Characterizing and Overcoming the
Limitations of Neural Autoregressive Models

Kartik Goyal

CMU-LTI-21-005

Language Technologies Institute
School of Computer Science
Carnegie Mellon University

5000 Forbes Ave., Pittsburgh, PA 15213

www.lti.cs.cmu.edu

Thesis Committee:
Chris Dyer (chair)
Taylor Berg-Kirkpatrick (chair)
Graham Neubig
Alexander Rush

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy
in Language and Information Technologies.

Copyright (©) 2021 Kartik Goyal


www.lti.cs.cmu.edu

Abstract

Neural sequence models are typically parametrized as autoregressive models that
are locally normalized. These models simplify the generation process by generating
constituent tokens in a predetermined order in a stepwise manner guided by a probability
distribution over the vocabulary of tokens at each step. Although they have achieved
impressive performance on several language processing and generation tasks like
machine translation, dialog response generation, speech processing and synthesis etc.,
this class of models is also known to exhibit degenerate behavior during optimization
and decoding. In this thesis, I characterize some of the limitations of locally normalized
models, namely exposure bias and label bias, both of which represent pernicious
inductive biases associated with autoregressive models that preclude efficient training
of such deep neural models. This dissertation proposes solutions to ameliorate such
issues in order to train more powerful and well-behaved probabilistic sequence models.

To ameliorate exposure bias, this thesis presents two solutions that focus on making
the training of the models more aware of the behavior of the downstream decoding
algorithms for proper credit assignment for digression from the reference sequence
during gradient-based training. The presented solutions crucially involve continuous
relaxations to the commonly used discontinuous decoding procedures with neural
sequence models including greedy arg-max decoding, ancestral sampling, and beam
search, to enable gradient-based optimization using automatic differentiation libraries .
These approaches are empirically superior to standard approaches for various natural
language processing tasks like machine translation, CCG supertagging, and named
entity recognition.

Next, this dissertation focuses on an entirely new class of probabilistic sequence
models—globally normalized models—that accommodates more flexible generation pro-
cedures and is unlikely to suffer from exposure bias and label bias but involves tradeoffs
in computational complexity. A method to train globally normalized sequence models is
introduced which involves modification of the above-mentioned search-aware algorithm
involving the continuous relaxation of beam search. The empirical comparison of such
globally normalized models with their locally normalized counterparts, also trained
via the continuous relaxation to beam search reveals that training with the globally
normalized strategy results in models that are more effective at responding to search
errors during training.

Following this promising behavior of globally normalized models, this thesis ex-
plores the energy-based modelling view of fully connected globally normalized models
and proposes powerful bidirectional energy parametrizations for sequences. Specifi-
cally, this thesis interprets optimization of popular masked language models (MLMs)
as implicit training of energy-based sequence models and introduces a strategy to
correctly sample from MLMs that do not have a probabilistic interpretation on their
own. This work not only introduces a strategy to sample from the MLMs but also
provides evidence for efficient indirect training of energy-based sequence models.

To conclude, while autoregressive models are easy to train and efficient to use, they



are addled by poor inductive bias and exhibit degenerate behavior. While the alternative
class of globally normalized models comes with limitations around computational
complexity, it offers amenability toward more flexible and powerful sequence models.
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Chapter 1

Introduction

Neural sequence models have been successful at probabilistic-modeling of rich and structured
outputs associated with combinatorial objects likes text documents which, in turn have been used for
several important tasks like machine translation, summarization etc. (Sutskever et al., 2014; Rush
et al., 2015). These neural sequence models are overwhelmingly operationalized as autoregressive
locally-normalized models which leads to easy and computationally efficient training and decoding
via the maximum likelihood principle. These autoregressive models are the state-of-the-art models
for processing and generation of sequences and have become a cornerstone for applications like
automatic translation, speech synthesis, dialog generation, image synthesis etc. At their core, locally
normalized models break down the problem of generating a sequence into sequential generation
of smaller constituent chunks, most commonly tokens, in a predetermined order (left-to-right by
default) wherein each generation step is specified by a probability distribution over the vocabulary
conditioned on the previously generated tokens. Chain rule ensures easy computation of probability
of sequences using these conditional distributions which leads to ease of optimization and usage.
Despite their ubiquity, this class of models is known to exhibit degenerate behavior (Koehn and
Knowles, 2017; Stahlberg and Byrne, 2019; Wang and Sennrich, 2020) during optimization and

decoding. In this thesis, I characterize some of the limitations of locally normalized models and
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propose solutions to ameliorate such issues in order to train more powerful and well-behaved
probabilistic models for sequences. While a set of solutions described in this thesis focus on
improving the training of these locally normalized autoregressive models, this thesis eventually
explores and develops globally normalized models, which come with their own computational
trade-offs, as alternative to autoregressive models to ameliorate the degenerate behavior associated
with the autoregressive models.

Specifically, this thesis identifies two major issues associated with optimization and operational-

ization of autoregressive locally normalized models:

e Exposure Bias: Maximum likelihood optimization via teacher-forcing algorithm causes dis-
crepancy between training and decoding with autoregressive locally normalized models.
Essentially, the sequential neural models encounter novel continuous states in the representa-
tion space of the context during decoding which were never encountered during training of

these models which leads to degenerate output from these models.

e Label Bias: The normalization constraint over vocabulary items at each decoding step in
autoregressive models poses a harmful inductive bias which leads to learning miscalibrated
distributions over tokens and sequences. In this thesis, I refer to this undesirable inductive
bias by label bias ' which leads to several negative consequences like inability to recover
from wrong decisions made in the earlier decoding steps, and ignoring the input sequence in

case of conditional generation and overtly focusing on the decoded token history.

1.1 Ameliorating exposure bias

To ameliorate exposure bias, the work in this thesis presents two solutions that focus on making the
training of the models more search-aware with the general idea being that of informing the training
"While this is related to the notion of label bias explored by McCallum et al. (2000) and Bottou (1991), I use the

term to refer to a broader set of consequences as a result of the harmful inductive bias associated with the normalization
constraint in autoregressive models.



procedure of the behavior of the decoding algorithms to be used during deployment. This causes
the optimization objective to also include the ability to recover from digressions in the step-wise
generation of sequences. One major bottleneck to achieve this efficiently is that the decoding
algorithms are a discontinuous function of the model parameters and hence cannot be associated
with gradients which is crucial for optimization of neural networks using automatic differentiation.
Therefore, the solutions introduced in this document involve continuous relaxations to the commonly
used discontinuous decoding procedures with neural sequence models. One of the solutions (Goyal
et al., 2017) (described in Chapter 3) is inspired from the scheduled sampling (Bengio et al., 2015)
procedure and extends it by relaxing the procedure via temperature-based softmax such that the
objective is differentiable and aware of discontinuous greedy decoding or sampling performed
during inference. Another solution (Goyal et al., 2018) (described in Chapter 4) focuses on making
the training procedure aware of beam search as the inference procedure of choice during decoding.
This method introduces a continuous relaxation of the beam search procedure so that the effect of
beam search can be incorporated directly in the computational graph.

The continuous relaxation of the discontinuous decoding procedures results in successful end-
to-end backpropagation-based training which requires the presence of gradients or subgradients.
We empirically demonstrate the effectiveness of these approaches via significant improvements
over teacher-forcing for tasks like Machine Translation, Named Entity Recognition, and CCG

supertagging.

1.2 Globally normalized models for addressing label bias

While the problem of exposure bias can be addressed in a targeted manner by the approaches
described above, this thesis explores a different class of sequence models from the autoregressive
locally normalized models — globally normalized models — which involve exposure to all of the

negative space of sequences via a computationally expensive partition function. Thus, in spite of
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being computationally expensive and difficult to optimize and decode from, this class of models
is unlikely to suffer from exposure bias in the first place. Therefore in chapter 5, a method to
train globally normalized sequence models is introduced (Goyal et al., 2019) in which we modify
the above-mentioned search-aware algorithm involving continuous relaxation of the beam search.
The comparison of such globally normalized models with their locally normalized counterparts,
also trained via the continuous relaxation to beam search reveals that in the context of inexact
inference using beam search, training with the globally normalized strategy results in models that are
more effective at responding to search errors during training compared to their locally normalized
counterparts. This is in spite of the fact that assuming flexible neural parametrization, locally
normalized models are theoretically as expressive as globally normalized models.” This finding is
attributed to globally normalized models ameliorating the issue of label bias commonly associated
with locally normalized models. In this work, we use the lens of label bias to explain the potential
reason for amenability of globally normalized sequence models to search-aware training in context

of inexact search.

1.3 Masked language models and globally normalized models

Encouraged by the evidence that globally normalized models are less susceptible to exposure bias
and ameliorate label bias, this thesis explores more expressive globally normalized models for
sequences that construct a scalar score for the sequences in a stepwise manner in which each
step uses the full bidirectional context to compute the components contributing to the sequence
score. This strategy views training of globally normalized models as minimization of energy in an
energy-based interpretation of the globally normalized models where the energy for a sequence
directly corresponds to its scalar score. Training such energy based models is difficult because it
typically involves approximating an intractable partition function over the space of sequences. As an

2The work in this thesis assumes sequences are limited to a finite maximum length, which implies that the search
space over sequences is also finite and countable.



alternative to training such energy-based sequence models directly, in Chapter 6 this thesis (Goyal
et al., 2021) interprets optimization via the widely popular masked language modeling (MLM)
objective as implicit training of energy-based sequence models and introduces a strategy to correctly
sample from the masked language models that do not have a probabilistic interpretation on their
own. Pretrained MLMs abandon the chain rule and left-to-right order, but instead use bidirectional
context to construct representations for the tokens and sequences. These representations have shown
to be extremely useful for various natural language processing (NLP) tasks. Hence, MLMs are
powerful encoders but they are not probabilistic generators of language. This thesis proposes two
energy parametrizations that can be easily computed with pretrained MLMs and introduces an
effective Metropolis-Hastings based sampler that uses the MLM free conditionals as Monte Carlo
transition distributions for proposals in the MCMC chain to generate high quality samples from
the pretrained MLMs. This work not only introduces a strategy to sample from the ubiquitous
MLMs but also shows empirically, on the conditional generation task of machine translation, and

theoretically that MLM objectives result in training of an implicit energy model over sequences.

While it is inspiring that the masked language modelling objective easily trains effective energy
based models over sequences which suggests that other efficient optimization procedures could
be developed to train powerful and expressive globally normalized models with desired inductive
biases; in general, the computationally expensive partition function makes it difficult to train energy-
based model for sequences. Not only the optimization, but sampling from the energy based models
also is more expensive than sampling from autoregressive models. For example, running Monte
Carlo Markov Chain as described in Chapter 6 is much more expensive than performing ancestral
sampling via autoregressive models. Therefore, while globally normalized models are better at
incorporating inductive bias to ameliorate issues associated with autoregressive models and provide
more explicit control over the global constraints and features for controlled generation of sequences,
they come at a computational cost of estimating or approximating a partition function that grows

exponentially with the length of sequences considered.
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This dissertation is organized in the following manner. In Chapter 2, general mathematical
notation that is used throughout this document is described and background for autoregressive and
globally normalized models is established. Chapter 3 focuses on a technique based on scheduled
sampling to ameliorate exposure bias and Chapter 4 introduces continuous relaxation to the
discontinuous beam search procedure for search-aware optimization of locally normalized models to
counter exposure bias. Chapter 5 introduces and explores an approach to train globally normalized
sequence models by the aforementioned relaxation to beam search. The importance of treating
globally normalized models as energy based sequence models is described in Chapter 6 with a
bulk of this chapter focusing on exploring the relationship between energy based sequence models
and recently popular and effective masked language modeling objective. Finally, I conclude with

some closing thoughts in Chapter 7.



Chapter 2

Background

2.1 Neural sequence models: Notation

In this document, the term neural sequence models refers to the kinds of models that are parametrized
via neural networks and that output (or generate) a sequence of discrete symbols denoted by y,
unless otherwise noted. We refer to the module containing parameters for generating these symbols
by the term neural decoder. The generation of these symbols could be unconditional, or it could
condition on some other input x. In case of conditional generation, another neural module, called an
encoder, parametrized differently from the decoder processes the input x, and learns a vector-based
representation that is fed as input to the decoding process for generation of the output y. All the
work in this thesis focuses heavily on the decoder that generates the output sequence y, and the
claims, results, and analysis are largely agnostic to the type of encoder in the sequence model.
Unless otherwise noted, the applications considered in this thesis to perform empirical comparison
involve conditional generation where the output y is conditioned on an input sequence x. This is
the case because of availability of well-defined and commonly accepted metrics for evaluation of
prediction-based performance in these conditional generation applications. For all our analysis, we

assume that the output y is limited to a certain maximum length so that generation of infinitely long
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sequences is precluded, and the output space of all the possible outcome spaces, denoted by ), is
finite and countable. In case data for supervised learning is available for above-mentioned sequence
translation applications, the ground-truth sequence for the training objective is denoted by y*. The
length of a sequence is typically denoted by the symbol 7'. The individual tokens in a sequence are
denoted by an index in the subscript (example y; is the ¢-th token in y) and collections of contiguous
tokens are denoted by a range of indices (example, y;.; refers to the span from ¢-th token to s-th
token in y) in the subscript. y.; and y-, refer to the spans in y preceding and succeeding the ¢-th
token. y\, refer to all the tokens in the sequence except the token at ¢-th position. At each position,
generation of the output token is restricted to a set of discrete symbols called Vocabulary, denoted

by V.

As described in the greater detail next, I refer to autoregressive models as being a class of
models in which the output y is generated in step-wise manner with each step generating a token
conditioned on only the previously generated tokens. Wlog. for left-to-right sequence order, the
prediction at time step ¢ is only dependent on tokens y ., and not on any succeeding ungenerated
tokens. This work mainly deals with probabilistic autoregressive models which lend to computation
of the probability of sequence easily via chain rule run left-to-right. It must be noted that this
setup is agnostic to the parametrization of the decoder. In our description, the decoder could
be parametrized as an RNN (Mikolov et al., 2010), LSTM (Hochreiter and Schmidhuber, 1997),
transformer (Vaswani et al., 2017), or a GRU (Cho et al., 2014), and the arguments and the general
claims made in this thesis are indifferent to the parametrization choice. The empirical comparison
across this thesis is done with different decoding architectures in different chapters but the underlying
issues, solutions, and general lessons and trends learned from the analysis are expected to hold

across all such parametrizations.



2.2 Autoregressive Locally Normalized Sequence Models

For modeling sequences using neural networks, this class of models is the most prevalent in literature.
As mentioned above, for autoregressive models, the probability of a sequence y is computed via
chain rule run in a left-to-right manner where y, is explicitly only dependent on the sequence history

y<:. Under a locally normalized sequence model M, the probability of y given x is:

T
¢tXY<t7Yt

p Yix)= Pyt | X,y

sty 1) =TT ptre [ x50 HZthyq

where Z1 (X, y<t) = > ey ¢1(X, ¥<t,y), is the local normalizer at each time step and 7" is the
number of prediction steps. The quantity ¢;(x, y,y) is a positive scalar score for predicting the
token y at position ¢, whose computation is conditioned on the input sequence, and the output
sequence history. For a typical autoregressive decoder, say an LSTM, the scalar score is computed as
a logit that depends on the representation of the input sequence x computed by a separate sequence
encoder, and the contextual representation which summarizes the predicted output history via LSTM

hidden state h(y ;). Thus for a decoder with parameters 6,

log ¢u(y,%;0) = f(x, h(y<i), 9 0).

Since, the local normalizer is easy to compute, likelihood maximization based training is
a standard approach for training these models. This is also referred to as cross-entropy loss
minimization or teacher-forcing. As mentioned earlier, this typical method for training locally
normalized is not search-aware and suffers from exposure bias. This thesis explores two solutions
to make the training search-aware while keeping the whole training procedure end-to-end (sub)-

differentiable.
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2.3 Globally Normalized Sequence models

In contrast, under a globally normalized model M, the probability of y given x is computed via

global scores ¢ that condition on the whole sequence y, instead of just the history:

pialy | %) = L= ZTX;/\ )

where Zg(x) = > ¢y T2, s(x, Y\t,¥t), is the global normalizer. Z¢(x) is intractable to estimate
for most problems of interest due to the large search space therefore, an exact likelihood maximiza-
tion training approach is intractable for these models and we have to rely on inexact search. In our
experiments, we show that globally normalized models are more amenable to recover from search
errors during training in the context of inexact search and also ameliorate the issues related to label
bias commonly encountered with locally normalized models. Also, these models naturally lend
to computation of marginal probabilities of subsets of nodes in a sequence and hence are more
amenable to train with external constraints on the posterior distribution. It must be noted that the
globally normalized models in Chapter 5 compute the scores ¢, at each step by conditioning only
on the tokens generated preceding the position ¢ i.e. (X, y\1,¥:) = ¢+(X, y<t, ¥s), they are still

globally normalized by the virtue of the intractable normalizer Zg(x).

2.4 Energy-based Neural Models

The above-mentioned description of globally normalized models can also be interpreted as asso-
ciating energy values with each possible sequence that are responsible for inducing a probability
distribution over the space of all the possible sequences. The objective for training energy based
models involves minimizing the energy of the observed data. For a finite set of sequences associated
with positive scores, there is no distinction between the class of globally normalized models and the

class of energy-based models. Let p(y | x; 6) be the probability of the sequence y € ) conditioned
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on the input x under the target distribution defined by the energy function E(y, x; #) parametrized
by 6, defined as follows:

e~ Blyxi0) o(y,x;0)
p(y [ x;0) = S e BOx0 | Z(x,0)

y'ey €

where ¢ represents the unnormalized score of the sequence y and Z(x, 6) is the intractable normal-
ization constant computed by summing over all the sequences.
In the rest of the document, no distinction is made between the terms globally normalized

models, unnormalized models, and energy-based models and they are used interchangeably.

2.5 Expressivity: Autoregressive vs. Globally normalized mod-

els

While we have empirically discovered undesirable behavior exhibited by locally normalized models
and look toward the class of globally normalized models as a possible solution, a natural question to
ask is if the globally normalized models are inherently more expressive than the locally normalized
models. More specifically, if P denotes the set of probability distributions over all the possible
sequences upto a maximum length L, and the neural encoders and decoder have sufficiently high
capacity, then whether the set of distributions py, induced by all the parametrizations of the locally
normalized models equal to the set of distributions p¢, induced by all the parametrizations of the
globally normalized models. For preneural sequence-to-sequence models, (Lafferty et al., 2001)
showed that Maximum Entropy Markov Models (MEMMs) which is a class of locally normalized
models, suffer from label bias and are subsets in terms of expressivity, of comparably featurized
Conditional Random Fields (CRFs) which is a class of globally normalized models. This result
has been influential in establishing the theoretical superiority of globally normalized models over

the class of locally normalized models in prior work. However, this argument is not sufficient
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and suitable for high-capacity neural sequence models. The major difference between preneural
sequence models and contemporary neural sequence models is the expressive power over the
representation of the conditioning input x for conditional generation. Pre-neural models typically
had limited capacity to represent the input x while computing a local score for the output token
y; at each generation step ¢ i.e. in most cases it was not possible to have access to all of the input
x while computing a score for fitness (Liang et al., 2008) of a particular output token during a
generation step. The most common scenario was to limit the availability of x to just the prefix (x;)
for computing ¢;(X, y<, y) for both MEMMs and CRFs. This limitation is crucial to demonstrate
label bias and expressive inferiority of the locally normalized models. However, contemporary
neural encoders enable conditioning on powerful representations of the whole input x for score
computation at all the token positions in the output y.

Inspired by the theoretical results that establish the equivalence of probabilistic context free
grammars and weighted context free grammars (Smith and Johnson, 2007; Chi, 1999; Abney et al.,
1999), this document theoretically establishes that neural locally normalized models should be able to
model any probability distribution that can be modelled by the neural globally normalized sequence
models, and hence are equally expressive given sufficiently high capacity neural parametrization. I
make certain reasonable assumptions to establish this equivalence:

¢ Finite sequence space: This is satisfied because in this document, we are concerned with

sequences that reach a finite maximum length.

¢ Finite partition function: This assumption ensures that the globally normalized functions have

a finite normalizer to induce a proper probability distribution over the countable sequences.

For each sequence in the space of sequences y € ), a globally normalized model associates a

#(y;09) 1

7(0,) Since the number of

non-negative score ¢(y, 6,), which represents the probability of y as

sequences is countable and finite, we can define a function mapping m : V* =+ NVn e N, n < T

Hence, this model can be represented as a function g(6,) : N — [0, 1] such that >, g(t) < 1.0Vt €

"'We have suppressed the explicit dependence on the input sequence x here.
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N. Neurally parametrized locally normalized models naturally define a probability function on the
space of sequences [(6;) : N — [0, 1]. Using the results of universal function approximation and
Turing completeness of RNNs (Siegelmann and Sontag, 1995; Weiss et al., 2018) and autoregressive
transformers (Pérez et al., 2019), it follows that 3 6; such that ((t) = g¢(t) V¢ € domain(g).
Therefore for any sequence y in)/, we can find a autoregressive parametrization 6; for a function
[ such that I[(m(y)) = g(m(y)). In fact, because the partition function Zy, is a free parameter
in globally normalized models, there exist multiple parametrizations 6, that map to the same
distribution over the sequences. This also means that an autoregressive model parametrized by 6,
generally maps to multiple different globally normalized models parametrized by 6, which leads to
issues pertaining to model identifiability. Therefore, as discussed in rest of the document, inductive
bias associated with model classes plays a huge role in selecting appropriate models that, in addition

to maximizing likelihood over the training data, also exhibit other desirable properties.

Despite this result of equivalence between autoregressive and globally normalized models, in
Chapter 5 we show that autoregressive models exhibit undesirable effects of label bias, although
more subtly than their preneural counterparts, and hence are inferior to the comparable globally
normalized models. This is due to the fact that the training and decoding objectives for neural
models are always insufficiently optimized and results in learning miscalibrated distributions (Jiang
et al., 2021) over sequences an tokens i.e. due to the presence of saddle points, multiple local optima,
and even multiple global optima, it is difficult to exactly train neural models that not only have zero
loss on the training set,but also exhibit all the desired phenomena. The models that are eventually
used are heavily affected by the inductive bias that class of models being trained. Our empirical
results show that globally normalized parametrization have better suited inductive biases that nudge
the training of model toward parameters corresponding to well-behaved models. Similarly the
decoding objective, typically maximum likelihood, is also almost never achieved exactly because
of computational intractability of exact decoding procedures, which directly affects the quality of

predictions that can be made from the models. As described in Chapters 3-5, this also implies the
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need of search-aware training procedures which take into account the inexactness of the decoding
procedures to be used during deployment. Therefore in the context of inexact training and decoding,
the empirical results in this thesis demonstrate the superiority of globally normalized models over

the autoregressive models despite them being equally expressive theoretically.

Another perspective for theoretical comparison of autoregressive models and globally normalized
models is explored in Lin et al. (2021). Using a special construction, they show existence of
distribution over sequences for which the unnormalized energy of the sequences can be computed in
polynomial time, but the autoregressive conditional probabilities p(y | y ;) is NP-hard to compute
wr.t the length of the sequence. Assuming P # N P, they use this argument to show that the size of
the locally normalized models (in terms of parameters) must grow superpolynomially in the length
of the sequences in order to compute the autoregressive factor and the probability of sequences in
polynomial time. This is not the case for energy based models that can represent unnormalized
distributinos over sequences with compact parametrization with polynomial time computation in
sequence length. This theoretically exhibits a serious limitation of autoregressive models when it

comes to very long or infinitely long sequences.

However, for the analysis in this thesis, this concern is downplayed by the fact that we restrict
the maximum length of the sequences in order to be practically be able to model single sentences.
Another factor that might alleviate this concern is the nature of true distribution over the natural
language sequences for NLP applications considered in this thesis. For example, if the true
underlying distribution is not as pathological as the construction in Lin et al. (2021), then it might be
the case that it is possible for locally normalized models to reasonably approximate autoregressive
conditionals in polynomial time with a compact parametrization. These considerations, coupled
with powerful parametrization of the neural decoders enables us to focus on the limitations of
autoregressive models that are different from the ones established in Lin et al. (2021). To conclude,
the limitations explored in this thesis and Lin et al. (2021) indicate that the class of globally

normalized models, in spite of being computationally expensive models, is a powerful class of
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sequence models with many desirable properties over locally normalized autoregressive models.
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Chapter 3

Ameliorating Exposure Bias: Differentiable

Scheduled Sampling

In this chapter, we focus on training of search-aware locally normalized neural sequence models.
We identify that a common cross-entropy optimization algorithm for training locally normalized se-
quence models suffers from exposure bias and propose objective functions that take the model’s pre-
dictions into account for ameliorating this bias while maintaining end-to-end (sub)-differentiability

of the objective so that training can be performed via automatic differentiation.

3.1 Standard Cross-entropy training

A common method to train neural sequence models is maximizing likelihood of target sequences
y*, conditioned on the input sequence x in a locally normalized model. The input is encoded via an
expressive neural parametrization, typically a bidirectional LSTM to get an encoded representation

of the input. A neural recurrent decoder then generates the output sequence in a left-to-right manner
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with the log probability of the sequence computed using chain-rule as

T
logp(y™ | x) = Y logp(y; | ¥5i1,%) (3.1)

=1

It is important to notice that in the formulation above, the probability of the target label at a particular
decoding step is conditioned on the gold target history. This means that in recurrent decoder like
an LSTM, the dynamics of hiddden states is guided by assuming access to the gold target history.
Another possible parametrization for training could be to condition the probability of the gold target

on each step on the input sequence and the model ’s predicted history i.e.:

T
logp(y™ | x) = Y logp(y; | J1:i-1,%) (3.2)

i=1

Equation 2.1 is the standard method to train the locally normalized model because it is naturally
end-to-end differentiable and has shown to result in well-trained discriminative sequence models.
Equation 2.2 reasons about model’s behavior over its possible predictions in past while deciding
about current prediction. We call the objective in Equation 2.2 search-aware because it is aware of
inference with the model. As we discus in the following sections, search-aware training poses some
challenges for training related to differentiability and tractability but it also has potential to result in

more robust and well-informed models.

The objectives above, are similar to objective of well-known Maximum Entropy Markov Models
(MEMMs)(McCallum et al., 2000), which focus on optimizing an independent classification loss at
each decode-step conditioning the prediction on the input x and the history y.. The neural LSTM
parametrization allows us to condition on full input and complete history, which makes these models

Very expressive.
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3.2 Exposure Bias

The standard cross-entropy training procedure described above always uses gold contexts instead
of model’s predicted context during training of the recurrent parameters of the decoder. Hence,
the states and contexts encountered during training do not match those encountered at decode
time and it is likely for the decoder to encounter recurrent hidden states that it never encountered
during training making it difficult to recover from errors in model’s predictions during decoding.
This phenomenon of mismatch between training and decoding phases is referred to as exposure
bias(Ranzato et al., 2016). It has been observed that the models that use a more advanced inference
procedure than greedy decoding like beam search during decoding, but do not account for it during
training sometimes yield reduced test performance when compared with greedy decoding (Koehn
and Knowles, 2017; Neubig, 2017; Cho et al., 2014). This issue has been addressed using several
approaches that try to incorporate awareness of decoding choices into the training optimization.
These include reinforcement learning (Ranzato et al., 2016; Bahdanau et al., 2017), imitation
learning (Daumeé et al., 2009; Ross et al., 2011; Bengio et al., 2015), beam-search based approaches
(Wiseman and Rush, 2016; Andor et al., 2016; Daumé III and Marcu, 2005) and other approaches
that focus on decoding procedures based on variational approximation (Gormley et al., 2015).
scheduled sampling (Bengio et al., 2015) is another simple approach designed to counter exposure

bias which stochastically incorporates contexts from previous decoding decisions into training.

In this chapter, we propose a solution to ameliorate exposure bias that is inspired from a
technique called ‘scheduled sampling” which involves mixing in models predictions instead of the
gold labels at random decoding steps to be fed in as the input embedding at the next step. This
approach while shown to work has a major flaw in that it makes the objective discontinuous wrt. the
model parameters and hence not amenable for end-to-end training via an automatic differentiation
toolkit. We present an algorithm that is end-to-end differentiable and is inspired by scheduled

sampling. Empirical comparison on Machine Translation (MT) and tagging tasks like Named
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entity recognition exhibits the empirical superiority of our search-aware solution over standard

cross-entropy based training baselines.

3.3 Differentiable Scheduled Sampling

One the simplest to implement and least computationally expensive approaches to ameliorate
exposure bias is scheduled sampling (Bengio et al., 2015), which stochastically incorporates contexts
from previous decoding decisions into training. While scheduled sampling has been empirically
successful, its training objective has a drawback: because the procedure directly incorporates greedy
decisions at each time step, the objective is discontinuous at parameter settings where previous
decisions change their value. As a result, gradients near these points are non-informative and
scheduled sampling has difficulty assigning credit for errors. In particular, the gradient does not
provide information useful in distinguishing between local errors without future consequences and

cascading errors which are more serious.

Hence in this thesis, a novel approach based on scheduled sampling is proposed that uses a
differentiable approximation of previous greedy decoding decisions inside the training objective by
incorporating a continuous relaxation of argmax. As a result, our end-to-end relaxed greedy training
objective is differentiable everywhere and fully continuous. By making the objective continuous at
points where previous decisions change value, this approach provides gradients that can respond to
cascading errors. In addition, we demonstrate a related approximation and reparametrization for
sample-based training (another training scenario considered by scheduled sampling (Bengio et al.,
2015)) that can yield stochastic gradients with lower variance than in standard scheduled sampling.
In the experiments on two different tasks, machine translation (MT) and named entity recognition
(NER), we show that our approach outperforms both cross-entropy training and standard scheduled

sampling procedures with greedy and sampled-based training.
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3.3.1 Discontinuity in Scheduled Sampling

While scheduled sampling (Bengio et al., 2015) is an effective way to rectify exposure bias, it
cannot differentiate between cascading errors, which can lead to a sequence of bad decisions, and
local errors, which have more benign effects. Specifically, scheduled sampling focuses on learning
optimal behavior in the current step given the fixed decoding decision of the previous step. If a
previous bad decision is largely responsible for the current error, the training procedure has difficulty
adjusting the parameters accordingly. The following machine translation example highlights this

credit assignment issue:

Ref: The cat purrs . Pred: The dog barks .

At step 3, the model prefers the word ‘barks’ after incorrectly predicting ‘dog’ at step 2. To
correct this error, the scheduled sampling procedure would increase the score of ‘purrs’ at step
3, conditioned on the fact that the model predicted (incorrectly) ‘dog’ at step 2, which is not the
ideal learning behaviour. Ideally, the model should be able to backpropagate the error from step
3 to the source of the problem which occurred at step 2, where ‘dog’ was predicted instead of
‘cat’. The lack of credit assignment during training is a result of discontinuity in the objective
function used by scheduled sampling, as illustrated in Figure 3.1. We denote the ground truth target
symbol at step 7 by y;, the embedding representation of word y by e(y), and the hidden state of a
seq2seq decoder at step ¢ as h;. Standard cross-entropy training defines the loss at each step to be
log p(y;|hi(e(yi_1), hi—1)), while scheduled sampling uses loss log p(y;|hi(e(g;-1), hi—1)), Where
;1 refers the model’s prediction at the previous step.' Here, the model prediction 7j;_; is obtained

by performing an argmax over the output softmax layer.

Hence, in addition to the intermediate hidden states and final softmax scores, the previous model
prediction, y;_1, itself depends on the model parameters, ¢, and ideally, should be backpropagated

through, unlike the gold target symbol ¥ ; which is independent of model parameters. However,

'For the sake of simplicity, the ‘always sample’ variant of scheduled sampling is described (Bengio et al., 2015).
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objective ()

0

Figure 3.1: Discontinuous scheduled sampling objective (red) and continuous relaxations (blue
and purple).

the argmax operation is discontinuous, and thus the training objective (depicted in Figure 3.1 as the
red line) exhibits discontinuities at parameter settings where the previous decoding decisions change
value (depicted as changes from ‘kitten’ to ‘dog’ to ‘cat’). Because these change points represent
discontinuities, their gradients are undefined and the effect of correcting an earlier mistake (for
example ‘dog’ to ‘cat’) as the training procedure approaches such a point is essentially hidden. In
our approach, described in detail in the next section, we attempt to fix this problem by incorporating
a continuous relaxation of the argmax operation into the scheduled sampling procedure in order to
form an approximate but fully continuous objective. Our relaxed approximate objective is depicted
in Figure 3.1 as blue and purple lines, depending on temperature parameter o which trades-off

smoothness and quality of approximation.

3.3.2 Credit Assignment via Relaxation

In this section we explain in detail the continuous relaxation of greedy decoding that we will use to
build a fully continuous training objective. We also introduce a related approach for sample-based

training.
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Figure 3.2: Relaxed greedy decoder that uses a continuous approximation of argmax as input to
the decoder state at next time step.

Soft Argmax

In scheduled sampling, the embedding for the best scoring word at the previous step is passed as an

input to the current step. This operation” can be expressed as

e =Y eV #y sia(y) > sia(y)]

Y

where y is a word in the vocabulary, s;_;(y) is the output score of that word at the previous step,
and ¢é;_; is the embedding passed to the next step. This operation can be relaxed by replacing the
indicator function with a peaked softmax function with hyperparameter « to define a soft argmax

procedure:

N o). P (@ sia(y)
€i—1 Z (y) Z

)
- y €xp (@ si-1(y'))

As o — 00, the equation above approaches the true argmax embedding. Hence, with a finite and

large o, we get a linear combination of all the words (and therefore a continuous function of the

2 Assuming there are no ties for the sake of simplicity.
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parameters) that is dominated heavily by the word with maximum score.

Soft Reparametrized Sampling

Another variant of scheduled sampling is to pass a sampled embedding from the softmax distribution
at the previous step to the current step instead of the argmax. This is expected to enable better
exploration of the search space during optimization due to the added randomness and hence result
in a more robust model. In this section, we discuss and review an approximation to the Gumbel
reparametrization trick that we use as a module in our sample-based decoder. This approximation
was proposed by Maddison et al. (2017) and Jang et al. (2016), who showed that the same soft
argmax operation introduced above can be used for reducing variance of stochastic gradients when
sampling from softmax distributions. Unlike soft argmax, this approach is not a fully continuous
approximation to the sampling operation, but it does result in much more informative gradients
compared to naive scheduled sampling procedure.

The Gumbel reparametrization trick shows that sampling from a categorical distribution can be
refactored into sampling from a simple distribution followed by a deterministic transformation as
follows: (i) sampling an independent Gumbel noise G for each element in the categorical distribution,
typically done by transforming a sample from the uniform distribution: U ~ Uni form(0,1) as z,
then (i1) adding it componentwise to the unnormalized score of each element, and finally (ii1) taking
an argmax over the vector. Using the same argmax softening procedure as above, they arrive at
an approximation to the reparametrization trick which mitigates some of the gradient’s variance

introduced by sampling. The approximation is’:

B N ey P (a (si-1(y) + Gy))
T T )+ Gy )

We will use this ‘concrete’ approximation of softmax sampling in our relaxation of scheduled

3This is different from using the expected softmax embedding because our approach approximates the actual
sampling process instead of linearly weighting the embeddings by their softmax probabilities
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sampling with a sample-based decoder. We discuss details in the next section. Note that our original
motivation based on removing discontinuity does not strictly apply to this sampling procedure,
which still yields a stochastic gradient due to sampling from the Gumbel distribution. However, this
approach is conceptually related to greedy relaxations since, here, the soft argmax reparametrization
reduces gradient variance which may yield a more informative training signal. Intuitively, this
approach results in the gradient of the loss to be more aware of the sampling procedure compared to
naive scheduled sampling and hence carries forward information about decisions made at previous

steps. The empirical results, discussed later, show similar gains to the greedy scenario.

Differentiable Relaxed Decoders

With the argmax relaxation introduced above, we have a recipe for a fully differentiable greedy
decoder designed to produce informative gradients near change points. Our final training network
for scheduled sampling with relaxed greedy decoding is shown in Figure 3.2. Instead of conditioning
the current hidden state, /;, on the argmax embedding from the previous step, €;_1, we use the a-soft
argmax embedding, e; 1, defined in Section 3.3.2. This removes the discontinuity in the original
greedy scheduled sampling objective by passing a linear combination of embeddings, dominated by
the argmax, to the next step. Figure 3.1 illustrates the effect of varying a. As «v increases, we more
closely approximate the greedy decoder.

As in standard scheduled sampling, here we minimize the cross-entropy based loss at each
time step. Hence the computational complexity of our approach is comparable to standard seq2seq
training. As we discuss in Section 3.3.3, mixing model predictions randomly with ground truth
symbols during training (Bengio et al., 2015; Daumé et al., 2009; Ross et al., 2011), while annealing
the probability of using the ground truth with each epoch, results in better models and more stable
training. As a result, training is reliant on the annealing schedule of two important hyperparameters:
1) ground truth mixing probability and ii) the o parameter used for approximating the argmax

function. For output prediction, at each time step, we can still output the hard argmax, depicted in

25



Figure 3.2.

For the case of scheduled sampling with sample-based training—where decisions are sampled
rather than chosen greedily (Bengio et al., 2015)-we conduct experiments using a related training
procedure. Instead of using soft argmax, we use the soft sample embedding, ¢€;_;, defined in

Section 3.3.2. Apart from this difference, training is carried out using the same procedure.

3.3.3 Experimental Setup

We perform experiments with machine translation (MT) and named entity recognition (NER).

Data

For MT, we use the same dataset (the German-English portion of the IWSLT 2014 machine trans-
lation evaluation campaign (Cettolo et al., 2014)), preprocessing and data splits as Ranzato et al.
(2016). For named entity recognition, we use the CONLL 2003 shared task data (Tjong Kim Sang
and De Meulder, 2003) for German language and use the provided data splits. We perform no

preprocessing on the data.The output vocabulary length for MT is 32000 and 10 for NER.

Implementation details

For MT, we use a seq2seq model with a simple attention mechanism (Bahdanau et al., 2015), a
bidirectional LSTM encoder (1 layer, 256 units), and an LSTM decoder (1 layer, 256 units). For
NER, we use a seq2seq model with an LSTM encoder (1 layer, 64 units) and an LSTM decoder (1
layer, 64 units) with a fixed attention mechanism that deterministically attends to the ith input token

when decoding the ith output, and hence does not involve learning of attention parameters. *

4Fixed attention refers to the scenario when we use the bidirectional LSTM encoder representation of the source
sequence token at time step ¢ while decoding at time step ¢ instead of using a linear combination of all the input
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Hyperparameter tuning

We start by training with actual ground truth sequences for the first epoch and decay the probability
of selecting the ground truth token as an inverse sigmoid (Bengio et al., 2015) of epochs with a
decay strength parameter k. We also tuned for different values of o and explore the effect of varying
« exponentially (annealing) with the epochs. In table 3.1, we report results for the best performing
configuration of decay parameter and the o parameter on the validation set. To account for variance
across randomly started runs, we ran multiple random restarts (RR) for all the systems evaluated

and always used the RR with the best validation set score to calculate test performance.

Comparison

We report validation and test metrics for NER and MT tasks in Table 3.1, F1 and BLEU respectively.
‘Greedy’ in the table refers to scheduled sampling with soft argmax decisions (either soft or hard) and
‘Sample’ refers the corresponding reparametrized sample-based decoding scenario. We compare
our approach with two baselines: standard cross-entropy loss minimization for seq2seq models
(‘Baseline CE’) and the standard scheduled sampling procedure (Bengio et al. (2015)). We report
results for two variants of our approach: one with a fixed o parameter throughout the training
procedure («-soft fixed), and the other in which we vary a exponentially with the number of epochs

(cv-soft annealed).
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Training procedure NER (F1) MT (BLEU)

Dev Test Dev Test
Baseline CE 49.43 53.32 20.35 19.11
Greedy Sample Greedy Sample

Dev Test Dev Test Dev Test Dev Test

Bengio et al. (2015) 49.75 54.83 5090 54.60 20.52 19.85 20.40 19.69
a-soft fixed 51.65 55.88 51.13 56.25 2132 20.28 20.48 19.69
a-soft annealed 51.43 56.33 5099 5420 21.28 20.18 21.36 20.60

Table 3.1: Result on NER and MT. We compare our approach (a-soft argmax with fixed and an-
nealed temperature) with standard cross entropy training (Baseline CE) and discontinuous scheduled
sampling (Bengio et al. (2015)). ‘Greedy’ and ‘Sample’ refer to Section 3.3.2 and Section 3.3.2.

3.3.4 Results

All three approaches improve over the standard cross-entropy based seq2seq training. Moreover,
both approaches using continuous relaxations (greedy and sample-based) outperform standard
scheduled sampling (Bengio et al., 2015). The best results for NER were obtained with the relaxed
greedy decoder with annealed o which yielded an F1 gain of +3.1 over the standard seq2seq baseline
and a gain of +1.5 F1 over standard scheduled sampling. For MT, we obtain the best results with
the relaxed sample-based decoder, which yielded a gain of +1.5 BLEU over standard seq2seq and a
gain of +0.75 BLEU over standard scheduled sampling.

We observe that the reparametrized sample-based method, although not fully continuous end-
to-end unlike the soft greedy approach, results in good performance on both the tasks, particularly
MT. This might be an effect of stochastic exploration of the search space over the output sequences
during training and hence we expect MT to benefit from sampling due to a much larger search
space associated with it. We also observe that annealing « results in good performance which
suggests that a smoother approximation to the loss function in the initial stages of training is helpful
in guiding the learning in the right direction. However, in our experiments we noticed that the

performance while annealing o was sensitive to the hyperparameter associated with the annealing

sequences weighted according to the attention parameters in the standard attention mechanism based models.
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k 100 10 1 Always
NER (F1) || 56.33 | 55.88 | 55.30 | 54.83

Table 3.2: Effect of different schedules for scheduled sampling on NER. k is the decay strength
parameter. Higher k corresponds to gentler decay schedules. Always refers to the case when
predictions at the previous predictions are always passed on as inputs to the next step.

schedule of the mixing probability in scheduled sampling during training.

The computational complexity of our approach is comparable to that of standard seq2seq
training. However, instead of a vocabulary-sized max and lookup, our approach requires a matrix
multiplication. Practically, we observed that on GPU hardware, all the models for both the tasks
had similar speeds which suggests that our approach leads to accuracy gains without compromising
run-time. Moreover, as shown in Table 3.2, we observe that a gradual decay of mixing probability
consistently compared favorably to more aggressive decay schedules. We also observed that the
‘always sample’ case of relaxed greedy decoding, in which we never mix in ground truth inputs (see
Bengio et al. (2015)), worked well for NER but resulted in unstable training for MT. We reckon that

this is an effect of large difference between the search space associated with NER and MT.

3.3.5 Conclusion

Our positive results indicate that mechanisms for credit assignment can be useful when added to the
models that aim to ameliorate exposure bias. Further, our results suggest that continuous relaxations

of the argmax operation can be used as effective approximations to hard decoding during training.
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Chapter 4

Ameliorating Exposure Bias: Continuous

Relaxation to Beam Search

This chapter introduces another solution to ameliorate exposure bias that is specifically applicable
to the setting in which beam search is the decoding algorithm in use during deployment of a
segeunce model. It involves making the model aware to beam search while training. Because
the outputs of the sequence models are discrete and the beam search procedure, commonly used
during inference, is itself discontinuous, there is no straightforward way to incorporate beam search
into training in an end-to-end (sub)-differentiable manner. We propose a continuous relaxation
to the beam search procedure and such that we can interpret the beam-search aware objective as
a computation graph and train the model using automatic differentiation libraries. Experiments
on natural language processing tasks like Named Entity Recognition, and CCG supertagging

demonstrate the effectiveness of this approach over standard autoregressive training baselines.
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4.1 Beam Search-aware Training

In the previous section on differentiable scheduled sampling, techniques to ameliorate exposure
bias when the inference during decoding was either greedy step-wise or involved sampling tokens
at each step during decoding. However, Beam search is a desirable choice of test-time decoding
algorithm for neural sequence models because it potentially avoids search errors made by simpler
greedy methods. When beam search is used for decoding, the problems associated with exposure
bias are likely to amplify because the teacher-forcing based training is performed in a manner that
is drastically different from beam search. As a result, for cross-entropy trained models with teacher
forcing, beam decoding has been observed to yield reduced test performance when compared with
greedy decoding (Koehn and Knowles, 2017; Neubig, 2017; Cho et al., 2014). Therefore, in order
to train models that can more effectively make use of beam search, we introduce, in this section, a
new training procedure that focuses on the final loss metric (e.g. Hamming loss) evaluated on the
output of beam search. While well-defined and a valid training criterion, this “direct loss” objective
is discontinuous and thus difficult to optimize. Hence, in our approach, we form a sub-differentiable
surrogate objective by introducing a novel continuous approximation of the beam search decoding

procedure.

4.2 Beam Search

The beam search procedure for obtaining the k-best sequences from a recurrent neural decoder is
described in Algorithm 1. The variables are subscripted by decoding steps and the beam element. A
refers to the hidden state of the recurrent decoder, f refers to the local score producing function
involving recurrent network at each step. Each beam element is associated with a recurrent decoder.
Therefore, a beam of size k£ will have k recurrent decoders. At each step, each element in the beam
yields scores for candidate successors. The top k-scoring successors are chosen and their parent

beam elements are stored as backpointers. The chosen successors further the recurrent network
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dynamics at each beam element. Once the search is run over maximum steps, the backpointers are

followed from step 7" to step 1 to yield a sequence.

Algorithm 1 Standard Beam Search
1: Initialize:
ho,i < 6, eo,i < embedding( [START]), so; < 0,1 =1,...,k
2: fort=0to T do
3 fori=1tokdo
4 for allv € V do
5: Selt,v] = sei + f(heg,v) > f is the local output scoring function
6
7
8
9

Si11 < top-k-max(3;) > Top k values of the input matrix
bt i1 4, Yt < top-k-argmax(5;) > Top k argmax index pairs of the input matrix
fori=1tokdo
€41, < embedding(y; ;)
10: hit1i <= 7(hti, €i41,) > 7 is a nonlinear recurrent function that returns state at next step

11: g < follow-backpointer((by «, Y1), - - -, (b1, Y7.4))
12: s(9) < max(sr)

4.3 Objective

We denote the seq2seq model parameterized by 6 as M(6). We denote the result of beam search
over M(0) as y = Beam(x, M(0)). Ideally, we would like to directly minimize a final evaluation
loss, L(y,y*), evaluated on the result of running beam search with input  and model M (6).
For tractability, we assume that the evaluation loss decomposes over time steps ¢ as: L(y,y*) =
Zthl d(y:,y*)'. We refer to this idealized training objective that directly evaluates prediction loss

as the “direct loss” objective and define it as:

mein GDL(Xaeay*) = II%HL(B@CZI’I’Z(X,M(@)),}I*) (41)

I'This assumption does not hold for some popular evaluation metrics (e.g. BLEU). In these cases, surrogate evaluation
losses such as Hamming distance can be used .
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Unfortunately, optimizing this objective using gradient methods is difficult because the objective is
discontinuous. The two sources of discontinuity are:
1. Beam search decoding (referred to as the function Beam) involves discrete argmax decisions

and thus represents a discontinuous function.
2. The output, y, of the Beam function, which is the input to the loss function, L(y,y"), is
discrete and hence the evaluation of the final loss is also discontinuous.

We introduce a surrogate training objective that avoids these problems and as a result is fully
continuous. In order to accomplish this, we propose a continuous relaxation to the composition of

our final loss metric, L, and our decoder function, Beam:
SofiLB(x, M(0),y") ~ (L o Beam)(x, M(0),y")

Specifically, we form a continuous function softLB that seeks to approximate the result of running
our decoder on input x and then evaluating the result against y* using L. By introducing this new

module, we are now able to construct our surrogate training objective:
mein GoL(x,0,y") = m@in softLB(x, M(0),y™) 4.2)

Specified in more detail in Section 4.3.3, our surrogate objective in Equation 4.2 will additionally
take a hyperparameter « that trades approximation quality for smoothness of the objective. We
first describe the standard discontinuous beam search procedure and then our training approach

involving a continuous relaxation of beam search.

4.3.1 Discontinuity in Beam Search

Formally, beam search is a procedure with hyperparameter k that maintains a beam of & elements at

each time step and expands each of the £ elements to find the k-best candidates for the next time
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Algorithm 2 continuous-top-k-argmax

1: Inputs:
s € RbxIV]
2: Outputs:
p; € RV st Yopp=Li=1,..k
3. m € R¥ = top-k-max(s)
4: for:=1tokdo > peaked-softmax will be dominated by scores closer to m;
5: p; = peaked-softmax,(—(s —m; - 1)?) > The square operation is element-wise

step. The procedure finds an approximate argmax of a scoring function defined on output sequences.

We describe beam search in the context of seq2seq models in Algorithm 1 — more specifically,
for an encoder-decoder (Sutskever et al., 2014) model with a nonlinear auto-regressive decoder
(e.g. an LSTM (Hochreiter and Schmidhuber, 1997)). We define the global model score of a
sequence y with length 7" to be the sum of local output scores at each time step of the seq2seq
model: s(y) = Zthl f(h¢, y¢). In neural models, the function f is implemented as a differentiable
mapping, R”l — RV, which yields scores for vocabulary elements using the recurrent hidden states
at corresponding time steps. In our notation, / ; is the hidden state of the decoder at time step ¢
for beam element ¢, e;; is the embedding of the output symbol at time-step ¢ for beam element
1, and s, ; is the cumulative model score at step ¢ for beam element 7. In Algorithm 1, we denote
by 5, € R**IVI the cumulative candidate score matrix which represents the model score of each
successor candidate in the vocabulary for each beam element. This score is obtained by adding the
local output score (computed as f(h;;,w)) to the running total of the score for the candidate. The
function r in Algorithms | and 3 yields successive hidden states in recurrent neural models like
RNNs, LSTMs etc. The embedding operation maps a word in the vocabulary V', to a continuous
embedding vector. Finally, backpointers at each time step to the beam elements at the previous time
step are also stored for identifying the best sequence 7, at the conclusion of the search procedure.
A backpointer at time step ¢ for a beam element 7 is denoted by b;; € {1, ..., k} which points to
one of the k elements at the previous beam. We denote a vector of backpointers for all the beam

elements by b, .. The follow-backpointer operation takes as input backpointers (b; .) and candidates
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Algorithm 3 Continuous relaxation to beam search

1: Initialize:
ho,;i < 0, €o,i < embedding( [START]), sp; < 0, D; € RF « 0,
1=1,...,k
fort=0to T do

2:

3 for allw € V do

4 for i=1 to k do

5 Selt,w] = sei 4 f(hei,w) > f is a local output scoring function
6: Dt,w = d(w) > D, is used to compute Dy
7 D1, .- -, Dr < continuous-top-k-argmax(3;) > Call Algorithm 2
8 fori=1tokdo

9: Bt,i <« row_sum(p;) > Soft back pointer computation
10: a; € RVl < column_sum(p;) > Contribution from vocabulary items
11: erp1; ¢ al XE > Peaked distribution over the candidates to compute e, D, S
12: Dt+1,i — CLZT . Dt
13: St41i :ﬁsum(§t © )
14: hii <0
15: forj=1tokdo > Get contributions from soft backpointers for each beam element
16: ht,i+ = ht,j * bt’l['z]
17: Dyy1i+ = Dy j * by s5]
18: hig1i < r(ﬁm, €r+1,) > r is a nonlinear recurrent function that returns state at next step

19: L = peaked-softmax,(st) - Dy > Pick the loss for the sequence with highest model score on
the beam in a soft manner.

(s € {1,...,|V|}") for all the beam elements at each time step and traverses the sequence in
reverse (from time-step 7' through 1) following backpointers at each time step and identifying

candidate words associated with each backpointer that results in a sequence g, of length 7.

The procedure described in Algorithm 1 is discontinuous because of the top-k-argmax procedure
that returns a pair of vectors corresponding to the & highest-scoring indices for backpointers and
vocabulary items from the score matrix s,. This index selection results in hard backpointers at each
time step which restrict the gradient flow during backpropagation. In the next section, we describe a

continuous relaxation to the top-k-argmax procedure which forms the crux of our approach.
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Figure 4.1: Illustration of our approximate continuous beam search (Algorithm 3) module to
obtain hidden states for beam elements at the next time step (2,41 ), starting from the hidden states
corresponding to beam elements are current time step (h,,) with beam size of 2. ‘Beam recurrence’
module has been expanded for h;; o and similar procedure is carried out for /1,41 ;.

4.3.2 Continuous Approximation to top-k-argmax

The key property that we use in our approximation is that for a real valued vector z, the argmax with
respect to a vector of scores, s, can be approximated by a temperature controlled softmax operation.

The argmax operation can be represented as:
Z= ZZZH[VZ/ # 1, S; > Si/],
i

which can be relaxed by replacing the indicator function with a peaked-softmax operation with

hyperparameter «:

. - exp(as) g elem-exp(as)
~= Z zi > exp (o syy) -

> v exp (asi)

i

= 21 . peaked-softmax,(s)
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As a — 00, Z — Z so long as there is only one maximum value in the vector z. This peaked-
softmax operation has been shown to be effective in recent work (Maddison et al., 2017; Jang et al.,
2016; Goyal et al., 2017) involving continuous relaxation to the argmax operation, although to our
knowledge, this is the first work to apply it to approximate the beam search procedure.

Using this peaked-softmax operation, we propose an iterative algorithm for computing a contin-
uous relaxation to the fop-k-argmax procedure in Algorithm 2 which takes as input a score matrix
of size k x |V| and returns k peaked matrices p of size k& x |V'|. Each matrix p; represents the index
of ¢-th max. For example, p; will have most of its mass concentrated on the index in the matrix that
corresponds to the argmax, while p, will have most of its mass concentrated on the index of the
2nd-highest scoring element. Specifically, we obtain matrix p; by computing the squared difference
between the ¢-highest score and all the scores in the matrix and then using the peaked-softmax
operation over the negative squared differences. This results in scores closer to the i-highest score
to have a higher mass than scores far away from the i-highest score.

Hence, the continuous relaxation to top-k-argmax operation can be simply implemented by
iteratively using the max operation which is continuous and allows for gradient flow during back-
propagation. As o — 00, each p vector converges to hard index pairs representing hard backpointers
and successor candidates described in Algorithm 1. For finite o, we introduce a notion of a soft
backpointer, represented as a vector b € R* in the k-probability simplex, which represents the
contribution of each beam element from the previous time step to a beam element at current time

step. This is obtained by a row-wise sum over p to get k values representing soft backpointers.

4.3.3 Training with Continuous Relaxation of Beam Search

We describe our approach in detail in Algorithm 3 and illustrate the soft beam recurrence step in
Figure 4.1. For composing the loss function and the beam search function for our optimization as
proposed in Equation 2, we make use of decomposability of the loss function across time-steps.

Thus for a sequence y, the total loss is: L(y,y*) = >.,_, d(y:). In our experiments, d(y;) is the
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Hamming loss which can be easily computed at each time-step by simply comparing gold y; with
;. While exact computation of d(y) will vary according to the loss, our proposed procedure will
be applicable as long as the total loss is decomposable across time-steps. While decomposability
of loss is a strong assumption, existing literature on structured prediction (Taskar et al., 2004;
Tsochantaridis et al., 2005) has made due with this assumption, often using decomposable losses
as surrogates for non-decomposable ones. We detail the continuous relaxation to beam search in
Algorithm 3 with D, ; being the cumulative loss of beam element ¢ at time step ¢ and F being
the embedding matrix of the target vocabulary which is of size |V/| x [ where [ is the size of the

embedding vector.

In Algorithm 3, all the discrete selection functions have been replaced by their soft, continuous
counterparts which can be backpropagated through. This results in all the operations being matrix
and vector operations which is ideal for a GPU implementation. An important aspect of this
algorithm is that we no longer rely on exactly identifying a discrete search prediction y since we
are only interested in a continuous approximation to the direct loss L (line 18 of Algorithm 3),
and all the computation is expressed via the soft beam search formulation which eliminates all the
sources of discontinuities associated with the training objective in Equation 1. The computational
complexity of our approach for training scales linearly with the beam size and hence is roughly &
times slower than standard CE training for beam size k. Since we have established the pointwise
convergence of peaked-softmax to argmax as o — oo for all vectors that have a unique maximum
value, we can establish pointwise convergence of objective in Equation 2 to objective in Equation 1
as o« — 00, as long as there are no ties among the top-k scores of the beam expansion candidates
at any time step. We posit that absolute ties are unlikely due to random initialization of weights
and the domain of the scores being R. Empirically, we did not observe any noticeable impact of

potential ties on the training procedure and our approach performed well on the tasks as discussed
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in Section 4.6.
éDL,a(Xy 97}’*) (HTOO> GDL<Xa 0, y*) (4.3)

We experimented with different annealing schedules for « starting with non-peaked softmax moving
toward peaked-softmax across epochs so that learning is stable with informative gradients. This is
important because cost functions like Hamming distance with very high « tend to be non-smooth
and are generally flat in regions far away from changepoints and have a very large gradient near the

changepoints which makes optimization difficult.

4.3.4 Decoding

The motivation behind our approach is to make the optimization aware of beam search decoding
while maintaining the continuity of the objective. However, since our approach doesn’t introduce
any new model parameters and optimization is agnostic to the architecture of the seq2seq model, we
were able to experiment with various decoding schemes like locally normalized greedy decoding,

and hard beam search, once the model has been trained.

However, to reduce the gap between the training procedure and test procedure, we also exper-
imented with soft beam search decoding. This decoding approach closely follows Algorithm 3,
but along with soft back pointers, we also compute hard back pointers at each time step. After
computing all the relevant quantities like model score, loss etc., we follow the hard backpointers to
obtain the best sequence y. This is very different from hard beam decoding because at each time
step, the selection decisions are made via our soft continuous relaxation which influences the scores,
LSTM hidden states and input embeddings at subsequent time-steps. The hard backpointers are
essentially the MAP estimate of the soft backpointers at each step. With small, finite o, we observe

differences between soft beam search and hard beam search decoding in our experiments.
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4.4 Comparison with Max-Margin Objectives

Max-margin based objectives are typically motivated as another kind of surrogate training objective
which avoid the discontinuities associated with direct loss optimization. Hinge loss for structured

prediction typically takes the form:

G hinge = max(0, r;lg;(Ny, y") +s(y)) —s(y"))

where x is the input sequence, y* is the gold target sequence, ) is the output search space and
A(y,y?) is the discontinuous cost function which we assume is decomposable across the time-steps
of a sequence. Finding the cost augmented maximum score is generally difficult in large structured
models and often involves searching over the output space and computing the approximate cost
augmented maximal output sequence and the score associated with it via beam search. This
procedure introduces discontinuities in the training procedure of structured max-margin objectives
and renders it non amenable to training via backpropagation. Related work (Wiseman and Rush,
2016) on incorporating beam search into the training of neural sequence models does involve
cost-augmented max-margin loss but it relies on discontinuous beam search forward passes and an
explicit mechanism to ensure that the gold sequence stays in the beam during training, and hence

does not involve back propagation through the beam search procedure itself.

Our continuous approximation to beam search can very easily be modified to compute an
approximation to the structured hinge loss so that it can be trained via backpropagation if the cost

function is decomposable across time-steps. In Algorithm 3, we only need to modify line 5 as:
gt[i, U)] < St + d(’ll)) + f(ht’l', w)

and instead of computing L in Algorithm 3, we first compute the cost augmented maximum score
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as:
Smax = peaked-softmax, (st) - St

and also compute the target score s(y*) by simply running the forward pass of the LSTM decoder
over the gold target sequence. The continuous approximation to the hinge loss to be optimized is
then: éhingw = max(0, Spax — S(y*)). We empirically compare this approach with the proposed

approach to optimize direct loss in experiments.

4.5 Experimental Setup

Since our goal is to investigate the efficacy of our approach for training generic seq2seq models,
we perform experiments on two NLP tagging tasks with very different characteristics and output
search spaces: Named Entity Recognition (NER) and CCG supertagging. While seq2seq models are
appropriate for CCG supertagging task because of the long-range correlations between the sequential
output elements and a large search space, they are not ideal for NER which has a considerably
smaller search space and weaker correlations between predictions at subsequent time steps. In our
experiments, we observe improvements from our approach on both of the tasks. We use a seq2seq
model with a bi-directional LSTM encoder (1 layer with tanh activation function) for the input
sequence x, and an LSTM decoder (1 layer with tanh activation function) with a fixed attention
mechanism that deterministically attends to the ¢-th input token when decoding the i-th output, and
hence does not involve learning of any attention parameters. Since, computational complexity of
our approach for optimization scales linearly with beam size for each instance, it is impractical to
use very large beam sizes for training. Hence, beam size for all the beam search based experiments
was set to 3 which resulted in improvements on both the tasks as discussed in the results. For both

tasks, the direct loss function was the Hamming distance cost which aims to maximize word level
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accuracy.

4.5.1 Named Entity Recognition

For named entity recognition, we use the CONLL 2003 shared task data (Tjong Kim Sang and
De Meulder, 2003) for German language and use the provided data splits. We perform no prepro-
cessing on the data. The output vocabulary size (label space) is 10. A peculiar characteristic of this
problem is that the training data is naturally skewed toward one default label (‘O’) because sen-
tences typically do not contain many named entities and the evaluation focuses on the performance
recognizing entities. Therefore, we modify the Hamming cost such that incorrect prediction of ‘O’
is doubly penalized compared to other incorrect predictions. We use the hidden layers of size 64
and label embeddings of size 8. As mentioned earlier, seq2seq models are not an ideal choice for
NER (tag-level correlations are short-ranged in NER — the unnecessary expressivity of full seq2seq
models over simple encoder-classifier neural models makes training harder). However, we wanted

to evaluate the effectiveness of our approach on different instantiations of seq2seq models.

4.5.2 CCG Supertagging

We used the standard splits of CCG bank (Hockenmaier and Steedman, 2002) for training, devel-
opment, and testing. The label space of supertags is 1,284 which is much larger than NER. The
distribution of supertags in the training data exhibits a long tail because these supertags encode
specific syntactic information about the words’ usage. The supertag labels are correlated with
each other and many tags encode similar information about the syntax. Moreover, this task is
sensitive to the long range sequential decisions and search effects because of how it holistically
encodes the syntax of the entire sentence. We perform minor preprocessing on the data similar to
the preprocessing in Vaswani et al. (2016). For this task, we used hidden layers of size 512 and the

supertag label embeddings were also of size 512. The standard evaluation metric for this task is the
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word level label accuracy which directly corresponds to Hamming loss.

4.5.3 Hyperparameter tuning

For tuning all the hyperparameters related to optimization we trained our models for 50 epochs and
picked the models with the best performance on the development set. We also ran multiple random
restarts for all the systems evaluated to account for performance variance across randomly started
runs. We pretrained all our models with standard cross entropy training which was important for
stable optimization of the non convex neural objective with a large parameter search space. This
warm starting is a common practice in prior work on complex neural models (Ranzato et al., 2016;

Rush et al., 2015; Bengio et al., 2015).

Training procedure Greedy Hard Beam Search  Soft Beam Search
Dev  Test Dev  Test Dev  Test
Baseline CE 80.15 80.35 82.17 8242 81.62 82.00
@hingw annealed o - - 83.03 83.54 82.82 83.05
Ghinge,a=1.0 - - 83.02 83.36 82.49 82.85
GpL,.=1.0 - - 83.23 82.65 82.58 82.82
GpL, annealed v - - 85.69 85.82 85.58 85.78

Table 4.1: Results on CCG Supertagging. Tag-level accuracy is reported in this table which is a
standard evaluation metric for supertagging.

Training procedure ~ CE Greedy = Hard Beam Search Soft Beam Search

Dev Test Dev Test Dev Test
Baseline CE 50.21 5492 46.22 51.34 4750 52.78
Ghinge.o annealed o - - 41.10 4598 41.24 46.34
Ghinge,a0=1.0 - - 40.09 44.67 39.67 43.82
GpL,.0=1.0 - - 49.88 54.08 50.73 54.77
GpL,, annealed o - - 51.86 56.15 51.96 56.38

Table 4.2: Results on Named Entity Recognition. Macro F1 over the prediction of different named
entities is reported that is a standard evaluation metric for this task.
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4.5.4 Comparison

We report performance on validation and test sets for both the tasks in Tables 4.1 and 4.2. The
baseline model is a cross entropy trained seq2seq model (Baseline CE) which is also used to warm
start the the proposed optimization procedures in this paper. This baseline has been compared
against the approximate direct loss training objective (Section 4.3.3), referred to as éDL,a in the
tables, and the approximate max-margin training objective (Section 4.4), referred to as é’hinge’a in
the tables. Results are reported for models when trained with annealing «, and also with a constant
setting of & = 1.0 which is a very smooth but inaccurate approximation of the original direct
loss that we aim to optimize”’. Comparisons have been made on the basis of performance of the
models under different decoding paradigms (represented as different column in the tables): locally
normalized decoding (CE greedy), hard beam search decoding and soft beam search decoding

described in Section 4.3.4.

4.6 Results

As shown in Tables 4.1 and 4.2, our approach GDL,Q shows significant improvements over the
locally normalized CE baseline with greedy decoding for both the tasks (+5.5 accuracy points
gain for supertagging and +1.5 F1 points for NER). The improvement is more pronounced on the
supertagging task, which is not surprising because: (i) the evaluation metric is tag-level accuracy
which is congruent with the Hamming loss that G‘Dha directly optimizes and (ii) the supertagging
task itself is very sensitive to the search procedure because tags across time-steps tend to exhibit
long range dependencies as they encode specialized syntactic information about word usage in the
sentence.

Another common trend to observe is that annealing o always results in better performance
than training with a constant & = 1.0 for both C;”DL@ (Section 4.3.3) and éhinge,a (Section 4.4).

2Qur pilot experiments that involved training with a very large constant « resulted in unstable optimization.
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This shows that a stable training scheme that smoothly approaches minimizing the actual direct
loss is important for our proposed approach. Additionally, we did not observe a large difference
when our soft approximation is used for decoding (Section 4.3.4) compared to hard beam search
decoding, which suggests that our approximation to the hard beam search is as effective as its

discrete counterpart.

For supertagging, we observe that the baseline cross entropy trained model improves its pre-
dictions with beam search decoding compared to greedy decoding by 2 accuracy points, which
suggests that beam search is already helpful for this task, even without search-aware training. Both
the optimization schemes proposed in this paper improve upon the baseline with soft direct loss

optimization (G‘DL@), performing better than the approximate max-margin approach. *

For NER, we observe that optimizing éDL’a outperforms all the other approaches but we also
observe interesting behaviour of beam search decoding and the approximate max-margin objective
for this task. The pretrained CE baseline model yields worse performance when beam search is done
instead of greedy locally normalized decoding. This is because the training data is heavily skewed
toward the ‘O’ label and hence the absolute score resolution between different tags at each time-step
during decoding isn’t enough to avoid leading beam search toward a wrong hypothesis path. We
observed in our experiments that hard beam search resulted in predicting more ‘O’s which also hurt
the prediction of tags at future time steps and hurt precision as well as recall. Encouragingly, GDL,Q
optimization, even though warm started with a CE trained model that performs worse with beam
search, led to the NER model becoming more search aware, which resulted in superior performance.
However, we also observe that the approximate max-margin approach (G’hinge,a) performs poorly
here. We attribute this to a deficiency in the max-margin objective when coupled with approximate
search methods like beam search that do not provide guarantees on finding the supremum: one way

3Separately, we also ran experiments with a max-margin objective that used hard beam search to compute loss-
augmented decodes. This objective is discontinuous, but we evaluated the performance of gradient optimization

nonetheless. While not included in the result tables, we found that this approach was unstable and considerably
underperformed both approximate max-margin and direct loss objectives.
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to drive this objective down is to learn model scores such that the search for the best hypothesis is
difficult, so that the value of the loss augmented decode is low, while the gold sequence maintains
higher model score. Because we also warm started with a pre-trained model that results in a worse
performance with beam search decode than with greedy decode, we observe the adverse effect
of this deficiency. The result is a model that scores the gold hypothesis highly, but yields poor
decoding outputs. This observation indicates that using max-margin based objectives with beam
search during fraining actually may achieve the opposite of our original intent: the objective can be
driven down by introducing search errors.

The observation that our optimization method led to improvements on both the tasks—even on
NER for which hard beam search during decoding on a CE trained model hurt the performance—by
making the optimization more search aware, indicates the effectiveness of our approach for training

seq2seq models.

4.7 Conclusion

While beam search is a method of choice for performing search in neural sequence models, as
our experiments confirm, it is not necessarily guaranteed to improve accuracy when applied to
cross-entropy-trained models. We proposed a novel method for optimizing model parameters that
directly takes into account the process of beam search itself through a continuous, end-to-end
sub-differentiable relaxation of beam search composed with the final evaluation loss. Experiments
demonstrate that our method is able to improve overall test-time results for models using beam
search as a test-time inference method, leading to substantial improvements in accuracy.

As discussed earlier, another closely related work to incorporating beam search into training of
sequence models is work by Wiseman and Rush (2016) (BSO) which relies on discontinuous beam
search forward passes and involves a variant of cost-augmented max-margin loss and an explicit

loss to ensure that the gold sequence stays in the beam during training. This training scheme and
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loss function was found to be effective for tasks like Machine Translation and it would be interesting
to study the difference between this training strategy that focuses on designing better loss functions
and the training strategy described in our work that focuses on noisy gradients of the continuous

relaxation to beam search.
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Chapter 5

Globally Normalized Sequence Models:

Ameliorating Label Bias

This chapter explores the advantages that global normalization provides over local normalization.
In particular, the notion of label bias as a harmful inductive bias for training autoregressive models
is described in details. As mentioned in Chpter 1, the step-wise normalization constraint in
autoregressive models is the primary reason for poor training of these models which addles these
models with unesirable behavior like inability to recover from early decoded prefixes, ignoring the
input context for conditional generation etc. In this chapter, I identify the two major ways in which
label bias manifests itself inn autoregressive models. This chapter then proposes a beam-search

aware training algorithm for globally normalized models that helps ameliorate label bias.

5.1 Label Bias

Locally normalized models are often associated with label bias because they conserve the probability
mass (Bottou, 1991) entering and exiting each state that associated with incremental decoding with

autoregressive models. This causes autoregressive models to be extremely sensitive to deviations of
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autoregressively parametrized softmaxes from the true underlying distribution during decoding often
leading to undesirable behaviors like inability to revise previously made decisions, ignoring the input
during conditional generation, and assigning high likelihoods to bad sequences. In this thesis, I use
the term label bias to refer to this negative inductive bias arising due to the normalization constraint
in autoregressive models that is responsible for undesirable behavior typically demonstrated by

seemingly well-trained autoregressive models.

As discussed in section 2.5, different global parametrizations can correspond to same autore-
gressive distributions which suggests that mere magnitude differences among the energy/scores of
different globally normalized models with the same autoregressive distributions will yield different
max-weighted strings with approximate search algorithms. As discussed later, this explains the
differences in the training and decoding behaviors between autoregressive and globally noermal-
ized models. More strikingly, while slight miscalibrations under uncertain context would derail
well-trained autoregressive models, some globally normalized parametrizations among all the
parametrizations representing the autoregressive distribution might be better suited to recover from

miscalibration errors.

In this thesis, we focus on conditional generation, and describe two major contexts in which
undesirable aspects of label bias are manifested: 1) conditioning on partial input, and ii) inexact
inference. The first condition has been studied in great detail in the context of comparing the locally
normalized maximum entropy Markov models(MEMMs) with the globally normalized conditional
random fields(CRFs). This condition is most commonly used to illustrate the ill effects of label bias
and hence, the exposition of label bias have largely been restricted to this setting. However, this
common setting of access to partial input is largely eliminated by expressive neural encoders that are
capable of representing information about the entire input. In this thesis, we discover and describe
an alternate manifestation of label bias that is more relevant to the contemporary powerful neural
model classes for sequences, which is emirically apparent in poor performance of autoregressive

models compared to their globally normalized conterparts when trained with a search-aware training
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objective.

5.1.1 Label Bias and access to partial input

It was shown in (Andor et al., 2016; Lafferty et al., 2001), locally normalized conditional models with
access to only partial input, x1.;_1, at each decoding step are biased towards labeling decisions with
low-entropy transition probabilities at each decoding step and, as a result, suffer from a weakened
ability to revise previous decisions based upon future input observations. This phenomenon has been
referred to as label bias inn literature, and presents itself as an arbitrary allocation of probability
mass to unlikely or undesirable label sequences despite the presence of well-formed sequences in
training data. Andor et al. (2016) prove that this class of locally normalized models that relies on

the structural assumption of access to only left-to-right partial input at each step,

n n

HP(%‘ | X, y1i-1) = Hp(yz | Z1i-1, Y1)

i=1 i=1
is strictly less expressive than its globally normalized counterpart.

However, the standard sequence-to-sequence models used most often in practice and presented in
this paper actually condition the decoder on a summary representation of the entire input sequence,
x, computed by a neural encoder. Hence, depending on the power of the encoder, it is commonly
thought that such models avoid this type of label bias. For these models, both locally normalized
and globally normalized conditional models are equally expressive, in principle, with a sufficiently

powerful encoder.

As we suggest in the next section, and show empirically in experiments, this does not necessarily
mean that both autoregressive and globally normalized parametrizations are equally amenable to
gradient-based training in practice, particularly when the search space is large and search-aware

training techniques are used.
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5.1.2 Label Bias and inexact search

To improve performance with inexact decoding methods (e.g. beam search), search-aware training
techniques take into account the decoding procedure that will be used at test time and adjust the
parameters of the model to maximize prediction accuracy under the decoder. Because of the
popularity of beam search as a decoding procedure for sequence models, we focus on beam search-
aware training. While many options are available, including beam-search optimization (BSO)
(Wiseman and Rush, 2016), we use search-aware training strategy based upon continuous relaxation
to beam search described in chapter 4.

We illustrate via example how optimization of locally normalized models may suffer from a new
manifestation of label bias when using beam search-aware training, and point to reasons why this
issue might be mitigated by the use of globally normalized models. While the scores of successors
of a single candidate under a locally normalized model are constrained to sum to one, scores of
successors under a globally normalized model need only be positive. Intuitively, during training,
this gives the globally normalized model more freedom to down-weight undesirable intermediate
candidates in order avoid search errors.

In the example beam search decoding problem in Figure 5.1, we compare the behavior of locally
and globally normalized models at a single time step for a beam size of two. In this example, we
assume that the score for beams in both the models is exactly the same until the step shown in
Figure 5.1. Suppose that the lower item on the beam (X2) is correct, and thus, for more effective
search, we would prefer the models scores to be such that only successors of the lower beam item are
present on the beam at the next step. However, since, the scores at each step for a locally normalized
model are constrained to sum to one, the upper beam item (X1) generates successors with scores
comparable to those of the lower beam item. As we see in the example, due to the normalization
constraint, search-aware training of the locally normalized model might find it difficult to set the
parameters to prevent extension of the poorer candidate. In contrast, because the scores of a globally

normalized model are not constrained to sum to one, the parameters of the neural model can be set
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Locally normalized
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Figure 5.1: Illustrative example of bias arising in locally normalized models due to beam search.
Red indicates the candidate that optimization should learn to discard and green indicates the candi-
date that should be propagated. Locally normalized models are constrained to return normalized
scores for the successors of each candidate, while globally normalized models are unconstrained
and can more easily learn to drop successors of the red candidate.

such that all the successors of the bad candidate have a very low score and thus do not compete
for space on the beam. This illustrates a mechanism by which search-aware training of globally
normalized models in a large search spaces might be more effective. However as discussed earlier,
if we can perform exact search then this label bias ceases to exist because both the models have
the same expressive power with a search-agnostic optimization scheme. In experiments, we will

explore this trade-off empirically.

52



5.2 Search-aware Training for Globally Normalized Models

In this section, we investigate the effectiveness of globally normalized sequence models at amelio-
rating label bias when compared to similarly parametrized locally normalized models. We extend
the previously described approach for search-aware training via a continuous relaxation of beam
search (Goyal et al., 2018) in order to enable training of globally normalized recurrent sequence
models through simple backpropagation. (Smith and Johnson, 2007) proved that locally normalized
conditional PCFGs and unnormalized conditional WCFGs are equally expressive for finite length
sequences and posit that Maximum Entropy Markov Models (MEMMs) are weaker than CRFs
because of the structural assumptions involved with MEMMs that result in label bias. We find out
in our experiment that in spite of having the same expressive power, training globally normalized
models is easier and results in better models, when search-aware training is done in the context
of huge search space which rules out exact search and non-convex optimization. For controlled
comparison, we experiment with the same underlying neural architecture for training both locally
and globally normalized models in a search-aware manner. We then use the extension to the beam
search aware training to conduct an empirical study of the interaction between global normalization,
high-capacity encoders, and search-aware optimization. In particular, a major modification is that
while for training search-aware locally normalized models via continuous relaxation to beam search,
we use log-normalized successor scores at each decode step, for training globally normalized models
however, we directly use unnormalized scores at each time step, which are € R.,. This has an effect
of associating a non-negative score with each sequence in the finite hypothesis space which has
to be explicitly normalized in order to get the probability of the sequence. Since, a probabilistic
formulation is not necessary for beam search to work, beam-search aware training allows us to train

unnormalized models.

However, we note that our proposed approach is not the only approach to train globally normal-

ized sequence models. Most other alternatives for search-aware training of globally normalized
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neural sequence models include approaches that use some mechanism like early updates (Collins
and Roark, 2004) that relies on explicitly tracking if the gold sequence falls off the beam and is
not end-to-end continuous. (Andor et al., 2016) describe a method for training globally normalized
neural feedforward models, which involves optimizing a CRF-based likelihood where the normalizer
is approximated by the sum of the scores of the final beam elements. They describe and focus on
label bias arising out of conditioning on partial input and hence focused on the scenario in which
locally normalized models can be less expressive than globally normalized models, whereas we also
consider another source of label bias which might be affecting the optimization of equally expressive
locally and globally normalized conditional models. (Wiseman and Rush, 2016) also propose a
beam search based training procedure that uses unnormalized scores similar to our approach. Their
models achieve good performance over CE baselines — a pattern that we observe in our results as
well. Our approach to training unnormalized models however is end-to-end sub-differentiable and
the whole training procedure can be encoded via a computation graph in an autodiff library. Our
main focus is to empirically analyze the factors affecting the boost in performance with end-to-end
continuous search-aware training (Goyal et al., 2018) for globally normalized models. We observe
that in the context of inexact search, globally normalized neural models are still more effective than
their locally normalized counterparts.

Further, since our training approach is sensitive to warm-starting with pre-trained models, we
also propose a novel initialization strategy based on self-normalization for pre-training globally

normalized models.

5.3 Initialization for training globally normalized models

Goyal et al. (2018) reported that initialization with a locally normalized model pre-trained with
teacher-forcing was important for their continuous beam search based approach to be stable and

hence they used the locally normalized log-scores for their search-aware training model. In this
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work, we experimented with the unnormalized candidate successor scores and found that initializing
the optimization for a globally normalized objective with a cross-entropy trained locally normalized
model resulted in unstable training. This is expected because the locally normalized models are
parametrized in a way such that using the scores before the softmax normalization results in
a very different outcome than using scores after local normalization. For example, the locally
normalized Machine Translation model in Table 5.1, that gives a BLEU score of 27.62 when
decoded with beam search using locally normalized scores, results in BLEU of 4.30 when beam
search decoding is performed with unnormalized scores. Pre-training a truly globally normalized
model for initialization is not straghtforward because no exact likelihood maximization techniques
exist for globally normalized models as the global normalizer is intractable to compute.
Therefore, we propose a new approach to initialization for search-aware training of globally
normalized models: we pre-train a locally normalized model that is parametrized like a globally
normalized model. More specifically, we train a locally normalized model with its distribution over
the output sequences denoted by p,()) such that we can easily find a globally normalized model
with a distribution pg()) that matches p,()). For a locally normalized model, the log-probability

of a sequence is:
Z [log s(X, y1i-1,¥i) —10g ZLi(X, y1:i-1)]

i=1

and for a globally normalized model it is:
[Z log s(x, Y1:i-1, yz)] — log Za(x)
i=1

5.3.1 Self Normalization

One way to find a locally normalized model that is parametrized like a globally normalized model is

to ensure that the local normalizer at each step, log Zr,;(x, y1.,—1), is 0. With the local normalizer
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being zero it is straightforward to see that the log probability of a sequence under a locally
normalized model can easily be interpreted as log probability of the sequence under a globally
normalized model with the global log-normalizer, log Z;(x) = 0. This training technique is called
self-normalization (Andreas and Klein, 2015) because the resulting models’ unnormalized score at
each step lies on a probability simplex. A common technique for training self-normalized models is
L2-regularization of local log normalizer which encourages learning a model with log Z = 0 and
was found to be effective for learning a language model by Devlin et al. (2014)". The L2-regularized

cross entropy objective is given by:

min > =) log p(y; | X, yria)

x,y*€D  i=1

+\- (log ZLJ(X, y1:i71>>2

In Table 5.1, we report the mean and variance of the local log normalizer on the two different
tasks using L2-regularization (L2) based self normalization and no self normalization (CE). We
observe that L2 models are competitive performance-wise to the cross-entropy trained locally
normalized models while resulting in a much smaller local log-normalizer on average. Although,
we couldn’t minimize log Z exactly to O, we observe in Section 5.5 that this is sufficient to train
a reasonable initializer for the search-aware optimization of globally normalized models. It is
important to note that these approaches yield a globally normalized model that is equivalent to a
locally normalized model trained via teacher-forcing and hence these are only used to warm-start
the search-aware optimization of globally normalized models. Our search-aware training approach
is free to adjust the parameters of the models such that the final globally normalized model has a

non-zero log-normalizer Zg over the data.

Other possible approaches to project locally normalized models onto globally normalized models

'Noise Contrastive Estimation (Mnih and Teh, 2012; Gutmann and Hyvirinen, 2010) is also an alternative to train
unnormalized models but our experiments with NCE were unstable and resulted in worse models.
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Train logZ Dev logZ Acc/
Mean | Var Mean | Var BLEU

cCG CE | 21.08 | 957 | 2196 | 9.18 | 93.3
L2 | 0.6 029 | 026 |0.08 |919

MT CE | 247 | 1154 | 258 | 129.1 | 27.62
L2 | 065 |0.18 |0.7 0.29 | 26.63

Table 5.1: Comparison of logZ between cross entropy trained models (CE) and self normalized
models (L2) for CCG supertagging and Machine Translation tasks.

include distribution matching via knowledge distillation (Hinton et al., 2015). We leave exploration

of warm-starting of search aware optimization with this approach to future work.

5.4 Experimental setup

To empirically analyze the interaction between label bias arising from different sources, search-
aware training, and global normalization, we conducted experiments on two tasks with vastly
different sizes of output space: CCG supertagging and Machine Translation. As described in the
next section, the task of tagging allows us to perform controlled experiments which explicitly study
the effect of amount of input information available to the decoder at each step, we analyze the
scenarios in which search aware training and global normalization are expected to improve the
model performance.

In all our experiments, we report results on training with standard teacher forcing optimization
and self-normalization as our baselines. We report results with both search-aware locally and
globally normalized models after warm starting with both cross entropy trained models and self-
normalized models to study the effects of search-aware optimization and global normalization. We
follow Goyal et al. (2018) and use the decomposable Hamming loss approximation with search-
aware optimization for both the tasks and decode via soft beam search decoding method which
involves continuous beam search with soft backpointers for the LSTM Beam search dynamics as

described in chapter 4, but using identifiable backpointers and labels (using MAP estimates of soft
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backpointers and labels) to decode.
We tune hyperparameters like learning rate and annealing schedule by observing performance
on development sets for both the tasks. We performed at least three random restarts for each class

and report results based on best development performance.

5.4.1 CCG supertagging

We used the standard splits of CCG bank (Hockenmaier and Steedman, 2002) for training, develop-
ment, and testing. The label space of supertags is 1,284 and the labels are correlated with each other
based on their syntactic relations. The distribution of supertag labels in the training data exhibits a
long tail distribution. This task is sensitive to the long range sequential decisions because it encodes
rich syntactic information about the sentence. Hence, this task is ideal to analyze the effects of label
bias and search effects. We perform minor preprocessing on the data similar to the preprocessing in
Vaswani et al. (2016). For experiments related to search aware optimization, we report results with

beam size of 5.7

5.4.2 Tagging model for ablation study

We changed the standard sequence-to-sequence model to be more suitable for the tagging task. This
change also lets us perform controlled experiments pertaining to the amount of input sequence
information available to the decoder at each time step.

In a standard encoder-decoder model with attention, the initial hidden state of the decoder is
often some function of the final encoder state so that the decoder’s predictions can be conditioned
on the full input. For our tagging experiments, instead of influencing the initial decoder state with
the encoder, we set it to a vector of zeros. Thus the information about input for prediction is only
available via the attention mechanism. In addition to the change above, we also forced the model to

2We observed similar results with beam size 10
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attend to only the i*" input representation while predicting the i*" label. This is enforceable because
the output length is equal to the input length and it is also a more suitable structure for a tagging
model. With these changes in the decoder, we can precisely control the amount of information about
the input available to the decoder at each prediction step. For example, with a unidirectional LSTM

encoder, the decoder at i*" step only has access to input till the i*" token and the prediction history:

P(Z/z’ ’ X,yufl) = p(y@- | $1:i7y1:i71)

This setting lets us clearly explore the classical notion of label bias arising out of access to partial
input at each prediction step (Section 5.1.1). A bidirectional LSTM encoder, however provides

access to all of the input information to the decoder at all the prediction steps.

Unidirectional | Bidirectional
pretrain-greedy 76.54 92.59
pretrain-beam 77.76 93.29
locally normalized | 83.9 93.76
globally normalized | 83.93 93.73

Table 5.2: Accuracy results on CCG supertagging when initialized with a regular teacher-
forcing model. Reported using Unidirectional and Bidirectional encoders respectively with fixed
attention tagging decoder. pretrain-greedy and pretrain-beam refer to the output of decoding the
initializer model. locally normalized and globally normalized refer to search-aware soft-beam
models

Unidirectional | Bidirectional
pretrain-greedy 73.12 91.23
pretrain-beam 73.83 91.94
locally normalized | 83.35 92.78
globally normalized | 85.50 92.63

Table 5.3: Accuracy results on CCG supertagging when initialized with a self normalized
model.
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Init-scheme — Regular | Self-normalized
pretrain-greedy 26.24 25.42
pretrain-beam 27.62 26.63
locally-normalized | 29.28 27.71
globally-normalized | 26.24 29.27

Table 5.4: BLEU results on de-en Machine Translation. Regular and Self-normalized refer to
the initization scheme for soft beam search training. pretrain-greedy and pretrain-beam refer to
the output of decoding the initializer model. locally normalized and globally normalized refer to
search-aware soft-beam models

5.4.3 Machine Translation

We use the same dataset (the German-English portion of the IWSLT 2014 machine translation
evaluation campaign (Cettolo et al., 2014)), preprocessing and data splits as Ranzato et al. (2016)
for our Machine Translation experiments. The output label/vocabulary size is 32000 and unlike
tagging, the length of output sequences cannot be deterministically determined from the length
of the input sequence. Moreover, the output sequence does not necessarily align monotonically
with the input sequence. Hence the output sequence space for MT is much larger than that for
tagging and the effects of inexact search on optimization are expected to be even more apparent for
MT. We use a standard LSTM-based encoder/decoder model with a standard attention mechanism
(Bahdanau et al., 2015) for our MT experiments. For search-aware optimization experiments, we

report results with beam size 3.°

5.5 Results and Analysis

The results reported in Tables 5.2, 5.3 and 5.4 allow us to analyze the effect of interaction of label

bias, inexact search and global normalization in detail.

3We observed similar results beam size of 5.
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5.5.1 Label bias with partial input

First, we analyze the effect of label bias that arises from conditioning on partial input (Section
5.1.1) during decoding on optimization of the models. The unidirectional encoder based tagging
experiments suggest that conditioning on partial input during decoding results in poor models
when trained with cross entropy based methods. Interestingly, all techniques improve upon this:
(i) search-aware locally and globally normalized models are able to train for accuracy directly and
eliminate exposure bias that arises out of the mismatch between train-time and test-time prediction
methods, and, (i1) the bidirectional tagging model which provides access to all of the input is
powerful enough to learn a complex relationship between the decoder and the input representations

for the search space of the CCG supertagging task and results in a much better performance.

5.5.2 Initialization of search-aware training

Next, we analyze the importance of appropriate initialization of search-aware optimization with
pretrained models. Across all the results in Tables 5.2, 5.3 and 5.4, we observe that search-aware
optimization for locally normalized models always improves upon the pre-trained locally normalized
models used for initialization. But when the search-aware optimization for globally normalized
models is initialized with locally normalized CE models, the improvement is not as pronounced
and in the case of MT, the performance is actually hurt by the improper initialization for train-
ing globally normalized models — probably a consequence of large search space associated with
MT and incompatibility between unnormalized scores for search-aware optimization and locally
normalized scores of the CE model used for pre-training. When the self-normalized models are
used for initialization, optimization for globally normalized models always improves upon the
pre-trained self-normalized model. It is interesting to note that we see improvements for the globally

normalized models even when logZ is not exactly reduced to O indicating that the scores used
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for search-aware training initially are comparable to the scores of the pre-trained self-normalized
model. We also observe that self-normalized models perform slightly worse than CE-trained mod-

els but search aware training for globally normalized models improves the performance significantly.

5.5.3 Search-aware training

Next, we analyze the effect of search-aware optimization on the performance of the models. Search-
aware training with locally normalized models improves the performance significantly in all our
experiments which indicates that accounting for exposure bias and optimizing for predictive per-
formance directly is important. We also observe that the bidirectional model for tagging is quite
powerful and seems to account for both exposure bias and label bias to a large extent. We reckon
that this may be because the greedy decoding itself is very close to exact search for this well-trained
tagging model over a search space that is much simpler than that associated with MT. Therefore, the
impact of search-aware optimization on the bidirectional tagger is marginal. However, it is much

more pronounced on the task of MT.

5.5.4 Global normalization and label bias

We analyze the importance of training globally normalized models. In the specific setup for tagging
with the unidirectional encoder, globally normalized models are actually more expressive than the
locally normalized models (Andor et al., 2016) as described in Section 5.1.1 and this is reflected
in our experiments (table 5.3) with tagging. The globally normalized model (warm started with
a self-normalized model) performs the best among all the models in the unidirectional tagger
case which indicates that it is ameliorating something beyond exposure bias which is fixed by the

search-aware locally normalized model.
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For MT (table 5.4), both globally normalized and locally normalized models are equally expressive
in theory because the decoder is conditioned on the full input information at each step, but we
still observe that the globally normalized model improves significantly over the self-normalized
pre-trained model and the search-aware locally normalized model. This indicates that it might be
ameliorating the label bias associated with inexact search (discussed in Section 5.1.2). As discussed
in Section 5.3, the globally normalized model, when initialized with a CE trained model, performs
worse because of improper initialization of the search aware training. The self-normalized model
starts off 1 BLEU point worse than the CE model point but global normalization, initialized with
the self-normalized model improves the performance and is competitive with the best model for
MT. This suggests that a better technique for initializing the optimization for globally normalized

models should be helpful in improving the performance.

5.5.5 Global normalization and sentence length

N-gram overlap Length ratio
pretrain-beam 63.5/35.7/21.8/13.7 | 0.931
locally-normalized | 66.9/39.4/22.7/14.0 | 0.918
globally-normalized | 65.0/39.1/23.2/14.7 | 0.959

Table 5.5: Breakdown of BLEU results on de-en Machine Translation dev set. Reported on
Self-normalized initialization

Src sent-length — 0-20 | 20-30 | 30-40 | 40+
pretrain-beam 29.36 | 25.73 | 24.71 | 24.50
locally-normalized | 32.35 | 26.95 | 25.39 | 25.2
globally-normalized | 33.21 | 28.08 | 26.75 | 26.41

Table 5.6: BLEU scores with different length inputs on dev set Reported on Self-normalized
initialization. The header specifies the range of length of the input sentences

In tables 5.5 and 5.6, we analyze the source of improvement from global normalization for MT.

In table 5.5, we report the ngram overlap scores and ratio of length of the predictions to length
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of hypothesis for the case when the search-aware training is initialized with a self-normalized
model. We observe that the globally normalized model produces longer predictions than the locally
normalized model. More interestingly, it seems to have better 3 and 4-gram overlap and slightly
worse unigram and bigram overlap score than the locally normalized model. These observations
suggest that globally normalized models are better able to take longer range effects into account
and are also cautious about predicting the end-of-sentence symbol too soon. Moreover, in table 5.6,
we observe that globally normalized models perform better on all the length ranges but especially

SO On 101’1g sentences.
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Chapter 6

Energy Based Neural Sequence Models:
Connection with Masked Language

Modelling objective

6.1 Introduction

As described in Chapter 2, globally normalized sequence models whose support contains a finite but
large set of discrete sequences are easily rewritten as energy-based sequence models which assign a
scalar score to each sentence and whose defined probability distribution is obtained by summation
of scores of all the possible sequences. This part of the thesis focuses on training energy-based
models for natural language sequences. Training such models is difficult and finicky, therefore, this
work (Goyal et al., 2021) mainly aims to interpret the well-behaved but poorly understood masked
language objective as being related to implicit optimization of an effective energy-based model
over sequences. The effectiveness of the MLM objective is studied by comparing energy-based
models trained on synthetic data with enumerable search spaces via the MLLM objective, direct

maximization of pseudo log likelihood and direct maximization of log likelihood.
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Masked language modeling (MLM) objectives (Devlin et al., 2019; Yang et al., 2019; Gu
et al., 2018) for sequences, although recent, have become ubiquitous for many Natural Language
Processing (NLP) applications (Liu et al., 2019; Zhang™* et al., 2020; Rogers et al., 2021) because
they are easy to optimize and enable learning of highly expressive and flexible representations by
the virtue of conditioning on bidirectional context (Peters et al., 2018; Devlin et al., 2019). However
despite their popularity, they lack a principled probabilistic interpretation and hence sampling from
MLMs, or characterizing uncertainty about the predictions made with them has remained elusive.
This drawback is reflected in the observation that recently proposed non-probabilistic approaches
for generating high-scoring sequences from these MLMs (Ghazvininejad et al., 2019) still trail
probabilistic autoregressive models (Brown et al., 2020; Sutskever et al., 2014) despite having

access to greater bidirectional context while generating.

In this work, we posit that optimizing MLM objectives results in training of implicit energy-
based sequence models that correspond to probability distributions over natural language sequences
by assigning a score to each possible sequence in the large but finite sequence space. To explore
the veracity of this claim, we develop and experiment with two energy parametrizations (Or scor-
ing schemes) that can be easily derived from the representations learned by the trained MLMs’
transformer networks. These parametrizations have been inspired by the success of recent work on
using MLMs for sentence-level judgements for discriminating between probable and improbable

sequences (Salazar et al., 2020; Zhang™ et al., 2020).

Although, it is easy to compute the energy/score of a sequence with these MLM-based
parametrizations, the bidirectional nature of MLMs precludes efficient sampling algorithms like an-
cestral sampling. Therefore, a primary contribution of this work is to develop Metropolis-Hastings
(MH) based sampling algorithms for these energy networks. While it is tempting to formulate a
Gibbs sampling scheme (Gelfand and Smith, 1990) based on the positional masked conditional
distributions used for training the MLMs (Wang and Cho, 2019), we theoretically and empirically

demonstrate that these masked conditional distributions do not necessarily correspond to any joint
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distribution or energy network and hence result in invalid Gibbs samplers. Instead, we propose to
use these masked conditionals as proposal distributions for transitioning to a new state (sequence)
in the Markov chain of an MCMC sampler based on the Metropolis-Hastings algorithm (Hastings,
1970). Another contribution of our work is to design a block-replacement proposal distribution for
improve mixing of the Markov chain in our proposed MH sampling framework, which results in

faster generation and better samples.

We empirically investigate the effectiveness of the two proposed energy parametrizations by
examining the quality of samples drawn from these energy-models on the conditional generation task
of Machine Translation (MT). We observe that high BLEU scores are correlated with low energy
values which indicates that these parametrizations are reasonable proxies for the desired implicit
bidirectional energy network trained via the MLM objective for MT. We study the behavior of our
sampling approach extensively with different proposal distributions. We also verify the effectiveness
of our approach by sampling from regions around the mode by annealing the target distribution and
finding our samples to be competitive with a prominent undirected (and non-probablistic) generation

approach (Ghazvininejad et al., 2019) on MT performance.

We find our proposed sampler to generate high-quality sequences (Energy-wise and BLEU-wise)
under the proposed energy parametrizations which suggests that the optimization of MLM objective
is implicitly equivalent to training global energy network that induces probability distribution over
the space of sequences. While in this work, we primarily focus on sampling from the energy
network underlying MLMs, our findings open up avenues for developing more direct, stable and
simple training procedures for energy-based sequence models inspired from the MLM objectives

and our proposed MH sampling scheme.

Related work: Gradient based training of energy networks (L.eCun et al., 2006; Zhao et al., 2017,
Du and Mordatch, 2019) has been successful at training models for inducing distributions over
continuous domains but are not suitable for training discrete sequence models for text. To overcome

this problem, recent work has proposed continuous relaxations to the discrete domain (Belanger and
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McCallum, 2016; Grathwohl et al., 2021), but the unordered nature of discrete symbols in text leads
to brittle and unsuccessful training. Direct training of energy networks for text tends to be expensive
and unstable as well (Goyal et al., 2019; Deng et al., 2020; Tu et al., 2020; Zhang et al., 2017).
While MLM objectives(Devlin et al., 2019; Clark et al., 2020a,b) in contrast, are easy to train and
learn good representations of textual data, they do not have a probabilistic interprertation. In this
work, we interpret MLMs as implicit energy networks and develop approaches to sample from them.
While there have been attempts to generate sequences from MLMs in a non(pseudo)-probabilistic
manner (Wang and Cho, 2019; Ghazvininejad et al., 2019; Gu et al., 2018; Mansimov et al., 2019),
the techniques introduced in this work sample correctly from the energy networks underlying

MLMs.

6.2 Masked Language Models and Energy Networks

We can only directly obtain the conditional distributions of the [MASK] tokens, conditioned
on the rest of the tokens in the sequence from an MLM. In this section, we discuss potential
parametrizations of energy functions that could correspond to the implicit networks trained via
MLM objectives and describe how to obtain these energy values from the trained MLMs. Let Y
be the space of all finite sequences and p(y; #) be the probability of the sequence y € ) under the

target distribution defined by the energy function E(y; ) parametrized by 6, defined as follows:

, e PO ¢(y;0)
p(yﬁ) = Z 0 Z(Q)

-E
yley €

where ¢ represents the unnormalized score of the sequence y and Z(#) is the intractable normaliza-
tion constant computed by summing over all the sequences.! We propose two parametrizations for

the energy functions: 1) Raw scoring, and 2) Locally normalized scoring.

'For conditional generation, the energy function and the probability distribution over y is also dependent on
the conditioning context x; however, for notational convenience we suppress this explicit dependence in rest of the
description.
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6.2.1 Raw Scoring

For each position ¢ in the sequence y of length 7', we associate a random variable y; € V with
the t-th token, where V is the vocabulary. MLMs learn a representation h(y\;), for y; that is
sensitive to the bidirectional surrounding context y\;. For notational convenience, we Use y;—,\; to
denote a sequence y with the i-th variable taking on the value w. We use such bidirectional neural
parametrizations to define an energy F,.,,, for y that corresponds to fully connected MRFs (Gibbs

random fields, more precisely) as the sum of the local positional scores:
T
Eraw(y;0) = = Y log ¢,(y;0), wherelog ¢:(y; 0) = f(y:, h(y\t)); 0)
t=1

Conditional distribution under £, ,: Performing Gibbs sampling from the MRF defined by 4.,

requires computation of this conditional distribution of a token given the surrounding context:

o Htsbt(y;@)
p(yilyi: 6) > wev L1 0 ((Yimw)i); 0))

Computing this conditional is very expensive and would require running |V| passes of the MLM
decoder because the positional potentials ¢; are computed over fully connected cliques. We shortly
use these true conditionals to optimize the true pseudolikelihood of an energy-based model on
synthetic data for which enumeration over sequence space is possible and explore the effectiveness
of doing this over optimizing via MLM conditionals for this energy parametrization. But due to
computational expense, for the experiments on real natural language data, we do not use these exact
conditionals to perform Gibbs sampling or train exact pseudolikelihood and instead propose MH

based samplers described below.

Relationship with the masked conditionals of MLMs: Since computing the exact conditional
distribution is very expensive, in this section we explore the potential of using MLM conditionals

which are easy to compute. Wang and Cho (2019)’s prior attempt to interpret a MLM (like BERT)
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as an MRF incorrectly” assumes that the positional potentials are independent of each other and
hence are not defined on a fully connected clique, i.e. ¢;(y;0) = ¢;(yy;0). This faulty assumption
about the factorization of the positional potentials ¢,(y; @) leads to the following formulation of

conditional distribution:

T B [ 1, :(y:; 0) iy 0)
s ) X (7AW 5 o0 H

weV

= softmax(log ¢;)

This deficient conditional distribution for the MRF corresponds to the free conditional distribution
Prmum (¥¢ | ¥\¢) that is obtained by performing a softmax operation over [MASK] scores (€ RY) used
in the MM training objective. These MLM free conditionals do not correspond to the MRF defined
by Eraw 1€ Dmim (i | Y\i) 7 P(¥ily\is 0(Eraw))- In fact, these conditionals need not correspond
to any consistent MRF over the sequences. As an example, consider a sequence of length 2 with
the random variables y;, y» that have a categorical distribution over a vocabulary V = {a,b}.

The following free conditionals are inconsistent because they do not correspond to any valid

. R 0.99 0.01 0.5 0.5
joint distribution over {y1,y2}: p(y1 | y2) = p(y2 | y1) = . These

0.01 0.99 0.5 0.5

conditional distributions do not correspond to a valid joint distribution. Intuitively, this is because
yo is extremely predictive of y; but y; does not predict y- at all from the above conditionals, they
cannot characterize a consistent joint distribution over {y;, y2}. Furthermore, these conditionals

can be shown to violate the Bayes’ rule. Using Bayes’ rule we observe the following inconsistency:

pi=ay:=a) pyi=aly2=a) o

p(y1 = a,y2 :b) p(y1 =a | y2 = b)

4

p(y1=a,y2 =a) p()’zzabﬁza):l

X
p(y1 Za,}’2:b) p(Yzzb\}ﬁ = a)

2This was addressed in their subsequently published erratum: https://bit . 1y/2TXS2KM.
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It should be noted that prior work on dependency networks (Heckerman et al., 2000) proposed a
similar scheme of training the conditionals independently with separate regressions over the latent
variables and the inconsistency of such conditionals is well documented (Gelman and Raghunathan,
2001; Dobra et al., 2004; Lowd, 2012).

Wang and Cho (2019) propose that these masked conditionals could be used to define pseu-
dolikelihood ([, Prmim (¥t | ¥\¢+; f)) maximization objective and subsequently argued that MLM
training can be interpreted as stochastic maximization of this degenerate pseudolikelihood. How-
ever, since these masked conditionals are deficient and do not correspond to the raw-score energy
function F,,, as described, MLM training can only be interpreted as stochastic approximation
of a degenerate pseudolikelihood of the data under E,,,,. Despite the incongruity between MLM
training and minimization of £,,,, we propose to use £, ., as one of the parametrizations of the

energy function.

6.2.2 Effectiveness of MLM objective with E,,,, parametrization on syn-
thetic data

To study the effectiveness of training energy-based models with MLMs and other more faithful

objectives, we develop synthetic data whose search space is enumerable. Specifically, we compare

the masked language modeling objective with the following two computationally expensive but

more accurate approaches using the F,.,,, energy parametrization:

1. Direct maximization of likelihood (LL): This approach computes exact loglikelihood of the

training data by computing the log partition function under the F,.,,, parametrization via enu-
meration over the space of all sequences. The size of this space grows exponentially (O(|V|T))
with sequence length, 7". As described in the experiments section, this is computable because

of the tractable search space of the synthetic data.

2. Pseudolikelihood maximization (PLL): For this approach, we use the exact conditionals,
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p(yily\i; 0), that correspond to the E,,,, energy parametrization as described above. Comput-
ing these conditionals is cheaper than computing the exact likelihood but significantly more

expensive than computing conditionals in the MLLM objective. For the conditional distribution

at a position given tokens at all the other positions, |V| number of passes are run over the
decoder compared to just 1 pass for the MLM conditionals. This is computationally feasible

because of the fairly small sized vocabulary of the synthetic data.

Our empirical results show that while the masked language modeling objective (M LIM) does
optimize a decent energy-based model, it still lags behind direct maximization of pseudolikeli-
hood using true conditionals, which further trails direct maximization of the log likelihood i.e.

NLL(MLM) > NLL(PLL) > NLL(LL).

In addition to comparing MLM objective with optimizing likelihood and pseudolikelihood, we
also propose and compare with another approach described below, that involves training an MLM
first and then refining the MLM conditionals for training via exact pseudolikelihood on smaller

amount of in-domain data.

Adapting MLM Free Conditionals for Energy Models

As described above, maximizing the degenerate pseudolikelihood (MLM training) is less compu-
tationally expensive than maximizing the true pseudolikelihood and hence MLLMs can be learned
efficiently on massive amounts of data. Therefore we propose a novel method to project the free con-
ditionals of a pretrained MLM to the true conditionals of the nearest well-defined joint distribution.
This enables us to effectively benefit from the representational patterns learned by MLMs on large
amounts of data for training probabilistic sequence models on smaller potentially domain-specific

data. This method focuses on minimizing the KL divergence between the MRF’s true condtionals

72



and the pretrained MLM’s conditionals at each position in the training sequences.

T
melnz Z KL(pmim (¥t | ) llp(ye | ¥\ 6))

y t=1

This approach seems as expensive as maximizing the true pseudolikelihood because we still need
to compute the expensive true conditional distributions, p(y;|y\;; ¢), which require |[mathbbV/|
decoder passes in order to compute the KL divergence. However, because of the MLM pretraining,
we need to train with the KL objective with fewer epochs than the epochs needed for maximizing
the true pseudolikelihood.

We also experiment with a variant on the above objective which maximizes true PL in addition
to minimizing position-wise KL divergence. Using the pretrained MLM in this manner results in

fast convergence and well-trained MRF models.

6.2.3 Experiments on Synthetic Data

We evaluate the MLLM objective’s ability to learn well-fitting probabilistic models over sequences
against: 1) Likelihood maximization (LL) involving exact computation of the normalization constant
of the MRF (typically intractable), and ii) Pseudolikelihood (PLL) maximization using exact
conditionals (expensive). We also evaluate the effectiveness our proposed approach of adapting
MLMs trained on large datasets to train MRFs on smaller datasets.

For fair comparison, all of the systems share the same high-capacity underlying architecture
which consists of a bidirectional LSTMs to represent the left and right contexts of the tokens. All the
reported results are averaged over 5 runs with different stochastically generated train/test synthetic
datasets.

Synthetic Data: In order to perform controlled comparisons where the ground truth is known
and the likelihood can be exactly computed, we conduct experiments on synthetically generated

data (Iength 5 sequences with vocabulary of size 5) from two different kinds of underlying true
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Eval-metric | Negative Loglikelihood (-LL) | -PLL | -MLM
Train-obj True LL PLL MLM |PLL | MLM
Synthetic

p-1k 532 6.74 7.01 7.71 574 | 5.87
p-10k 535 621 657 7.23 488 |5.28
h-1k 497 5.07 5.16 6.01 4.58 | 4.46
h-10k 502 5.03 504 594 445 | 449
h-1k+ 645 6.51 653 7.07 6.27 | 6.23
h-10k+ 641 642 643 6.88 6.14 | 6.13
Real

phoneme - - 14.58 18.20 13.31 | 13.12

Table 6.1: Comparison of different training objectives on held-out datasets. Eval metrics are
reported for models trained with the specified training objective to maximize the corresponding
quantity. Legend: LL-loglikelihood, PLL-Pseudo loglikelihood, and MLM-Degenerate pseudo
loglikelihood trained via masked language modeling objective. True refers to the ground truth NLL.
p refers to the palindrome data generator and h refers to a HMM generator. + refers to the high
entropy HMM generator. 1k and 10k refer to the training data sizes.

distributions:

(i) Palindromes: All possible 5° sequences are partitioned into two sets: palindromes and non-
palindromes. A Bernoulli draw (p = 0.8) chooses whether to sample uniformly from the set of
palindromes or a non palindromes.

(ii)) HMMs: Data generated from HMMs with 4 hidden states and vocabulary size of 5. We
experiment with two different parametrizations of HMMs that correspond to either low or high
entropy marginals.

Real Data: We also performed experiments on a real dataset-CMU pronunciation dictionary (Lenzo
et al., 2007)—to model English phoneme sequences. We removed the stress markers so that the
vocabulary size is 39, and only considered sequences of length up to 6 (77653 instances). We made
a 90-10 train-test split on this data. The enormous size of the search space precludes training with
the exact loglikelihood (both memory and time wise) but it does allow for computation of the exact
loglikelihood over the test set for comparison.

Results: In Table 6.1, we report the exactly computed negative loglikelihood (NLL) under different

models on the synthetic and real datasets with different amounts of data. We compared LL (likeli-
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hood maximization)®, PL (pseudolikelihood maximization with true conditionals), and degenerate
pseudolikelihood maximization with free conditionals. The NLL we report for the MLM-trained
models is motivated by the success of prior work on reranking sequences (Chen et al., 2017; Salazar
et al., 2020), that used the MLM scores to define the potential for an MRF* whose distributions
could be computed by normalizing over all the possible sequences. While reranking does not require
computation of the normalization constant, in our experiments we explicitly enumerated over the
search space in order to compare this strategy of using pretrained MLMs as proxies for language
models. From the results, we observe that MLMs (Column 5) learn significantly worse probabilistic
models than PL or LL based training (columns 3,4). PL maximization performs similarly to LL
maximization as the data grows in size. This is despite the fact that both PL and MLM training yield
similar PL and MLM values on the test set. It is also interesting to note that as the data size grows,
the MLLM objective’s performance does get closer to the direct pseudolikelihood maximization and
the true loglikelihood which indicates that MLMs are not completely incongrunet from the £,

parametrization.

In Figure 6.1, we report the NLL results to test our proposed approach to adapt MLM conditionals
to a probabilistic sequence model. For synthetic data, we train an MLM on a large synthetic dataset
(100k instances) and for the real data we reserve 65k (out of 75k) instances for training the
MLM. Then, we compare the proposed KL projection algorithms to PL-only method for training a
probabilistic model on a separate smaller training set (varying size in the Figure). All the methods
perform better than just using the pretrained MLM (DPLL (size)). Both the KL projection methods
are significantly better than training with PL-only, especially in small data scenarios. This shows
that the MLM conditionals could be successfully adapted to probability distributions on small

domain-specific data using our proposed approach.

Hence, we demonstrated that the masked language modeling objective training learns poorer

3Not tractable on the real data due to large sequence space.
“This MRF does not relate to the MLM free conditionals.
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Figure 6.1: Comparison of the proposed KL projection method to training with pseudolikelihood
(PL-only) from scratch and KL projection combined with PL. TRUE refers to the ground truth NLL
and DPLL (# instances) refers to the NLL of pretrained degenerate pseudologlikelihood trained via
the MLM objective on the mentioned # of instances. Negative loglikelihood on a held-out set is

reported as a function of training data size (in logscale).

energy-based models under £, than the models learned by minimization of the energy via direct
maximization of computationally expensive log lilkelihood or pseudo log likelihood. However,
since these MLMs can be trained inexpensively on large amounts of data, the approach to adapt
their free conditionals in order to train well-fitting probabilistic models on smaller amounts of data

is promising. Also, from these results we can see that the MLLM objective, although poorer than

direct pseudolikelihood maximization, is still fairly congruent with £, ..

6.2.4 Locally Normalized Scoring

Having described the £, parametrization and its link to recently prpoposed energy networks, we

turn our attention to another alternative energy parametrization that is related the masked language
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models. Recent work (Zhang* et al., 2020) has shown that MLMs like BERT can be used to reliably
score a set of sequences. Salazar et al. (2020) and Clark et al. (2020a) developed a scoring scheme to
rescore hypotheses proposed by the beam search algorithm and showed downstream improvements
over automatic speech recognition (ASR) and machine translation (MT) datasets. The scoring
scheme corresponded to masking tokens one-by-one in a left-to-right manner and summing the

log-probability of the token at each masked position in the sequence i.e.

T
Elocaz(y; 9) = - ZlOngzm(Yib’\i; 9)

t=1

This scoring scheme is also implicitly used while performing beam search with the non-autoregressive
NMT models proposed in Ghazvininejad et al. (2019), which yielded better BLEU scores when
compared to the greedy non-autoregressive baseline. These positive results in prior work suggest
that Ej..q; 1s positively correlated with the true sentence scores according to the probabilistic models

underlying the trained MLMs.

6.3 Background: Metropolis Hastings

In this section we briefly describe the Metropolis Hastings (Hastings, 1970) algorithm. Metropolis
Hastings is an MCMC algorithm that provides a recipe for sampling from the distribution p via a
proposal distribution ¢(y’;y, ) parametrized by 7, which defines transition from sequence y to the
sequence y’ in the Markov chain. It assumes the ability to compute the unnormalized score f(y) for
every sequence y. At each sampling step we first draw a proposal y’ from the proposal distribution.
Then, we either transition to this new state with the acceptance probability a(y’; y), or repeat the

sequence y in the Markov chain. The acceptance probability is defined as:



This sampler satisfies detailed balance and converges to a stationary distribution. Additionally, since
it is highly unlikely that the neurally parametrized models like MLMs will assign any sequence a
probability 0, it is safe to assume ergodicity of this Markov chain, which guarantees convergence to

the desired target energy network distribution p.

6.4 Masked Conditionals as Proposal Distribution for the MH

sampler

As we discuss in Section 6.2.1, the masked conditionals used to train MLLMs do not correspond
to the two energy formulations we experiment with and are not appropriate for performing Gibbs
sampling. In fact, our experiments demonstrate that performing Gibbs sampling using these masked
conditionals leads to samples of bad quality, both in terms of BLEU scores and the energies of
the generated sequences. However, these conditionals have been shown to be useful for scoring
individual sequences and non-autoregressive generation. Therefore, we propose to define the
proposal distribution ¢(y’,y) for the Metropolis-Hastings sampler by these masked conditionals.
More concretely, to transition from the sequence y, we first mask the token in y at position i, 1.e.,
y; = [MASK]. Next, we do a Transformer decoder pass and get the masked conditionals p,,;,, at
position i. Then, the probability of the transition to sequence y’ is the masked probability of the

token at the i-th position in y’, i.e.:

9y, y) = Prum(Yily\i; 0), where y\; = y\; and ¢(y,Y") = Poim (Yily\i; 0)-

For both Gibbs sampling and MH sampling schemes, we sweep over all the positions while
generating sequences of a certain length either sequentially or in a random order. We denote one
complete sweep over all the positions in a sequence of length 7" by the term epoch. We summarize

our general approach in Alg. 4.
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Algorithm 4 Metropolis Hastings algorithm for MLMs

1: Input: MLM transformer o, Energy function fr, MLM conditional proposal f,.;,, ,sequence
length 7', number of epochs E

2: Initialize: y < [MASK]7”

3: y < greedy-decode(MLM(y)) > Warm-start with a random sequence
4: for e=0 to E do

5: for t=0to T do > left-to-right or random position selection
6: Eoq < fe(o(y)) > Energy of sequence y, O(T') op.
7: y —y,w, < yi, yi ¢ [MASK] > Store the t-th token in y as w, and mask it.
8: Wy ~ frum(0(y), 1), ¥} < wy, > Sample w,, from MLM conditional to propose y’.
9: Ay’ y) = fmim (0 (y), O)[wn], a(y,¥") = frm(o(y), t)[w,]
10: Eiew < fe(0(y)) > Energy of proposed sequence y’, O(T') op.
11: a(y’;y) < min (1, %&3’;”;}) > Acceptance probability of the MC transition.
12: ifu~U(0,1),u <atheny «+ vy’

13: Output: sampled sequence y

Computational complexity: Amortizing the encoder cost and the cost of performing a softmax
operation, if we denote the cost of doing one Transformer decoder pass over a masked sequence
by C, then the computational complexity of evaluating MLM conditional is O(C). For E epochs
and a sequence of length 7', the cost of running a Gibbs sampler is O(T'EC'). For the MH sampler,
we additionally need to compute the unnormalized scores ¢(y) which, for both the proposed
parametrizations of energy, require masking of each position sequentially and running a Transformer
decoder pass for each masked sequence. Hence the MH sampler is more computationally expensive

with the complexity O(T?EC)).

6.4.1 Variants of Proposal Distribution

We studied our sampler with multiple proposal distributions. While all the variants of proposal
distribution rely heavily on the masked conditionals from the pretrained MLM, they have different
properties and as shown in the results, they exhibit very different behaviors.

Varying temperature: We experiment by changing the entropy of the masked conditionals via a

temperature hyperparameter 7: ¢(y', y; 1) = ppum (¥i|y\i; 0, 1) = softmax(%).
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Variation based on Nucleus Sampling: We experiment with another method of changing the
entropy of the masked conditional distribution that is inspired by Nucleus Sampling (Holtzman
et al., 2020). It involves defining a nucleus boundary b, which prunes out the long tail of the
vocabulary that falls outside of the cumulative probability b followed by renormalization over the
pruned vocabulary V,, which is the smallest set such that 3 .\ P (Y] = w[y\i; 0) > .

Block MH sampling: Block sampling methods like block Gibbs sampling (Gelfand, 2000) result
in better mixing of the Markov chain because they allow for perturbations to multiple variables.
While block Gibbs sampling in general is difficult to execute because of the requirement of joint
conditional distribution over the block of latent variables given the values of rest of the variables
in the system, which is generally intractable to obtain. Our approach, however is flexible to lend
nicely to a block sampling scheme that improves mixing and makes the sampling more efficient. In
our approach, we mask out multiple tokens in a sequence y in order to propose a new sequence
y’. Let Z be the set of positions by which y and y’ differ. Then, the proposal distribution for the
MH sampler is: ¢(y',y) = [ [;cz Prum (¥ily\z; ). This proposal distribution is simply a product
distrbution of the masked language modelling conditionals at the masked positions which is easy to
compute. This makes sampling faster due to parallelization of prediction at several positions, and as

shown in our experiments, also results in generation of better samples.

6.5 Implementation details

Pretrained Masked Language Model: We empirically study the proposed Metropolis Hastings
scheme on the conditional generation task of neural machine translation (NMT). For fair comparison
we use the pretrained models’ optimized by a prominent non-autoregressive algorithm—MASK-
PREDICT (Ghazvininejad et al., 2019). This algorithm uses a bidirectional Transformer (Vaswani

et al., 2017) encoder to encode the source-side sequence and uses the source-side representation to

Shttps://github.com/facebookresearch/Mask-Predict
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train the target-side bidirectional transformer-based decoder via the MLM objective. For decoding,
conditioned on the source-side encoder representations, it uses a specialized non-probabilistic
decoding algorithm which generates text via iterative refinement after randomly masking a subset
of tokens at each decoding epoch.

MCMC details: For all the sampling baselines, after a burn-in period of 7 epochs, we ran the
Markov chain for at least 26 epochs over the dataset. Therefore, for a target sentence of length 7',
we made at least T’ x 33 proposals in each Markov chain.® For all of our sampling results described,
we ran at least 5 Markov chains for each configuration described in the subsequent sections and
report averaged statistics over these runs. In order to run a large number of chains in limited time,
for almost all of our experiments, we restrict’ our translation dataset to source-side sentences of
length upto 20. An exception is Table 6.6, in which we report translation performance on full test
sets.

Index selection: For both Gibbs sampling and the MH samplers we experimented with two methods
of selecting the index to mask out: sequential (left-to-right), and random. We observed similar
performance, so we describe our experiemtns with random index selection. One key aspect of the
random index selection is that for a sequence, we sample without replacement and ensure that all
the positions have been sampled once before moving onto the next sequence in the epoch. For block
sampling, we randomly sample b positions where b is the block size and similarly keep track of the
sampled indices so that they are not sampled multiple times for a sequence in an epoch. We also
anneal the block sizes as described in greater detail in section 6.7.3.

Data: We performed experiments via translating the validation and test sets of the WMT-14
German-English (De-En), and the WMT-16 Romanian-English (Ro-En) datasets and perform the
same tokenization and pre/post-processing as Ghazvininejad et al. (2019).

Length prediction: We follow Ghazvininejad et al. (2019), and use a special [LENGTH] token

®For block-MH sampling variants, we make considerably fewer proposals.
7In the limited number of sampling experiments on the full datasets, we observe similar trends as the results on this
truncated dataset.

81



along with the encoder’s source side representation to predict the target length. We sample target

sentences of different length via batching and padding as necessary.

6.6 Metropolis Hastings and Degenerate Gibbs Sampling for

MLMs

In this section, we empirically compare our proposed Metropolis Sampling approach with both the
energy formulations described in Section 6.2 (raw and norm) to the alternative proposed by Wang
and Cho (2019) of performing Gibbs sampling with the masked free conditionals. Although, as
discussed previously, this Gibbs sampling is incorrect, and we will refer to this method as degenerate
Gibbs sampling (deg).

® Gibbs ® Norm @ Raw ® Gibbs @® Norm @ Raw
0.00E+0 30

-1.00E+4
-2.00E+4
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Figure 6.2: —F, ., (left) and BLEU scores (right) on De-En (20) as a function of epochs for the
two Metropolis Hastings schemes (raw and norm) and the degenerate Gibbs sampling scheme (deg).
We compute and report — Epqm, €ven for the samplers with E,,, parametrization.

In Figure 6.2, we notice that although all the samplers start with the same random sequence, the
proposed MH samplers generate high quality samples with low energy values and consistently good
BLEU scores across all the epochs. The degenerate Gibbs sampler however, keeps on degrading to

generating sequences with very low BLEU scores and high energy values®. We also observe that

8For the results discussed in Figure 6.2, we report standard deviation of the difference between the quantities in the
first Markov chain and all the other Markov chains run in our experiments. For our MH based approach, we observed
standard deviation of 1.1 in BLEU scores and 0.38 x 103 for E,,opm.
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sequences with high BLEU scores typically have low locally normalized energies’, which explains
the success of prior work in using these locally normalized scores for re-ranking beam search
hypotheses and generating sequences with high BLEU scores (Salazar et al., 2020; Ghazvininejad
etal., 2019).

Next, we examine the acceptance ratio of the MH samplers. We also show the average proportion
of novel MC transition rate—the ratio of proposals that were distinct from the previous state and
accepted—which indicates the entropy of the MCMC transition distribution. The degenerate Gibbs
sampler has acceptance probability of 1.0 by design and a novel transition ratio of 0.36, which
indicates that the MLLM conditionals are fairly peaked. Both the MH samplers have high acceptance
rates (0.9 and 0.91) but much lower novel transition ratio—0.11 for RAW and 0.13 for NORM. This

indicates slow mixing of the MH Markov chain.

6.7 Results with Variants of Proposal distributions

6.7.1 Effect of temperature

In this section, we explore the effect of temperature on the proposal distributions parametrized by
the MLM conditionals as described in Section 6.4.1. We experiment with 5 different temperatures,
varying the proposal distributions from high entropy to low entropy. In Table 6.2, we see that
the MH sampler performs similarly across all the temperature with the performance improving
slightly for lower temperature values, both in terms of the BLEU score and energy values. The
degenerate Gibbs sampler exhibits trails behind MH samplers but drastically improves with the
lowering temperature values. At low temperatures, it yields decent BLEU scores but it is noteworthy
that the energy values are significantly worse than the MH sampler.

Most interestingly, the novel transition rates reflect the effect of temperature very clearly. At

high temperatures, the degenerate Gibbs sampler never proposes repeating transitions while in

The locally normalized scores (Ejocq;) and the raw energy scores (E).,,,) are positively correlated.
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Table 6.2: Average E,,,, X 1072 energy, novel MC transition rate, and BLEU scores across
interleaved epochs for the degenerate Gibbs sampling (deg) and the locally normalized energy MH
scheme (Norm) on De-En (20) under MLM proposal distributions with varying temperatures.

Temp 2.0 1.5 1.0 0.8 0.5

norm deg norm deg norm deg norm deg norm deg

Enorm 4 1287 3246 1021 2957 11.13 31.12 995 21.12 7.85 17.65
Novel <+ 0.03 1.0 005 097 011 036 0.06 0.08 003 0.04
BLEU 2591 1453 2478 10.12 2474 9.03 25.84 24.77 27.23 26.12

stark contrast, the novel transition rate of the MH sampler is extremely low at 0.03. This is
because of high rejection rates under the unsuitable high-entropy proposal distribution. While
the BLEU/energy results for low-temperature settings seem to suggest that the degenerate Gibbs
samplers are practically useful samplers, examining novel transition rates dispels this suggestion. At
low temperatures, the novel transition rate is extremely small for the degenerate sampler indicating
low-entropy of the MLLM based transition distribution which in turn reduces the novel transition
rates of the MH sampler as well. Hence, the impressive low-temperature results only corroborate
the results of recently proposed greedy non-probabilistic MLM-based generation models like MASK-
PREDICT (Ghazvininejad et al., 2019) and do not explore the sequence space in a probabilistic

manner.

6.7.2 Effect of Nucleus Sampling

Adjusting the nucleus boundary can only decrease the entropy of the MLM proposal distribution.
In Table 6.3, we observe effects of low-entropy proposal distribution that are similar to effects
of lowering the temperature—decrease in novel transition rate with the samplers fixating around
samples with decent BLEU scores and energy values. We also see the similar pattern of the MH
samplers being largely robust and yielding good samples under both high and low entropy proposal
distributions while the degenerate sampler exhibiting poor performance in high-entropy settings

and only improving in low-entropy settings.
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Table 6.3: Average E,,,,,, X 1073 energy, novel MC transition rate, and BLEU scores energy for
the degenerate Gibbs sampling (deg) and the locally normalized energy MH scheme on De-En (20)
under MLLM proposal distributions with varying nucleus.

Nucleus 1.0 0.99 0.95 0.90 0.80

norm deg norm deg norm deg norm deg norm deg

Enorm 4 11.13 31.12 10.65 30.12 10.21 28.75 995 1857 9.85 18.23
Novel <+ 0.11 036 0.12 033 0.10 022 007 0.10 0.05 0.06
BLEU 24774 9.03 2495 14.03 26.15 18.04 27.35 23.25 27.23 23.55

These patterns of sensitivity to the proposal distribution’s entropy (Tables 6.2,6.3) strongly
suggest that while the MLM objective results in conditionals whose mode corresponds to high
quality sequences with good BLEU scores and low energy values, these conditionals are poorly
calibrated and are not suitable for exploring the distribution over sequences via direct sampling.
Hence, our proposed sampling technique exhibits robustnness and good performance because it

uses the MLLM conditionals only to define energy scores and not to directly sample from.

6.7.3 Effect of Block MH Sampling

In the results so far, we have observed that while the MH samplers yield good samples, their novel
transition rate (0.11-0.13) is fairly low which results in slow mixing of the Markov chain. To
improve the mixing rate, we experiment with the proposal distribution for block MH sampling as
describe in section 6.4.1. Because perturbations in a large number of positions also increase the
chance of rejection of the new MH proposal, we balance exploration with tolerable rejection by
annealing the number of masked positions with epochs. At the start of the Markov chain, we make
large changes, but gradually make smaller changes as the chain progresses. We also, experiment
with a block Gibbs sampling variant of our degenerate Gibbs sampler. This block Gibbs sampler is
incorrect as well, however, it is interesting to study because with temperature 7' = 0.0, it yields the
MASK-PREDICT (Ghazvininejad et al., 2019) algorithm. We specify the results while keeping the

other settings like temperature and nucleus boundary at their default value of 1.0.
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Table 6.4: Average BLEU scores, E,,., x 1073, and novel transition rates for the two Block
variants of the MH schemes (raw and norm) and the degenerate block Gibbs sampling scheme (deg).

\Deg Raw  Norm

Eoormd | 31.18 8.08 8.17
Novel <+ | 0.77 040 041
BLEU 9.03 27.12 26.78

In Table 6.4, we notice that degenerate block Gibbs sampler performs very poorly, while both
the MH samplers show drastic improvements in terms of BLEU and the locally normalized scores
over previous non-block MH sampling settings under default conditions. Moreover we notice that
our block-sampling scheme drastically increases the novel transition rate (= 0.12 — 0.41) for our

MH samplers. This indicates better exploration of the sequence space.

Effect of annealing block size

We linearly anneal the block sizes as a function of iteration i.e. larger block sizes at the beginning for
fast mixing and smaller block sizes (eventually reducing to blocksize of 1). The effect of annealing
the size of the blocks becomes clearer in Figure 6.3. The initial high acceptance rates indicate
fast mixing and iterative refinement of the random initial sequence. At the latter epochs, the new

proposals differ only slightly and are accepted more selectively.

6.8 Annealing the Energy function: sampling around the modes

In this section, we analyze the effectiveness of our proposed MH samplers by evaluating the samples
drawn from regions around the mode of the energy functions. To achieve this, we propose to

perform MH sampling from target distributions whose energy values are scaled by low temperatures

—E(y;0)

ie. p(y;0,T) oc e 7 . However, such low-entropy target distributions lead to increased rejection
rates for the MH samplers. Therefore, we anneal the temperature as a linear function of epochs to

gradually decrease the entropy of the target distribution.

86



® Deg A Norm @ Raw

A,
>
&’.
2 o8 \‘x
o Yy
[} L" Yo
e Hetea,
s > v | BN
o .\
8 os e i
3 ' el TN
<
0.4
5 10 15 20 25 30
Epochs

Figure 6.3: Acceptance ratio on De-En (20) as a function of epochs for the two Block variants of
the Metropolis Hastings schemes (raw and locally normalized energy parametrizations) and the
degenerate block Gibbs sampling scheme (deg).

In Figure 6.4 (left, green), we observe that annealing results in dramatic improvements in
locally normalized energy scores E,,,, leading to very low energy values. When comparing
the acceptance rates, we see that raw and the locally normalized energy parametrizations behave
differently as the target distribution temperature is annealed, with the MH samplers under the raw
scores target distribution admitting larger acceptance rates across the epochs. This difference in
acceptance rates also manifests itself in the performance in terms of BLEU scores of the samples

under two energy parametrizations, with raw energy parametrization yielding higher BLEU scores.

In Table 6.5, we show the effect of different annealing schedules. At each epoch, we subtract
either 0.02,0.04, or 0.06 from the temperature of the target energy function. We see that 0.02
annealing schedule yields the best BLEU scores but interestingly, more aggressive schedules result

in better (lower) energy values with lower acceptance rates.
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Table 6.5: Comparison of different linear annealing strengths via best BLEU and E,,,,.,,,, and
average acceptance ratio of the two variants of the MH schemes (raw and local) on De-En (20).

Anneal 0.02 0.04 0.06
E.orm 4 accept BLEU FE,,., ] accept BLEU F,,.,, | accept BLEU

Norm  3277.6 052  29.16 3245.65 0.45 27.58 3187.80 0.41 26.95
Raw 31464  0.71 2991 3088.65 0.62 2832 2146.34 0.58 27.21

In Table 6.6, we compare the performance of our annealing-based mode-finding approach on
the task of machine translation with other related algorithms. Warm-start refers to the greedy
replacement of all the mask tokens with the pretrained MLLM which is used as the starting sequence

for our Markov chains.

Experimental setup for Table 6.6

Since this experiment focused on obtaining samples from around the mode of the energy parametriza-
tions and comparing them against existing non-autoregressive baselines, to reduce the variance
across runs, we used a temperature of proposal distribution as 0.8. This does reduce the diversity
in generated samples, but the samples generated have high BLEU scores. For fair comparison,
in Table 6.6 we report the performance of degenerate Gibbs sampling with a temperature of 0.8

as well. As can be noticed from the experiments throughout the paper, non-probabilistic greedy
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Table 6.6: Performance of annealing based approach for sampling around the energy-based distri-
butions’ modes. BLEU scores reported on the full De-En and Ro-En test sets.

‘ De-En Ro-En
Warm-start 20.27  24.38
Degenerate Gibbs (T=0.8) 27.88 29.79
Mask-predict (beam=1, It=10) | 29.27  29.95
Local Energy 29.74 31.13
Raw Score Energy 30.12  30.86

mask-based generation approaches tend to perform well when the only desirable attribute of the
generated sequence is high BLEU score but fail spectacularly when the MLLM conditionals are
used for diverse samples characterizing a distribution over the sequences. Another trick to reduce
variance was to artificially set the acceptance rate to 1.0 for the first two epochs (after warm-starting)
such that all the Markov chains have similar trajectory. We revert back to regular MH sampling
acceptance rates after this initialization. As a result, we obtain similar results for Table 6.6 across

all the Markov chain runs and the standard deviation in BLEU scores is very low at 0.13.

While it performs reasonably well, all the other approaches outperform it. We mainly compare
our approach (Local and Raw score Energy) to the MASK-PREDICT algorithm (Ghazvininejad
et al., 2019)—a prominent non-probabilistic and non-autoregressive generation technique, which also
provides the pretrained conditional MLM for our MH samplers. We outperform both, the degenerate
Gibbs sampling with temperature of 0.8 and MASK-PREDICT with beam-size 1, and 10 epochs'’.
Aside from demonstrating the effectiveness of MH sampling approach, the good performance on
translation also indicates that our proposed energy parametrizations correspond to good translation

models.

10ur MH samples are also competitive with the best performance using MASK-PREDICT with beam-size 5, 10
epochs—30.52 De-En, and 31.57 Ro-En.
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6.9 Conclusion

Our proposed Metropolis-Hastings based sampler enables us to draw high-quality samples from
non-probabilistic masked language models. The empirical analysis and success of our approach
with the two proposed energy parametrizations on conditional language generation strongly suggests
that the optimization of MLM objective results in training of an implicit global energy network that
induces probability distribution over the space of sequences and its possible to sample from it using
our method. While we primarily focus on sampling and generation, our findings open up avenues
for devising more direct, stable and simple training (Deng et al., 2020) procedures for energy-based

sequence models inspired from the MLLM objectives and our proposed MH sampling scheme.
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Chapter 7

Closing thoughts

This dissertation describes my work on ameliorating issues like exposure bias and label bias
commonly associated with neural autoregressive locally normalized sequence models. While
some solutions to directly mitigate exposure bias by making the training of autoregressive models
search-aware are presented, this dissertation contends that an alternative class of sequence models—
globally normalized models—is an appealing class of models with several desirable properties and

expressiveness that autoregressive locally normalized models lack.

More specifically, this document describes our work (Goyal et al., 2017, 2018) on search-aware
training methods that are amenable to backpropagation for locally normalized neural sequence
models that directly ameliorate the issue of exposure bias pertinent to common training methods for
autoregressive models like teacher-forcing. The approaches to achieve this at their core, involve
continuous relaxation to discontinuous inference procedures like greedy decoding, sampling, and
beam search so that these procedures can be incorporated into backpropagation based training
procedures which rely on existence of gradients and subgradients. These approaches demonstrate
superior performance over teacher-forcing on NLP applications like CCG supertagging, Named

Entity Recognition and Machine Translation.

Furthermore, this thesis shifts its focus to an alternative class of globally normalized models that
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are unlikely to suffer from exposure bias in the first place and have several advantages over locally
normalized models. While this class of models has several desirable properties, it is very difficult
to train such models because of the presence of computationally intractable partition function
associated with these models that requires enumeration of the whole search space of the possible
sequences. In Chapter 5, our work (Goyal et al., 2019) on training globally normalized models using
a continuous relaxation to beam search for sequences is described which empirically outperform
their comparable locally normalized counterparts. We attribute this to label bias experienced by

locally normalized models during search-aware training.

Having established the need to explore globally normalized models for discrete sequences with
empirical evidence, this document in Chapter 6 describes our work (Goyal et al., 2021) on more
powerful globally normalized models for sequences constructed with the viewpoint of minimization
of scalar energy associated with the sequences in the search space of sequences. While training of
energy-based sequence models is expensive, brittle and difficult, we focus on interpreting ubiquitous
masked language models (MLMs), which have proven to be extremely powerful encoders of
language, as energy-based models which lets us effectively train powerful globally normalized
models via easy-to-optimize masked language modelling objective. This work proposes two energy
parametrizations that can be easily computed with pretrained MLMs and introduces an effective
Metropolis-Hastings based sampler that uses the MLM free conditionals as Monte Carlo transition
distributions for proposals in the MCMC chain to generate high quality samples from the pretrained
MLMs. Most importantly, the empirical analysis in this work indicates that masked language
modelling objectives are well-suited toward the task of training energy-based globally normalized
sequence models and points toward further alternate techniques to train expressive and powerful

energy-based models in a tractable manner.

Given that the masked language models are implicitly trained energy-based models, it is a
promising avenue to explore the connection between the MLLM objective and noise contrastive

estimation more deeply. Noise contrastive estimation for sequences would require two major
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sequence-level components: 1) The target energy network, and 2) The probability distribution for
negative sampling. The masked language objective is a token-level loss and while other approaches
like ELECTRA (Clark et al., 2020b) and Electric (Clark et al., 2020a) perform noise contrastive
estimation with a negative sampling distribution inspired by MLLM conditional distributions, this
view is still restricted purely to estimating distributions over tokens. Another related sequence
level model involves training of energy networks to model residual scores which are not accounted
for by the pretrained autoregressive components of the full model (Deng et al., 2020). This is
done by parametrizing the residuals as bidirectional models with architectures similar to promi-
nent MLMs and using noise contrastive estimation. While this approach is promising, a explicit
residual modeling makes the model heavily dependent on the autoregressive component of the
models and it is unlikely if the issues associated with the autoregressive models discussed in this
document will be addressed with such a training objective. However, it is certainly worthwhile to
explore sequence-level noise contrastive estimation with noise distribution parametrized by powerful

language encoding models like the masked language models.

Aside from ameliorating exposure bias and label bias issues associated with locally normalized
models, energy-based sequence models also enable abandonment of overly restrictive token-level
left-to-right generation with autoregressive models. For example, the sampler described in Chap-
ter 6 generates sets of tokens with much richer conditioning context in arbitrary order. This property
is especially appealing for planned and controllable generation of language. Since globally nor-
malized models provide access to whole sequences with regards to generation aspects, this class
of models lens itself naturally to non-linear generation which involves seqeunce-level or even
paragraph-level constraints like those encountered in story generation (Fan et al., 2018; Yao et al.,
2019), poem generation (Ghazvininejad et al., 2016) etc. Specifically, constraints like event-based
consistency required in stories, and meter and rhythm based constraints for poem generation are
awkward to incorporate into localy normalized models and can only indirectly affect the generation

with autoregressive models. However, these constraints are likely to be better encoded easily in a
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non-linear and richly contextualized energy-based sequence models, thus providing greater control
over the text generation process.

In spite of the virtues of energy-based sequence models, sampling and generating from them is
computationally expensive and difficult. As discussed above, while these models can be implicitly
trained easily via objectives for masked language modeling or noise contrastive estimation (Gutmann
and Hyvirinen, 2010; Ma and Collins, 2018), sampling from them either involves running a Markov
chain in an MCMC sampler similar to the one described in Chapter 6, or performing importance
sampling by training more restricted residual models. Efficient sampling algorithms for discrete
symbols are difficult to develop because of absence of any natural manifold and gradients which
enable highly efficient methods like Hamiltonian Monte Carlo (Neal et al., 2011) or sampling
via Langevin dynamics for continuous random variables. Although approaches like structured
prediction energy networks (Belanger and McCallum, 2016) and Langevin dynamics based MCMC
sampling (Grathwohl et al., 2021) from discrete MRFs attempt to train networks over discrete
symbols by projecting them over a manifold, stable and consistent training of such models that yield
good performance over downstream tasks has remained challenging.

Finally, this thesis demonstrates that while an alternative to the dominant autoregressive models—
globally normalized models—brings its own sets of limitations, especially those related to com-
putational complexity, this class of models also ameliorates several pathologies associated with
autoregressive models and has several desirable properties. Hence, energy-based globally normal-
ized models warrant a strong consideration over the currently default autoregressive models for

many applications involving sequence processing and generation.
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