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Abstract

Mixed-initiative clustering is a task where a user and a nreetwork col-
laboratively to analyze a large set of documents. We hypathdhat a user
and a machine can both learn better clustering models threngched com-
munication and interactive learning from each other.

The first contribution of this thesis is providing a framewaf mixed-
initiative clustering. The framework consists of machie&rhing and teaching
phases, and user learning and teaching phases connectedieractive loop
which allows bi-directional communication. The bi-directal communica-
tion languages define types of information exchanged in temnface. Coordi-
nation between the two communication languages and theattapcapabil-
ity of the machine’s clustering model is the key to buildingnexed-initiative
clustering system.

The second contribution comes from successfully buildevggal systems
using our proposed framework. Two systems are built withamentally en-
riched communication languages — one enables user feedbdelatures for
non-hierarchical clustering and the other accepts usebBek on hierarchi-
cal clustering results. This achievement validates ounéaork and also
demonstrates the possibility to develop machine learniggrithms to work
with conceptual properties.

The third contribution comes from the study of enablingteak interac-
tive capability in our full-fledged mixed-initiative clusting system. We pro-
vide several guidelines on practical issues that devetoplemixed-initiative
learning systems may encounter.

The fourth contribution is the design of user studies fomexing effec-
tiveness of a mixed-initiative clustering system. We desige studies accord-
ing to two scenarios, a learning scenario where a user develdopic ontol-
ogy from an unfamiliar data set, and a teaching scenarioevaerser knows
the ontology and wants to transfer this knowledge to a mactResults of the
user studies demonstrate that mixed-initiative clustehias advantages over
non-mixed-initiative approaches in terms of helping useasn an ontology
as well as helping users teach a known ontology to a machine.
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Chapter 1
Introduction

Historically, text clustering has been approached usitlg Aautonomous algorithms. We
consider here mixed-initiative clustering involving ameractive loop between a machine
and a user. To illustrate the idea, consider the problem gdirorzing a large collection
of research papers into a set of research categories thagasingful for you. A fully
autonomous clustering algorithm will produce a clustetimgt optimizes certain statisti-
cal properties, but it is unlikely to match your own undensliag of research sub-areas
because the the statistical distributions of words do notiLoa the semantic subtleties you
have in mind. Furthermore, manually organizing these saigealso unattractive because
itis both tedious to assign thousands of papers to categyanie also because you may not
know the optimal categories until you spend enough effoigthrough the actual data.

This thesis studies this new type of clustering — mixedatiite clustering — as an in-
teractive learning process between a machine and a uselvtothe clustering problem
together. We want to emphasize that mixed-initiative @tsg focuses on not only the
machine clustering perspective, but also on helping a ustgnstand the current clustering
result and modify the result easily to a better revision atiog to the user’s evolving un-
derstanding of the data. Furthermore, we consider thigyysinanixed-initiative clustering
as a case study of a more general class of mixed-initiatasgihg problems.

The idea of studying mixed-initiative clustering comesifiran early work of extracting
user activities on a personal workstation.
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1.1 Activity Extractor

In 2003, | joined a research project called CALO, which wasrabiated for “Cognitive
Assistant that Learns and Organiz@ [25]. The project spdracross several machine
learning research areas in an attempt to build an intelligesistant for workstation users

]. My participation to the CALO project was to extract usetivities on a workstation
and identify what activity the user is working on so the ihgent assistant could provide
activity-specific information or services to the user.

In this researcf'lBS], we attempted a combinatorial appgraansisted of clustering
emails based on their text content and social network cligaied constructing a structured
representation of each cluster (activity), associatiigradar meeting and person names
with the activity. Figuré 1]l is an example of our activityaekon results. We obtained
some good activity descriptions by this combinatorial apgh even from noisy clustering
as long as the majority of documents in a cluster were assalcvath the same activity.

® Activity Name: CALO ActivityExtractor

e Keywords (omitting person names) ActivityExtractor, TFC, IRIS, clustering, heads, emadsllected,
clusters, SR, ...

® Person NamesAdam Cheyer (0.49), Ray Perrault (0.36), Hung Bui (0.32¢]ista Beers (0.30), James
Arnold (0.28), Jack Park (0.26), Sophie Wang (0.25), TomakdJX0.25), jeanne ledbetter (0.24), Leslie
Pack Kaelbling (0.24), ...

® Meetings CALO TFC telecon (0.59), CALO phone call (0.55), SRI MegtinChicago (0.48), SRI TFC
Telecon and quarterly rpt (0.47), SRI visit. Bill and Ray.ll@Géelissa Beers when arriving (0.47), CALO
annual mtg at SRI (0.45), ...

® Primary Senders tom.mitchell@cmu.edu (75), sophie.wang@cs.cmu.edy @am.cheyer@sri.com
(16), perrault@ai.sri.com (14), tgd@eecs.oregonstdtgE3), . . .

® Primary Recipients: tom.mitchell@cmu.edu (94), adam.cheyer@sri.com (40),
william.cohen@cs.cmu.edu (35), perrault@ai.sri.com),(19

® Emails: [email125], [email72], ... (245 emails in total)
® User Activity Fraction : 245/2822=0.086 of total emails

® User Involvement user authored 30% of email (default 31%)

Figure 1.1: An example of an activity description createtbmatically from clustering
and information extraction.

The lesson learnt was that incorporating unsupervisedesing and information ex-
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traction techniques enhances a user’'s comprehensionai@ubusly generated results.
However, the overall performance was still far from peifatt which we suspected was
what an average user would expect from an intelligent as#istBy investigating pos-

sible reasons behind the huge gap between an autonomotericigsesult and a user’s

ideal result, we identified three major problems (the chilsgemismatch problem, the

user teaching problem, and the user learning problem) imtisepervised clustering ap-
proaches. The continuing research to tackling these prabled to this thesis work on

mixed-initiative clustering.

1.2 From Unsupervised Clustering to Mixed-Initiative Clus
tering

1.2.1 Clustering Mismatch Problem

The first and obvious problem of unsupervised clusteringesdifference between a ma-
chine’s autonomous clustering result and a user’s idealltredVe call this difference
“clustering mismatch.” An unsupervised clustering algon typically produces a cluster-
ing that optimizes certain statistical properties of daizoading to its model assumption,
which is unlikely to match a user’s understanding of maj@ids in the data. In practice,
an autonomous clustering generated by an unsupervisddmhgsalgorithm is rarely per-
fect to users.

Let’'s use a fabricated task of sorting a set of pictures imto tlusters to visualize
clustering mismatch. Figute 1.2.1(a) represents a p@sailtonomous clustering for this
task, while Figuré_1.211(b) represents that a user namedddauwants to have a cluster
of cats and a cluster of dogs, in which two semantic meanirngpics are applied as her
clustering model for this sorting task. From Maureen’s pafview, there are several
errors in the autonomous clustering (Figure 1.2.1(a)) ¢batradict her clustering model
(Figure[1.2.11(b).)

Furthermore, different users may have different prefezsmmé meaningful topics about
the same data. Given the same set of pictures as in the abonmnes task of separating
them into two groups, Figufe 1.2.1(b)(c) illustrates twibedent users’ clustering models:
Maureen wants to highlight the difference between animatigs while Joe wants to
emphasize the difference between real animals and aninoatesl As a consequence,
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(c) Joe’s preference is to separate real animals to aninoaies!

Figure 1.2: A fabricated task of sorting a set of pictures itwo clusters visualizes the
clustering mismatch problem. Due to diversified user pegfees on what are meaningful
topics for this clustering task, the clustering mismatatMaureen, the difference between
(a) and (b), is different from the clusterirlg mismatch foe Jihe difference between (a)
and (c). User involvement is important for a machine to adreustering errors and learn
the right set of topics for each user.



even in the perfect situation where an unsupervised clagtedgorithm can produce a
clustering result of no clustering mismatch, without knogvthe user is Maureen or Joe, a
machine still doesn’t know how to choose between more thapossible user clustering
model. User involvement is important for a machine to cdreticstering errors and learn
the right preference for each user. The most popular usehi@ment is requesting a user
to label some examples for each target cluster. In machareilgy literatures, the study
of using a small amount of labeled examples to improve di uality for a majority
of unlabeled examples is called semi-supervised clug@] 1126].

1.2.2 User Teaching Problem

Once a user is involved in a clustering task, the user tegghoblem asks what is a good
communication language a user can use to teach a machinetedti@ng-by-example
approach in semi-supervised clustering can be consideredespecific way of commu-
nicating a user’s clustering model to a machine. We beliei®not the only way. For
example, in the fabricated task, Maureen wants a clustentsf @nd a cluster of dogs.
Using the teaching-by-example approach, Maureen is céstirio teach a machine some
examples of cats and dogs, or correct errors one by one in igraatched clustering re-
sult, e.g., Figure_1.2.1(a). Wouldn't it be more intuitive her to teach a machine “l want
a cluster of cats and a cluster of dogs” directly?

The challenges for addressing the user teaching probldodi@¢l) enriching intuitive
types of user feedback so that a user can communicate ahdeas about her clustering
model to a machine, and (2) developing machine clusteriggrathms so a machine can
adapt to new user feedback types.

1.2.3 User Learning Problem

The user learning problem addresses a even more fundanpeabdém in a clustering
task: when a user is not familiar with data and still needgtiofigure out what are mean-
ingful topics in the data, can a clustering system provideugh information to assist the
user finding these meaningful topics? In other words, it essary to enrich a machine’s
communication to a user so the user can understand the dhtdeartify meaningful top-
ics in the data quickly. For example, keywords in Figuré Zelbla user figure out which
activity this cluster is about better than reading contdri24b emails clustered to this
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cluster. Solutions to this problem are critical becausees who resorts to clustering tech-
niques usually wants to discover new topics in the data ralfa teaching a machine a
clustering model she already knows. The user learning proli¢ often not addressed in
semi-supervised clustering, because typically, seméwsuged clustering assumes its ex-
amples are labeled by an oracle user, meaning the user tamiggargeting categories a
priori.

We propose to solve the user learning problem through mimgidtive clustering. We
believe when a user cannot be an oracle knowledge provigentachine, she can still be
a good collaborator as long as a machine and a user are able/idguseful guidance to
each other.

1.3 Thesis

The goal of this research is to move unsupervised and sgmeirgised clustering forward
to mixed-initiative clustering in order to solve the clustg mismatch problem, the user
teaching problem, and the user learning problem. In orderctoeve this goal, mixed-
initiative clustering should enhance the communicatiomveen a user and a machine so
they can learn and teach each other efficiently, and be alheiact with each other in
real time. We hypothesize that mixed-initiative clustering can helser achieve better
clustering results than non-mixed-initiative approaclde® to the enriched communica-
tion and the interactive learning and teaching between a asd a machine.

Contributions of this thesis include a framework for mixediative clustering, suc-
cessfully building systems with enriched communicatiorglaages and real-time interac-
tion, and design of user studies for examining effectivermés mixed-initiative clustering
system. Results of the user studies prove our hypothesisnsat — mixed-initiative clus-
tering indeed has advantages over non-mixed-initiatiye@gches.

The remaining of this thesis is organized as follows. Chd®ietroduces our frame-
work for mixed-initiative clustering. Chaptét 3 and Chajiedescribe the details of en-
riching communication in mixed-initiative clustering $g81s and practical issues encoun-
tered when building an interactive system. In order to testhtypothesis of this thesis,
Chaptef b proposes a user study design and its experimestais to examine the effec-
tiveness of mixed-initiative clustering. The last cham@ncludes this thesis study.
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Chapter 2

Framework of Mixed-Initiative
Clustering

Mixed-initiative clustering consists of an interactivepbetween a machine and a user in
which the machine and the user work as partners. They needtio from each other and
teach each other about their up-to-date model revisionghadre expected to converge
to each other. The communication between the two are castuethrough an interface
specifically designed for mixed-initiative clusteringgbiie[2.1 depicts this relationship.

Communication

Machine Teaching+— L., — User Learning
T !
Model M. M,
T !
Machine Learning—  L,_.. <« User Teaching
Machine Interface User

Figure 2.1: The framework of mixed-initiative clusteriné. mixed-initiative clustering
system consists of a machine and a user. They communicdteeadch other through an
interface. The interactive loop iterates through the maehearning phase, the machine
teaching phase, the user learning phase and the user tgatizse.



Let’s start to examine the interactive loop from the mackisale. A machine learns
its clustering model)/.., from statistical distributions of words in the text corumsl from
all previously accumulated user feedback. Then the maaingeels to teach its current
model to its user partner. Since most clustering models@tranra human-readable form,

a machine needs to extract human-readable propertigg sfich as a graph depicting its
hierarchy of clusters and keywords associated with eadtasiin the hierarchy. In addi-
tion to properties extracted fromdy,., information of instances and target clusters is also
necessary for a user to gain basic understanding of a dhgtsk. Different property
types describe information about the clustering task &hdrom different aspects to a
user. The computer-to-user language..,, is defined by all types of properties that the
computer uses to communicate to the user.

The user side also has a learning phase followed by a teaphesge. In the learning
phase, a user develops her own clustering madg|,from reading the machine-proposed
properties in the interface. A user’s clustering model ioatology of meaningful top-
ics discussed in the datg. The user then teaches her ontology to the machine through
confirming good properties and correcting inappropriatgpprties. This is also known
as user feedback, and all user feedback types allowed imtbdadce define the user-to-
computer languagd,,_... As this process iterates, the agreement between the uder an
the machine on all properties increases. The machine’'secing model, which is learned
from these properties, and the user’s clustering modek e user applies in modifying
inappropriate properties during the process, can hogefoliverge.

2.1 Active Learning as a Special Case of Mixed-Initiative
Clustering

Active Iearnind[ZlBﬂb] is a subfield in machine learningthlso consists of an interactive
loop between a machine and a user. In the interactive looptivedearning, the machine
asks an oracle user a query most likely to decrease over@riainty, and the oracle user
answers the machine by providing a label for the query. Adsgipquery posted by an
We use “user clustering model” and “user ontology,” intencheably in this thesis. “User clustering
model” emphasizes that it is the counter-part of the machaiestering model in the mixed-initiative clus-

tering framework. “User ontology” emphasizes that a useegss from her real world knowledge some
meaningful topics into a specialized hierarchical ontglogorder to solve a clustering task.
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active learner is one unlabeled data instance, for exaraglecument in text clustering.
Through the interaction, an active machine learner is eepeto progressively shrink the
plausible region of its model hypothesis space.

Active learning can be considered as a special case of ningative clustering. The
research of active learning mainly focuses on the machiamileg phase in our frame-
work. Strategies are proposed to decide which query is teedueery to ask a user. The
machine teaching phase presents the list of target clusteltshe query selected by the
active learner. No additional information is extracted ualier explain the query to the
user. Since the user in active learning is assumed to be atearser, which means the
user already establishes a clustering model of the targstesk, the user learning phase
is neglected in active learning. The user identifies thetetuabel of the query in the user
teaching phase by applying the existing user model to theyque

Figure[2.2 illustrates the idea of applying our frameworlat@lyze communication
languages in active learning. Although communication itivadearning study is mostly
simulated, we visualize how an active learning interfacafiext classification task should
look like on the right hand side of the figure. The computeuser languagel.._.,,
summarizes what types of properties a machine disclosesiserahrough the interface.
In the active learning case, its computer-to-user langaagtins only the basic clustering
task information of target clusters and (unlabeled) instarone at a time. We present this
computer-to-user language as two unfilled rectangles, oneafget clusters and one for
queried documents, underneath the simulated interfacereTis no edge between the
unfilled cluster and document rectangles because the dottioeluster property type
is not included in thid.._.,. In the other communication direction, the user-to-coraput
language/._.., defines what types of user feedback are allowed in the aterin active
learning, L,,_.. contains only one feedback type, giving an instance a cluabel. In
other words, the labeling feedback adds new documenttister properties to share with a
machine. Beneath the interface illustration, we repretheniiser-to-computer language by
drawing a new edge between clusters and instances andghghg the labeling feedback
type in a colored rectangle. The communication languagextive learning are quite
primitive because an oracle user doesn’t need to learn avayalknows how to answer.

Proactive learning studﬁh4] addresses the unrealisticleruser assumption in ac-
tive learning and argues the importance to learn from ingoerbracle users who make
individual errors, and sometimes are reluctant to givelieed. However, this study still
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(7 . ; ;
Machine .| , @ ., User Cluste: Doc 7: Modern Classic Movies \)
Teaching Learning
_ I 1 1 Out of all the movies in 2009, three made
§ 2 the cut on Yahoo!l Movies list of "100
2 Me Mu Movies to See Before You Die: The
I l 3 Modem Classics,” and they're all notably
Machine o Luse o User 4 familiar from awards circuit coverage:
Learning — I Teaching James Cameron's 3-D gold mine
5 "Avatar", Quentin Tarantino's "Inglourious
Machine Interface User Basterds"” and Oscar-winning director
o Kathryn Bigelow's "The Hurt Locker."

——/ 2

(a) In an active learning interface, the computer-to-gseommunication/._.,,, contains
target clusters and one unlabeled instance.

Language

"Avatar", Quentin Tarantino's "Inglourious
Basterds" and Oscar-winning director
&athryn Bigelow's "The Hurt Locker. _j/

Machine Interface User

(7 - ; ; N\
EZZ:?T e Ly User Cluste: Doc 7: Modern ClassicMovies |
g Learning
_ I 1 1 / Out of all the movies in 2009, three made
§ 2 the cut on Yahoo!l Movies list of "100
2 Me Mu Movies to See Before You Die: The
I l Modern Classics," and they're all notably
Machine @ User 4 familiar from awards circuit coverage:
Learning T *  Teaching 5 James Cameron's 3-D gold mine
J

|C|uster|—| Label Ifl Documen1|

(b) The user reads the document and then labels the docuonemé tof target clusters. The
user-to-computer’'s communicatioh,, .., contains one feedback type, giving an instance
a cluster label.

Figure 2.2: An illustration of communication languagesduseactive learning.

assumes that a user’s role is a teacher and a machine’s ralee@&@ner so it suggests a
machine-learning centric approach — combining teachifgytsffrom multiple imperfect
oracle users. Mixed-initiative clustering, on the othendhasuggests a user-learning cen-
tric approach to drop the unrealistic oracle user assumptibtreats a non-oracle user
as a collaborator who can learn from and teach a machine.dir ¢o achieve this goal
of collaboration, mixed-initiative clustering needs ehgd computer-to-user communica-
tion so a user can learn effectively and efficiently from a hae, and enriched user-to-
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computer communication so a user can teach a machine itivetuiays. The primitive
communication languages in active learning would fail teistsa collaborative user in
both communication directions.

2.2 Enriching Communication Languages

Good communication between a user and a machine is the kbg sutcess of a mixed-
initiative system. However, although a person can comnaiaieasily with another per-
son through common natural languages, and a machine can wocate with another
machine by following protocols, communication between a&nivze and a user is not easy
due to the fundamental differences between natural lareguaigd computer protocols.

If we want to embed natural language communication in mixéative clustering, it
is necessary to design a dialogue system capable of diegusgilustering task, but that
would divert the main focus of this study. On the other hantduman user is more in-
telligent than a machine. She can understand what a macdciysensore easily than vice
versa. Thus, we choose to define toenputer-to-user language ..., as property types
that a machine knows how to exact, and tlser-to-computer language L,,_.., as user
feedback types that an interface is designed to supporen@he definitions of communi-
cation languagesommunication enrichmentis equivalent to adding new property types
into the computer-to-user language,_.,,, and adding new user feedback types into the
user-to-computer languagg, ...

2.2.1 Computer-to-User Communication Language

The goal of the computer-to-user communication is to intcedthe clustering task and
describe its current clustering modal/., to a user. Each property type included in the
computer-to-user languagg,_.,,, should contribute to this communication goal.
Formally speaking, a machine in a mixed-initiative clustgrtask tries to groupVv
instances X, ..., Xy} into C clusters{S,, ..., 55}, and a user also tries to group the
same set of instances infoclusters{S, . .., Sc}. The content of an individual instance,
X; € {Xy,...,Xn}, is afundamentadingle instance contemiroperty that can be shown
in an interface. The label of each individual machine-ledrnlustergj € {§1, e §@},
is asingle cluster labeproperty for a clustering task.
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Let X; indicate the!" instance, andA/Z- indicate the cluster to whicl; is assigned us-
ing the machine’s clustering modéT; is derived from the following function}/.(X;) =
}72- € {§1, ey §@}, where M, is the machine’s clustering model that predicts the cluster
association of each instance. Similarly, we §5¢o refer to a user’s clustering result of
X, M,(X;) =Y; € {S1,...,Sc}, whereM,, is the user’s clustering model. An optimal
mixed-initiative clustering is achieved when each mach&aened cluster corresponds to
one topic in a user's clustering ontologs; € {Si,...,5:},5; € {Sy,...,5¢},C =C,
and each instance-to-cluster property agrees with a udegsclustering result)M,.(X;) =
Y, = Y; = M(X;).

Each machine’s predictiod/.(X;) = }Afl can be shown as anstance-to-cluster prop-
erty in the interface. In some clustering models, especiallyilanity-based models, an
additionalinstance-to-instance propertype, M.(X;) = M.(X]) or M.(X;) # M.(X]),
can be derived to indicate if two instances should or shoatdelong to a same cluster.

For the machine learning purpose, each instaiAgeis typically represented as a fea-
tures vector(Fi(X;), ..., Fu(X;)), whereF,,(X;) is a feature function that extracts a
specific piece of information from an instance. For examiple bag-of-word representa-
tion in text clustering consists of a set of feature funcsiomach feature function counts
the number of times a particular word appears in the conteit 0Often, multiple types
of features can be extracted from instances. While reptiegean instance as a feature
vector is good for machine learning, representing a clustédey features is good for user
learning because it tells a user what features contrib@atlyrto the machine’s instance-
to-cluster predictions, and hint the difference betweenttrget cluster and remaining
clusters. We call key features of a clusteature-to-cluster properties

In addition, hierarchical clustering provides aluster-to-cluster propertyype that
depicts relationships between two clusters. For exampéeciuster is a child cluster of
another cluster in a machine’s proposed hierarchy, it tellser that the machine thinks
the parent cluster corresponds to a more general topichanchild cluster corresponds to
a sub-topic of the general topic.

Below, we give a detailed description for each of the abovetiored property types
that a computer-to-user languade,_.,,, may include and use to communicate with a user
in the interface. We need to point out that this is not an esteallist.

e single instance content This property type refers to showing the whole content of
one instance;, in the interface, e.g., displaying the text content of auhoent for
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text clustering. Contents of data instancgk;, ..., Xy}, are basic information for
a clustering task.

e single cluster label One single cluster IabeJSA‘j, corresponds to one target cluster
in the clustering task. This property type assumes theengst of the cluster. In
active learning or semi-supervised clustering tasks, timber of target clusters;,
is fixed and cluster labels are pre-determined. Howeverb#st value ofC, and
the best set of cluster labels may not be known in advance foixad-initiative
clustering task. In addition, a system can apply an autanmaiming algorithm to
generate meaningful cluster labels than cluster indices.

e instance-to-cluster property. This property is obtained by a clustering predicted
by the machine’s clustering modelf,(X,) = Y; € {S,,...,55}. An instance-to-
cluster property shows which cluster label an instancesgasd toy; = §j.

¢ instance-to-instance property An instance-to-instance property shows a pair of
instances in the interface and tells a user that a machinkghihese two instances
belong or don’t belong to a same cluster. This property tgdeased on the model
prediction of two instances; — }Afj ory; # }Afj

e feature-to-cluster property: A feature-to-cluster property indicates that a feature
is a key feature for a cluster. Given instance feature veptbi (X;), . .., Fa(X5)),
and a clustering oM.(X;) = f@-, ffz € {§1, e §5}, a feature selection algorithm,
FS(F,, @\{XZ-, Y;}), measures how representative a featkifgis to a cluster§j.
Top K features with the highest representative scores fmtetg‘j become the clus-
ter’s feature-to-cluster properties.

e cluster-to-cluster property: This property type, which is introduced by hierarchi-
cal clustering, considers relationships between two efgsn a hierarchy. A hier-
archy of clusters shown to a user consists of several patester-to-child-cluster
properties in the form OParent(gi) = §p, where cluste@p is a parent cluster
of clusterS;. A child-cluster-to-parent-cluster property, € Child(S,), is a re-
verse property toDarent(@) = §p. A symmetric cluster-to-sibling-cluster prop-
erty, S; € Siblz’ng(gj), can be also derived from two parent-cluster-to-childstsu
properties ifParent(S;) = S, A Parent(S;) = S,. We refer to all these properties
in a hierarchy as the cluster-to-cluster property type.

Many information visualization techniques can be appliedhow properties in an
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interface. For example, a list of feature-to-cluster praps can be shown as tag cloud.

2.2.2 User-to-Computer Communication Language

The user-to-computer communication can be considereceasstr’s response/critique to
the computer-to-user communication. A user teaches a madter updated topic on-
tology by confirming machine-proposed properties that fit dr@ology, and correcting

inappropriate machine-proposed properties that comtr&eér clustering ontology. In fu-

ture revisions, a machine can learn to anchor confirmed piepenot to reproduce the
original properties before correction, and to generatetineected properties.

Most property types included in a computer-to-user languagcept the intrinsic sin-
gle instance content property type, can be confirmed, oectad by a user, and there
can be more than one method to correct a property. For examigiEpproval/removal
feedback corrects the wrong existence assumption of a gyppeldition feedback cor-
rects the wrong non-existence assumption of a propertythachoving feedback corrects
a wrong association relationship to a right one. A user faekiliype corresponds to a
specific confirming/correcting method on a specific propgme. The user-to-computer
language/._.., includes all user feedback types that a mixed-initiatnterface provides
for its users.

Table 2.1 lists several possible user feedback types tachedied in an mixed-initiative
clustering interface for each property type mentioned ictiSe[2.2.1. It also describes in
which situations a user wants to give these types of feedlzak how to translate these
feedback types into property anchoring and property madiba for machine learning.
The same as the property type list, this feedback type lmbisan exhausted list.
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Table 2.1: This table lists possible feedback types acngrtt
their target property types, describes situations in whichser
may find these feedback types useful, and illustrates imafdio
of machine learning in terms of property anchoring and moahfi

tion.

LC—>’U,

Lu—>c

single cluster labelS)

confirm When a user thinks a cluster corresponds to a topic in hetetiu
ing model,§j € {S1...Sc}, shecan confirr@j so this property car
be anchored in future revisions {ﬁl e §@}.

disapprove When a cluster doesn'’t relate to any topic in a user’s clusie
model,S; ¢ {5 ...Sc}, she can disapprove/remoge so it won't
appear again in future revisions, e.fS; . .. 36} \ §j.

add When a user finds a topic in her clustering model is missi#g ¢
{§1 e 55}, she can add a cluster to represent this topic. In fu
revisions, a machine should proposs . . . 55} U {S;} as its single
cluster label properties.

modify A user can modify a cluster label which she is not satisi
with. This feedback makes the following property modifioati

Label(S;) = ‘unsatisfying label’ =  Label(S;) = ‘good label'.
This feedback also implicitly confirms the clustgg», e {S1...Sc}.

[

=

ure

ied
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instance-to-cluster

property:
7,35,

confirm When a user agrees with a machine’s clustering of an instance

M,(X;) =Y = }Afz she can confirms the corresponding instarice-
to-cluster property, so future clustering revisions leerrkeep this
confirmed property.

disapprove When a user disagrees with a machine’s clustering of an i
stance M, (X;) =Y; # ?Z she can give disapproval feedback on the
corresponding instance-to-cluster property. This feekllzgaves the
following property constraint in future revisions:

Mo(X;) =Y; € {S1... 553\ ;.

label When an instance is not assigned to any cluster by a machitie |(n
property), a user can add an instance-to-cluster propﬁ]rty,b S,
according to the content of a single instance.

—

move This feedback type allows her to move the instance from the-il
propriate machine-assigned clustgr,: §j, to her desirable clustef,
2 :S\J/ € {SlSC}

instance-to-instance

property:
Y=Y, orY; £Y;

confirm When a user agrees with a must-link; (= Y; agrees With?i =
}Afj) or cannot-link ¥; # Y, agrees Witrffi =+ }Afj) instance-to-instance
property, she can confirm it. This confirmed property showddpt

A%

in future revisions.

disapprove When a user disagrees with a must-link ¢ Y; contradicts
Y; = Y;) or cannot-link ; = Y; contradictsY; # Y;) instance-to-
instance property, she can disapprove it. In future renisiB; # Y;
should be generated instead of the disapprdvee Y; property and
vice versa.
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confirm When a user thinks a machine-proposed key feattlg is repre-
sentative to a cIusteEj, she can confirm this feature-to-cluster prop-
erty. HighF'S(F,,, @-]{XZ-, Y;}) score should be kept in future clus-
tering revisions.

disapprove When a user thinks a machine-proposed key featiig,
doesn't fit the topic of a cIusteﬁj, she can disapprove this feature-fo-
cluster property. The score 6tS(F,,, S;|{X;,Y;}) should be tunec
down greatly in future revisions.

feature-to-cluster

property:

top K F},,s with the

highest scores of

FS(Fpn, 8;1{ X, Yi})

move If a user thinks a key featuref;,, of a cluster is better suit
able for another cluster, a user can move the key feature ft®r
original cluster, §j to the other clusterS;. This feedback im/
plies that any future clustering obtained by a retrained ehatl/..,
shouldn't have highF'S(F;,, S;|{X;,Y;}) score, but should have
high FS(F,,, Sk |{X;, Y;}) score.

>

re-rank When a user agrees with a machine that two key-featutgsand
F,,, are both representative to a cluster, she may weigh therimpo
tance of these two key-features differently than what a rima&cpro-
poses. A re-rank feedback type allows a user to adjust therimp
tance order of key-features. This feedback makes the foipprop-
erty modification:FS(Fm,@-]{Xi,?i}) > FS(Fn,§j]{XZ-,?Z-}) =
FS(F, Sj{X:,Yi}) < FS(Fy, S;[{X;,V:}).
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move When a user finds the topic of a cluster is not a sub-topic giats
ent cluster’s topic, she can correct this property by moviegchild
cluster to another place in the hierarchy that fits her ogtpfor this
clustering task Parent(S;) = S = Parent(S;) = Sp/

merge If a user finds a clusten’;‘i, duplicates the topic of another cluster,

cluster-to-cluster S;, she can merg$; into Sj;.

property: R

parent(g) - §p split If a user thinks a clusters;, is a mixture of multiple topics in her
Chzld(S ) = {§Z.} ontology, she can split the cluster into several clustehss fieedback
Sibling(gi) - {Aj} makes the following property modification:

Child(S;) = 0 = Child(S;) = {Snew)}-

unify If a user thinks a subtree of clusters is about a same topiccah
unify this subtree of clusters. This feedback makes thevialig
property modification:
Child(S,) = {S;} = Child(S,) = 0.

In terms of interface design, one may want to enable the pledSelection mode so a user
can select multiple properties of a same type, and give Bddbn selected properties
altogether.

Conceptual Properties

When a user works on a clustering task, she does not only gnstgnces based on their
contents solely, she also applies her existing real wortthWke@dge to the clustering task.
For example, a user categorizes a news article about a lagetee as sports news not
only because the specific article explicitly mentions “sgbseveral times, but also be-
cause she knows conceptually that “baseball is a type ot.5pgbthere is another base-
ball game article in which the word “sports” is absent, a usar still apply the same
conceptual knowledge to categorize the second basehalkartto the sports news clus-
ter. There are two alternative properties that can reptébenconceptual understanding:
(1) a cluster-to-cluster property where “baseball” is dctleluster of a “sport” cluster,
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or (2) a feature-to-cluster property where “baseball” isegviord of “sports”. In other
words, cluster-to-cluster properties and feature-t@teluproperties correspond to a user’s
conceptual understanding more closely than instancédgier properties. We hypothe-
size that including conceptual property types, e.g., feato-cluster and cluster-to-cluster
properties, to the computer-to-user language can helprauanserstand clustering results
better and proceed to teach a machine more easily than witbaaeptual property types.

Communication Robustness of Multiple Property and Feedbak Types

A user’s clustering model\/,,, is a hidden model to a machine, and may not be fully devel-
oped in the beginning of a clustering task. We hope that shgwiultiple and diversified
types of properties ensure user comprehension like redwayda natural languages en-
sure the robustness of human-to-human communication.diti@al, by allowing multiple
types of user feedback, even a user finds some types of pesparé harder to give feed-
back upon, she may find it is easy to confirm properties or comeppropriate properties
of other types.

Figure[Z2.38 illustrates the idea of showing multiple typespadperties and allowing
multiple types of user feedback in an interface. In this eplanif a machine only presents
instance-to-cluster properties such as “Cluster 3 costamail 1, 5, 6, 8, ...” in the inter-
face, a user cannot learn a topic of Cluster 3 from this in&drom. By adding key-person-
to-cluster properties (Jaime, William and Adrare primary recipients of Cluster 3,) and
key-word-to-cluster properties (“Mixed-initiative” atithesis” are keywords of Cluster 3,)
a user learns that Cluster 3 corresponds to her thesistgciiie redundant clues of key
persons and keywords build up robustness in machine tegbbitause machine-proposed
properties often contain errors, and a user typically dbpsy meticulous attention to ev-
ery property shown in the interface. Once a user understiduedopic of a cluster, she
can teach a machine through multiple types of user feedbEckvever, a user may be
too lazy to confirm good properties or to correct inapprdpri@operties, e.g., the user’s
reaction to the key-person-to-cluster properties in tkéwple. By allowing multiple user
feedback types, we hope that at least some feedback, ebpéatalback on conceptual
properties, is intuitive enough for a user to give, such adiguing the keyword “thesis”
that fits precisely the user’s idea that Cluster 3 is abouthesis activity.

2They are committee members of this thesis
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Cluster 3 contains
Email1, 5, 6, 8, 16, 17,
19,20, ....

| cannot
understand.

Correct but
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d:_) " corrected properties

Figure 2.3: An illustration of showing multiple types of perties and allowing multiple
types of user feedback in an interface.

It is important to include various property types and usedbfeck types in the com-
munication languagesg,._., andL,,_... From a user’s point of view, the more natural the
communication is, the more efficiently a user can learn froatime-proposed proper-
ties and proceed to teach a machine. From a mixed-initiativsering system’s point of
view, with accelerated user learning and user teachinggsh#ise system is likely to elicit
additional interactive loops from a user.

However, arbitrary machine-extracted property types er teedback types cannot be
added to the communication languages due to some fundanoemnistraints in mixed-
initiative clustering.

2.3 Constraints and Coordination

There are mainly three constraints that restrict the enr@it of communication lan-
guages.

First, the computer-to-user language and user-to-compariguage share the same
interface. The shared interface has limited display spatech means the number of
property types in the computer-to-user language cannet githout bound because they
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need to fit in the display space of an interface. The interédse introduces the feedback
design limitation. Only feedback types that can be implee@rmare good for user-to-
computer languages.

The second constraint comes from learning capability ohamder’s clustering model,
M.. The limit of M_’s learning capability depends on whether a machine legraigo-
rithm can be developed to adjust. according to each feedback type’s specific property
anchoring or property modification such as some examplesllia Tabld 2.11. Given dif-
ferent model assumptions, each clustering model has itssawiof learnable feedback
types. In order to save user efforts, we should either excludlearnable feedback types
from the user-to-computer language, or switch to a new efirgi model whose set of
learnable feedback types include new types of user feedbadked-initiative clustering
system wants to include.

The third constraint comes from a user’s learning capgbit user may not be able
to understand every type of properties a machine providese¥ample, in image clus-
tering, values of individual pixels may not be meaningfulatser. In text clustering,
this constraint is not obvious because each word in textteasin semantic or functional
meaning. Features that are not self-explanatory shoulddleded from the computer-to-
user language.

According to these constraints, developers of a mixedaiie clustering system have
to choose its computer-to-user language, user-to-comfautguage, and machine’s clus-
tering model properly so they work togeth&oordination between these three compo-
nents in mixed-initiative clustering is like balancing dadeling three legs of a tripod. The
coordinated computer-to-user language, user-to-comfaunguage and machine’s cluster-
ing model can be considered as the signature of a mixe@iniiclustering system.

2.4 Related Work

Generally speaking, a mixed-initiative learning systera s/stem where a machine and
a user collaborate in order to achieve the user’'s goal. Témareh directions of mixed-
initiative systems are quite diversified. Nevertheless, ftamework of mixed-initiative
clustering proposed in Figure 2.1 can be conceptually usedtegorize different research
directions.

Mixed-initiative systems are often designed for users wigod@main experts but not
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knowledge engineerEbAﬂl?]. In this case, a mixed-ititeasystem needs to enrich
a user’s teaching language so the user can contribute hesiiddmowledge to the ma-
chine without being a knowledge engineer. Several teclasigieveloped in the machine
learning literature can be considered as new communictp®s between a machine and
a user. For example, CueFIilal8] allows a user to createrarlybof concept rules by
giving a few positive and negative image examples of a targetept, and apply learned
concept rules to re-rank image search results. For texterlng specifically, various new
clustering property types and their corresponding feekilb@ve been proposed such as
learning from labeled featureg3m1@4@16], leargifrom pair-wise must-link or
cannot-link relationships [55] [3], and re-arranging imf@tion elements through spatial
representations [28]. The communication direction fromachine to a user is also im-
portant for a human teacher in terms of knowing whether thehimg is sufficient. The
work of socially guided machine Iearnir@SZ] representslaot’s confidence level as a
learner to its human teacher through the robot’s gaze betsavi

When users are not domain experts nor knowledge engineedsdg+mitiative learn-
ing systems need to help users learn task-specific knowldelgeexample, showing di-
verse exampIeQJM] helps users establish their prefesefdas study also demonstrates
that an explanation interface inspires users’ trust. Ondys|56] proposes a guided ma-
chine learning approach that generates sophisticatedogigs of manually-built qual-
ity and with less manual efforts. Another study [1] introda@n interactive corpus ex-
ploration tool called InfoMagnets for topic analysis of hammtutoring dialogues. Other
work ] [@] emphasizes the importance of a combinatiomattiple types of cluster-
ing properties and corresponding rich user feedback, seracas understand a machine’s
current clustering better and and correct errors moreyeasil

In cases where more than one reasonable user ontologieséebbe, a user chooses
the best ontology based on her preference. Some early }I@] has demonstrated
that a digital personal assistant with a machine learningpmment gradually learns a
user’s preferences. A recent survg [40] depicts threestgpénteractive systems along
this research direction that learn preferences of uselsdimg recommender systems, per-
sonal assistant agents, and personalized user interfélbese are also studies investigat-
ing how to enrich user teaching languages of expressingra yseference. For example,
DD-PREF[B] is a language that expresses user preferences ahsthaaliows a user to
specify the degree to which individual features should beedadiversity) or focused on
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particular values (depth).

In addition to communication enrichment, interaction iotwer key component for
mixed-initiative learning. Horvitz’s wor@l] provide®sgeral design considerations for
activating the interactive loop. In order to decide whetherautomatic calendar assis-
tant should be invoked, this paper proposes a utility fumcccording to uncertainties
in knowing a user’s actual intention, a user’s attentiort eosl automation benefits. Scat-
ter/Gather is an interactive clustering system designearfiwsing large document collec-
tions B] or navigating retrieval results [20]. The systeragents its user a “cluster digest”
of keywords and titles of the most typical documents, alloasrs to select a few clusters
of interests (gather), and re-clusters the selected chisti® finer granularity (scatter). We
can consider the Gather/Scatter system enriches its cemjmitiser language of multiple
types of properties and has feedback types of cluster ngeegid splitting in its user-to-
computer language. User studies on the Scatter/Gath@ns)@] show that although
this interactive system may not be an effective tool for figdielevant documents, it can
be useful for exploring large unknown data collections.

Mixed-initiative learning is also useful for transfer learg. A military intelligent
service l[Eh] learns knowledge-based rules interactiveignfexperienced domain experts.
Once the rules are learnt, the same service is able to tidomimg domain apprentices.

In terms of understanding users’ interaction with a mixeitiative system, Stumpf
et al. B}] investigate users’ willingness to interact witilachine learning reasoning, and
what kinds of feedback users may give to machine learningsys They find rule-based
explanations are the most understandable to users, keywvesetl explanations are the
next, but similarity-based explanations have serious rataedability problems. Never-
theless, the diversified preference of the winning explangtaradigm among their par-
ticipants suggests the necessity of combining multipleggms of explanations. Their
findings support our ideas of communication enrichment witlitiple types, especially
conceptual types, of properties and user feedback. Theralao user studies on the
faceted product search and recommendation focusing cereliff mixed-initiative inter-
face desingE4]. Their work suggests several useful gimdglsuch as showing example
options and diverse examples in order to help users gaienamete fluency and establish
personal preference, explaining the computation behisalsmg results and compromises
made in partially satisfied results, and providing tradeagkistance in addition to the
search function. Another user stu@[%] observes how hgmamnt to teach robots in
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an interactive robot training process. Its results showsugeat the robot in a social way,
tending towards positive feedback, guiding the robot, at)dsding their training behavior
according to the robot’s learning limitation. It suggesiatta robot communicates more of
its internal state to the human teacher, and augmentinguimeuh reward channel because
a human teacher has various communication intents (fekdgaitlance, and motivation.)
These suggestions for reinforcement learning are sintlaut idea of enriching commu-
nication languages for mixed-initiative clustering. Irettata visualization and analysis
domain, an exploratory toAILLlZ], SocialAction, integsat@rious statistical measurements
on social network analysis and allows flexible user seleatio these measurements. We
can consider each statistic measurement as one type ofrpesga its computer-to-user
language. Four long-term case studies examine expertofues tool [41]. The out-
comes of case studies confirm the advantage of integratitigtgts and visualization and
also show that experts of different domains may find diffesatistical measurements
useful.

All research directions mentioned above are highly rel&dezhe or some problems in
mixed-initiative learning. However, research that solgesxmunication enrichment and
real-time interaction jointly is hugely under-exploredsé, user studies for understanding
user involvement in any mixed-initiative learning systema aecessary.

We hope our study on mixed-initiative clustering providesomplete case study to
the research community of mixed-initiative learning. Ciea[8 and Chaptdrl 4 discuss
how to build a successful mixed-initiative clustering gystthat integrates communica-
tion enrichment, coordinated machine learning algorithamsl real-time interaction. In
Chaptei b, we introduce our user studies to examine thetefieess of mixed-initiative
clustering. Our user teaching study indicates the mixéthtive style helps users teach
efficiently, which is is similar to the result ilﬁb&bm. Tour knowledge, the user stud-
ies conducted in this thesis are the first to investigate fee learning and user teaching
scenarios separately in the context of mixed-initiative tdustering. The study on the
initialization of the interactive loop is also unprecedsht
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Chapter 3

Communication Enrichment and
Coordination

Developers of a mixed-initiative clustering system neeceoich communication lan-
guages/._., andL,_.., of the system, while coordinating the machine’s clustgnrodel,
M., to learn from enriched user-to-computer communicatise(feedback.) In this
chapter, we present two detailed examples of building miréadtive clustering sys-
tems. The first mixed-initiative clustering system enahissr feedback on features for
non-hierarchical clustering by introducing a new clustgralgorithm, the SpeClustering
model. On top of the first system, the second mixed-initeatlustering system focuses
on how to build a “hierarchical” mixed-initiative clustag system that presents cluster-
to-cluster properties in the interface and accepts hibreatuser feedback.

While focusing on communication enrichment and coordorgtonly one iteration of
the interactive loop in mixed-initiative clustering is epnented with in this chapter. The
experiment setting consists of an initial autonomous ehirsg) with extracted properties, a
long user feedback session, and a machine retraining se¥8@leave the practical issues
of building fully interactive systems to the next chapter.

3.1 Mixed-Initiative Clustering with Feedback on Features

The first mixed-initiative clustering system we introducetlhis chapter is built to im-
prove the quality of activity extraction according to userdance. As described in Sec-
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tion[1.1, the automatic activity extractor generates alistctivity descriptions by cluster-
ing text content of a user's email, and extracting featuteh s keywords and primary
senders/recipients for each cluster. We notice that maetxiracted features greatly help
a user identify some of her activities. Given the lessomiigdhis mixed-initiative clus-
tering system presents extracted features (featuredgies] properties) in addition to the
initial clustering result (instance-to-cluster propesdiin its interface and seeks user feed-
back on all types of properties.

3.1.1 Enriching Communication Languages for Non-Hierarchcal Clus-
tering

Figure[3.1 shows a snapshot of the interface of our first mirgitive clustering sys-
tem and annotates property types used in the computeretocasimunication language.
Using the combo-box at the top-left corner, a user selecishwdtuster she wants to inves-
tigate. Each selectable cluster is associated with a noealeriuster label, which means
the computer-to-user language includes the property tygéngle cluster labels. Given
the selected cluster, the top right panel of the interfaspldys a list of documents as-
signed to the cluster according to the machine’s clusterindel, /.. Each document in
this panel corresponds to one instance-to-cluster prppéftien the user selects one doc-
ument, the text content of the selected document (singtanos content property) shows
in the bottom right panel. The left side of the interface tigp a list of keywords and
key-persons of the selected cluster. Each keyword cornelspto one feature-to-cluster
property and so does each key-person. Through this ineereamachine communicates
four types of properties with regard to the clustering tas ds clustering model to a
user. The left side of Figufe 3.3 illustrates the computenger languagd,._.,, with these
four property types. The feature-to-cluster propertigsiaty contain two types of key
features, keywords and key-persons, but the drawing diespthis difference.

During the cluster investigation, a user can decide to rebe cluster if it doesn’t
represent any of her activities, or annotate this clustegitapg it a text description if it
represents one of her activities. This text descriptiorhefdluster is attached to the end
of the numerical cluster label. Once a cluster is kept as btieecuser’s activities, a user
can further confirm or remove some email initially clustet@the activity, and confirm or
remove some keywords or key-persons with regard to theiggcsiie has in mind. Also,
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Figure 3.1:A snapshot of the user interface of the first mixed-initiatslustering system with
annotations for its computer-to-user communication laiggu This interface displays a selected
cluster, a list of documents in the selected cluster, cardka selected document, keywords and
key-persons of the selected cluster as a computer’'s concation to a user.

the user can go back and forth between clusters to keep hellofe=dback consistent.
Figure[3.2 shows the same interface as Figure 3.1 but aesdta interface with feed-
back types used in the user-to-computer communicatiorukzge The user-to-computer
communication of the system includes feedback types of oinfg and removing single
cluster label properties, instance-to-cluster propgrtend feature-to-cluster properties.
Most of these feedback types can be provided by users ekplibrough the interface
except the cluster confirmation. The cluster confirmatioassumed implicitly when a
user gives a short text description of an activity clustecamfirms some documents or
key features for a cluster. In addition, each word in theteludescription is considered
a keyword for the cluster. The right side of Figlirel 3.3 deptbe user-to-computer lan-
guage,.L,_.., of this system as two user feedback types, confirmation@maval, in each
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Figure 3.2: A snapshot of the user interface of the first mixed-initiatslustering system with
annotations for its user-to-computer communication laggu This interface allows various user
feedback types such as removing a cluster, implicitly corifig a cluster by giving the cluster
an activity description, confirming/removing a documemtcanfirming/removing a keyword/key-
person. A user can go back and forth between clusters to lexepvharall feedback consistent.

colored box attached to the three property types in the ctempo-user languagé,._. .

By comparing Figuré 313 and Figure R.2 (the primitive comination languages of
active learning,) one can see why we claim this mixed-ititgeclustering system enriches
the communication between a machine and a user. We conkelardst important com-
munication enrichment in this non-hierarchical mixediative clustering system is the
presentation of key features and user feedback on them.iS'hecause, as discussed in
Section 2.P, the feature-to-cluster property type is ongvofways to represent a user’s
conceptual understanding of her clustering ontology.
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Figure 3.3: The communication languages of our non-hiéreat mixed-initiative clus-
tering system. The computer-to-user language of this systeludes property types of
single clusters, instance-to-cluster properties, anifego-instance properties. The user-
to-computer language includes feedback types of confirmmyremoving properties of
all three types defined in the computer-to-user language.

3.1.2 Coordination with the SpeClustering Model

We still need a clustering algorithm that can learn from yglets of user feedback to es-
tablish the coordination of mixed-initiative clusterin@ne commonly used probabilistic
model for text clustering is the multinomial naive Bayes mlodiescribed in[éQ], which
models a document as a vector of words with each word geenmadependently by a
multinomial probability distribution conditioned on thecument’s class (i.e., conditioned
on which cluster it belongs to). However, although the n&ages model can learn from
user feedback on single cluster label properties and iostmcluster properties, it cannot
learn from user feedback on feature-to-cluster properties

There are some works that propose methods to adapt a machklostering model
from user feedback on features. For example, some k [2&$ a few user-supplied
keywords per class and a class hierarchy to generate pnaliyniabels to build an initial
text classifier. Another WOH@Z] proposes a technique inctwhhey ask a user to iden-
tify interesting words among automatically selected repngative words for each class of
documents, and then use these user-identified words tairethre classifier as ile_dZY].
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Researchers working on active learning have also studieg isedback about key fea-
tures. For example, a user-recommended feature can bertahua&o a mini-document
in order to help train an SVM classifi19]. An alternatiy@peoach ] utilizes the key
feature information by adjusting the SVM weights assodiatéh these key features to a
pre-defined value in binary classification tasks. A recenkvad generalized expectation
criteria E*] provides a method to incorporate prefererai@sut model expectations into
parameter estimation objective functions and it has beeheapto learning feedback on
feature-to-cluster properti&lG].

In this thesis, we propose and use the SpeClustering modaInf@achine to learn user
feedback on feature-to-cluster properties.

Basic ideas of the SpeClustering model

The SpeClustering mode[[IZS] is a novel probabilistic mdteak uses an idea similar to
popular topic modelﬂS]. It stands for “Specific Clustefingnd refers to the fact that
the probabilistic model estimates a latent boolean vagifdnl each feature to determine
whether it is relevant to or independent of a specific cludeit another way, the model
assumes that onlyomeof the words in the document are conditioned on the document’
cluster, and that other words follow a more general worditistion that is independent of
which cluster the document belongs to. To see the intuitadnird this model, consider a
cluster of emails about skiing. There will be some words.(ésmow”) that appear in this
cluster of emails because the topic is skiing, and therebaitbther words (e.g., “contact”)
that appear for reasons independent of the cluster topie.K&l difference between the
standard multinomial naive Bayes model and our SpeClugteniodel is that our model
assumes each document is generated by a mixture of two wmiists — one associated
with the document’s cluster, and the other shared acrostualiers.

Formally speaking, the SpeClustering model extends threlatd multinomial model
in two ways. The first modification is to addiatopic variable that is intended to capture
general topics not related to the cluster. The second matiditis to introduce a boolean
decisive variable]D, associated with each worl in a document. This boolean variable
decides whether the word is generated from the specific topibe general topic. If
D =1, the observation word' is generated by the cluster-specific topicand if D = 0,
the observatiotX is generated by a general tojgic Throughout this paper we simplify the
model by assuming there is only one general topic insteaduttipte topics. Figuré 314
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Figure 3.4: Graphical representation of SpeClustering modglis a variable representing the
cluster-specific topic associated with a documentrepresents one of the M observed words in
one of the N observed documents, aldis a boolean decisive variable that indicates whether
word X is generated conditioned on the clus$eor whether it is generated according to a cluster-
independent general distribution of words

shows the graphical model representation of the model. thereuter rectangle (or plate)
is duplicated for each of the N documents, and the inner @ataplicated for each of the
M words, X, and associated decisive variablés, Note the general topi€' is constant

across all documents and words, whereas the cluster$dpidifferent for each document.

The Speclustering model has four sets of parameters:

& =P(D=1|S=¢)
ﬁcv:P(X:’U‘S:C)
By = P(X =v|G = g)

wherec € {1,2,....|5|}, g € {1} for the simplified case ande {1,2, ..., | X|}. |S|is
the number of clusters. We also us#o refer to a specific SpeClustering model with all
four sets of parameters.

Most importantly, the SpeClustering model can derive a nesbability directly from
its parameters:
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This probability describes whether a particular featuris generated by a cluster’s
specific topice, as apposed to the general topicWhen the value of this probability is
closer to one, the featureis more likely to be a key feature of the clusteMVe can apply
this characteristic to learn a user’s feedback on featdttster properties. When a user
confirms a feature as a key feature for the clusterthis feedback teaches a machine that
the value of the probability’(D = 1|S = ¢, X = v; ) should be one. Oppositely, when
a user removes featurefrom the key feature list of clustet this feedback is equivalent
to setting the probability?(D = 1|S = ¢, X = v;0) to zero.

P(D=1]S = ¢, X =v:0) =

Corpus likelihood

Given a corpug that contains n instancés = {z;, x, ..., z,, }, andz; is represented as
a vector of observationgr;;;j € {1,2,...,m;}}, we use the notatios; to indicate the
value of the hiddery' variable for instance; andd;; to indicate the value of the hidden
variable associated with observatiog. The likelihood of corpu€ given a SpeClustering
model,d, is defined as follows:

n S| m;

P(C|o) = H ZP Si) H dij = 1]s:) P(ijs:) + P(di; = 0|s;) P(2yg)]

i=1 s;=1 j=1
which can be written in terms of the model parameters asvislio
n IS

C|9 H Z Ts; * H gsiﬁsimj + (1 - gsz)ﬁgl’u]
j=1

i=1 s;=1

Parameter estimation with unobserved variables

In the unsupervised case where only a set of documents is gragiableX is observed)
but cluster assignments and key features are not availahi@alfle S and D are unob-
served), we use an EM process![11] for parameter estimatidme EM algorithm is
commonly applied to find a (local) maximume-likelihood estit® of the parameters in
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situations when the observable data is incomplete and tltkeehaepends on unobserved
latent variables. Give®’ and)’ as the incomplete and complete data, the algorithm iter-
ates through two steps: in the E step, we evaldxt@d') = E[log P()|0)|X,6")], and

in the M step, we obtain new estimation of parametéts = arg max, Q(6/0%). In our
SpeClustering model, the incomplete datatis= {z;; Vi € {1,....,n} j € {1,...,m;}}

and the complete data 8 = {s;,d;;,z;; Vi € {1,...,n} j € {1,...,m;}}. The exact
estimation for each parameter in the M step is listed below.

n

. Z?ﬂ ¢§(C)

1 > di(c) Z;”;l T/ij(c)

© X)) m
1 _ D1 (o) 27:21 (w5 = v)wfj(c)
« >im1 9(c) ZT:H T/ij(c)

gt _ i S k) T Oy = 0)(1 = ¥ (k)
! ST Yk o4(k) S0 (1 — (k)
where the following quantities are computed in the E step:

P(s; = c|z;;0")

A

—
o

N—
Il

- ISI &t 77me qet gt t\at (3.1)
k=1Tk szl[gkﬁkmij + (1= &.)8,,]
fj(c) = P(d” = 1’32 =, .Z'ij;et)
ft t
= ¢ iy (3.2)

By iterating through the E step and M step, the corpus likelthwill converge to a
(local) maximum and values of parameters will be stabilized
Extension to multiple types of features

In many cases, instances consist of multiple types of featuFor example, when clus-
tering emails we may describe each email by the set of words text content, plus the
set of email addresses the email is sent to. If there are plaitirpes of features in an in-
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Figure 3.5:Graphical representation of the SpeClustering model with feature types, where
X, and X, are observations with two different feature types @ndand D, are boolean variables
deciding whether their respective observations are getefieom the specific topi§ or the general
topic G

stance, we can extend the SpeClustering model. Figure 8viisshe extended model with
two feature types, a and b. Assume the original block preayeeta features and decisive
variables, the model adds one new blocK &f,, D, } for type-b features and decisive vari-
ables.{X,, D,} is identical and parallel t§.X,, D, }. In the activity-discovery-via-emails

task, we can apply this model to represent an activity in seofrboth its key words and

the primary participants of the activity.

Parameter estimation in the extended SpeClustering medwedarly identical to the
parameter estimation of single type features. The onlymi@eis a change to the poste-
rior probability estimate in E_3.1. The new posterior pituibty estimate in the extended
model combines generative probabilities from multipleédeatypes. We use:,; andm,
to indicate the numbers of features of two feature typesen‘themail, and the' email
is represented as = {x,;; Vj € {1...mu}; zpin Yh € {1...my}}. Eq[3.3 shows the
estimate from two different feature types.
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Incorporating User Feedback into the SpeClustering Model

As discussed earlier, we are particularly interested imdioating a machine’s clustering
model to learn from the enriched user feedback. Let’s lisirmeedback types allowed in
the first mixed-initiative clustering system and discuss Beveral types of user feedback
are incorporated to retrain the SpeClustering model. Thloevatl user feedback in this

system are:

1. Remove an activity cluster.

2. Confirm that an email belongs to its assigned cluster opvenan email from its
assigned cluster.

3. Confirm a keyword belongs to its assigned cluster or renaokeyword from the
cluster.

4. Confirm a key-person to its assigned cluster or remove gkegon from the cluster.

5. Give a short text description for an activity cluster. §feedback is considered as
a combination of confirming the described activity clusted aonfirming that each
word in the description is a keyword to the cluster.

From the model adaptation point of view, the posterior philiiges in the SpeCluster-
ing model turn out to be highly related to the above types@edback. To be more specific,
feedback 1 and 2 are related to EqJ 3.3 and feedback 3, 4, amdrélated to Eq. 3]2.

In this particular system, we assume the number of clussekmown and flxedH
When the user feedback includes removing a cluStet ¢, we need to replace the re-
moved cluster with a new cluster in order to keep the clustentrer fixed. We develop
two initialization methods to adapt the SpeClustering nhbamlaccept the cluster removal
feedback. The simple initialization method inherits thevious clustering but resets the

Litis not realistic to assume the number of clusters is knawefixed. In the next section, the hierarchical

mixed-initiative clustering system introduces variousdlack types to modify cluster-to-cluster properties
like adding a new cluster and merging two clusters into ooehs fixed cluster number assumption can be

avoided.
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initial probability value of P(s;|xz;; 6") for eachz; with s; = ¢ by distributing the prob-
ability mass uniformly among all clusters but halving thelgability to clusterc. The
re-distribution of the probabilistic mass is targeted teate a cluster that replaces the re-
moved cluster, and to reduce the possibilities of documieritse removed cluster being
assigned to the replacing cluster. Alternatively, thetjamitialization method uses mul-
tiple feedback types to initialize the model. We first sel®teral documents that have
the highest cosine similarity with confirmed documents aagwords (where we treat
keywords as a mini-document) and associate them with ductesters. We then search
for a small set of similar documents that maximize inteistdu distances and replace any
cluster that is removed in the feedback.

During each EM iteration while training the SpeClusteringdal, we perform feed-
back 2 to 4 adjustments. For feedback 2, we adjust the valu& of = ¢|z;; 6") to be
one if the hypothesized instanagf-to-cluster¢) property is confirmed by the user or set
it to zero if the bound is disapproved by the user. Propersajent to normalize posterior
probabilities of{ P(s; = |z;;60") V¢’ # ¢} is also required in this case. For feedback 3
and 4, we adjust the value &f(d;; = 1|s; = ¢, z;; = v; ") to be one if the hypothesized
feature()-to-cluster¢) property is confirmed by the user or set it to zero if the prope
is disapproved by the user. For feedback 5, we tokenize therigéon T and make each
token of T a confirmed keyword as in type 3 feedback.

Figure[3.6 summarizes this mixed-initiative clusteringq@ss in which the SpeClus-
tering model updates its parameter estimation accorditigetenriched user feedback.

Since each property type in the computer-to-user language,, corresponds to some
probability expressions in the SpeClustering model, adgghe model is equivalent to
adjusting some probability values according to user feeklbd his system exemplifies
the coordination of mixed-initiative clustering with tloarghly defined computer-to-user
language, user-to-computer language and machine’s chugtaodel.

Connection to Supervised Classification

We have described details of the SpeClustering model. Hexyélve model is not re-
stricted to clustering; it can also be applied to supervidassification tasks. The differ-
ence in classification is that the topic varialsles no longer a hidden variable — instead
S is the classification label. We can treat the classificasiks as knowing all the type 2
user feedback and replace the estimate of posterior prdiesh (s; = c|x;; 6") with the

36



Algorithm : Mixed-Initiative SpeClustering

Input: Unlabeled corpu€

Output: A SpeClustering clustering modéland a set of properties agreed by the
machine and the user.

Languages The computer-to-user languade ., consists of the single cluster label
property type, instance-to-cluster property type, antUieato-cluster property type. The

user-to-computer languade, .. consists of confirming and removing feedback types for

each of the three property types defined in the computes¢ndanguagé.._.,,.
Method:

1.

2.
3.

Initialize the user-to-computer communication as antgragt of modified
propertiesComm,, .. = {}.

The machine builds an initial clustering modgl;. 6 = 6,,;.

The machine applies the clustering mogled obtain the clustering result of the
corpusC. Based on the result, the machine extracts a set of propedigs
communication to the uset;omm,_.,, = {property}. Each property ifComm,_.,
belongs to a property type defined in the computer-to-usguager.._..,.

. The user gives feedback which is equivalent to modifyisglaset of properties in

Comm,._.,,.. The subset of modified properties is annotate¢yasperty*}.
Accumulate the user’s communication to the machine as
Commy,_.. < Comm,_.. U {property*}.

. The computer performs model retraining,

o< =SpeClustering-with-Feedbadk, 0, Comm,, _..).
Update the machine’s clustering model to the newly neé@imodelg = 6.
Repeat step 3 to 6 until the user’s satisfaction.

Algorithm : SpeClustering-with-Feedback
Input : Unlabeled corpu€. # as the current modetComm,,_.. as the collection of user’s

feedback.
Output: 8" as the model after adaption according to user’s feedback.
Method:
1. 6t =0.
2. Estimate posterior probabilitié®’ of Eq[3.3 and E§ 312 give@ andf’.
3. AdjustP" according taC'omm,, .. to obtainP ;.
4. Re-estimate model parameters usitig to obtaing*!.
5. 0" = 0'; repeat step 2 to 5 until the model converges.
6. 0w = ¢,

Figure 3.6:The mixed-initiative SpeClustering algorithm.
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true value specified by the instance label.

3.1.3 Experimental Results
Datasets

To test our non-hierarchial mixed-initiative clusteringstkem, we used two data sets.
The first is an email dataseEiailYH) which contains 623 emails. It had previously
been sorted into 11 folders according to the user's aawitilt contains 6684 unique
words and 135 individual people after pre-processinthe second data set is the pub-
licly available 20-Newsgroups collection. This data settams text messages from 20
different Usenet newsgroups, with 1000 messages harvéstadeach newsgroup. We
derived three datasets accordingEIo [3]. The figws-Similar-3 consists of messages
from 3 similar newsgroups (comp.graphics, comp.os.msows.misc, comp.windows.x)
where cross-posting occurs often between these three mawygsyNews-Related-8on-
sists of messages from 3 related newsgroups (talk.poiitiss, talk.politics.guns and
talk.politics.mideast).News-Different-Zontains 3 newsgroups of quite different topics
(alt.atheism, rec.sport.baseball, and sci.space).

We only use the text part of messages in the three newsgrdapais because a re-
viewer won't have the knowledge needed to decide which aushthe key-person with
regard to which newsgroup. For the text part, we applied&ngespre-processing we used
in (EmailYH). There are 3000 messages in these datasetss-Different-Zontains 8465
unique wordsNews-Related-8ontains 9998 unique words aNe&ws-Similar-has 10037
unique words.

Measurement for Cluster Evaluation

We use two measurements to estimate cluster quality: femmstruction accuracy, and
normalized mutual information (NMI)BB].
In order to calculate the folder-reconstruction accuragysearch through all possible
alignments of cluster indicés, to folder indices; in order to find the alignment resulting
2The pre-processing for words includes stemming (Portenister), stop word removal and removal of

words that appear only once in the dataset. The pre-procefsi people contains reference-reconciliation
over email senders and recipients, and removal of peopi@tbanvolved in only one email.
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in optimal accuracy, then report the accuracy under thisrgdtalignment:

D N = f. 1—to—1
LIy prap(m) 5 Ty @)

Acc = max 4

The normalized mutual information measurement is defindebd8.5, wherd (S; F)
is the mutual information between cluster assignment S alurf labels FH (.S) is the
entropy of S and{(F) is the entropy of F. It measures the shared information betvg:
and F.

(3.5)

These two measurements are correlated but show differpat@sof clustering per-
formance. Accuracy calculates the ratio between majorkiohclusters to its reference.
NMI measures the similarity between cluster partitions geidrence partitions.

Autonomous Clustering

This experiment checks if the SpeClustering model can predeasonable autonomous
clustering results so we can apply the model to mixed-itiveeclustering. We compared
two versions of the SpeClustering algorithm with the staddaultinomial naive Bayes
model@;] as the baseline approach. We modified the basgfipeach by allowing it to
search for a good cluster initialization and to avoid sitwad in which one cluster gets
eliminated during the EM iteratio&%]. The first versianthe original SpeClustering
algorithm as described in Sectidn_3]1.2. The second verSipeClustering-bounddds
range constraints on parameter valgés..=P(D=1S=c) ) : for word features, the range
is [0.1,0.4] and for person features, the ranggdss, 0.9]. The reason for introducing
range constraints is to avoid situations where some valtiparameter,. converge to 1
or 0. This is undesirable because the valug.aoéflects the percentage of specific features
(D = 1) occurring over all observations for clusteBoth SpeClustering algorithms were
initialized using the output from the baseline naive Bayastering.

We made 50 individual runs demailYHdataset and 20 runs each daws-Similar-3
News-Related;3and News-Different-3 Table[3.1 shows the average accuracy and NMI
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results of different datasets and the three clusteringriifigos. Notice in all datasets,
the SpeClustering algorithm performs better than the nBages algorithm, and the
SpeClustering-bound model performs better than SpeCingteThe naive Bayes clus-
tering results are used to initialize its associated Sp&€lting and SpeClustering-bound
runs, so the performance gain are directly due to the diif@¥detween the SpeCluster-
ing probabilistic model and naive Bayes model. When examgithie details of individual
runs, we find that SpeClustering-bound outperforms naiweBan every run using the
NMI measure, and in the vast majority of these runs it alspedidrms Naive Bayes in
terms of the accuracy measure. We can conclude that modelilogument as a mixture
of a general topic and a specific topic improves autonomausteriing performance.

NMI (%) |

| dateset | method | Accuracy (%)|

EmailYH

naive Bayes clusterin

J

48.44 £ 7.01

48.02 £ 3.93

SpeClustering

02.28 £8.61

593.25 £5.65

SpeClustering-bound

53.98+ 8.04

56.25+ 4.90

News-Sim-3

naive Bayes clusterin

46.31 £ 7.21

9.86 &= 7.34

SpeClustering

51.38 £6.33

15.80 £ 6.82

51.98+5.91

16.46+ 6.27

SpeClustering-bound

naive Bayes clusterin
SpeClustering
SpeClustering-bound
naive Bayes clusterin
SpeClustering
SpeClustering-bound

News-Rel-3 34.36 = 10.58
36.06 = 10.71

36.92+ 11.04

79.76 £ 14.56
83.57 £14.27
87.79+ 11.56

0 60.18 £ 10.64
60.61 = 11.08
61.14+11.41

091.24 £ 13.45
93.80 £ 11.49
96.52+ 6.47

News-Diff-3

Table 3.1:Clustering results of different datasets and differenbaotmous clustering algorithms.
SpeClustering and SpeClustering-bound are the SpeCGhgtandel with unbounded and bounded
parameter values. Both versions of the SpeClustering mmateberform the multinomial naive
Bayes clustering model and the bounded SpeClustering nastiedves the best performance.

Clustering with Enriched User Feedback

We next studied the impact of enriched user feedback on tlhedexl SpeClustering
model. In particular, we chose 5 clustering results usirgrtultinomial naive Bayes
model with the best log-likelihood among 50 runs BmailYH and presented each of
these to the user. We also chose one best run from 20 ruhews-Different-3News-
Related-3andNews-Similar-3

40



The user gave feedback using the interface shown in Fig 314.tdp left panel shows a
list of documents that are clustered into the selectedadlesbel, the top right panel shows
5 key-persons of the cluster and the bottom right panel st2@kseywords of the cluster.
The keywords and key-persons of the cluster shown in thefaate are selected using a
Chi-squared measuremem[57]. When a user clicks on a daduméhe document list,
the content of the document shows in the bottom left panek Uder can give various
types of feedback and the interface displays feedback #rehas entered so far. The user
can also go back and forth between clusters to correct confliassumptions she has
made to achieve consistent cluster interpretations.

Like experiences from the activity extractor, displayingyWwords and key-persons
tremendously helps users make judgements about clustetmfact, to decide the mean-
ing of a large cluster based only on examining the documengxtremely difficult. A
user would tend to decide based on the first several documshetgoes through even
when the cluster contains more than hundreds of documerdsha biased decision often
causes conflicts with later clusters. The user usually at®ts remove a cluster, if the
keywords and key-persons don’t show any consistency anaodmeaningful to the user,
or if documents in the cluster are a hodgepodge from sevatedjories. If the keywords or
key-persons of a cluster make sense to the user, the useivearagous types of feedback
according to the meaning of the cluster. We don't put conggan how the user does the
feedback, so the user can make decisions freely based onmeopesceives the clustering
results, and gives feedback using her own interpretatidheofesults.

We use the following notation to indicate feedback on vagiproperty types:

CR: removing single cluster label properties

PP: confirming or removing feedback on document-to-clysteperties
WX: confirming or removing feedback on keyword-to-clusteygerties
e HX: confirming or removing feedback on keyperson-to-clupteperties

Table[3.2 shows how many entries of feedback on differenpenty types the user
enters for each selected run. The user spends about 15 miiméstoone run from the
EmailYHdataset and 5-10 mins to finish one run from newsgroup dataset

We ran the SpeClustering-bound algorithm with user feekllaac! compared the re-
sults to the naive Bayes baseline and the SpeClusteringekadgorithm without feedback.
Without adapting user feedback, the autonomous naive Baystering and the SpeClus-
tering results can be considered as outputs after one nelg@ming phase. The cluster-
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run [ doc#| CR| PP| WX | HX |

Emaill| 623| 3|99 37| 30
Email2| 623| 3| 73| 35| 31
Email3| 623| 4| 92| 48| 26
Email4| 623| 7| 32| 28| 15
Email5| 623 4191 43| 28
Sim1 3000 2| 39 9 -
Rell 3000 1|29 20 -
Diffl 3000, O] 16| 39 -

Table 3.2:Entry numbers of different feedback types for 5 selectedenBayes runs.

ing result produced by the SpeClustering-bound algorithth user feedback adaptation
is the mixed-initiative clustering result after one comeligeration of the interactive loop,
consisting of a first machine learning phase, a machine iregghase, a user learning
phase, a user teaching phase, and a second machine ledias® p

We used the simple initialization method BmailYH dataset in order to break down
feedback to single types. Figure 13.7 shows the results jisstgne type of feedback on 5
selected runs froreBmailYHdataset. The CR feedback is independent from other types of
feedback and all other types involve feedback only fromtelissthat are not removed. All
5 runs with CR or PP feedback, 4 runs with WX feedback and 3 wittsHX feedback
outperform both naive Bayes baseline and SpeClusteringwithout feedback.

Figure[3.8 shows the results using combination of feedbggkst User’s feedback
gives huge improvements in all runs (19.55% average acgimgmrovements from naive
Bayes results to SpeClustering-bound with full feedba&eClustering-bound with full
feedback performs best in 4 out of 5 runs. In the remainingrane CR+PP feedback
(cluster removal plus feedback on document-to-clustepgmttes) performs best. The
guantity of PP feedback is about 1/7th to 1/9th to the whotask and even higher if we
exclude documents in removed clusters. The combined enmpers of WX+HX feed-
back (feedback on feature-to-cluster properties) are féhan the numbers of PP feed-
back (feedback on document-to-cluster properties) inethess. However, CR+WX+HX
performs better than CR+PP in 2 runs, which shows that feddba feature-to-cluster
properties gives comparable information like feedback @cudhent-to-cluster properties.
More compellingly, it is also much easier to get CR+WX+HXdback than CR+PP in
terms of time efficiency. In a studﬂ45] that measures us@rse spent on labeling a
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Figure 3.7:Performance of using single feedback types (CR, PP, WX anjid#XheEmailYH
dataset. SpeC-bound is the SpeClustering-bound modebutifieedback. The SpeClustering-
bound model with one type of feedback out-performs naiveeBand SpeClustering-bound with-
out feedback in 17 out of 20 runs.
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Figure 3.8:Performance of using combination of feedback types orktheilYHdataset. SpeC-
bound is the SpeClustering-bound model without feedbacker feedback gives huge improve-
ments in all runs.

document or a feature, it finds a user only needs 1/5th of tietel a feature compared
to the time to label a document.

For the 3 newsgroup datasets, the ratio of the amount of éeddio the corpus size
is very small. In this case, the inheritance of old resultsicl is noisy, in the simple
initialization overwhelms the training process. To rem#éudy problem, we used the joint
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Figure 3.9:Experimental results of SpeClustering with user feedbacthe newsgroup datasets.
SpeCluster-bound is the model without feedback and CR+PR+3\the SpeClustering-bound
model with full user feedback. “Sim1”, “Rell”, and “Diff1"efer to the selected runs (with the
best autonomous naive Bayes modeling likelihood)lefvs-Similar-3News-Related;andNews-
Different-3 Incorporating feedback gives significant improvementrendelectedNews-Related-3
run, whose feedback is harvested from noisy but still megalrclustering results.

initialization method that compares documents with no @setdback with each cluster’s
confirmed documents and keywords and initializes theserdents to clusters with the
most similar confirmed documents and keywords.

The user feedback is quite different across these three femisthe selected run of
News-Similar-3 the naive Bayes clustering results are extremely noisythadluster
summarization is hardly recognizable by the user. It tunnstive feedback contains the
removal of two out of three clusters and the reason that okegsis because some key-
words weakly indicate the meaning of one newsgroup, butdlcements in the remaining
cluster contain huge chunks from each newsgroup. For tieeteel run oNews-Related-
3, talk.politics.guns and talk.politics.mideast are reddrto two remaining clusters while
talk.politics.misc has no reference due to the removal eflaist cluster, which the user
cannot figure out its meaning. The cluster summarizatiowisyrbut comprehensible, so
the user can make positive and negative feedback easilyN&wos-Different-3the base-
line accuracy is very high so most feedback is positive ablmiautomatically generated
summarization.

Figure [3.9 shows experimental results from user feedbaaknenselected run from
each newsgroup dataset. It is difficult to improve on theaalyeaccuraté&ews-Different-
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3 run. Incorporating feedback gives no significant improvetran the selectetlews-
Similar-3runs whose feedback is based on extremely noisy clustera asér is barely
able to associate meaningful criterion to any cluster. H@rene sees huge improvement
from using feedback on the noisy but still meaningful clusésults. The accuracy of the
selectedNews-Related-Bun jumps from 63.23% to 81.07%.

3.1.4 System Summary

In summary, the non-hierarchical mixed-initiative clustg system examines the idea
of enriching communication languages with feature-testgu properties in a long-user-
feedback-session setting where the interactive loop lestveeuser and machine iterates
once. This system presents an interface that enables ausemnise clustering results with
extracted key-feature properties, and provide variousgyyf feedback to guide machine
retraining. With extracted key features, a user can unaiedsthe clustering results more
easily. With various types of user feedback available, a cae teach a machine more in-
tuitively. In order to achieve the coordination for mixedtiative clustering, the SpeClus-
tering model is used in the second machine learning phasaibe¢he model provides a
natural way to adjust its parameters according to a varietypes of user feedback. The
experimental results show that a mixed-initiative clusigsystem with enriched commu-
nication languages gains significant improvement in a petlsemail dataset. Given differ-
ent levels of clustering difficulties, the mixed-initiagielustering system helps a machine
learn a better clustering from user feedback on noisy biltrsganingful autonomous
clustering results.
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3.2 Hierarchical Mixed-Initiative Clustering System

It is natural for users to organize personal data using tdbias, especially in the elec-
tronic world. An obvious example is that file systems in mostksgtations consist of
a hierarchy of user-created directories to store docunmemdsother files. In fact, de-
signs of hierarchical organization prevail in computerleggpions such as email clients,
bookmark organizers, and contact management tools. Howshwe to the clustering mis-
match problem, many applications of this category rely @rsispontaneous hierarchical
organization instead of autonomous machine organizatida. believe mixed-initiative

human-machine approaches to hierarchical clustering dr@dt potential for such appli-
cations.

We extend the non-hierarchical mixed-initiative clustgrsystem described in Sec-
tion[3.1 to hierarchical clustering, and explore new typiasser feedback that are natural
for hierarchical cluster-to-cluster properties. Basedhmexperiences of developing an
activity extractor described in Sectidn 1.1, we consideilieaanchical email clustering
approach composed of the following steps: (1) generatiilimierarchical clusters of
depth two by using a generative clustering model for congeratysis in the first level
and social network analysis in the second leyé2) presenting the hierarchical clustering
results in a user interface and recording users’ modifinatiaf the hierarchical cluster-
ing with time stamps, and (3) re-training the hierarchidaktering model according to
hierarchical user feedback.

Figure[3.1D shows our user interface designed for presghigrarchical clustering
results in additional to extracted non-hierarchical praps to a user, and allowing various
types of hierarchical and non-hierarchical user feedba@bk.left panel shows the resulting
hierarchy. When a user selects a cluster in the hierarceynildle top panel shows a list
of emails in this cluster, and the middle bottom panel wouidvs content of an email
chosen by the user (blank here for privacy reasons). The pighels show key-persons

3In email clustering, different approaches are studied tmhioe content analysis and social network
analysis such as using a voting scheme [15] or analyzingbkoannections in the first level and content of
messages in the second levell [30]. However, for the generpbge of text clustering, we don’t want our
mixed-initiative clustering system to heavily rely on tleegl network perspective because this information
is often unavailable or incomprehensible in other texttelisg tasks. Another disadvantage of social net-
work analysis is its lack of learning capability to user feadk, In the latter part of this chapter, we propose
a weighting method to simulate the social network analysis @medy the learning problem. Given the
above reasons, we choose to analyze text content in theefiredtdnd social network in the second level.
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Figure 3.10: An interface that presents hierarchical elusg results to a user and allows
various types of hierarchical and non-hierarchical usedlback. The left panel shows the
resulting hierarchy.

and keywords associated with this cluster. In this snapshetuser thinks cluster 4 is
related to a specific course (the confirmed key-person is ghefTthe course,) which
should be under a general course cluster. The user hasdreeeefded a "course” cluster,
A.1, and is moving cluster 4 underneath cluster A.1.

3.2.1 Enriching Communication Languages for HierarchicalCluster-
ing

The resulting hierarchy shown in the left panel of the irsteef (Figuré_3.10) is a set of
cluster-to-cluster properties that describe parendchiid sibling relationships between
two clusters. With this addition, the computer-to-user oamication languagel..._.,,
in the hierarchical mixed-initiative clustering systenmsists of the following property
types:

1. single cluster label properties

2. cluster-to-cluster properties
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3. feature-to-cluster properties
4. instance-to-cluster properties

5. single instance content properties

In terms of enriching the user-to-computer communicatmglage, several new types
of user feedback can be added to modify the newly introduleestier-to-cluster properties.
For example, if a user finds a cluster is meaningful but is fatgd under an inconsistent
parent cluster, the user can move this cluster to a more ppate place in the hierarchy.
We list possible feedback types for hierarchical clustecitster properties.

e Remove-Cluster(s): when a cluster is too noisy to be unoedsor a user doesn’t
think the idea conveyed by the cluster is significant, the s/ remove this cluster
and its descendants.

e Add-A-Cluster: when there is no cluster that representsriiceidea a user has
in mind, the user can create a hew empty cluster and placedéruam reasonable
parent cluster. Then a user can optionally populate thistetlby moving relevant
documents into it.

e Move-A-Cluster: a user can drag and drop this cluster undewoee reasonable
parent cluster.

e Merge-Clusters: when a user thinks a cluster contains ditiepedea that has been
represented in another cluster, the user can merge the isters.

e Split-A-Cluster: when a cluster is noisy and a user thinla thmixes up different
ideas but still wants to keep the cluster, a user may regbasthe computer splits
this cluster into smaller clusters.

e Unify-Clusters: when a user finds clusters in a branch opeci$y a topic, a user can
request the computer unifies all sub-clusters to be oneetlushis feedback type
is especially useful when a user requests a cluster splittirexplore the possible
ontology space but finds the splitting not necessary.

Another enrichment of the user-to-computer language is&bke drag-and-drop ac-
tions on non-hierarchical property types such as:

e Move-A-Document: when a user thinks a document doesn’trigeto its currently
assigned cluster but it should belong to another clustesgaecan drag and drop the
document from its current cluster to the more appropriatstet.
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Figure 3.11: The communication languages of our first varsicthe hierarchical mixed-

initiative clustering system. Feedback types with the fiakkground are new introduced
feedback types to handle hierarchical clustering in thigesy. Feedback types with the
light yellow background are inherited from the previous +o@rarchical system.

e Move-A-Feature: when a user thinks a key feature doesnfesgmt its associated
cluster but is a good key feature for another cluster, a usedcag and drop the fea-
ture from its current cluster to the more appropriate cluskhis situation happens
often when a cluster mixes documents of more than one mdaitogics.

We first integrate five of above mentioned feedback typesantdierarchical mixed-
initiative clustering system while still keeping all useefiback types we have studied
in the previous system. The previous feedback types cooinfirming feedback on
single cluster label properties, confirming and removiregfeack on instance-to-cluster
properties, and confirming and removing feedback on fedtuauster properties. Al-
though feedback on document-to-cluster properties is comim semi-supervised clus-
tering, feedback on feature-to-cluster and cluster-tstelr properties is less common.
Figure[3.11 shows the communication languages used inigrarbhical mixed-initiative

clustering system.
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3.2.2 Coordination for Hierarchical Clustering

As mentioned above, we generate initial hierarchical ehssbf depth two by using a
generative clustering model in the first level and applyioga network analysis for the
second level to produce purer sub-clusters. The results fines approach often contain
many errors in parent-child relationships and many in@rséling relationships, com-
pared to the user’s desires. The benefit of using social mktaraalysis to refine first-level
clusters into sub-clusters is to create separate sociplesi(purer sub-clusters) so a user
can understand and manipulate them more easily. After afesdback session on this
initial hierarchical result, we retrain the hierarchicabael based on the user feedback.

The re-training algorithm re-uses the user-modified hadmabut adjusts the document-
to-cluster properties. It adopts the "Pachinko-machir@icept described inEbQ]. and
trains a set of SpeClustering mod@ [23] as classifiershierdot node and intermedi-
ate nodes in a hierarchical clustering. Each document tsilalitsed to one sub-cluster
for further training. The distribution is based on the doemt’s posterior probabilities
given the model of the parent node. Details of the SpeClumgfenodel can be found in
Sectio 3.1.2. Since we train separate SpeClusteringifid@sgor root and intermediate
clusters, this is similar to performing different soft fewd selections at each cluster. The
SpeClustering algorithm can accommodate all non-hiereathser feedback types shown
in Figure[3.11l. We will refer to this hierarchical model as ti€ascading SpeClustering
model” in the rest of the thesis. Figure 3.12 illustrate tlasib idea of the Cascading
SpeClustering model — three SpeClustering models areettaimthis example, one for the
root node 1 and two for the intermediate nodes 2 and 5.

As in the non-hierarchical clustering system, we extrath beord features and person
features from the email corpus. The SpeClustering algoritias an extension to assign
different weightings, e.g{&., 5.} and{¢&,, 5y}, to different feature sets, so it can handle
word and person features jointly. In order to simulate th@ametwork analysis that is
used to obtain the initial hierarchical clustering resw,add a "PersonWeight” parameter
for the second and deeper levels in the hierarchy. The vdl@ersonWeight multiplies
counts in the person corpus, to emphasize these countseelatword counts. Note
our algorithm for retraining the hierarchical clusterimgtihe phase of user feedback does
not use social network analysis, because it is not obvioustb@erform social analysis
sub-clustering while respecting the constraints imposeader feedback. This weighting
of person features provides a mechanism to amplify the itapoe of grouping together
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Figure 3.12: An illustration of the Cascading SpeClustgrimodel.

emails involving the same people, and is thus analogousdialsoetwork analysis, but
fits into our SpecClustering algorithm which can accept trangs imposed by enriched
non-hierarchical user feedback.

In addition, we define “complete hierarchical user feedbaska modification from
an imperfect hierarchy, which contains undesirable pachittl and sibling relationships
(from the user’s perspective), to a reference (targetahidry. Since it is not practical to
expect complete hierarchical feedback from a user, a useqai whenever they want,
and leave the machine to retrain the hierarchical modeiisgafrom the user-modified
hierarchy and subject to their non-hierarchical feedback.

When we apply a user’s hierarchical feedback for modelirgtrg, the user modifica-
tion is most likely not complete. Therefore, we add a “Sthuir” parameter that indicates
the machine’s belief that the user left documents at theecbtocations in the hierarchy.
The value of the “StructPrior” parameter is used to inigalthe posterior probability dis-
tributions among sibling clusters. To be more specific, ibaumentz; is assigned to a
leaf clusterc in the initial hierarchical clustering anedhas three sibling clusters, the re-
training process initializes the posterior probabilityc|z;) = Struct Prior, and the pos-
terior probabilities of each of the three sibling clustekseg x; as(1 — Struct Prior)/3.
When the value of the StructPrior parameter is 1, the algorjpireserves these document-
to-cluster assignments in model initialization. When tlaggoneter value is lower, the
re-training algorithm is more likely to re-assign docunsetd other clusters within the
hierarchy.
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For each intermediate node, the SpeClustering classifteairsed using the relevant
feedback entries. The algorithm extracts feedback entlesant to this node and all its
descendant clusters so descendants’ feedback entries@aagpte to their parent and
ancestor nodes. We need to convert hierarchical feedbaclesmo positive/negative
feedback because the SpeClustering model accepts onlgiamarchical positive/negative
feedback. For example, a document-move feedback entryeaorverted to a negative
feedback entry for the original cluster and a positive femtttentry for the target cluster.

Alternative hierarchical models like the shrinkage mo@] [or Hierarchical Latent
Dirichlet Allocation B] are both possible. For the shriggamodel, we would need to
design model adaptation heuristics for feature feedbguéstyHierarchical Latent Dirich-
let Allocation was our first choice but the Markov chain preses’ slow convergence is
incompatible with our goal of efficient interaction betwawaachine and user.

3.2.3 Distance Measurement between Hierarchies

One important consideration in hierarchical mixed-ititi@ clustering is evaluating the
clustering results (including initial hierarchical clagng results, hierarchies modified af-
ter user feedback, and re-trained hierarchical clustegsglts), especially when two clus-
tering results have different hierarchical structuresr &@aproach defines an edit distance
measure between two hierarchies, and then evaluates apgsa clustering hierarchy
by its edit distance to the correct (reference) hierarchye fieference hierarchy used in
the following experiments was constructed by the user poitihe beginning of this thesis
study.

To see the difficulty in comparing two hierarchies, consithertwo hierarchies, Ref-
erence and Clustering Result, in Figlre 3.13 and the quesfiblow to align these two
hierarchies. It is not difficult to align the left-hand sidgébsrees. Figurg 3.13(a) shows
cluster (circle node) 2, 3, 6, and 7 can be aligned and it t®gutlustering errors of doc-
ument (triangle node) 13, 19, and 22. However, the alignraenght-hand side subtrees
is not so trivial. Figuré 3.13(b) shows two possible mappifrgm Clustering Result to
Reference. Alignment 1 sticks to the hierarchical constsaimposed by Clustering Re-
sult, while Alignment 2 violates the constraints but hashieigprecision and recall at the
document level.

Luckily, we figure that the distance between two hierarcles be measured by the
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Figure 3.13: Hierarchical structure comparison
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number of editing operations needed to change one hierantbythe other, especially
when the set of hierarchical feedback types can be transtbrmaturally into a set of edit-
ing operations. For example, “Move-A-Cluster” feedbackdgiivalent to modifying the

parent orientation of a parent-cluster-to-child-clugteperty in which the moved cluster
is the child cluster. Similarly, “Move-A-Document” feedtdais changing the cluster end
of the moved document’s document-to-cluster property.

We define “edge modification ratio” as the minimum number @dfeack steps re-
quired for complete hierarchical user feedback, dividedhgytotal number of edges in
the reference hierarchy. The Clustering Result hierarohfyigure[3.1B needs five feed-
back steps that modify edge e3, €8, el2, €18, and e21 acglyrdirorder to match the
Reference hierarchy. There are 28 edges in the Refereneedtig, so the edge modifica-
tion ratio is 0.18 (5/28) for this clustering result.

Ideally, evaluation for hierarchical mixed-initiativeusitering should request user stud-
ies to examine real users’ comprehension of a hierarchicadvinitiative clustering, but
user studies are very expensive. We leave the user studyatieal (see details in Chap-
ter[8) for our full-fledged mixed-initiative clustering sgs that integrates both commu-
nication enrichment and mixed-initiative interaction abjpity. Instead, the measurement
of edge modification ratio simulates a user’s feedback &ffiorcorrecting a hierarchical
clustering. In other words, edge modification ratio sen&smautomatic measurement
for a hierarchical mixed-initiative clustering systemttifiacuses on the communication
enrichment component while skipping the interaction congm, and examines whether
a hierarchical clustering model and its model retrainingpathm are feasible to learn
from enriched hierarchical feedback.

The exact implementation of calculating the edge modificatatio, e.g., simulated
feedback efforts, consists of four steps. The first step int the best many-to-one
mapping from learned clusters to reference clusters. Ttansestep chooses the optimal
one-to-one mapping from learned clusters to referenceaechis The third step adjusts
the cluster-to-cluster property of each cluster if it mewis of the following criteria: (1)
if it is a sub-optimally mapped cluster, merge it to the oy mapped cluster, (2) if
it is a optimally mapped cluster but its parent-child prapés inappropriate, move it to
the right position in the hierarchy, and (3) if there is no ipegh clusters to a reference
cluster, add a new cluster at the right hierarchical pasitidhis step also counts how
many times cluster-to-cluster adjustment is made. Thelicgtep counts the number of
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remaining inappropriate document-to-cluster properti#ge combined number of the
third step and fourth step is the number of edge modificatian we use to simulate a
“complete hierarchical user feedback” session.

The concept of “edge modification ratio” is very similar to€¢ edit distance” D4]
where different feedback types are mapped into differestatpns and the cost function
is uniform.

3.2.4 Experimental Results

We use the same email dataset (EmailYH) introduced in Se@i@.3. There are 623
emails in this dataset that had been manually organized esaxdhy prior to the start of
the mixed-initiative clustering study. We use this hiehgras the reference hierarchy. It
consists of 15 clusters including a root, 11 leaf clustend, &iintermediate clusters.

In these experiments, a mixed-initiative process consitee generation of an ini-
tial hierarchical clustering with depth two, a long userdieack session, and model re-
training. In the feedback session, the initial clusterim@iliesented to the email owner in
the user interface we introduced in Figlre 3.10 to browsegiwvel feedback. The algo-
rithm for producing initial clusters is non-deterministié¢/e picked the same five initial
first-level clustering results used in the non-hierardhicsixed-initiative clustering exper-
iments. These initial results have the highest likelihoatlgs among fifty autonomous
clustering results. Each of these five single-level clusgeresults were then extended to
two-level hierarchical clusterings by applying socialvmatk analysis.

For each of these five initial hierarchical clusterings,e¢h@ail owner performed what
we call a “diligent” feedback session and a “lazy” feedbaeksson on different days a
couple weeks apart. In the “diligent” session, the user éxaskeywords and key-persons
in detail, and often checks document assignments to chudtethe “lazy” session, the user
may select a few keywords and key-persons, and skims thrauskips documents.

The first row in Figuré_3.14 shows an example of hierarchiciledrinitiative clus-
tering, derived from a single initial clustering result plits “diligent” or “lazy” feed-
back sessions. The horizontal axis in each plot correspmnasnutes of user feedback,
whereas the vertical axis gives the quality of the hieraahclustering at that point in
time, measured by its edge modification ratio relative tordference (ideal) clustering.
The dot-marked (black) lines show how manual user feedbaumttifias the quality (the
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Figure 3.14: (a)(b): An example pair of re-trained resultsivied from a specific initial
result and feedback counts of two feedback sessions omitia result. (c)(d): Averages
of 4 re-trained results in different feedback sessions.
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edge modification ratio) of the initial hierarchical clusteg over time. Lower edge modi-
fication means a user can achieve the reference hieraramy fgsver remaining feedback
steps. The other lines show edge modification ratios foedsfit clustering results ob-
tained after model re-training with different parametettisgs. Each marked point rep-
resents a retrained model learnt from the user feedbackeomitiel hierarchy up to that
time. The cross-marked (green) lines show the edge modiificaatio of results with
no special weighting on the person corpus, whereas thesamerked (red) lines show
results that give the person corpus a high weight. The eirdeked (red) line and the
square-marked (cyan) line in a same plot show how the levieusf of the user modified
hierarchy impacts the retrained hierarchical clusteregplts. The closer the StructProb
parameter sets to one, the more the machine assumes theadiBednierarchy is nearer
to complete hierarchical user feedback. The circle-maliked show the re-trained results
with a low trust value, and square-marked lines show resuttsa high trust value.

The histogram below each plot shows the cumulative countsef teedback, with
colors indicating the different types of feedback. Thegdihit feedback sessions are longer
and involve larger total counts of feedback from the userdésigned, the composition of
feedback is different between the diligent session andaigdession. A user gives much
less feedback on document-to-cluster properties in the dazsion than in the diligent
session. The user also focuses on giving cluster-relagstbeck in the first 2 to 3 minutes
of the lazy feedback session.

For this specific initial clustering result, the diligenea®enefited from the machine’s
retraining when she provided less than 7 minutes’ feedb@dker the 8th minute, the
re-trained result only maintains performance similar @ tiser's manual efforts. This is
because if the user has meticulously corrected all docutoecluster errors occurred in
the initial hierarchy, the re-trained model can predictestthvhat a user has manually done.
On the other hand, the re-trained results from a lazy useedldack gets better after the
user completes the cluster-to-cluster property modificati e.g., there is no cluster-level
feedback after the 4th minute. In terms of comparing thegoerances between different
user behaviors, in this specific case, a diligent user neesisdnd 11 minutes correcting
the cluster hierarchy if they work alone, whereas a lazy wserthe machine’s assistance
achieved an equivalent performance in four minutes. Tlesltgroves the advantages
of adding the cluster-to-cluster property type and itsesponding feedback types to the
communication languages for hierarchical mixed-initailustering.
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Figurg 3.14(d) and 3.14(d) show the aggregated re-traemdts from four out of five
initial hierarchies with respect to two different feedbaessions. The general trends hold
that a diligent user gains marginally and a lazy user gain®erftom model re-training.

Notice the edge modification ratio of the black line (usedfesck) at the zeroth minute
in Figure[3.14 gives the performance of the two-step aprd#at clustering plus social
network analysis) for generating initial hierarchicaluks. We have learnt from the ac-
tivity extractor experiences that this approach is goodtdgrating different aspects of
email content to produce user comprehensible sub-clusiérs reason we switch to the
Cascading SpeClustering model for hierarchical modehnatig is because the two-step
approach cannot learn from various types of user feedbatkdimg the hierarchical feed-
back. In other words, the two-step approach cannot achleyedordination with the
enriched hierarchical communication languages.

However, given no user feedback and without weighting thrsqae corpus heavily,
e.g., PersonWeight equals one, the edge modification eatrmich worse than the two-step
approach. This confirms our previous study that social neétwaoalysis helps generate
more user-comprehensible clusters (activities) and desws the Cascading SpeCluster-
ing model cannot beat the good heuristics without user fegdbWith PersonWeight set
to 100, the Cascading SpeClustering model is more capallehodving results similar to
social network analysis. Given the same StructPrior vakegghting the person corpus
heavily results in a lower edge modification ratio in the yathge and using no special
person weighting is better in the later stage. It shows thenithe user’s feedback on a
hierarchy is partial, the background knowledge of socigjugs is informative and when
the user’s feedback has fixed the hierarchical structueggetkttual content is more helpful.

The StructProb parameter can be interpreted as the levelsifglaced upon the user
modified hierarchy where a higher value means more trust. ajggegated results in
Figurg 3.14(d) and 3.14(d) show that it is better to assumeditument-to-cluster assign-
ments in the user modified hierarchy are correct and initfe#ee-trained model accord-
ingly.

However, the performances of re-trained results vary tyrel@pending on the quality
of initial autonomous clustering results and the persotdé ©f giving feedback. The
re-trained results using the 5th initial result are showrrigure[3.I5, which are a lot
worse and spikier than the other four pairs of re-trainedltesThe reason is that the 5th
initial result has two big clusters and each of these twotehshas documents belonged to
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Figure 3.15: This pair of re-trained results shows that ourent model re-training method
doesn't always help the user.

two or three reference clusters. With the feedback typesvalll by this system’s user-to-
computer language, the user must resort to a sub-optindbéek strategy like confirming
it as one reference folder and moving the other half of docum& a newly created
cluster. When a lazy user doesn’t provide enough user fekdibaeach a machine, the
re-trained model may converge incorrectly as in Figiire @JL5A better solution is to

include the Split-A-Cluster feedback type in the usertoputer language. In addition,
re-training a branch of clusters in the hierarchy insteathefentire hierarchy of clusters
also helps.

We re-implemented the first version of the hierarchical mixgtiative clustering sys-
tem to a fully interactive system between a user and machirthis second revamped sys-
tem, we enhance the communication languages further moaeding “Split-A-Cluster”
and “Unify-Clusters” user feedback types for cluster-haster properties and “Move-A-
Feature” feedback type for feature-to-cluster propertidso, a user can request the sys-
tem to retrain its machine’s clustering model from the rdaster, where the whole cas-
cading SpeClustering model is updated, or from a selectethiediate cluster, where only
the part of the model corresponds to the selected branchisteek is updated. Figure 3116
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Figure 3.16: The communication languages of the secondovers the hierarchical
mixed-initiative clustering system. With the green backgrd are feedback types newly
introduced in this version of the hierarchical system. Bbae#t types with the pink back-
ground are inherited from the first hierarchical system.dbBeek types with the yellow
background are inherited from the non-hierarchical system

illustrates the communication languages used in this sysWith the green background
are feedback types newly introduced in this version of tieeanchical system. Feedback
types with the pink background are inherited from the firstdichical system. Feedback
types with the light yellow background are inherited frone thon-hierarchical system.
Users of this system have all basic measures for hierailchichnon-hierarchical mod-
ification. The major upgrade of this second hierarchicasteung system is the fully
interactive capability, which will be discussed in detaitihe next chapter.

3.2.5 System Summary

In this section, we discuss how to enrich communicationdi@iggs for hierarchical mixed-
initiative clustering and how to achieve coordinated menaal model retraining.

We build a first hierarchical mixed-initiative clusteringssem, and apply it to hierar-
chical clustering of email. A simple hierarchical clustgrimodel, Cascading SpeClus-
tering, is used to handle various types of user feedbackdirad) feedback on conceptual
feature-to-cluster properties and cluster-to-clustepprties. The experimental results
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show that the joint efforts of a machine and a user can usaahyjeve better edge modi-
fication ratio, or equivalently, save a user’s time compacechanually editing the initial
clustering. We also learn that a user’s feedback style msatfelazy user can gain more
benefits from machine’s retraining than a diligent user.nithe worst case of re-trained
results, it seems safer to re-train a specified subset ofrarbie/ instead of the whole
hierarchy.

3.3 Summary

In this chapter, we demonstrate how to enrich communicéaioguages in mixed-initiative
clustering by adding conceptual property types such asdayfes of clusters and hierar-
chical cluster-to-cluster propertiesfo_.,,, and adding various feedback types on concep-
tual properties td.,,_....

Two example mixed-initiative clustering systems, eachiesponds to one incremen-
tal step of communication enrichment, are discussed inldéihe first system enables
user feedback on features for non-hierarchical clusteringorder to achieve the coor-
dination in this mixed-initiative clustering system, weopose a new clustering model,
the SpeClustering model, which provides a natural way tosidjs parameters accord-
ing to user feedback on key features, and a mixed-initigdpeClustering algorithm to
adapt multiple types of user feedback altogether. On topeffitst system, the second
mixed-initiative clustering system accepts various typesser feedback on hierarchical
clustering results. A cascading version of the mixed-atite SpeClustering algorithm is
used for coordinating hierarchical mixed-initiative dkersng.

Under a long-user-feedback-session setting, we examirierpgnces of machine’s
retrained clustering models using different combinatiohaser feedback types (with or
without conceptual properties), and impacts of difficukkydls of clustering tasks and
user feedback styles. The experimental results show tiva§ atemmunication languages
with conceptual properties gains more improvement thamgusbmmunication languages
without conceptual properties. Given different levels lostering difficulties, the mixed-
initiative clustering system helps a machine learn a bettestering from user feedback
on noisy but still meaningful autonomous clustering resuBiven different user feedback
styles, a lazy user can gain more benefits from machine maigathan a diligent user.
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Chapter 4

Practical Issues in Mixed-Initiative
Interaction with a User

Interaction is another essential element for mixed-ititéeclustering. The interactive loop
iterates through the machine learning, machine teachswy, learning and user teaching
phases. In practice, the combined time of the machine leguptiase and machine teach-
ing phase should be as short as possible so a user doesntolveait too long. Also, when

a non-oracle user interacts with a mixed-initiative clusig system, she may behave and
expect differently from an oracle user who has no need tmlaad knows how to teach,
which is commonly assumed in many other machine learningtahis chapter discusses
practical issues we encounter while building a mixed-aiie clustering system that can
interact with a non-oracle user in real time.

4.1 High-Latency vs. Low-Latency Interaction

Experiments in the previous chapter are set up as one darafithe interactive loop of
mixed-initiative clustering, where a user gives feedbackmachine-extracted properties
in a long single user feedback session. This experimenttahgés targeted to collecting
sufficient user feedback for the retraining of the machin&istering modelM... This
setting is not designed to accept a user’s retraining reécatesny time nor to quickly
retrain the machine’s model (the machine learning phaseypdate its computer-to-user
communication (the machine teaching phase.) Due to theceegbéong user feedback
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Figure 4.1: The difference between high-latency intececiind low latency interaction.
The X axis is a time scale. The light blue blocks corresportdediming where a machine
takes initiative during the interactive process, and thvk 8&ue blocks correspond to the
timing of a user’s initiative.

sections and sup-optimal speed of interaction, we callithesaction typenhigh-latency
interaction.

In contrast]ow-latency interaction refers to mixed-initiative clustering systems that
allow their users to retrain a machine’s clustering modehrat time and expedite the
process when a machine takes initiative, especially thédnimadearning phase. Figure 4.1
illustrates the difference between high-latency and Ideray interaction. The X axis is a
time scale. The light blue blocks correspond to the periddsne when a machine takes
initiative (machine learning and teaching) during theratéive process, and the dark blue
blocks correspond to the periods of a user’s initiative (ls&ning and teaching.)

4.2 Exchange of Initiatives

For a low-latency mixed-initiative clustering system, leange of initiatives is either trig-
gered by some specific types of user feedback or by an automatihanism that decides
when is appropriate for a machine to interrupt a user anditakgitiative [21]. We de-
velop our second hierarchical mixed-initiative clustgrgystem using the first approach.
As described in the final part of Chapter 3, the second versfaie hierarchical
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mixed-initiative clustering system is a low-latency iratetive system. Figurle 3.16 illus-
trates communication languages of this second hierarahizad-initiative clustering sys-
tem. In the user-to-machine communication language ofybtes, some user feedback
types demand immediate machine retraining. These speaditbick types include:

e a user requests retraining of a subtree of the cluster bieyar
e a user requests splitting a leaf cluster, and

e a user removes a cluster from the hierarchy.

The machine responds to the user retraining feedback bgimigtg its hierarchical
clustering model, the cascading SpeClustering modelesthy all past feedback related
to the selected cluster and its descendant clusters. Wieamstr requests splitting a leaf
cluster, the machine learns an unsupervised clusteringghusthg documents in the leaf
cluster, assigns these documents into sub-clusters, atedthid newly learned unsuper-
vised model to the cascading SpeClustering model. Whenraes®ves a cluster from
the hierarchy, documents in the deleted cluster need to-Osirgbuted to remaining clus-
ters. The machine semi-supervisedly retrains its casgasipeClustering model for the
remaining clusters, and uses the updated model for the dadinedistribution. There are
two alternative definitions of remaining clusters: (1) thére cluster hierarchy except the
deleted cluster, or (2) all sibling clusters of the deleteter. We tested both definitions
but couldn’t find observable evidence in clustering resaltvor one definition over an-
other. The second definition is used in the final system becaigining a subtree of a
hierarchical clustering model is faster than retrainirgwhole tree.

In addition, we implemented but did not employ a retraininygexample feedback
type that allows a user to teach a machine a few instancebelethexamples for a user-
specified number of sub-clusters. After the user compléiesaaching, the machine re-
trains its clustering model according to the labeled exasipHowever, at least one ex-
ample for each sub-cluster is necessary, which requiresi@uil book-keeping efforts
from a user. Due to this reason, the retraining-by-exangadtback type is disabled in the
second version of the hierarchical mixed-initiative clustg system.
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4.3 Model Retraining in the Wild

4.3.1 Issues

When we pilot tested our low-latency mixed-initiative dlersng system, we found three
issues with regard to retraining the machine’s clusterirogleh, 1/, that led to improve-
ments in the final system.

The first issue is about the speed of model retraining. Inlkd@ncy mixed-initiative
clustering, model retraining should take only a few secandtgead of several minutes
because a user has to wait for the machine during this pefitiche. A rule of thumb
we applied during the development of our mixed-initiativestering system ig0 sec-
onds threshold — whenever model retraining took more fliaseconds to complete, we
investigated methods to expedite the retraining .

Guideline 1: Model retraining should be as fast as possible. Our rule of
thumb is to control the time spent on each model retrainirgdgeut) seconds.

The second issue comes from users. Users tend to be lazyraredtbe low-latency
interaction allows a user’s model retraining request attang, it is possible that a user
requests machine retraining right after giving very lirdifeedback or even no feedback
at all. A mixed-initiative clustering system shouldn’t @qgb its user to give sufficient user
feedback before she hits the retraining button. Also, awghout machine learning back-
ground doesn’t know the importance of balancing numbersloéled examples in each
cluster (these numbers are used to obtain the prior proti@biin model retraining.) In
low-latency mixed-initiative clustering, a user may givamy labeled examples to one
cluster because she knows the cluster’s topic well, andligiveed or no labeled examples
to another cluster because she cannot recognize the tofhiesafluster. As a result, the
numbers of labeled examples doesn’t necessarily reflecgpeopriate prior probabili-
ties, and in many cases, unbalanced labeled examples @ lgpvusers unintentionally.
With unbalanced labeled examples, a probabilistic clusgenodel in its likelihood opti-
mization process may expand clusters with more labeled pbesnat a cost of shrinking
other clusters with fewer or no labeled examples, which idesirable. A machine in
low-latency mixed-initiative clustering should prepaceléarn from insufficient and un-
balanced user feedback.
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Guideline 2: Because a user tends to be lazy and may not have enough
background knowledge of how machine learning algorithmskwi is an
important capability for a machine to learn from insuffidci@and unbalanced
user feedback.

The third issue is what is the appropriate amount of changedssn the previous
machine-proposed clustering and the new clustering @viebtained from system re-
training. Too much change between two consecutive clugieasults may confuse a user
instead of assisting her. This is because a user has ebtbhs(partial) topic ontology
from reading the previous clustering result. In the mostwmmn case, a user submits a
retraining request after giving the machine some feedbeghrding its proposed topic
ontology. The user wants the system to learn a model thagriretiects her current on-
tology instead of a model that optimizes its objective fiorcbut produces an unfamiliar
clustering result.

Nevertheless, a user also wants noticeable change in thelastgring result accord-
ing to her feedback. For example, when a user confirms a kelyteaa cluster and then
requests the mixed-initiative system to retrain its clusgemodel, she may expect the
system to learn some other keywords that are highly relatete confirmed keyword.
When a user observes that enhancement in the new clustesalj is specifically based
on her feedback, she is more likely to trust the mixed-ihu&clustering system.

The emphasis on noticeable change seemingly contradietertiphasis on similar-
ity between clustering revisions. However, they share #mesprinciple that a mixed-
initiative clustering system needs to help a user develogtiéevolving user ontology.
The similarity between clustering revisions preservese'sigxisting ontology so a user
can improve her ontology step by step. The noticeable chamg#he other hand, focuses
on how a mixed-initiative clustering system should assister by extrapolating her feed-
back because the feedback indicates the direction of afgpstEp to improve her user
ontology. Combining these two concerns, we come up withdhewing guideline:

Guideline 3: The goal of a mixed-initiative clustering system is to help a
user develop her still evolving user ontology. Under thislgaonsecutive
machine clustering revisions shouldn’t make dramatic gkan order to pre-
serve a user’s existing clustering ontology, but should ergbecific change
by extrapolating user feedback.
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4.3.2 Heuristic Methods

Based on these guidelines, we apply several heuristic dsettwoextend the low-latency
interactive version of the hierarchical mixed-initiatiskistering system. These heuristic
methods are tied to the clustering algorithm used in ouresystvhich may or may not
be applicable to other mixed-initiative clustering syssem/e don’t investigate theoretical
solutions for model retraining under the low-latency iatgive environment in this thesis,
but it is a good topic for future study.

The first heuristic utilizes the fact that computing a mutimal Naive Bayes model,
which uses a single-loop EM algorithm for parameter esimnats faster than computing
a SpeClustering model, which uses a double-loop EM alguoritfhe main purpose of
computing a SpeClustering model instead of a multinomiav&Bayes model is because
it can learn from user feedback on feature-to-cluster ptase In low-latency interaction,
a user often gives limited and unbalanced feedback, whigmmot include feedback on
key-features. When there is no feedback on key-featurespwgute the faster multino-
mial Naive Bayes model instead of the slower SpeClusterindeh For example, when
a user wants to split a cluster into sub-clusters, thes¢oybé-created sub-clusters have
no feedback at all and thus no feedback on key-features. HEusstic solution implies
that the machine’s clustering model is replaceable beddugsagreement between a user
and a machine in mixed-initiative clustering is establésbhpon the shared properties, not
model assumptions. As long as a model is capable of extgaittenshared properties, even
it can not learn from some types of properties after userlfeeki modification, it can be
used before any un-learnable user feedback is given. Trexgeprinciple igf a user only
uses a subset of the feedback language, a machine can usaectmeachine learning
algorithm.

The second heuristic method is quite simple. We limit the benof iterations to be
10 during the EM process of computing a SpeClustering modeis Meuristic not only
accelerates the machine learning phase but also preventsetily learned model from
producing a clustering result that deviates too much froenpgtevious clustering result.
The value of10 is set heuristically by observation of clustering resutid also because
the SpeClustering model usually convergesg(rio 30 iterations.

The third heuristic for model retraining is aimed to boosytclusters. Before intro-
ducing the heuristic itself, let’'s discuss the implicatma tiny cluster first. For mixed-
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initiative clustering, each cluster should represent gesatopic, i.e it is well supported
by the data, in user ontology. A cluster with many fewer doents than its sibling clus-
ters either doesn’t represent a salient topic or is a clustedy added by a user. For the
former case, we rely on a user’s cluster removal feedbacktad of these clusters. The
later case is the target case of our third heuristic — auticaibt boosting sizes of tiny
clusters, especially newly-added ones. A newly-addedeus typically tiny before re-
training because once a user gives a mixed-initiative efugg system a few examples,
she expects the system to find more similar documents forTeehe more specific, we
define a cluster as a tiny cluster when it contains less thartlurd of the documents of
its sibling clusters. The one third threshold is picked bgerling which threshold value
results in clusterings that the system developer liked thstm

The third heuristic boosts tiny clusters by applying (ps®uelevance feedback tech-
niques BZ]. In information retrieval, relevance feedbaeformulates a user’s initial query
to an expanded query by weighting words in the initial quergt @ords in relevant docu-
ments. Pseudo relevance feedback further assumes thaptherétrieved documents are
relevant even without explicit user relevance judgemehe @xpanded query is expected
to be closer to relevant documents and further from the etevant ones than the initial
query. The Rocchio algorithnmﬁl?] is commonly used for theryuexpansion purpose.
The algorithm calculates the expanded query vegigrusing the following formula:

1 - 1 R
D 2= Gt 2

d;eD, d;€Dyyr

—

Qm:a%_‘_ﬁ

whereq; is the original query vector:i;- is the tf-idf vector for each documen®, andD,,,
are the set of known relevant and non-relevant documenpectsely, andx, 3, and~y
are weights that adjust the relative impact of the originadrg, relevant and non-relevant
documents.

Similarly, in mixed-initiative clustering, we can exparnithited or empty user feed-
back of a tiny cluster by assuming that machine-proposed/&rys and documents of a
tiny cluster are all positive examples unless a user sagswite. Using the expanded user
feedback, the system can find more robustly other relevanirdents than using the orig-
inal limited or empty user feedback. We take user feedbadiegrieatures as the original
guery vector while the positive and negative feedback omua@nt-to-cluster properties
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are considered as the relevant and non-relevant documéntiie the query expansion,
there can be negative values in the original vector becauseracan remove a key feature
from a cluster, and there is a combination of explicit feadtgiven by a user and pseudo
feedback. We modify the Rocchio formula to handle thesedfices:

qm—aqo+aq/0+ﬁﬁj§ dj_'_ﬁ‘D”JE dJ+V|qu| E : dJ
P i€ i

-

jEDr Dr djeDnr

whereq andq_70 refer to machine-proposed key-features of a tiny clustér amd without
user feedback, anB,., D, and D.. refer to machine-proposed document-to-cluster prop-
erties with confirmation feedback, with removal feedbacid without user feedbacky,

o', 3, 3, and~y are weights attached tg, q70, D,, D! andD,,. correspondingly.

In practice, we set the valuesof 3, and~ to bel.0, anda’ and/’ to be0.5. We don't
fine tune these parameter values. They are obtained by sigygemn the IiteratureHZ]
and satisfactory observations in system testing. Aftermuating the expanded feedback,
we use the cosine similarity measurement to find other sirddauments and move them
into the tiny cluster until the size of the tiny cluster is mmger smaller than one third of
the sizes of its sibling clusters. However, explicit usedieack always has higher priority
than the pseudo boosting. When a document is already couffitona cluster but found
similar to the expanded feedback of a tiny cluster, it shoahdain in its confirmed cluster.

4.4 Managing User Feedback

In some situations, feedback items given by a user may atintrane another. For exam-
ple, a user confirms a keyword for a cluster but later decide&éyword is more suitable
for another cluster so she moves the keyword to the othetetlugn this example, the
original feature-to-cluster property is confirmed first aegated later in the moving feed-
back. We use a simple rule of thumb to handle contradictiata/den feedback items
in the low-latency mixed-initiative clustering system -e tlater feedback overwrites the
previous one if there is a contradiction.

Due to the importance of communication enrichment, theceed user-to-computer
language of various feedback types also introduces patdaddback contradictions. Be-
low is a general guideline for handling feedback contraolits.
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Guideline 4: Feedback items given by a user may contradict one another es-
pecially when the user is allowed to give various types oflieek in mixed-
initiative clustering. A mixed-initiative system devekapshould check po-
tential feedback contradictions every time a new feedbgpk ts added. A
simple mechanism to resolve feedback contradictions istttater feedback
overwrite the previous contradicting one.

In practice, a user may not be familiar enough with the comupaiive languages of
a mixed-initiative clustering system. She may give fee&libat is not appropriate to the
system or feedback the system is not designed for. We callkihd of user feedback
“undesirable user feedback.” For example, when a user stg|t8plit-A-Cluster” feed-
back on an intermediate cluster, it is hard to tell what a wsarts to do with the existing
child clusters of the intermediate cluster. A checking nagtsm is necessary to handle
this situation. In our low-latency hierarchical mixedtiative clustering system, a short
warning message will pop up and educate the user why thid&sadshould be avoided
when a user requests undesirable user feedback. Othernamdesiser feedback includes
“Add-A-Cluster” under a leaf cluster, “Move-A-Documenty &n intermediate cluster, and
requesting model retraining on a leaf cluster.

Guideline 5: A checking mechanism is necessary to filter out undesirable
user feedback and educate a user’s feedback proficiency.

In addition, we only allow a leaf cluster being merged intother leaf cluster and
a cluster being moved under another intermediate clustdrenMa user drag and drops
a cluster to a destination cluster, the system decides wiseh feedback type, “Merge-
Clusters” or “Move-A-Cluster,” is appropriate based on wiee the destination cluster is
a leaf cluster.

4.5 Interface Design

We re-designed the interface of the high-latency systenrdadyce an interface that is
appropriate for users who are not the system’s developesafishot of the redesigned
interface of the low-latency mixed-initiative clusterisgstem is shown in Figute 4.2. This
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Figure 4.2: The interface for low-latency mixed-initiagiglustering.

interface still contains three major areas: (1) the lefigbagpresents the hierarchy of clus-
ters with a menu of various feedback types that will pop up teethe selected cluster upon
right clicking, (2) the middle panel represents the keywoadd key-subjects of the se-
lected cluster, and (3) the right top panel represents allsh@nts assigned to the selected
cluster and the right bottom panel shows the text contentselected document. A user
can move a selection of documents or features to a clustesréorm cluster moving and
merging through drag-and-drop. The pop-up menu in the elysinel allows additional
feedback types for cluster-to-cluster properties. A cothbw selection is enabled in the
feedback columns in the keyword/key-subject panels andrdeat panel. Users can give
combined feedback of various types and request a machimgréor its clustering model
of any branch of clusters at any time.

Comparing this interface with the previous user interfdeas in Figuré 3,70, we see
three major changes. The first change is automaticallyrattg¢he top two keywords of
each cluster to the numeric cluster label displayed in fatess of previous systems. Al-
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though machine-generated text cluster labels are noisytensame information is dupli-
cated in the keyword panel, text cluster labels help a usekiyjudge the meaningfulness
of a cluster, guess the main topic of a cluster, and maintanadl semantic consistency of
clusters in a hierarchy. An asterisk symbol, “*”, is addedront and at the end of the two
keywords indicating that they are generated automatitglilthe machine. The symbol is
removed if the text label is updated by a user’s cluster d&san input.

Guideline 6: Don’t generate numeric indices as cluster labels. Gen&zate
labels even the automatic text labeling algorithm is fanfioerfect.

The second change is the swap between the key-feature pahttleadocument panel,
which is suggested by a third-party pilot tester of the syst€he tester thinks the left to
right arrangement of the cluster hierarchy panel, keydiegpanel, and document panel is
more cognitively consistent, from the most conceptual priytype to the least conceptual
property type, than the document-panel-in-the-middlaregement.

The third change is the use of a pop-up menu in the clustel padecombo boxes for
feedback columns in the key-feature panels and documeed.p@he pop-up menu and
combo boxes are attached right next to their target pragsettiat provide intuitive user
feedback manipulation. They also keep a flexible list of ket types so extending or
disabling feedback types can be done without modifying titerface layout.

As we learned in the previous system, moving feedback thrduag-and-drop is more
intuitive for users than giving positive or negative feeckaln this interface, we allow
moving feedback on all cluster-to-cluster, feature-tastér, instance-to-cluster properties.

Guideline 7: The interface design should arrange property panels tacesau
user’s cognitive effort, and provide intuitive feedbacteraction.

4.6 Summary

In this chapter, we distinguish low-latency interactioonfr high-latency interaction. Un-
like the presumption of a long user feedback session in latgncy interaction, a low-
latency mixed-initiative clustering system allows its ugeretrain a machine’s clustering
model at any time and expedites the process when a machiee itakative, especially
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the machine learning phase. We examine several practmaesswhich occur only in
the low-latency interactive environment. These issuelsidecthe timing of initiative ex-
change, how to retrain a machine’s clustering model withfiigent and unbalanced user
feedback, what is appropriate change between clustenngjoas, how to resolve feed-
back conflict and build a user’s feedback proficiency, andsdsout interface design. We
summarize several guidelines that we learnt from builduingaw-latency mixed-initiative
clustering system. We also describe three heuristic mesttiaat are implemented for re-
training a machine’s clustering model in the low-latendgractive environment.
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Chapter 5

User Studies on the Effectiveness of
Mixed-Initiative Clustering

We demonstrate how to build a mixed-initiative clusteriggtem with enriched commu-
nication languages in Chapter 3 and with low-latency irgoa in Chaptet 4. In this
chapter, we evaluate the performance of the final system vite-ba low-latency hierar-
chical mixed-initiative clustering system. Due to the uis®olvement in the interactive
loop, evaluations of a low-latency mixed-initiative cleshg system are hard to conduct
offline. We propose a user study design for evaluation p@pasid analyze results ob-
tained from testers’ interactions with the low-latency edxinitiative clustering system.

5.1 Design of User Studies

The primary hypothesis of our mixed-initiative clusteristydy is that mixed-initiative

clustering can help a user achieve better clustering e#udin non-mixed-initiative ap-

proaches due to the enriched communication and the intezdetarning and teaching
between a user and a machine. In order to examine this prilmgogthesis, we present
user studies involving two scenarios, a learning scenart ateaching scenario, that
emphasize different communication directions. The readmhind the break down of
two scenarios are (1) non-mixed-initiative approachesmofftave only unidirectional com-
munication, and (2) an attempt to cover different purposkghva user would consider
mixed-initiative clustering approaches.
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In the learning scenario considered here, a user is not familiar with a large set of
documents and wants to rapidly learn an ontology of topissudised within this document
set. The use of mixed-initiative clustering in this scenasimeant to help the user learn
a good ontology through interaction with a machine, esfigdy presenting the user
with rich clustering properties extracted by the machine.ddmpare our mixed-initiative
learning approach with two non-mixed-initiative learniagproaches, an unsupervised
approach with no interaction between a user and a machidea amnual approach that
has no interaction nor the enriched machine-to-user coroation.

In theteaching scenarig a user knows the ontology of a given document set and wants
to transfer their existing knowledge of this specific ongpido a machine. Our mixed-
initiative clustering system allows the user to teach a nmecthrough modifying inap-
propriate properties of various types. In contrast, we ictamone non-mixed-initiative
approach that interacts with a machine without enrichedtgsenachine communication.

A secondary problem we want to investigate is the entry pafitihe interactive loop
in mixed-initiative clustering. This problem can be boilddwn to whether a machine
should propose an initial hierarchical clustering. Witk thachine’s initial clustering, the
system initializes from the machine’s side. Without the hiae’s initial clustering, a user
starts the ontology learning/teaching by splitting a rdoster with all documents into any
number of sub-clusters of her choice.

There are advantages and disadvantages to beginning witttlaime’s initial cluster-
ing. In the user learning scenario, an initial clusteringvles an initial bias and this bias
can be both good and bad. It is good because the machine'sgalapsually reflects sta-
tistically important properties that are sometimes netdtifor a user to observe directly
from documents. It is bad because an initial proposal ofifaitd a user’s direction of
exploration. In the user teaching scenario, an initialdmehnical clustering may provide
a shortcut for a user if it is similar to the ontology the usas lin mind. Otherwise, a
user may spend more time to correct errors than to teach fooatchk. It is not clear a
priori which initialization method is better, so we condacsecondary study to explore
this question.

The layout of our user study design can be found in Table ®2gawith individual
learning and teaching tasks assigned to the primary studljhensecondary study. Before
getting into the details of individual learning and teaghtasks, let’s introduce the data
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set we use in this study and the idea of reference ontologres/aluation purposes.

5.1.1 Data Subsets and Reference Ontologies

We choose to use the publicly available 20 newsgroup datzofietted by Ken Landﬂl]
to avoid privacy issues. These documents are collectedZfbdifferent Usenet discussion
groups, each focusing on a different topic. More specifycalle used a preprocessed
Matlab version prepared by Jason Rennie [46] that contaBns74 documents. These
documents are sorted into a training set and testing set@dingdo posting dates.

These newsgroups are further split into four subsets, edthfiwe newsgroups, such
that they have an identical hierarchical graph structui similar difficulty levels for
ontology learning and teaching. The split also attemptsdmtain easily separable sibling
topics in the top level of the hierarchy and slightly morel@raing sibling topics in the
second level. Table 8.1 lists the details of four subsets) eansisting of two intermediate
topics introduced for conceptual completion in additiothte five newsgroups as the leaf
topics. For example, subset A introduces “computer” andr&ation” as the intermediate
topics and four newsgroups, two for each, are listed as thdlid topics. We call these
four hierarchies theeference ontologiesf the document subsets. Reference ontologies
are used to evaluate the performance of user-learnt onésl@gd as the pre-determined
ontologies for the ontology teaching tasks. As for the nunolbdocuments in each subset,
a training subset contains about 2,800 documents and agestbset contains about 1,850
documents.

We are fully aware that each reference ontology containg ardmall set of topics.
However, due to the lack of similar field work, it is still undawn whether users can work
with a mixed-initiative clustering system successfullye Wierefore decided to begin our
studies with simple ontology learning and teaching taskthegossibility that an ontol-
ogy itself is too difficult to learn or teach is excluded, ahe studies can focus on the
effectiveness of different approaches.

5.1.2 User Learning Tasks

The primary study in the user learning scenario examineghehehe mixed-initiative
clustering approach helps a user learn a topic ontology &itnranfamiliar data set better
than non-mixed-initiative approaches. The comparatiskgan this study are a learning
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| Subset| reference ontology

[ root
¢ [CJ computer
D comp.graphics
D cOmp.os.ms-windows.misc
A 9 [ recreation
[ rec.motorcyeles
D rec.spons. baseball
D talk.religion.misc

[ root
o [CJ computer
D comp.sys.ibm.pe hardware
D comp.sys. mac.hartware
B 9 [ recreation
D rec.autos
D rec.sports hockey
[y talk.politics.rmisc

[ root
9 [J science
[ scielectronics
D scimed
C o ] politics
D talk politics.guns
[ talk politics.mide ast
[y cormpawindows x

[ root
¢ [ science
D scicrypt
D scispace
D o [ religion
[ alt.atheism
D soc.religion.christian
D misc.forsale

Table 5.1: We organize the 20 newsgroup data set into four subsets ititas hierarchical
structures. The hierarchy between each five newsgroups igetbrence ontology of each subset.
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task using the manual approach (Task 1) and a learning tasf tree mixed-initiative
approach (Task 2.)

Task 1refers to the manual approach for user ontology learning di&&ble the dis-
play of the clustering hierarchy and key features in therfate, e.g., the left half part in
Figure[4.2. Testers need to discover the topic ontology bybing through documents’
subjects and reading the content of some documents they.deformances of this task
will give us an idea about the baseline without communicegiorichment nor interaction.

In Task 2, testers can use the fully functional mixed-initiative stkring system to
learn the topic ontology. The system first proposes a hiki@atclustering using unsu-
pervised machine learning techniques so the tester bdgirdearning by understanding
this initial clustering. Before they modify the initial ierchical clustering, we ask testers
to skim through the clustering and give us their judgementegningfulness of each
cluster. If a cluster is considered meaningful, a testesked to give a short description.
The initial judgment reflects how a user perceives an aut@usntlustering generated
by the unsupervised clustering approach plus enriched gtenpo-user communication,
e.g., keywords and key-subjects extracted for each clustiter completing this initial
judgement, testers continue to work with the mixed-inN@tclustering system to refine
the initial clustering into a final ontology they like. Thedimontology records the user's
learning result of the mixed-initiative clustering appzba

The secondary user learning study examines if the mixdtiivie clustering system
should propose an initial hierarchical clustering in therteng scenario. It compares Task
2 from the primary study to a new Task 2u. Task 2u, testers still have assistance from
the fully functional mixed-initiative clustering systetmt the mixed-initiative clustering
system does not propose an initial clustering. A testerrisegiith a root cluster that
contains all documents and has greater freedom to intertictive mixed-initiative system
to learn an ontology.

In all learning tasks, testers are given one of the four dantrsubsets listed in Ta-
ble[5. We don't provide any prior information such as thenber of topics or the
structure of the hierarchy to testers.

Evaluation Measurement

In order to evaluate the performance of user learning, wethisédea of precision and
recall in information retrieval to compute the similaritgtiveen a learnt ontology and its
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reference ontology. Topic retrieval scores count the nurabeelevant topics, instead of
relevant documents, that appear in both learnt and referentologies. The precision
score calculates the ratio of topics in the learnt ontoldgy &lso appear in the reference
ontology. The recall score calculates the ratio of topichereference ontology also re-
covered by the learnt ontology. Each reference ontologuiregperimental setting, which
is unknown to testers when they perform learning tasks,atositseven topics including
two intermediate topics and five leaf topics. In contrast,iibmber of topics a user may
come up with can vary widely. For instance, the minimum nuni$b8 and the maximum
number is 24 in our records. When a learnt ontology contaiasyntopics, it has a higher
chance to achieve high recall but low precision. On the eoypta learnt ontology with
only a few topics may achieve high precision but low recafle Topic F-measure attempts
to balance the trade-off between precision and recall.

2 x precisionx recall

precisior+ recall (5.1)

F-measure=

It is possible that a tester identifies a topic that is not wiordvord identical to any
reference topic but is semantically equivalent to a topithareference ontology. Due to
the subjective nature of topic matching, we rely on teswgl*assessment to decide which
topics in the reference ontologies were recovered in thesr antology from the learning
sessions. We argue that self-assessment is probably the/deso evaluate performance
of the user learning tasks because it is hard or equally stiNgeto rebuke a tester’s claim
that she or he learns a topic. Although testers may have a&megdo inflate the number
of topics found, as long as this tendency is uniform amongparative tasks, the relative
comparison is still meaningful. The last column in Table Sk®ws the topic retrieval
scores of some sample ontologies.

5.1.3 User Teaching Tasks

The primary user teaching study examines whether mixeaiivie clustering helps a user
teach an ontology to a machine better than non-mixed-tvéapproaches. The compara-
tive tasks in this study are a task simulating the teachiylg 8t semi-supervised clustering
(Task 3) and a teaching task using the mixed-initiativeteltisg system (Task 4.) Testers
are told which reference ontology they need to teach thesyst advance for these tasks.
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They are also told the time limit for each task is ten minutastbey can stop whenever
they feel the teaching is sufficient.

Task 3 corresponds to the teaching style in semi-supervisedesingt The system
simply presents the pre-determined reference ontologynbuthe document-to-cluster
assignments in the beginning. Testers have to select dotarard drag-and-drop them
to proper topics in the reference ontology, which is exalikg giving the machine a
small amount of labeled examples in semi-supervised cingte The user-to-machine
communication in this task is limited to a single iteratidnfeedback on document-to-
cluster properties.

Task 4 is teaching with the mixed-initiative clustering systeno. Begin with, a refer-
ence ontology is shown to testers via a paper hint card. Alaihierarchical clustering is
proposed by the machine in this task, so a tester’s teachifog the purpose of correcting
errors in the machine-proposed clustering. Testers cartheséully functional mixed-
initiative clustering system to adjust the initial clustgrinto a clustering that is as close
to the ideal clustering of the reference ontology as possibl

The secondary user teaching study examines whether thalsmi&tive clustering
system should propose an initial hierarchical clustenmtie teaching scenaridask 4u
is the comparative task against Task 4 in this study. Thisitaslentical to Task 4 except
that there is no initial hierarchical clustering proposgdbmachine, so a tester can teach
the machine from a clean slate.

Table[5.2 summarizes the differences among these tasks arks tasks used in the
primary study and the secondary study.

| Task | scenario | approach | initialization choice | primary study| secondary study

1 manual n/a v
a user learns an . — .

2 . C machine proposes an initial clustering v v
ontology mixed-initiative

2u user starts from scratch v

3 semi-supervised n/a v
a user teaches a known . — i

4 ) . o machine proposes an initial clustering v v
ontology to a machine | mixed-initiative

4u user starts from scratch v

Table 5.2:Summary of user study tasks. The primary study examinesh&hetixed-initiative
clustering is better than non-mixed-initiative approacteder two scenarios. The secondary study
examines whether a mixed-initiative clustering systenmughpropose an initial hierarchical clus-
tering to its user.
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Evaluation Measurement

A direct measurement for user teaching is how fast a useraaplete a teaching task. If

a user can spend less time to teach a machine using approhehn Agproach B, approach
Alis better than B in terms of teaching efficiency. An indirectasurement is the clustering
accuracy of a machine’s retrained model on held-out testiizgets. This measurement
indicates how much a machine can learn from different stgfefeedback a user gives

through different user teaching approaches.

5.1.4 Participants

We target computer science students with machine learr@okgvound so they are famil-
iar with the idea and application of clustering technolsgi®articipants are assigned to
one of two groups.

Primary group is for the primary study focusing on the comparison with anthewut
assistance of mixed-initiative clustering. Testers irs thioup performed Task 1
and Task 2 under the user learning scenario, and Task 3 akdi Tasder the user
learning scenario.

Secondary group is for the secondary study addressing the initializatiaibf@m. Testers
in this group performed user learning Task 2 and Task 2u, aadteaching Task 4
and Task 4u.

A total of 16 testers were recruited. Eight of them were makwnglish speakers and
the other eight were non-native English speakers. We trigdbest to equally balance
testers’ language proficiency and subset-to-task assigisme

5.1.5 Experimental Procedure

A user study session consisted of a short demonstrationtdeks (two comparative tasks
for each scenario), and one questionnaire. In the begintiiegrincipal investigator gave
a short demonstration to help testers become familiar witthnaxed-initiative clustering
system. The demonstration included (1) how the interfapeesents hierarchical cluster-
ing information and (2) what types of user feedback testarsgive to the system. The
demonstration used a held-out email data set so testerslwotigain prior knowledge of
the text corpus used in the actual tasks.
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After the demonstration, each tester performed two contiparéearning tasks de-
pending on which study they were assigned to. In order torobotdering effects, we
counterbalanced the order of the two learning tasks. At tlieaé learning tasks, testers
were asked to draw the user ontology and answer task-refaestions in the question-
naire. Once two tasks were completed, the principal ingagir would show them ref-
erence ontologies of both tasks and ask them to assess #r@rmances in terms of
topic retrieval. After completing two learning tasks, eaester performed two compara-
tive teaching tasks, again, according to their assignnaethtet primary or secondary user
study. The order of teaching tasks was also alternated tiol dé&sters performing better
in the second attempt. However, a tester always finishedeamming tasks first and then
worked on two teaching tasks second to prevent them fromiidiegany knowledge about
the reference ontologies prior to the learning tasks. Aetigof teaching tasks, they were
asked to answer task-related questions in the questi@nritester had 10 minutes each
to complete the four tasks. In order to control for difficudtgross tasks, we used a Latin
square design in which we alternated the association battas&s and data subsets.

5.2 Results

5.2.1 User Learning Results in the Primary Group

Using the manual approach, testers wrote down topics theydfaluring the task on a
paper and summarized the learnt ontology at the end of the THse learnt ontologies
using the manual approach were coherent conceptually. Howaue to the lack of means
to summarize the large number of documents, testers tendettittopics based on a few
documents they happened to observe. The second ontologlyl@h3.B is an example of a
manually learnt ontology.

Two ontologies were recorded in the mixed-initiative leagtask. An initial ontology
was recorded according to how the tester perceived thaligltistering generated by the
unsupervised clustering approach. If some clusters peapbg the machine were not
meaningful to the tester, they could cross these clustergstiown as “[X]” in Table
[£.3.) At the end of the learning task, the final ontology, meamixed-initiatively by the
tester, was also recorded. In brief, the initial and finalotogy are referred to as the
“unsupervised ontology” and “mixed-initiative ontologyAn unsupervised ontology and
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a mixed-initiative ontology learnt by a tester are also shawTableg[5.B. In this example,

the unsupervised clustering approach helped the testemupiontology fragments, but

the machine-proposed hierarchy was noisy and inconsittethie tester. For instance,
“car” and “comp.hardware” were grouped together under éimeesbranch (they shared the
keyword “drive”.) On the other hand, the mixed-initiativetology was more conceptually
coherent than the initial fragmented unsupervised ontolog

On average] 3.0 topics were learnt by testers in the primary group using thauml
approach, and among these learnt topldstopics were shared with reference ontologies
of 7 topics. 10.5 topics were proposed by the machine’s unsupervised hlecalaclus-
terings, and testers further refined them into mixed-itivgaontologies with an average
of 8.1 topics. Unsupervised ontologies shardedl topics, and mixed-initiative ontologies
shareds.8 topics with reference ontologies. Table 5]2.1 shows theaaes and standard
deviations of topic retrieval scores of ontologies learsing different approaches by the
primary group testers. With assistance from our mixedative clustering system, testers
obtained higher topic recall, which means recognizing mopecs in reference ontolo-
gies, and higher precision, which means obtaining more iseruntologies, than other
approache@g

One thing we want to point out is that the reference ontolgi® not the only rea-
sonable ontologies. For example, the reference ontologgubet B contains a inter-
mediate “computer” topic and two newsgroup topics corragpmy to “IBM hardware”
and “Mac hardware.” Three testers (one using the manualbapprand two using the
mixed-initiative approach) learnt sub-topics of indivadinardware components such as
“cpu”, “RAM” and “monitor.” Based on our measurements, thesser-learnt topics are
not counted as retrieved topics because they are not in theenee ontology. However,
testers did express their satisfaction in this alterna@aening result and one of these three
testers even argued his learnt topics should be counted righ

When we asked testers to choose their preferred learningpagp, seven out of eight
testers chose the mixed-initiative approach. The remgiaime gave equal preference to
the manual approach and the mixed-initiative approach. eNdrose the unsupervised
approach.

1In the t-test, the precision and f-measure scores of thedvinigiative approach both reac¥ level of
significance over the manual approach and the semi-supdrajgproach, while its recall score reach@$
level of significance over the manual approach.
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| Approach| ontology score

[ root
o [CJ computer
D comp.sys.ibm.pe hardware

reference D comp.sys. mac.hartware

¢ [ recreation
ontology [ rec.autos

D rec.sports hockey
[y talk.politics.rmisc

[ root
D religion. Cults
¢ [ social issues
[ gavs
D capital punishment
[y economics R:4/7

[y cars _
manual [ politics P=4/13

¢ ] computers F=0.40
D softeare
[ hardware
¢ ] sports
D hockey
[ faothall

[ root

D hockey
M

0 b

¢ [ comp hardware R:5/7

un- . 9 [ comp.hardware + Mac p=5/10
supervised [y ba F=059

Chpa -
D macintosh hardware

[ cars

D politics/religion

Jroot

D hockey
. 9 [3 computer hardware R:6/7
mixed- D non-tac hardware (1B P:6/6

initiative Dlhlnacintlneth hardware F=0.92
D palitics/religion

[ cars

Table 5.3:This table presents a reference ontology and several samigies learnt by testers
using different approaches. Topic retrieval scores ofipi@t (P), recall (R), and F-measure (F)
are shown in the last column for each learnt ontology.
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User learning | manual | unsupervised mixed-initiative |

precision 0.42=£0.27 | 0.43£0.09 0.67 £0.28

recall 0.57£0.15 | 0.63+0.11 0.68 £0.13

macro-average F-measurg 0.43 +0.13 | 0.50 £ 0.10 0.66 £0.19
micro-average F-measure 0.48 0.51 0.67

Table 5.4:The topic retrieval scores of different user learning apphes in the primary group.
The macro-average F-measure is obtained from averagirfertheasure scores of individual user-
learnt ontologies, and the micro-average F-measure isledéd using the averaged precision and
recall scores. The result shows that with the assistant oimixed-initiative clustering system, a
user can obtain both higher topic recall and precision scibr@ non-mixed-initiative approaches.

5.2.2 User Teaching Results in the Primary Group

Figure[5.1 shows the user teaching performances of eighmigpyi group testers in terms
of user teaching efficiency and machine learning perforreandhe X-axis indicates the
amount of time that a tester spent on teaching a machine, end-axis presents the
clustering accuracy of a machine’s model after learninghf tester’s instruction. Al-
though testers were told to finish the task in ten minutes hedrnvestigator reminded
them to wrap up at the ninth minute, we didn’t shut down théesyswhen the time was
up so some testers actually took longer than ten minutesmplete their teaching. With
the assistance of the mixed-initiative system, a testervenage completed the teaching
task in7.2 minutes. Five out of eight testers finished earlier than tliergten-minute
limit because they felt the machine had learned the givesreate ontology. This early
completion didn’t happen when they were asked to teach aimadly giving labeled ex-
amples. Testers spent upd® minutes on average to complete the teaching task using the
semi-supervised approach. Many testers described thatlitie’'t feel a sense of comple-
tion so they just kept teaching until the time limit was us@dand one tester abandoned
the task early on because he disliked the semi-supervigeddaftteaching. Two testers
spontaneously told the principal investigator that havireghine learning knowledge was
important to the semi-supervised teaching approach, wilidh't happen when testers
taught the machine using the mixed-initiative approacte Miedel retraining performance
of the mixed-initiative system is marginally bett8s,63%, than the teaching-by-example
approachg2.75%. However, the standard deviation of model performancergetavhen
retraining with mixed-initiative feedbaclk 0% vs. 5.7%). Some early-stopped mixed-
initiative teaching obtains poor retraining performaneeduse the testers thought their
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Figure 5.1:User teaching performance of the primary group.

13

teaching was enough but in fact it was not. If the main purpdsefuture mixed-initiative
clustering system is to facilitate user teaching, we sugesiclude a probing mecha-
nism, such as allowing a user to reserve some documents kachaachine to label them
after one iteration of user teaching, so a user can gaugéethate successfully transfers
the knowledge. According to the result in Figlrel5.1, theedinitiative style of teaching
facilitates efficient teaching, but only marginally impesthe clustering model retraining

at the machine’s sida.

When asked to choose which teaching approach they wouldrpeafiht testers out of
eight favored our mixed-initiative clustering approach.

2In the t-test, the teaching efficiency of using mixed-iritia clustering reaches level of significance
but the machine retraining performance doesn't.
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5.2.3 Feedback Composition

Analysis of feedback composition reveals what feedbacksygre actually used by users
under different scenarios. With the assistance of the min@i@tive clustering system,
three feedback types were available to testers, and tes&zesfree to choose whatever
feedback they wanted to give at any time during the tasks. sEn@-supervised style of
teaching, on the other hand, limited testers to documenttister feedback. We recorded
a feedback log file for each task except the manual learnsig Ehe break-down analysis
for the primary group is shown in Takllle 5.5.

Task cluster-to-cluster feature-to-cluster document-to-cluster
feedback feedback feedback
2: mixed-initiative learning 19.1 5.4 1.3
3: semi-supervised teaching n/a n/a 51.3
4: mixed-initiative teaching 15.1 20.4 0.8

Table 5.5: Average numbers of different feedback types given by theany group of testers. It
shows testers preferred giving feedback on conceptuakptiep.

The comparison between the semi-supervised style of tegq¢hask 3) and the mixed-
initiative style of teaching (Task 4) strongly indicateatttesters didn’t like to give document-
to-cluster feedback, e.g., teaching by example, if theyccteach in a more conceptual
level such like feedback on feature-to-cluster or clustettuster properties. In fact,
document-to-cluster feedback was almost ignored (oytimes per mixed-initiative
teaching task) when there were other choices. The enrichofescommunication lan-
guages in our mixed-initiative clustering provided exatilese desirable choices for users.

The comparison between Task 2 and Task 4 highlights thereliftee between user
learning and user teaching. In the learning task, testerd omre cluster-to-cluster feed-
back, e.g., moving clusters around or merging/splittingst@rs, to explore the space of
possible user ontologies. When testers intended to teachchine an ontology, they
chose to give more feature-to-cluster feedback, e.g.gaisgj keywords or key-subjects
to clusters.

5.2.4 Secondary Group Initialization Choice

The secondary group of testers performed the comparasike £a 2u, 4 and 4u because we
want to answer the question “should a machine propose aalinierarchial clustering?”
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In Task 2 and 4, testers were presented with an initial hlelreal clustering proposed by
the machine, which we refer to as “machine initializationtiile Task 2u and 4u started
from the user’s side with no initial hierarchical clusterjnvhich we refer to as “user
initialization.”

Table[5.6 shows the topic retrieval scores and user praferen the initialization
choice in the learning scenario. With an initial hierarehiclustering proposed by a ma-
chine, testers on average foufid topics, in which5.25 topics could be found in ref-
erence ontologies of 7 topics. Without a machine’s initiagosal (user initialization),
testers found fewer topic§,5, and only4.37 topics shared in reference ontologies. Ma-
chine initialization achieved lower precision but bettecall and overall F-measure than
user initialization. When asked about their preference, testers in the secondary group
favored an initial hierarchical clustering proposal whieee favored no such proposal.

| User learning | machine initialization user initialization|

precision 0.62 +0.18 0.68 +0.27
recall 0.75+0.13 0.63 £0.15
F-measure 0.67 +£0.14 0.62 +0.15
user preference 5/8 3/8

Table 5.6: The machine initialization has better overall F-measugkiafavored by more testers
than the user initialization.

| User teaching | machine initialization user initialization|

time (min) 7.66 £ 3.77 5.89 + 2.87
accuracy (%) 78.07 + 7.89 83.70 £ 5.66
user preference 2.5/8 5.5/8

Table 5.7:User initialization achieves better user teaching perforee than machine initialization
and is favored by testers.

Table[5.Y shows the result of the initialization choice feeuteaching. When testers
started teaching from scratch, the retrained model actig¥&0% average accuracy in
predicting held-out testing sets. The performance degraa&8.07% when testers had
to correct errors in the machine’s initial hierarchicalsterings. The average time spent
on teaching the machine when testers started without aalidiistering was also shorter,
5.89 minutes compared t8.66 minutes with initial clusterings. Unlike the user learning
study where more testers favored starting with a machindisli hierarchical clustering,
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testers favored no such initial clustering in the user temcktudy. This result gives a
intuitive guideline about the initialization of mixed-trative clustering: if a user already
has enough knowledge of the data, it is good to give the usee mantrol; if a user

has limited prior knowledge about the task, it is good for &hi@ge to propose an initial
clustering.

| Language proficiency| native speakefsion-native spks

user | machine init. 2/4 3/4
learning| user init. 2/4 1/4
user | machine init. 0/4 2.5/4
teaching| user init. 4/4 1.5/4

Table 5.8:The impact of language proficiency on the user preferenckeoinitialization choice.
The nominator number indicates how many native or non-eapeakers prefer this initialization
choice, and the denominator indicates there are four natigefour non-native speakers in this
study.

Another interesting finding is about the impact of languagdigiency. There are four
native speakers and four non-native speakers in the segostlaly. From Table 518, it
seems that native speakers are more likely to prefer nalimitistering, and non-native
speakers are more likely to prefer an initial clusteringpmsed by a machine. However,
more testers are needed to statistically justify this figdin

5.2.5 Suggestions from Testers

Testers were asked to list other feedback types they wdiddhie system to have, and ex-
isting feedback types they think the system should get rid tfie questionnaire. Before
discussing individual suggestions, we want to remind resatlteat our testers are computer
science students with machine learning background. Theegnare aware of related infor-
mation technologies than average users are. As a consexjsamee of their suggestions
are on the complicated end of the spectrum.

The most popular suggestion is the integration of a “keyvsmarch” function. Four
testers suggested it based on two different purposes. Sestegd wanted to use the key-
word search function as a judgement tool for adding a newctoyo ontologies. The
idea behind is that if a topic does exist in a data set, theveldtbe enough documents
containing the most prominent keywords of the topic as thgpettive evidence. Some

90



other testers wanted to teach a machine a topic by giving #ehime example documents
that contain one or more topic-related keywords. Two othiggsstions also exploit the
feature-to-cluster properties in different ways: (1) twsters suggested the system should
allow users to directly add keywords to a cluster, and (2)tester wanted the interface to
include information of how many documents affiliated witheatiure.

Enhancing transparency of a machine’s clustering modélassecond most popular
suggestion. Three testers suggested to present a maatonédence score for each clus-
ter so they can prioritize their learning efforts. One testggested to measure and present
a homogeneous score for each cluster. The homogeneousacassist a user in judging
whether a cluster is pure enough or need further splitting.

Two testers suggested automatic retraining instead of wwert user-controlled ini-
tiative exchange mechanism. However, one of the two testessmade this suggestion
also revealed his worries about possible constant inteongif the system can retrain its
clustering model automatically. Two testers suggestadirehg-by-example feedback,
which we implemented but did not employ in these user stuskeause the retraining-by-
example feedback is hard to perform in practice.

Two testers concerned about the manual decision of the nuoflotusters in cluster
splitting. One suggested that a machine should decide atitcatly. Another tester sug-
gested to show multiple clustering results, each with adkfit number of clusters, and let
a user pick which one she likes.

Some suggestions are about highlighting specific informmatiOne testers wanted
the system to highlight keywords in the content of docume@se wanted to see the
differences between two clustering revisions highlight€he suggested to display tag
clouds for document subjects in each cluster.

With regards to necessity of existing feedback types, tvetets thought feedback
types of confirming and removing a document are not necesssiguse it is more con-
venient to move documents around. One testers thought ¢mdirrming or removing
feature-to-cluster and document-to-cluster propertiest@o complicated and time con-
suming. One tester stated that the initial clustering psapbarred his exploration.

Other suggestions include better automatic topic namiag the top two keywords,
allowing multi-cluster merging in addition to current pairse merging, multi-label clus-
tering capability, and sticky keywords so they can be mdaipd later. Many testers also
commented our system is easy to use.
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5.3 Summary

In this chapter, we first discuss how to design user studiesesman evaluate the feasibility
of a mixed-initiative clustering system, and then provedteantages of our low-latency
mixed-initiative clustering system by results from thernustedies.

We design the user studies to test two scenarios, a learogmaso where a user tries
to learn a topic ontology from an unfamiliar data set, anchalieng scenario where a user
knows the ontology in advance and wants to transfer this keabye to a machine.

The results of the primary user study show that our mixetiaiive clustering system
helps users in both scenarios. Users can learn more rel@ndrdoncise ontologies using
the mixed-initiative clustering system than a manual apghoor an unsupervised clus-
tering approach. Users can also teach more efficiently wisergwour mixed-initiative
system than when they use the teaching-by-example apphoaemi-supervised cluster-
ing. However, despite this reduced demand on the user’s tiraéerative mixed-initiative
process converges to a machine’s clustering model withairaccuracy to the teaching-
by-example approach. From users’ point of view, mixedktiite learning and teaching
are significantly favored over non-mixed-initiative appcbes. The analysis of feedback
composition clearly indicates that users prefer givingosgtual-level feedback such as
adjusting the clustering hierarchy and confirming keywars cluster over detailed feed-
back such as labeling documents. Users want enriched coroatiom in the interactive
process.

As the secondary study shows, it is best to choose the indtadn method according
to how much prior knowledge a user knows. If a user has linptéar knowledge about
the mixed-initiative clustering task, providing an init@ustering may better assist the
user. Otherwise, it is better to give the user control overitfitial clustering. Language
proficiency may be another factor that affects the initagtlian choice.

Testers also gave our system many useful suggestions. Tsigpmuoninent ones are
the integration of a keyword search function, which is hafwdyisers in both learning and
teaching scenarios, and enhancing transparency of a neélksinstering model such as
presenting a confidence score or a homogeneous score focleatdr.

The success of applying the mixed-initiative clusteringragch under both the teach-
ing and learning scenario validates our main thesis thakediritiative clustering can
help a user achieve better clustering results than nonexyinigative approaches due to
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the enriched communication and the interactive learnirtjtaaching between a user and
a machine. These studies also raise more rigorous resdaatibrges. To name a few,
can mixed-initiative approaches help a user in learningaching more difficult ontolo-
gies? Can users without machine learning background usedaimtiative learning sys-
tems? How to theoretically consider a user’s cognitive lwmdd the design decisions of
mixed-initiative learning systems? We hope the design ef ggidies and findings in our
experimental results provide a good starting point for pung these challenging research
directions.
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Chapter 6
Conclusion

Mixed-initiative learning has become an emerging researeh in machine learning com-
munities. By our definition, a mixed-initiative learningstashould have the following
characteristics. First, a user and a machine collaboraenixed-initiative task by mak-
ing interleaved contributions to the task. Second, the aiséthe machine can both update
their model assumptions by learning from the other’s cbntrons. We consider our study
on mixed-initiative clustering as a case study of mixediative leaning. In particular, we
study mixed-initiative “text” clustering where a user anthachine work collaboratively
to identify a topic ontology within a large set of documents.

The motivation of this research comes from problems we itledtwhile applying un-
supervised and semi-supervised clustering techniquegpme\vaous study. Traditionally,
text clustering is studied using unsupervised techniquesea machine builds the model
alone, but an unsupervised clustering result is usualfgmiht from a user’s ideal cluster-
ing result. We call this difference “clustering mismatct8emi-supervised clustering is
proposed to solve the clustering mismatch problem in whicbracle user can provide a
small amount of labeled examples. However, to be qualifiethagacle user, a user needs
to be a domain expert, which means she doesn’t need to leatrg knowledge engineer,
which means she already knows how to teach. In practice,nbigealistic to assume
that a user is an oracle user. We raise the “user teachindepndlbo challenge the as-
sumption that an oracle user is a knowledge engineer. Te slod/user teaching problem,
one should seek intuitive user feedback types so a user camuonicate her conceptual
ideas to a machine rather than requiring a user to give iosthased information, which
is typically requested by a semi-supervised clusteringréttygm. On the other hand, the
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“user learning problem” challenges the assumption thatradl® user is a domain expert.
To solve the user learning problem, a machine has to providegh information to as-
sist a user when the user is still in the process of developargntology for a specific
clustering task.

Our study on mixed-initiative clustering solves the usacteng problem and the user
learning problem by considering a non-oracle user as almidor with a machine. The
first essential component required for building a mixediative clustering system is the
capability that a machine and a user can learn from each atieeteach each other in-
teractively. Next, it is important to investigate what tgpe information are effective and
efficient for teaching and learning in this interactive lodpcluding those effective and
efficient types of information for communication betweenam+oracle user and a ma-
chine, which we refer to as communication enrichment, iglaressential component of
mixed-initiative clustering.

Given these two essential components, the main thesissoétilndly ismixed-initiative
clustering can help a user achieve better clustering rasiilan non-mixed-initiative ap-
proaches due to thenriched communication and theinteractive learning and teaching
between a user and a machine. order to examine our thesis, we have studied commu-
nication enrichment and interactive learning and teacfangnixed-initiative clustering,
built a system with all new knowledge we have learnt by stngyihe two essential compo-
nents, and then completed user studies to evaluate whetheracle users can eventually
achieve better clustering results using this system. Warsnme our contributions in this
study as follows.

6.1 Contributions

The first contribution of this study is providing a framewddt mixed-initiative cluster-
ing. This framework consists of a machine learning phaseaehime teaching phase, a
user learning phase, and a user teaching phase. These pras®mnected in an inter-
active loop that allows bi-directional communication beém a user and a machine. The
bi-directional communication languages define types afrimtion exchanged in an inter-
face. Thecomputer-to-user communication languageL.._.,, defines types of properties
a machine extracts and presents in the interface, andgbeto-computer language
L,_.., defines types of user feedback supported by the interfaaeh &ser feedback type
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corresponds to a specific way to confirm or correct machioggsed properties. Given
this framework, we can formally define communication enmeimt as adding new types

of properties and allowing new types of user feedback in &rfsce. In particular, we
consider communication enrichment by introduccuanceptual propertiessuch as key
features of clusters and hierarchical relationships betvatusters in order to help a non-
oracle user learn and teach. By including multiple propartyg feedback types in com-
munication languages, communication robustness is bpilhisiwell. We also identify
the necessity ofoordination between the communication languages and the machine’s
clustering model from this framework.

The second contribution comes from successfully buildengegal systems using our
proposed framework. Two systems are built with increméntahriched communica-
tion languages. We demonstrate in Chapter 3 how to enrichmzoritation languages in
mixed-initiative clustering by adding two conceptual pedy types tol._.,, and various
feedback types on conceptual properties.jo... The first conceptual communication in-
troduced is feedback on key features of each cluster. Fongbea if a machine extracts
“espn” as a keyword for a “sport” cluster, a user can confiria tbature-to-cluster prop-
erty. The second conceptual communication enrichmentising user feedback on hi-
erarchical clustering. For example, if a machine misplactmmseball” cluster underneath
a “finance” cluster, a user can correct this inappropriatemachild relationship by mov-
ing the “baseball” cluster to a suitable place in the hidrgréVith conceptual properties, a
user can understand the clustering results more easilj W&ftous types of user feedback
available, a user can teach a machine more intuitively. dieioto achieve the coordina-
tion for mixed-initiative clustering, we propose a new ¢&rghg model, the SpeClustering
model, which provides a natural way to adjust its parametecsrding to user feedback
on key features, and a mixed-initiative SpeClustering rtlgan to adapt multiple types
of user feedback. For coordination in hierarchical mixeitiative clustering, a cascad-
ing version of the mixed-initiative SpeClustering algbnit trains a set of SpeClustering
models as classifiers for the root node and intermediatesnotlee successful building
of mixed-initiative clustering systems validates our femork and also demonstrates the
possibility to develop machine learning algorithms to waikh conceptual properties.

The third contribution comes from the study of the other esabecomponent, low-
latency interaction, in mixed-initiative clusterind.ow-latency interaction refers to a
mixed-initiative learning environment in which a user catrain a machine’s model at
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any time and a machine can complete its initiative of leayrand teaching in a few sec-
onds. We examine several practical issues occurred onlyeraw-latency interactive
environment. These issues include the timing of initiaixehange, how to retrain a ma-
chine’s clustering model with insufficient and unbalancedrieedback, how to resolve
feedback contradictions, how to build a user’s feedbackigemcy, and how to design a
mixed-initiative interface. Below is our summarizationgafidelines for general mixed-
initiative learning problems:
1. Model retraining should be as fast as possible. If a ushruses a subset of the
feedback language, a machine can use a cheaper machineadeaigorithm. Our
rule of thumb is to control the time spent on each model neingiunderl0 seconds.

2. Because a user tends to be lazy and may not have enoughrdaanttdsnowledge of
how machine learning algorithms work, it is an importantadafity for a machine
to learn from insufficient and unbalanced user feedback.

3. The goal of a mixed-initiative clustering system is tophaluser develop her still
evolving user ontology. Under this goal, consecutive maelulustering revisions
shouldn’t make dramatic change in order to preserve a uegiding clustering
ontology, but should make specific change by extrapolatssy feedback.

4. Feedback items given by a user may contradict one anosipecilly when the
user is allowed to give various types of feedback in mixatiative clustering. A
mixed-initiative system developer should check poterfeadback contradictions
every time a new feedback type is added. A simple mechanisestive feedback
contradictions is to let later feedback overwrite the pwasgicontradicting one.

5. A checking mechanism is necessary to filter out undesinader feedback and edu-
cate a user’s feedback proficiency.

6. Don’t generate numeric indices as cluster labels. Genézat labels even the auto-
matic text labeling algorithm is far from perfect.

7. The interface design should arrange property panelsdioceea user’'s cognitive

effort, and provide intuitive feedback interaction.

Using the knowledge learnt from the second and third coumtiobs, we build a fi-
nal mixed-initiative clustering system that integratesiawunication enrichment and low-
latency interaction capabilities. User studies are cotetlito examine the effectiveness
of this full-fledged system.
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The fourth and last contribution comes frahe design of user studiegand user study
results. Evaluating a mixed-initiative clustering sysiemot easy. We solve the evaluation
problem by designing comparative tasks under separatelem®ing and user teaching
scenarios. This separation covers most of use cases fodsmiative clustering, and
allows comparison with non-mixed-initiative approachksthe user learning scenariq
a user develops a topic ontology from an unfamiliar data aed, in theuser teaching
scenarig a user knows the ontology and wants to transfer this knayded a machine.
Results of user studies confirm our main thesishat mixed-initiative clustering can help
a user achieve better clustering results than non-mixiietie approaches. The analysis
of feedback composition clearly indicates that users pi@aceptual properties and like
to give conceptual-level feedback. From users’ point ofwimixed-initiative learning and
teaching are significantly favored over non-mixed-initi@approaches. We also learn that
a mixed-initiative clustering system should decide itsiatization choice based on how
much prior knowledge its user possesses.

6.2 Future Work

There are many future research opportunities in mixedainre clustering and the more
general research area of mixed-initiative learning.

To expand the study on mixed-initiative clustering, we cpplatechniques developed
in this dissertation to intelligent information retriev@8lome search engines have success-
fully applied autonomous clustering techniques to groupdar retrieved results together
into clusters|[54]. Given an autonomous clustering oneeétl results, mixed-initiative
clustering techniques can further assist users’ folloveixggloratory searching activities.

Another future research topic we are particularly intexésh is how to develop a
mixed-initiative collaborative filtering/recommendatisystem. We believe our frame-
work of mixed-initiative clustering can be applied to thiswmixed-initiative learning
task. Let’s use the popular online DVD subscription seryvNetflix, as an example. If
we want to build a mixed-initiative recommendation systemdplace Netflix’s current
recommendation system, we can analyze this new mixeginiti learning task in terms
of its communication languages and collaborative filterahgorithm. As mentioned in
Section 2.8, the coordinated computer-to-user languagg;to-computer language and
machine’s clustering model can be considered as the signata mixed-initiative learn-
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ing system. The Netflix’'s recommendation pages alreadyeptats subscribers various
types of information about movies it recommends, such asd sammary, cast, directors,
genres, comments from other subscribers, reasons of reendation, and prediction on
user ranking, which define a well-enriched computer-ta-lesseguage,L. ... The other
direction of communication enrichment is slightly enridrees well. Its user-to-computer
language ., .., allows subscribers to edit their genre preference (confgrand disap-
proving genre properties) in addition to rank individualigs (correcting the machine’s
prediction on ranking properties.) The trend of emphasgigi@nres in its recommendation
explanations and allowing user edition of genre preferditceur finding that conceptual
properties are good to have in any human-computer commiondanguages. However,
this user-to-computer language still misses feedbackstgmemany property types that
Netflix web pages also provide. One way to further enrich #es-tio-computer language
Is to assume each link a subscriber clicks as implicit corgtrom feedback. For example,
a subscriber follows a link of an actress indicates her @stiein this actress. She may also
be interested in other movies this actress played. The meenge is how to develop a
suitable collaborative filtering algorithm/., to learn from newly introduced user feed-
back types, especially the implicit feedback types. We caagine building this mixed-
initiative recommendation system by fixing._,, and bootstrappind.,_.. and M., i.e.,
introducing one feedback type at a time to the user-to-caenmommunication language
and coordinating the collaborative filtering algorithmeatn from this new feedback type.

Other research opportunities include but not limited toarsthnding user behaviors
and expectation in a mixed-initiative learning task, degigidelines based on users’ cog-
nitive load, and systematic analysis on machine learniggrahms and their coordinated
property types and feedback types.

Given our experiences in mixed-initiative clustering, vediéve that approaching mixed-
initiative learning as a bi-directional learning and taaghtask between a user and a ma-
chine helps users more substantially than studying it asi@nactive user-teaching and
machine-learning task.
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