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Abstract

Computational context understanding refers to an agent’s ability to fuse disparate sources
of information for decision-making and is, therefore, generally regarded as a prerequisite for
sophisticated machine reasoning capabilities, as in artificial intelligence (AI). Data-driven
and knowledge-driven methods are two classical techniques in the pursuit of such machine
sense-making capability. However, while data-driven methods seek to model the statistical
regularities of events by making observations in the real-world, they remain difficult to inter-
pret and they lack mechanisms for naturally incorporating external knowledge. Conversely,
knowledge-driven methods combine structured knowledge bases, enable symbolic reason-
ing based on axiomatic principles, and yield more interpretable predictions; however, they
often lack the ability to estimate the statistical salience of an inference or robustly accommo-
date perturbations in the input. To combat these issues, we use hybrid AI methodology as a
general framework for combining the strengths of both approaches. Specifically, we inherit
the concept of neuro-symbolism as a way of using domain knowledge to guide the learning
progress of deep neural networks. Domain knowledge appears in many forms, including:
(i) graphical models, which characterise such relationships between entities as dependence,
independence, causality, correlation, and partial correlation; (ii) commonsense knowledge,
which covers spatial knowledge, affordances from objects’ physical properties, semantic re-
lations, and functional knowledge; (iii) privileged information, in the form of demonstrations
or soft labels from an expert agent; (iv) learned behaviour primitives and priors, which agents
may compose for generalisable and transferable task-execution; and (v) auxiliary tasks, ob-
jectives, and constraints — carefully-chosen, for constrained optimisation.

Regardless of the type of domain knowledge available, the same practical objective re-
mains: to learn meaningful neural representations, for downstream tasks of interest. The
underlying goal of neural representation learning is to statistically identify the best explana-
tory factors of variation in the agent’s input data or observations, often requiring intuition
about the complementarity between multiple modalities or views in the input. While there
has been much focus on learning effective neural representations for specific tasks, then
transferring or adapting the learned representations to other tasks, comparatively less focus
has been placed on representation learning in the presence of various types of domain knowl-
edge. This knowledge could be used to recover information about the underlying generating
process, to design effective modelling strategies in learning problems, to ensure model trans-
ferability or generalisability, or to understand the complementarity between views.

This thesis studies the avenues by which the aforementioned types of domain knowl-
edge can be combined with neural representations, in order to achieve improved model
performance and generalisability for the following problem domains: neural commonsense
reasoning, multimodal robot navigation, and autonomous driving. This thesis contributes
a collection of tools, methodologies, tasks, international AI challenges and leaderboards,
datasets, and knowledge graphs; additionally, this work led to the successful organisation of
two international workshops in safe learning for autonomous driving.
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Chapter 1

Introduction

Cognitive agents rely on notions of representationalism, for characterising the structural properties of a
given scene context and for engaging in decision-making, on the basis of that context understanding. Here,
representationalism refers to the agent’s ability to build a mental model, based on its sensory observations
in the real-world and based on its background knowledge from past experience. This mental model is
more than just the fusion of the agent’s sensory inputs: it encompasses the agent’s notions of beliefs (rep-
resenting the knowledge of the world), desires (representing the states in the world that the agent wishes to
assume; its goal(s)), and intentions (representing the present desire that the agent is committed to achieve;
its ‘active’ sub-goal(s)) [99, 307]. More importantly, this mental model serves as a window through which
sensory input is perceived, analysed, and transformed—in the present and future—predicated on back-
ground knowledge from the underlying domain [210]. Castelfranchi [42] and Wooldridge and Jennings
[307] refined the concept of ‘goal-direction’, wherein agents are capable of reasoning, based on internal
anticipatory and regulatory representations, about the consequences of their actions in an environment
context. Lakoff et al. [156] further characterised how this notion of agency is predicated on embodiment,
which, in turn, is essential to meaning and to agents’ abilities to draw rational inferences.

Analogously, computational context understanding refers to a machine’s ability to engage in decision-
making, through the combination of background knowledge with the fusion of disparate sources of infor-
mation, and is generally regarded as a prerequisite for sophisticated reasoning, as in artificial intelligence
(AI). Connectionism (goal orientation, based on data and observations) and symbolism (goal orientation,
based on background knowledge) are two classical perspectives in the pursuit of such machine sense-
making capability. However, while data-driven methods seek to model the statistical regularities of events,
by making observations in the real-world, they remain difficult to interpret and they lack mechanisms for
naturally incorporating external information which could influence how those observations are interpreted
or represented. Conversely, knowledge-driven methods may utilise physical models of the world, com-
bine structured knowledge bases, perform symbolic reasoning based on axiomatic principles, and are
often more interpretable in their downstream predictions; however, they often lack the ability to estimate
the statistical salience of an inference or robustly accommodate perturbations in the input. To combat
these issues, we study hybrid AI methodology as a general framework for combining the strengths of both
approaches. Specifically, we inherit the concept of neuro-symbolism, as a way of using domain knowl-
edge to guide the learning process of deep neural networks. Indeed, systems that unify observations with
domain knowledge lend themselves well to the encoding of human intention [193]. Domain knowledge
appears in many forms, including: (i) graphical models, which characterise such relationships between
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Figure 1.1: Overview of a hybrid model, where an agent is subject to domain knowledge-inspired learning.
We discuss a collection of problems, wherein domain knowledge is utilised for learning better representa-
tions and improving model generalisation. (a, top) To characterise the evolution of this physical process,
we can think about a set of governing functions, where the function in Red characterises various obser-
vation models that, in effect, generate the observations {O1,O2,O3}. Blue characterises the transition
dynamics in the environment, Orange controls the temporal interdependencies between views, Purple
characterises the data-labelling function (which we can think of as the teacher, for an arbitrary learner
that attempts to perform a mapping from observations to these teacher labels), and Green characterises
the complementarity between views. Not all connections in the state evolution are drawn. View in colour.
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entities as dependence, independence, causality, correlation, and partial correlation; (ii) commonsense
knowledge, which covers spatial knowledge, affordances from physical object properties, semantic rela-
tions, and functional knowledge; (iii) privileged information, in the form of expert demonstrations or soft
labels from an expert agent; (iv) auxiliary tasks or objectives, carefully-chosen, for constrained optimisa-
tion; and (v) structured behaviour primitives, which may be composed for generalisable and transferable
task-execution.

Regardless of the type of domain knowledge available, the same practical objective remains: to learn
meaningful neural representations, for downstream tasks of interest. The underlying goal of neural rep-
resentation learning is to statistically identify the best explanatory factors of variation in the agent’s input
data or observations, often requiring intuition about the complementarity between multiple modalities or
views in the input [16, 23, 176, 297]. By understanding these factors of variation, we can glean insight
about (i) the distribution of the data-generating process that underlies both the agent’s observations and
the dynamics of the environment; and about (ii) aspects that may confound an agent’s learning paradigm,
such as noise and distribution shifts. Pursuit of this objective usually involves learning statistical map-
pings from the input space to a latent vector space, in order to facilitate the emergence of desired intrinsic
properties (e.g., concentration of probability mass in lower-dimensional manifolds, inter-mode density,
intra-mode sparsity) and extrinsic properties (e.g., improved downstream task performance) from the use
of the neural representation. Indeed, much focus has been placed on learning effective neural representa-
tions for a specific task, then transferring or adapting the learned representations to different, related tasks.
However, comparatively less focus has been placed on representation learning in the presence of various
types of domain knowledge, where this knowledge can be used to recover information about the under-
lying generating process, to design effective modelling strategies in learning problems, to ensure model
transferability or generalisability, or to understand the complementarity between views (Fig. 1.1)

1.1 Thesis Overview
Thesis statement: Learning representations in the absence of domain knowledge is insufficient for true
model generalisability to unseen environments; various forms of domain knowledge can be systematically
leveraged, across various AI tasks, in order to improve cross-domain model performance. Thus, it is not
appropriate to study domain knowledge in a single, siloed domain.

This thesis studies the avenues by which domain knowledge can be combined with neural representations,
across diverse problem domains, to achieve, e.g., improved generalisability and sample-efficiency.

Specifically, we address the following research challenges:

1. Injecting domain knowledge in neural systems, studied across a large cross-section of research
areas, applications, and problem domains.

2. Developing extensible neural architectures that flexibly incorporate domain knowledge into their
perceptual pipelines and/or training objectives. As the primary theme of this thesis, we pro-
vide specification and analysis of hybrid modelling strategies, throughout, such as: (i) common-
sense knowledge grounding (for extraction) and attention based combination with neural context
(injection) for question answering (Section 4.2); (ii) leveraging domain knowledge for modular-
ity/hierarchicality, in multimodal perception pipelines, for robot navigation (Section 5.2) and au-
tonomous driving (Section 6.3); and (iii) combining neural models with classical control (Sections
6.3, 7.2.3, and 7.2).
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3. Leveraging knowledge as a statistical prior, with careful selection of modelling strategy (e.g., vari-
ational inference, normalising flow) and objectives, in the context of learning embedded skills for
robot navigation (Section 5.3), multi-agent trajectory prediction (Section 6.2) and goal prediction
(Section 6.3) in autonomous driving.

4. Grounding neural predictions on physics-based models to ensure conformance to, e.g., vehicle
dynamics (Sections 6.2, 6.3, 7.2.3, 7.2).

5. Understanding the alignment between the downstream task and the types of domain knowledge
that would facilitate improved optimisation and performance. Without this analysis, even the in-
troduction of additional information can have a negative impact of model performance, as models
may learn to ignore the higher-frequency variation in the knowledge-based context, in favour of
easier (but task-specific) training signals in the samples. We study these concepts, in the context
of noise-reduction in commonsense question answering (Sections 4.2, 4.3) and learning embedded
skills in robot navigation (Section 5.3).

6. Performing knowledge transfer to unseen domains, e.g., in the context of zero-shot evaluation for
commonsense question answering on unseen datasets (Section 4.3) and transferable robot skills
(Section 5.3).

This thesis is organised as follows:

Chapter 2 presents preliminaries, to introduce topics covered in the thesis. This chapter starts with a
discussion of various domain knowledge types, then provides an overview of multiview representation
learning—with specific treatment of visual, textual, and knowledge representations, and learning to align
representations from multiple views.

Chapter 3 describes a collection of application areas, that were chosen to illustrate both the challenges
and opportunities of domain knowledge-enhancement for neural functional approximation. For neuro-
symbolic commonsense reasoning, we consider commonsense question answering and constrained text
generation. For embodied multimodal robot navigation, we consider waypoint prediction and learning
transferable navigation primitives. Finally, in the context of autonomous driving, we consider multi-agent
trajectory forecasting and learning to drive settings.

Chapter 4 highlights commonsense knowledge as a dominant form of domain knowledge for guiding the
training of neural language models (LMs), in question answering and constrained text generation tasks.
We consider challenges in understanding knowledge/task alignment for improved downstream task perfor-
mance, developing neuro-symbolic architectures for commonsense reasoning, knowledge elicitation from
symbolic resources through extraction and injection mechanisms, and understanding knowledge-based
pre-training tasks for improved downstream performance through synthetic QA set generation.

Chapter 5 covers the use of priors, primitives, and skills, in the context of robot learning for navigation
tasks. In the first section, we introduce the use of knowledge-driven scene priors for semantic audio-
visual embodied navigation: we combine semantic information from our novel knowledge graph that
encodes object-region relations, spatial knowledge from dual Graph Convolutional Networks, and back-
ground knowledge from a series of pre-training tasks—all within a reinforcement learning framework for
audio-visual navigation. We define a new audio-visual navigation sub-task, where agents are evaluated
on novel sounding objects, as opposed to unheard clips of known objects; and we show improvements
over strong baselines in generalisation to unseen regions and novel sounding objects, within the Habitat-
Matterport3D simulation environment, under the SoundSpaces task. In the second section, we propose
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a framework for distilling a navigation agent’s experience into a representation of reusable maneuvers,
where the high-frequency and label-independent variation in the instructions and visual context are re-
moved. Our approach encourages the agent to generalise reusable navigation maneuvers on the basis of
similarities across high-level textual instructions, conditioned on past actions, in order to leverage expe-
rience in executing familiar sub-commands from new instructions. We achieve this association through a
method called auxiliary variable variational approximation, which allows us to introduce a latent variable
for estimating the conditional posterior distribution over all observations and executed trajectories (other-
wise intractable for most distributions of interest). The agent then learns how to compose samples from
this skill space and couple them with conventional multimodal co-grounding mechanisms, through policy
refinement, for improved generalisability and downstream performance.

Chapter 6 covers the use of statistical priors, in the context of autonomous driving tasks, with a focus
on how knowledge of the form of a distribution (which underlies trajectories or waypoint goals) leads to
multiple benefits, including: (i) model generalisability, beyond simple interpolation between point-wise
samples in a dataset; (ii) the ability to reveal agent intentionality for more interpretable predictions; and
(iii) the ability to infer implicit rules about admissible behaviour in the environment. In the first section,
we propose a model that addresses generalisation challenges in multi-agent trajectory forecasting tasks,
through the introduction of an informative (and annotation-free) prior and rich multimodal encodings of
agent-to-agent and scene-to-agent information. We offer new metrics to evaluate the diversity of trajectory
predictions, while ensuring admissibility of each trajectory. Based on our new metrics as well as those
used in prior work, we compare our model with strong baselines and ablations across two datasets and
show a 35% performance-improvement over the state-of-the-art. In the second section, we learn the
prior jointly with the task of simulated urban driving, where we introduce a distribution-aware trajectory
generation mechanism that remains conformant to both road geometry and vehicle kinematics. We show
how our agent uses this learned prior to generalise to completely out-of-distribution driving scenarios,
such as busy towns, abnormal turns, unseen traffic patterns such as roundabouts, etc.

Chapter 7 studies the use of constraint functions as domain knowledge in autonomous driving set-
tings. We observe that technologies which are to be applied to safety-critical applications must adhere
to safety constraints, throughout their interactions with their environments, as any safety infraction in
urban/highway driving or high-speed racing, could lead to catastrophic failures. Moreover, their train-
ing environments must capture sufficient realism (e.g., in visual rendering, vehicular dynamics, and task
objectives), in order for the methods to be eligible for simulation-to-real transfer. The chapter starts
by addressing the lack of realistic simulation for producing safety-aware methods: we introduce the
Learn-to-Race (L2R) framework as a particularly challenging proving ground for safe learning algo-
rithms. L2R is OpenAI-gym compliant training environment for simulated Formula-style racing, which
enables agents to learn to race on high-precision models of real-world tracks (e.g., the famed Thruxton
Circuit and the Las Vegas Motor Speedway) and to use a suite of rich multimodal sensory information,
predicated on accurate vehicle dynamics. We additionally define the L2R AI task, by introducing two (2)
objectives and seven (7) metrics that characterise and measure performance, safety, and desirable agent
behaviour. We additionally provide an official L2R task dataset of expert demonstrations and a series
of baseline experiments and reference implementations. In this task, algorithms must learn to control
vehicles at their physical limits, with minimal margins for safety, while making sub-second decisions in
a fast-changing environment and while remaining robust to distribution shifts and novel road features.
Next, to address the challenges in safe policy optimisation, we propose the use of safety constraints for
autonomous racing, inspired by the theoretical foundations of Hamilton-Jacobi (HJ) reachability analysis
in optimal control. Here, we define a safety controller that intervenes whenever an agent approaches bad
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states, and we show that even an agent that generates actions at random is guaranteed to stay on the driv-
able area; we further show that an arbitrary learning policy that is coupled with this safe controller is able
to learn performant driving behaviour, both safely and sample-efficiently. Finally, we demonstrate that the
HJ safety value can be learned and updated directly from vision context, thereby expanding HJ reacha-
bility to applications where high-fidelity dynamics models may not be available. While not necessary for
convergence, we warm-start the safety value function using values pre-computed with a nominal model.
Next, the value function is updated directly on transitions of ego-agent’s frontal camera view and vehicle
speed. We report state-of-the-art results on the L2R benchmark task, and we show that incorporating a
dynamically updating safety critic grounded in control theory boosts performance especially during the
initial learning phase.
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Chapter 2

Preliminaries

In this chapter, we introduce the requisite concepts for characterising various types of domain knowledge
and multiview representation learning. We begin by discussing various forms of domain knowledge that
are common to problem areas of interest; in this thesis, we highlight: symbolic commonsense knowledge,
(probabilistic) graphical models, learning with constraints, and knowledge distillation. Next, we discuss
the two stages of multiview representation learning: (i) characterising, representing, and encoding multiple
modalities, such as vision, natural language, and commonsense knowledge; and (ii) learning to align
representations from multiple views.

2.1 Domain Knowledge
We refer to domain knowledge as, simply, the elevated understanding about the environment in which
an agent operates that would aid in its learning and/or goal-direction [119]. This opportunity for utilis-
ing domain knowledge in learning has been studied in many areas, including: Library and Information
Sciences [119], Information Retrieval [66, 67, 80, 81], Human Cognitive Developmental Psychology and
Perception [82, 86, 304], and Pedagogy [5, 295]. In the context of Robotics and Artificial Intelligence:
Romea et al. [243] propose a method for encoding domain knowledge as constraints, for lifelong concept
learning and object discovery; Candido et al. [39] exploit domain knowledge in the specification of prim-
itives, for more efficient planning and control; and Tokmakov et al. [285] train object-tracking models, by
replicating human perceptual notions of object permanence and grounding. However, these works have
neglected to establish a taxonomy of domain knowledge or to characterise how domain knowledge can be
concretely operationalised in a diverse set of fields.

Following these investigations, we can identify several forms in which domain knowledge manifests for
constructive use in learning problems, e.g.: commonsense knowledge, probabilistic graphical models,
generalized distillation (including pre-training and multi-objective learning), and reasoning primitives
(e.g., skills and modular architectural components), and constraint functions. In this thesis, we study how
these instances of domain knowledge can be used to guide the learning process of artificial agents, in a
variety of downstream tasks and applications. In the remainder of this section, we describe some relevant
concepts that will aid in our characterisation of knowledge-enhanced learning.
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2.1.1 Common Sense
Commonsense knowledge encompasses practical knowledge about the world, which cognitive agents
(e.g., humans) are expected to have and leverage for reasoning. An agent is said to have common sense,
as McCarthy et al. [186] argues in his seminal work, “... if it automatically deduces for itself a sufficiently
wide class of immediate consequences of anything it is told and what it already knows.” In the context
of machine commonsense reasoning, various resources exist for specifying commonsense knowledge in
the form of symbolic representations (e.g., knowledge graphs) that aid in an agent’s execution of a down-
stream task (e.g., question answering, robot navigation). Various categories of commonsense knowledge
have been discussed at length by philosophers, computational linguists, and cognitive psychologists1,
where we can identify: declarative commonsense, whose scope encompasses factual knowledge, e.g., ‘the
sky is blue’, ‘Paris is in France’; taxonomic knowledge, e.g., ‘football players are athletes’, ‘cats are mam-
mals’; relational knowledge, e.g., ‘the nose is part of the skull’, ‘handwriting requires a hand and a writing
instrument’; procedural commonsense, which includes prescriptive knowledge, e.g., ‘one needs an oven
before baking cakes’, ‘the electricity should be off while the switch is being repaired’ [120]; sentiment
knowledge, e.g., ‘rushing to the hospital makes people worried’, ‘being in vacation makes people relaxed’;
and metaphorical knowledge (e.g., ‘time flies’, ‘raining cats and dogs’). Because these different common-
sense knowledge types (e.g., procedural commonsense knowledge, relational commonsense knowledge)
may support corresponding unique modes of reasoning (e.g., cause-effect resolution and story understand-
ing, spatial navigation and co-reference), we can refer to these types as specific dimensions or domains of
commonsense knowledge. In Chapter 4, we confirm that, indeed, different reasoning modes necessitate
the corresponding type of commonsense knowledge and combining inappropriate commonsense domain
knowledge with reasoning pipelines is detrimental to downstream performance.

Examples of symbolic representation of commonsense knowledge, in declarative form, can be taken from
ConceptNet [264]: a commonsense knowledge graph, which contains over 21 million edges and 8
million nodes (1.5 million of which are in the partition for the English vocabulary). Any given pair of

1Interested readers are referred to [70].
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nodes in the knowledge graph are connected by an edge and can be concisely specified as a triple:

(C1, r, C2),

where the natural language head and tail concepts, C1 and C2, are associated by commonsense relation r,
e.g., as in (dinner, AtLocation, restaurant). These declarative constructs are convenient, because they have
straightforward logical consequences and because they can be easily lexicalised into natural language
statements. Thanks to its coverage, ConceptNet is one of the most popular semantic networks for
common sense. ATOMIC [250] is another knowledge-base that focuses on procedural knowledge. Triples
are of the form (Event, r, {Effect | Persona | Mental-state}), where head and tail elements are short
sentences or verb phrases and r represents an if-then relation type, e.g.:

(X compliments Y, xIntent, X wants to be nice)

In Section 2.2.1, we describe how commonsense knowledge can be combined with neural representations.
In Chapter 4, we show that, by identifying the most appropriate type of commonsense knowledge for a
particular problem (e.g., from declarative, taxonomic, relational, procedural, sentiment, and metaphorical
common sense), we can consistently improve downstream performance and cross-domain generalisation
of neural language models, on multiple-choice commonsense question-answering tasks in natural lan-
guage processing. We introduce a new model that performs commonsense knowledge grounding and
lexicalisation (for extraction) and trilinear attention-based combination with neural context (injection) in
Section 4.2, and we propose a novel neuro-symbolic framework for zero-shot question answering across
commonsense task in Section 4.3. Additionally, we introduce the use of knowledge-driven scene priors
for semantic audio-visual embodied navigation, in Section 5.2, where we combine semantic information
from our novel knowledge graph that encodes object-region relations, spatial knowledge from dual Graph
Convolutional Networks, and background knowledge from a series of pre-training tasks—all within a
reinforcement learning framework for audio-visual navigation.

2.1.2 Probabilistic Graphical Models
Probabilistic graphical models [145] combine domain knowledge and statistical experience, through declar-
ative representation of directed (Bayesian networks) and undirected (Markov networks) graphical struc-
tures. These graphical structures model joint probability distributions over sets of random variables and
allow for flexible factorisation (Figure 2.1), enabling us to understand various relations between random
variables (correlations, independencies, dependencies, causalities, and partial correlations) and thereby
allow us to encode expert knowledge from the underlying problem domain. In Section 6.3, we discuss a
possible factorisation of the distribution over control actions as motivation for defining modular architec-
tures in visuomotor control tasks for autonomous driving.

Indeed, these probabilistic graphical models allow us to reason about the probability distributions that un-
derlie the input and output quantities of, e.g., generative models, as in: Generative Adversarial Networks,
variational Bayesian methodology, and Normalizing Flow. Central to the focus areas in this thesis, the
following subsections provide examples of the latter two algorithmic classes and how domain knowledge
can be introduced therein.

Variational Approximation

Variational Bayesian methods became popular for their ability to enable efficient approximate inference
and learning over probabilistic models, whose latent random variables have intractable posterior distribu-
tions [137]. Rather than directly attempting to answer queries of some intractable posterior P , variational
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inference allows us to represent the quantity of interest as the result of an optimisation problem, wherein
the desired solution is approximated. First, P is projected to a tractable family of distributionsQ, inference
is performed on the projected Q, then the distributions are aligned through posterior regularisation.

More formally, we consider a joint probability distribution pθ(x, z) = pθ(x|z)p(z), which characterises
a probabilistic model pθ(x|z) and prior p(z). As a proxy for the intractable posterior, we introduce
the variational approximate distribution qφ(z|x), with parameters φ, and use it in pursuit of a bound
on the marginal likelihood of the observations (as in [132]), referred to as the evidence lower bound
(ELBO):

log p(x) = log
∫
pθ(x|z)p(z)dz

= log
∫
qφ(z|x)

qφ(z|x)
pθ(x|z)p(z)dz

≥ KL(qφ(z|x)||p(z)) + Eq(logpθ(x|z)),

In order to use this bound to optimise {θ, φ} over large datasets, we compute the gradient of the expected
log-likelihood ∇φEqφ(z)(log pθ(x|z)) through a Monte Carlo gradient estimate, with reparameterisation,
assuming qφ(z) to be of Gaussian form, N (z|µ, σ2) and φ = {µ, σ2}, such that:

z ∼ N (z|µ, σ2)⇔ z = µ+ σε, ε ∼ N (0, 1)

This enables us to differentiate, with respect to φ, the parameters of the variational distribution, using a
Monte Carlo approximation, with draws from the base distribution:

∇φEqφ(z)(fθ(z))⇔ EN (ε|0,1)(∇φfθ(µ+ σε))

Finally, we often follow common practice [101, 140, 235, 236, 268] in using a posterior projection
model—an inference network—which allows us to compute a set of global variational parameters that
may be used for both train- and test-time inference.

The selection of qx provides an opportunity for injecting domain knowledge into the variational inference
framework, where the prior proposal qx can be produced through pre-training. In Chapter 5, we pre-
train the embedding and inference networks on tasks that are close to their intended specialisation in
the downstream process. We further utilise this variation formulation for generating a representation of
learnable primitives that guide a navigation policy’s downstream task-execution.

Normalizing Flow

For many problems of interest, as in trajectory forecasting and navigation, a limitation of the variational
methodology is that the available families for the choice of approximating distributions still lack the ex-
pressiveness for capturing diverse modes in the data distribution [217, 235]. Moreover, variational autoen-
coders (VAEs) [137] are only approximately able infer the values of the latent variables that correspond
to a data-point [139]. Avoiding the prospect of having to directly specify more complex distributions
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that will fit the data well (intractable for most distributions of interest) and allowing for direct evaluation
of the latent density, Normalizing Flow provides a general framework for transforming a simple prob-
ability density (base distribution) into a more expressive one, through a series of invertible mappings
[139, 217, 219, 235, 274].

Formally, let f be an invertible and smooth function, with f : IRd → IRd, x = f(z), z ∼ pz, f−1 = g,
and thus g ◦ f(z) = z, for d-dimensional random vectors x and z. Further, we attribute to f the property
of diffeomorphism [192], which ensures that qx remains well-defined and obtainable through a change of
variables, and ensures that pz is uniformly distributed on the same domain as the data space [167]—insofar
as both f and its inverse f−1 are differentiable and z retains the same dimension as x:

qx(x) = pz(z)
∣∣det∂f∂z

∣∣−1
= pz(f−1(x))

∣∣∣det∂f
−1

∂x

∣∣∣
We can construct arbitrarily complex densities, by flowing z along the path created by a chain of K suc-
cessive normalizing distributions pz(z), with each successive distribution governed by a diffeomorphic
transformation:

x = zK = fK ◦ · · · ◦ f2 ◦ f1(z0)

Following this sequence of transformations, our main interfaces with the flow-based model are through
either sampling or evaluating its density, where, in the former, we sample from pz(z) and must compute
the forward transformation f ; in the latter, we must compute the inverse transformation f−1, its Jacobian
determinant, and the pz(z) density evaluation. In practice, f and f−1 are implemented as neural networks
and the base distribution pz is typically taken to be a simple one, e.g., a multivariate normal or a uniform
distribution over the admissible regions of the state-space.

This selection of pz actually provides the first opportunity for injecting domain knowledge in flow-based
models—where pz can be chosen/adjusted to be more informative for the downstream task.2 As we will
see in Section 6.2.2, we select an annotation-free prior distribution over the drivable area, in a multi-
agent vehicle trajectory prediction problem, which proves crucial to achieving diverse and admissible
trajectory predictions. The second opportunity for injecting domain knowledge follows from conditional
flow variants that incorporate some side information. Various implementations in the literature feature
side information in only simplistic forms (e.g., one-hot vector representations). In Section 6.3.4, we learn
a posterior that conditions this prior on more complex information from the scene context, in learning-to-
drive settings, making the resultant model more generalisable and sensitive to dynamic obstacles.

2.1.3 Constraints
Training an agent exclusively with data is neither sample-efficient, nor interpretable. Systems that unify
concrete examples with logical rules and constraints, instead, lend themselves well to the encoding of
human intention and domain knowledge [193].

Consider a statistical model, pθ(x|C), where x ∼ pθ(x), x ∈ IRd is a generated random variable of
dimension d (in the case of a generative model), or a label (in the case of a discriminative model), with C

2For example, a distributional prior that is learned through pre-training on a task that may be felt to be similar or
relevant to the downstream task of interest.
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as some input scene context. Next, suppose we have some parameterised constraint function fφ(x) ∈ IR
which encodes some value on the model’s predictions, where higher values of f denote a better x, with
respect to some domain knowledge.

Natural language processing example. Taking an example [123] from sentiment classification in natural
language processing, suppose a model must classify the sentiment (positive or negative) in the following
statement S: This was a terrific movie, but the director could have done better. A challenge for language
models is that of characterising the contrastive nature of such sequences (given by the conjunction ‘but’),
in order to infer the dominant sentiment. Whereas the correct sentiment label of ‘negative’ may well be
available for this particular example in a dataset, a trained model would not be immediately informed
from the label, alone, about ‘why’ this example contains negative sentiment. For this reason, we may wish
to encode a constraint, such as [Sentence with structure A-but-B → sentiment of B
dominates], as the following soft first-order logic [14] rule:

f := has-‘A-but-B’-structure(S) =⇒ {1(y = +) =⇒ σθ(B)+ & σθ(B)+ =⇒ 1(y = +)} ,

where 1(·) is an indicator function that takes 1 when its argument is true, and 0 otherwise; σθ(·) ∈ [0, 1]
are soft model predictions; class ‘+’ represents ‘positive’; and σθ(B)+ is the element of σθ(B) for class
‘+’. When the label is positive (i.e., y = +), the rule takes the value σθ(B)+, else 1− σθ(B)+.

One way to impose constraint information on the model is to maximise the expectation over the model’s
input distribution, with respect to our constraint function, or:

minθ L(θ)− αEpθ(fφ(x)),

where L(θ) is the model’s optimisation objective (e.g., cross-entropy) and the expectation term performs
posterior regularisation [97] thereupon, by imposing the domain knowledge constraint. As a consequence
of this optimisation, we would then take the gradient against this expectation, which is generally more
effective than other forms of regularisation, such as sparsity-promoting penalties [97, 124, 131, 244].
Unfortunately, however, the derivative of this term can exhibit high variance, through the commonly-
used log-derivative trick [314], if the density of the generative distribution pθ is not one that can be
efficiently reparameterised (e.g., Gaussian family [137]). An alternative is to impose the constraint on
some variational distribution q:

minθ L(θ)− α[KL(q(x)||pθ(x))− λEqθ(fφ(x))]

Finally, this aggregate objective is optimised using an EM-style methodology [97], where, in the E-step,
we optimise the constraint-based component with respect to our variational distribution:

q∗(x) = pθ(x)exp{αf(x)}/Z,

for normalisation term Z. Fixing q from the E-step, we minimise with respect to the model’s parameters
θ for the M-step:

minθ L(θ)− Eq∗(log pθ(x))
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Robotics example. We inherit another example [51] from the application of reinforcement learning to
autonomous systems, where the goal is to make learning-based robotics and autonomous driving agents
safer and more sample-efficient. We can define this notion of ‘safety’ by way of a learnable objective
added to the standard reward-centric objective in reinforcement learning: the agent not only must max-
imise expected reward, but must also constrain the cost (on expectation) incurred by engaging in unsafe
behaviour, such as crashing into obstacles, driving off the road, etc.

This problem of combing safety constraints with reinforcement learning (RL) agents is often formulated
as a constrained Markov decision process (CMDP), i.e., on top of an MDP (X ,U , R,F), where X is the
state space, U is the action space,F : X×U −→ X characterises the system dynamics, andR : X×U −→ R
is the reward function. The CMDP includes an additional set of cost functions, {C1, . . . , Cm}, where each
Ci : X × U −→ R maps state-action transitions to costs characterising constraint violations.

The objective of RL is to find a policy π : X −→ U that maximises the expected cumulative rewards,
V π
R (x) = Exk,uk∼π

[∑∞
k=0 γ

kR(xk, uk)|x0 = x
]
, where γ ∈ [0, 1) is a temporal discount factor. Sim-

ilarly, the expected cumulative costs are defined as V π
Ci

(x) = Exk,uk∼π
[∑∞

k=0 γ
kCi(xk, uk)|x0 = x

]
.

Notice that the CMDP requires the policy to be feasible, by imposing limits di for the costs, i.e., VCi(π) ≤
di, ∀i. Putting everything together, the RL problem in a CMDP is:

π∗ = arg max
π

V π
R (x) s.t. V π

Ci(x) ≤ di ∀i. (2.1)

Solving a CMDP problem is challenging, because the policy needs to be optimised over the set of feasible
states; this requires off-policy evaluation of the constraint functions, to determine whether a policy is
feasible [2]. As a result, safety grows with experience, but requires diverse state-action pairs, including
unsafe ones [265]. Various approaches in literature attempt to guarantee the safety of general, continuous
non-linear systems. These can be combined with MDP formulation, methods typically rely on knowledge
of the environment dynamics. Control barrier functions (CBFs) provide a measure of safety with gradients
that inform the acceptable safe actions [7]. For specific forms of dynamics, e.g., control-affine [58], and
unlimited actuation bounds, this approach can be scalable to higher-dimensional systems and can be paired
with an efficient online quadratic program for computing the instantaneous control [58]. Unfortunately,
finding a valid control barrier function for a general system is a nontrivial task. Lyapunov-based methods
[61, 62] suffer from the same limitation of requiring hand-crafted functions.

Hamilton-Jacobi reachability is a technique that uses continuous-time dynamic programming to directly
compute a value function that captures the optimal safe control for a general nonlinear system [19, 90].
This method can provide hard safety guarantees for systems, subject to bounded uncertainties and distur-
bances. To generate the safety constraint, one can apply HJ reachability to a general nonlinear system
model, denoted as ẋ = f(x, u). Here x is the state, u is the control contained within a compact set U . The
dynamics are assumed bounded and Lipschitz continuous. For discrete-time approximations the time step
∆t > 0 is used. Within this framework, RL agents can learn complex control policies safely. We hypoth-
esise that it is more effective to use a low-fidelity model to delineate safe and unsafe states, compared to
using the same model for RL or even model-predictive control (MPC).

We denote all allowable states as K, for which there exists a terminal reward l(x), such that x ∈ K ⇐⇒
l(x) ≥ 0. An l(x) that satisfy this condition is the signed distance to the boundary of K. Taking au-
tonomous driving as an example, K is the drivable area and l(x) is the shortest distance to road boundary
or obstacle. This set K is the complement of the failure set that must be avoided. The goal of this HJ
reachability problem is to compute a safety value function that maps a state to its safety value with re-
spect to l(x) over time. This is done by capturing the minimum reward achieved over time by the system
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applying an optimal control policy:

VS(x, T ) = sup
u(·)

min
t∈[0,T ]

l(ξu,dx,T (t)), (2.2)

where ξ is the state trajectory, T < 0 is the initial time, and 0 is the final time. To solve for this safety
value function, a form of continuous dynamic programming is applied backwards in time from t = 0 to
t = T using the Hamilton-Jacobi-Isaacs Variational Inequality (HJI-VI):

min

{
∂VS
∂t

+ max
u∈U
〈f(x, u),∇VS(x)〉, l(x)− VS(x, t)

}
= 0, VS(x, 0) = l(x). (2.3)

The super-zero level set of this function is called the reachable tube, and describes all states from which
the system can remain outside of the failure set for the time horizon. For the infinite-time, if the limit
exists, we define the converged value function as VS(x) = limT→−∞ VS(x, T ). Once the safety value
function is computed, the optimal safe control can be found online by solving the Hamiltonian: π∗S(x) =
arg maxu∈U 〈f(x, u),∇VS(x)〉. This safe control is typically applied in a least-restrictive way wherein
the safety controller becomes active only when the system approaches the boundary of the reachable tube,
i.e., u ∼ π if VS(x, T ) ≥ 0 and π∗S otherwise.

There are two major drawbacks to HJ reachability. The first is that the technique suffers from the curse
of dimensionality and scales exponentially with number of states in the system. Because of this, the tech-
nique can only be used directly on systems of up to 4-5 dimensions [19]. When using specific dynamics
formulations and/or restricted controllers, this upper limit can be extended [57, 148]. Second, because
of this computational cost, the value function is typically computed offline based on assumed system
dynamics and bounds on uncertainties. This can lead the safety analysis to be invalid or overly conser-
vative. The newly introduced discounted safety Bellman equation [91] modifies the HJI-VI in (7.3) in a
time-discounted formulation for discrete time:

VS(x) = (1− γ)l(x) + γmin

{
l(x),max

u∈U
VS(x+ f(x, u)∆t)

}
, VS(x, 0) = l(x). (2.4)

This formulation induces a contraction mapping, which enables convergence of the value function when
applied to dynamic programming schemes commonly used in RL. We note that the convergence only
holds for tabular Q-learning, not for its neural counterpart [122].

As we have seen in this section, constraints can be the result of a variational approximation, it can be
a logical evaluation, a cost limit, a value function, a teacher (i.e., a “critic” or a “discriminator” in other
algorithmic domains), or an auxiliary prediction task (as in multi-task learning): it just needs to encompass
the set of rules or constraints of interest [63, 124, 159]3. In the first example (Natural language processing),
we saw in the original formulation for posterior regularisation that f had to be pre-specified and fixed
during training. Extensions eliminate this requirement, where the parameters φ of f can also be updated
in the above M-step, from either self-supervision from the current q∗(x), from expert demonstrations, or
policy gradient updates from a reward signal [124]. In the second example (Robotics), we observed the
downsides of defining safety as a cost limit constraint: the optimisation of the CMDP problem requires
agents to collect experience from a diverse set of states, including unsafe ones. On the other hand, previous
attempts at combining the CMDP formulation with optimal control theory (such as HJ reachability) yields
methodology for defining hard safety constraints via a safety value function, but they remain limited to low

3We note that imposing post-hoc constraints on the predictions of the agent, alone, does not qualify in this dis-
cussion as learning with constraints, since the agent would not be aware of these constraints, during its optimisation.
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dimensional problems and do not enable updates of safety value over time. In Section 7.2, we introduce
a method that incorporates HJ reachability theory into the CMDP framework, scales to high-dimensional
problems via neural functional approximation, enables safety value updates directly from visual context,
and is benchmarked against state-of-the-art methods on OpenAI Safety Gym and Learn-to-Race, the new
autonomous racing simulation and training environment.

2.1.4 Generalized Distillation
The introduction of domain knowledge simplifies a difficult learning paradigm, for example, when some
privileged information (e.g., expert demonstrations from a teacher, artificial or otherwise) is only avail-
able during training and not during task execution time. Generalized Distillation [177] is a general frame-
work, providing machinery for both knowledge distillation (transferring knowledge from an ensemble of
possibly-large teacher models to a possibly small student model) [3, 106, 178, 284, 330] as well as learn-
ing under privileged information (LUPI; transferring experience from context that the student will not be
privy to during test time) [12, 177, 286, 287].

We start with some paired data ({xi, x∗i , yi}), where x∗i and xi are multiple views of the same input
space. In fact, x∗i can be separate modality or view, an arbitrary partition of the observation space, or a
projection of xi. In practice, though, x∗i is thought to contain additional information from the underlying
data-generating process. Using this privileged information in x∗i , we learn a teacher network ft:

ft = arg min
f∈Ft

1

n

n∑
i=1

L(yi, σ(f(xi))) + Ω(||f ||),

where σ : IRc → ∆c is the softmax operator that produces c-dimensional probability vectors ∆c and
Ω : IR→ IR performs regularisation on the primary learning objective L(·) (e.g., cross-entropy). We use
the teacher network to generate soft labels s = {σ(ft(x

∗
i )/T )}ni=1, with temperature parameter T . Next,

we learn the student network fs ∈ F , through multi-objective training on the original ({(xi, yi)}ni=1) and
teacher-generated ({(xi, si)}ni=1) paired data:

fs = arg min
f∈Fs

1

n

n∑
i=1

[(1− λ)L(yi, σ(f(xi))) + λL(si, σ(f(xi)))],

Generalized Distillation can be seen as an philosophical predecessor to imitation learning, pre-training,
and multi-task learning [177], where teacher networks can seen as labelling functions, providing the stu-
dent with an imitation prior from the underlying data-generating process (Figure 1.1(a)). However, exclu-
sively using expert demonstrations can limit the student’s generalisation capability to novel scenarios that
are outside the support of the training distribution. As we will see later, we leverage lexicalised symbolic
commonsense knowledge, in order to generate datasets as a pre-training basis for zero-shot commonsense
question answering tasks (Section 4.3). We also leverage a similar imitation objective to perform vari-
ational behaviour cloning, in the context of vision-and-language navigation, for first generating a latent
representation of robot navigation skills before using this skill space for regularisation during policy refine-
ment (Section 5.3). In Section 5.2, we introduce a knowledge-driven learning approach, that leverages an
imitation objective for the creation of a visuo-acoustic prior over indoor environments, in the context of se-
mantic audio-visual robot navigation. Finally, we combine an imitation prior with distribution-regularising
objectives, allowing agents to learn from an annotation-free distribution over trajectory futures (trajectory
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prediction for autonomous driving; Section 6.2) and an obstacle-aware distribution over navigation way-
points (visuomotor control for autonomous driving; Section 6.3).

2.2 Multiview Representation Learning
Multiview representation learning is concerned with the notion of learning representations (often, statis-
tical feature vector spaces) that combine and characterise and factors of variation in multiple streams of
input data. These input streams may take the form of natural signals (modalities: structure-borne sound,
audible articulation, video, images, text), e.g., from an underlying data-generating physical process (Fig-
ure 1.1a), or may simply be multiple synthetic transformations or projections of those underlying signals
(views: text and symbolic knowledge, egocentric images and top-down scene maps, etc.). In this section,
we describe various unimodal representations, then discuss how their alignment can be learned.

2.2.1 Visual, Textual, and Knowledge Representations
Visual Representations

Visual representation learning is a key component of machine perception, where a visual encoding model
(an ‘encoder’) performs the task of extracting semantic information about entities present in structured
data inputs, such as RGB images or depth frames. Encoders typically act as functional maps, thereby
projecting inputs to some, e.g., lower-dimensional (denser, more-concise) latent vector space. Recent
approaches use convolutional neural networks (CNNs) for this feature extraction in various applications,
such as: image classification, image captioning, visual question-answering, image retrieval, object de-
tection, semantic segmentation, depth estimation from RGB, image reconstruction, etc.; here, many such
approaches rely on specific deep CNN architectures, such as VGG [262], ResNet [116], Deeplab [56], and
RCNN [113]. Most modern deep CNN architectures rely on, in addition to other types of neural layers,
tiers of convolutions as preliminary feature extraction [115]. High-level features appear to extract general
objectness information, such as edges or extrema, while lower-level filters provide object-specific feature
attributes. Traditional architectures, such as ResNet, perform regression on the final layers of the convolu-
tional feature extractor, in order to take advantage of the most relevant and specific features. On the other
hand, “hypercolumns” extract data from successive convolutional layers and align or concatenate them
together before the regression layers [111], with interpolation forming the connective tissue that bridges
layers of different size. This denser representation has been shown to improve performance in domains
such as image segmentation [125].

Textual Representations

For language representation learning, text encoding seeks to extract semantic information from sequences
of textual input, through a combination of temporal modelling strategies and projections to vector em-
bedding spaces. Encoding strategies such as word2vec [189] and GloVe [221] are regarded as ‘context-
free’, as they generate separate embedding vectors for each token (word) in the input sequence, inde-
pendent of its surrounding tokens; contextual embeddings are generated from encoders that consider the
surrounding context of tokens in the input sequence. Recurrent neural networks (RNNs), including pop-
ular variants such as Long Short-Term Memory (LSTMs) [121] and Gated Recurrent Units (GRUs) [60],
were commonly-used neural network architectures for processing sequential data such as natural lan-
guage. RNNs take in a sequence of inputs and generate output latent representations that summarise the
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sequence, from the start of the sequence to each consecutive element (or timestep). This sequence mod-
elling can be employed in reverse time, where the representations summarise sequences from the end, in
order to better capture later temporal dependencies amongst elements; or bidirectionally, with separate
sequence modelling streams for each direction, capturing both earlier and later interdependencies. Here,
LSTMs and GRUs were preferred over the standard RNN formulation, as they captured longer-term se-
quential dependencies between earlier elements and later elements, in each directional stream. The output
latent representations (or ‘hidden states’) may be fused with other latent representations through some
vector combination (e.g., concatenation), may be influenced by other representations (often from different
modalities) through attention mechanisms, or may simply be directly passed to a decoder model for down-
stream prediction or signal translation. Vaswani et al. [288] introduced the Transformer model, which
better characterises long-term dependencies in sequential inputs, by way of several layers of multi-head
self attention mechanisms and position-wise feed-forward networks, employed separately and identically
on each sequential element. In additional to sequential modelling of natural language [74, 288], various
works have shown success in pre-processing other types of modalities into sequences (e.g., RGB image
pixel sequences), for use with Transformer-based models in computer vision applications [135], robotics
tasks [69, 85], and multimodal settings [163, 258].

Knowledge Representations

Given a set of symbolic knowledge triples from a knowledge graph (Section 2.1.1), we want to map this
representation to a sub-symbolic vector space, to make for easier consumption by ML models.

Knowledge graph embeddings. Given structured representation of (e.g., commonsense) knowledge in
the form of triples, given by (h, r, t), various approaches encode these head h, relation r, and tail t en-
tities as vectors or matrices. We can then perform vector operations on these representations, in order
to ultimately project the overall triple to a knowledge graph embedding space [211]. Chief among the
relevant approaches is the class of translational distance-based algorithms [296], such as TransE [30],
where r is specifically represented as a transition vector from h to t, such that h + r ≈ t. The RESCAL
algorithm [205] encodes relations as matrices, captures the interaction between entities relations using a
bi-linear scoring function, and can therefore capture complex patterns over multiple hops. HolE [206]
extends RESCAL, improving on its space and time complexity, without sacrificing its the expressivity of
the resultant representation. Whereas HolE only represents r as a vector, the approach captures pairwise
interactions of entities as composable vectors, through a circular correlation operation.

Grounded knowledge statements. For ConceptNet knowledge triples (see Section 2.1.1), we first convert
concept-relation tokens into regular tokens, in order to generate a pseudo-sentence, e.g.: “(book, AtLoca-
tion, library)” would be converted to “book at location library.” Next, we use the BERT [74] embedding
layer to generate an embedding of this pseudo-sentence, with C denoting a ConceptNet relation:

HC = BiLSTM(C) (2.5)

If we let HC ∈ R1×2l be the concatenation of the final hidden states and l be the number of hidden
units in the LSTM layer, then m ConceptNet relations would yield the commonsense knowledge matrix
HM ∈ Rm×2l. We adopt the attention mechanism used in QAnet [320] to model the interaction between

17



HM and the BERT encoding output Tenc:

H̃M = HM ·Wproj (2.6)

S = Att(HM , Tenc) (2.7)

Am = softmax(S) · H̃M (2.8)

At = softmax(S)·softmax(ST ) · Tenc (2.9)

TC = [Tenc;Am;Tenc ◦Am;Tenc ◦At] (2.10)

Tout = ReLU(TC ·Wa) (2.11)

Specifically, HM is first projected into the same dimension as Tenc, using Wproj ∈ R2l×d. Then, the
similarty matrix S ∈ Rn×m is computed using tri-linear attention, as in Equation 4.2. We then use S to
compute text-to-knowledge attention Am ∈ Rn×d and knowledge-to-text attention At ∈ Rn×d. Finally,
the knowledge-aware textual representation Tout ∈ Rn×d is computed, where Wa ∈ R4d×d. Tout is fed to
subsequent layers (in place of Tenc), in order to generate the prediction.

2.2.2 Learning to Align Representations from Multiple Views
Because a single physical process generates multiple modalities that act in observation of its events (or be-
cause multiple views may be related through a family of transformations or structured perturbations), these
views are said to share the property of complementarity—exhibiting pairwise interdependencies in their
signal content, conditioned on events from the data-generating process. Harnessing this complementarity
between views is often concerned with performing the task of multiview alignment: i.e., finding these rela-
tionships between sub-components of instances of two or more views, in a way that confirms inclusion of
domain knowledge and/or contributes to some measurable downstream performance improvement.

In many problem domains of interest—from natural language processing, to multimodal robot instruction-
following, to autonomous driving—an artificial agent is often presented with collections of modalities
that aid in its execution of one or more downstream tasks. Further, we may wish to encode instances
of each modality using parameterised and learnable functions (such as neural networks) as more concise
summaries of the input, essentially mapping the input modalities to their own respective vector-based
representation spaces (see Section 2.2.1, above). We may then combine these representations, in order to
provide the agent with a more holistic characterisation of its context. The hope is that this unified context
leads to better scene understanding and, in turn, improved task performance and generalisation.

Typically, this combination happens through a series of projections and learning objective-based con-
straints, e.g., (i) by using a single projection function (can also be a neural network) to map all the feature
vectors to a joint multiview representation; (ii) projecting the features to their own individual (and often
lower-dimensional) spaces, then coordinating them by imposing a relatedness constraint, such as max-
imising correlation or mutual information, minimising cosine distance, reducing distributional divergence,
etc.; and finally, (iii) learning to sub-select relevant elements in one feature space, given some conditioning
information from another, as in cross-view attention (“soft” coordination) and grounding.

Cross-view grounding through attention mechanisms has gained significant popularity recently, particu-
larly in the context of embodied vision-language planning tasks (EVLP) [94], wherein the vision-based
and language-based modalities have an especially additive contribution to instruction-following [9, 181],
embodied question answering [68], and goal-directed manipulation [146, 259].
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Chapter 3

Focus Areas

The scope of application for knowledge-enhanced modelling techniques is very broad and cannot be rea-
sonably studied within just one domain; in past work, we consider several. In [93, 171, 172, 201, 202,
203, 321], we have examined how domain knowledge about human anthropomorphic features can inform
occupant detection, counting, and the prediction of occupant thermal comfort preferences, in indoor com-
mercial buildings settings. In [130], we use domain knowledge to understand the dependency structures
that characterise the thermal dynamics, for commercial building automation, in order to reduce the severity
of intermittent prediction disturbances. In [232], we operationalise expert annotations in order to generate
diverse lexical paraphrases for supervised semantic parsing. In [49, 50], we harness domain knowledge
about how to decompose sets of non-linear objectives, for optimising thermostatically controlled loads in
smart grids. In this thesis, we consider knowledge-enhanced learning in the context of three additional
application areas: (i) Neuro-symbolic Commonsense Reasoning (Chapter 4), (ii) Embodied Multimodal
Robot Navigation (Chapter 5), and (iii) Autonomous Driving (Chapters 6, 7).

3.1 Neuro-symbolic Commonsense Reasoning
Architectures for Commonsense Question Answering

Non-extractive commonsense QA remains a challenging AI task, as it requires systems to reason about,
synthesise, and gather disparate pieces of information, in order to generate responses to queries. Recent
approaches on such tasks show increased performance, only when models are either pre-trained with
additional information or when domain-specific heuristics are used, without any special consideration
regarding the knowledge resource type. In this chapter, we perform a survey of recent commonsense QA
methods and we provide a systematic analysis of popular knowledge resources and knowledge-integration
methods, across benchmarks from multiple commonsense datasets. Our results show that attention-based
injection is a preferable choice for commonsense knowledge integration and that the degree of domain
overlap, between knowledge bases and datasets, plays a crucial role in determining model success.

Data Construction for Zero-shot Evaluation, in Commonsense Question Answering

Recent developments in pre-trained neural language modelling have led to leaps in accuracy on com-
monsense question-answering benchmarks. However, whereas large-capacity neural systems are able

19



to model individual datasets, there is increasing concern that large-capacity language models overfit to
specific tasks, without learning to utilise external knowledge or perform general semantic reasoning. In
contrast, zero-shot evaluations have shown promise as a more robust measure of a model’s general reason-
ing abilities, as models that achieve state-of-the-art performance on individual datasets suffer significant
performance-degradation under zero-shot evaluation on new, but similar tasks. In this chapter, we propose
a novel neuro-symbolic framework for zero-shot question answering across commonsense tasks. Guided
by a set of hypotheses, the framework studies how to transform various pre-existing knowledge resources
into a form that is most effective for pre-training models. We vary the set of language models, training
regimes, knowledge sources, and data generation strategies, and measure their impact across tasks. Ex-
tending on prior work, we devise and compare four constrained distractor-sampling strategies. We provide
empirical results across five commonsense question-answering tasks, with data generated from five exter-
nal knowledge resources. We show that, while an individual knowledge graph is better suited for specific
tasks, a global knowledge graph brings consistent gains across different tasks. In addition, both preserving
the structure of the task as well as generating fair and informative questions help language models learn
more effectively.

3.2 Embodied Multimodal Robot Navigation
Knowledge-driven Scene Priors for Semantic Audio-Visual Navigation

Generalisation to unseen contexts remains a challenge for embodied navigation agents. In the context of
semantic audio-visual navigation (SAVi) tasks, generalisation includes both generalising to unseen indoor
visual scenes as well as generalising to unheard sounding objects. Previous SAVi task definitions do not
include evaluation conditions on truly novel sounding objects, resorting instead to evaluating agents on
unheard sound clips of known objects; meanwhile, previous SAVi methods do not include explicit mech-
anisms for incorporating domain knowledge about object and region semantics. These weaknesses limit
the development and assessment of models’ abilities to generalise their learned experience. In this work,
we introduce the use of knowledge-driven scene priors in the semantic audio-visual embodied navigation
task: we combine semantic information from our novel knowledge graph that encodes object-region re-
lations, spatial knowledge from dual Graph Convolutional Networks, and background knowledge from a
series of pre-training tasks—all within a reinforcement learning framework for audio-visual navigation.
We define a new audio-visual navigation sub-task, where agents are evaluated on novel sounding objects,
as opposed to unheard clips of known objects.

Learning Representations for Reusable Robot Maneuvers

Vision-Language Navigation (VLN) tasks remain challenging for artificial agents, as they must satisfy
complex natural language instructions to navigate within complex photorealistic, partially-observable en-
vironments. Recent pursuit of this task has focused on pragmatic decoding, agent progress-monitoring,
back-translation, and cross-modal grounding; however, the aforementioned issues with instruction com-
plexity and label-independent variation in the visual features still persist, reducing agents’ generalisa-
tion performance in unseen environments. In this chapter, we propose a framework for distilling a nav-
igation agent’s experience into a representation of reusable maneuvers, where the high-frequency and
label-independent variation in the instructions and visual context are removed. Our approach encour-
ages the agent to generalise reusable navigation maneuvers on the basis of similarities across high-level
textual instructions, conditioned on past actions, in order to leverage experience in executing familiar
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sub-commands from new instructions. We achieve this association through a method called auxiliary vari-
able variation approximation, which allows us to introduce a latent variable for estimating the conditional
posterior distribution over all observations and executed trajectories (otherwise intractable for most dis-
tributions of interest). The agent then learns how to compose samples from this skill space and couple
them with conventional multimodal co-grounding mechanisms, through policy refinement, for improved
generalisability and downstream performance. We perform an error analysis to illustrate the robustness of
models’ generalisation to complex scenarios, and we show improvements from our approach.

3.3 Autonomous Driving: Multimodal Perception & Control
Diverse and Admissible Trajectory Forecasting

Multi-agent trajectory forecasting in autonomous driving requires an agent to accurately anticipate the
behaviours of the surrounding vehicles and pedestrians, for safe and reliable decision-making. Due to
partial observability over the goals, contexts, and interactions of agents in these dynamical scenes, di-
rectly obtaining the posterior distribution over future agent trajectories remains a challenging problem. In
realistic embodied environments, each agent’s future trajectories should be diverse since multiple plau-
sible sequences of actions can be used to reach its intended goals, and they should be admissible since
they must obey physical constraints and stay in drivable areas. In Section 6.2, we propose a model that
fully synthesises multiple input signals from the multimodal world—the environment’s scene context and
interactions between multiple surrounding agents—to best model all diverse and admissible trajectories.
We offer new metrics to evaluate the diversity of trajectory predictions, while ensuring admissibility of
each trajectory. Based on our new metrics as well as those used in prior work, we compare our model
with strong baselines and ablations across two datasets and show a 35% performance-improvement over
the state-of-the-art.

Distribution-aware Goal Prediction for Autonomous Driving

The feasibility of collecting a large amount of expert demonstrations has inspired growing research in-
terests in learning-to-drive settings, where models learn by imitating the driving behaviour from experts.
However, exclusively relying on imitation can limit agents’ generalisability to novel scenarios that are out-
side the support of the training data. In this paper, we address this challenge by decomposing the driving
task into modular skill primitives, based on the intuition that such architecture is more generalizable and
more robust to changes in the environment than a monolithic one. Specifically, we draw inspiration from
the trajectory forecasting community and reformulate the learning-to-drive task as goal distribution pre-
diction, model-based planning, and trajectory pruning. Firstly, we learn a multi-modal goal distribution by
imitating the expert conditioned on reaching the target location. Next, we ground candidate trajectory pre-
dictions on vehicle kinematics and road geometry. At each time step, we sample multiple goals and at the
same time prune the predictions that are spurious. Under the CARLA simulator, we report new state-of-
the-art results on the new CARNOVEL benchmark for assessing model robustness to out-of-distribution
scenarios.

Safety-aware Policy Optimisation via Constraint Functions

To be viable for safety-critical applications, such as autonomous driving and assistive robotics, autonomous
agents should adhere to safety constraints, throughout interactions with their environments. Furthermore,
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the simulated environments themselves must be realistic enough to facilitate training that induces the de-
sired qualities of agents. Whereas much of the existing research in autonomous driving focuses on urban
or highway driving, simulated Formula-style track racing represents new challenges for artificial agents
that must learn complex driving behaviour, safely and sample-efficiently, in rapid time-evolving scenarios.
Contemporary works in simulation struggle to capture realism in the visual rendering, vehicular dynamics,
and task objectives, inhibiting the transfer of learning agents to real-world contexts. Meanwhile, current
solutions are split between more classical approaches that demand privileged information, require signifi-
cant parameter-tuning, and are limited in their performance capacity; versus approximate driving methods
that provide no guarantees of safety and are prone to overfitting on the training scenarios.

In Section 7.2 we study how to address both critical challenges in this task. First, to address the lack of
realistic simulators and tasks for studying high-speed driving, we release a new simulator and OpenAI-
gym compliant training environment for simulated Formula-style racing, which enables agents to learn
to race on high-precision models of real-world tracks (e.g., the famed Thruxton Circuit and the Las
Vegas Motor Speedway) and to use a suite of rich multimodal sensory information. We also propose
the Learn-to-Race (L2R) AI task with challenging metrics, inspired by learning-to-drive challenges,
Formula-style racing, and vehicle trajectory forecasting; we provide an official L2R task dataset of expert
demonstrations and a series of baseline experiments and reference implementations. Next, to address the
challenges in safe policy optimisation, we propose the use of safety constraints for autonomous racing,
inspired by the theoretical foundations of Hamilton-Jacobi (HJ) reachability analysis in optimal control.
Here, we define a safety controller that intervenes whenever an agent approaches bad states, and we show
that even an agent that generates actions at random is guaranteed to stay on the drivable area; we further
show that an arbitrary learning policy that is coupled with this safe controller is able to learn performant
driving behaviour, both safely and sample-efficiently. Finally, we demonstrate that the HJ safety value
can be learned and updated directly from vision context, thereby expanding HJ reachability to applica-
tions where high-fidelity dynamics models may not be available. While not necessary for convergence,
we warm-start the safety value function using values pre-computed with a nominal model. The safety
value is updated directly on transitions of ego-agent’s frontal camera view and vehicle speed. As a first
experiment, we evaluate our approach on alongside strong baselines, in two environment and agent con-
figurations, on the OpenAI Safety Gym framework; we report the minimum number of safety infractions,
compared to state-of-the-art CMDP approaches. In the second experiment, we evaluate our approach on
Learn-to-Race (L2R) [117], a recently-released high-fidelity autonomous racing environment, which
requires the vehicle to make safety-critical decision in a fast changing environment. We obtain state-
of-the-art results on L2R and show that incorporating a dynamically updating safety critic grounded in
control theory boosts performance especially during the initial learning phase.
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Chapter 4

Learning with Common Sense

for Neuro-symbolic Reasoning

4.1 Motivation
Understanding how to represent and incorporate symbolic commonsense knowledge in learning-based
systems is crucial for their improved optimisation and generalisability. Whereas recent developments
in large-capacity, pre-trained neural language modelling have led to leaps in accuracy on commonsense
question-answering benchmarks, there is increasing concern that models overfit to specific tasks, without
learning to utilise external knowledge or perform general semantic reasoning [183]. Even when common-
sense knowledge is considered by prior work in neural language modelling, many works take a coarse-
grained view of commonsense, without considering the subtle differences across the various knowledge
types and resources. Such differences have been discussed at length in AI by philosophers, computational
linguists, cognitive psychologists (see for instance [70]): at the high level, we can identify declarative
commonsense, whose scope encompasses factual knowledge, e.g., ‘the sky is blue’, ‘Paris is in France’;
taxonomic knowledge, e.g., ‘football players are athletes’, ‘cats are mammals’; relational knowledge, e.g.,
‘the nose is part of the skull’, ‘handwriting requires a hand and a writing instrument’; procedural com-
monsense, which includes prescriptive knowledge, e.g., ‘one needs an oven before baking cakes’, ‘the
electricity should be off while the switch is being repaired’ [120]; sentiment knowledge, e.g., ‘rushing to
the hospital makes people worried’, ‘being in vacation makes people relaxed’; and metaphorical knowl-
edge (e.g., ‘time flies’, ‘raining cats and dogs’). We believe that it is important to identify the most
appropriate commonsense knowledge type required for specific tasks, in order to get better downstream
performance. Once the knowledge type is identified, we can then select the appropriate knowledge-base(s)
and the suitable neural integration mechanisms.

Many options exist for incorporating commonsense as domain knowledge in a reasoning task, such as
commonsense question answering and constrained text generation. Furthermore, many challenges would
befall methods that do not take care to utilise the knowledge effectively: jointly learning from context-free
knowledge embeddings or directly concatenating knowledge-grounded triples as additional context (Sec-
tion 2.1.1) can often have negative effects on models’ learned representations. Because this information
can vary with high frequency, with respect to the task context, models may learn to ignore the knowledge
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Figure 4.1: Knowledge extraction pipeline.

in favour of the comparatively lower-frequency learning signal in the samples. In this chapter, we consider
various strategies for utilising commonsense knowledge for training learning-based systems, in the context
of commonsense question-answering and constrained text generation. In Section 4.2, we study the neural
architectural mechanisms for leveraging common sense, then consider the importance of knowledge-task
alignment. We characterise knowledge utilisation in two stages, knowledge-extraction (from, e.g., an ex-
ternal resource) and knowledge-injection (into, e.g., a neural language model; via attention mechanisms),
then provide experiments, ablations, and error analysis accordingly. In Section 4.3, we study a different
usage of commonsense knowledge: that is, using it to generate synthetic datasets that can serve as strong
pre-training bases for generalisation. We describe our synthetic QA set generation procedure and pro-
vide empirical results, across five commonsense question-answering tasks, with data generated from five
external knowledge resources, comparing four QA distractor-sampling strategies.

4.2 Neuro-symbolic Architectures for Commonsense QA

With the recent success of large pre-trained language models [74, 175, 229, 318], model performance
has reached or surpassed human-level capability on many previous question-answering (QA) benchmarks
[118, 154, 230]. However, these benchmarks do not directly challenge model reasoning capability, as
they require only marginal use of external knowledge to select the correct answer, i.e., all the evidence
required to solve questions in these benchmarks is explicit in the context lexical space. Efforts have been
made towards building more challenging datasets that, by design, require models to synthesise external
commonsense knowledge and leverage more sophisticated reasoning mechanisms [212, 327], showing
that the previous state-of-the-art models often struggle to solve these newer tasks reliably. As a result,
commonsense has received a lot of attention in other areas as well, such as natural language inference [323,
325] and visual question answering [324]. Despite the importance of commonsense knowledge, however,
previous work on QA methods takes a coarse-grained view of commonsense, without considering the
subtle differences across the various knowledge types and resources.
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Figure 4.2: Option Comparison Network with Knowledge Injection

4.2.1 Neuro-symbolic Structures
The BERT model [74] has been applied to numerous QA tasks and has achieved very promising perfor-
mance, particularly on the DREAM and CommonsenseQA datasets. When utilising BERT on multiple-
choice QA tasks, the standard approach is to concatenate the dialogue context and the question with each
answer-option, in order to generate a list of tokens which is then fed into BERT encoder; a linear layer
is added on top, in order to predict the answer. One aspect of this strategy is that each answer-option
is encoded independently: from a cognitive perspective, this aspect contradicts how humans typically
solve multiple-choice QA tasks, namely by weighing each option to find correlations within them, in ad-
dition to correlations with respect to the question. To address this issue, Ran et al. [231] introduced the
Option Comparison Network (OCN) that explicitly models pairwise answer-option interactions, making
OCN better-suited for multiple-choice QA task structures. We re-implemented OCN while keeping BERT
as its upstream encoder. Specifically, given a dialogue D, a question Q, and an answer-option Ok, we
concatenate them and encode with BERT to get hidden representation Tenc ∈ Rn×d:

Tenc = BERT(D;Q;Ok) (4.1)

Where d is the size of BERT’s hidden representation and n is the total number of words. Next, the dialogue
encoding Denc ∈ Rnd×d, question encoding Qenc ∈ Rnq×d, and answer-option encoding Ok,enc ∈ Rno×d
are separated from Tenc. Here, option-encoding consists both of question and option, i.e. Qenc ⊆ Ok,enc
and nd + no = n, as suggested by Ran et al. [231]. Given a set of options Ok (k = 1, 2, ...), these options
are compared, pairwise, using standard tri-linear attention [254]:

Att(u, v) = W1 · u+W2·v + (W3 ◦ v) · u (4.2)

Where, W1,W2,W3 ∈ Rd are trainable weights and u ∈ Rx×d, v ∈ Ry×d are input matrices; x and y
here are generic placeholder for input lengths; matrix multiplication and elementwise multiplication are
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Table 4.1: An example from the DREAM dataset, which assesses models’ abilities to perform commonsense
reasoning. The asterisk (*) denotes the correct answer.

Dialogue:
M: I hear you drive a long way to work every day.
W: Oh, yes. it’s about sixty miles. but it doesn’t seem
that far, the road is not bad, and there’s not much traffic.
Question:
How does the woman feel about driving to work?
Answer choices:
A. She doesn’t mind it as the road conditions are good.*
B. She is unhappy to drive such a long way everyday.
C. She is tired of driving in heavy traffic.

Table 4.2: An example from the CommonsenseQA dataset, which assesses models’ abilities to perform
commonsense reasoning. The asterisk (*) denotes the correct answer.

Question:
A revolving door is convenient for two direction travel,
but it also serves as a security measure at a what?
Answer choices:
A. Bank*; B. Library; C. Department Store;
D. Mall; E. New York

denoted by (·) and (◦), respectively. Next, we gather information from all other options, to form a new
option representationOk,new ∈ Rno×d. Formally, given optionOk,enc and another optionOl,enc ∈ Rnl×d,
Ok,new is computed as follows:

Olk = Ol,enc · Att(Ol,enc, Ok,enc) (4.3)

Õlk = [Ok,enc −Olk;Ok,enc ◦Olk] (4.4)

Ok,new = tanh(Wc · [Ok,enc; {Õlk}l 6=k]) (4.5)

Where, Wc ∈ R(d+2d(|O|−1))×d, |O| denotes total number of options and nl denotes the number of words
in the compared option. Then, a gating mechanism is used to fuse the option-wise correlation information
Ok,new with the current option-encoding Ok,enc. Gating values are computed as:

G = sigmoid(Wg[Ok,enc;Ok,new; Q̃]) (4.6)

Q̃ = Qenc · softmax(Qenc · Va)T (4.7)

Ofuse = G ◦Ok,enc + (1−G) ◦Ok,new (4.8)
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Here, Wg ∈ R3d×d and Va ∈ Rd×1. Co-attention [311] is applied to re-read the dialogue, given the fused
option-correlation features:

Ado = Att(Denc, Ofuse) (4.9)

Aod = Att(Ofuse, Denc) (4.10)

Od = Aod · [Denc;Ado ·Ofuse] (4.11)

Õd = ReLU(Wp([Od;Ofuse])) (4.12)

Here, Wp ∈ R3d×d. Finally, self-attention [298] is used to compute final option representation Õf ∈
Rno×d:

Os = Õd · Att(Õd, Õd) (4.13)

Of = [Õd;Os,Õd −Os; Õd ◦Os] (4.14)

Õf = ReLU(Wf ·Of ) (4.15)

Unlike the vanilla BERT model, which takes the first token to predict the answer, max-pooling is applied
on the sequence dimension of Õf ∈ Rno×d, in order to generate the final prediction.

4.2.2 Knowledge Bases
The first knowledge-base we consider for our experiments is ConceptNet [264]. ConceptNet contains
over 21 million edges and 8 million nodes (1.5 million nodes in the partition for the English vocabulary),
generating triples of the form (C1, r, C2): the natural-language concepts C1 and C2 are associated by
commonsense relation r, e.g., (dinner, AtLocation, restaurant). Thanks to its coverage, ConceptNet is
one of the most popular semantic networks for commonsense. ATOMIC [250] is a knowledge-base that
focuses on procedural knowledge: triples are of the form (Event, r, {Effect|Persona|Mental-state}), where
head and tail are short sentences or verb phrases and r represents an if-then relation type. An example
would be: (X compliments Y, xIntent, X wants to be nice). Since both DREAM and CommonsenseQA
datasets are open-domain and require general commonsense, we think these knowledge-bases are most
appropriate for our investigation.

4.2.3 Knowledge Elicitation from External Resources
ConceptNet. For the DREAM dataset, we find ConceptNet relations that connect dialogues and questions
to the answer-options. The intuition is that these relation paths would provide explicit evidence that would
help the model find the answer. Formally, given a dialogue D, a question Q, and an answer-option O, we
find all ConceptNet relations (C1, r, C2), such that C1 ∈ (D + Q) and C2 ∈ O, or vice versa. This rule
works well for single-word concepts. However, a large number of concepts in ConceptNet are actually
phrases, and finding exactly matching phrases in D/Q/O is much harder. To fully utilise phrase-based
ConceptNet relations, we relaxed the exact-match constraint to the following:

# words in C ∩ S
# words in C

> 0.5 (4.16)

Here, S representsD/Q/O, depending on which sequence we try to match the conceptC to. Additionally,
when the part-of-speech (POS) tag for a concept is available, we make sure it matches the POS tag of the
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Table 4.3: Extracted ConceptNet relations for sample shown in Table 4.2.

Options Extracted ConceptNet triples

Bank (revolving door AtLocation bank) (bank RelatedTo security)
Library (revolving door AtLocation library)
Department Store (revolving door AtLocation store) (security IsA department)
Mall (revolving door AtLocation mall)
New York (revolving door AtLocation New York)

Table 4.4: Sample generated ATOMIC relations for sample shown in Table 4.1.

Input sentence Generated ATOMIC relations

Utterance 1 (xAttr dedicated) (xWant to get to work)
Utterance 2 (xAttr far) (xReact happy) (xWant to get to their destination)
Option A (xAttr calm) (xWant to avoid the road)
Option B (xAttr careless) (xReact annoyed) (xEffect get tired)
Option C (xAttr frustrated) (xEffect get tired) (xWant to get out of car)

corresponding word in D/Q/O. For CommonsenseQA, we use the same procedure to find ConceptNet
relations for each answer-option, except that only Q is present and used. Table 4.3 shows the extracted
ConceptNet triples for the CommonsenseQA example in Table 4.2. It is worth noting that we are able
to extract the original ConceptNet sub-graph that was used to create the question, along with some extra
triples. Although not perfect, the bold ConceptNet triple does provide some clue that could help the model
resolve the correct answer.

ATOMIC. We observe that many questions in DREAM inquire about agent’s opinion and feeling. Super-
ficially, this particular question type seems well-suited for ATOMIC, whose focus is on folk psychology
and related general implications; we could frame our goal as evaluating whether ATOMIC can provide
relevant knowledge to help answer these questions. However, one challenge to this strategy is that heads
and tails of knowledge triples in ATOMIC are short sentences or verb phrases, while rare words and
person-references are reduced to blanks and PersonX/PersonY, respectively. This calls for a new match-
ing procedure, different from the ConceptNet extraction strategy, for eliciting ATOMIC-specific relations:
we rely on the recently-published COMET model [33] to generate new ATOMIC relations, with interme-
diate phrasal resolutions. In particular, we first segmented all dialogues, questions, and answer-options
into sentences. We further segment long sentences into sub-sentences, using commas as seperators. Be-
cause only verb-phrases satisfy the definition of an “event” in ATOMIC (i.e., relations are only invoked
by verbs), we remove all sentences/sub-sentences that do not contain any verb. Next, we use a pre-trained
COMET model [33] to generate all possible ATOMIC relations, for all candidate sentences/sub-sentences
and we use greedy-decoding to take the 1-best sequences. Table 4.4 shows the sample ATOMIC relations,
generated using the DREAM example in Table 4.1. It is interesting to note that the reaction for the woman
agent (second utterance) is identified as happy, since she said that ‘the road is not bad.’ If we compare the
identified attributes for answer-options, the one from correct answer seems to be sematically closer than
the other two.
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4.2.4 Knowledge Injection into Neural Models
Given previously extracted/generated knowledge triples, we need to integrate them with the OCN model.
Inspired by Bauer et al. [22], we propose to use attention-based injection. For ConceptNet knowledge
triples, we first convert concept-relation tokens into regular tokens, in order to generate a pseudo-sentence.
For example, “(book, AtLocation, library)” would be converted to “book at location library.” Next, we
use the BERT embedding layer to generate an embedding of this pseudo-sentence, with C denoting a
ConceptNet relation:

HC = BiLSTM(C) (4.17)

If we let HC ∈ R1×2l be the concatenation of the final hidden states and l be the number of hidden
units in the LSTM layer, then m ConceptNet relations would yield the commonsense knowledge matrix
HM ∈ Rm×2l. We adopt the attention mechanism used in QAnet [320] to model the interaction between
HM and the BERT encoding output Tenc (from Equation 4.1):

H̃M = HM ·Wproj (4.18)

S = Att(HM , Tenc) (4.19)

Am = softmax(S) · H̃M (4.20)

At = softmax(S)·softmax(ST ) · Tenc (4.21)

TC = [Tenc;Am;Tenc ◦Am;Tenc ◦At] (4.22)

Tout = ReLU(TC ·Wa) (4.23)

Specifically, HM is first projected into the same dimension as Tenc, using Wproj ∈ R2l×d. Then, the
similarty matrix S ∈ Rn×m is computed using tri-linear attention, as in Equation 4.2. We then use S to
compute text-to-knowledge attention Am ∈ Rn×d and knowledge-to-text attention At ∈ Rn×d. Finally,
the knowledge-aware textual representation Tout ∈ Rn×d is computed, where Wa ∈ R4d×d. Tout is fed
to subsequent layers (in place of Tenc), in order to generate the prediction. The model structure with
knowledge-injection is summarized in Figure 4.2.

For ATOMIC knowledge triples, the injection method is slightly different. Because heads of these knowl-
edge triples are sentences/utterances and the tails contain attributes of the persons (i.e., subject and object
of the sentence), it is not possible to directly inject the knowledge triples, as-is. We replace the heads of
the ATOMIC knowledge triples with the corresponding speaker for dialogues and leave as blank for the
answer-options. Next, we convert the special relation tokens into regular tokens, e.g., “xIntent”⇒“intent”
and “oEffect”⇒ “others effect”, to make pseudo-sentences. As a result, an ATOMIC relation “(the road
is not bad, xReact, happy)” would be converted to “(W, react, happy).” Moreover, as the ATOMIC knowl-
edge triples are associated with dialogues and answer-options, independently, we inject option relations
into Oenc ∈ Rno×d and dialogue relations into Denc, respectively, using the injection method described
above.

4.2.5 Knowledge Pre-training
Pre-training large-capacity models (e.g., BERT, GPT [229], XLNet [318]) on large corpora, then fine-
tuning on more domain-specific information, has led to performance improvements on various tasks. In-
spired by this, our goal in this sub-section is to observe the effect of pre-training BERT on commonsense
knowledge and refining the model on task-specific content from the DREAM and CommonsenseQA cor-
pora. Essentially, we would like to test if pre-training on our external knowledge resources can help the
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Table 4.5: Results on DREAM; the asterisk (*) denotes results taken from leaderboard.

Models Dev Acc Test Acc

BERT Large(*) 66.0 66.8
XLNet(*) - 72.0
OCN 70.0 69.8
OCN + CN injection 70.5 69.6
OCN + AT injection 69.6 70.1
OCN + OMCS pre-train 64.0 62.6
OCN + ATOMIC pre-train 60.3 58.8

Table 4.6: Results on CommonsenseQA; the asterisk (*) denotes results taken from leaderboard.

Models Dev Acc

BERT + OMCS pre-train(*) 68.8
RoBERTa + CSPT(*) 76.2
OCN 64.1
OCN + CN injection 67.3
OCN + OMCS pre-train 65.2
OCN + ATOMIC pre-train 61.2
OCN + OMCS pre-train + CN inject 69.0

model acquire commonsense. For the ConceptNet pre-training procedure, pre-training BERT on pseudo-
sentences formulated from ConceptNet knowledge triples does not provide much gain on performance.
Instead, we trained BERT on the Open Mind Common Sense (OMCS) corpus [263], the originating corpus
that was used to create the ConceptNet resource. We extracted 930K English sentences from OMCS and
randomly masked out 15% of the tokens; we then fine-tuned BERT, using a masked language model objec-
tive. Then we load this fine-tuned model into OCN and trained on DREAM and CommonsenseQA tasks.
As for pre-training on ATOMIC, we again use COMET to convert ATOMIC knowledge triples into sen-
tences; we created special tokens for 9 types of relations as well as blanks. Next, we randomly masked out
15% of the tokens, only masking out tail-tokens. We use the same OMCS pre-training procedure.

4.2.6 Experiments
Datasets

We choose to evaluate our hypotheses using the DREAM and CommonsenseQA datasets, because some /
all questions require commonsense reasoning and because there remains a large gap between state-of-the-
art models and human performance. DREAM is a dialogue-based multiple-choice QA dataset, introduced
by Sun et al. [270]. It was collected from English-as-a-foreign-language examinations, designed by hu-
man experts. The dataset contains 10,197 questions for 6,444 dialogues in total, and each question is
associated with 3 answer-options. The authors point out that 34% of questions require commonsense
knowledge to answer, which includes social implication, speaker’s intention, or general world knowledge.
CommonsenseQA is a multiple-choice QA dataset that specifically measure commonsense reasoning
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Table 4.7: Accuracies for each DREAM question type: M means Matching, S means Summary, L means
Logic inference, C means Commonsense inference, and A means Arithmatic inference. Numbers beside
types denote the number of questions of that type.

Models M(54) S(15) A+L(11) L(228) C+L(122) C(14) C+S(60)

OCN 88.9 86.7 27.3 75.9 60.7 71.4 70.0
OCN + CN injection 83.3(-5.6) 86.7(+0.0) 18.2(-9.2) 76.8(+0.9) 59.8(-0.9) 64.3(-7.1) 78.3(+8.3)
OCN + AT injection 88.9(+0.0) 80.0(-6.7) 27.3(+0.0) 75.9(+0.0) 66.4(+5.7) 71.4(+0.0) 75(+5.0)
OCN + OMCS pre-train 70.4(-18.5) 73.3(-13.4) 45.4(+18.1) 69.7(-6.2) 48.4(-12.3) 57.1(-14.3) 68.3(-1.7)
OCN + ATOMIC pre-train 66.6(-22.3) 86.7(+0.0) 18.2(-9.2) 64.0(-11.9) 51.6(-9.1) 42.9(-28.5) 70.0(+0.0)

[275]. This dataset is constructed based on ConceptNet [264]. Specifically, a source concept is first ex-
tracted from ConceptNet, along with 3 target concepts that are connected to the source concept, i.e., a
sub-graph. Crowd-workers are then asked to generate questions, using the source concept, such that only
one of the target concepts can correctly answer the question. Additionally, 2 more distractor concepts
are selected by crowd-workers so that each question is associated with 5 answer-options. In total, the
dataset contains 12,247 questions. For CommonsenseQA, we evaluate models on the development-set
only, since test-set answers are not publicly available.

Training Details

For ease of comparison, we borrow hyperparameter settings from Pan et al. [214]; we used the BERT
Whole-Word Masking Uncased model [74] for all experiments. For DREAM experiments, we used a max
sequence-length of 512, batch-size of 24, learning rate of 1e−5, and we trained the model for 16 epochs.
For CommonsenseQA, we used a max sequence length of 60, batch-size of 32, learning rate of 1e−5,
and trained for 8 epochs. For pre-training on OMCS, we used max sequence length of 35, batch-size
of 32, learning rate of 3e−5, and trained for 3 epochs. For pre-training on ATOMIC, the max sequence
length is changed to 45, other hyperparameters remain the same, and we only use the ATOMIC training
set. When using OCN on CommonsenseQA, since there is no dialogue, we compute co-attention with
Qenc, in place of Denc, in order to keep the model structure consistent.

Results

DREAM results are shown in Table 4.5, and CommonsenseQA results are shown in Table 4.6. For all of
our experiments, we run 3 trials with different random seeds and we report average scores in the tables.
Evaluated on DREAM, our OCN model got a significant performance boost (+3.0%), compared to BERT-
large from previous work. We think the reasons are that OCN is better-suited for the task and that we
used BERT Whole-Word Masking Uncased model. OCN with ConceptNet knowledge-injection achieves
slightly better results on the development-set, while ATOMIC knowledge-injection helps achieve a small
improvement on the test-set. However, we recognise that these improvements are very limited; to our
surprise, OCN pre-trained on OMCS or ATOMIC got significantly lower performance. As for results on
CommonsenseQA, ConceptNet knowledge-injection provides a significant performance boost (+2.8%),
compared to the OCN baseline, suggesting that explicit links from question to answer-options help the
model find the correct answer. Pre-training on OMCS also provides a small performance boost to the OCN
baseline. Since both ConceptNet knowledge-injection and OMCS pre-training are helpful, we combine
both approaches with OCN and we are able to achieve further improvement (+4.9%). Finally, similar to
the results on DREAM, OCN pre-trained on ATOMIC yields a significant performance drop.
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Table 4.8: Accuracies for each CommonsenseQA question type: AtLoc. means AtLocation, Cau. means
Causes, Cap. means CapableOf, Ant. means Antonym, H.Pre. means HasPrerequiste, H.Sub means
HasSubevent, C.Des. means CausesDesire, and Des. means Desires. Numbers beside types denote the
number of questions of that type.

Models AtLoc.(596) Cau.(194) Cap.(109) Ant.(92) H.Pre.(46) H.Sub.(39) C.Des.(28) Des.(27)

OCN 64.9 66.5 65.1 55.4 69.6 64.1 57.1 66.7
+CN inj, 67.4(+2.5) 70.6(+4.1) 66.1(+1.0) 60.9(+5.5) 73.9(+4.3) 66.7(+2.6) 64.3(+7.2) 77.8(+11.1)
+OMCS 68.8(+3.9) 63.9(-2.6) 62.4(-2.7) 60.9(+5.5) 71.7(+2.1) 59.0(-5.1) 64.3(+7.2) 74.1(+7.4)

+ATOMIC 62.8(-2.1) 66.0(-0.5) 60.6(-4.5) 52.2(-3.2) 63.0(-6.6) 56.4(-7.7) 60.7(+3.6) 74.1(+7.4)
+OMCS+CN 71.6(+6.7) 71.6(+5.1) 64.2(+0.9) 59.8(+4.4) 69.6(+0.0) 69.2(+5.1) 75.0(+17.9) 70.4(+3.7)

Error Analysis

To better understand when a model performs better or worse with knowledge-integration, we analysed
model predictions. DREAM dataset provides annotations for about 1000 questions: 500 questions in the
development-set and 500 in the test-set. Specifically, questions are manually classified into 5 categories:
Matching, Summary, Logic inference, Commonsense inference, and Arithmetic inference; and each ques-
tion can be classified under multiple categories. We refer readers to Sun et al. [270] for additional category
information. We extracted model predictions for these annotated questions in test-set and grouped them by
types. The accuracies for each question-group are shown in Table 4.7. Note that we omitted 2 categories
that have less than 10 questions. For the ConceptNet and the ATOMIC knowledge-injection models, we
can see that they did better on questions that involve commonsense (last 3 columns in the table), and
the performance on other types are about the same or slightly worse, compared to baseline OCN. As for
models pre-trained on OMCS corpus or ATOMIC knowledge-base, we already saw that these model per-
formances drop, compared to the baseline. When we look at the performance difference in each question
type, it is clear that some categories account for the performance drop more than others. For example, for
both the OMCS pre-trained model and the ATOMIC pre-trained model, performance drops significantly
for Matching questions, in particular. On the other hand, for questions that require both commonsense
inference and summarization, both models’ performances only dropped slightly or did not change. Based
on these results, we infer that commonsense knowledge-injection with attention is making an impact on
models’ weight distributions. The model is able to do better on questions that require commonsense but
is losing performance on other types, suggesting a direction for future research in developing more ro-
bust (e.g., conditional) injection methods. Moreover, pre-training on knowledge-bases seems to have a
larger impact on models’ weight distributions, resulting in inferior performance. This weight distribution
shift also favors of commonsense, as we see that commonsense types are not affected as much as other
types.

We also conducted similar analysis for CommonsenseQA. Since all questions in CommonsenseQA
require commonsense reasoning, we classify questions based on the ConceptNet relation between the
question concept and correct answer concept. The intuition is that the model needs to capture this relation
in order to answer the question. The accuracies for each question type are shown in Table 4.8. Note
that we have omitted question types that have less than 25 questions. We can see that with ConceptNet
relation-injection, all question types got performance boosts, for both OCN model and OCN pre-trained
on OMCS, suggesting that knowledge is indeed helpful for the task. In the case of OCN pre-trained on
ATOMIC, although the overall performance is much lower than OCN baseline, it is interesting to see that
performance for the “Causes” type is not significantly affected. Moreover, performance for “CausesDe-
sire” and “Desires” types actually got much better. As noted by [250], “Causes” in ConceptNet is similar
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to “Effects” and “Reactions” in ATOMIC; and “CausesDesire” in ConceptNet is similar to “Wants” in
ATOMIC. This result also correlates with our findings from our analysis on DREAM, wherein we found
that models with knowledge pre-training perform better on questions that fit knowledge domain but per-
form worse on others. In this case, pre-training on ATOMIC helps the model do better on questions
that are similar to ATOMIC relations, even though overall performance is inferior. Finally, we noticed
that questions of type “Antonym” appear to be the hardest ones. Many questions that fall into this cate-
gory contain negations, and we hypothesize that the models still lack the ability to reason over negation
sentences, suggesting another direction for future improvement.

4.2.7 Related Work

It has been recognised that many recent QA tasks require external knowledge or commonsense to solve,
and numerous efforts have been made in injecting commonsense in neural models. Bauer et al. [22]
introduced a pipeline for extracting grounded multi-hop commonsense relation paths from ConceptNet
and proposed to inject commonsense knowledge into neural models’ intermediate representations, using
attention. Similarly, Mihaylov and Frank [188] also proposed to extract relevant knowledge triples from
ConceptNet and use Key-Value Retrieval [190] to gather information from knowledge to enhance the
neural representation. Zhong et al. [332] proposed to pre-train a scoring function using knowledge triples
from ConceptNet, to model the direct and indirect relation between concepts. This scoring function was
then fused with QA models to make the final prediction. Pan et al. [213] introduced an entity discovery
and linking system to identify the most salient entities in the question and answer-options. Wikipedia
abstracts of these entities are then extracted and appended to the reference documents to provide additional
information. Weissenborn et al. [303] proposed a strategy of dynamically refining word embeddings by
reading input text as well as external knowledge, such as ConceptNet and Wikipedia abstracts. More
recently, Lin et al. [168] proposed to extract sub-graphs from ConceptNet and embed the knowledge
using Graph Convolutional Networks [142]. Then the knowledge representation is integrated with word
representation through an LSTM layer and hierarchical attention mechnism. Lv et al. [179] introduced
graph-based reasoning modules that takes both ConceptNet knowledge triples and Wikipedia text as inputs
to refine word representations from a pretrained language model and make predictions.

Commonsense knowledge integration has also received a lot of attention on many other tasks. Tandon
et al. [279] proposed to use commonsense knowledge as hard/soft constraints to bias the neural model’s
prediction on a procedural text comprehension task. Ma et al. [185] proposed to used embedded affective
commonsense knowledge inside LSTM cell to control the information flow in each gate for sentiment
analysis task. Li and Srikumar [161] presented a framework to convert declarative knowlegde into first-
order logic that enhance neural networks’ training and prediction. Peters et al. [222] and Levine et al.
[160] both tried to injecting knowlegde into language models by pretraining on knowledge bases.

Previous works only focus on using external knowledge sources to improve model performance on certain
tasks, disregarding the type of commonsense knowledge and how the domain of the knowledge resource
affects results on downstream tasks. In this paper, we examine the roles of knowledge-base domain and
specific integration mechanisms on model performance.
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4.3 Knowledge-driven Data Construction for Zero-shot Eval-
uation in CSQA

Common sense is key to efficient communication in everyday situations, as it enables natural language
understanding through contextual reasoning. As McCarthy argued in his seminal work [186], an artifi-
cial system has commonsense, if it automatically deduces for itself a sufficiently wide class of immediate
consequences of anything it is told and what it already knows: it follows that machine commonsense
can be assessed only by eliciting whether commonsense knowledge and knowledge-based inferences are
used by an artificial system in executing a given task. Machine question answering (QA) benchmarks,
like SocialIQA [251] and PhysicalIQA [27], are effective behavioural tests of commonsense rea-
soning in machines, each focusing on different capabilities. Answering a question in SocialIQA might
require the knowledge that readers typically prefer heroes over villains in fantasy novels; whereas, in
PhysicalIQA, the knowledge that metal stools can break windows, because windows are made of
glass and metal is a more enduring material than glass. Although such tasks had been traditionally dif-
ficult for machines, recent developments in pre-trained neural language modelling have led to leaps in
accuracy—closing the gap between human and machine performance to single-digit percentage points.1

However, due to increasing concern that large-capacity neural systems are modelling individual datasets,
rather than learning how to perform logical reasoning or to utilise external knowledge effectively [196],
focus is shifting to alternative training and evaluation strategies. In particular, zero-shot evaluation shows
promise as an efficient measure of model generalisability across tasks [164, 260]. Here, models are trained
and validated on task A, and tested on a different task B, without access to B’s training data or labels.
This leads state-of-the-art models from individual tasks to falter, sometimes by as much as a 50% decrease
in performance [260].

Repositories of commonsense knowledge, like ConceptNet [264] and ATOMIC [250], can be benefi-
cial for commonsense QA, especially when little or no training data is available. Enriching the training
data with ConceptNet and ATOMIC has been shown [182, 196] to improve accuracy on datasets de-
rived from these graphs: CommonSenseQA [275] and SocialIQA. Knowledge bases (KBs) can be
used to generate question-answer pairs and distractors automatically, in order to test a model’s reasoning
ability [223, 240] or provide additional supervision [317, 319]. While KBs have been shown to help
in a zero-shot transfer setting recently [17], no comprehensive study exists on the relation between var-
ious knowledge, its usage method, and neural models for zero-shot transfer across commonsense tasks.
Moreover, while adversarial filtering techniques [34] improve the quality of a manually created question
set, their impact on automatically generated questions from a variety of KBs has not been investigated
yet.

In this section, (1) we compile a set of hypotheses and design a novel neuro-symbolic framework that
investigates the dependency between knowledge sources, question generation techniques, language model
(LM) variants, and tasks. Our framework leverages a wide range of KBs, covering visual, social, and
concept-based knowledge, to pre-train LMs for zero-shot evaluation on multiple-choice commonsense
QA tasks. (2) Recognising that the aspect of question generation is especially understudied, we expand
on prior work to devise and test four distractor-sampling strategies for effective question generation. We
analyse their impact on model performance across tasks, conditioned on model class and (pre-)training
regime, and show that generating questions that are simultaneously fair and informative is difficult but

1For example (accessed 4 August, 2020): https://leaderboard.allenai.org/socialiqa/
submissions/public
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beneficial for LM pre-training. (3) We determine which combination of knowledge graphs (KGs), data
construction/training, and architectures is most effective and can utilise appropriately rich contexts across
five tasks. We observe that diversifying knowledge generally improves performance, under the condition
of it being aligned with the task, and that preserving the structure of the task is desired.

4.3.1 Problem Formulation
Given a natural language question Q, and n possible answers A1, ..., An, the task is to select the most
probable single answer A. We refer to the remaining n− 1 possible answers: D1, ..., Dn−1 as distractors.
In a zero-shot QA evaluation mode, the system has no access to the task training or development data. We
assume a setup where the system is pre-trained once and then applied across different tasks in a zero-shot
manner. Our zero-shot evaluation framework addresses this task by variants of pre-training an LM on
an artificial QA set, created from KG data. Next, we describe its covered tasks, sources of knowledge,
question generation strategies, LM techniques, and training regimes, in turn.

4.3.2 Synthetic QA Set Generation
We generate questions, answers, and distractor options from five KGs, found in the unified Commonsense
Knowledge Graph (CSKG) [127]: ATOMIC, ConceptNet, WordNet, VisualGenome [152], and
Wikidata [293]. Notably, ATOMIC differs from the other KGs in two ways: 1) its relations have a
different focus than those of the other sources; and 2) its node labels are longer and are formalised as tem-
plates. Due to these considerations, we prepare two sets of QA sets: one based on ATOMIC and one based
on the remaining four knowledge sources. Figure 4.3 illustrates our question generation pipeline.

Data Partitions

ATOMIC expresses pre- and post-states for events and their participants with nine relations. Its head nodes
are events, whereas the tail nodes are either events or attributes. Its nodes have two particularities: 1) irrel-
evant parts of the node text are replaced with blanks (‘ ’); and 2) references to fictional agents are indicated
with special tokens (e.g., PersonX). We follow the SocialIQA’s ATOMIC train/dev/test splits, to ensure
that the facts of the dev and test partitions are excluded in training. Our second partition, CWWV, covers
three other KGs in CSKG that express commonsense facts between concepts: ConceptNet, WordNet,
and Wikidata. We use them jointly to generate questions, and we enrich them with additional distractors
from VisualGenome. Treating these four sources as a single one is enabled by their CSKG mapping to a
single set of relations, defined by ConceptNet. We focus on 14 semantic relations that are grounded on
strong psycho-linguistic and pragmatic evidence [204], like /r/Causes and /r/HasPrerequisite.
Since there is no pre-defined train/dev/test split for CSKG, we randomly sample 5% of generated ques-
tions as development set, while the other 95% are used for training, to maximise the coverage of the
knowledge.

Generating Questions and Answers

If a triple (h, r, t) has an associated sentence, we directly employ it for question generation; otherwise,
we generate a sentence in a lexicalization step, using a set of pre-defined templates. Next, we generate
the question Q by removing the tail of the sentence, and extract this tail as the correct answer, A. Here,
we ensure that there is no token overlap between the head and the correct answer. For ATOMIC, we: 1)
compare the keyword tokens instead of all tokens, in order to avoid stop-words; and 2) the agent templates
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Figure 4.3: An illustration of our question generation pipeline. The first distractor candidate was rejected,
as we require distractors to share the same relation as the sample it is predicated on; the second distractor
candidate was rejected both because its head overlaps with that of the sample and because its tail is part
of the correct answer set. Finally, the third distractor sample was rejected, because its tail is part of the
correct answer set.

(e.g., ‘PersonX’) are replaced with randomly sampled gender-neutral names from a pre-defined set. For
CWWV, we filter out questions where either the head or the tail are not common concepts or they are
named entities. We use corpus frequency as a proxy for commonness,2 while named entities are filtered
by removing all concepts whose labels start with a capital letter.

Generating Negative Samples: Distractors

We seek to generate distractor options that satisfy two criteria: informativeness and fairness. Namely,
a good distractor has semantic relatedness with the context (informative), while being relatively easy to
discriminate from the correct answer (fair). We create the pool of distractors D for every sample as
follows: (i) The distractor candidates are the tails of knowledge triples (h′, r′, t′) with the same relation
r′ = r, randomly sampled from the KGs. This would ensure that the distractors can fill the same semantic
role as the correct answer. (ii) The head h′ of the sampled triples does not have non-stop word overlap
with h. (iii) The distractor tail t′ is not part of the correct answer set, i.e., there exist no triples, (h, r, t′)
Considering the example in Figure 4.3, the triple (gaining weight, CausesDesire, change appearance) will
be filtered out by rule (1), (losing weight, UsedFor, feeling better) will be ruled out by both (2) and (3), and
(relaxing, UsedFor, feeling better) will be ruled out by (3). Here, we replace any references to fictional
ATOMIC agents in the distractors with the same names used in the question. We then randomly select
two distractors (D1, D2) from D. We refer to this distractor pooling strategy as random, and propose
three alternative strategies in the Sub-section 4.3.3. Example questions with each partition are shown in
Table 4.9. For ATOMIC, this procedure generates 535K QA pairs for training and 60K for development.
For CWWV, the training set contains 157K and the development set has 8K QA pairs.

2https://pypi.org/project/wordfreq/ (Accessed 9 Sept. 2020)
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Table 4.9: Generated questions from ATOMIC (top) and CWWV (bottom). (*) denotes the correct answer.

Question: Robin takes the fifth. As a result, Robin wanted to
A1: go to the cinema.
A2: withhold information. (*)
A3: hear what they think.

Question: losing weight is for
A1: being healthier. (*)
A2: embedded software.
A3: buying things in store.

4.3.3 Distractor Sampling
Existing data generation procedures are likely to introduce annotation artefacts in datasets [249, 325].
Models may exploit these artefacts to achieve spuriously strong performance during training, at the ex-
pense of degradation in robustness. To generate more challenging QA pairs from KGs and to alleviate
potential biases in our synthetic sets, we test two other distractor sampling strategies in addition to the
random strategy: 1) we select distractors that are as similar as possible to the answer, while being under a
certain threshold (adv-answer); and 2) we select distractors that are as similar as possible to the question,
while being under a certain threshold (adv-question). Here we define similarity of two nodes to be their
proximity in the embedding space, measured by cosine similarity. The intuition is that, by generating
more challenging QA pairs for the models, we could achieve better generalisation across tasks. We use
the RoBERTa sentence embedding model [234] to compute embeddings for all KG nodes. For these two
strategies, we set an upper bound on the similarity score to avoid unfair distractors, i.e., paraphrases of the
correct answer. Based on manual observations, we set their distractor similarity upper bound to be 0.6 for
CWWV and 0.4 for ATOMIC.

Sample Filtering

Besides these distractor sampling strategies, we test another condition (3), where we select the distractors
randomly, but only keep the questions whose distractors are sufficiently challenging at training time (adv-
filter). The intuition is that QA pairs generated using the aforementioned methods might still be too easy
for the models, thus we would like to only keep the most challenging subset to train our models. We
employ the AFLite algorithm [249] for our purpose. Given a train and dev split of our synthetic QA set,
we use 5% of the train set to finetune a RoBERTa model with a classification head (4% training, 1%
validation). These 5% are discarded from train after this step. We then compute the fixed embeddings for
the remaining 95% of train and the entire dev, denoted as Trn and Dev. Next, we feed Trn and Dev along
with their labels to the AFLite algorithm, which iteratively filters out easy examples using an ensemble
of linear classifiers. Finally, we retain (101K training, 11K dev) samples for ATOMIC and (29K training,
1.5K dev) samples for CWWV subset.

4.3.4 Language Models
We consider 2 types of language models: auto-regressive language models and masked language models
(MLM). Specifically, we use GPT-2 and RoBERTa to select the best answer candidate. Given a context C,
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a question Q, and a list of answer options (A1, A2...), we concatenate C and Q with each answer option
to build input sequences (T1, T2...). We also use templates to convert a sequence T into a natural language
sentence following [260]. For example, we transform the sequence: [C] What will X want to do next?
[Ai] into: [C], as a result, X want to [Ai]. The score S for the resulting sequence using an auto-regressive
LM is computed as follows:

SLM (T ) = − 1

n

n∑
i=1

logP (ti | t1 . . . ti−1) (4.24)

where n is the number of tokens in the sequence and P is the conditional probability provided by the LM.
To evaluate MLMs, we mask out one token at a time and compute its loss [334]. We repeat this process
for every token in the sequence. The final MLM score is:

SMLM (T ) = − 1

n

n∑
i=1

logP (ti | . . . ti−1, tt+1 . . .) (4.25)

The predicted option is the one with the lowest score.

Language Model Fine-tuning

In the typical model architecture for fine-tuning LM for multiple-choice tasks, a linear layer is added
on top of the LM encoder to predict the answer. The model inputs are separated by a model-specific
delimiter. However, as this architecture introduces randomly initialised parameters, it may not be able to
fully utilise the pre-trained weights [277]. Instead, we re-use the GPT-2 and RoBERTa with LM head
for fine-tuning. By keeping the model intact, we can reuse the same converting templates and scoring
functions. To train the model, given the scores computed for each answer candidate S1, S2, ...Sm, we use
the marginal ranking (MR) loss defined as:

L =
1

m

m∑
i=1
i 6=y

max (0, η − Sy + Si) (4.26)

Here, η represents the margin and y is the index of the correct answer. For a MLM model, the computation
cost for the scoring function scales in quadratic complexity with the input length. To make the training
more efficient, we only mask out non-stop tokens in the head and tail nodes.

Training Regimes

In order to disentangle the contribution of the KGs from the structure of the QA pairs, we consider differ-
ent training methods for augmentation of language models with KGs. Specifically, we compare marginal
ranking (MR) training with masked language modelling (MLM) training. For MLM, we directly concate-
nate the question and the correct answer in our synthetic QA set and then train RoBERTa on the these
sentences using the MLM objective.

4.3.5 Experiments
Reasoning Tasks

We select commonsense tasks based on two criteria. Firstly, we strive to cover a diverse set of tasks,
both in terms of their format (question answering, pronoun resolution, natural language inference), as
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Table 4.10: Zero-shot evaluation results with different combinations of models and knowledge sources,
across five commonsense tasks. CSKG represent the combination of ATOMIC and CWWV. We run our
experiments three times with different seeds and report average accuracy with 95% confidence interval.
SMLM (*) used OMCS for CSQA, ROCStories [199] for aNLI and ATOMIC for SIQA as knowledge
resources.

Model KG aNLI CSQA PIQA SIQA WG

Majority - 50.8 20.9 50.5 33.6 50.4
GPT2-L - 56.5 41.4 68.9 44.6 53.2
RoBERTa-L - 65.5 45.0 67.6 47.3 57.5
Self-talk [260] - - 32.4 70.2 46.2 54.7
COMET-DynaGen [32] ATOMIC - - - 50.1 -
SMLM [17] * 65.3 38.8 - 48.5 -

GPT2-L (MR) ATOMIC 59.2(±0.3) 48.0(±0.9) 67.5(±0.7) 53.5(±0.4) 54.7(±0.6)
GPT2-L (MR) CWWV 58.3(±0.4) 46.2(±1.0) 68.6(±0.7) 48.0(±0.7) 52.8(±0.9)
GPT2-L (MR) CSKG 59.0(±0.5) 48.6(±1.0) 68.6(±0.9) 53.3(±0.5) 54.1(±0.5)
RoBERTa-L (MR) ATOMIC 70.8(±1.2) 64.2(±0.7) 72.1(±0.5) 63.1(±1.5) 59.6(±0.3)
RoBERTa-L (MR) CWWV 70.0(±0.3) 67.9(±0.8) 72.0(±0.7) 54.8(±1.2) 59.4(±0.5)
RoBERTa-L (MR) CSKG 70.5(±0.2) 67.4(±0.8) 72.4(±0.4) 63.2(±0.7) 60.9(±0.8)

RoBERTa-L (supervised) - 85.6 78.5 79.2 76.6 79.3

Human - 91.4 88.9 94.9 86.9 94.1

well as their type of knowledge (e.g., social or physical knowledge). Secondly, we prefer larger task
datasets that are manually constructed. For this reason, we do not include datasets like COPA [104], or
HellaSwag [325]. We opt for the following five task datasets:

1. Abductive NLI (aNLI) [25] is posed as a natural language inference task. Given the beginning and
the ending of a story, the task is to choose the more plausible hypothesis out of two options. The
dataset consists of nearly 170k entries.

2. CommonsenseQA (CSQA) [275] evaluates a broad range of common sense aspects. Each entry
contains a question and 5 answer candidates. The questions are crowd-sourced based on a subgraph
from ConceptNet. The answer candidates combine ConceptNet nodes with additional crowd-
sourced distractors.

3. PhysicalIQA (PIQA) [27] is a two-choice question answering dataset which focuses on physical
reasoning. Given a question, the system (or human) is asked to pick the more plausible out of two
possible continuations.

4. SocialIQA (SIQA) [251] is a question-answering dataset which requires reasoning about social
interactions. Each entry contains a context, a question, and 3 answer candidates. The context is
derived from the ATOMIC knowledge graph, the questions are generated based on nine templates
(corresponding to the relations in ATOMIC), and the answers are crowd-sourced.

5. WinoGrande (WG) [249] contains 44 thousand pronoun resolution problems. Each entry consists
of a context description with an emphasized pronoun, and two options are offered as its possible
references.
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Baselines

We compare our results with the following baselines. Majority answers each question with the most
frequent option in the entire dataset. ‘Vanilla’ versions of the language models are used in order to un-
derstand the impact of further tuning. Here we directly uses the LMs to score the QA pairs without
any fine-tuning. We also show the results of other unsupervised systems that leverage KGs: Self-talk,
COMET-DynaGen, and SMLM. To indicate the upper bound of this work, we include results of a super-
vised fine-tuned RoBERTa system and of human evaluation. For the LM baselines, we directly load the
weights from the Transformers library [306] and evaluate on the downstream tasks. The fine-tuned LMs
are trained for a single epoch on our synthetic QA set. For Adv-filter, we train the models for 5 epochs to
compensate for less training data. We use our synthetic development set to select the best model.

Hypotheses

Based on individual prior findings and understanding of different components of our framework, we put
forward a set of hypotheses which will be validated in our experiments:

H1 RoBERTa would have better performance than GPT-2. This is in line with prior findings that
RoBERTa has the advantage of bi-directional context [334].

H2 Pre-training a language model with artificially created question-answer sets enhances zero-shot
performance. This is also supported in previous study about unsupervised QA [164]

H3 The impact of more knowledge depends on the alignment between KGs and the task, partial evidence
for which is provided by [182, 196].

H4 Adding diverse knowledge (from different KGs) improves performance. This is the initial motivation
behind the creation of CSKG [127], but has not been investigated in detail.

H5 When selecting negative samples for a question, it helps to use an adversarial strategy that ensures
the question is not trivial for a language model. H5 is inspired by adversarial filtering, which has
not been investigated in detail for automatically-generated questions and across KGs.

H6 Preserving the task structure when generating synthetic data leads to better accuracy. This is
implicitly assumed in prior data augmentation work [143].

H7 The automatically created questions are notably easier for humans than they are for machines -
a general assumption made by commonsense task creators and typically correct for any existing,
human-generated benchmark.

Results

We evaluate various combinations of: knowledge sources, question generation strategies, LMs, training
regimes, and tasks. We use accuracy as a metric. All our experiments are performed in a zero-shot setting,
i.e., the models do not leverage the official training data of the task. We report results on the dev sets of
these tasks, as the official test sets are not publicly available. We note that, since we did not use the tasks’
dev sets for hyperparameter tuning or checkpoint selection, the dev sets can be used effectively as test sets.
Table 4.10 shows that GPT-2 and RoBERTa outperform the majority baseline by a large margin on all
tasks, indicating that the LMs have already learned relevant knowledge during pre-training. Despite being

40



Table 4.11: Comparison of different QA generation strategies.

RoBERTa-L Strategy aNLI CSQA PIQA SIQA WG

+ATOMIC Random 70.8(±1.2) 64.2(±0.7) 72.1(±0.5) 63.1(±1.5) 59.6(±0.3)
+ATOMIC Adv-answer 70.4(±0.8) 62.3(±0.9) 72.6(±1.8) 61.6(±0.3) 60.5(±0.5)
+ATOMIC Adv-question 70.8(±0.6) 55.6(±0.9) 70.6(±0.8) 51.6(±0.8) 58.5(±0.3)
+ATOMIC Adv-filter 68.6(±1.8) 46.4(±1.5) 67.9(±1.1) 51.8(±1.2) 60.8(±0.6)

+CWWV Random 70.0(±0.3) 67.9(±0.8) 72.0(±0.7) 54.8(±1.2) 59.4(±0.5)
+CWWV Adv-answer 69.5(±1.1) 68.5(±0.8) 72.7(±0.3) 53.8(±0.6) 60.7(±0.7)
+CWWV Adv-question 68.3(±2.3) 60.9(±2.3) 69.6(±0.6) 47.0(±2.0) 59.0(±1.4)
+CWWV Adv-filter 69.7(±0.7) 64.7(±2.3) 72.0(±1.3) 50.1(±1.0) 59.4(±1.4)

a smaller model, RoBERTa outperforms GPT-2 on 4 out of 5 tasks without pre-training, and on all tasks
when pre-training over different synthetic QA sets. This shows the advantage of leveraging bi-directional
context, and confirms our hypothesis H1. As expected (H2), training RoBERTa on our ATOMIC or CWWV
synthetic sets brings notable performance gain on all 5 tasks. We observe that models trained on ATOMIC
sets have a large advantage on SIQA compare to models trained on CWWV, while CWWV brings advantage
on the CSQA task. This is not surprising as these two tasks are derived from ConceptNet and ATOMIC,
respectively. The difference between ATOMIC and CWWV on the remaining three tasks is relatively small.
This supports our hypothesis H3: knowledge alignment is crucial for obtaining better performance.

Training on the combined question set (CSKG) is mostly able to retain the best of its both partitions.
Training on CSKG leads to best performance on three out of five tasks, showing that a global common-
sense resource is able to bring consistent gain across different tasks. This supports our hypothesis H4:
adding more diverse knowledge is beneficial for language models. Finally, even with this knowledge, we
recognize that there is still a large gap between our model’s accuracy and that of the supervised RoBERTa
model.

Comparison of QA Generation Strategies. Table 4.11 shows the results with different sampling strate-
gies, thus addressing H5. The best performing adversarial algorithm, Adv-answer, yields comparable
accuracy to the random strategy, revealing that distractors sampled with a more sophisticated strategy are
not necessarily more informative for the LMs. Adv-question and Adv-filter typically lead to declines in
accuracy. Considering Adv-question, this could be due to the similarity of the distractors to the question,
which might guide the model to learn to pick the most dissimilar candidate as the correct answer, which
is an artifact of our question generation and cannot be expected to work well for downstream tasks. Our
manual inspection of the remaining questions prefered by Adv-filter indicates that many questions are
unfair, as some distractors are also correct answers, which is a consequence of the incompleteness of the
KGs. Adv-filter prioritizes these questions as they are “difficult” for LMs, however, training on them
might teach the LM incorrect knowledge and harm downstream accuracy.

Comparison of Training Regimes. Table 4.12 presents results with two different training regimes. In
comparison to the baseline without additional training, MLM training on ATOMIC only improves on the
SIQA task, and harms on the rest. With CWWV, it brings large gain on CSQA and small improvements
on SIQA and WG. At the same time, marginal ranking training on either question set consistently out-
performs MLM training by a large margin, suggesting that preserving the task structure is beneficial in
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Table 4.12: Comparison between MLM and MR training.

RoBERTa-L Train aNLI CSQA PIQA SIQA WG

baseline - 65.5 45.0 67.6 47.3 57.5
+ ATOMIC MLM 62.9 43.8 65.8 53.9 55.5
+ ATOMIC MR 70.8 64.2 72.1 63.1 59.6
+ CWWV MLM 65.3 57.3 67.2 49.3 59.4
+ CWWV MR 70.0 67.9 72.0 54.8 59.4

Table 4.13: LM and human accuracy on our synthetic QA sets.

Model ATOMIC CWWV

GPT2-L 43.2 69.5
RoBERTa-L 45.9 64.5
Human 78.0 80.7

addition to the question content and validating H6.

Difficulty of the Synthetic QA Sets. Ideally, the generated question-answer pairs should be challenging
for the models but easy for humans to solve (H7). Here, we probe this hypothesis by assessing the difficulty
of our synthetic QA sets both by humans and ‘vanilla’ LMs. We evaluated both models on the dev sets
of our synthetic data. For human evaluation, we randomly sample 50 questions from ATOMIC and 50
questions from CWWV. A total of five researchers were asked to first provide the correct answer, then rate
the question difficulty. For the latter, the annotator chose between easy, moderate, hard, or non-sensical -
as a guideline, nonsensical questions have unfair distractors and cannot be easily understood. Following
this procedure, we obtained three judgements for each question.

The inter-annotator agreement on selecting the correct answer is 0.62 using Fleiss Kappa score, which
is substantial agreement. The Kripendorf alpha [151] for rating question difficulty is 0.35, which is fair
agreement. The results of the baseline LMs and human performance (Table 4.13) show that the ATOMIC
subset presents a harder challenge for both models, as well as for humans. Overall, the results support our
hypothesis H7: the synthetic questions are relatively easy for humans to solve and much harder for models.
However, the annotation pointed to several directions for improving the synthetic QA sets. A number of
questions generated from ATOMIC are ungrammatical, which makes them harder to understand, while
some questions from CWWV were rated as unfair. For example, all answer options for the question A
person can are valid: (a) cost several thousand dollars (b) expressing boredom (c) check snow level. As
discussed earlier, this is due to the incompleteness of our KGs, and the current lack of understanding on
how to generate fair, yet informative, distractors.

4.3.6 Related Work
Knowledge injection. Strong performance on standard multiple-choice QA benchmarks, like SocialIQA
and PhysicalIQA, has been achieved by fine-tuning a task-specific prediction layer, placed atop pre-
trained LMs, such as BERT [74], RoBERTa [175], and GPT [229]. As shown by Ma et al. [182] and Mi-
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tra et al. [196], combining neural methods with structured background knowledge from ConceptNet,
WordNet [191], and ATOMIC works well for commonsense datasets that have been partially derived
from these resources, such as SocialIQA and CommonSenseQA. Here, the structured knowledge, for-
malised as lexicalised task-targeted evidence paths, is injected into an LM, either via an attention mecha-
nism [22] or through an auxiliary training objective [310]. Graph and relation networks can also be used to
score answer candidates, by informing the graph structure with data from LMs [168, 333]. Finally, com-
plete KGs can be incorporated directly in training by introducing additional modeling objectives, to teach
a model about general commonsense regardless of the task at hand [160, 174, 222, 276, 329]. This line of
work resembles our approach of including background knowledge in a general, task-agnostic way; how-
ever, it still relies on the task training data and has generally not been tested in a zero-shot regime.

Generating commonsense questions and answers. Richardson and Sabharwal [240] use links in WordNet
to generate question-answer pairs, then leverage the resulting dataset to evaluate language models. Petroni
et al. [223] prompt the skills of language models by sentences instead of questions, generated from sources
like ConceptNet and SQuAD [230]. Previous works have generated synthetic QA sets to complement
existing training data. Ye et al. [319] proposed an ‘align-mask-select’ method to generate questions using
ConceptNet and Wikipedia. Kocijan et al. [143] constructed a large set of pronoun resolution questions
using Wikipedia sentences. Yang et al. [317] generate QA pair and distractors using generative models.
Unlike our focus on zero-shot evaluation, these efforts use questions to augment the task training data.
Assuming low availability of training data, the self-training method by [207] enhances the small set of
golden labels with noisy evidence labels, and iteratively uses the pseudo evidence predictions as extra
supervision in next iterations. An iterative approach is also used by [164], who use a knowledge graph to
generate pre-training data for SQuAD; however, this approach has not been evaluated on commonsense
tasks. Regarding zero-shot evaluation, the Self-Talk model of [260] generates clarification prompts based
on a template prefix, which are leveraged to elicit knowledge from another LM, which is used jointly with
the original context and question to score each answer candidate.

Given a task context, one can use COMET [32], a generative model trained on commonsense KGs, to
generate background knowledge statements, and to compute scores for each answer candidate based on
the context, question, and generated knowledge. Banerjee and Baral [17] pre-train the LM with three
representation learning functions which aim to complete a knowledge triple given two of its elements.
These functions jointly compute the distance for each answer candidate. The ambition of this paper is
to provide a comprehensive framework for such prior efforts on zero-shot QA with KGs. By covering a
wider set of KGs, question generation techniques, and tasks, we can systematically investigate the effect
of using different KGs, generation methods, and techniques across tasks.

43



4.4 Conclusion
In this chapter, we highlighted symbolic commonsense knowledge as a dominant form of domain knowl-
edge, for grounding the predictions of large-capacity neural language models (LMs) in natural language
processing tasks, such as non-extractive multiple-choice commonsense question answering. In the first
section, we were reminded that these tasks remain challenging, because (i) systems are required to reason
about, synthesise, and gather disparate pieces of information, in order to generate responses to queries;
and because (ii) recent approaches on such tasks show increased performance, only when models are ei-
ther pre-trained with additional information or when domain-specific heuristics are used, unless special
consideration is given regarding the knowledge resource type to be used. We showed that, by identifying
the most appropriate type of commonsense knowledge for a particular problem (e.g., from declarative, tax-
onomic, relational, procedural, sentiment, and metaphorical common sense), we can consistently improve
downstream performance and cross-domain generalisation. We introduced a new model that performs
commonsense knowledge grounding+lexicalisation (for extraction) and trilinear attention-based combina-
tion with neural context (injection). We evaluate our models on the DREAM [270] and CommonsenseQA
[275] datasets, and we show that: (i) our approach is preferable for knowledge integration and (ii) that
the degree of domain overlap, between knowledge-base and task, is vital to model success. In the second
section, we address concerns that large-capacity LMs overfit to specific tasks, without learning to utilise
external knowledge or perform general semantic reasoning, despite their recent advances and significant
gains on in-domain task performance. We identify zero-shot evaluation as a more robust measure of mod-
els’ general reasoning abilities, as models that achieve state-of-the-art performance on individual datasets
suffer significant performance-degradation under zero-shot evaluation on new, but similar tasks. We pro-
pose a novel neuro-symbolic framework for zero-shot question answering across commonsense tasks; the
framework studies how to transform various pre-existing knowledge resources into a form that is most ef-
fective for pre-training models. We vary the set of language models, training regimes, knowledge sources,
and data generation strategies, and we measure their impact across tasks; we devise and compare four (4)
constrained distractor-sampling strategies, and we provide empirical results across five (5) commonsense
question-answering tasks, with data generated from five (5) external knowledge resources. We show that,
while an individual knowledge graph is better suited for specific tasks, a global knowledge graph brings
consistent gains across different tasks. In addition, both preserving the task structure and generating fair
and informative questions are crucial for learning.
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Chapter 5

Learning with Primitives

in sequential decision-making tasks

5.1 Motivation
One of the long-term goals in artificial intelligence is that of developing autonomous embodied agents that
can flexibly interact with their environments. Embodied multimodal robot navigation is an instance of this
objective, wherein the agent must flexibly perceive its visual context, understand directives given to it in
natural language, and execute the steps necessary for carrying out the instructed task(s). Whereas it may
be trivial for a human to understand and follow natural language instructions, such as Go up the steps. Go
into the house ... to the fridge and wait there, this can be a particularly challenging task for artificial agents.
Complexities include partial observability over the state space, label-independent variation in the indoor
scenes, complexity in the natural language instructions from varying lengths and lexicons, sparse reward
structures over the span of an episode (thereby limiting task progress-monitoring capability), and biased
coverage of the provided expert demonstrations. Various approaches pursue solutions to these challenges,
through pragmatic inference, back-translation, and progress-monitoring based on distance-to-goal, but
still struggle to ground agents’ actions in some domain invariant context, such as a navigation graph,
which would otherwise encourage the agent to learn stopping and recovery actions and avoid bad states.
Furthermore, the aforementioned issues with instruction complexity and label-independent variation in the
visual features still persist, reducing agents’ generalisation performance in unseen environments.

In Section 5.2, we consider the semantic audio-visual navigation (S-AVN) task proposed by [53]. We
introduce the use of knowledge-driven scene priors in the semantic audio-visual embodied navigation task:
we combine semantic information from our novel knowledge graph that encodes object-region relations,
spatial knowledge from dual Graph Convolutional Networks, and background knowledge from a series
of pre-training tasks—all within a reinforcement learning framework for audio-visual navigation. We
define a new audio-visual navigation sub-task, where agents are evaluated on novel sounding objects, as
opposed to unheard clips of known objects. We show improvements over strong baselines in generalisation
to unseen regions and novel sounding objects, within the Habitat-Matterport3D simulation environment,
under the SoundSpaces task.

45



In Section 5.3, we propose a framework for distilling a navigation agent’s experience into a representa-
tion of reusable maneuvers, where the high-frequency and label-independent variation in the instructions
and visual context are removed. Our approach encourages the agent to generalise reusable navigation
maneuvers on the basis of similarities across high-level textual instructions, conditioned on past actions,
in order to leverage experience in executing familiar sub-commands from new instructions. We achieve
this association through a method called auxiliary variable variational approximation, which allows us to
introduce a latent variable for estimating the conditional posterior distribution over all observations and
executed trajectories (otherwise intractable for most distributions of interest). The agent then learns how
to compose samples from this skill space and couple them with conventional multimodal co-grounding
mechanisms, through policy refinement, for improved generalisability and downstream performance. We
perform an error analysis to illustrate the robustness of models’ generalisation to complex scenarios, and
we show improvements from our approach.

5.2 Knowledge-driven Scene Priors for Audio-Visual Naviga-
tion

5.2.1 Problem Formulation
We consider the semantic audio-visual navigation (S-AVN) task proposed by [53]. In this task, the agent is
initialised at a random location, in an unmapped 3D house environment, containing a sounding object (e.g.,
piano). The agent’s task is to reach the sounding object using its sensory inputs, consisting of visual and
audio sensors. Two assumptions are made in this task: 1) the target sound has a variable length and may
not be available at each time step, so the sound may stop during navigation (e.g., telephone ringing sound
stops after some time); 2) the sounding object has a visual embodiment, which is semantically meaningful
(e.g., the sound produced by a spoon dropping is associated with the spoon). These assumptions are
realistic because sound events have a variable length in the real world based on the semantics of the
sounding object. For example, the sound produced by a glass jar breaking would usually be shorter than
a telephone ringing sound. Due to the variable length nature of the sound, the agent cannot rely on the
audio signal alone to reach the sounding object. Instead, the agent needs to use the audio signal to predict
its location and understand the sounding object’s semantics. Moreover, the agent also needs to use the
visual cues for associating it with the sound semantics and reason about the object and region semantics
to navigate effectively.

We further extend the S-AVN task by evaluating the agent on unheard sounding objects. In the initial task
[53], the agent was evaluated on unheard clips of the known sounding objects, whereas in our task, the
agent is evaluated on completely unknown sounding objects. More formally, let H be the set of houses,
let O be the set of sounding objects (e.g., shower, tv monitor), and let R be the set of regions (e.g.,
bathroom, living room). A house hi ∈ H has a set of regions {ri1, ri2, . . . , rij} and a set of objects
{oi1, oi2, . . . , oik}, where there are k objects placed in j regions of the house hi. Note that there are
multiple instances of each sounding object o ∈ O and region r ∈ R across all houses H. We divide the
total set of possible houses H into two mutually exclusive subsets: Hseen and Hunseen. Similarly, we
divide sounding objectsO into two subsets: Oheard and Ounheard. The houses inHseen and the sounding
objects in Oheard are only experienced by the agent during the training phase; the agent is evaluated on
unheard sounding objects Ounheard. Thus, the agent must learn to reason about the novel sounds based
on prior knowledge to solve this task. Our work aims to enable the agent to reach the sounding object it
has never experienced before.
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5.2.2 SAVEN-agent: Semantic Audio-Visual Embodied Navigation
We introduce a knowledge-driven approach for semantic audio-visual embodied navigation (K-SAVEN).
K-SAVEN incorporates scene priors in knowledge graph form and extracts relational features using Graph
Convolutional Network (GCN) [142] for audio and visual modalities. GCN provides the agent reasoning
capability using prior knowledge and dynamically updates its belief according to the current observation,
specific to the current environment. Our model also incorporates Scene Memory Transformer (SMT) [84]
that captures long-term dependencies by recording visual features in memory and locating the goal by
attending to acoustic features. We use visual observations to compute visual features, including vision-
based semantic knowledge vector and features encoded from the vision encoder. Similarly, we use audio
observations to compute acoustic features, including audio-based semantic knowledge vector and location
prediction from location predictor. Thus, the prior knowledge-driven reasoning capability using GCNs
with the memory-based attention mechanism using SMT allows the agent to generalise to novel houses
and sounding objects, exploit spatio-temporal dependencies, and navigate to the goal efficiently.

Illustrated in Fig. 5.1, the K-SAVEN policy consists of 5 modules: 1) Pre-trained models that, given the
audio and visual observations from the environment, predict objects and regions; 2) Graph Convolutional
Networks that compute audio-semantic and visual-semantic feature embeddings; 3) Vision Encoder that
projects the visual observations at each step to an embedding space; 4) Location Predictor that, given the
acoustic signal from the sounding object, predicts its relative distance and direction from the agent; 5)
Scene Memory Transformer that uses an attention-based policy network, which computes a distribution
over actions, given the encoded observations in scene memory and the acoustic observation that captures
goal information from acoustic events. In the following sections, we discuss each module in detail.

Modular Pre-training. In our task, the agent relies on audio observations to set its goal and uses visual
observations to navigate to that goal. Therefore, the agent must detect objects and regions in a given ob-
servation. To this end, we trained audio (f bc ) and vision (fvc ) classification models to predict classification
scores for objects and regions in a given observation. More specifically, f bc and fvc predict a score for each
object o ∈ O (the likelihood that the object o produced the observation) and region r ∈ R (the likelihood
that the observation correspond to region r). These models are used as a backbone of the other models in
our proposed framework. The acoustic event has variable length and may not be present at each time step,
so the agent cannot rely on the current audio observation alone as a persistent signal. Thus, our model ag-
gregates the current prediction ĉbt with the previous prediction cbt−1, cbt = fλ(ĉbt , c

b
t−1) = (1−λ)ĉbt+λc

b
t−1,

where λ is the weighting factor set to 0.5. When the acoustic event stops (i.e., zero sound intensity), the
agent uses its latest estimate cbt .

Knowledge Graph Construction. Our knowledge graph captures spatial relationships between object-
to-object, object-to-region, and region-to-region. This prior knowledge about how objects are placed in
regions of houses enables the agent to reason about where to find novel-sounding objects for efficient
navigation; more precisely, this prior knowledge enables the reasoning path, Sound→ Object→ Region,
which is crucial to the task of audio-conditioned visual navigation. For example, suppose the squeaky
sound produced by a chair is novel to the agent, and it knows that chairs are usually kept close to tables
or cushions and found in living rooms, or offices. In that case, it may decide to navigate to regions that
usually have chairs and objects usually placed close to chairs, which would lead to finding the chair faster
than not knowing such spatial and semantic relationships between objects and regions.

Our knowledge graph is denoted by an undirected graph G = (V,E), where V and E denote vertices
and edges, respectively. Each vertex denotes an object or region, and each edge denotes the relationship
between a pair of vertices. To compute these relationships, we use Matterport3D dataset [43] as it contains
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Figure 5.1: K-SAVEN’s system overview. Visual observation vt is fed to two modules: vision encoder
fve , which encodes the visual observation, and pre-trained vision model fvc , which, given the visual obser-
vation, predicts classification scores cvt for objects and regions. These scores are used by the vision-based
graph convolutional networkGCNv to compute visual-semantic feature embeddings. The outputs of these
two models are stored in memory M . Audio observation bt is also fed to two models: location predictor
f bloc, which predicts distance and direction of the sounding object from the agent (lt), and pre-trained au-
dio model f bc , which, given the audio observation, predicts classification scores cbt for objects and regions.
These scores are used by the audio-based graph convolutional networkGCN b to compute audio-semantic
feature embeddings. The attention-based policy network conditions the encoded visual information Me

on the acoustic information, enabling the agent to associate visual cues with acoustic events and predict
the state representation st, which contains spatial and semantic cues helpful to reach the goal faster. The
actor-critic network, given the state st, predicts the next action at. When the agent executes the action in
the environment, it receives a reward and observations.

semantic labels of 42 objects and 30 regions for 90 houses. We only use 21 objects and 24 regions
(|V | = 45), which were used in the original S-AVN task [53] to build the knowledge graph. More
specifically, two objects (object-to-object) are connected with an edge if they are found in the same region,
and their frequency of occurrence is above a threshold. This frequency is computed with respect to the
most frequency object of that region, and the threshold is set to the maximum value that connects each
object with at least one other object. An object and a region (object-to-region) are connected if the region
contains other object(s), which are connected with the object based on object-to-object relations. Finally,
two regions (region-to-region) are connected if their frequency of containing connected objects based on
object-to-object relations is above a threshold. This threshold is set to the maximum value, connecting
each region with at least one other region.

The resultant knowledge graphs are provided in Tables 5.1 and 5.2, which can be represented as adjacency
matrices, with an indicator of 1 to characterise a co-occurrence edge between objects, other objects, re-
gions, and other regions. Alternatively, these graphs can be represented in the same format as existing
large-scale commonsense knowledge resources, such as ConceptNet [264]: i.e., as a collection of head
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Table 5.1: Relational knowledge graph for spatial object-object interactions

Sounding objects
(21)

Objects (21) Regions (22)

bathtub towel, sink, shower, picture, cabinet, toilet, counter, table,
plant

bathroom

bed chair, picture, table, sink, seating, cushion, cabinet,
chest of drawers, shower, plant, counter, tv monitor, towel

spa/sauna, junk, bedroom

cabinet clothes, chair, towel, seating, shower, toilet, picture, table,
sink, cushion, plant, sofa, counter, bed, chest of drawers, bath-
tub, tv monitor, stool, fireplace

spa/sauna, bathroom, familyroom/lounge, living room, entry-
way/foyer/lobby, kitchen, office, utilityroom/toolroom, other
room, hallway, laundryroom/mudroom, closet

chair gym equipment, picture, seating, cushion, table, plant, cabi-
net, sink, shower, chest of drawers, bed, counter, sofa, towel,
tv monitor, stool, fireplace

spa/sauna, familyroom/lounge, living room, junk, entry-
way/foyer/lobby, kitchen, office, utilityroom/toolroom,
bedroom, other room, rec/game, balcony, lounge,
porch/terrace/deck, hallway, dining room, meet-
ingroom/conferenceroom, workout/gym/exercise

chest of drawers chair, picture, cushion, table, bed, tv monitor, cabinet office, bedroom

clothes cabinet, picture closet

counter towel, cabinet, shower, chair, toilet, picture, sink, cushion, bed,
tv monitor, table, bathtub, plant, stool

bathroom, junk, kitchen, utilityroom/toolroom, laundry-
room/mudroom

cushion chair, picture, seating, table, sink, plant, cabinet, shower,
chest of drawers, bed, sofa, counter, towel, tv monitor, stool,
fireplace

spa/sauna, familyroom/lounge, living room, junk, entry-
way/foyer/lobby, office, utilityroom/toolroom, bedroom, other
room, rec/game, balcony, lounge, porch/terrace/deck

fireplace cushion, table, chair, picture, sofa, plant, stool, cabinet living room

gym equipment picture, chair workout/gym/exercise

picture clothes, gym equipment, toilet, chair, seating, shower, cush-
ion, towel, cabinet, table, sink, chest of drawers, bed, counter,
plant, sofa, bathtub, tv monitor, stool, fireplace

spa/sauna, bathroom, familyroom/lounge, living room,
junk, entryway/foyer/lobby, kitchen, office, utility-
room/toolroom, bedroom, other room, rec/game, lounge,
hallway, laundryroom/mudroom, closet, dining room, meet-
ingroom/conferenceroom, toilet, workout/gym/exercise

plant chair, picture, sink, towel, table, cushion, shower, toilet, seat-
ing, cabinet, sofa, counter, bed, bathtub, tv monitor, stool, fire-
place

spa/sauna, bathroom, familyroom/lounge, living room, junk,
entryway/foyer/lobby, rec/game, balcony, porch/terrace/deck

seating chair, table, sink, picture, plant, cabinet, shower, bed, cushion,
towel

spa/sauna, entryway/foyer/lobby, other room

shower chair, sink, towel, table, toilet, seating, cabinet, picture,
counter, bed, plant, bathtub, cushion

spa/sauna, bathroom

sink cabinet, chair, towel, shower, toilet, seating, picture, table,
counter, cushion, bed, tv monitor, plant, bathtub, stool

spa/sauna, bathroom, junk, kitchen, utilityroom/toolroom,
laundryroom/mudroom

sofa chair, picture, cushion, table, plant, cabinet, stool, tv monitor,
fireplace

familyroom/lounge, living room, rec/game, balcony, lounge,
porch/terrace/deck

stool cushion, chair, picture, table, cabinet, counter, sofa, plant, sink,
tv monitor, fireplace

familyroom/lounge, living room, kitchen

table chair, towel, picture, seating, shower, toilet, cushion, sink,
cabinet, plant, bed, chest of drawers, counter, sofa, bathtub,
tv monitor, stool, fireplace

spa/sauna, bathroom, familyroom/lounge, living room, en-
tryway/foyer/lobby, kitchen, office, utilityroom/toolroom,
bedroom, other room, rec/game, balcony, lounge,
porch/terrace/deck, hallway, dining room, meet-
ingroom/conferenceroom

toilet sink, shower, towel, cabinet, picture, counter, bathtub, table,
plant

bathroom, toilet

towel toilet, chair, sink, table, shower, seating, cabinet, picture,
counter, bed, plant, bathtub, cushion

spa/sauna, bathroom, toilet

tv monitor chair, picture, table, cushion, sink, plant, sofa, cabinet, counter,
bed, chest of drawers, stool

familyroom/lounge, junk, office

h / relation r / tail t triples of the form (h, r, t), with the ConceptNet LocatedNear relation for each
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Table 5.2: Relational knowledge graph for spatial region-region interactions

Regions (22) Objects (21) Other regions (22)

balcony chair, plant, cushion, table, sofa living room, familyroom/lounge, rec/game, porch/terrace/deck

bathroom towel, sink, shower, picture, cabinet, toilet, counter, bathtub,
table, plant

spa/sauna

bedroom cushion, picture, chest of drawers, bed, chair, table spa/sauna, office

closet clothes, cabinet, picture bathroom, hallway, entryway/foyer/lobby, living room,
familyroom/lounge, office, kitchen, laundryroom/mudroom,
spa/sauna, other room, utilityroom/toolroom

dining room chair, picture, table bedroom, hallway, entryway/foyer/lobby, living room,
familyroom/lounge, office, kitchen, lounge, rec/game,
spa/sauna, other room, utilityroom/toolroom, meet-
ingroom/conferenceroom

entryway/foyer/lobby picture, chair, table, plant, cabinet, cushion, seating spa/sauna

familyroom/lounge cushion, chair, picture, table, plant, sofa, cabinet, tv monitor,
stool

living room

hallway picture, cabinet, chair, table entryway/foyer/lobby, living room, familyroom/lounge, office,
kitchen, spa/sauna, other room, utilityroom/toolroom

junk picture, chair, sink, cushion, counter, plant, bed, tv monitor spa/sauna

kitchen cabinet, chair, counter, sink, stool, picture, table utilityroom/toolroom

laundryroom/mudroom cabinet, counter, picture, sink bathroom, kitchen, utilityroom/toolroom

living room cushion, table, chair, picture, sofa, plant, stool, fireplace, cabi-
net

familyroom/lounge

lounge chair, picture, table, cushion, sofa living room, familyroom/lounge, rec/game

meetingroom / confer-
enceroom

chair, picture, table bedroom, hallway, dining room, entryway/foyer/lobby, living
room, familyroom/lounge, office, kitchen, lounge, rec/game,
spa/sauna, other room, utilityroom/toolroom

office chair, table, picture, tv monitor, chest of drawers, cabinet,
cushion

familyroom/lounge

other room seating, chair, table, picture, cushion, cabinet entryway/foyer/lobby, spa/sauna

porch/terrace/deck chair, plant, table, cushion, sofa balcony, living room, familyroom/lounge, rec/game

rec/game chair, table, cushion, picture, sofa, plant living room, familyroom/lounge

spa/sauna table, chair, sink, seating, cabinet, shower, picture, bed, plant,
towel, cushion

bathroom, entryway/foyer/lobby

toilet toilet, picture, towel bathroom

utilityroom/toolroom cabinet, chair, picture, table, counter, cushion, sink kitchen, spa/sauna

workout/gym/exercise gym equipment, picture, chair bedroom, hallway, dining room, entryway/foyer/lobby, living
room, familyroom/lounge, office, kitchen, lounge, rec/game,
spa/sauna, other room, utilityroom/toolroom, junk, meet-
ingroom/conferenceroom

(h, t)=(object, object) instance pair, the AtLocation relation for each (h, t)=(object, region) instance
pair, and with the LocatedNear relation for each (h, t)=(region, region) instance pair—with saliency
weights, based on frequency. Some instances can be further expanded with additional relations, such as
UsedFor, derived from activity annotations in the region labels. The following triples are taken from the
first and tenth rows of table 5.1, for example:

(bathtub, LocatedNear, towel)
(bathtub, LocatedNear, sink)
(bathtub, AtLocation, bathroom)
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...
(gym equipment, UsedFor, workout)
(gym equipment, AtLocation, gym)
(gym equipment, UsedFor, exercise)

Figure 5.2: Lower-dimensional projections, illustrating object-region similarity. (A) GloVe embeddings
for each object and region into 2D space. (B) Adjacency matrix that encodes the relationship between
objects and regions in 2D space.

Figure 5.2A illustrates the GloVe embedding space and Figure 5.2B represents the object-region adjacency
matrix, both as two-dimensional projections. We reduced the dimension of the GloVe embeddings, for
each object and region, into 2 by using ISOMAP [281] (shown in Figure 5.2A). We also reduced the
dimension of the vector in the adjacency matrix that encodes the relationship of each object and region with
other objects and regions (shown in Figure 5.2B). As shown in Figure 5.2, regions and objects are clustered
together, and objects found together in houses, such as tables and chairs, are close together.

Graph Encoder. The goal of our GCNs (GCNv and GCN b) is to extract a semantic knowledge vector
using the graph G = (V,E). As shown in Fig. 5.3, the input to each vertex v is feature vector xv,
which is a concatenated representation of both semantic cues (i.e., language embeddings) and the visual
or acoustic cues (i.e., the classification score for objects and regions based on the current visual image
or sound signal). The language embeddings are generated by GloVe [221] (f lenc) and the classification
score is generated by pre-trained vision (fvc ) or audio (f bc ) modules. The knowledge graph is represented
as a binary adjacency matrix A. Similar to [142], we perform normalisation on A to obtain Ã. Let
X = [x1, . . . , x|V |] ∈ R|V |×D be the inputs of all vertices and Z = [z1, . . . , z|V |] ∈ R|V |×F be the output
of the GCNs, where D and F denote the dimension of the input and output feature.1 Our GCNs perform
the following layer-wise information propagation rule:

H(l+1) = σ(ÃH(l)W (l))

1D is set to 345 (300 for word embedding and 45 for classification score) and F is set to 254.
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Figure 5.3: Vision-based Graph Convolutional Networks. Each vertex denotes an object or region cate-
gory. The initial vertex features fed into the GCNv are initialized with the joint embedding obtained by
concatenating word embeddings of object or region names and classification scores of objects and regions
based on the current observation. GCNv performs information propagation through the three layers, and
the output of theGCNv is graph embedding. Note that the audio-based GCN (GCN b) uses f bc andGCN b

instead of fvc and GCNv.

Here, H(0) = X,H(L) = Z,W (l) is the parameter for the l-th layer, L is the number of GCN layers, and
σ denote the activation function, which is ReLU in our implementation. We initialise each vertex based
on the current observation and then perform information propagation to compute audio-based and vision-
based semantic knowledge vectors. The vision-based semantic knowledge vector is stored in memory M ,
and the audio-based knowledge vector is used to attend to the encoded memory Me. The output is a graph
embedding which serves as a spatial- and semantic-aware representation for policy optimisation.

Vision Encoder and Location Predictor. Our vision encoder fve encodes the visual observations, consist-
ing RGB and depth images from the agent’s perspective. We used the pre-trained vision model, described
above, as the backbone architecture of vision encoder. The audio observation contains information about
the relative distance and direction from the agent to the sounding object. Thus, we trained a location
predictor f bloc to predict a location l̂bt = (∆x,∆y) relative to the current pose pt of the agent. Similar to
the pre-trained audio model, location predictor model also aggregates the current prediction l̂bt with the
previous prediction lbt−1, lbt = fλ(l̂bt , l

b
t−1,∆pt) = (1 − λ)l̂bt + λfp(l

b
t−1,∆pt), where fp(·) transforms

the previous location prediction lbt−1 based on the last pose change ∆pt, and λ is the weighting factor set
to 0.5. The agent uses its latest estimate lbt = fp(l

b
t−1,∆pt) when the acoustic event stops. We used the

pre-trained audio model, described above, as the backbone architecture for the location predictor.

Policy Network. We used attention-based transformer architecture for our reinforcement learning policy
network, which stores observations in memory M . At each time step, our model encodes each visual
observation, evt = fve (vt) and ev−gcnt = GCNv(fvc (vt)) to save in the memory. Our model also stores
in memory the agent’s pose p, defined by its location and orientation (x, y, θ) with respect to its starting
pose p0 in the current episode, and at−1, the previously executed action. Thus, the encoded observation
stored in memory is eOt = [evt , e

v−gcn
t , pt, at−1]. The model stores these observation encodings up to time

t in memory: M = {eOt : i = max{0, t− SM}, . . . , t}, where SM is the memory size.

The transformer uses the memoryM stored so far in the episode and encodes these visual observation em-
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beddings with a self-attention mechanism to compute the encoded memory Me = Encoder(M). Then,
using the audio observation embeddings, a decoder network attends to all cells in the encoded memory
Me to calculate the state representation st = Decoder(Me, e

b−gcn
t , lbt ), where eb−gcnt = GCN b(f bc (bt)).

Using this attention mechanism, the agent captures long-term spatio-temporal associations between the
acoustic-driven goal prediction and the visual observations. Moreover, our model preserves the most rel-
evant information to reach the goal by conditioning visual-semantic embeddings stored in Me on audio-
semantic embeddings computed using current audio observation. The actor-critic network uses st to
predict the value of the state and action distribution. Finally, the action sampler samples the next action at
from this action distribution to select the agent’s next action.

5.2.3 Learning and Optimisation
To train the vision classification model fvc , we collect a dataset using 85 Matterport3D houses, consisting
of 82,828 images, each corresponding to a location and rotation angle in the SoundSpaces simulator (see
Section 5.2.4). Each image has 128 x 128 resolution and 4 modalities: RGB image, depth image, object
semantic image, and region semantic image. We use the binary cross-entropy loss for optimising the
vision classification model and train it as a standard multi-label classifier.

To train the audio classification model f bc , we use the SoundSpaces simulator to generate 1.5M spectro-
grams, using different source and receiver positions, each corresponding to a sounding object in one of
the 85 Matterport3D houses. One spectrogram corresponds to a sounding object, which could be present
in multiple regions. For example, a sink can be present in both kitchen and bathroom regions. Thus, we
treat detecting sounding objects as a multi-class classification problem and detecting regions in which that
sounding object could be present as a multi-label classification problem. We optimise the audio classi-
fication model using cross-entropy loss for sounding object detection and binary cross-entropy loss for
detecting regions.

Our vision classification model takes an RGB image as input, and the audio classification model takes 1
second sound clip represented as two 65 × 26 binaural spectrograms as input. We trained both vision and
audio classification models using a ResNet-18 [114] architecture, pre-trained on ImageNet, to predict a
score to 21 objects and 24 regions (see Section 5.2.4). These models are pre-trained before and are frozen
during during policy training.

For training the location predictor f bloc to predict a relative location of the sounding object, we use the
ResNet-18 architecture and initialise it with the weights of the pre-trained audio classification model.
Location predictor is trained during policy training using the same experience collected for policy training.
We optimise the location predictor using the mean squared error loss and update it with the same frequency
as the policy network.

We train the policy network using the decentralised distributed proximal policy optimisation (DD-PPO)
[305], which consists of a value network loss, policy network loss, and an entropy loss to encourage
exploration [253]. We adapt the two-stage training procedure proposed in [84] for effectively training the
vision networks (fve , GCNv). In the first stage, the SMT policy is trained without attention by setting the
memory size sM = 1 and storing the latest observation embeddings. In the second stage, the memory
size is set to sM = 150, and the parameters of the vision networks are frozen. Training SMT requires
enormous computational power, and due to limited computational resources, we were not able to complete
the second stage of training the SMT policy. Thus, the results for our method and the SAVi baseline
correspond to the policy after the 20,000 updates of the first training stage. Moreover, the results for the
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rest of the baselines also correspond to the policy after 20,000 updates. We emphasise that this may not
be a fair comparison because some policies converge sooner than others.

The input to the vision encoder fve is 64×64 RGB, and depth images cropped from the center. We optimise
our model using Adam [138] with a learning rate of 2.5 × 10−4 for the policy network and 1 × 10−3 for
the pre-trained audio and vision networks using PyTorch [220].

5.2.4 Experiments
Environment

Simulator and Semantic Sounds. We use SoundSpaces [52], a visually- and acoustically-realistic simula-
tion platform, to simulate an agent navigating in 3D house environments. The simulator renders sounds at
any pair of source (sounding object) and receiver (agent) locations on a uniform grid of nodes spaced by 1
meter. While, SoundSpaces supports two real-world environment scans (Replica [266] and Matterport3D
[43]), we used Matterport3D as it provides a larger number of houses and object-region semantics therein.
We use the same 21 object categories as [53] for Matterport3D: chair, table, picture, cabinet, cushion,
sofa, bed, chest of drawers, plant, sink, toilet, stool, towel, tv monitor, shower, bathtub, counter, fireplace,
gym equipment, seating, and clothes. These object categories are visually present in the 24 regions (bal-
cony, bathroom, bedroom, closet, dining room, entryway/foyer/lobby, familyroom/lounge, hallway, junk,
kitchen, laundryroom/mudroom, living room, lounge, meetingroom/conferenceroom, office, other room,
porch/terrace/deck, rec/game, spa/sauna, toilet, utilityroom/toolroom, and workout/gym/exercise) of the
85 Matterport3D houses. We use the publicly available sound clips from the experiment performed by
[53], in which audio clips from freesound.org database were used. We generate sound by render-
ing the specific sound that semantically matches the object at the locations in Matterport3D houses. For
example, the water-dropping sound will be associated with the sink in the kitchen.

Rewards and Episodes. The agent receives a sparse reward of +10 when it reaches the goal successfully,
a dense reward of +1 for reducing the geodesic distance to the goal, and an equivalent negative reward
for increasing it. To encourage trajectory efficiency, we also assign a negative reward of −0.01 per time
step. To avoid simpler episodes, in which it is easy to reach goal (e.g., straight paths or short distance), we
used 2 conditions while sampling episodes: 1) the ratio of geodesic distance to euclidean distance must be
greater than 1.1; 2) the geodesic distance from the start location to the goal location must be greater than 4
meters. We sample 367,155 episodes for training and 1000 episodes for each of the testing settings.

Action space and sensors. There are 4 actions in the agent’s action space: MoveForward, TurnLeft,
TurnRight, and Stop. MoveForward changes the agent’s current location to the node in front of it only
if that node is reachable without collision. Stop can be used by the agent to report sounding objects and
terminal the episode. The TurnLeft, TurnRight, and Stop actions can always be executed successfully.
There are 4 sensory inputs: egocentric binaural sound (two-channel audio waveforms), RGB image, depth
image, and the agent’s current pose relative to the starting pose of the episode.

Episode specification and success criteria. An episode of semantic audio-visual embodied navigation
task is defined by a house, a start location, and rotation angle of the agent, a goal location, a sounding
object, and duration of the audio event. In each episode, the start location and rotation of the agent is
randomly selected. For selecting the sounding object, an instance of an object category in the house is
also chosen randomly. We define a set of viewpoints within 1 meter of the object’s boundary for each
sounding object. When the agent executes Stop action at any of these viewpoints, the episode will be
successfully completed.

54

freesound.org


Baselines

We compare our model, K-SAVEN, against the following baselines:

• Random walk, a baseline which uniformly samples one of the three navigation actions and exe-
cutes Stop automatically when the target sounding object is reached within 1m radius.

• AudioGoal [52], an end-to-end RL policy based on the PointGoal task [305] based on a Seq2Seq
mechanism which uses a GRU state encoder that leverages colour and depth images to navigate the
unknown environments. In contrast to PointGoal which uses GPS sensing to guide the agent toward
its goal, this baseline uses audio spectrograms.

• AudioObjectGoal a Seq2Seq mechanism similar to (2) but the agent is also provided with the
semantic label of the target object.

• SAVi [53], a transformer-based model that uses a goal descriptor network, which predicts both
spatial and semantic properties of the target sounding object. It is the state-of-the-art deep rein-
forcement learning model for the semantic audio-visual embodied navigation task.

Evaluation Metrics

We follow [53, 54] in reporting agent performance, based on the following metrics: 1) success rate (SR;
proportion of successful episodes); 2) success rate weighted by path length (SPL; a proxy for trajectory
length-efficiency); 3) success rate weighted by the number of actions (SNA; a proxy for action-efficiency,
penalising in-place rotation actions); 4) average distance to goal (DTG) on episode success/termination;
and 5) success when silent (SWS; the proportion of successful episodes when the agent reaches the target
sounding object after the end of the acoustic event).

We assess model generalisation by evaluating our method on unheard sounding objects. More specifically,
we evaluate our model on the following testing settings: 1) test on seen houses with unheard sounding
object categories as the navigation target; and 2) test on unseen houses with unheard sounding object
categories. We randomly split the houses and sounding objects for training and testing. More specifically,
we use 68 seen houses, 17 unseen houses, 16 heard sounding objects, and 5 unheard sounding objects. We
average the results over 1,000 episodes for each setting.

Results

The performance comparison between the aforementioned baseline agents, across Seen-House/Heard-
Sounds (SH/HS), Seen-House/Unheard-Sounds (SH/US), Unseen-House/Heard-Sounds (UH/HS), and
Unseen-House/Unheard-Sounds (UH/US) conditions, is summarised in Table 5.3.

Navigation agents benefit from modular decomposition. We compare K-SAVEN to SAVi and to the end-
to-end RL policies, AudioGoal and AudioObjectGoal; we observe DTG improvements in all evaluation
conditions, implying higher confidence and accuracy about stopping locations in our approach.

Scene priors enable generalisation to unseen contexts. Recalling that our unique experimental conditions
consist of performance evaluation over completely unheard sounds (as opposed to unheard clips from
previously-heard objects), we highlight K-SAVEN’s improvements over all baselines, on all metrics, in
both of the sound-generalisation conditions (SH/US and UH/US). For the scene-generalisation conditions,
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Table 5.3: Results of baseline models and our proposed approach on the Semantic Audio-Visual Embodied
Navigation (SAVEN) task, evaluated with best checkpoints after 300M iterations.

SEEN HOUSES, HEARD SOUNDS SEEN HOUSES, UNHEARD SOUNDS

Method SR (↑) SPL (↑) SNA (↑) DTG (↓) SWS (↑) SR (↑) SPL (↑) SNA (↑) DTG (↓) SWS (↑)

Random — — — — — 0.07 0.02 0.87 15.20 0.07

AudioGoal [52] — — — — — 0.11 0.11 0.08 14.06 0.04

AudioObjectGoal — — — — — 0.11 0.11 0.08 14.73 0.03

SAVi [53] 0.67 0.54 0.53 1.65 0.38 0.22 0.16 0.14 6.54 0.12

K-SAVEN (ours) 0.72 0.59 0.61 1.63 0.39 0.30 0.22 0.21 6.21 0.15

UNSEEN HOUSES, HEARD SOUNDS UNSEEN HOUSES, UNHEARD SOUNDS

Method SR (↑) SPL (↑) SNA (↑) DTG (↓) SWS (↑) SR (↑) SPL (↑) SNA (↑) DTG (↓) SWS (↑)

Random 0.05 0.01 0.01 16.45 0.05 0.07 0.02 0.01 15.20 0.07

AudioGoal [52] — — — — — 0.12 0.12 0.08 14.16 0.04

AudioObjectGoal — — — — — 0.15 0.13 0.10 13.06 0.05

SAVi [53] 0.32 0.21 0.18 10.12 0.18 0.15 0.11 0.09 9.97 0.08

K-SAVEN (ours) 0.33 0.23 0.21 9.41 0.16 0.21 0.14 0.12 9.33 0.10

K-SAVEN enjoys improved performance over all baselines, for all metrics, except for SWS: we hypothe-
sise that this is due to the inclusion of acoustic representations in memory, on the part of SAVi, which we
leave as a possible K-SAVEN configuration to explore in future work.

Scene priors enable robustness to silent episodic segments. In general, K-SAVEN performs significantly
better in the success when silent (SWS) metric than the baseline methods. This shows that scene priors
enable robustness to silent episodic segments. The reasoning capability provided by the scene priors helps
the agent focus on the sounding object even when the acoustic signal stops.

5.2.5 Related Work
Modularity in goal-driven robot navigation. Goal-oriented navigation tasks have long been a topic
of research in robotics [40, 134, 144, 157]. Classical approaches generally tackle such tasks through
non-learning techniques for searching and planning, e.g., heuristic-based search [144] and probabilistic
planning [134]. Although classical approaches might offer better generalisation and optimality guarantees
in low-dimensional settings, they often assume accurate state estimation and cannot operate on high di-
mensional raw sensor inputs [105]. More recently, researchers have geared toward data-driven techniques,
e.g., deep reinforcement learning [21, 46, 53, 54, 96, 305, 316] and imitation learning [128, 150], to design
goal-driven navigation policies. End-to-end mechanisms have proven to be powerful tools for extracting
meaningful features from raw sensor data, and thus, are often favoured for the setting where agents are
tasked with learning to navigate toward goals in unknown environments using mainly raw sensory inputs.
However, as task complexity increases, these types of systems generally exhibit significant performance
drops, especially in unseen scenarios and in long-horizon tasks [105, 248].

To address the aforementioned limitations, modular decomposition has been explored in recent embodied
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tasks. Chaplot et al. [48] design a modular approach for visual navigation consisting of a module that
builds and updates a map of the environment, and a global and local policies to, respectively, predict the
next sub-goal using such map and the low-level actions to reach it. Irshad et al. [128] also leverage a
hierarchical setup to disentangle Vision-Language Navigation (VLN) [9] into a global policy tasked with
grounding the input modalities and predicting the next global step, and a local policy that performs motion
control to navigate toward it. Gordon et al. [105] design a hierarchical controller that invokes different
low-level controllers in charge of different tasks such as planning, exploration and perception. Similarly,
Saha et al. [248] design a modular mechanism for Vision-Language tasks that breaks down the task into
multiple sub-tasks that include: mapping, language understanding, modality grounding, and planning. The
aforementioned modular designs have shown to increase task performance and generalisability, especially
in unexplored scenarios, compared to their end-to-end counterparts. Motivated by the aforementioned,
we develop a modular framework for semantic audio-visual navigation, which includes pre-trained and
knowledge-enhanced scene priors, enabling improved unseen generalisation.

Knowledge graphs in visual navigation. Combining prior knowledge with machine learning systems
remains a widely-investigated topic in various research fields, such as natural language processing [94,
182, 183], due to the improvements in generalisability and sample-efficiency that symbolic representation
promises for learning-based approaches. Historically, integrating symbolic knowledge with, e.g., naviga-
tion agents has proven non-trivial, yielding a collection of research areas focusing on smaller components
of the problem—such as finding the appropriate representation of the knowledge (e.g., logical formalism,
knowledge graphs, probabilistic graphical models), the appropriate type of knowledge that should be en-
coded (e.g., spatial commonsense, declarative facts, etc.), and the best knowledge injection mechanism
(e.g., graph convolutional networks, grounded natural language, etc.) [182]. Knowledge graphs have
gained popularity due to their interpretability and general availability as existing large-scale resources,
such as ConceptNet [264] and VisualGenome [152]. Fortuitously, graph processing of structured data
has experienced a surge of popularity in deep learning in recent years, leading to renewed interest in this
neuro-symbolism [211, 309]. Some works in visual navigation tasks exploit knowledge graphs in the
pursuit of generalisation [79, 180, 198, 291, 316]. [316] create knowledge graphs based on the Visu-
alGenome [152] and inject features extracted from the graph as prior knowledge in visual navigation. In
similar fashion, [227] provide agents with knowledge of object-object relational semantics. [180] show
improvements in goal-directed visual navigation by injection 3D spatial knowledge into learning-based
agents. Inspired by these works, we construct a knowledge graph that includes all object-object, object-
region, and region-region semantics, which enables the more complex reasoning path, sound → object
→ region, in audio-visual navigation. Therefore, to our best knowledge, we become the first to study
knowledge-driven scene priors for the audio-visual navigation task family.

Generalisation to unseen contexts. Chen et al. [52, 53, 54] leverage the SoundSpaces [52] simulation
environment and dataset to design and assess Audio-Visual Navigation policies. The dataset is based on
photorealistic indoor environments from the Matterport3D [43] and Replica [266] datasets, to which 102
sound sources commonly found in indoor environments (e.g., household appliances, musical instruments,
telephones, etc.) were incorporated. The SoundSpaces dataset is split, such that indoor scenes encountered
during testing are not found in the episodes used during the training stage. However, sounds of objects en-
countered during training may also appear during testing. Gan et al. [96] also explore Audio-Visual Navi-
gation, but using the simulation platform AI2-THOR [146], which contains computer-generated graphical
imagery. The authors introduce the Visual-Audio Room (VAR) benchmark consisting of seven different
indoor environments—two of which were used for training and five for testing. The VAR benchmark
incorporates three different audio categories: ring tone, alert alarm, and clocks. Similar to the AVN task
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introduced before, sound sources are found both in the training scenes, as well as and the testing scenes.
In this paper, we argue that in the context of Audio-Visual Navigation tasks, generalisation to unseen en-
vironments pertains to both generalising to unseen visual scenes, as well as to unheard sounds. Current
Audio-Visual benchmarks do not take into consideration the latter. Thus, there is no direct assessment
of generalisation performance to unheard sounds. To tackle this limitation, we propose a curated version
of the SoundSpaces dataset where we evaluate our agent in two different settings: (1) seen scenes and
unheard sounds, (2) unseen scenes and unheard sounds.

5.3 Learning Representations of Reusable Robot Maneuvers
Vision-Language Navigation (VLN) tasks remain challenging for artificial agents, as they must satisfy
complex natural language instructions to navigate within complex photorealistic, partially-observable en-
vironments. Recent pursuit of this task has focused on pragmatic decoding, agent progress-monitoring,
back-translation, and cross-modal grounding; however, issues with instruction complexity and label-
independent variation in the visual features still persist, reducing agents’ generalisation performance in
unseen environments. In this chapter, we propose a framework for distilling a navigation agent’s ex-
perience into a representation of reusable maneuvers, where the high-frequency and label-independent
variation in the instructions and visual context are removed. Our approach encourages the agent to gen-
eralise reusable navigation maneuvers on the basis of similarities across high-level textual instructions,
conditioned on past actions, in order to leverage experience in executing familiar sub-commands from
new instructions. We achieve this association through a method called auxiliary variable variation approx-
imation, which allows us to introduce a latent variable for estimating the conditional posterior distribution
over all observations and executed trajectories (otherwise intractable for most distributions of interest);
this is essentially a special case of variationl behaviour cloning, between an expert (a learned distributional
prior over robot maneuvers) and a student (a jointly-learned posterior distribution over action+visual tra-
jectories). The agent then learns how to compose samples from this skill space and couple them with
conventional multimodal co-grounding mechanisms, through policy refinement, for improved generalis-
ability and downstream performance. We perform extensive baseline error-analysis, illustrating the limits
in models’ generalisation to complex scenarios, where we show improvements from our approach.

5.3.1 Problem Formulation
We adopt the problem setting of Vision-and-Language Navigation (VLN) [9], wherein our task is to navi-
gate realistic indoor environments, using text-based instructions, visual context, and a partially-observable
navigation state graph. Thus, our embodied agent is required to coordinate directions with visual surround-
ings, execute a trajectory between multiple rooms (or regions of the same room), and to arrive as close as
possible to goal state that is referenced by the instruction. Formally, we are given: (i) an undirected graph
G =< V,E > that is defined over a set of panoramic viewpoints V and edges E; (ii) an arbitrary initial
pose p0 = (v0, φ0, θ0) consisting of a initial spatial position v0, initial camera heading φ0, and initial cam-
era elevation θ0; and (iii) a natural language text instruction X = {x1, x2, ..., xn} with average sequence
length n of 29 tokens. The task is to select a set of deterministic actions {a1, a2, ...aT } ∈ A, such that the
agent arrives within 3 meters of the target spatial position, vtarget. For each state, the agent receives a set of
next-step reachable viewpoints,Wt+1 ⊆ V , such thatWt+1 = {vt}∪{vi ∈ V | < vt, vi >∈ E∧vi ∈ Pt},
and must choose at+1 = f(vt+1) ∈Wt+1 and nominate any changes in camera heading (∆φt+1) or cam-
era elevation (∆θt+1). Here, Pt is the region enclosed by the camera’s left and right frustrums, implying
that the only actions available to the agent at any given time are next-states defined by the graph that are
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Figure 5.4: The main illustration of our approach, Auxiliary Variable Variational Approximation (AVVA-
agent) for Vision-and-Language Navigation.

within the field-of-view of the agent.

5.3.2 AVVA-agent: Auxiliary Variable Variational Approximation
We are reminded that the objective of VLN is to transform high-level natural language navigation instruc-
tions into sequences of low-level discretised actions. Here, we inherit the original formulation of the VLN
task, as in Room-to-Room Navigation [9], where access to the entire scene navigation graph was not avail-
able to the agent (thereby precluding motion-planning based approaches), nor were segmented sub-goal
instructions (removing intermediate task supervision), nor fine-grained alignment between instructions
and trajectories in the dataset (precluding the use of instruction templates).

Much of the previous methodology leverages a sequence-to-sequence recurrent policy agent (RPA), based
on an LSTM decoder as an action generator, posed for the VLN-R2R task by the originating dataset paper
[9]. While the approach enjoys considerable simplicity in its architecture and utilisation, the approach
is faced with issues in generalisability and limits in modelling capacity. More sophisticated solutions
involved posing the R2R-VLN task as a trajectory search problem, wherein the agent needs to find the
best trajectory in the environment to navigate from the start location to the goal location, given the natural
language instruction [95]. Towards this problem, Fried et al. [95] proposed a model assembly, consisting
of an instruction-interpretation module (Follower, which maps different instructions to actions sequences)
and an instruction-generation module (Speaker, which maps action sequences to instructions). The pro-
posed speaker module is leveraged to augment data during training and is also used to perform pragmatic
inference to handle ambiguous situations. While this Speaker-Following assembly created promising
avenues for data augmentation and self-supervision of navigation agents, this came at the cost of gener-
ating long trajectories—sometimes, multiple kilometers in length, limiting the approach’s relevance for
deployment in constrained-resource scenarios as well as its performance on efficiency-weighted success
metrics. Ma et al. [181] introduce the Self-monitoring Agent (SMA), which attempts to rectify general-
isability and trajectory length issues by combining visual and text co-grounding streams, for improved
multimodal alignment and task progress-monitoring capability. However, empirical error analyses (Sec-
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tion 5.3.4) show weakness to various forms of structured perturbation, including visual noise-injection,
region-substitution, and navigable action noise—showing that a moderate gap remains, necessitating bet-
ter learning strategies for multimodal alignment, especially.

In this work, we pose VLN as a multimodal alignment problem, where the agent should learn to associate
its step-wise visual context with the textual command it received initially. The agent learns to represent
primitive ‘skills’ in an embedding space z, which is conditioned on task ID embeddings. Departing from
previous work in the area of learning robot skills, which used simple one-hot vector representations as
task IDs, we seek to use encoded natural language instructions directly. Fundamentally, the problem is to
organise a latent space of all solutions to a set of relevant tasks, given some arbitrary task specification. To
this end, we hypothesise that similarities in the sub-instructions map to similarities in the sequences of ex-
ecuted actions, and that these action sequences form behaviour primitives, which we call maneuvers, that
generalise across tasks. Explicitly supervising action trajectories at the sub-instruction level will take a lot
of time/effort, will require us to generate additional supervisory datasets, and may not even be generalis-
able. Exploring all the distinct solutions to all types of tasks has exponential complexity and is therefore
intractable. Therefore, we utilise a method called auxiliary variable variational approximation to esti-
mate the probability distribution over some embedding space—conditioned on textual, visual, and action
trajectory information. We can think of the modes in this embedding space as representing distinct skills
or maneuvers, learned through an optimisation process. Figure 5.4 illustrates our overall approach.

Predicate decomposition on instructions. We hypothesise that the best natural language articulation, for
the maneuvers we wish to represent in the skill embedding space, takes the form of sub-instructions—
segments of instructions that agents receive at the beginning of episodes—which contain action-oriented
predicate clauses. These clauses should map to action sequences that are frequently executed in the en-
vironment, across various instructions and even multiple times in the same instruction; these primitive
clauses (and the corresponding abstracted action sequences) should also feature in other tasks in the fam-
ily of Embodied Vision-Language Planning (EVLP) tasks [94], which includes R2R-VLN. Because natu-
ral language instructions in EVLP tasks are generally free-form and may not be pre-segmented, we start
by decomposing the full instructions in the R2R-VLN task, into predicate clauses. We leverage the Al-
lenNLP semantic role labelling model BERT-based model (SRL-BERT) [100, 257] to perform predicate
decomposition on all the instructions in the training split of the R2R-VLN dataset.2 We then paired the
sub-instructions with the original instruction, for each sample in the training set; on average, where, on
average, each instruction yields 2-4 sub-instructions.

Embedding network and observation-encoding. At the beginning of the episode, the agent is initialised
in the simulated environment and receives an initial observation of state, as a tuple of image feature v0

and instruction x0, and must generate an action a0 to execute in the environment. As a consequence
of predicate decomposition on the instruction, the agent also receives a collection of sub-instructions
s = {si | i = 1, 2, ..., k}. We use an Instruction Encoder to embed each sub-instruction, then
project the embeddings into different regions of the same latent representation, using a variational autoen-
coder (Embedding Network). In other words, there are shared weights across all k embedded sub-
instruction projections. Each projection represents p(zskill|si) for some sub-instruction si, with 1 ≤ i ≤ k.
Notably, our approach uses each sub-instruction as a skill ID (task specifier) conditioning variable for
latent vector zskill; being an encoding of natural language, si is a much noisier and complex signal, com-
pared to the one-hot vector representations used at task IDs in much of the skills literature [112]. It is

2We also added the SRL tags to the lexicon, to facilitate mappings to the language embedding space; we found
ArgM-LOC, ArgM-DIR, ArgM-MNR to be especially important.

60



for this reason that we separate the Instruction Encoder and Embedding Network and can
subsequently impose sparsity regularisation on the embedding network’s representation, e.g., using an
unsupervised contrastive objective [300]. Subsequent to the agent’s initial spawning in the environment,
and at each timestep t thereafter, the agent receives a tuple of the current image feature (according to the
agent’s pose) vt and generates a summary state representation ht using a recurrent policy model. Fol-
lowing Ma et al. [181], we construct a visually-grounded full-instruction representation x̂t (Eqn. 5.3) and
textually-grounded visual representation v̂t (Eqn. 5.5):

ht = Policy([x̂t, v̂t,at−1, z
skill
t,si ]), where (5.1)

ztext
t,l = (Wxht−1)>PE(xl), αt = softmax(ztext

t ) (5.2)

x̂t = αTt X (5.3)

zvisual
t,d = (Wvht−1)>g(vt,k), βt = softmax(zvisual

t ) (5.4)

v̂t = βTt v (5.5)

Here, “[, ]” denotes concatenation, at−1 is the previously-executed action, ztext
t,l and zvisual

t,k are scalars, Wx

and Wv are the learnable parameters, PE(·) is a positional encoding transform [288], l indexes a word
token, d indexes a navigable direction, and g(·) is a multi-layer perceptron (MLP).

Inference network and action-generation. All k probability distributions, according to the k sub-
instructions are sampled from p(z) and used to generate an attention distribution over the set of k latent
spaces. The highest-scoring latent space is then fed to a recurrent policy network, along with the histor-
ical trajectory information. In this manner, we generate a sequence of action predictions. These action
predictions are encoded using an LSTM (TrajectoryEncoder), whose output is then projected to
another latent space (Inference Network); this second projection implements the posterior proba-
bility distribution over the latent space, conditioned on historical actions and visual information p(z|a, v).
Action-selection is performed via an inner product between the image features on the navigable directions
that correlate most with grounded instructions x̂t and the current hidden state ht:

at
cat∼ softmax((Wa[ht, x̂t])

>g(vt,k)), (5.6)

where “cat∼” denotes categorical sampling, used during training, Wa are learnable weights (omitting the
bias term, for conciseness), and g(·) is the same as in Eqn. 5.4.

5.3.3 Learning and Optimisation
We choose a stochastic recurrent policy π(·) that is trained through student-forcing, in order to generate
actions at each time-step in the roll-out; architecturally, this recurrent policy network as Policy(·),
above, which follows from the agents in Fried et al. [95], Ma et al. [181], but with entropy regularisation to
encourage the z-space to have reduced sparsity in the local neighbourhoods of task primitives. We want to
query posterior skill distribution p(zskill|a,h, si), however this quantity is intractable, as it must represent
all possible configurations of the latent space with respect to action, visual, and textual information. The
solution is to define a variational posterior q(zskill|a,h) which leads to a variational lower bound (Lvar)
on the entropy H(·). Note that we avoid conditioning the variational term on the task ID, as we want
to encourage identifiability of the latent skill vector zskill from the trajectory h, which also contains co-
grounded visual- and positionally-encoded, attended textual information. Maximising this variational
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lower bound would indirectly maximise the entropy:

H(π(a|h, si)) = Eπ(−log(π(a|h, si))) (5.7)

≥ Eπ(a,zskill|h,si)[log(
q(zskill|a,h, si)
π(a, zskill|h, si))

)] (5.8)

= −Eπθ(a|h,si)[CE[p(zskill|a,h, si)||qψ(zskill|a,h)]] (5.9)

+H[pφ(zskill|si)] + Epφ(zskill|si)[H[πθ(a|h, zskill)]] (5.10)

= Lvar (5.11)

The Cross-Entropy CE(·) between p(zskill|a,h, si) and qψ(zskill|a,h) aligns the two distributions, as an
auxiliary training objective, similar to Hausman et al. [112]. Remembering that p(zskill|a,h, si) is in-
tractable, we utilise a sample-based evaluation of CE:

Eπθ(a|h,si)[CE[p(zskill|a,h, si)||qψ(zskill|a,h)]] = Eπθ(a,zskill|h,si)[−log qψ(zskill|a,h)] (5.12)

The two latent space projections, Embedding Network and Inference Network, are the en-
coders of two separately instantiated VAEs. These VAE-encoders are implemented as two-layer MLPs,
that map a 1024-dimensional input to a latent space of dimension 512 with ReLU activations, in between.
The sub-instruction embeddings are of size 256; the TrajectoryEncoder produces an output of size 512.
The full pipeline was trained on a GPU cluster with two Titan X Pascals and two GTX 1080s, using Adam
optimisation, over 300 epochs, with a learning rate that decayed from 1 · e−4 to 1 · e−6.

5.3.4 Experiments
Dataset

The MatterPort3D dataset [43] provides 194,400 RGB-D images, sampled from 10,800 panoramic views
in 90 building-scale scenes. This dataset also provides an undirected navigation graph for state enumer-
ation, consisting of an average position separation of 2.25 meters and an average vertex degree of 4.1,
where the images were sampled in 6 degree-of-freedom at each node. Anderson et al. [9] provide 21,567
crowd-sourced, Room-to-Room (R2R) navigation instructions that are paired with paths/trajectories from
the original dataset. The verbal instructions in the R2R dataset define navigation tasks that agents must
perform within indoor scenes in the Matterport dataset. The average navigation graph trajectory length
for each instruction is 10 meters, and the average instruction sequence length is 29 words.

There are a few notable challenges in performing the VLN-R2R task: the first is that the VLN task does not
provide access to the entire navigation graph in a scene, precluding the use of common motion-planning
techniques [94]. The second challenge is that the VLN task only offers agents a sparse reward, of task
completion, with no intermediate supervision (e.g., sub-goals, waypoints) provided. As a result, agents are
susceptible to the classic temporal credit assignment problem [272], where, upon completion or failure of
the downstream task, they are not given information about what intermediate decisions led to the eventual
outcome. This limits the model’s implicit progress-monitoring capability and prevents the model from
generalising short-term behaviours across various instructions and scenes. The third major challenge is in
understanding how to leverage the agent’s own navigation history for cross-modal alignment between the
textual and visual contexts.
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Evaluation Metrics

We adopt the standard metrics, originally defined for the VLN-R2R task [9]:

• Trajectory Length (TL) — defined in terms of the agent’s average trajectory length in metres.

• Navigation Error (NE) — average distance between the end-location predicted by the agent and
the true route’s end-location.

• Success Rate (SR) — percentage of predicted end-locations within 3m of the true end- locations.

• Oracle Success Rate (OSR) — the closest your trajectory is to the goal point when choosing the
ideal stopping time rather than the policy stopping time.

• Success rate weighted by normalised inverse Path Length (SPL) — trades-off SR against TL giving
importance to solving VLN tasks with efficient trajectories.

Baseline Error-analysis

In this section, we report the results obtained by re-implementing the RPA-Seq2Seq [9] and Speaker-
Follower [95] baselines on the validation seen (val-seen), validation unseen (val-unseen) and test sets.
We also include a comparison between Look-Before-You-Leap [299] and Speaker-Follower. We report
performance in terms of Navigation Error (NE), Success rate (SR), and Oracle Success Rate (OSR).

Recurrent Policy Agent. Our implementation of the Recurrent Policy Agent (RPA) and downstream
performance follow those of the Seq2Seq baseline achieved comparable performance with the one reported
in the originating paper [9]. As seen in Table 5.4, the trained model achieved a success rate of 37.84, 21.03
and 20.27 on val-seen, val-unseen and test splits respectively. The trained model performed slightly better
for the OSR of val-unseen than the reported score but performs a little worse on the other metrics.

In Figure 5.5 (Student-forcing RPA-Seq2Seq), we can see that a majority of the instructions (approx. 60%
for val-seen and approx. 80% for val-unseen) have navigation error more than 3m with more failures in
case of unseen environment (SR of 21.03). Thus, the Seq-2-Seq model doesn’t generalise to the unseen
environments. Moreover, from Table 5.4, we can see that OSR is more that SR, thus, it is evident that
the agent also does not learn to generate stop action or learn when to stop. Another observation from
Figure 5.7 (left) is that the trajectory length for the Seq-2-seq model is comparable to the trajectory length
corresponding to the shortest path (Figure 5.6, left). Surprisingly, the results for the number of trajectory
steps for the seq2seq model is maximum around 20 (see Figure 5.8, left) as opposed to the ground truth
shortest path (see Figure 5.6, right). This analysis suggests that the seq-2-seq model has just learnt to
stop after taking 20 actions (or trajectory steps) irrespective of the environment and the natural language
instruction. This experiment also point towards the dataset bias where agent might achieve higher scores
irrespective of the visual modality.

Speaker-Follower Agent. Our re-implementation of the Speaker-Follower model [95] results in the same
scores as reported by the authors in their paper. The model achieves better scores in the validation-seen
environment but performs slightly worse in validation-seen and test environment in the order of decimals.
As seen in Table 5.5, the model achieves a success rate of 53.3% which is approx. 30 points higher than
RPA-Seq2Seq model (absolute terms).

One important observation is that the Speaker-Follower model is able to achieve a high OSR of 96% but
nearly 42 points lower SR (of 54%) (see Table 5.5). From this, we can clearly infer that for about 96%
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of the instructions, the agent is able to reach within 3m of the goal location but does not learn to stop
about 42% of them. Thus, degrading the performance in terms of the SR. This calls for the need of a
technique which helps the agent identify its proximity to the goal and predict a stop action. Further, from
Figure 5.5 (Speaker Follower), we can see that a majority of the instructions for val-seen and val-unseen
have navigation error less than 3 meters. In contrast to the Seq-2-Seq model, the Speaker Follower model
generalises to the unseen environment. Moreover, from Figure 5.7 and Figure 5.8, it is clear that the
Speaker-Follower model explores a lot before gaining in terms of the SR as compared to the actual ground
truth shortest path statistics (see Figure 5.6).

Examples: RPA-Seq2Seq versus Speaker-Follower. We compared the Recurrent Policy Agent (RPA)
with the Speaker-Follower Model, on the basis of a handful of randomly-sampled instructions from the
VLN-R2R dataset. We show two such instances, below:

(i) Go up the steps. Go into the house using the sliding doors on the left. Go straight until
you get to the fridge and wait there.
(ii) Walk forward down the hall, and take a left at the hall. Enter the bedroom at the end of
the hall and stop once you are on the rug next to the bed.

In the first example (i), the Speaker-Follower Model takes 540 steps, traversing 1268.22 meters, while the
ground-truth shortest path consists of 13.75 meters. For the same sample, the RPA-Seq2Seq model takes
12 steps with an trajectory length of 29.166 meters. In the second example (ii), The Speaker Follower
Model takes 674 steps, traversing 1676.967 meters, while the RPA-Seq2Seq takes around 15 steps to
explore the same area with trajectory length of 24.33 meters. These examples imply that models actually
get confused when they are not able to recognise objects, during the navigation. Below, we analyse the
Self-Monitoring Agent [181], which attempted to abate these issues in multimodal grounding.

Self-monitoring Agent. The Self-monitoring Agent (SMA; [181]) was one of the first instances of a new
class of VLN agents, which attempted multimodal alignment and progress-monitoring, through cross-
modal attention. The intention was to correct previously-faced issues in multimodal grounding and agents’
lack of understanding of when to stop execution. The grounding mechanisms introduced by this agent
make the method particularly suitable as a baseline, for helping to characterise the importance of each
modality on the VLN-R2R task. We do this through ablation: we inject visual feature noise, perturb
navigation directions, and perform structured token-substitution in the instructions, in order to understand
the baseline’s unimodal dependence and robustness characteristics.

In Table 5.6, we compare the unaltered baselines of Recurrent Policy Agent (RPA), Speaker-Follower
Agent (SFA), and Self-monitoring Agent (SMA) to perturbed SMA variants, on the Validation-Seen (1021
instructions) and Validation-Unseen (2349 instructions) splits of the VLN-R2R dataset. For visual
noise-injection (random) perturbations, we replace {noise-rate}% of the instructions in the
respective dataset split with random visual feature vectors: the goal is understand the dependence of the
model on the visual modality in the VLN-R2R task. For the visual noise-injection (average)
perturbation, we replace {noise-rate}% of the instructions with the average visual feature vector, com-
puted across the respective dataset split: the goal is to understand the extent to which the model’s action-
generation component has simply memorised the average action sequence learned from the training set;
if this is the case, we expect for average visual noise-injection to yield better results than the ran-
dom visual noise-injection. Additionally, we want to evaluate the strength of the model’s cross-modal
grounding mechanism, to understand the extent to which the agent actually pays attention to region ref-
erences; we want to empirically observe how much the model is affected, after making structured pertur-
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Figure 5.5: Plot showing the comparison between the navigation error histogram of val-seen and val-
unseen environments for RPA-Seq2Seq and Speaker-Follower models.

bations to its natural language input. One way to achieve this is by making substitutions to the region-
mentions in the instructions. For this, we consider the most frequently-mentioned regions in the VLN-
R2R dataset, namely, bedrooms and bathrooms; these are also the regions in which the agent is most fre-
quently spawned, during the initialisation of the simulated task environment. Indeed, the structured
region-substitution perturbation is of such that, for {noise-rate}% number of instructions that
include either bedroom or bathroom references, we substitute one for the other and measure downstream
task performance. Finally, we want to empirically evaluate the dependence agents have on the initial head-
ing, for downstream task performance; we use this as a proxy for determining the amount of exploration
agents perform, versus attempts to directly execute actions according to the natural language instructions.
For Navigable action noise, we perturb the first action taken by the agent, in {noise-rate}%
of the instructions, for the tasks whose ground-truth trajectories have a two-way branching decision; we
report downstream performance on Validation-Seen and Validation-Unseen.

Both expected and unexpected insights result from the above structured perturbations. In the case of
visual noise-injection (random), we see the expected degradation trend in SR and SPL; we
also confirm the increased (relative) performance from average-feature visual perturbations, compared to
random-feature visual perturbations. Regarding the structured region-substitution, how-
ever we observe that even substantially different noise rates actually have minimal effect on the down-
stream performance, suggesting that models could benefit from a language-encoding stream that better
captures the nuanced distinctions between the various regions. Considering the Navigable action
noise we also see that the substantially different noise rates actually have minimal effect — this time,
suggesting that the action-generation component (LSTM-based recurrent policy) may be overfitting, i.e.,
memorising the dataset average from training. Here, a higher-capacity policy architecture may be impor-
tant to better represent grounded actions.

Analysis of Visual Modality

Effectiveness of feature representation. We conducted several experiments comparing the effect of the
representation space. Speaker-Follower computes features on the training set using the Resnet architec-
tural backbone, a priori. Already, the authors are augmenting a direct sequential architecture (like VGG,
for example) with residual layers; we compare this against the architectures proposed in Huang [125] and
Lin [169], inspired by the competitive improvements from He et al. [113] and Hariharan [111]. Main-
taining the same number of training iterations and holding the post-feature-extraction process identical
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Figure 5.6: Plot showing the comparison between the trajectory length and the number of trajectory steps
histogram of val-seen and val-unseen environments for shortest path.

Figure 5.7: Plot showing the comparison between the trajectory length histogram of val-seen and val-
unseen environments for RPA-Seq2Seq and Speaker-Follower models.

Figure 5.8: Plot showing the comparison between the number of trajectory steps histogram of val-seen
and val-unseen environments for RPA-Seq2Seq and Speaker-Follower models.
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Table 5.4: Baseline re-implementation results comparison of the Recurrent Policy Agent (RPA), on the
Validation-Seen, Validation-Unseen and Test (Unseen) splits of the Vision-Language Navigation Room-
to-Room (VLN-R2R) dataset [9].

VALIDATION-SEEN VALIDATION-UNSEEN TEST (UNSEEN)

Method NE (↓) SR (↑) OSR (↑) NE (↓) SR (↑) OSR (↑) NE (↓) SR (↑) OSR (↑)

RPA [9] 11.33 38.60 52.90 7.81 21.80 28.40 7.85 20.40 26.60

RPA (ours) 11.59 37.84 51.86 8.03 21.03 29.08 7.86 20.27 26.45

Table 5.5: Baseline re-implementation results comparison of the Speaker-Follower Agent (SFA; [95]),
on the Validation-Seen, Validation-Unseen and Test (Unseen) splits of the Vision-Language Navigation
Room-to-Room (VLN-R2R) dataset [9].

VALIDATION-SEEN VALIDATION-UNSEEN TEST (UNSEEN)

Method NE (↓) SR (↑) OSR (↑) NE (↓) SR (↑) OSR (↑) NE (↓) SR (↑) OSR (↑)

SFA [95] 3.08 70.01 78.30 4.83 54.60 65.20 4.87 53.50 96

SFA (ours) 3.04 70.68 78.40 4.90 54.02 64.40 4.89 53.30 95.60

to the authors’ initial process, our results can be seen as a direct statement on the representation power
of image-based CNNs, especially in domain-adaptive settings. We relied on the default settings of the
learning algorithm after introducing hypercolumns and using reasonable pre-trained weights taken from
ImageNet. We measure in terms of convergence time and final performance. By evaluating on observed
and unobserved scenes, the experiment is designed to look at the generalizability of the underlying ar-
chitecture in addition to its power in-domain. Notably, He et al. [113] notices an improvement of about
5-10% in its similar adaption of these networks in the image segmentation domain, though the difference
of metric precludes direct comparison between the literature.

The Self-monitoring Agent naturally reports validation accuracy both in seen and unseen scenarios. We
report improvement with respect to training speed and final performance on the success-rate metric in
both scenarios. By default, and to maintain an injective comparison, Speaker-Follower measures over a
fixed number of iterations. We observed that both new architectures, DCN and FPN, converged at roughly
70% of the total number of iterations required, as opposed to requiring the full convergence horizon in
the original architecture. The success rate with Resnet50 was 70.1% on seen data and 54.6% on unseen
data. FPN performed slightly better, converging to 74.6% in seen data and 58.6% in unseen data. DCN
performed the best, adding additional improvement that brought the seen success rate to 76.1% and the
unseen rate to 60.0% (note these numbers are slightly worse than reported in the midterm report, in which
a bug in the evaluation script caused the number to be misreported). Directly, the results offer an initial
evidenciary basis of support towards the notion that denser representation can improve performance in
this domain; there is an apparent lack of support for the claim that this benefit is exaggerated in an unseen
case.

Visual Domain Invariance. One of the persistent challenges to reinforcement learning arises from its
inability to generalise well across different environments. The difference between the environments could
be due to different reasons such as simulation vs. real environments [278] or different types of real
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environments. With respect to the VLN task, we are interested in the real-to-real type transfer of policies.
Consider an example where a VLN agent trained on indoor scenes is deployed in an industrial warehouse
setup. The underlying distribution of the environment in the form of object types, object sizes, visual
appearance of the floor, walls or ceilings could be significantly different under the two settings. This leads
to a domain gap in the (vision based) observation space. Ideally, we would like to learn navigation policies
which are invariant to such domain gaps. To realise this objective, we experiment with both supervised
and unsupervised techniques. In parallel, we also experiment with state-of-the-art unsupervised methods
like β−VAE [36] which strive to learn disentangled latent representations of the observed scenes. Such
representations have been speculated to be useful for knowledge transfer tasks [155]. Our goal is to
estimate the optimal dimension of the latent representation which could allow sufficient disentanglement
of the covariates and, by extension, successful policy transfer across scenes.

Research Questions

We observed several challenges from the task and from the limitations of the prior art, based on our
extensive error analysis in Section 5.3.4. Because agents have only partial observability over the state
space (known transitions, unknown node locations), beyond just the adjacent navigable nodes, planning
based approaches are not feasible. Furthermore, we observed that prior approaches tend to overfit to the
common trajectories that were traversed in the training set, limiting generalisability to new layouts that
require novel maneuvers. Next, the sparse reward structure of the task severely limits progress-monitoring
capability, where even agents that attempt to assess task progress through multimodal grounding still face
challenges from the complexity of the visual context.

In this work, we hypothesised that similarities in the (sub-)instructions map to similarities in the sequences
of actions to execute in the environment. However, while we would ideally want to supervise action
trajectories at the sub-instruction level, this requires significant expert time (manual annotation effort)
and may not generalise naturally across scene layouts and environments. We want to evaluate the effect
of our agent’s ability to distil its experience into a set of behaviours (skills, primitives, maneuvers) to
sample from and compose at test-time; we also wanted to encourage the agent to learn skills in a way that
maximises its ability to generalise to unseen environments.

Results. We compare our approach with the baseline policy, Self-monitoring Agent (SMA) [181], on the
basis of VLN-R2R task success metrics (SR, SPL, OSR) and task error metrics (NE, TL, and distance-
from-goal3)—all on the Validation-Unseen split of the dataset (see figures 5.9 and 5.10). We observe
improvements to asymptotic performance on all success metrics and most error metrics.

5.3.5 Related Work
Vision, language, and navigation. Many works have pursued multimodal vision and language tasks,
such as in visual question-answering (VQA) [11, 129, 165] and in textual image-caption generation [292].
Borrowing from the human-robot interaction domain, recent tasks have included a spatial navigation com-
ponent to the problem [9]. This special pairing of language grounding with task-orientation is applicable
to our focus in this paper: the embodied agent shall receive complex text-based instructions and must
navigate a real-world (i.e., non-simulated) environment in real-time, to arrive at a goal. Mei et al. [187]
look at neural mapping of instructions to sequence of actions, along with input from bag-of-word features
extracted from the visual image. Robot navigation, conditioned on text-based instructions, has been the

3Distance-from-goal is defined as the stopped distance, away from the goal location, on episode completion.
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focus of some recent work [68, 195], but only in simulated environments. Our task pertains to real-world
environments, where: (1) we must deal with an arbitrary set of objects in each scene with complex human-
curated language instructions, rather than templated queries as in Chaplot et al. [45], Misra et al. [195];
and (2) we must develop an agent to deal with a partially-observable environment, where only the adjacent
nodes in the navigation graph are seen, compared to contemporary environments wherein knowledge of
the entire state-space is given a priori, as in Das et al. [68], Wu et al. [308]. Chaplot et al. [45] proposed
an end-to-end trainable architecture for task-oriented language grounding that combines image and text
representation and learns a policy on top of this. These approaches mainly deal with synthetic environ-
ments and relatively short language instructions while our task is based on real-world environments with
lengthy natural language instructions (∼29 average word count).

Pre-existing work on the VLN-R2R task. Anderson et al. [9] introduced the R2R-VLN task and pro-
posed the first baseline. They proposed to model the agent with a recurrent policy, using an LSTM-
based sequence-to-sequence (Seq2Seq) encoder-decoder architecture, with an attention mechanism. More
sophosticated solutions involved posing the R2R-VLN task as a trajectory search problem, wherein the
agent needs to find the best trajectory in the environment to navigate from the start location to the goal
location, given the natural language instruction [95]. Towards this problem, Fried et al. [95] proposed
a model assembly, consisting of two modules: instruction intrepretation module (follower, which maps
different instructions to actions sequences) and an instruction generation module (speaker, which maps
action sequences to instructions). The proposed speaker module is leveraged to augment data during train-
ing and is also used to perform pragmatic inference to handle ambiguous situations. Inspired by Weber
et al. [301], Wang et al. [299] propose an alternative solution to the R2R-VLN task, by combining model-
free and model-based reinforcement learning. Their core contribution is the Look-Ahead module, which
circumvents the issue of having a partially-observable state space, by estimating the cumulative sum of
future rewards – given a trajectory rollout, based on an implicit transition model that is learned exclusively
from the visual context. Due to the complexity of the visual scenes, however, their model suffers from
generalisability problems – where the model experiences a significant performance gap across seen and
unseen validation splits. Ma et al. [181] attempt to rectify this generalisability issue by combining visual
and text grounding, in order to maintain an understanding of which part of instruction has been and is yet
to be executed, and choosing where to go based on images from the navigable paths seen. In addition
to cross-modal grounding between the textual and visual contexts, methods from the related domains of
scene-graph reasoning [208] and multi-task learning [10] suggest that further conditioning the multimodal
representation on an available (/predicted) navigation trajectory graph allows the model to inherit valuable
global information about the interdependencies across the state distribution. Indeed, we hypothesise that
the nature of the R2R-VLN task lends itself well to visual and textual co-grounding, based on information
reused from previously-executed state trajectories.

Learning robot skills. Recent work in robot learning considers the task of learning behaviour primitives
(or skills), for improved generalisability to new tasks. Sermanet et al. [255] provide an algorithm that
enables an agent to learn manipulation tasks (e.g., pouring) from multi-perspective human demonstrations
and to directly imitate human pose. The authors achieve this by learning an embedding space, using
triplet loss – organises the latent space according to groups of similar observations. The intuition is
that various frames that are taken from expert task demonstrations are projected into a lower-dimension
embedding space representation. Within the representation, the model is encouraged to repel examples
that are different (negative example) from a given sample (anchor) and to attract examples that are similar
(positive example). Whereas similar-looking observations are clustered in the learned representation, there
is no explicit constraint in their objective for making the learned space reusable or versatile; moreover, the
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representation only captures behaviours from one modality (visual context), without jointly representing
other modalities (textual or navigational context), as VLN would require. Moreover, their model requires
that the observation sequences that are projected into the same representation sub-space also have ground-
truth time-synchronisation, which is impractical in the context of VLN. Hausman et al. [112] provide
an algorithm for learning an embedding space that represents distributions of solutions for a set of robot
manipulation tasks; this would enable more efficient task transfer, as an agent would be able to solve a
control problem in the more compact and information-dense embedding space as opposed to exploring in
the raw action space. The authors discuss their contribution in the context of hierarchical (i.e., multi-task),
entropy-regularised, off-policy reinforcement learning. The focus of this work is primarily on encouraging
an agent to implicitly represent a variety of solutions for the same or similar tasks and to also learn across
this distribution of solutions. However, the tasks that are highlighted in this work are quite simple and
are enumerated by simple one-hot encodings of numerical task IDs, whereas VLN tasks are expressed
through natural language instruction, which are significantly more complex and ambiguous. Moreover,
the control tasks discussed in this work are only in the context of robot manipulation, as opposed to
navigation trajectory-optimisation as in VLN.

Deep RL for natural language navigation. Deep Reinforcement Learning is often used in Vision-and-
Language Navigation tasks. Mei et al. [187], Mirowski et al. [194] proposed a sequence-to-sequence
model to map the language to navigation actions. Misra et al. [195] formulate navigation as a sequential
decision-making process, in a contextual bandit setting. In the same environment, Xiong et al. [312] pro-
pose a scheduled training mechanism which yields more efficient exploration and achieves better results.
Fried et al. [95] proposed a speaker-follower model, where a speaker model encodes language instructions
into action sequences while a follower model estimates the probability of a language instruction given the
action sequence. This approach has been optimized to increase success rate but this is achieved at the
cost of significantly longer trajectory lengths due to the exploration of possible candidate paths. For the
task we are working with, most approaches proposed so far are based on supervised learning Fried et al.
[95]. While these approaches achieve very good success rates, they have the issue of exorbitant trajectory
lengths. We believe formulating our task as a motion-planning under uncertainty problem with multi-
modal reward-shapping that penalizes large trajectory lengths can counter this superfluous exploration.
Wang et al. [299] proposed planned-ahead hybrid reinforcement learning model that combines model-free
and model-based reinforcement learning to bring together the best of both worlds. Our approach, on the
other hand, is completely model-free and is based on the popular on-policy policy-gradient algorithm A3C
[197]. While Chaplot et al. [45] work with a similar problem in a synthetic environment and give their
agent a positive reward only upon successful completion of task (a very sparse reward), this quickly be-
comes impractical for a large state-space. Robot navigation, conditioned on text-based instructions, has
been the focus of some recent work [45, 68, 195], but only in simulated environments. Our task pertains
to real-world environments. Unlike Chaplot et al. [45], Misra et al. [195], we do not rely on templated
queries. In contrast to Das et al. [68], Wu et al. [308], our method is applicable to environments where only
adjacent nodes on navigation graph are seen (as opposed to having knowledge of the entire map).
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Figure 5.9: Learning with primitives: AVVA-agent main experimental results (1/2).

71



Figure 5.10: Learning with primitives: AVVA-agent main experimental results (2/2).
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Table 5.6: Results of noise-injection experiments with the Self-Monitoring Agent (SMA; [181]) baseline,
on the VLN-R2R task ([9]); the goal is to understand the unimodal dependence and robustness char-
acteristics of the class of agents that perform multimodal alignment and progress-monitoring, through
cross-modal attention.

Standard Baselines

VALIDATION-SEEN VALIDATION-UNSEEN

Method Noise Rate SR (↑) OSR (↑) SPL (↑) NE (↓) TL (↓) SR (↑) OSR (↑) SPL (↑) NE (↓) TL (↓)

Random 0.0 1.58 0.67 16.86 6.75 6.94 2.04 0.87 15.20 6.64 0.0
RPA [9] 0.0 1.58 0.67 16.86 6.75 6.94 2.04 0.87 15.20 6.64 0.0
SFA [95] 0.0 1.58 0.67 16.86 6.75 6.94 2.04 0.87 15.20 6.64 0.0
SMA [181] 0.0 1.58 0.67 16.86 6.75 6.94 2.04 0.87 15.20 6.64 0.0

Visual Noise-injection (random)

VALIDATION-SEEN VALIDATION-UNSEEN

Method Noise Rate SR (↑) OSR (↑) SPL (↑) NE (↓) TL (↓) SR (↑) OSR (↑) SPL (↑) NE (↓) TL (↓)

SMA (ours) 10% 0.5814 0.6725 0.5228 4.10 12.45 0.3883 0.5053 0.2859 6.16 15.23
SMA (ours) 50% 0.3392 0.4196 0.2840 6.43 13.69 0.2205 0.3044 0.16 7.61 15.46

Visual Noise-injection (average)

VALIDATION-SEEN VALIDATION-UNSEEN

Method Noise Rate SR (↑) OSR (↑) SPL (↑) NE (↓) TL (↓) SR (↑) OSR (↑) SPL (↑) NE (↓) TL (↓)

SMA (ours) 10% 0.6402 0.7390 0.56 3.52 12.71 0.4253 0.5394 0.3 5.97 16.03
SMA (ours) 50% 0.5059 0.6686 0.37 4.99 16.21 0.3580 0.5095 0.2251 6.68 17.47
SMA (ours) 100% 0.2666 0.5009 0.135 8.11 20.011 0.2337 0.4525 0.122 8.23 20

Structured region-substitution

VALIDATION-SEEN VALIDATION-UNSEEN

Method Noise Rate SR (↑) OSR (↑) SPL (↑) NE (↓) TL (↓) SR (↑) OSR (↑) SPL (↑) NE (↓) TL (↓)

SMA (ours) ∼10% 0.6422 0.7333 0.582 3.71 11.97 0.4282 0.54 0.31 5.94 15.49
SMA (ours) ∼25% 0.6294 0.7353 0.5667 3.76 12.07 0.4125 0.5262 0.2966 5.98 15.56
SMA (ours) ∼50% 0.598 0.7019 0.54 4.18 12.03 0.404 0.52 0.293 6.187 15.64

Navigable action noise

VALIDATION-SEEN VALIDATION-UNSEEN

Method Noise Rate SR (↑) OSR (↑) SPL (↑) NE (↓) TL (↓) SR (↑) OSR (↑) SPL (↑) NE (↓) TL (↓)

SMA (ours) ∼5% 0.6529 0.7422 0.59 3.59 11.94 0.4274 0.54 0.314 5.88 15.39
SMA (ours) ∼15% 0.6471 0.7373 0.585 3.7 11.89 0.4168 0.5334 0.3068 5.98 15.41
SMA (ours) ∼30% 0.6275 0.7206 0.5677 3.89 12.089 0.4032 0.5126 0.295 6.24 15.45
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5.4 Conclusion
This chapter covered the use of priors, primitives, and skills, in the context of robot learning for navigation
tasks. We were reminded that various approaches pursue solutions to the challenges in goal-directed and
instruction-following tasks, such as: partial observability over the state space, label-independent variation
in visual scene rendering, sparse reward structures over the span of an episode, and biased coverage in
the provided expert demonstrations. Despite some recent advances—e.g., through pragmatic inference,
back-translation, and progress-monitoring—methods still struggle to ground agents’ actions to domain
invariant context and to effectively align information from multiple modalities.

In the first section, we introduce the use of knowledge-driven scene priors for semantic audio-visual
embodied navigation: we combine semantic information from our novel knowledge graph that encodes
object-region relations, spatial knowledge from dual Graph Convolutional Networks, and background
knowledge from a series of pre-training tasks—all within a reinforcement learning framework for audio-
visual navigation. We define a new audio-visual navigation sub-task, where agents are evaluated on novel
sounding objects, as opposed to unheard clips of known objects; and we show improvements over strong
baselines in generalisation to unseen regions and novel sounding objects, within the Habitat-Matterport3D
simulation environment, under the SoundSpaces task. We recognise future improvements of our work,
e.g., in the selection of the knowledge resource used for encouraging scene priors in the semantic audio-
visual navigation task: we would consider constructing a knowledge resource that characterises sound-
object relations, more befitting of pre-training the acoustic GCN stream.

In the second section, we propose a framework for distilling a navigation agent’s experience into a repre-
sentation of reusable maneuvers, which is learned alongside the downstream navigation tasks, where the
high-frequency and label-independent variation in the instructions and visual context are reduced. Our
approach encourages the agent to generalise reusable navigation maneuvers on the basis of similarities
across high-level textual instructions, conditioned on past actions, in order to leverage experience in exe-
cuting familiar sub-commands from new instructions. We achieve this association through a method called
auxiliary variable variational approximation, which allows us to introduce a latent variable for estimating
the conditional posterior distribution over all observations and executed trajectories (otherwise intractable
for most distributions of interest). The agent then learns how to compose samples from this skill space
and couple them with conventional multimodal co-grounding mechanisms, through policy refinement, for
improved generalisability and downstream performance. e perform many experiments to analyse the vi-
sual and textual modalities, individually, and we show our full model’s performance on the overall VLN
task, against strong baselines. We reserve additional language modality exploration (e.g., hierarchical
co-attention) for future work. We would also explore different policy network structures (e.g., mixture of
experts), possibly enabling generalisation to other embodied vision-language planning tasks.
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Chapter 6

Learning with Distribution-awareness

for grounded prediction from priors

6.1 Motivation
The availability of expert demonstrations and simulation environments has enabled recent advances in
autonomous driving, where agents are trained to forecast the future actions of other agents on the road
and/or to generate plans concerning their own behaviour, conditioned on their scene context. However,
due to partial observability over the goals and intentions of other agents, as well as the visual complexity
in these dynamical scenes, directly querying the posterior distribution over future ego-agent trajectories
remains a challenging problem. Conventionally, models have relied on imitation-based objectives, in order
to inherit the experience captured by expert demonstrations. However, exclusively relying on imitation-
based objectives can limit agents’ generalisability to novel scenarios that are outside the support of the
training distribution. Furthermore, handling the training instances as i.i.d. samples can leave the model
sensitive to small variations across driving scenes and can, therefore, lead to causal confusion in the
downstream predictions.

This challenge of generalisability has thus became a common theme: How can we effectively utilise the
expert’s prior experience (e.g., in the form of expert demonstrations), while also achieving generalisability
to novel scenarios? Some recent works from the trajectory forecasting community formulate a dual-
objective optimisation, coupling an imitation objective with a likelihood density estimation term [219,
237, 239], arguing that the two ideals of using prior expert experience and generalising can be unified. A
common issue with this formulation is that models are incentivised to trade-off the two objectives, rather
than inherit their individual benefits. Samples from the likelihood density may not be sufficiently diverse,
if the expert demonstrations did not provide sufficient coverage over the modes in the distribution over
all possible predictions. Furthermore, predictions may not be admissible, discussed by Park et al. [219],
without some bias to adhere to, e.g., known physical constraints, as in Verlet integration [290] or classical
control.

In Section 6.3, we propose a model that fully synthesises multiple input signals from the multimodal
world—the environment’s scene context and interactions between multiple surrounding agents—to best
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model all diverse and admissible trajectories. We offer new metrics to evaluate the diversity of trajectory
predictions, while ensuring admissibility of each trajectory. Based on our new metrics as well as those
used in prior work, we compare our model with strong baselines and ablations across two datasets and
show a 35% performance-improvement over the state-of-the-art.

In Section 6.3, we draw inspiration from the trajectory forecasting community, and we frame a learning-
to-drive task as goal prediction, model-based planning, and trajectory refinement. First, we define a
series of module primitives, based on insights about the decomposable nature of the environment. We
thereby assign modules with the aforementioned specialised roles, improving both the tractability of their
respective tasks and their complementarity towards the shared downstream task. Next, we pursue model
generalisability by coupling an imitation prior objective with a goal likelihood term, enabling the agent
to leverage expert knowledge, while modelling more diverse modes in the underlying distribution over all
trajectory futures. Next, we ground candidate trajectory predictions on conformant model-based vehicle
kinematics, while learning to prune the predictions that are spurious. Finally, we provide both qualitative
and quantitative analysis on multiple benchmarks under the CARLA simulation environment, achieving
new state-of-the-art results.

6.2 Diverse and Admissible Trajectory Forecasting through
Multimodal Context Understanding

Trajectory forecasting is an important problem in autonomous driving scenarios, where an autonomous
vehicle must anticipate the behaviour of other surrounding agents (e.g., vehicles and pedestrians), within
a dynamically-changing environment, in order to plan its own actions accordingly. However, since none
of the goals, contexts, or interactions are directly observed, predicting future trajectories is a challenging
problem [239, 280, 331]. It necessitates both the estimation of plausible agent actions based on observ-
able environmental features (e.g., road structures, agent interactions) as well as the simulation of agents’
hypothetical future trajectories toward their intended goals. In realistic embodied environments, there are
multiple plausible sequences of actions that an agent can take to reach its intended goals. However, each
trajectory must obey physical constraints (e.g., Newton’s laws) and stay in the statistically plausible lo-
cations in the environment (i.e., the drivable areas). In this paper, we refer to these attributes as diverse
and admissible trajectories, respectively, and illustrate some examples in Fig. 6.1. Achieving diverse and
admissible trajectory forecasting for autonomous driving allows each agent to make the best predictions,
by taking into account all valid actions that other agents could take. In addition, it allows each agent to
assess the surrounding situation to ensure safety and prevent accidents.

To predict a diverse set of admissible trajectories, each agent must understand its multimodal environ-
ment, consisting of the scene context as well as interactions between multiple surrounding agents. While
the scene context gives direct information about regions an agent can drive in, observation of other agents’
trajectories can provide additional environmental context. For example, conceptual constraints over the
agent’s motion (e.g., traffic laws, road etiquette) may be inferred from the motion of the surrounding
agents. Therefore, the model’s ability to extract and meaningfully represent multimodal cues is cru-
cial.

Concurrently, another challenging aspect of trajectory forecasting lies in encouraging models to make
diverse predictions about future trajectories. However, due to high-costs in data collection, most pub-
lic datasets are not explicitly annotated for multiple future trajectories [44, 149, 184]. Vanilla predictive
models that fit future trajectories based only on the existing annotations would severely underestimate
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Figure 6.1: Diverse and admissible trajectory forecasting. Based on the existing context, there can be
multiple valid hypothetical futures. Therefore, the predicted future trajectory distribution should have
multiple modes representing multiple plausible goals (diversity) while at the same time assigning low
density to the implausible trajectories that either conflict with the other agents or are outside valid drivable
areas (admissibility).

the diversity of all possible trajectories. In addition, measuring the quality of predictions using existing
annotation-based measures (e.g., displacement errors [246]) does not faithfully score diverse and admis-
sible trajectory predictions.

As a step towards multimodal context understanding for diverse trajectory forecasting, our contribution in
this section is four-fold.

1. We propose a model that addresses the lack of diversity and admissibility for trajectory fore-
casting through the understanding of the multimodal environmental context. As illustrated in
Fig. 6.2, our approach explicitly models agent-to-agent and agent-to-scene interactions through
“self-attention” [288] among multiple agent trajectory encodings, and a conditional trajectory-
aware “visual attention” [313] over the map, respectively. Together with a constrained flow-based
decoding trained with symmetric cross-entropy [237], this allows our model to generate diverse and
admissible trajectory candidates by fully integrating all environmental contexts.

2. We propose a new approximation of the true trajectory distribution based on a differentiable drivable-
area map. This approximation is used when evaluating our posterior likelihood. Previous approx-
imation methods [237] utilise ground-truth (GT) trajectories to model the real distribution. How-
ever, only one GT annotation is available per agent. Our approximation method does not rely on
GT samples and empirically facilitates greater diversity in the predicted trajectories while ensuring
admissibility.

3. We propose a new metric, Drivable Area Occupancy (DAO), to evaluate the diversity of the tra-
jectory predictions while ensuring admissibility. This new metric utilises the drivable-area map,
without requiring multiple annotations of trajectory futures. We couple this new metric with stan-
dard metrics from prior art, such as Average Displacement Error (ADE) and Final Displacement
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Figure 6.2: Overview of our multimodal attention approach. Best viewed in color. The cross-agent
attention module (left) generates an attention map, based on the encoded trajectories of nearby agents. The
agent-to-scene attention model (right) generates an attention map over the scene, based on the posterior
approximations.

Error (FDE), to compare our model with existing baselines.

4. We provide a programmatic set of procedures to convert the NUSCENES [37] tracking data to a
new dataset for trajectory forecasting. The procedure includes trajectory association, smoothing,
imputation, and generation of the drivable-area features. These features are used for approximation
of the real trajectory distribution and for calculating our new metrics. We set new state-of-the-art
performance for multi-agent trajectory forecasting, wherein our model enjoys a 35% performance-
improvement over the current baselines.

6.2.1 Problem Formulation
We define the terminology that constitutes our problem. An agent is a dynamic on-road object that is
represented as a sequence of 2D coordinates, i.e., a spatial position over time. We denote the position for
agent a at time t as Sat ∈ R2. By writing Sat1:t2 , we represent the sequence of its positions, between t1 and
t2. Sa (bold) to denote full sequence of positions for agent a. We set t = 0 as present, t ≤ 0 as past, and
t > 0 as prediction or simply, pred. We often split the sequence into two parts, with respect to the past
and pred sub-sequences: we denote these as Sapast and Sapred, respectively. A scene is a high-dimensional
structured data that describes the present environmental context around the agent. For this, we utilise a
bird’s eye view (BEV) array, denoted Φ ∈ RH×W×C , where H and W are the sizes of field around the
agent and C is the channel size of the scene, where each channel consists of distinct information such as
the drivable area, position, and distance encodings.

Combining the scene and all agent trajectories yields an episode. In an episode X , there is a variable
A number of agents, each of which plays for different time periods from between the variable start time
tas and final time taf . As a result, the episode is the set {S1,S2, ...,SA,Φ} where Sa ≡ Satas :taf

. In the

combined setting, we often use bold S ≡ {S1,S2, ...,SA} to denote the agents subset of the episode X
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and write Spast or Spred to represent the set of past or predicted segments of A agents. Since Spast and
Φ serve as the observed information cue used for the prediction, they are often called observation simply
being denoted as O ≡ {Spast,Φ}. Finally, we may add the subscript n = 1, 2, ..., N to all the notations,
such asXn,On, Φn, Sat,n, Sat1:t2,n, San, orSn to distinguish the information from different episodes.

We define diversity to be the level of coverage in a model’s predictions, across modes in a distribution
representing all possible future trajectories. We denote the model distribution as q(Spred|O) and want the
model to generate K candidates or hypotheses, denoted as Ŝpred ≡ {Ŝ1

pred, Ŝ
2
pred, ..., Ŝ

K
pred}. We interpret

Ŝpred as a set of independent hypotheses that might have happened, given the same observation. Instead
of generating samples from one mode, which we refer to as perturbation, we expect to build a model that
generates multiple hypotheses that cover multiple modes.

Finally, we acknowledge that encouraging a model’s predictions to be diverse, alone, is not sufficient
for accurate and safe output; the model predictions should lie in the support of the real future trajectory
distribution p, i.e., predictions should be admissible. Given the observation O, it is futile to predict
samples around regions that are physically and statistically implausible to reach. In conclusion, our task
is diverse and admissible multi-agent motion forecasting by modelling multiple modes in the posterior
distribution over the pred trajectories, given the observation: p(Spred|O).

6.2.2 Admissible Prediction from Diverse Modes
We hypothesise that future trajectories of human drivers should follow distributions of multiple modes
conditioned on the scene context and social behaviours of agents. Therefore, we design our model to
explicitly capture both agent-to-scene interactions and cross-agent interactions with respect to each agent
of interest. Through our objective function, we explicitly encourage the model to learn a distribution with
multiple modes by taking into account past trajectories and attended scene context.

As illustrated in Fig. 6.3, our model consists of an encoder-decoder architecture. The encoder has two
modules to capture cross-agent interactions and existing trajectories. The decoder has three modules: the
local scene extractor, the agent-to-scene interaction module, and the flow-based decoding module. Please
refer to Fig. 6.4 for a detailed illustration of our main proposed modules.

The encoder extracts past trajectory encoding for each agent, then calculates and fuses the interaction
features among the agents. Given a set of past trajectories Spast in an observation O, we encode each
agent’s past trajectory Sapast ∈ Spast by feeding it to the agent trajectory encoding module. The module
utilises a recurrent neural network (RNN) to summarise the past trajectory. It iterates through the past
trajectory with Eq. (6.1) and its final output ha0 (at present t = 0) is utilised as the agent embedding. Col-
lecting the embeddings for all agents, we get h0 ≡ {h1

0, h
2
0, ..., h

A
0 }. We then pass h0 to the cross-agent

interaction module, depicted in Fig. 6.4(a), which uses self-attention [288] to generate a cross-agent rep-
resentation. We linearly transform each agent embedding to get a query-key-value triple, (Qa,Ka, V a).
Next, we calculate the interaction features through self-attention with ATTENTION1(Qa,K,V ), where
K,V ≡ {K1, ...,Ka}, {V 1, ..., V a}. Finally, the fused agent encoding h̃ ≡ {h̃1, h̃2, ..., h̃A} is calcu-
lated by adding the features to each agent embedding (see Eq. (6.2) and Fig. 6.4(b)).

hat = RNN1(Sat−1, h
a
t−1) (6.1)

h̃a = ha0 + ATTENTION1(Qa,K,V ) (6.2)

The decoder takes the final encodings h̃ and the scene context Φ as inputs. We first extract the scene
feature through a ConvNet, Γ = CNN(Φ). The decoder then generates the future position Ŝat , in an auto-
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Figure 6.3: Model Architecture. The model consists of an encoder-decoder architecture: the encoder takes
as past agent trajectories and calculates cross-agent attention, and the flow-based decoder predicts future
trajectories by attending scene contexts for each decoding step.

regressive manner, while referring to both the local scene context γat and the global scene context γ̃at from
the agent-to-scene interaction module. The local scene feature γat is gathered using bilinear interpolation
on 2 × 2 crop of Γ corresponding to the physical position Ŝat−1. Then, the feature is concatenated with
the encoding h̃a and processed thorough fully-connected layers to make the “local context” lcat . We call
this part the local scene extractor. The global scene feature γ̃at is calculated using visual-attention [313]
to generate weighted scene features, as shown in Fig. 6.4(c). To calculate the attention, we first make
the encoding of the previous outputs Ŝa1:t−1, using a RNN in Eq. (6.3), whose output—ĥat—is used to
calculate the pixel-wise attention at each decoding step, for each agent; the global scene feature γ̃at (1D
vector) is gathered by pooling (pixel-wise sum) the attended feature map as described in Eq. (6.4) and
Fig. 6.4(d). Finally, γ̃at , ĥat , and lcat are concatenated to make the “global context” gcat in Eq. (6.5).

ĥat = RNN2(Ŝa1:t−1, ĥ
a
t−1) (6.3)

γ̃at = POOL(Γ� ATTENTION2(ĥat ,Γ)) (6.4)

gcat = CONCAT(γ̃at , ĥ
a
t , lc

a
t ) (6.5)

The flow-based decoding module generates the future position Ŝat . The module utilises Normalizing
Flow [235], a generative modelling method based on a bijective and differentiable mapping. In particular,
we choose an auto-regressive design [141, 237, 239]. We use fully-connected layers to project the global
context gcat down to a 6-dimensional vector, and we split it into a vector µ̂t ∈ R2 and a matrix σ̂t ∈ R2×2.
Next, we transform a standard Gaussian sample zt ∼ N (0, I) ∈ R2, by the bijective and differentiable
mapping g(zt;µt, σt) = σt · zt + µt = Ŝat . The “hats” in µ̂t and σ̂t are removed, in order to note that they
went through the following details. To ensure the positive definiteness, we apply matrix exponential σt =
expm(σ̂t) using the formula in [24]. Also, to improve the the physical admissibility of the prediction, we
apply the constraint µt = Ŝat−1 +α(Ŝat−1− Ŝat−2) + µ̂t, where α is a model degradation coefficient. When
α = 1, the constraint is equivalent to Verlet integration [290], used in some previous works [237, 239],
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Figure 6.4: (a) Cross-agent attention. Interaction between each agent is modelled using attention, (b)
Cross-agent interaction module. Agent trajectory encodings are corrected via cross-agent attention. (c)
Visual attention. Agent-specific scene features are calculated using attention. (d) Agent-to-scene interac-
tion module. Pooled vectors are retrieved from pooling layer after visual attention.

which gives the a perfect constant velocity (CV) prior to the model. However, we found empirically that,
the model easily overfits to the dataset when the the perfect CV prior is used, and perturbing the CV prior
model with α prevents overfitting. We use α = 0.5 in our model. Iterating the auto-regressive decoding
procedure, we get the future trajectory prediction Ŝapred for each agent. Note that by sampling multiple

instances of zpred, we can generate the multiple future Ŝk,apred.

Drivable Area Map and Approximating P

In this work, we generate a binary mask feature of size RH×W that denotes the drivable spaces around the
agents. We call the feature drivable area map and utilise it for three different purposes: 1) deriving the
approximated true trajectory distribution p̃, 2) calculating the diversity and admissibility measures, and 3)
building the scene context input Φ for the model.

Particularly, p̃ is a key component for the evaluation of H(q, p) in our training objective, Eq. (6.7). Since
H(q, p) penalises the predicted trajectories with respect to the real distribution, the approximation should
not underestimate some region of the real distribution, or diversity in the prediction could be erroneously
penalised. Previous works on deriving p̃ utilised the ground-truth (GT) trajectories to model the true
distribution p [237]. However, there is often only one GT annotation available in datasets and the ap-
proximation based on the GT might severely assign low probability around some region in p. To cope
with such problem in the previous methods, we propose a new method to derive p̃ using the drivable area.
Our p̃ is defined based on the assumptions that every location on the drivable-area is equally probable for
future trajectories to appear in and that the locations on non-drivable area are increasingly less probable,
proportional to the distance from the drivable area. To derive it, we first apply the distance transform on
the drivable area map, to encode the distance on each non-drivable location. Lastly, we apply softmax
over the entire map to constitute it as a probability distribution. The visualisation of the p̃ are available
in Fig. 6.8. Procedures regarding the diversity and admissibility measure will be discussed in Section
6.2.5.
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(a) (b)

Figure 6.5: (a) Model architecture with Agent pose embeddings, cropped image and positional embed-
dings fused for input to the transformer encoder and Flow based decoding for producing T future poses.
This reduced architecture can be useful for Trajectory prediction for embedded platforms in Robotic ap-
plications. (b) Depiction of Patch croppings produced from the BEV image. The different colours indicate
different Agents in the scene. And the coloured area is a fixedK×K pixel size for each such crops. These
patches are then again cropped into 16 × 16 patches and linearly projected to produce projections at the
input of the transformer model.

6.2.3 Social Encoding through Local Self-attention

To encode the social factor between A agents, we combine their individual past-trajectory encodings,
through consecutive additive and multiplicative fusion [173], to generate A embeddings. For each of
these agent embeddings, t past time-step poses are raised to N -dimensional vectors and are combined
with patch and positional embeddings, for each time-step. In this way, we generate an N × t-dimensional
input for the transformer model.

Let S ≡
{
S1, S2, . . . , SA

}
denote the set of agent trajectories for A agents in a given scene, with Sa

being the concatenation of past trajectory segment Sapast and ground-truth future trajectory segment Safuture.
Here, a single step is indicated by Sat ∈ R2, for agent a and time-step t. Thus, Spast is the collection of
past trajectory segments for all agents, and the observation set of all 3-second past trajectories is denoted
by O ≡ {Spast,Φ,φ}, where Φ is a scene embedding [219] and φ is the positional embedding [288].
We want to model the posterior distribution over future trajectories, for all agents in the scene snapshot,
q(Spred|O).

Past agent trajectories are projected to a (higher) d-dimensional space, in preparation for input to the
transformer, i.e., eaobs = MLPproj(Sa). For encoding the contextual information, we extract an m2 pixel
neighbourhood image patch, centered around each vehicle, from the birds-eye-view (BEV) map of the
scene: eapatch. The BEV map contains coloured objects and superimposed LiDAR points. Figure 6.5(b)
illustrates the agent-wise pixel neighbourhood, which capture local contextual information.

We perform sine-distance positional encoding of the map representation, which is then added to each
agent’s flattened sequence of patch vectors. We then calculate a fused representation, combining the local
environment information and state history, as a Hadamard product between each agent’s past trajectory
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embedding and its corresponding scene context [173]:

eafused = eaobs � [ENCpos(e
a
map) + FLATTEN(eapatch)]

These fused representations are fed to a standard transformer encoder, which contains alternating layers
of multi-headed self-attention and MLP blocks. The output is a set of latent codes – one for each agent:
calatent = ENCtr(eafused), with calatent ∈ RD×A with hyperparameter D.

The normalizing-flow-based generative decoder features an implicit auto-regressive design and performs
a differentiable and bijective mapping, from the latent codes to the set of agent-wise trajectory predictions
[219, 239] (see figure 6.4(a) for illustration): gθ(zt;µt, σt) = σt · zt + µt = Sapred,t, with zt ∼ N (0, I) ∈
R2. Here, θ is the set of model parameters and µt ∈ R2 and σt ∈ R2×2 are projected parameters. Iterating
through time, we get the predictive trajectory Sapred for each agent. By sampling multiple instances of
zpred and mapping them to trajectories, we get various hypotheses of future.

6.2.4 Learning and Optimisation
Our model learns to predict the joint distribution over the future trajectories of the agents present in a
given episode. In detail, we focus on predicting the conditional distribution p(Spred|O) where the future
trajectory Spred depends on the set of observations of the past trajectories and the scene context O ≡
{Spast,Φ} given an episode. As described in the previous sections, our model utilizes a bijective and
differentiable mapping, parameterized by a learnable parameter θ, Sapred = fθ(z ∼ q0;O) between the
future trajectory and a Gaussian prior q0 to generate and evaluate the future trajectory. Such technique,
commonly aliased ‘normalizing flow’, enables our model not only to generate multiple candidate samples
of future, but also to evaluate the ground-truth trajectory according to the predicted distribution qθ by
using the change-of-variable formula in Eq. (6.6).

qθ(S
a
pred|O) = q0(f−1(Sapred))

∣∣det(∂Sapred/∂(g−1(Sapred))
∣∣−1 (6.6)

As a result, our model can simply learn to close the discrepancy between the predicting distribution qθ
and the real world distribution p. In particular, we choose to minimise the combination of forward and
reverse cross-entropy H(p, q) and H(q, p), also known as ‘symmetric cross-entropy’, between the two
distributions in Eq. (6.7) by optimising our model parameter θ. Minimising symmetric cross-entropy
allows model to learn generating diverse and plausible trajectory, which is mainly used in [237].

min
θ
H(p, qθ) + βH(qθ, p) (6.7)

To realise this, we gather the ground-truth trajectories S and scene context Φ from the dataset D that
we assume to well reflect the real distribution p, then optimise the model parameter θ such that 1) the
density of the ground-truth future trajectories on top of the predicted distribution qθ is maximised and 2)
the density of the predicted samples on top of the real distribution p is also maximised as described in
Eq.( 6.8).

min
θ

ES,Φ∼D

[
ESapred∈S − log qθ(S

a
pred|O) + β EŜapred∼qθ

− log p(Ŝapred|O)

]
(6.8)

Such symmetric combination of the two cross-entropy guides our model to predict qθ that covers all
plausible modes in the future trajectory while penalising the bad samples that are less likely under the real
distribution p. However, one major problem inherent in this setting is that we cannot actually evaluate p
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in practice. To cope with the problem, several ways of approximating p by using a separate model p̃ have
been suggested so far [237]. In this paper, we propose a new way of modelling p̃ which approximates p
using a discrete grid map derived from the differentiable drivable area map in our dataset which considers
every drivable region around the ego-vehicle to be equally probable that the future trajectories are placed.
Applying bilinear interpolation around each prediction time-step in the generative sample Ŝapred, we get
the evaluation p̃(Ŝapred|O) that is differentiable with respect to the model parameter θ. Our overall loss
function is:

1∑N
n=1A(n)

N∑
n=1

A(n)∑
a=1

[
− log qθ(S

a
pred,n|On) + β

1

K

K∑
k=1

− log p(Ŝa,kpred,n|On)

]
, (6.9)

where N is the batch size, A(n) is the number of total agents in nth episode, and K is the number
of candidates to sample per agent. Since this objective is fully differentiable with respect to the model
parameter θ, we train our model using Adam optimiser [138], a popular variant of the stochastic gradient
descent algorithm. We also use adaptive learning rate scheduling and early stopping.

6.2.5 Metrics for Assessing Diversity and Admissibility
We define multiple metrics that provide a thorough interpretation about the behaviour of each model
in terms of precision, diversity, and admissibility. For the i-th trajectory, we first evaluate a predic-
tion in terms of Euclidean errors: average displacement error ADE(i) = 1

T

∑T
t=1‖Sit − Ŝit‖2 and fi-

nal displacement error FDE(i) = ‖Si
tif
− Ŝi

tif
‖2, or ERROR to denote both. To evaluate N predictions

(i.e., precision), we use the average and the minimum ERRORs: AVGERROR = 1
N

∑N
i=1 ERROR(i) and

MINERROR = min{ERROR(1), ..., ERROR(N)}. A large AVGERROR implies that predictions are spread
out, and a small MINERROR implies at least one of predictions has high precision. From this observation,
we define new evaluation metrics that capture diversity in predictions: the ratio of AVGADE to MINADE
and AVGFDE to MINFDE, namely RA and RF. In particular, RF is robust to the variability of magni-
tude in velocity in predictions because high AVGADE and high MINADE caused by large magnitudes
will be offset and only the directional variability will remain. As a result, RF provides a handy tool that
can distinguish between predictions with multiple modes (diversity) and predictions with a single mode
(perturbation). For deterministic models, RA and RF have a value of 1.

Ratio of AVGFDE to MINFDE (RF) =
AVGFDE
MINFDE

(6.10)

Drivable Area Occupancy (DAO) =
count(trajpix)

count(drivpix)
(6.11)

We also report performance on additional metrics that are designed to capture diversity and admissibility
in predictions. We follow [44] in the use of Drivable Area Count (DAC), DAC = n−m

n , where m is the
number of predictions that go out of the drivable area and n is the total number of predictions. Next, we
propose a new metric, Drivable Area Occupancy (DAO), which measures the percentage of pixels that
predicted trajectories occupy in the drivable area. Shown in Eq. (6.11), count(trajpix) is the number of
pixels occupied by predictions and count(drivpix) is the total number of pixels of the drivable area, both
within a pre-defined grid around the ego-vehicle. Due to the nature of DAO and DAC, the number of
trajectory hypotheses should be set equally for fair comparison of models.
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Case 1 Case 2

Prediction  

GT

Figure 6.6: We motivate the need for multiple metrics, to assess diversity and admissibility. Case 1:
DAO measures are equal, even though predictions have differing regard for the modes in the posterior
distribution. Case 2: RF measures are equal, despite differing regard for the cost of leaving the drivable
area. In both cases, it is important to distinguish between conditions—we do this by using DAO, RF, and
DAC together.

Diversity Quantity Diversity Quality (Admissibility)

RF DAO DAC

Figure 6.7: Metric quality spectrum. Our newly proposed metrics: RF measures the spread of predictions
in Euclidean distance, DAO measures diversity in predictions that are only admissible. DAC measures
extreme off-road predictions that defy admissibility.

We use RF, DAO, and DAC to assess the diversity and admissibility of models. Initially, DAO may seem
like a reasonable standalone measure of both diversity and admissibility, as it only cares about diversity in
a reasonable region of interest. However, DAO itself cannot distinguish between diversity (Section 6.2.1)
and arbitrary stochasticity in predictions, as illustrated by Case 1 in Fig. 6.6: although DAO measures of
both predictions are equal, the causality behind each prediction is different and we must distinguish the
two. RF and DAO work in a complementary way and we, therefore, use both for measuring diversity.
To assure the admissibility of predictions, we use DAC which explicitly counts off-road predictions, as
shown by Case 2 in Fig. 6.6. As a result, assessing predictions using DAO along with RF and DAC
provides a holistic view of the quantity and the quality of diversity in predictions; the characteristics of
each metric is summarised in Fig. 6.7.

For our experiments, we use MINADE and MINFDE to measure precision, and use RF, DAC, and DAO
to measure both diversity and admissibility. Due to the nature of DAO, where the denominator in our case
is the number of overlapping pixels in a 224× 224 grid, we normalise it by multiplying by 10, 000 when
reporting results. For the multi-agent experiment (experiment 4), relative improvement (RI) is calculated
as we are interested in the relative improvement as the number of agents increases. If not specified, the
number of hypotheses are set to 12 and MINFDE is reported for the performance.
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6.2.6 Experiments
The primary goal in the following experiments is to evaluate our model, baselines, and ablations on the
following criteria: (i) Leveraging mechanisms that explicitly model agent-to-agent and agent-to-scene in-
teractions (experiment 1 and 2). (ii) Producing diverse trajectory predictions, while obeying admissibility
constraints on the trajectory candidates given different approximation methods for the true trajectory dis-
tribution p (experiment 3). (iii) Remaining robust to an increasing number of agents in the scene (agent
complexity; experiment 4). (iv) Learning better social context representations (experiment 5). (v) Gener-
alising to other domains (experiment 6).

Dataset

Most current autonomous driving trajectory forecasting datasets are insufficient for evaluating predictions,
due to the small size and the limited number of multimodal cues [184].

The ARGOVERSE motion forecasting dataset consists of a large volume of forecasting data with drivable
area annotations, but lacks certain modalities i.e LiDAR point-clouds and map images. We have generated
motion forecasting datasets from NUSCENES and ARGOVERSE tracking dataset using their original anno-
tations through programmatic trajectory association, smoothing, and imputation. Unlike the ARGOVERSE

forecasting dataset, this new dataset provides additional context information from LiDAR point-clouds
and map information, for better forecasting performance. We utilise the trajectory record, vectorized ge-
ometry, and drivable area annotation as modalities for our research. In order to make the experimental
setup of NUSCENES similar to ARGOVERSE, we crop each sequence to be 5 seconds long in total; 3
seconds for prediction and 2 seconds for observation, with a sampling rate of 2 Hz. Background infor-
mation relating to NUSCENES, ARGOVERSE trajectory data generation are included in the supplementary
material. By evaluating baselines and our models on both real world datasets, we provide complementary
validation of each model’s diversity, admissibility, and generalizability across domains.

Baseline Models

Deterministic baselines. We compare three deterministic models with our approach, to examine our
model’s ability to capture agent-to-agent interaction: LSTM-based encoder-decoder [271] (LSTM), con-
volutional social pooling LSTM (CSP) [73], and a deterministic version of multi-agent tensor fusion
(MATF-D) [331]. For our deterministic model, we use an LSTM with our cross-agent attention mod-
ule in the encoder, which we refer to as the cross-agent attention model (CAM). Because each model
is predicated on an LSTM component, we set the capacity to be the same in all cases, to ensure fair
comparison.

Stochastic baselines. We experiment three stochastic baselines. Our first stochastic baseline is a model
based on a Variational Autoencoder structure, (DESIRE) [158], which utilises scene contexts and an
iterative refinement process. The second baseline model is a Generative Adversarial Network version of
multi-agent tensor fusion (MATF-GAN) [331]. Our third baseline is the Reparameterized Pushforward
Policy (R2P2-MA) [239] which is a modified version of R2P2 [237] for multi-agent prediction. To validate
our model’s ability to extract scene information and generate diverse trajectories, multiple versions of our
models are tested. While these models can be used as standalone models to predict diverse trajectories,
comparison amongst these new models is equivalent to an ablation study of our final model. CAM-NF
is a CAM model with a flow-based decoder. LOCAL-CAM-NF is CAM-NF with local scene features.
GLOBALCAM-NF is LOCAL-CAM-NF with global scene features. Finally, ATTGLOBAL-CAMNF is
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Table 6.1: Deterministic models on NUSCENES. Our proposed model outperforms the existing baselines.

Model MINADE (↓) MINFDE (↓)
LSTM 1.186 2.408
CSP [73] 1.390 2.676
MATF-D [331] 1.261 2.538
CAM (OURS) 1.124 2.318

GLOBAL-CAM-NF with agent-to-scene attention, which is our main proposed model.

Results

In this section, we show experimental results on numerous settings including the comparison with the
baseline, and ablation studies of our model. We first show the effect of our cross-agent interaction module
and agent-to-scene interaction module on the model performance, then we analyse the performance with
respect to different numbers of agents, and other datasets. All experiments are measured with MINADE,
MINFDE, RF, DAC, and DAO for holistic interpretation.

Effectiveness of cross-agent interaction module: We show the performance of one of our proposed
models CAM, which utilises our cross-agent attention module, along with three deterministic baselines
as shown in Tables 6.1. For each model we test, agent-to-agent interaction is considered in different ways.
CSP models the interaction through layers of convolutional networks, and the interaction is implicitly
calculated within the receptive field of convolutional layers. MATF-D is an extension of convolutional
social pooling with scene information. CAM explicitly defines the interaction between each agent by us-
ing attention. The result shows that CAM outperforms other baselines in both MINADE and MINFDE, in-
dicating that the explicit way of modelling agent-to-agent interaction performs better in terms of precision
than an implicit way of modelling interaction using convolutional networks used in CSP and MATF-D.
Interestingly, CAM outperforms MATF-D that utilises scene information. This infers that our cross-agent
interaction module has the ability to learn the geometric structure of the roads given by the trajectories of
surrounding agents.

Effectiveness of agent-to-scene interaction module: The performance of stochastic models is compared
in Tables 6.2. We experiment with removing scene processing operations in the decoder to validate the
importance of our proposed agent-to-scene interaction module. As mentioned previously, generating mul-
tiple modes of sample requires a strong scene processing module and a diversity-oriented decoder. Our
proposed models all outperform other stochastic baseline models in terms of precision. MATF-GAN has
a small RF inferring that the predictions are mostly unimodal, while other models such as VAE-based
model DESIRE and flow-based models R2P2 and OURS show more spread in their predictions. We
note that R2P2 was not designed for multi-agent setting which causing it to make unreasonably shak-
ing outputs. Our model has the highest DAC and DAO, indicating that our models exhibit diverse and
admissible predictions by accurately utilising scene context.

Effectiveness of new p loss. We experiment with MSE and our drivable area-based approximation of p
in Table 6.3. Using our map loss in training shows superior results in most of the reported metrics. In
particular, the precision and the diversity of predictions increases drastically as reflected in MINERROR

and RF while DAC remains unchanged. Our map loss assures admissibility while improving precision and
diversity, as drivable-area associated p̃ provides additional possible regions of future trajectories.
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Figure 6.8: Our map loss and corresponding model predictions. Each pixel on our map loss denotes prob-
ability of future trajectories; higher probability values are represented by brighter pixels. Our approach
generates diverse and admissible future trajectories. More visualisations of qualitative results are provided
in the supplementary material.

Table 6.2: Stochastic models on NUSCENES. ∗∗: unstable outputs observed on R2P2-MA.

Model MINADE (↓) MINFDE (↓) RF (↑) DAO (↑) DAC (↑)
DESIRE [158] 0.937 1.808 1.754 9.430 0.376
MATF-GAN [331] 1.053 2.124 1.194 5.950 0.391
R2P2-MA [237] 1.185 2.215 1.611 13.50** 0.396
CAM-NF (OURS) 0.756 1.386 2.113 11.70 0.400
LOCAL-CAM-NF (OURS) 0.772 1.404 2.066 11.70 0.400
GLOBAL-CAM-NF (OURS) 0.744 1.359 2.103 11.60 0.400
ATTGLOBAL-CAM-NF (OURS) 0.638 1.171 2.558 12.28 0.399

Table 6.3: Optimizing using p loss outperforms MSE loss on NUSCENES.

Model MINADE (↓) MINFDE (↓) RF (↑) DAO (↑) DAC (↑)
ATTGLOBAL-CAM-NF(MSE) 0.763 1.390 2.009 12.09 0.400
ATTGLOBAL-CAM-NF 0.638 1.171 2.558 12.28 0.399

Table 6.4: Multi-agent experiments on NUSCENES (MINFDE). RI denotes ratio of MINFDE for 10 vs. 1
agent. Our approach best models multi-agent interactions.

Model 1 agent 3 agents 5 agents 10 agents RI(1-10)
LSTM 2.736 2.477 2.442 2.268 17.1%
CSP [73] 2.871 2.679 2.671 2.569 10.5%
DESIRE [158] 2.150 1.846 1.878 1.784 17.0%
MATF GAN [331] 2.377 2.168 2.150 2.011 15.4%
R2P2-MA [237] 2.227 2.135 2.142 2.048 8.0%
ATTGLOBAL-CAM-NF (OURS) 1.278 1.158 1.100 0.964 24.6%

Complexity from number of agents. We experiment with varying number of surrounding agents as
shown in Table 6.4. Throughout all models, the performance increases as the number of agents increases
even though we observe that many agents in the surrounding do not move significantly. In terms of relative
improvement RI, as calculated between 1 agent and 10 agents, our model has the most improvement,
indicating that our model makes the most use of the fine-grained trajectories of surrounding agents to
generate future trajectories.

Learning better social context representations. We benchmark two instances of our approach, Trajformer-12
and Trajformer-24, with respectively 12 and 24 layers in the transformer encoder. We set the size of
the trajectory encoder projection d to be 1024 (MLPproj is a single-layer projection), pixel neighbourhood
width/height m to be 16, and the dimension of the latent code D to be 256. We choose a batch size of 128
and train with Adam optimizer. We use linear learning rate warm-up and decay. It takes 3 days to train
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Table 6.5: Results of baseline models and our proposed model. LOCAL-CAM-NF is an ablation,
whereas ATTGLOBAL-CAM-NF is our full proposed model. The metrics are abbreviated as follows:
MINADE(A), MINFDE(B), RF(C), DAO(D), DAC(E). Improvements indicated by arrows. ∗: larger is
better, as long as A and B are small.

Model
ARGOVERSE NUSCENES

A (↓) B (↓) C (↑)* D (↑)* E (↑)* A (↓) B (↓) C (↑)* D (↑)* E (↑)*

LSTM 1.441 2.780 1.000 1.786 0.378 1.186 2.408 1.000 1.690 0.391
CSP 1.385 2.567 1.000 1.799 0.379 1.390 2.676 1.000 1.710 0.388
MATF-D 1.344 2.484 1.000 1.768 0.379 1.261 2.538 1.000 1.690 0.384
DESIRE 0.777 1.276 3.642 11.80 0.301 0.937 1.808 1.754 9.430 0.376
MATF-GAN 1.214 2.316 1.099 6.075 0.376 1.053 2.124 1.194 5.950 0.391
R2P2-MA 1.270 2.190 1.589 18.10**0.381 1.185 2.215 1.611 13.50**0.396

CAM 1.131 2.504 1.000 1.750 0.389 1.124 2.318 1.000 1.670 0.404
CAM-NF 0.852 1.347 2.763 17.60 0.378 0.756 1.386 2.113 11.70 0.400
LOCAL-CAM-NF 0.807 1.250 2.858 17.00 0.381 0.772 1.404 2.066 11.70 0.400
GLOBAL-CAM-NF 0.807 1.241 3.068 16.90 0.380 0.744 1.359 2.103 11.60 0.400
ATTGLOBAL-CAM-NF 0.731 1.126 3.278 15.50 0.383 0.638 1.171 2.558 12.28 0.399

Figure 6.9: Qualitative illustration of model performance [right], compared to best-performing baseline
[219][left]. Observations: (a) more precise & confident on straight in-lane trajectories; (b) more confi-
dence in the maneuver, indicated by a cluster of trajectories; (c) more confident and diverse alternative
maneuvers, with attention to standing vehicles, due to simple intersection map lane-start/end prior; (d)
equivalent lane-change maneuver on empty roads, due to attention on immediate local activities; (e) more
conservative turning maneuver with more agent-activity; (f) reduced confidence in strong curve lane-
change maneuvers.

each model on a NVIDIA 1080 Ti GPU device, with batch data processed as in [219], from the Tracking
split of the Argoverse dataset [44]. Quantitative results are summarised in Table 6.6, and some qualita-
tive results are shown in 6.9. We observe a new state-of-the-art performance in our model, compared to
[219], in both qualitative and quantitative results. Most of the maneuvers have been refined by the model.
An interesting observation in figure 6.9b suggests that rule-based maneuvers, such as the right-of-way in
intersections, are learned and followed by model (the left vehicle gains the right-of-way). Compared to
DATF [219], the model is significantly lighter in time-complexity and memory-intensity, due to the social
attention and scene attention blocks provided by the transformer encoder. The Transformer-12 and
Transformer-24 model instances did not vary significantly in the qualitative and quantitative results:
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Table 6.6: Comparison of improvements over baseline models on Argoverse. The metrics are abbreviated
as follows: MINADE(A), MINFDE(B), RF(C), DAO(D), DAC(E). Improvements indicated by arrows.
∗: larger is better, as long as A and B are small.

A (↓) B (↓) C (↑)* D (↑)* E (↑)*

LSTM 1.441 2.780 1.000 3.435 0.959
CSP [219] 1.385 2.567 1.000 3.453 0.963
MATF-D [331] 1.344 2.484 1.000 1.372 0.965
DESIRE [158] 0.896 1.453 3.188 15.17 0.457
MATF-GAN [219] 1.261 2.313 1.175 11.47 0.960
R2P2-MA [237] 1.108 1.270 2.190 37.18 0.955
DATF [219] 0.730 1.124 3.282 28.64 0.968
TRAJFORMER-12 (ours) 0.684 0.885 3.359 27.71 0.972
TRAJFORMER-24 (ours) 0.621 0.719 3.868 28.21 0.973

Table 6.7: Model size comparison (with optimizer state), in megabytes (MB) and number of parameters.

Model-layers SIZE (.TAR) #PARAMS

DATF [219] 4.7 MB 462K
TRAJFORMER-12 (ours) 2.1 MB 164K
TRAJFORMER-24 (ours) 2.9 MB 192K

the aforementioned observations remain true for both models.

Generalisability across datasets. We further compare our model with baselines extensively across two
more real world datasets: NUSCENES and ARGOVERSE to test generalization to different environments.
We show results in Table 6.5 where we outperform or achieve comparable results as compared to the
baselines. For ARGOVERSE, we additionally outperform MFP3 [280] in MINFDE with 6 hypotheses: our
full model shows a MINFDE of 0.915, while MFP3 achieves 1.399.

6.2.7 Related Work
Multimodal trajectory forecasting requires a detailed understanding of the agent’s environment. Many
works integrate information from multiple modalities [166, 224], such as RGB image and LiDAR point-
cloud information to model the surrounding environment [158, 237] and high dimensional map data to
modelling vehicle lane segmentation [18, 41, 331]. Other methods additionally fuse different combi-
nations of map context [18, 41, 76], LiDAR [158], and RGB [184, 242] with the intention of jointly
capturing all interactions between the agents and environment [4, 108, 247]. Without mechanisms to
explicitly model agent-to-agent and agent-to-scene interactions, we hypothesise that these models are un-
able to capture complex nonlinear interactions in the high-dimensional input space. In this paper, we
study and propose methods to explicitly model these interactions, escalating performance in trajectory
forecasting.

Multi-agent modelling aims to learn representations that summarise the behaviour of one agent given
its surrounding agents. These interactions are often modelled through either spatial-oriented methods or
through neural attention-based methods. Spatial-oriented methods use pooling approaches across indi-
vidual agent representations [73, 158, 331] and usually take into account inter-agent distances, through
a relative coordinate system [18, 136, 218, 239]. Despite their wide usage, spatial-oriented methods are
designed to concentrate only on adjacent (spatially close) agents and assume a fixed number of agents in
the scene; they also limit the maximum number of agents. Attention-based methods use attention [288]
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architectures to model multi-agent interaction for applications involving pedestrians [88, 247, 289], sports
players [87, 269], indoor robots [228], and vehicle trajectories [184, 280]. In this paper, we use a cross-
agent attention module to model the agent-to-agent interaction. Rather than using this information solely
for prediction, we additionally generate attended scene context, conditioned on these cross-agent rep-
resentations. We hypothesise that the attended map context will lead to improved tractability in mod-
elling high-dimensional correlations in the scene. We support this with our empirical results in Section
6.2.6.

Diverse trajectory prediction. Many models follow a deterministic trajectory-prediction approach [73,
331] and, therefore, struggle to estimate the diversity in the future trajectories. Some works have applied
generative models such as Generative Adversarial Networks (GANs) [103, 108, 247, 331] and Variational
Auto Encoders (VAEs) [158] to encourage diverse predictions. However, these approaches focus more
on generating and scoring multiple output candidates and focus less on analysing the diversity across
distributional modes.

Trajectory forecasting. Trajectory forecasting has been studied in various domains, spanning marine
vessels, aircraft, satellites, motor vehicles, and pedestrians [13, 31, 108, 239, 256]. Tasks involving motor
vehicles and pedestrians are especially challenging, due to the high stochasticity that arises from attempt-
ing to model complex latent factors (e.g., human intent, “social” agent interacts, and scene context) [44].
Despite some promising empirical results, it remains difficult to evaluate both the diversity and admissi-
bility of predictions. In this paper, we define the task of diverse and admissible trajectory forecasting and
provide a new dataset generated from NUSCENES [37], a popular image tracking source. We also define
new task metrics that specifically assess models on the basis of prediction diversity and admissibility, and
we analyse model generalisation based on data from multiple domains.

6.3 Distribution-aware Goal Prediction in Urban Driving
Achieving generalisability to novel scenarios in urban autonomous driving remains a challenging task
for artificial intelligence (AI). Recent approaches have shown promising results in end-to-end imitation
learning from expert demonstrations, wherein agents learn policies that replicate the experts’ actions,
at each time-step, given the corresponding observations [29, 50, 64, 65, 200, 209, 215, 225]. Despite
this progress, end-to-end imitative models often cannot capture the causal structures that underlie expert-
environment interactions, leading models to misidentify the correct mappings from the observations [71].
Furthermore, if the coverage of expert demonstrations does not extend to all scenarios that the agent will
encounter during test time, the agent will generate spurious actions in response to these out-of-distribution
(OOD) observations [89].

In an effort to tackle part of this issue, recent works deviate from the end-to-end learning paradigm in
their respective problem domains, opting instead to decompose learning into sub-modules, for trajectory
forecasting [89, 238], indoor robot navigation [54], and learnable robot exploration [47]. Here, the intu-
ition is that, by breaking down the inference problem into smaller units, more control over the inference
step is obtained and the causal misidentification issue is somewhat avoided, by using a module that is not
optimised through a data-driven process. The modularity of those approaches resonates with the method
proposed in this paper, however those approaches use only the classical global-local hierarchical planning
paradigm, where the responsibility of performing feature-extraction while also attempting to (implicitly)
model the environment dynamics is still contained within a single unit, leading to spurious predictions
in unseen environments. We proceed a step further, by defining modules in the learning-to-drive setting,
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Figure 6.10: Model architecture. Our framework uses the ego-centric sequence of RGB images, world-
frame waypoints, and the agent’s own current speed information to learn obstacle-aware attention maps
and top-down visual representations. These scene encodings inform our goal prediction module, which
combines an imitation prior and a goal likelihood objective, in order to leverage expert experience for
generalisability to novel scenarios. A set of candidate goal predictions are realised as trajectories, each
transformed to the Frenet road frame coordinate system and grounded to vehicle kinematics, using a
differentiable learning-based MPC controller with iLQR. Trajectories are pruned using a learnable ranking
and refinement module. Boxes with green borders are learnable layers; boxes with black borders are non-
learnable functions. Best viewed in colour.

such that each module’s task is directly attributable to behaviour expected of an expert agent. In our
decomposition, modules are given specialised roles (e.g., obstacle-awareness, explicitly modelling envi-
ronmental dynamics, goal-prediction, trajectory pruning and refinement), improving both the tractability
of their respective tasks and their complementarity towards the shared downstream task.

However, the challenge of generalisability still remains. How can we effectively utilise the expert’s prior
experience (e.g., in the form of expert demonstrations), while also achieving generalisability to novel
scenarios? Some recent works from the trajectory forecasting community formulate a dual-objective
optimisation, coupling an imitation objective with a likelihood density estimation term [219, 237, 239],
arguing that the two ideals of using prior expert experience and generalising can be unified. A common
issue with this formulation is that models are incentivised to trade-off the two objectives, rather than
inherit their individual benefits. Samples from the likelihood density may not be sufficiently diverse,
if the expert demonstrations did not provide sufficient coverage over the modes in the distribution over
all possible predictions. Furthermore, predictions may not be admissible, discussed by [219], without
some bias to adhere to, e.g., known physical constraints, as in Verlet integration [290]. In this work, we
utilise expert demonstrations as pre-training for sub-modules and we use the demonstrations for density
estimation, but we also ground predictions on a differentiable vehicle kinematics model and we constrain
predictions to respect road admissibility through geometrical projection of goal prediction.

As a summary of our contributions, we produce a framework for generating diverse multi-mode pre-
dictions, for the learning-to-drive setting, that achieves improved generalisability through modular task
structures, more informed goal likelihood density-estimation, explicit grounding on differentiable vehi-
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cle kinematics for trajectory generation, and learnable trajectory-pruning through adversarial filtering and
policy refinement. Our approach is also summarised in Figure 6.10. First, (i) we define a series of module
primitives, based on insights about the decomposable nature of the environment. Next, (ii) we pursue
model generalisability by coupling an imitation prior objective with a goal likelihood term, enabling the
agent to leverage expert knowledge, while modelling more diverse modes in the underlying distribution
over all trajectory futures. Next, (iii) we ground candidate trajectory predictions on conformant model-
based vehicle kinematics, while learning to prune the predictions that are spurious. Finally, under CARLA
simulation, (iv) we report new state-of-the-art results on the CARNOVEL benchmark.

6.3.1 Problem Formulation
We define, here, the terminology that we will use to characterise our problem. The ego-agent is a dynamic,
on-road entity whose state is characterised by a 7D pose: a spatial position (consisting of x, y, and
z in a Cartesian world coordinate frame), a speed v, and an orientation (consisting of roll, yaw, and
pitch), evolving over time. For the position of the ego-agent at control time-step k, we use the notation
Sk = [x, y, v, yaw] ∈ IR4; for the agent’s sequence of positions, from time-step k1 to k2, we use Sk1:k2 .
For the full sequence of the ego-agent’s positions, for a single episode in the training data, we use (bold)
S. Setting k0 as the present state, we define the agent’s historical trajectory t ≤ k0 to be Spast and the
agent’s future trajectory (again, from the expert demonstrations) t ≥ k0 to be Sfuture. At each control
time-step, k, the agent is provided with contextual information from the environment, such as a frontal
camera view Φ ∈ IRH×W×C and a sequence of waypoints ω. Combining Spast, Φ, and ω we have the
agent’s observation, or simply O ≡ {Spast,Φ,ω}.

At each time-step, the agent must take an action ak, defined as a tuple of braking, throttling, and steering
control. Our objective is to learn a parameterised policy πθ that maps observations to actions a ∼ πθ(·|O),
such that, given a sequence of observations, an agent that begins at some initial location in the environment
can drive to some destination.

In this paper, we factorise the predictive distribution over actions, as a more tractable mapping: P ◦
MPC ◦GP ◦OA. Here, m ∼ OA(·|O) is an obstacle-awareness module, which generates an embedding
m, given an observation. Ŝgoal ∼ GP(·|O,m) is a goal prediction module, whose samples are desired
to be diverse in their coverage of the modes in the true, underlying goal prior p(Sgoal|O). Here, Ŝgoal
(hat) is the predicted goal from the GP module and Sgoal is the true (unobserved) goal of the expert agent,
which characterises its scene-conditioned navigational intent. We want GP to generate multiple samples,
where each sample can be regarded as an independent hypothesis of what might have happened, given
the same observation. Ŝk+1:k+N , âk+1:k+N = MPC(Ŝk+N ) is a learning-based controller, which takes
K samples from the goal distribution as input and enumerates K navigation trajectory candidates. P is a
pruning module that scores and selects the best trajectory, given an observation O and a collection of K
trajectory candidates.

6.3.2 Modular Architectures for Multimodal Perception
Urban driving can be modelled as a composition of driving primitives, where, through decomposition of
the conventional multimodal perception backbone into hierarchical units and through modular training,
we enjoy lower sample-complexity and improved robustness and generalisability, compared to end-to-end
policies. We propose a modular pipeline which models the multi-mode action distribution for confor-
mant trajectory generation and planning, in urban driving settings. Our model, which we say performs
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distribution-aware goal prediction (DGP), consists of four components: an obstacle-awareness module,
a goal-prediction module, a conformant model-based planning module, and a trajectory pruning and
action-selection module, as illustrated in Figures 6.10 (overview) and 6.11 (decomposition). Our frame-
work uses the ego-centric sequence of RGB images, world-frame waypoints, and the agent’s own current
speed information to learn obstacle-aware attention maps and top-down visual representations. These
scene encodings inform our goal prediction module, which combines an imitation prior and a goal like-
lihood objective, in order to leverage expert experience for generalisability to novel scenarios. A set of
candidate goal predictions are realised as trajectories, each transformed to the Frenet road frame coor-
dinate system and grounded to vehicle kinematics, using a differentiable MPC controller. The pruning
module scores and filters trajectories, before feeding best trajectories for path-tracking.
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Figure 6.11: Issues with end-to-end imitative pipelines. The red (a) and blue (b) boxes illustrate the
scope of responsibilities of conventional data-driven encoders and decoders, respectively, in the overall
pursuit of replicating human driving behaviour. These include obstacle detection and scene analysis,
and planning and control. Entities with dotted lines indicate behavioural components that lie outside the
support of the expert demonstrations in typical learning-to-drive AI tasks, such as in CARLA simulation,
such as: computing goal alternatives, in response to dynamic obstacle behaviour or re-planning over long
horizons when presented with new route information. As a result, it is not possible for end-to-end imitative
models to recover these skills from data, nor is it possible for end-to-end imitative models to exhibit the
necessary degree of internal specialisation, without the adoption of modular training and role assignment.
Our modular decomposition scheme (bottom arrows) is motivated by this taxonomy, as well as by the
shortcomings of alternative decompositions.

6.3.3 Obstacle Awareness: Projections and Encoding
We condition the learning of our goal distribution on crucial scene context — from projected topdown
feature representation and obstacle self-attention. This perception module’s task is to transform the front-
view image observations into bird’s eye view (BEV) semantic object attention maps.

In this work, we leverage the orthographic feature transform (OFT) technique developed by [241]. In
particular, we extract obstacle semantic information by pre-training a variational autoencoder [137] to re-
construct pixels, speed, and steering control in the next time step from current observations. It encourages
the latent variables to attend to obstacle in front view (e.g., vehicles, pedestrians, traffic lights, curbs, etc.)
which impact future vehicle control. The front-view feature map f(u, v) is constructed by combining
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the learned self-attention maps [288] with multi-scale images features of pre-trained ResNet-18 front-end.
Then, voxel-based features g(x, y, z) are generated by accumulating image-based features f(u, v) to a uni-
formly spaced 3D lattice G fixed to the ground plane a distance yp below the camera and has dimensions
W,H,D and a voxel resolution of r using orthogonal transformation. Finally, the topdown image feature
representation h(x, z) is generated by collapsing the 3D voxel feature map along the vertical dimension
through a learned 1D convolution. In addition to image features, we interpolate waypoint sequence and
create a topdown grid representation of waypoints with one-hot encoding. The final topdown feature rep-
resentation is of dimension [W/r,D/r,C] where the number of channels C = Cattn + Cresnet + 1.

6.3.4 Distribution-aware Goal Prediction
We wish to approximate the true predictive distribution over all possible goal futures of the ego-agent,
p(Sgoal|O,m), given an observation O from the environment and an embedding vector m from the obsta-
cle awareness module (§6.3.3). Unfortunately, the predictive intent of the expert agent is not observable
from the training data: there do not exist ground-truth goal locations to use as labels for directly learning
a scene-conditioned imitative prior over goals. Thus, we take a future state of the expert agent, at fixed
time horizon T , to be the “ground-truth” ego-agent’s goal Sgoal ∈ Sfuture, with Sgoal ≡ Sk0+N∆T , where
N denotes the number of time-steps in the planning horizon.

Next, rather than learning a mapping to directly imitate these derived expert goals, we instead model an
approximation qθ(Sgoal|O,m) of the underlying goal distribution, by leveraging a bijective and differen-
tiable mapping between a chosen base distribution q0 and the aforementioned target approximate goal
distribution qθ. This technique is commonly referred to as a ‘normalizing flow’, which provides a general
framework for transforming a simple probability density (base distribution) into a more expressive one,
through a series of invertible mappings [139, 217, 219, 235, 274].

Formally, let f be an invertible and smooth function, with f : IRd → IRd, x = f(z), z ∼ pz, f−1 = g,
and thus g ◦ f(z) = z, for d-dimensional random vectors x and z. Further, we attribute to f the property
of diffeomorphism [192], which ensures that qx remains well-defined and obtainable through a change
of variables, and ensures that pz is uniformly distributed on the same domain as the data space [167] —
insofar as both f and its inverse f−1 are differentiable and that z retains the same dimension as x:

qx(x) = pz(z)
∣∣det∂f∂z

∣∣−1
= pz(f−1(x))

∣∣∣det∂f
−1

∂x

∣∣∣
We can construct arbitrarily complex densities, by flowing z along the path created by a chain of K suc-
cessive normalizing distributions pz(z), with each successive distribution governed by a diffeomorphic
transformation:

x = zK = fK ◦ · · · ◦ f2 ◦ f1(z0)

Following this sequence of transformations, our main interfaces with the flow-based model are through
either sampling or evaluating its density, where, in the former, we sample from pz(z) and must compute
the forward transformation f ; in the latter, we must compute the inverse transformation f−1, its Jacobian
determinant, and the pz(z) density evaluation.

We extend Eqn. (1) to obtain a conditional normalising flow formulation, in order to incorporate additional
context (this additional context is sometimes referred to by some works as “side-information”) and achieve
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finer granularity in the density estimate of the goal distribution. While envisioned by Papamakarios et al.
[216], conditioning has been hitherto unexplored for complex scenarios, as in autonomous urban driving,
where the context dimension is high.

6.3.5 Trajectory Generation with Conformant Vehicle Dynamics
Being respectful of physical kinematic constraints provides a good basis for transfer to other vehicle mor-
phologies and generalisation to unseen environments. Taking the predicted goals from the goal-prediction
module, we enumerate the actions-to-goal, using model-predictive control. The MPC problem is sum-
marised by Eqn. 6.12. The objective (Eqn. 6.12a) is to minimise the tracking error with respect to a
reference trajectory, in this case the centerline of the race track at a pre-specified reference speed, with
regularisation on actuations, over a planning horizon of T time steps. Q and R are both diagonal matrices
corresponding to cost weights for tracking reference states and regularising actions. Simultaneously, MPC
respects the system dynamics of the vehicle (Eqn. 6.12b) and allowable action range (Eqn. 6.12c):

min
a1:T

T∑
t=1

[
(st − sref,i)

TQ(si − sref,i) + aTi Rai
]

(6.12a)

s.t. st+1 = f(st,at), ∀t = 1, . . . , T (6.12b)

a ≤ at ≤ ā (6.12c)

Specifically, we characterise the vehicle with the kinematic bike model1 [147], given in Eqn. 6.13, where
the state is s = [x, y, v, φ], and the action is a = [a, δ]. Here, x, y are the vehicle location in local east,
north, up (ENU) coordinates, v is the vehicle speed, and φ is the yaw angle (measured anti-clockwise from
the local east-axis). a is the acceleration, and δ is the steering angle at the front axle:

ẋ = v cos(φ) (6.13a)

ẏ = v sin(φ) (6.13b)

v̇ = a (6.13c)

φ̇ = v tan δ/L (6.13d)

A key challenge is that the ground truth vehicle parameters were not known to us. Aside from L defined
as the distance between the front and rear axle, the kinematic bike model expects actions, i.e. acceleration
and steering, in physical units, while the environment expects commands in [−1, 1]. The mapping is
unknown to us, and non-linear based on our observations. For instance, acceleration command = 1 results
in smaller acceleration at higher speed. In the current implementation, we make a simplifying assumption
that a = k1× acceleration command, and δ = k2× steering command.

We use the iterative linear quadratic regulator (iLQR) proposed in [162], which iteratively linearizes the
non-linear dynamics (Equation 6.13) along the current estimate of trajectory, solves a linear quadratic reg-
ulator problem based on the linearized dynamics, and repeats the process until convergence. Specifically,
we used the implementation for iLQR from [8]. The parameters used by the MPC are summarised in
Table 6.8.

1This set of equations is defined with respect to the back axle of the vehicle and is used for generating expert
demonstrations. The kinematic bike model defined with respect to the centre of the vehicle is also included in our
code base.
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Table 6.8: MPC parameters

Parameter Value
Q diag([1, 1, 1, 16])
R diag([0.1, 1])
vref 12.5 m/s
ā [1, 0.2]
a [−1,−0.2]
L 2.7 m
k1 10
k2 6
T 6

6.3.6 Pruning and Action Selection
A heuristic trajectory pruning critic using Frenet transformed coordinates is employed in this work. A
pruning score sk is assigned each generated state trajectory (xt, yt, vt, φt)

T
t=1 by computing its maximum

deviation from the waypoint sequence in Frenet coordinates, i.e., sk = maxTt=1 |yFre
t |. The trajectories with

scores higher than a given threshold s0 are pruned and the rest are used as candidate setpoint sequences
fed to PID controller for path tracking.

6.3.7 Experiments
We assess the robustness of our approach to novel OOD driving scenarios in the CARNOVEL benchmark
Filos et al. [89], comparing our work to strong baselines from both urban driving as well as trajectory
forecasting. Predicated on the CARLA simulator [77], agents are first trained on the provided offline
expert demonstration from Town01 that were originally generated using a rules-based autopilot. Agents
are then evaluated on various OOD navigation tasks, such as: busy-town settings, hills, and roundabouts.
Performance is measured according to the following metrics: success rate (percentage of successful navi-
gations to the destination), infractions per kilometre (ratio of moving violations to kilometre driven), and
total distance travelled. In this setting, the agent is provided with an RGB image, a waypoint sequence,
and vehicle speed; the agent must produce steering, throttle, and braking control, in order to navigation to
a particular destination.

All experiments were conducted using CARLA simulator version 0.9.6, which is worth noting because this
version introduced updates to the rendering engine and pedestrian logic, allowing for consistency across
the three benchmarks but making the results of contemporary approaches on previous simulator versions
no longer comparable [50]. We used a single GPU machine, with the following CPU specifications:
Intel(R) Core(TM) i9-9920X CPU @ 3.50GHz; 1 CPU, 12 physical cores per CPU, total 24 logical CPU
units. The machine includes two NVIDIA Titan RTX GPUs, each with 24GB GPU memory.

Baselines

We compare our model with the following baselines in the CARNOVEL benchmark:

Conditional imitation learning (CIL) [64] is an end-to-end behaviour cloning approach, which conditions
its predictions on high-level commands and LiDAR information.
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Learning by cheating (LBC) [50] extends CIL through cross-modal knowledge distillation, from a teacher
network (trained on privileged information — e.g., environment state, overhead images) to a sensorimotor
navigation agent (the ego-agent).

Deep Imitative Model (DIM) [238] is a trajectory forecasting and control method, which combines an
imitative objective with goal-directed planning.

Robust Imitative Planning (RIP) [89] is the method that was proposed alongside the recent CARNOVEL
benchmark. RIP is an epistemic uncertainty-aware method, targeted toward robustness to OOD driving
scenarios.

6.3.8 Results
Generalisation to OOD scenes. In Table 6.9, we report the success rate of our approach, alongside strong
baselines from both the learning-to-drive and trajectory forecasting communities. We show significant im-
provements in unseen generalisation in visuomotor control for urban driving from our approach, which
jointly estimates the ego-agent’s action distribution while learning to predict and score intermediate goals.
Notably, we observe most significant improvements over the next-best model, Robust Imitative Planning
(RIP; Filos et al. [89]; an epistemic uncertainty-aware model) when transferring models to completely un-
seen traffic layouts, such as Roundabouts. When the transfer represents a shift in environmental dynamics,
however—as with the Hills scenarios—our approach receives moderate gains in variance.

Qualitative results on agent intention. A notable benefit of our factorising the urban driving problem—
into encoding, distribution-aware goal prediction, conformant model-based planning, and pruning + action-
selection—is that we obtain increased interpretability in our agent’s prediction pipeline. Specifically, by
way of our goal-prediction module, we obtain the ability to reveal agent intentionality, during its simulated
task execution. Figure 6.12 offers qualitative results from our agent’s interaction with the environment,
during inference on a randomly-sampled episode. Each frame captures the agent’s prediction (in red),
given its own speed information, ego-vision context, and short waypoint sequences (in mustard). We
observed that waypoint sequences, provided by the environment, may sometimes change, as agents ap-
proach locations where some decision must be made (e.g., turns). Coupled with our models estimation
of the underlying action distribution, conditioned on offline dataset samples, our model correctly makes
multiple admissible predictions of turning (a), going straight (b), changing lanes (c), or stopping/slowing
(d) as it approaches the first intersection. After committing and executing the turn (e-f), the agent once
again considers multiple possible futures (g), before once again following the rightward arcing waypoint
sequence. On straight sections, the agent shows strong belief on forward movement, indicated by distant
and straight goal predictions (h), but correctly slows (i) and stops (j) for obstacles.

6.3.9 Related Work
Learning to drive. Pomerleau [225] pioneered investigation of end-to-end imitation learning, for senso-
rimotor navigation in autonomous driving. Following some extensions [29, 200, 261] with applications in
lane-following, highway driving, and obstacle avoidance, more recent works adapted the classic imitative
modelling approach to urban driving scenarios [18, 50, 64, 65, 209, 215], with more complex road layouts
and challenging dynamic obstacle interactions. Whereas the increased sample-efficiency from imitation
allays much serious consideration of alternative learning paradigms, e.g., reinforcement, a common issue
with imitative modelling arises from having to learn a representation from high-dimensional visual inputs,
in highly-varying environments: even with sufficient data, models struggle to extract meaningful features
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Table 6.9: Results of baseline models and our proposed approach on CARNOVEL [89]. We report Success
Rate (↑; M × N scenes, %) on three novel (unseen scenarios).

BUSYTOWN HILLS ROUNDABOUTS

CIL (Codevilla et al. [64]) 05.45± 06.35 60.00± 29.34 20.00± 00.00
LBC (Chen et al. [50]) 20.00± 13.48 50.00± 00.00 08.00± 10.95

DIM (Rhinehart et al. [238]) 47.13± 14.54 70.00± 10.54 20.00± 09.42
RIP (Filos et al. [89]) 62.72± 05.16 87.50± 13.17 42.00± 06.32

DGP (ours) 63.60± 00.00 87.50± 00.00 70.00± 0.00

from the input that are not confounded by high-frequency, label-independent variation (e.g., varied vehicle
shapes, sensor miscalibration, different weather conditions, shadows, poor expert behaviour) [18]. In fact,
access to more samples can actually yield worse performance, as low-quality data can lead the model to
misidentify basic causal structures, underlying expert-environment interactions [71]. Following Codevilla
et al. [64, 65], Chen et al. [50], Ohn-Bar et al. [209], Sauer et al. [252] use conditioning strategies, such
as command variables, teacher networks, and mixtures of expert policies, in attempts to learn better con-
ditional representations and thus reduce the search space for generating actions. However, a limitation of
these works is that the number of modes that can be represented by these methods is limited by the num-
ber of pre-specified commands or experts—thereby limiting the model’s generalisability to novel driving
scenes.

Control strategies for autonomous vehicles. Aside from learning (e.g., neural) mappings from obser-
vations to actions, various works advocate for the use of feedback or model-based control: to simplify
the learning process for the data-driven components of the framework, to replace the data-driven compo-
nents entirely, or to ground neural predictions with explicit physical constraints. Chen et al. [50] utilise
a proportional-integral-derivative (PID) controller to track the agent’s target velocity, while Sauer et al.
[252] use a PID controller for longitudinal tracking and a Stanley Controller (SC) [283] for lateral track-
ing, with respect to the road centerline. A feedback controller myopically and reactively determines its
control actions based on deviations from the setpoints, whereas model-based controllers, such a model-
predictive controller (MPC), can plan trajectories over long planning horizons by unrolling its model of
the system dynamics. Herman et al. [117], Kabzan et al. [133] implement MPC controllers for their au-
tonomous racing tasks, using ground truth vehicle states. However, the combination of such controllers
and with high-dimensional sensory inputs remains unexplored. In this work, we integrate our perception
and goal-prediction modules with an MPC, which generates trajectories conforming to vehicle kinemat-
ics.

Trajectory forecasting for autonomous driving. The notion of characterising distributions over all pos-
sible agent predictions has seen exciting growth in the domain of trajectory forecasting for autonomous
driving [89, 158, 219, 237, 238, 239]. Whereas Lee et al. [158] use past trajectories and scene context
as input for predicting future trajectories, and they score the ‘goodness’ of a trajectory as a learnable
module, their method does not attempt to model the agent’s predictive intent, e.g., as modes in a like-
lihood density. Rhinehart et al. [238] incorporated the concept of goal-likelihood into their model, and
characterised the agent’s objective via pre-specified geometric primitives: points, piece-wise linear seg-
ments, and polygons. However, their goal-likelihood is defined as simple set membership (i.e., within
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Figure 6.12: Qualitative results from simulated task execution.

the pre-specified geometry or not). Intuitively, set membership is neither a necessary or sufficient condi-
tion for good driving behaviour (e.g., banking vs following waypoints; avoiding obstacles vs staying on
waypoints; staying within drivable area vs. driving safely). Filos et al. [89] aimed to improve on DIM
by evaluating the trajectory on the basis of an ensemble of expert likelihood models; while that gives a
more robust estimate of the ‘goodness’ of a trajectory, it neither considers dynamic obstacles nor more
informative goal priors. Whereas multi-agent trajectory forecasting has slightly different intentions and
implications than trajectory planning in learning-to-drive settings, we nonetheless draw inspiration from
the trajectory forecasting literature for their distributional interpretation of the ego-agent’s intent, which
we combine with information about the scene context, for improved obstacle-awareness in those predicted
trajectories.
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6.4 Conclusion
This chapter covered the use of statistical priors, in the context of autonomous driving tasks, with a focus
on how knowledge of the form of a distribution (which underlies trajectories or waypoint goals) leads to
multiple benefits, including: (i) model generalisability, beyond simple interpolation between point-wise
samples in a dataset; (ii) the ability to reveal agent intentionality for more interpretable predictions; and
(iii) the ability to infer implicit rules about admissible behaviour in the environment. In the first section,
we propose a model that addresses generalisation challenges in multi-agent trajectory forecasting tasks,
through the introduction of an informative (and annotation-free) prior and rich multimodal encodings of
agent-to-agent and scene-to-agent information. We offer new metrics to evaluate the diversity of trajectory
predictions, while ensuring admissibility of each trajectory. Based on our new metrics as well as those
used in prior work, we compare our model with strong baselines and ablations across two datasets and
show a 35% performance-improvement over the state-of-the-art. In the second section, we learn the
prior jointly with the task of simulated urban driving, where we introduce a distribution-aware trajectory
generation mechanism that remains conformant to both road geometry and vehicle kinematics. We show
how our agent uses this learned prior to generalise to completely out-of-distribution driving scenarios,
such as busy towns, abnormal turns, unseen traffic patterns such as roundabouts, etc. We recognise a
limitation of these works in the difficulty of the sub-task performed by modules that must learn to score
the quality of multiple proposals, e.g., as in the pruning module (Section 6.3) which must learn to score the
generated trajectory candidates proposed by the goal-prediction module and grounded by the conformant
model- based planning module. In future work, we would consider conditioning the pruning module on
additional domain knowledge, such as admissibility metrics (similar to the metrics we introduce in Section
6.2 or external functional constraints.
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Chapter 7

Learning with Constraints

for safety-aware and robust prediction

7.1 Motivation
Whereas much of the existing research in autonomous driving focuses on urban or highway driving, sim-
ulated Formula-style track racing represents new challenges for artificial agents that must learn complex
driving behaviour, safely and sample-efficiently, in rapid time-evolving scenarios. Contemporary works
in simulation struggle to capture realism in the visual rendering, vehicular dynamics, and task objectives,
inhibiting the transfer of learning agents to real-world contexts. Meanwhile, current algorithmic solu-
tions are split between more classical approaches that demand privileged information, require significant
parameter-tuning, and are limited in their performance capacity; versus approximate driving methods that
provide no guarantees of safety and are prone to overfitting on the training scenarios. In this chapter, we
study how to address both critical challenges in this task.

7.2 Safety-aware Policy Optimisation via Constraint Functions
Without safety constraints, autonomous agents are not guaranteed to adhere to safe behaviours, through-
out interactions with their environment. In the context of safety-critical control applications, such as
autonomous driving and human-robot interaction, recent literature has been concerned with studying how
to best learn policies that are simultaneously safety-aware and performant. In the reinforcement learn-
ing (RL) literature, it is common to study constraint satisfaction under the constrained Markov decision
process (CMDP) framework [6], which extends the Markov decision process (MDP) by incorporating
constraints on expected cumulative costs. That is to say, aside from maximising expected cumulative re-
wards, the agent must ensure that the cumulative costs do not exceed pre-specified limits. The primary
challenge of solving a CMDP problem is the need to evaluate whether a policy will violate the constraints
[2]. Methods, such as constrained policy optimisation (CPO) [2], projection-based constrained policy
optimisation (PCPO) [315] and conservative safety critic (CSC) [26], depend on collecting samples from
the environment for policy evaluation. As a result, safety cannot be guaranteed, most notably during the
initial learning interactions [58].
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Figure 7.1: Summary of SPAR. We decompose the problem of learning under safety constraints into
optimising for performance and updating safety value function. Thus, SPAR consists of two policies, both
implemented with actor-critic architecture, which are in charge of safety and performance independently.
First, we warm-start the safety critic, using values pre-computed with a nominal model. Then, we refine
the safety critic based on observations from the environment, i.e., frontal camera view and speed, using
HJ Bellman update. Simultaneously, we optimise the performance policy. At each time step, the safety
critic verifies if the current state is safe, and only intervenes when necessary.

Given the practical limitations of letting agents learn safety by experiencing failures, it may be favourable
to bootstrap the learning process with a model. Methods, such as Hamilton-Jacobi (HJ) reachability,
compute safe sets with theoretical guarantees, using models of the system dynamics. In our autonomous
racing experiments, we demonstrate that a safe set that is pre-computed with a simple kinematic vehicle
model [147] can empirically keep even an agent that is generating actions at random on the drivable area,
given a sufficiently large safety margin. For many engineering applications, such nominal models can
often be specified by domain experts, despite complexity in the true dynamics.

In this section, we combine constrained RL with HJ Reachability theory in our problem formulation.
Since safety verification under HJ Reachability theory does not depend on the performance policy, we
can decompose the problem of learning under safety constraints into optimising for performance and
updating safety value function. Given this intuition, we learn two independent policies (as shown in Figure
7.1), both implemented with actor-critic architecture, that manages safety and performance independently.
While the performance policy focus exclusively on optimising performance, the safety critic verify if the
current state is safe, and intervenes when necessary. The safety critic is updated via Hamilton-Jacobi
Bellman update [91], grounded in control theory, and the safety controller is updated via the gradients
from the safety critic. At the same time, the performance controller solves an unconstrained optimisation
problem and thus can be trained with any appropriate RL algorithm.

As a summary of contributions, we propose the use of safety constraints for autonomous racing, inspired
by the theoretical foundations of Hamilton-Jacobi (HJ) reachability analysis in optimal control. Here,
we define a safety controller that intervenes whenever an agent approaches bad states, and we show that
even an agent that generates actions at random is guaranteed to stay on the drivable area; we further show
that an arbitrary learning policy that is coupled with this safe controller is able to learn performant driv-
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ing behaviour, both safely and sample-efficiently. Finally, we demonstrate that the HJ safety value can
be learned and updated directly from vision context, thereby expanding HJ reachability to applications
where high-fidelity dynamics models may not be available. While not necessary for convergence, we
warm-start the safety value function using values pre-computed with a nominal model. Next, the value
function is updated directly on transitions of ego-agent’s frontal camera view and vehicle speed. As a first
experiment, we evaluate our approach on alongside strong baselines, in two environment and agent con-
figurations, on the OpenAI Safety Gym framework; we report the minimum number of safety infractions,
compared to state-of-the-art CMDP approaches. In the second experiment, we evaluate our approach on
Learn-to-Race (L2R) [117], a recently-released high-fidelity autonomous racing environment, which
requires the vehicle to make safety-critical decision in a fast changing environment. We obtain state-
of-the-art results on L2R and show that incorporating a dynamically updating safety critic grounded in
control theory boosts performance especially during the initial learning phase.

7.2.1 SPAR: Safety-aware Policy Optimisation for Autonomous Racing
Constrained MDPs. The problem of reinforcement learning (RL) with safety constraints is often formu-
lated as a CMDP. On top of the MDP (X ,U , R,F), where X is the state space, U is the action space,
F : X × U −→ X characterises the system dynamics, and R : X × U −→ R is the reward function, CMDP
includes an additional set of cost functions, C1, . . . , Cm, where each Ci : X × U −→ R maps state-action
transitions to costs characterising constraint violations.

The objective of RL is to find a policy π : X −→ U that maximises the expected cumulative rewards,
V π
R (x) = Exk,uk∼π

[∑∞
k=0 γ

kR(xk, uk)|x0 = x
]
, where γ ∈ [0, 1) is a temporal discount factor. Sim-

ilarly, the expected cumulative costs are defined as V π
Ci

(x) = Exk,uk∼π
[∑∞

k=0 γ
kCi(xk, uk)|x0 = x

]
.

CMDP requires the policy to be feasible by imposing limit for the costs, i.e. VCi(π) ≤ di, ∀i. Putting
everything together, the RL problem in a CMDP is:

π∗ = arg max
π

V π
R (x) s.t. V π

Ci(x) ≤ di ∀i (7.1)

HJ Reachability. To generate the safety constraint, we use HJ reachability applied to a simple, low-
fidelity model of the vehicle kinematics, denoted as ẋ = f(x, u). Here x is the state, u is the control
contained within a compact set U . The dynamics are assumed bounded and Lipschitz continuous. For
discrete-time approximations the time step ∆t > 0 is used.

We denote all allowable states as K, for which there exists a terminal reward l(x), such that x ∈ K ⇐⇒
l(x) ≥ 0. An l(x) that satisfy this condition is the signed distance to the boundary ofK. For instance,K is
the drivable area and l(x) is the distance to road boundary or obstacle in an autonomous driving scenario.
This set K is the complement of the failure set that must be avoided. The goal of this HJ reachability
problem is to compute a safety value function that maps a state to its safety value with respect to l(x)
over time. This is done by capturing the minimum reward achieved over time by the system applying an
optimal control policy:

VS(x, T ) = sup
u(·)

min
t∈[0,T ]

l(ξu,dx,T (t)), (7.2)

where ξ is the state trajectory, T < 0 is the initial time, and 0 is the final time. To solve for this safety
value function, a form of continuous dynamic programming is applied backwards in time from t = 0 to
t = T using the Hamilton-Jacobi-Isaacs Variational Inequality (HJI-VI):

min

{
∂VS
∂t

+ max
u∈U
〈f(x, u),∇VS(x)〉, l(x)− V (x, t)

}
= 0, VS(x, 0) = l(x). (7.3)
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The super-zero level set of this function is called the reachable tube, and describes all states from which
the system can remain outside of the failure set for the time horizon. For the infinite-time, if the limit
exists, we define the converged value function as VS(x) = limT→−∞ VS(x, T ).

Once the safety value function is computed, the optimal safe control can be found online using the Hamil-
tonian: u∗S = arg maxu∈U 〈f(x, u),∇VS(x)〉. This safe control is typically applied in a least-restrictive
way wherein the safety controller becomes active only when the system approaches the boundary of the
reachable tube, i.e. u ∼ π if VS(x, T ) ≥ 0, u∗S otherwise.

The newly introduced discounted safety Bellman equation [91] modifies the HJI-VI in (7.3) in a time-
discounted formulation for discrete time:

VS(x) = (1− γ)l(x) + γmin

{
l(x),max

u∈U
V (x+ f(x, u)∆t

}
, VS(x, 0) = l(x). (7.4)

This formulation induces a contraction mapping, which enables convergence of the value function when
applied to approximate dynamic programming schemes commonly used in RL.

Safety-aware policy optimisation. We are inspired by guaranteed-safe methods, such as Hamilton-Jacobi
reachability, which provides a systematic way to verify safety. Thus, we formulate our problem as a com-
bination of constrained RL and HJ reachability theory. By leveraging this dynamics model, HJ enables
evaluation of the agent’s trajectory ξux(·) as safe, for all future time t ≥ 0, insofar as ξux(t) ∈ K for con-
straint safe set K. The need for an accurate model of the system dynamics can be restrictive, particularly
for applications where such a model is difficult to develop or not available. We can, however, make learn-
ing more efficient by warm-starting the value estimation using a nominal model of the vehicle dynamics,
when one is available. Because this nominal model does not come close to capturing the true underly-
ing dynamics of the agent with respect to its environment, i.e., the residual dynamics (or disturbances)
are expected to be left unmodelled, using the nominal dynamics to generate initial action-values does not
preclude the subsequent application of Bellman-update formulæ, discussed in recent methods [26, 91].
Building upon this work, we demonstrate that it is possible to directly update the safety value function
on high-dimensional multimodal sensory input—thereby expanding the scope of applications to problems
previously inaccessible. We highlight the notable aspects of our framework:

i) HJ reachability provides a control-theoretic and low-latency way to verify safety. By incorporating HJ
Reachability theory in the CMDP framework, we have a control-theoretic update rule to learn about safety
and can verify safety by evaluating the safety value of the current state. Another positive outcome of the
formulation is that the original constrained problem is decomposed into two unconstrained optimisation
problems, making our formulation more amenable to gradient-based learning.

ii) Leverages domain knowledge. Aside from utilising HJ reachability theory for updating the safety
critic, we also warm-start the safety value function with values pre-computed via a nominal model. We
demonstrate in Section 7.2.5 that despite the naivety of the assumed model, it can empirically keep a
random agent on the racetrack with a sufficiently large safety margin. This demonstrates the benefit of
bootstrapping the learning process with readily-available domain knowledge.

iii) Achieves safe exploration. Our method is able to adhere to safe exploration strategies, particularly dur-
ing early stages of training, when exploration is of paramount importance and when CMDP formulations
tend to exhibit higher probabilities of failure.

iv) Scales to high-dimensional visual context. Compared to standard HJ Reachability methods, whose
computational complexity scales exponentially with the state dimension, we updated the safety value
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directly on vision embedding, with neural approximation. This is the highest-dimensional problem studied
studied via HJ reachability to-date.

v) Simultaneously learns performance and safety. We formulate our problem as a combination of CMDP
and HJ Reachability theory. As the result of the formulation, the problem of learning under safety con-
straints can be decomposed as optimising for performance and updating safety value estimation. Thus, we
simultaneously, but independently, optimise a performance controller and a safety controller, both imple-
mented with an actor-critic architecture. The safety backup controller is applied in a least restrictive way,
only intervening when the RL agent is about to enter into an unsafe state and thus allowing the RL agent
maximum freedom in exploring safely.

Unifying CMDPs and HJ reachability. We formulate our problem as a combination of CMDP and HJ
Reachability theory. As described above, the objective of CMDP is to maximise cumulative rewards,
subject to limits on cumulative costs characterising constraint violations. Without loss of generality, we
can interpret the negative of a cost as a reward for safety and reverse the direction of the inequality
constraint. Also recall that the super-zero set of the safety value function, i.e., {x|Vs(x) ≥ 0}, designates
all states that can remain within the set of allowable states, K, over infinite time horizon. Thus, the safety
value function derived from HJ reachability can be naturally embedded in the CMDP formulation:

π∗ = arg max
π

VR(x), s.t. VS(x) ≥ ε, (7.5)

where ε ≥ 0 is introduced as a safety margin. A key difference from the original CMDP formulation
(Eqn. 7.1) is that constraint satisfaction, VS(x) ≥ ε, no longer depends on the policy, π. Thus, we can
bypass the challenges of solving CMDPs and decompose learning under safety constraints into optimising
for performance and updating safety value estimation. While a number of works have similar dual-policy
architecture [20, 58, 282], ours design is informed by HJ Reachability theory. Another difference is that
HJ Reachability considers safety as absolute, and there is no mechanism to allow for some level of safety
infraction, and thus χi in Eqn. 7.1 is no longer present.

Update of safety value function. We apply HJ Bellman update, in place of standard Bellman backup,
to learn the safety value function. The learning rule proposed by [91] is defined on discrete action space,
which we modify for continuous action space (Eqn. 7.6). While the safety actor is sub-optimal during
learning, the resulting HJ Bellman target is a conservative estimation of the safety value, as QS(x′, u′) ≤
maxu′∈U QS(x′, u′), which is desirable for safety analysis. QS(x, u) is updated model-free using state-
action transitions, and only additionally requires l(x). We assume l(x) can be acquired from the vehicle’s
sensing capability [28] or estimated from perception [55].

QS(x, u) = (1− γ)l(x) + γmin{l(x), QS(x′, u′)},
u′ ∼ πS(x′).

(7.6)

Our method, SPAR, consists of a performance policy and a safety policy. The safety backup controller
is applied in a least restrictive way, only intervening when the RL agent is about to enter into an unsafe
state, i.e., u ∼ π, if QS(x, u) ≥ ε and u ∼ πS otherwise. The performance policy may be implemented
with any RL algorithm. Since we expect the majority of samples to be from the performance policy, it is
more appropriate to update the safety actor critic with an off-policy algorithm. In this work, we base our
implementation of the safety actor critic on soft-actor critic (SAC) [110]. The safety critic is updated with
Eqn. 7.6, and the safety actor πS parameterised by θθ is updated via Eqn. 7.7, with learning rate η:

θS ← θS + ηEx,u∼D∇uQS(x, u)∇θπθS (x). (7.7)
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State encoder representation. We condition the optimisation of the performance policy, as well as the
safety value updates, on pre-trained embedding of vehicle’s visual scene context. The perception module
maps ego-images from the on-board RGB camera to feature embedding of reduced dimension. To learn
this mapping, we use a standard variational autoencoding (VAE) [137] paradigm, with a convolutional
encoder. We use an image reconstruction objective with binary cross-entropy loss, Adam optimizer [138],
and a latent vector dimension of 32. We train the VAE encoder to reconstruct ego-images, sampled
from the vehicle’s front camera during random agent execution; examples are provided in Figure 7.2a. We
further refine the encoder by training the VAE module to reconstruct projected road boundaries, illustrated
in Figure 7.2b, with inputs in the left column and the reconstructed outputs in the right column. We first
deploy the VAE on artificial projected images of road boundaries, where, compared with the left input
image shown in left half in Figure 4, the right reconstructed image effectively learns the road boundaries,
which demonstrates the few information loss in the latent vector. To transfer the model to the much more
complex real racing environment, we crop the top part of the image to reduce distraction from irrelevant
information like sky or sunlight so as to make neurons focus on learning the track shape and boundary.
The final result is shown in right half of Figure 4. The 32-dimension latent vector is used as the visual
feature that is passed, downstream, to the policies.

As illustrated in Figure 7.1, the vision encoder takes an image as input to produce a latent vector, which
is concatenated with speed and action embedding and passed to the performance and safety actor-critics.
The specific implementation of layers are summarised in Table 7.5.

Agent training details. During training, the agent is spawned at random locations along the race track and
uses a stochastic policy. During evaluation, the agent is spawned at a fixed location and uses a deterministic
policy. The episode terminates when the agent successfully finishes a lap, leaves the drivable area, collides
with obstacles, or does not progress for a number of steps. For each agent, we report averaged results
across 5 random seeds, evaluated every 5000 steps over an episode (one lap). In total, we train each agent
over 250,000 steps, and evaluate it over 50 episodes.

During its interaction with the environment, the agent receives a 192×144 ego-camera view and its speed
at each time-step. The agent encodes the RGB image frame and its speed to a 40-dimensional feature
representation, subsequently used as input to both actor-critic networks. We initialise the replay buffer
with 2000 random transitions, following [1]. After 2000 steps, we perform a policy update at each time
step. For the SafeSAC agent, we only save state-action transitions from the performance actor to the
replay buffer. For the SPAR agent, we save all state-action transitions. Specifically, we use a squashed
Gaussian policy for both performance and safety actors, following [110]:

u = tanh(µ(x) + σ(x)� ξ), ξ ∼ N (0, I) (7.8)

7.2.2 Safe Learning Experiments on the Safety Gym Environment
We first evaluate our proposed approach, SPAR, in Safety Gym [233]. Specifically, we evaluate on the
standard CarGoal1-v0 and PointGoal1-v0 benchmarks, where the agent navigates to a goal while avoiding
hazards. We compare SPAR against baselines including: Constrained Policy optimisation (CPO) [2],
an unconstrained RL algorithm (Proximal Policy optimisation (PPO) [253]), and its Lagrangian variant
(PPO-Lagrangian). By default, distance measurements from LiDAR are available to all baselines in these
benchmarks, and thus SPAR has direct access to l(x). Episodic Performance and Cost curves are shown
in Figure 7.3.
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(a) Real-image VAE reconstruction (b) Projected Road Boundary VAE reconstruction

Figure 7.2: (a) VAE image reconstruction, with real images in the left column and reconstructed images
in the right column. (b) VAE reconstruction of projected road boundary images, with real images in the
left column and reconstructed images in the right column.

Figure 7.3: Performance of SPAR with comparison to baselines in the CarGoal1-v0 (top row) and
PointGoal1-v0 (bottom row) benchmarks (averaged over 5 random seeds). In Goal tasks, agents must
navigate to observed goal locations (indicated by the green regions), while avoiding obstacles (e.g., vases
in cyan, and hazards in blue).

Following the default CarGoal1-v0 and PointGoal1-v0 benchmarks in Safety Gym, all agents were given
LiDARs observation with respect to hazard, goal, and vase, with avoiding hazards as the safety constraints.
Both environments were initialised with a total of 8 hazards and 1 vase. Agent’s are endowed with ac-
celerometer, velocimeter, gyro, and magnetometer sensors; their LiDAR configurations included 16 bins,
with max distance of 3. The baselines we considered, i.e., CPO, PPO and PPO-Lagrangian follows the
default implementation that comes with Safety Gym. PPO-SPAR wraps the proposed safety actor critic
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around the PPO base agent. Despite PPO being an on-policy algorithm, the SPAR safety critic was im-
plemented with off-policy updates, using prioritised memory replay based on the TD-error of predicting
safety value. Since l(x) is small in this environment, we scaled cost by a factor of 100. For the safety
actor-critic, We used γS annealing from 0.85 to 1 following [91], τ = 0.005, critic learning rate of 0.001,
actor learning rate of 0.0003, and α = 0.2 (regularisation on policy entropy). We used a safety margin
ε = 0.25, mainly to account for the dimension of the hazards (radius = 0.2). For each model, on each
Safety Gym benchmark, results were reported as the average across 5 instances. All experiments in Safety
Gym were run on an Intel(R) Core(TM) i9-9920X CPU @ 3.50GHz—with 1 CPU, 12 physical cores per
CPU, and a total of 24 logical CPU units.

PPO-SPAR has significantly fewer constraint violations, compared to other baselines, and the number of
violations decreases over time. While CPO and PPO-Lagrangian take into account that a certain number
of violations are permissible, there is no such mechanism in SPAR, as HJ Reachability theory defines
safety in an absolute sense. While the inability to allow for some level of safety infractions, unfortunately,
compromises performance, SPAR learns mature obstacle-avoidance behaviours, compared to some poli-
cies, which may ignore traps in favour of fast navigation to goal locations. Violations that do occur
in SPAR result from neural approximation error, and the number of violations decreases over time as
the safety actor-critic gains experience, despite the randomised and constantly-changing episodic layouts.
While constraint violation are non-terminal in the Safety Gym environment, the task in the next subsection
does terminate episodes upon safety infraction.

7.2.3 Learn-to-Race: a Multimodal Continuous Control Environment
In this subsection, we discuss our creation and release of the Learn-to-Race framework for safe learning
research in autonomous racing.

Progress in the fields of machine learning and artificial intelligence (AI) depends on challenging tasks and
well-defined evaluation metrics for researchers to effectively compare and improve algorithms and archi-
tectures. Models in learning to drive settings continue to struggle with problems, such as sample-efficiency
and generalisation to unseen scenarios, calling for more suitable benchmarks [50, 89, 219]. We hypothe-
sise that high-fidelity simulation environments, with well-defined metrics and evaluation procedures, are
conducive to developing more sophisticated agents, that are applicable to real-world deployments.

Competition-style racing not only has well-defined objectives, but also exhibits significant complexity.
Compared to urban driving, the racing car must make safety-critical, real-time decisions based on mul-
timodal inputs in a fast-changing environment, with consideration of competing agents in multi-agent
racing. Further, a racing car operates at its physical limit and is significantly less stable compare to a street
car, where small mistakes can steer the car out-of-boundary. We highlight simulated competition-style
racing as an opportunity to encourage the development of learning strategies that are capable of meeting
these stringent requirements. We hope this new class of algorithms can positively affect other applications
that require making safety-critical, real-time decisions based on diverse information.

In this work, we address the lack of realistic simulators and tasks for studying high-speed driving and
release our autonomous racing simulator, which includes numerous interfaces for both simulated and real
vehicle instrumentation. Furthermore, we introduce Learn-to-Race (L2R), a multimodal and continu-
ous control environment for training and evaluating autonomous racing agents. Our environment extends a
racing simulator, which we use to accurately model competition-style racing cars, including their sensors,
cameras, and vehicle dynamics, along with racetracks that are based off their of real-world counterparts.
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As such, L2R provides agents with a variety of sensory information from multiple modalities, all of which
is realistically accessible on a vehicle. While the tasks presented do not include transfer from simulation
to real-world, success in a complex virtual environment like L2R is the first step towards real-world racing
for learning agents. Competition-style track racing is an extreme challenge for AI, and our work opens up
avenues for future research and development in problems that require making safety-critical, sub-second
decisions, in highly-dynamic and unstable environments.

Concretely our contributions include: (i) the Arrival simulator, a high-fidelity competition-style au-
tonomous racing simulator, which models simulated tracks and various vehicle sensor signals; (ii) L2R frame-
work, a plug-and-play environment, which defines interfaces for various sensor modalities, provides an
OpenAI-gym compliant training and testing environment for learning agents, and enables agents to learn
to race on high-precision models of real-world tracks (e.g., the famed Thruxton Circuit and the Las Vegas
Motor Speedway) and to use a suite of rich multimodal sensory information; (iii) an official L2R task and
dataset with expert demonstrations, experiments, challenging metrics, and reference implementations; and
(iv) release the simulator, code for the L2R framework, the dataset of expert demonstrations, and imple-
mentation of baseline agents with model checkpoints to facilitate reproducibility and to enable researchers
to build on our work.

Figure 7.4: Learn-to-Race interfaces with a racing simulator, which features numerous real-world
racetracks such as the Thruxton Circuit (top-left) and Las Vegas Motor Speedway (top-right). Simulated
race cars (bottom) are empowered with learning agents, tasked with the challenge of learning to race for
the fastest lap-times and best metrics.

Simulation Framework

L2R provides a series of interfaces for an agent to interact with a racing simulator, including the capabil-
ities to send control commands and make observations of the environment and its own state via different
sensors. L2R is implemented as a Gym environment [35], enabling quick prototyping of RL or other
control algorithms. While we release the L2R environment and task (Section 7.2.3) alongside the Arrival
Racing Simulator, we point out that other simulators may be used with our framework as well, including
those provided by [273]. Figure 7.5 shows a summary of functionalities and interactions amongst the
racing simulator, the L2R framework, and an agent.

Agent-Simulator Interaction. At each step t, an agent select an action, at, based on its current obser-
vation, st, using its policy, πθ, that is at ∼ πθ(·|st). The control action from the agent is forwarded to
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Figure 7.5: Learn-to-Race allows agents to interact with the racing simulator through a series
of interfaces for observations, actions, and simulator control.

the simulator as a UDP message. L2R receives updates from the simulator, namely images from the vir-
tual camera and/or measurements from other vehicle sensors, through TCP and UDP socket connections.
Like in reality, update frequencies across the various sensor modalities are not equal, so L2R synchro-
nises observations by providing agents with the most recent data from each as in Algorithm 1. The step
method of the environment returns the new observation, st+1, along with a calculated reward to the agent,
rt = R(st, at, st+1), and a Boolean terminal state flag. The reward function and evaluation metrics are
defined in Section 7.2.3.

Algorithm 1 Agent-Simulator Interaction
1: function SENSOR THREAD

2: data← Initial value
3: function GET DATA

4: return data
5: while not terminated do
6: data← Receive Data
7:
8: function STEP(at)
9: Send at as UDP message

10: st+1 ← Get Data ∀ Sensor Threads
11: rt ← R(st, at, st+1)
12: done← IsTerminal(st, st+1)
13: return st+1, rt, done

Episodic Control. The control interface communicates with the simulator to automatically setup and
execute simulations in an episodic manner. Our framework conveniently allows for training to be launched
in one command, as all aspects of the racing simulator and learning environment are parameterized. A
state is considered terminal if all laps are successfully completed, if at least 2 of the vehicle’s wheels go
outside of the drivable area, or if progress is minimally insufficient. The episode begins by resetting the
vehicle to a standing start position, at a parameterised location, along with configured sensor interfaces
and initialised reward function. Discrete steps are taken by the agent until one of the aforementioned
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Table 7.1: Summary of the observation and continuous action spaces, for the Learn-to-Race task.
When the simulator is initialised in vision-only mode, the observation space consists of just the images
from the ego-vehicle’s front-facing camera. The additional observation data, all of which is realisti-
cally accessible on a real racing car, is available in multimodal mode. *Whereas gear is permitted as a
controllable parameter, we do not use it in our experiments.

Signal Description Dimension

Action Acceleration Command in [-1.0, 1.0] R1

Steering Command in [-1.0, 1.0] R1

Gear {park, drive, neutral, reverse} —

Observation

Image RGB image RW×H×3

Steering Observed steering direction R1

Gear {park, drive, neutral, reverse} —
Mode Vehicle mode R1

Velocity In ENU coordinate (m/s) R3

Acceleration In ENU coordinate (m/s2) R3

Yaw, Pitch, Roll Orientation of the car (rad) R3

Angular Velocity Rate of change of the orientation (rad/s) R3

Location Location of the vehicle center in ENU (m) R3

Wheel Rotational Speed per wheel (RPM) R4

Braking Brake pressure per wheel (Pa) R4

Torque per wheel (Nṁ) R4

episode termination criteria is met.

Task Definition

The Learn-to-Race task (L2R) tests an agent’s ability to execute the requisite behaviours for competition-
style track racing, through multimodal perceptual input. In this section, we provide a task overview and
describe task properties, task dataset characteristics, and task metrics.

Task Overview. L2R is an OpenAI Gym [35] compliant learning environment, where researchers could
flexibly select among the available sensor modalities. At the moment, it supports single-agent racing.
This first version of the environment provides access to two racetracks, both modelled after their real-
world counterparts. The first is the North Road Track at Las Vegas Motor Speedway, located in the United
States, and the second is the Thruxton Circuit track, located in the United Kingdom. Analogous to having
separate towns and maps for training and testing in other simulation environments, e.g., CARLA [77], we
use Thruxton for training and the North Road track for testing. Consequently, we generate expert traces
from the training track, for inclusion in our initial dataset release (see Section 7.2.3).

Many avenues for research can be explored within the Learn-to-Race framework, including: various
learning paradigms (reinforcement learning, imitation learning, multitask learning, transfer learning, etc.),
as well as both modular and end-to-end architectural strategies. Regardless of the method chosen, agents’
multimodal perception capabilities—i.e., their ability to fuse and align sensory information—are of critical
importance.
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Learn-to-Race Dataset. We generate a rich, multimodal dataset of expert demonstrations from the train-
ing racetrack (Thruxton), in order to facilitate pre-training of agents via, e.g., imitation learning (IL). The
L2R dataset contains multi-sensory input at a 100-millisecond resolution, in both the observation and
action spaces. Depending on the selected simulator perception mode, agents have access to one (vision-
only mode: images) or all modalities (multimodal mode. See Table 7.1 for a complete list of available
modalities. The action space is defined by continuous values for acceleration and steering, in the ranges
[−1.0, 1.0], where negative acceleration values will decelerate the vehicle to a halted position. Note that
Gear is a controllable action, but fixed to drive in all our experiments. Setting gear to park, neutral, or
reverse does not help in the racing objectives.

The expert demonstrations were collected using a model predictive controller (MPC) (to be described in
Section 7.2.3) that tracks the centerline of the race track at a pre-specified reference speed. This train-
ing dataset contains 10,600 samples of each sensory and action dimension, in this first version, which
includes 9 complete laps around the track. Further description and visualisation of the dataset can be
found in the supplementary material. Future version releases of L2R will include access to new simulated
tracks (also modelled after real tracks, from around the world) as well as expert traces generated from
these additional tracks—across various weather scenarios, in challenging multi-agent settings, and within
dangerous obstacle-avoidance conditions.

Baseline Agents. We define a series of learning-free (e.g., RANDOM, MPC) and learning-based (e.g.,
reinforcement learning, imitation learning) baseline agents, to illustrate the performance of various algo-
rithmic classes on the Learn-to-Race task. In addition, we provide a benchmark human performance,
through a collection of expert races. The RANDOM agent is mainly intended as a simple demonstration of
how to interface with the L2R environment.

The RANDOM agent is spawned at the start of the track, and uniformly samples actions, i.e., steering and
acceleration, from the action space. The agent then proceeds to execute these random actions.

The MPC agent was used to generate expert demonstrations (Section 7.2.3) and is intended as a reference
solution of L2R via classical control approaches. The MPC minimises the tracking error with respect to
the centerline of the race track at a pre-specified reference speed. We use the iterative linear quadratic
regulator (iLQR) proposed in [162], which iteratively linearises the non-linear dynamics along the current
estimate of trajectory, solves a linear quadratic regulator problem based on the linearised dynamics, and
repeats the process until convergence. Specifically, we used the implementation for iLQR from [8]. We
adopt the kinematic bike model [147] to characterise the vehicle dynamics. While MPC implies optimal
control performance, we want to point out the limitations of our current implementation. Firstly, the
ground truth vehicle parameters were not known to us and we used estimated values. Secondly, we asked
the MPC to follow the centerline of the track, which is not the trajectory expert drivers would have taken,
especially when cornering. Finally, we pre-specified the MPC to drive at a conservative speed (12.5m/s),
which makes the expert demonstrations easier to learn from.

For a CIL agent, we adopted the same neural architecture from Conditional Imitation Learning (CIL)
[64], except that we do not have different commands in our case, e.g., turn left, turn right, go straight, and
stop . Thus, we used a single branch for decoding actions. We assume both front view images and sensor
measurements are available for the IL agent. In each sample, the input consists of a 512 × 384 image
and 30 sensor measurements, and output is 2 actions (as listed in Table 7.1). Our CIL implementation
automatically adjusts the neural architecture based on specified input-output dimensions. The imitation
loss (Equation 7.9) is the mean squared error between the predicted action, ât, and the action taken by the
expert, at: L =

∑n
i=1 ||âi − ai||22
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L =

n∑
i=1

||âi − ai||22 (7.9)

Our RL-SAC agent is based on the Soft-Actor Critic (SAC) algorithm [75, 109], which is generally per-
formant and known to be robust [83]. SAC belongs to the family of maximum entropy reinforcement
learning (RL) algorithms, wherein an agent maximises expected return, subject to an entropy regularisa-
tion term (Equation 7.10), as a principled way to trade-off exploration and exploitation. Our RL-SAC
agent demonstrates several of features in the environment: it operates in vision-only mode, but rather
than learning directly from pixels, we pre-trained a convolutional, variational auto-encoder [137] made on
sample camera images. Therefore, our agent only need to learns to decode actions from image embed-
dings using a multi-layer perceptron with two hidden layers of 64 hidden units each. Our agent’s reward
function was the environment’s default with the inclusion of a bonus if the agent remained near the center
of the track. The standard SAC objective is as follows:

J (θ) =
T∑
t=1

Eπθ [R(st, at)−H(πθ(at|st))] (7.10)

We additionally establish a HUMAN performance baseline, by collecting simulated racing results from
human expert players. The collection procedure involved a private crowd-sourcing event, which was split
into two separate phases—practice/training and recording/testing. Expert players were already familiar
with the simulator, task, and objective, prior to engaging in the event. In the training phase, players were
instructed to engage in the race, until the variance in finished lap-times, for three consecutive runs, fell
below a certain threshold. After this training phase, players were allowed to proceed to the testing phase,
for which their top-3 laps were recorded. We averaged the top-3 results in the testing phase, from all
experts, for each track; the training results were discarded.

Metrics for Assessing Racing Agent Performance

The primary objective of the L2R task is to minimise the time taken for an agent to successfully complete
racing laps, with additional requirements on the agent’s driving quality. We do not restrict the agent’s
learning paradigms to, e.g., IL or RL; on the contrary, we can envision a wealth of combination strategies
and other methods that are applicable to the L2R task. While we do not include planning-only approaches
as those that are consistent with the official L2R task, (i) we do encourage hybrid or model-based learning
approaches to adopt these technologies as official task entries; furthermore, (ii) we do encourage the
simulator and the L2R interface to be used to further research in these areas, more generally. Agnostic to
the learning paradigm used, and inspired by concepts from high-speed driving and trajectory forecasting
[219], we define the core modalities, metrics, and objectives that shall be used to train L2R agents and
assess their performance. We summarise agents’ action and observation spaces in Table 7.1 and the official
L2R task metrics in Table 7.2.

We define the successful completion of an episode in the L2R task to be 3 completed laps, from a standing
start; Episode Completion Percentage (ECP) measures the amount of the episode completed, and Episode
Duration (ED) measures the minimum amount of time that the agent took to progress to its furthest ex-
tent, through the episode. We define Average Adjusted Track Speed (AATS) as a metric that measures
the average speed of the agent, across all three laps of the episode. Metrics may also include adjustments
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for environmental factors, such as wheel slippage and weather effects as the task matures. Average Dis-
placement Error (ADE), a common metric in trajectory forecasting [219], measures the agent’s average
deviation from a reference path—in this case, the centerline of the track. Trajectory Admissibility (TrA) is
the dimensionless metric α defined in Equation 7.11 where te is the duration of the episode and tu is the
cumulative time spent driving unsafely with exactly one wheel outside of the drivable area.

α = 1−
√
tu
te

(7.11)

We also utilise metrics that measure the smoothness of agent behaviour: Trajectory Efficiency (TrE) mea-
sures the ratio of track curvature to agent trajectory curvature, i.e., in terms of agent heading deviations;
Movement Smoothness (MS) quantifies the smoothness of the agent’s acceleration profile, adjusted for
gravity, using the negated log dimensionless jerk, ηldj in Equation 7.12, a valid smoothness measure as
described in [15].

ηldj = ln

(
(t2 − t1)3

v2
peak

∫ t2

t1

∣∣∣∣d2v

dt2

∣∣∣∣2 dt
)

(7.12)

One key property of L2R is that it is objective-centric. Rather than restricting agents to predefined
incentive policies, input dimensions, or even input modalities, L2R allows and encourages flexibility so
that agents can learn to race effectively. The default reward function for L2R is inspired by [92]. This
policy provides dense rewards for progressing down the race track, consistent with the goal of minimising
lap times, and negative rewards for going out-of-bounds.

Evaluation Procedures for Simulated Racing Agents

Agent assessment is conducted through a leaderboard competition, with two distinct stages: (1) pre-
evaluation and (2) evaluation. Predicated on industry standards, we adopt a racing-centric pre-evaluation
step, for assessing agent performance, giving agents a warm start on the test track before formal evalua-
tion. Much like how human racing drivers are permitted to acquaint themselves with a new racing track,
before competition, we run a pre-evaluation on models, with unfrozen weights, allowing for some initial
(albeit constrained) exploration. In this pre-evaluation period, agents may explore the environment for a
fixed time of 60 minutes, defined in the number of time-steps of discrete observation from the L2R frame-
work. In the pre-evaluation, we further define a “competency check” that agents must pass, in order to
successfully proceed through to the main evaluation phase. For the North Road track at Las Vegas Motor
Speedway, the only competency check is that agents are able to successfully complete a lap during the
pre-evaluation period with acceleration capped at 50% of maximum allowed in the action space. A suc-
cessful episode is defined the completion of 3 laps from a standing start and the agent not going out of
the driveable areas of the track. If the agent is unsuccessful in the pre-evaluation phase, it is disqualified
and not evaluated further. As we continue to provide support for new tracks (necessitating more novel
driving maneuvers), we will also continue to add and permute the driving competency checks, to maintain
fairness of evaluation on those tracks.

Post a successful pre-evaluation stage, the final test stage occurs: agents are provided all the various input
modalities and have to compete on the metrics defined Section 7.2.3. When the agent successfully passes
through the pre-evaluation stage, the user is not provided with the results of the competency checks and
instead is able to view the results of the complete evaluation directly on the leaderboard.
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7.2.4 Benchmark Experiments on the Learn-to-RaceEnvironment
Task Baseline Results

We evaluate each of the baseline agents—HUMAN, RANDOM, MPC, and RL-SAC—on the task of learning
to race, with the objective of finishing 3 consecutive laps in minimal time. For all approaches, agents
complete model training and tuning on the Thruxton track. We present the average of each metric across 3
consecutive episodes after this phase in Table 7.3. Afterwards, agents are evaluated on based on their per-
formance on the Las Vegas track following the 1-hour pre-evaluation period described in 7.2.3. Learning-
free agents, namely RANDOM and MPC, simply perform inference in the testing environment. The RL-SAC
agent, a learning based approach, operates in vision-only mode and utilises the pre-evaluation stage to per-
form simple transfer learning to the new racetrack. The agent’s image encoder does not have access to the
test track prior to pre-evaluation and is not updated during this phase, but the model weights of the agent
do update as new experience becomes available. Following the pre-evaluation phase, agents completed 3
consecutive episodes, and we present the average of each metric in Table 7.4.

Table 7.2: Learn-to-Race defines multiple metrics for the assessment of agent performance.
These metrics measure overall success—e.g., whether and how fast the task is completed—along
with more specific properties, such as trajectory admissibility and smoothness.

Metric Definition

Episode Completion Percentage Percentage of the 3-lap episode completed
Episode Duration Duration of the episode, in seconds
Average Adjusted Track Speed Average speed, across all three laps, adjusted for environmental conditions, in km/h
Average Displacement Error Euclidean displacement from (unobserved) track centerline, in meters
Trajectory Admissibility Complement of the square root of the proportion of cumulative time spent unsafe
Trajectory Efficiency Ratio of track curvature to trajectory curvature (i.e., in agent heading)
Movement Smoothness Log dimensionless jerk based on accelerometer data, adjusted for gravity

Table 7.3: Baseline agent results on Learn-to-Race task while training on Thruxton track, with
respect to the task metrics in Table 7.2: Episode Completion Percentage (ECP), Episode Duration
(ED), Average Adjusted Track Speed (AATS), Average Displacement Error (ADE), Trajectory
Admissibility (TrA), Trajectory Efficiency (TrE), and Movement Smoothness (MS). Arrows (↑↓)
indicate directions of better performance. Asterisks (*) in Tables 7.3 and 7.4 indicate metrics which
may be misleading, for incomplete racing episodes.

Agent ECP (↑) ED (↓) AATS (↑) ADE (↓) TrA (↑) TrE (↑) MS (↑)

HUMAN 100.0(±0.0) 78.6(±5.2) 79.29(±4.7) 2.4(±0.1) 0.93(±0.01) 1.00(±0.02) 11.7(±0.1)

RANDOM 0.5(±0.3) 14.0(±5.5) 11.9(±3.8) 1.5(±0.6) 0.81(±0.04) 0.33(±0.38)∗ 6.7(±1.1)

MPC 100.0(±0.0) 904.2(±0.7) 45.1(±0.0) 0.9(±0.1) 0.98(±0.01) 0.85(±0.03) 10.4(±0.6)

RL-SAC 31.1(±0.0) 251.2(±1.4) 50.5(±0.3) 0.5(±0.0) 0.97(±0.0) 0.48(±0.0)∗ 11.1(±0.4)

Human experts. Human experts strongly outperform both during training and testing phases suggesting
a general understanding of racing as they can quickly adapt to a new track with notably different features
including frequent and severe turns. The human experts fully complete 3 lap episodes at speeds near
the vehicle’s physical limits and estimate their lap-time performance to be within 10% of optimal. We
expect strong agents to execute trajectories which are of lower curvature than the racetrack’s centerline,
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Table 7.4: Baseline agent results on Learn-to-Race task while testing on Las Vegas track.

Agent ECP (↑) ED (↓) AATS (↑) ADE (↓) TrA (↑) TrE (↑) MS (↑)

HUMAN 100.0(±0.0) 176.2(±3.4) 114.2(±2.3) 1.7(±0.1) 0.88(±0.01) 1.09(±0.02) 10.1(±0.3)

RANDOM 1.0(±0.6) 21.9(±9.6) 9.2(±1.5) 1.4(±0.3) 0.74(±0.01) 0.18(±0.05)∗ 8.4(±1.0)

MPC 69.5(±10.7) 353.2(±54.8) 40.5(±0.1) 0.8(±0.1) 0.91(±0.02) 1.07(±0.01)∗ 10.4(±0.2)

RL-SAC 11.8(±0.1) 109.9(±7.5) 22.1(±1.5) 1.3(±0.1) 0.95(±0.01) 0.58(±0.01)∗ 9.9(±0.2)

or a TrE of at least 1.0, allowing the vehicle to maintain higher AATS. The human experts were the only
agent to achieve this considering that failure to complete an episode distorts the metric. However, such
trajectories are aggressive and arguably risky because they often involve cutting corners closely with the
vehicle nearly outside of the driveable area which is apparent by their ADE, the highest of any agent, and
a relatively low TrA. Additionally, human experts performed well relative to other agents terms of MS,
measuring the smoothness of the acceleration profile, demonstrating a strong ability to anticipate the need
for, and control of, changes in speed in a smooth manner.

Baseline agents. There are several notable conclusions that we make based on the performance of our
baseline agents which we do not claim to be state-of-the-art. The first is that the task is indeed challenging,
as even the MPC agent with an approximate car model failed to consistently complete laps on the test
track. Even after over 1 million steps environment steps on the training track, the RL-SAC agent only
completes about 90% of a lap due to the challenging speed trap near the finish line at Thruxton. However,
the RL-SAC agent demonstrates better control than the MPC in training in both ADE and BF. Second,
we note the lack of generalisation and poor sample efficiency of the RL-SAC agent whose performance
dropped significantly in terms of ability to progress down the track, ECP, and stay near the centerline,
ADE, despite being directly incentivised to do so. The agent learns to simply stop altogether to avoid
going out-of-bounds about 1/3rd of the way around the test track. We note that imitation learning has
potential for providing agents with strong priors. However, in our experiments, automatic network sizing
based on input/output dimensions and step-wise supervision alone, suggested by [77], did not yield good
performance. This demonstrates the challenge that L2R poses to this family of approaches, necessitating
consideration of, e.g., hybrid IL/RL strategies.

7.2.5 Safe Learning Experiments on Learn-to-Race Environment
Overview

In this section, we evaluate our approach using the Arrival Autonomous Racing Simulator, through the
newly-introduced and OpenAI-gym compliant Learn-to-Race (L2R) task and evaluation framework
(Section 7.2.3). L2R provides multiple simulated racing tracks, modelled after real-world counterparts,
such as Thruxton Circuit in the UK (Track01:Thruxton; see Figure 7.6) and the North Road Track at
Las Vegas Motor Speedway in the US (Track02:Vegas). In each episode, a racing agent is spawned
on a given track. At each time-step, the agent may have access to RGB images from any specified loca-
tion, semantic segmentation, and vehicle state (e.g., pose, velocity) and uses its choice of information to
determine normalised steering angle and acceleration. ll learning-based agents receive the reward spec-
ified by L2R, which is formulated as a weighted sum of reward for driving fast and penalty for leaving
the drivable area; the main objective is to complete laps in as little time as possible, while committing as
few infractions as possible. Additional metrics are defined to evaluate driving quality. Complementary to
other benchmarks, the high-speed nature of Learn-to-Race, coupled with its realistic simulated dy-
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namics, allows for a comprehensive study of Safe RL methods. In this section, we describe the evaluation
of our approach, Safety-aware Policy Optimisation for Autonomous Racing (SPAR), against a series of
benchmarks and research goals.

Figure 7.6: We use the Arrival Autonomous Racing Simulator, within the Learn-to-Race (L2R)
framework (Section 7.2.3). This environment provides simulated racing tracks that are modelled after
real-world counterparts, such as the famed Thruxton Circuit in the UK (Track01:Thruxton, (a)).
Here, learning-based agents can be trained and evaluated according to challenging metrics and realistic
vehicle and environmental dynamics, making L2R a compelling target for safe reinforcement learning.
Each track features challenging components for autonomous agents, such as sharp turns (visualised in
(b)), where SPAR only use ego-camera views (shown in (c)) and speed.

Task: Learning to Race with Safety Constraints

Our overall objective is to train RL agents to adhere to safety constraints, i.e., successfully complete laps
without safety violations, while being as performant as possible. To characterise the empirical safety
performance of our approach, we report results primarily according to the following metrics, in dedicated
ablation experiments: the Average Adjusted Track Speed (AATS) and the Episode Completion Percentage
(ECP) metrics (Section 7.2.3) as proxies for agent performance and empirical safety, respectively. We
also provide full benchmark results on the other L2R metrics, defined in [117].

We use Track01:Thruxton in L2R (Fig. 7.6) for all stages of agent interaction with the environment.
During training, the agent is spawned at random locations along the race track and uses a stochastic policy.
During evaluation, the agent is spawned at a fixed location and uses a deterministic policy. The episode
terminates when the agent successfully finishes a lap, leaves the drivable area, collides with obstacles, or
does not progress for a number of steps. For each agent, we report averaged results across 5 random seeds
evaluated every 5000 steps over an episode, i.e., one lap. We use SAC as the performance policy, and all
agents only have access to ego-camera view (Figure 7.6c) and speed, unless otherwise specified.

Implementation Details. For all experiments, we implemented the models using the PyTorch 1.8.0.
We optimised both the performance and safety actor-critic with Adam [138], with a learning rate of 0.003.
We used γ = 0.99 for the performance critic, and annealed γS from 0.85 to 1 for the safety critic fol-
lowing [91]. We used τ = 0.005 for the performance critic, and τ = 0.05 for the safety critic. For
both the performance and safety actor, we include the policy entropy term with α = 0.2. We used a
batch size of 256, and a replay buffer size of 250,000. For rendering the simulator and performing local
agent verification and analysis, we used a single GPU machine, with the following CPU specifications:
Intel(R) Core(TM) i5-4690K CPU @ 3.50GHz; 1 CPU, 4 physical cores per CPU, total of 4 logical CPU
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units. The machine includes a single GeoForce GTX TITAN X GPU, with 12.2GB GPU memory. For
generating multi-instance experimental results, we used a cluster of three multi-GPU machines with the
following CPU specifications: 2x Intel(R) Xeon(R) Gold 5218R CPU @ 2.10GHz; 80 total CPU cores
using a Cascade Lake architecture; memory of 512 GiB DDR4 3200 MHz, 16x32 GiB DIMMs. Each
machine includes 8x NVIDIA GeForce RTX 2080 Ti GPUs, each with 11GB GDDR6 of GPU mem-
ory. Experiments were orchestrated on the these machines using Kubernetes, an open-source container
deployment and management system. All experiments were conducted using version 0.7.0.182276 of the
Arrival Racing Simulator. Our Learn-to-Race framework [117] are available for academic-use, here:
https://learn-to-race.org.

Table 7.5: Network Architecture

Operation Input (dim.) Output (dim.) Parameters

VISUAL ENCODER

Conv2d (N, chan, 42, 144), chan : 3→32 conv1 k:=(4,4), s:=2, p:=1, activation:=ReLU
Conv2d conv1, chan : 32→64 conv2 k:=(4,4), s:=2, p:=1, activation:=ReLU
Conv2d conv2, chan : 64→128 conv3 k:=(4,4), s:=2, p:=1, activation:=ReLU
Conv2d conv3, chan : 128→256 conv4 k:=(4,4), s:=2, p:=1, activation:=ReLU
Flatten — — —

VISUAL ENCODER BOTTLENECK REPRESENTATION
Linear (mu) N × h dim N × 32 —
Linear (sigma) N × h dim N × 32 —

VISUAL DECODER (only for pre-training Visual Encoder)
Unflatten — — —
ConvTranspose2d encoder.conv4: encoder.conv4.chan: 256→128 convtranspose1 k:=(4,4), s:=2, p:=1, activation:=ReLU
ConvTranspose2d convtranspose1, chan : 128→64 convtranspose2 k:=(4,4), s:=2, p:=1, activation:=ReLU
ConvTranspose2d convtranspose2, chan : 64→32 convtranspose3 k:=(4,4), s:=2, p:=1, activation:=ReLU
ConvTranspose2d convtranspose3, chan : 32→3 convtranspose4 k:=(4,4), s:=2, p:=1, activation:=Sigmoid

SAFETY ACTOR-CRITIC

actor network — — —
q function1 — — —
q function2 — — —

PERFORMANCE ACTOR-CRITIC

actor network — — —
q function1 — — —
q function2 — — —

ACTOR NETWORK (POLICY): SQUASHEDGAUSSIANMLPACTOR

Linear N × 32 N × 64 activation:=ReLU
Linear N × 64 N × 64 activation:=ReLU
Linear N × 64 N × 32 activation:=ReLU
Linear (projection: mu layer) N × 32 N × 3 —
Linear (projection: log std layer) N × 32 N × 3 —

Q FUNCTION

speed encoder — — —
regressor — — —

SPEED ENCODER

Linear N × 1 N × 8 activation:=ReLU
Linear N × 8 N × 8 activation:=Identity

REGRESSOR

Linear N × 42 N × 32 activation:=ReLU
Linear N × 32 N × 64 activation:=ReLU
Linear N × 64 N × 64 activation:=ReLU
Linear N × 64 N × 32 activation:=ReLU
Linear N × 32 N × 32 activation:=ReLU
Linear N × 32 N × 1 activation:=Identity

Warm-starting value estimation. While warm-start initialisation is not necessary for convergence of the
safety value update, we want to demonstrate that the incorporation of readily available domain knowledge
can drastically boost safety performance, especially during the initial learning phase. To do that, we first
compute the safety value using a nominal model, and then pre-train the safety value function by learning
the mapping from ego-view image and speed to HJ safety value.

Constructing the safe set via kinematic vehicle model. We use the kinematic vehicle model [147] to com-
pute the safety value (see Figure 7.7), which is very simplistic compared to a realistic race car model. In
comparison, [133] develop a high-fidelity vehicle model identified through extensive testing, and addi-
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tionally characterise unmodeled dynamics via Gaussian process.

The dynamics and optimal safety control from solving the Hamiltonian is given in Equation 7.13, where
the state is x = [x, y, v, φ], and the action is u = [a, δ]. x, y, v, φ are the vehicle’s location, speed, and yaw
angle. a is the acceleration, and δ is the steering angle. L = 3m is the car length. Setting Vs(x, 0) = l(x),
we calculated the backward reachable tube using the code base by [102]. For efficient computation, we
divided the racetrack into overlapping segments and computed the safety value segment by segment. Fig.
7.7 illustrates resulting safety value function at slices of state space, when the vehicle enters into a sharp
turn.

Figure 7.7: (a) We compute the safety value function, via a kinematic vehicle model. (b) We illustrate
different views of the 4D state space, given fixed velocity and three different yaw angles, indicated by the
blue arrows. Here, Vs(x, y, v, φ) is computed via the nominal model, where v=12m/s.


ẋ = v cos(φ)

ẏ = v sin(φ)

v̇ = a

φ̇ = v tan δ/L

, a∗

{
a if ∇vV ≤ 0

a else
, δ∗

{
δ if ∇θV ≥ 0

δ else
(7.13)

We characterise the empirical performance of this safety value function by comparing an agent that takes
actions at random (Random) with a random agent that is coupled with our static safety backup controller
(SafeRandom). We evaluate SafeRandom, through a series of safety margins, i.e., {3.2, 3.8, 4.2, 4.6,
5.0}. Empirically, ε ≥ 4.2 is sufficient to ensure the vehicle do not go out of bound at least in the speed
range covered by the SafeRandom agent. Finally, we collected ∼300K state-action transitions with the
SafeRandom agent to pre-train the safety critic in SPAR as a regression task.

Online safety. We pursue multiple experimental objectives, to illustrate the effect of safety constraints on
learning. We use soft-actor critic (SAC) [110] as the base policy class for all learning agents.

Learning to race with safety constraints. We examine the effect of imposing safety constraints on perfor-
mance and sample-efficiency, by comparing an RL agent (SAC) with an instance of itself that is coupled
with the static safety controller (SafeSAC), using the pre-computed safety value function with a nominal
dynamics model.

Continual safety value function updates. In this experiment, we study the effect of continual refinements
of the safety value, using high-dimensional multimodal information, while optimising for driving perfor-
mance. We want to show that the safety critic can learn about environment dynamics directly from vision
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context and, with this better characterisation of the safety value function, the agent no longer needs to de-
pend on a large safety margin. We compare the performance of SafeSAC (static safety backup) with our
proposed SPAR agent (dynamic updates to the safety value function). For the SafeSAC agent, we set the
safety margin ε to be 4.2, which is selected based on empirical safety performance of the SafeRandom
agent to account for unmodeled dynamics. The SPAR agent uses a less conservative safety margin of 3.0,
since it is going to refine the safety value function, over time. For the sake of comparison, we also provide
results of SafeSAC with the same safety margin as SPAR.

Experimental Results

The performance comparison between different agents is summarised in Fig. 7.9 and Table 7.8.

Safety value function, pre-computed with the nominal model, provides a good initial estimate. While
the kinematic vehicle model is a significant simplification of realistic dynamics, it provides a reasonable
initial estimate that can ensure that a random agent can remain on the racetrack, given a sufficiently-large
margin (Table 7.8).

Finding good safety margin: SafeRandom performance. Recall that the SafeRandom agent takes
random actions and uses the safety value function precomputed from the nominal model. The optimal
safety controller intervene whenever the safety value of the current state falls belong the safety margin.
The safety margin is necessary because 1) the nominal model is a significant over-simplification of vehicle
dynamics, and 2) the HJ Reachability computation does not take into consideration of the physical dimen-
sion of the vehicle. The performance of the SafeRandom agent at different safety margin is summarised
in Figure 7.8. For safety margin ε ≥ 4.2, the SafeRandom agent can reliably complete laps, and thus we
use ε = 4.2 as the safety margin for the SafeSAC agent. On the other hand, the performance decrease
drastically when the safety margin is reduced to 3.
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Figure 7.8: Performance of the SafeRandom agent at different safety margin (averaged over 10 random
seeds)

Static safety backup controllers with large safety margin lead to overly conservative policies. With-
out the ability to perform dynamic updates, SafeSAC depends on a conservative safety margin in order
to remain safe. Unsurprisingly, over-conservatism compromises performance. Despite its high average
episode completion percentage (ECP), SafeSAC agents exhibit extremely low speeds. This conservatism
even compromises ECP in the end, as episodes terminate early due to non-progression.
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Figure 7.9: Left: Episode percent completion and Right: speed evaluated every 5000 steps
over an episode (a single lap) and averaged over 5 random seeds. Results reported based on
Track01:Thruxton in the Learn-to-Race environment (Section 7.2.3). For policies with static
safety backup, we use safety margin of 4.2; for those with dynamic backup (i.e., SPAR), a safety margin
of 3.0 was used.

Table 7.6: Performance of the Pre-trained Safety Critic

F1 Precision Recall
VS(x) ≤ 3 0.65 0.74 0.59
VS(x) ≤ 4 0.83 0.78 0.88
VS(x) ≤ 5 0.96 0.96 0.96

SPAR agent learns to avoid unsafe scenarios, while driving reasonably fast. As the SPAR agent gains
more experience, it learns to avoid unsafe scenarios, and thus the ECP ramps up very quickly, along with
the speed. For example, at initialisation the agent tends to collide with a sidewall—perhaps due lower
visual contrast between the track and the inadmissible region. However, it quickly learns that those states
are unsafe. It is worth-noting that the speed of the SPAR agent start to decrease after 50K steps, which
we hypothesise is due to increased awareness of unsafe scenarios and more frequent braking as a result.
While SPAR outperforms other baselines, there is still significant performance gap with HUMAN, which
calls for further research.

Pre-training the safety critic. We pre-trained the safety critic on 300,000+ state-action pairs collected by
the SafeRandom agent. Recall the state consists of the front camera view and speed, and the action con-
sists of the steering angle and acceleration. We regress the state-action pair to the safety value computed
from the nominal model. After training for 10 epochs, we evaluate how well the safety critic classifies a
state belonging to the sub-level set at 3, 4, and 5. We report the F1-score, precision, and recall in Table
7.6. Since the SPAR agent uses a safety margin of 3, the performance of classifying VS(x) ≤ 3 is of the
most importance. After pre-training, the safety critic misses 41% of the unsafe scenario, leaving much for
SPAR to learn. The later observation, that SPAR learns to identify unsafe scenarios that it initially misses,
indicates that SPAR is indeed learning the safety value function.

Interventions and violations for safe policies. At a high level, policies that frequently traverse through
unsafe states require more interventions from the safety backup controller. Agents that perform unre-
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coverable actions that lead to, e.g., leaving the drivable area or colliding with objects in the environment
are said to commit violations. We report results on the basis of interventions per total distance travelled
(in kilometers) and violations per total distance travelled, as functions of the number of agent steps, for
the SPAR and SafeSAC agent classes; for both metrics, lower is better. Aggregating across 6 random
seeds, SPAR agents receive an average of 1.37 interventions/km and commit 0.11 violations/km, while
SafeSAC agents received 2.41 interventions/km and commit 0.22 violations/km. Figure 7.10 illustrates
the number of interventions from safety backup controller, received by the SPARand SafeSAC policies,
throughout training, while Figure 7.11 illustrates the number of violations committed by the corresponding
policy class. We observe that SPAR, with its dynamic safety updates, requires overall fewer interventions
over time and commits fewer violations, compared to SafeSAC. Interestingly, in both cases, SPAR expe-
riences a slight jump in early phases, due to the warm-start initialisation based on pre-training on context
provided by a nominal dynamics model.
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Figure 7.10: Plot of interventions/km versus steps, for policies that are coupled with safety backup con-
trollers.
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Figure 7.11: Plot of violations/km versus steps, for policies that are coupled with safety backup controllers.

SafeSAC & SPAR performance with same safe margin. While we choose the safety margin ε based
on performance of the SafeRandom agent over a range of margins and our best engineering judgement,
some may wonder if the superior performance of SPAR over SafeSAC may be attributed to the use of
different safety margins. Thus, we also show here the performance of a SafeSAC agent with the same
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safety margin as SPAR in Figure 7.12. Given the smaller safety margin, the ECP is low initially, which is
inline with the observation from SafeRandom. Furthermore, the ECP barely improves over time. As the
performance agent learns to drive faster, it is increasingly difficulty for the static actor-critic to catch the
vehicle in marginally safe states.
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Figure 7.12: Performance of SafeSAC (ε = 3) with comparison to SPAR

Learn-to-Race benchmark results. In tables 7.7 and 7.8, we report on all of their driving quality metrics,
for the Learn-to-Race benchmark: Episode Completion Percentage (ECP), Episode Duration (ED),
Average Adjusted Track Speed (AATS), Average Displacement Error (ADE), Trajectory Admissibility
(TrA), Trajectory Efficiency (TrE), and Movement Smoothness (MS).

Table 7.7: Learn-to-Race task (Section 7.2.3) results on Track01 (Thruxton Circuit), for
learning-free agents, with respect to the task metrics: Episode Completion Percentage (ECP), Episode
Duration (ED), Average Adjusted Track Speed (AATS), Average Displacement Error (ADE), Trajec-
tory Admissibility (TrA), Trajectory Efficiency (TrE), and Movement Smoothness (MS). Arrows (↑↓)
indicate directions of better performance, across agents. Bold results in tables 7.7 and 7.8 are gen-
erally best, however, asterisks (*) indicate metrics which may be misleading, for incomplete racing
episodes.

Agent ECP (↑) ED* (↓) AATS (↑) ADE (↓) TrA (↑) TrE (↑) MS (↑)

HUMAN 100.0± 0.0 78.6± 5.2 79.29± 4.7 2.4± 0.1 0.93± 0.01 1.00± 0.02 11.7± 0.1

Random 0.50± 0.30 4.67± 3.2 11.90± 3.80 1.5± 0.60 0.81± 0.04 0.33± 0.38∗ 6.7± 1.1

MPC 100.0± 0.0 301.40± 10.10 45.10± 0.0 0.90± 0.10 0.98± 0.01 0.85± 0.03 10.4± 0.60

We highlight the fact that such metrics as TrA, TrE, and MS are most meaningful for agents that also
have high ECP results. Taking TrA, for example, safe policies score higher ECP values but may spend
more time in inadmissible positions (as defined by the task, i.e., with at least one wheel touching the edge
of the drivable area), compared to policies without a safety backup controller that may quickly terminate
episodes by driving out-of-bounds (thus spending less time in the inadmissible positions). On the other
hand, policies that have low completion percentages also have low ED scores, due to more frequent failures
and subsequent environment resets.

We observe new state-of-the-art performance received by our approach, across the driving quality metrics,
in the Learn-to-Race benchmark.
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Table 7.8: Learn-to-Race task (Section 7.2.3) results on Track01 (Thruxton Circuit), for
learning-based agents.

Agent ECP (↑) ED* (↓) AATS (↑) ADE (↓) TrA (↑) TrE (↑) MS (↑)

SAC 61.61± 38.57 272.75± 256.51 47.99± 30.9 1.54± 1.07 0.94± 0.02 0.28± 0.12 11.84± 2.12

SafeRandom (ours), δ = 3.0 36.46± 23.71 654.37± 447.05 8.44± 1.37 3.93± 0.21 0.81± 0.10 0.00± 0.00 13.21± 1.88

SafeRandom (ours), δ = 4.2 63.63± 39.46 761.80± 494.65 11.68± 1.07 2.74± 0.16 0.90± 0.07 0.02± 0.01 13.63± 2.01

SafeSAC (ours), δ = 3.0 25.70± 11.31 66.90± 23.22 49.67± 3.34 1.35± 0.05 0.86± 0.06 0.14± 0.05 8.46± 2.35

SafeSAC (ours), δ = 4.2 49.05± 41.66 617.52± 842.49 33.83± 26.21 1.80± 0.63 0.91± 0.12 0.07± 0.11 10.03± 2.75

SPAR (ours) 79.94± 23.20 59.19±29.99 53.28±3.76 0.99±0.17 0.91± 0.03 0.22± 0.03 9.27± 1.68

7.2.6 Related Work
Autonomous racing. One approach for autonomous racing is via model predictive control [133, 170,
245], which solves an optimisation problem with a model of the system dynamics. Aside from the chal-
lenges in modelling the complex dynamics, a significant drawback of such approach is the dependence
on extensive sensor installation for localisation and state estimation [38]. Another approach is to use a
modular pipeline [133, 267], starting from perception on raw sensory inputs, to localisation and object-
detection, and finally to planning and control. While this approach is most commonly used in practice,
disadvantages of the approach include over-complexity and error propagation [94, 322]. Recently, there
is a lot of interest in using RL-based approaches for autonomous racing. In [59, 92], RL agents were
trained using low-dimensional features as inputs. In [55, 78], intermediate features were extracted from
perception pipelines to determine control actions. In [38, 302], RL agents were trained end-to-end on vi-
sual inputs by imitating expert demonstration; in [38], a data-driven model of the environment was further
utilised to train the agent by unrolling future trajectories. While RL-based approaches show considerable
promise in the context of autonomous racing, their performance benefits come at the cost of unsafe ex-
ploration, especially during early phases of training. In comparison to racing, there is significantly more
literature on end-to-end autonomous driving for urban scenarios [50, 64, 65, 209, 226, 326, 326, 328]. It
is beyond our scope to cover this large research field, and we refer interested readers to survey papers,
such as [107, 322], for more information. While we focus on high-speed racing and its unique challenges,
we believe the discussion here for safety analysis on ego-vision is also relevant to urban driving.

Constrained reinforcement learning. There is growing interest in enforcing some notion of safety in RL
algorithms, e.g., satisfying safety constraints, avoiding worst-case outcomes, or being robust to environ-
mental stochasticity [98]. Some examples include methods that bound expected costs characterising vio-
lations of safety constraints under the CMDP formulation [2, 315], methods that combine control theory
and RL [58, 61, 91, 294], and methods that enable the agent to explore with probabilistic safety guarantees
under uncertain environment [72, 126, 153]. We focus on the notion of safety as satisfying constraints.
CMDP [6] is a widely-used framework for studying RL under constraints, where the agent maximises
cumulative rewards, subject to limits on cumulative costs characterising constraint violations. Solving a
CMDP problem is challenging, because the policy needs to be optimised over the set of feasible states;
this requires off-policy evaluation of the constraint functions, to determine whether a policy is feasible
[2]. As a result, safety grows with experience, but requires diverse state-action pairs, including unsafe
ones [265]. Furthermore, one needs to solve a constrained optimisation problem with a non-convex neural
policy. This may be implemented with techniques inspired by convex optimisation, such as primal-dual
updates [26] and projection [315], or by upper bounding the expected cost at each policy iteration [2].
Most relevant to our work is [26, 265, 282], which also uses a safety critic to verify if a state is safe.

Guaranteed safe control. Guaranteeing the safety of general continuous nonlinear systems is challeng-
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ing, but there are several approaches that have been successful. These methods typically rely on knowledge
of the environment dynamics. Control barrier functions (CBFs) provide a measure of safety with gradi-
ents that inform the acceptable safe actions [7]. For specific forms of dynamics, e.g., control-affine [58],
and unlimited actuation bounds, this approach can be scalable to higher-dimensional systems and can be
paired with an efficient online quadratic program for computing the instantaneous control [58]. Unfortu-
nately, finding a valid control barrier function for a general system is a nontrivial task. Lyapunov-based
methods [61, 62] suffer from the same limitation of requiring hand-crafted functions.

HJ reachability is a technique that uses continuous-time dynamic programming to directly compute a
value function that captures the optimal safe control for a general nonlinear system [19, 90]. This method
can provide hard safety guarantees for systems, subject to bounded uncertainties and disturbances. There
are two major drawbacks to HJ reachability. The first is that the technique suffers from the curse of di-
mensionality and scales exponentially with number of states in the system. Because of this, the technique
can only be used directly on systems of up to 4-5 dimensions [19]. When using specific dynamics formu-
lations and/or restricted controllers, this upper limit can be extended [57, 148]. Second, because of this
computational cost, the value function is typically computed offline based on assumed system dynamics
and bounds on uncertainties. This can lead the safety analysis to be invalid or overly conservative.

There are many attempts in injecting some form of control theory into RL algorithms. In comparison
to works that assume specific problem structure [58, 72] or existence of a nominal model [20, 58], our
proposed approach is applicable to general nonlinear systems and does not require a model. But, we do
assume access to a distance metric defined on the state space. Our primary inspiration is recent work by
[91] that connects HJ reachability with RL and introduces a HJ Bellman update, which can be applied
to deep Q-learning for safety analysis. This method loses hard safety guarantees due to the neural ap-
proximation, but enables scalable learning of safety value function. However, an agent trained using the
method in [91] will focus exclusively on safety. Thus, we extend the method by formulating it within the
CMDP framework, thereby enabling performance-driven learning.
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7.3 Conclusion
This chapter studied the use of constraint functions as domain knowledge in autonomous driving set-
tings. We observed that technologies which are to be applied to safety-critical applications must adhere
to safety constraints, throughout their interactions with their environments, as any safety infraction in
urban/highway driving or high-speed racing, could lead to catastrophic failures. Moreover, their train-
ing environments must capture sufficient realism (e.g., in visual rendering, vehicular dynamics, and task
objectives), in order for the methods to be eligible for simulation-to-real transfer. The chapter starts
by addressing the lack of realistic simulation for producing safety-aware methods: we introduce the
Learn-to-Race (L2R) framework as a particularly challenging proving ground for safe learning algo-
rithms. L2R is OpenAI-gym compliant training environment for simulated Formula-style racing, which
enables agents to learn to race on high-precision models of real-world tracks (e.g., the famed Thruxton
Circuit and the Las Vegas Motor Speedway) and to use a suite of rich multimodal sensory information,
predicated on accurate vehicle dynamics. We additionally define the L2R AI task, by introducing two (2)
objectives and seven (7) metrics that characterise and measure performance, safety, and desirable agent
behaviour. We additionally provide an official L2R task dataset of expert demonstrations and a series
of baseline experiments and reference implementations. In this task, algorithms must learn to control
vehicles at their physical limits, with minimal margins for safety, while making sub-second decisions in
a fast-changing environment and while remaining robust to distribution shifts and novel road features.
Next, to address the challenges in safe policy optimisation, we propose the use of safety constraints for
autonomous racing, inspired by the theoretical foundations of Hamilton-Jacobi (HJ) reachability analysis
in optimal control. Here, we define a safety controller that intervenes whenever an agent approaches bad
states, and we show that even an agent that generates actions at random is guaranteed to stay on the driv-
able area; we further show that an arbitrary learning policy that is coupled with this safe controller is able
to learn performant driving behaviour, both safely and sample-efficiently. Finally, we demonstrate that the
HJ safety value can be learned and updated directly from vision context, thereby expanding HJ reacha-
bility to applications where high-fidelity dynamics models may not be available. While not necessary for
convergence, we warm-start the safety value function using values pre-computed with a nominal model.
Next, the value function is updated directly on transitions of ego-agent’s frontal camera view and vehicle
speed. As a first experiment, we evaluate our approach on alongside strong baselines, in two environ-
ment and agent configurations, on the OpenAI Safety Gym framework; we report the minimum number
of safety infractions, compared to state-of-the-art constrained Markov Decision Process approaches. We
also evaluate our approach on the L2R benchmark task and report state-of-the-art results: we show that in-
corporating a dynamically updating safety critic grounded in control theory boosts performance especially
during the initial learning phase.
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Chapter 8

Conclusion

This thesis studied the avenues by which various types of domain knowledge can be combined with neural
representations, across multiple problem domains. We saw that this fusion between domain knowledge
and neural representations could be used to recover information about the underlying generating process,
to design effective modelling strategies in learning problems, to ensure model transferability or general-
isability, or to understand the complementarity between modalities or views. Fundamentally, this fusion
gives us the best of both knowledge-driven methods and data-driven methods—e.g., interpretability and
sample-efficiency from the former as well as the ability to model statistical regularity of events and accom-
modate some input perturbations from the latter. While there had been much focus on learning effective
neural representations for specific tasks, then transferring or adapting the learned representations to other
tasks, comparatively less focus had been placed on representation learning in the presence of various types
of domain knowledge.

8.1 Summary of Contributions
We studied domain knowledge injection in neural systems, across neural commonsense reasoning, multi-
modal robot navigation, and autonomous driving; we developed methods that enable Learning with Com-
mon Sense, Learning with Primitives, Learning with Distribution-awareness, and Learning with Con-
straints. We developed extensible neural architectures that flexibly incorporate domain knowledge into
their perceptual pipelines and/or training objectives, highlighting: (i) commonsense knowledge grounding
(for extraction) and attention based combination with neural context (injection) for multiple-choice ques-
tion answering in natural language processing; (ii) understanding the alignment between the downstream
task and the types of commonsense knowledge that would facilitate improved optimisation and perfor-
mance; (iii) leveraging domain knowledge as a statistical prior, with careful selection of modelling strate-
gies and objectives, in the context of learning embedded skills for robot navigation, multi-agent trajectory
prediction, and goal-prediction in autonomous driving; (iv) grounding neural predictions on physics-based
models to ensure conformance to vehicle dynamics and driveable-area geometries; (v) leveraging domain
knowledge for modularity/hierarchicality, in multimodal perception pipelines, for robot navigation and
autonomous driving; (vi) performing knowledge transfer to unseen domains, e.g., in the context of zero-
shot evaluation for commonsense question answering on unseen datasets and transfer of learned primitives
for robot instruction-following; and (vii) combining neural models with constraints derived from optimal
control, in the context of safety-aware autonomous racing. This thesis contributed a collection of tools,
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methodologies, tasks, international AI challenges and leaderboards, datasets, and knowledge graphs; ad-
ditionally, this work led to the successful organisation of two international workshops in safe learning for
autonomous driving.

8.2 Directions for Future Work
Towards Generalised/Reusable Commonsense Representations (Sections 4.2, 4.3, 5.2)

In Chapter 4, studied symbolic commonsense knowledge and how it is organised into different dimensions
(or ‘domains’), on the basis of different commonsense knowledge types (e.g., declarative knowledge, pro-
cedural knowledge, relational knowledge); we also characterised the mechanisms and representations
that yield generalisable neuro-symbolic architectures, and we defined strategies for pre-training mod-
els on knowledge-rich context for subsequent zero-shot evaluation. Later, in Section 5.2, we leveraged
these insights in pre-training with relational commonsense knowledge, specifically, in order to generate
knowledge-driven scene priors for audio-conditioned visual robot navigation. We observed a consistent
leap in accuracy, across tasks, when the appropriate commonsense domain knowledge was combined with
models (e.g., declarative common sense for question-answering, procedural common sense for cause-
effect resolution and story understanding, relational common sense for spatial navigation, etc.). Indeed,
several language modelling and embodied vision-language planning tasks actually require models to incor-
porate external commonsense knowledge about the world in which they operate, in order to solve those
tasks and to generalise effectively. Fortunately, commonsense knowledge (as a whole) evolves slowly,
compared to knowledge about specific entities and events, which changes rapidly. Thus, a natural ques-
tion arises: can we develop generalised and knowledge-grounded, multimodal representations that can be
leveraged across diverse tasks? This may be achieved through: (i) a series of pre-training tasks which
seek to inform models about the axioms and nuances of the different commonsense knowledge types; (ii)
a careful choice of inductive bias and architecture (e.g., multimodal transformers) that may represent and
align the various types of commonsense knowledge with multimodal sensory information, in large classes
of problems (e.g., navigation, manipulation, dialogue); (iii) generating and utilising a wider variety of
commonsense knowledge resources; and (iv) designing internal modelling mechanisms that perform aux-
iliary objectives of classifying the type of reasoning paradigm (e.g., cause-effect, spatial reasoning) and
commonsense knowledge type required (procedural, relational), given an observation.

Importance of Knowledge-Task Alignment (Sections 4.2, 4.3, 5.2)

Based on our experimental results and error analysis in Chapter 4, we see that external commonsense
knowledge is only helpful when there is alignment between questions and knowledge-base types. Thus,
it is crucial to identify the task type and apply the best-suited knowledge, accordingly. In terms of
knowledge-integration methods, attention-based injection seems to be the better choice for pre-trained
language models: even when alignment between knowledge-base and dataset is sub-optimal, the perfor-
mance would not degrade. On the other hand, pre-training on (e.g., sub-optimal) knowledge would shift
the language model’s weight distribution toward its own domain greatly, where, if the task domain does
not fit knowledge-base well, model performance is likely to drop. When the domain of the knowledge-
base aligns with that of the dataset perfectly, both knowledge-integration methods bring performance
boosts and a combination of them could bring further gain. We surveyed popular knowledge bases and
recent knowledge-integration methods on commonsense QA tasks, and evaluation on these tasks confirm
that alignment between knowledge-bases and datasets plays a crucial role in knowledge-integration. We
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believe it is worth conducting a more comprehensive study of datasets and knowledge-bases and putting
more effort towards defining an auxiliary learning objective that identifies the type of knowledge required,
based on data characteristics. In Chapter 5, we examine knowledge-task alignment in the context of gen-
erating and using scene priors for robot navigation; for this, we use semantic information in the form of
object-object, object-region, and region-region relational knowledge. Our experimental results provide
additional confirmation of the importance of knowledge-task alignment, where, like the work shown in
Section 4.3, we show improvements here over strong baselines in generalisation to unseen environments.
For future work in this area, we plan to incorporate additional semantic knowledge about sounds, objects,
and interactions in our external domain knowledge resource to further improve performance. Through
this, we envision the creation of versatile scene priors, leveraged across various embodied vision-language
planning (EVLP) tasks and robot morphologies.

Towards Unified Robot Learning (Sections 4.3, 5.2, 5.3)

In Chapter 4, we performed zero-shot evaluation of models that had been pre-trained with commonsense
knowledge and task structural cues, in order to assess their capabilities in unseen contexts; in Chapter 5,
we learned robot navigation primitives for improved transfer generalisation. In general, however, tasks
are currently evaluated separately from one another, which fails to capture the underlying skills shared
between tasks and the overall progress made as a field. Being able to follow instructions (e.g., as in the
vision-and-language navigation [9]) and also answer questions about an environment (e.g., as in embod-
ied question-answering [68]) are not and should not be treated as mutually-exclusive tasks. Rather than
propose and evaluate tasks independently, tasks could be combined according to more unifying require-
ments on agent capability. Similar notions of cross-task learning gave rise to seminal modelling strategies
(e.g., hierarchical task decomposition) and problem definitions (e.g., mobile manipulation), which remain
quite relevant to this day, despite their classical foundations. Combinations of existing task families may,
likewise, yield new insights and advances.

Towards Improved Multimodal Grounding (Sections 5.2, 5.3, 6.2)

Research in Embodied Vision-Language Planning (EVLP) tasks has experienced a quick rise in popu-
larity, due to recent advances from the robotics, computer vision, and natural language processing com-
munities on vision-language grounding and situated learning. Despite recent advances, EVLP tasks such
as audio-visual navigation (AVN) and vision-language navigation (VLN) remain challenging, as agents
must reconcile multimodal goal descriptions or satisfy complex natural language instructions, and navi-
gate within complex photorealistic, partially-observable environments. Recent pursuit of these tasks has
focused on progress-monitoring and cross-modal grounding; however, issues with instruction complexity
and label-independent visual feature variation still persist, reducing agents’ unseen generalisation perfor-
mance. In Chapter 5, we introduced frameworks for leveraging knowledge-enhanced scene priors and for
learning reusable robot primitives, and we achieved improvements in unseen generalisability in both AVN
and VLN tasks. An interesting direction for future work is in exploring alternative bases for cross-modal
grounding, e.g., mapping visual observations to domain-invariant state representations (navigation graphs,
infused with semantic information) and mapping noisy natural language instructions to structured forms,
where the goal is to encourage agents to learn stopping and recovery actions and to avoid bad states.
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Towards Effective Transfer Imitation Learning (Sections 6.2, 6.3)

In Chapter 6, we introduced frameworks for trajectory forecasting and goal-prediction in urban driving,
which coupled imitation learning (IL) objectives with knowledge of the underlying action prior distri-
bution; we hypothesised that this distribution-awareness would provide agents with robustness to noise
artifacts in the training data, would provide a window into agents’ intentions for more interpretable pre-
dictions, would yield improved unseen generalisation, and would help bypass common issues in imitation-
and transfer learning such as causal confusion and negative transfer. Indeed, we showed substantial im-
provements in the diversity and admissibility of our agent’s predictions in multi-agent trajectory forecast-
ing, through density estimation of the underlying action distribution, conditioned on agent-to-agent and
scene-to-agent context; we showed significant improvements in unseen generalisation in visuomotor con-
trol for urban driving, by jointly estimating the ego-agent’s action distribution while learning to predict
and score intermediate goals. An interesting direction for future work is in the selection of more informa-
tive priors: whereas we chose an annotation-free differentiable drivable-area map as the prior in Section
6.2, we may consider selecting a prior that incorporates dense annotation of road rules, conditioned on,
e.g., traffic pattern/layout. Another important direction for future work is in characterising the causal rela-
tionships between observations, actions, and rewards in a scene. This causal structure can be represented
explicitly, by way of causal knowledge graphs (enabling explainability and counterfactual reasoning) then
lexicalised as in Chapter 4, or it can be represented implicitly, by way of learning identifiable latent rep-
resentations. Regardless of explicit or implicit representation, the goal would be to eliminate extraneous
connections/edges (disturbances, confounders) in the underlying causal structure, thereby reducing causal
confusion when transferring an observation model from a source domain to a target domain.

Towards Provably Conservative Safety Constraints (Sections 7.2)

In Chapter 7, we introduced a method that enables an agent to learn safety-aware and performance-oriented
behaviour: instead of solving a constrained optimisation problem, we effectively decomposed the problem
of learning under safety constraints into two more-tractable sub-tasks—optimising for performance and
updating safety value. Alternative methods for specifying safety constraints include the use of first-order
logical rules (see Section 2.1.3), which may characterise desired vehicle behaviour (e.g., adherence to the
driveable area, protocols for interacting with other agents on the road, etc.), despite significant cost in an-
notator effort. Inspired by optimal control, we demonstrated in Section 7.2 that an approximate HJ safety
value can be learned directly on visual context, thereby expanding HJ reachability to applications where
dynamics models may not be available. Whereas our empirical results demonstrated that it is possible
to learn a safety-aware and performant policy, through approximation of the minimum payoff distance
and through subsequent dynamic updates to the safety value function, one limitation of our method is
that it is by no means free from failure, due to the use of neural functional approximation. However, the
method proposed in this paper represents a subtle shift away from safety constraint-satisfaction exclu-
sively through model-free exploration, as has become popular in the recent literature. Rather than letting
agents learn safe behaviours through experiencing failures, our approach provides avenues for potential
online safety analysis, as in the injection of domain knowledge (when available; e.g., using a nominal
dynamics model for warm-starting safety value estimation). An important direction for future work is
in learning a provably-conservative estimation of the safety value function, which can retain hard safety
guarantees (throughout value updates), while neural functional approximation is still utilised for problems
with high-dimensional state.
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[197] Volodymyr Mnih, Adrià Puigdomènech Badia, Mehdi Mirza, Alex Graves, Timothy P. Lillicrap,
Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement
learning. CoRR, abs/1602.01783, 2016. URL http://arxiv.org/abs/1602.01783. 5.3.5

[198] Mahdi Kazemi Moghaddam, Qi Wu, Ehsan Abbasnejad, and Javen Qinfeng Shi. Optimistic agent:
Accurate graph-based value estimation for more successful visual navigation, 2020. 5.2.5

[199] Nasrin Mostafazadeh, Nathanael Chambers, Xiaodong He, Devi Parikh, Dhruv Batra, Lucy Van-
derwende, Pushmeet Kohli, and James Allen. A corpus and cloze evaluation for deeper under-
standing of commonsense stories. In Proceedings of the 2016 Conference of the North Ameri-
can Chapter of the Association for Computational Linguistics: Human Language Technologies,
pages 839–849, San Diego, California, June 2016. Association for Computational Linguistics. doi:
10.18653/v1/N16-1098. URL https://www.aclweb.org/anthology/N16-1098. (doc-
ument), 4.10

[200] Urs Muller, Jan Ben, Eric Cosatto, Beat Flepp, and Yann L Cun. Off-road obstacle avoidance
through end-to-end learning. In Advances in neural information processing systems, pages 739–
746. Citeseer, 2006. 6.3, 6.3.9

[201] Sirajum Munir, Ripudaman Singh Arora, Craig Hesling, Juncheng Li, Jonathan Francis, Charles
Shelton, Christopher Martin, Anthony Rowe, and Mario Berges. Real-time fine grained occupancy
estimation using depth sensors on arm embedded platforms. In 2017 IEEE Real-Time and Embed-
ded Technology and Applications Symposium (RTAS), pages 295–306. IEEE, 2017. 3

[202] Sirajum Munir, Le Tran, Jonathan Francis, Charles Shelton, Ripudaman Singh Arora, Craig Hes-
ling, Matias Quintana, Anand Krishnan Prakash, Anthony Rowe, and Mario Berges. Fork: fine
grained occupancy estimator using kinect on arm embedded platforms. In Proceedings of the 4th
ACM International Conference on Systems for Energy-Efficient Built Environments, pages 1–2,
2017. 3

[203] Sirajum Munir, Jonathan Francis, Matias Quintana, Nadine von Frankenberg, and Mario Bergés.
Dataset: Inferring thermal comfort using body shape information utilizing depth sensors. In Pro-
ceedings of the 2nd Workshop on Data Acquisition To Analysis, pages 13–15, 2019. 3

[204] M Lynne Murphy. Semantic relations and the lexicon: Antonymy, synonymy and other paradigms.
Cambridge University Press, 2003. 4.3.2

[205] Maximilian Nickel, Volker Tresp, and Hans-Peter Kriegel. A three-way model for collective learn-
ing on multi-relational data. In Proceedings of the 28th International Conference on International
Conference on Machine Learning, pages 809–816. Omnipress, 2011. 2.2.1

149

http://aclweb.org/anthology/D17-1106
http://arxiv.org/abs/1602.01783
https://www.aclweb.org/anthology/N16-1098


[206] Maximilian Nickel, Lorenzo Rosasco, and Tomaso Poggio. Holographic embeddings of knowledge
graphs. In Thirtieth AAAI Conference on Artificial Intelligence, 2016. 2.2.1

[207] Yilin Niu, Fangkai Jiao, Mantong Zhou, Ting Yao, Jingfang Xu, and Minlie Huang. A self-
training method for machine reading comprehension with soft evidence extraction. arXiv preprint
arXiv:2005.05189, 2020. 4.3.6

[208] Will Norcliffe-Brown, Efstathios Vafeias, and Sarah Parisot. Learning conditioned graph structures
for interpretable visual question answering. arXiv preprint arXiv:1806.07243, 2018. 5.3.5

[209] Eshed Ohn-Bar, Aditya Prakash, Aseem Behl, Kashyap Chitta, and Andreas Geiger. Learning
situational driving. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 11296–11305, 2020. 6.3, 6.3.9, 7.2.6

[210] A Oltramari. Hybridism in cognitive science and technology, Foundational and implementational
issues. PhD thesis, PhD thesis, Univesita degli Studi di Trento, Dottorato in Scienze della . . . , 2006.
1

[211] Alessandro Oltramari, Jonathan Francis, Cory Henson, Kaixin Ma, and Ruwan Wickramarachchi.
Neuro-symbolic architectures for context understanding, 2020. 2.2.1, 5.2.5

[212] Simon Ostermann, Michael Roth, Ashutosh Modi, Stefan Thater, and Manfred Pinkal. SemEval-
2018 task 11: Machine comprehension using commonsense knowledge. In Proceedings of The
12th International Workshop on Semantic Evaluation, pages 747–757, New Orleans, Louisiana,
June 2018. Association for Computational Linguistics. doi: 10.18653/v1/S18-1119. URL https:
//www.aclweb.org/anthology/S18-1119. 4.2

[213] Xiaoman Pan, Kai Sun, Dian Yu, Heng Ji, and Dong Yu. Improving question answering with
external knowledge. CoRR, abs/1902.00993, 2019. URL http://arxiv.org/abs/1902.
00993. 4.2.7

[214] Xiaoman Pan, Kai Sun, Dian Yu, Heng Ji, and Dong Yu. Improving question answering with
external knowledge. CoRR, cs.CL/1902.00993v1, 2019. URL https://arxiv.org/abs/
1902.00993v1. 4.2.6

[215] Yunpeng Pan, Ching-An Cheng, Kamil Saigol, Keuntaek Lee, Xinyan Yan, Evangelos Theodorou,
and Byron Boots. Agile autonomous driving using end-to-end deep imitation learning. arXiv
preprint arXiv:1709.07174, 2017. 6.3, 6.3.9

[216] George Papamakarios, Theo Pavlakou, and Iain Murray. Masked autoregressive flow for density
estimation. arXiv preprint arXiv:1705.07057, 2017. 6.3.4

[217] George Papamakarios, Eric Nalisnick, Danilo Jimenez Rezende, Shakir Mohamed, and Balaji Lak-
shminarayanan. Normalizing flows for probabilistic modeling and inference. Journal of Machine
Learning Research, 22(57):1–64, 2021. 2.1.2, 6.3.4

[218] Seong Hyeon Park, ByeongDo Kim, Chang Mook Kang, Chung Choo Chung, and Jun Won Choi.
Sequence-to-sequence prediction of vehicle trajectory via lstm encoder-decoder architecture. In
2018 IEEE Intelligent Vehicles Symposium (IV), pages 1672–1678. IEEE, 2018. 6.2.7

[219] Seong Hyeon Park, Gyubok Lee, Jimin Seo, Manoj Bhat, Minseok Kang, Jonathan Francis, Ashwin
Jadhav, Paul Pu Liang, and Louis-Philippe Morency. Diverse and admissible trajectory forecasting
through multimodal context understanding. In European Conference on Computer Vision, pages
282–298. Springer, 2020. (document), 2.1.2, 6.1, 6.2.3, 6.9, 6.2.6, 6.6, 6.7, 6.3, 6.3.4, 6.3.9, 7.2.3,
7.2.3

150

https://www.aclweb.org/anthology/S18-1119
https://www.aclweb.org/anthology/S18-1119
http://arxiv.org/abs/1902.00993
http://arxiv.org/abs/1902.00993
https://arxiv.org/abs/1902.00993v1
https://arxiv.org/abs/1902.00993v1


[220] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style,
high-performance deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché
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[223] Fabio Petroni, Tim Rocktäschel, Patrick Lewis, Anton Bakhtin, Yuxiang Wu, Alexander H Miller,
and Sebastian Riedel. Language models as knowledge bases? arXiv preprint arXiv:1909.01066,
2019. 4.3, 4.3.6

[224] Hai Pham, Paul Pu Liang, Thomas Manzini, Louis-Philippe Morency, and Barnabás Póczos. Found
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