrieval, pages 200–207, 2000. 2.1.3

[212] Denny Vrandečić and Markus Krötzsch. Wikidata: a free collaborative knowledge base.
2014. 2.1.2, 7.3.1, 8.2.3

[213] Li Wan, Ma�hew Zeiler, Sixin Zhang, Yann Le Cun, and Rob Fergus. Regularization of
neural networks using dropconnect. In International Conference on Machine Learning,
pages 1058–1066, 2013. 5.3

[214] Hai Wang, Takeshi Onishi, Kevin Gimpel, and David McAllester. Emergent logical struc-
ture in vector representations of neural readers. 2ndWorkshop on Representation Learning

for NLP, ACL, 2017. 3.5.2

[215] Richard C Wang and William W Cohen. Language-independent set expansion of named
entities using the web. In Seventh IEEE international conference on data mining (ICDM

2007), pages 342–350. IEEE, 2007. 7.2.4

[216] Richard C Wang, Nico Schlaefer, William W Cohen, and Eric Nyberg. Automatic set ex-
pansion for list question answering. In Proceedings of the Conference on Empirical Methods

in Natural Language Processing, pages 947–954. Association for Computational Linguis-
tics, 2008. 7.2.4

[217] Shuohang Wang, Mo Yu, Jing Jiang, Wei Zhang, Xiaoxiao Guo, Shiyu Chang, Zhiguo
Wang, Tim Klinger, Gerald Tesauro, and Murray Campbell. Evidence aggregation for
answer re-ranking in open-domain question answering. arXiv preprint arXiv:1711.05116,
2017. 2.1.3

164

[218] Shuohang Wang, Mo Yu, Xiaoxiao Guo, Zhiguo Wang, Tim Klinger, Wei Zhang, Shiyu
Chang, Gerald Tesauro, Bowen Zhou, and Jing Jiang. R 3̂: Reinforced reader-ranker for
open-domain question answering. 2018. 2.1.3

[219] Shuohang Wang, Mo Yu, Xiaoxiao Guo, Zhiguo Wang, Tim Klinger, Wei Zhang, Shiyu
Chang, Gerry Tesauro, Bowen Zhou, and Jing Jiang. R 3: Reinforced ranker-reader for
open-domain question answering. In �irty-Second AAAI Conference on Arti�cial Intelli-

gence, 2018. 3.6

[220] Xiaoyan Wang, Pavan Kapanipathi, Ryan Musa, Mo Yu, Kartik Talamadupula, Ibrahim
Abdelaziz, Maria Chang, Achille Fokoue, Bassem Makni, Nicholas Ma�ei, et al. Improv-
ing natural language inference using external knowledge in the science questions do-
main. In Proceedings of the AAAI Conference on Arti�cial Intelligence, volume 33, pages
7208–7215, 2019. 5.5

[221] Yusuke Watanabe, Bhuwan Dhingra, and Ruslan Salakhutdinov. �estion answering
from unstructured text by retrieval and comprehension. arXiv preprint arXiv:1703.08885,
2017. (document), 1.1, 2.1.3, 5.3

[222] Johannes Welbl, Pontus Stenetorp, and Sebastian Riedel. Constructing datasets for multi-
hop reading comprehension across documents. arXiv preprint arXiv:1710.06481, 2017.
3.4.2, 5.1

[223] Johannes Welbl, Pontus Stenetorp, and Sebastian Riedel. Constructing datasets for multi-
hop reading comprehension across documents. TACL, 2018. (document), 3.1, 9.1

[224] Tsung-Hsien Wen, Milica Gašić, Nikola Mrkšić, Pei-Hao Su, David Vandyke, and Steve
Young. Semantically conditioned lstm-based natural language generation for spoken
dialogue systems. EMNLP, 2015. 6.5.1

[225] Tsung-Hsien Wen, Milica Gašić, Nikola Mrkšić, Lina M. Rojas-Barahona, Pei-Hao Su,
Stefan Ultes, David Vandyke, and Steve Young. A network-based end-to-end trainable
task-oriented dialogue system. arXiv preprint arXiv:1604.04562, 2016. 6.1, 6.3, 6.3, 6.5.1

[226] Tsung-Hsien Wen, Milica Gašić, Nikola Mrkšić, Lina M. Rojas-Barahona, Pei-Hao Su,
Stefan Ultes, David Vandyke, and Steve Young. Conditional generation and snapshot
learning in neural dialogue systems. EMNLP, 2016. 6.5.1

[227] Jason Weston, Antoine Bordes, Sumit Chopra, Alexander M Rush, Bart van Merriënboer,
Armand Joulin, and Tomas Mikolov. Towards ai-complete question answering: A set of
prerequisite toy tasks. arXiv preprint arXiv:1502.05698, 2015. (document), 3.1, 3.4.2, 9.1

165

[228] Jason Weston, Sumit Chopra, and Antoine Bordes. Memory networks. ICLR, 2015. 3.1,
3.4.1, 3.5.1

[229] Georg Wiese, Dirk Weissenborn, and Mariana Neves. Neural domain adaptation for
biomedical question answering. In Proceedings of the 21st Conference on Computa-

tional Natural Language Learning (CoNLL 2017), pages 281–289, Vancouver, Canada, Au-
gust 2017. Association for Computational Linguistics. URL http://aclweb.org/
anthology/K17-1029. 5.1

[230] Georg Wiese, Dirk Weissenborn, and Mariana L. Neves. Neural question answering at
bioasq 5b. In BioNLP 2017, Vancouver, Canada, August 4, 2017, pages 76–79, 2017. doi:
10.18653/v1/W17-2309. URL https://doi.org/10.18653/v1/W17-2309.
(document), 4.3.2, 4.4, 4.3.2

[231] Jason D Williams and Steve Young. Scaling up POMDPs for dialog management: �e
“Summary POMDP” method. In IEEE Workshop on Automatic Speech Recognition and

Understanding, 2005., pages 177–182. IEEE, 2005. 6.3

[232] Jason D Williams and Geo�rey Zweig. End-to-end lstm-based dialog control optimized
with supervised and reinforcement learning. arXiv preprint arXiv:1606.01269, 2016. 6.3,
6.6

[233] Ronald J Williams. Simple statistical gradient-following algorithms for connectionist
reinforcement learning. Machine learning, 8(3-4):229–256, 1992. 6.4, 6.4

[234] Terry Winograd. Procedures as a representation for data in a computer program for
understanding natural language. Technical report, MASSACHUSETTS INST OF TECH
CAMBRIDGE PROJECT MAC, 1971. 2.1.1

[235] Sam Wiseman, Alexander M Rush, and Stuart M Shieber. Learning global features for
coreference resolution. NAACL, 2016. 3.1

[236] Ji Wu, Miao Li, and Chin-Hui Lee. A probabilistic framework for representing dialog
systems and entropy-based dialog management through dynamic stochastic state evo-
lution. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 23(11):2026–
2035, 2015. 6.3, 6.5.2, 6.6

[237] Yonghui Wu, Mike Schuster, Zhifeng Chen, �oc V Le, Mohammad Norouzi, Wolfgang
Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al. Google’s neural
machine translation system: Bridging the gap between human and machine translation.
arXiv preprint arXiv:1609.08144, 2016. 4.4, 7.2.2

166

http://aclweb.org/anthology/K17-1029
http://aclweb.org/anthology/K17-1029
https://doi.org/10.18653/v1/W17-2309

[238] Yuhuai Wu, Saizheng Zhang, Ying Zhang, Yoshua Bengio, and Ruslan Salakhutdinov. On
multiplicative integration with recurrent neural networks. Advances in Neural Informa-

tion Processing Systems, 2016. 3.2

[239] Wenhan Xiong, �ien Hoang, and William Yang Wang. Deeppath: A reinforcement
learning method for knowledge graph reasoning. In EMNLP, 2017. 2.1.2

[240] Bishan Yang and Tom Mitchell. Leveraging knowledge bases in lstms for improving
machine reading. 2017. 5.5

[241] Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng. Embedding
entities and relations for learning and inference in knowledge bases. arXiv preprint

arXiv:1412.6575, 2014. 8.4

[242] Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng. Learning multi-
relational semantics using neural-embedding models. NIPS Workshop on Learning Se-

mantics, 2014. 3.2

[243] Zhilin Yang, Ruslan Salakhutdinov, and William Cohen. Multi-task cross-lingual se-
quence tagging from scratch. arXiv preprint arXiv:1603.06270, 2016. 3.2

[244] Zhilin Yang, Bhuwan Dhingra, Ye Yuan, Junjie Hu, William W Cohen, and Ruslan
Salakhutdinov. Words or characters? �ne-grained gating for reading comprehension.
ICLR, 2017. 3.6

[245] Zhilin Yang, Junjie Hu, Ruslan Salakhutdinov, and William W Cohen. Semi-supervised
qa with generative domain-adaptive nets. ACL, 2017. 4.1, 4.3.2, 2, 4.3.2

[246] Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William W. Cohen, Ruslan
Salakhutdinov, and Christopher D. Manning. HotpotQA: A dataset for diverse, explain-
able multi-hop question answering. In EMNLP, 2018. (document), 1.1, 8.1, 8.4, 8.3.3, 8.3.3,
8.3.4, 8.3.3, 9.1

[247] Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Russ R Salakhutdinov, and
�oc V Le. Xlnet: Generalized autoregressive pretraining for language understanding.
In Advances in neural information processing systems, pages 5754–5764, 2019. 1.1

[248] Zichao Yang, Phil Blunsom, Chris Dyer, and Wang Ling. Reference-aware language mod-
els. EMNLP, 2017. 3.5.2

[249] Kaisheng Yao, Baolin Peng, Yu Zhang, Dong Yu, Geo�rey Zweig, and Yangyang Shi.
Spoken language understanding using long short-term memory neural networks. In

167

Spoken Language Technology Workshop (SLT), 2014 IEEE, pages 189–194. IEEE, 2014. 6.3

[250] Wen-tau Yih, Ming-Wei Chang, Xiaodong He, and Jianfeng Gao. Semantic parsing via
staged query graph generation: �estion answering with knowledge base. In Proceedings

of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th

International Joint Conference on Natural Language Processing (Volume 1: Long Papers),
pages 1321–1331, Beijing, China, July 2015. Association for Computational Linguistics.
URL http://www.aclweb.org/anthology/P15-1128. 1

[251] Wen-tau Yih, Ma�hew Richardson, Chris Meek, Ming-Wei Chang, and Jina Suh. �e
value of semantic parse labeling for knowledge base question answering. In Proceedings

of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 2:

Short Papers), volume 2, pages 201–206, 2016. 5.1, 5.4.1

[252] Jun Yin, Xin Jiang, Zhengdong Lu, Lifeng Shang, Hang Li, and Xiaoming Li. Neural
generative question answering. International Joint Conference on Arti�cial Intelligence,
2016. 6.6

[253] Pengcheng Yin, Zhengdong Lu, Hang Li, and Ben Kao. Neural enquirer: Learning to
query tables. International Joint Conference on Arti�cial Intelligence, 2016. 6.6

[254] Steve Young, Milica Gašić, Blaise �omson, and Jason D Williams. Pomdp-based statis-
tical spoken dialog systems: A review. Proceedings of the IEEE, 101(5):1160–1179, 2013.
6.1, 6.3

[255] Adams Wei Yu, David Dohan, Minh-�ang Luong, Rui Zhao, Kai Chen, Mohammad
Norouzi, and �oc V Le. Qanet: Combining local convolution with global self-a�ention
for reading comprehension. ICLR, 2018. 2.1.3

[256] Mo Yu, Wenpeng Yin, Kazi Saidul Hasan, Cicero dos Santos, Bing Xiang, and Bowen
Zhou. Improved neural relation detection for knowledge base question answering. ACL,
2017. 5.4.2

[257] Wojciech Zaremba and Ilya Sutskever. Reinforcement learning neural Turing machines-
revised. arXiv preprint arXiv:1505.00521, 2015. 6.6

[258] John M Zelle and Raymond J Mooney. Learning to parse database queries using inductive
logic programming. In Proceedings of the national conference on arti�cial intelligence, 1996.
2.1.3

[259] Luke S Ze�lemoyer and Michael Collins. Learning to map sentences to logical form:

168

http://www.aclweb.org/anthology/P15-1128

Structured classi�cation with probabilistic categorial grammars. In UAI, 2005. 2.1.3

[260] Yuyu Zhang, Hanjun Dai, Zornitsa Kozareva, Alexander J Smola, and Le Song. Variational
reasoning for question answering with knowledge graph. In AAAI, 2018. 8.3.1, 9.1

[261] Tiancheng Zhao and Maxine Eskenazi. Towards end-to-end learning for dialog
state tracking and management using deep reinforcement learning. arXiv preprint

arXiv:1606.02560, 2016. 6.3, 6.6

[262] Stefan Zwicklbauer, Christin Seifert, and Michael Granitzer. Do we need entity-centric
knowledge bases for entity disambiguation? In Proceedings of the 13th International Con-

ference on Knowledge Management and Knowledge Technologies, page 4. ACM, 2013. 6.2

169

	1 Introduction
	1.1 Contributions
	1.2 Thesis Outline

	2 Background
	2.1 Prior Work
	2.1.1 Symbolic Knowledge Representation
	2.1.2 Knowledge Bases
	2.1.3 Factoid Question Answering

	2.2 Relevant Methods
	2.2.1 Representing Text
	2.2.2 Representing Graphs
	2.2.3 Retrieval

	I Learning to Read
	3 Reading Comprehension
	3.1 Overview
	3.2 Gated-Attention Reader
	3.3 Extending with Coreference
	3.4 Experiments
	3.4.1 Cloze-style QA
	3.4.2 Reasoning Tasks

	3.5 Related Work
	3.5.1 Neural Network Readers
	3.5.2 Linguistic Biases in Deep Learning

	3.6 Discussion

	4 Transfer Learning
	4.1 Overview
	4.2 Analysis of Word Embeddings
	4.2.1 Reading Comprehension Setup
	4.2.2 Pretraining Methods
	4.2.3 Performance Comparison
	4.2.4 Handling OOV tokens

	4.3 Cloze Pretraining
	4.3.1 System
	4.3.2 Experiments
	4.3.3 Analysis

	4.4 Discussion

	II Learning with Knowledge Graphs
	5 Open-Domain QA
	5.1 Overview
	5.2 Retrieval
	5.3 GRAFT-Nets
	5.4 Experiments & Results
	5.4.1 Datasets
	5.4.2 Main Results
	5.4.3 Analysis

	5.5 Discussion

	6 Multi-turn QA
	6.1 Overview
	6.2 Probabilistic KB Lookup
	6.3 KB-InfoBot
	6.4 End-to-End Training
	6.5 Experiments & Results
	6.5.1 Models & Data
	6.5.2 Simulated User Evaluation
	6.5.3 Human Evaluation

	6.6 Related Work
	6.7 Discussion

	III Text as a Virtual Knowledge Base
	7 Lazy Slot-Filling
	7.1 Overview
	7.2 Virtual Knowledge Base
	7.2.1 Preliminaries
	7.2.2 Dual Encoder
	7.2.3 Training & Inference
	7.2.4 Generalizing to Unseen Relations

	7.3 Experiments & Results
	7.3.1 Setup
	7.3.2 Generalization to Unseen Entities
	7.3.3 Generalization to Unseen Relations
	7.3.4 Further Analysis

	7.4 Discussion

	8 Differentiable Reasoning
	8.1 Overview
	8.2 Differentiable Reasoning over a KB of Indexed Text
	8.2.1 Differentiable Multi-Hop Reasoning
	8.2.2 Efficient Implementation
	8.2.3 Pretraining

	8.3 Experiments
	8.3.1 METAQA: Multi-Hop Question Answering with Text
	8.3.2 WikiData: Multi-Hop Slot-Filling
	8.3.3 HotpotQA: Multi-Hop Information Retrieval
	8.3.4 HotpotQA: End-to-End Answer Extraction

	8.4 Discussion

	9 Conclusions
	9.1 Summary of Contributions
	9.2 Key Ideas
	9.3 Future Work

	Bibliography

