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Abstract

Mixed-initiative clustering is a task where a user and a machine work col-

laboratively to analyze a large set of documents. We hypothesize that a user

and a machine can both learn better clustering models through enriched com-

munication and interactive learning from each other.

The first contribution of this thesis is providing a framework of mixed-

initiative clustering. The framework consists of machine learning and teaching

phases, and user learning and teaching phases connected in an interactive loop

which allows bi-directional communication. The bi-directional communica-

tion languages define types of information exchanged in an interface. Coordi-

nation between the two communication languages and the adaptation capabil-

ity of the machine’s clustering model is the key to building amixed-initiative

clustering system.

The second contribution comes from successfully building several systems

using our proposed framework. Two systems are built with incrementally en-

riched communication languages – one enables user feedbackon features for

non-hierarchical clustering and the other accepts user feedback on hierarchi-

cal clustering results. This achievement validates our framework and also

demonstrates the possibility to develop machine learning algorithms to work

with conceptual properties.

The third contribution comes from the study of enabling real-time interac-

tive capability in our full-fledged mixed-initiative clustering system. We pro-

vide several guidelines on practical issues that developers of mixed-initiative

learning systems may encounter.

The fourth contribution is the design of user studies for examining effec-

tiveness of a mixed-initiative clustering system. We design the studies accord-

ing to two scenarios, a learning scenario where a user develops a topic ontol-

ogy from an unfamiliar data set, and a teaching scenario where a user knows

the ontology and wants to transfer this knowledge to a machine. Results of the

user studies demonstrate that mixed-initiative clustering has advantages over

non-mixed-initiative approaches in terms of helping userslearn an ontology

as well as helping users teach a known ontology to a machine.
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Chapter 1

Introduction

Historically, text clustering has been approached using fully autonomous algorithms. We

consider here mixed-initiative clustering involving an interactive loop between a machine

and a user. To illustrate the idea, consider the problem of organizing a large collection

of research papers into a set of research categories that is meaningful for you. A fully

autonomous clustering algorithm will produce a clusteringthat optimizes certain statisti-

cal properties, but it is unlikely to match your own understanding of research sub-areas

because the the statistical distributions of words do not capture the semantic subtleties you

have in mind. Furthermore, manually organizing these papers is also unattractive because

it is both tedious to assign thousands of papers to categories and also because you may not

know the optimal categories until you spend enough effort going through the actual data.

This thesis studies this new type of clustering – mixed-initiative clustering – as an in-

teractive learning process between a machine and a user to solve the clustering problem

together. We want to emphasize that mixed-initiative clustering focuses on not only the

machine clustering perspective, but also on helping a user understand the current clustering

result and modify the result easily to a better revision according to the user’s evolving un-

derstanding of the data. Furthermore, we consider this study on mixed-initiative clustering

as a case study of a more general class of mixed-initiative leaning problems.

The idea of studying mixed-initiative clustering comes from an early work of extracting

user activities on a personal workstation.
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1.1 Activity Extractor

In 2003, I joined a research project called CALO, which was abbreviated for “Cognitive

Assistant that Learns and Organizes” [25]. The project spanned across several machine

learning research areas in an attempt to build an intelligent assistant for workstation users

[8]. My participation to the CALO project was to extract useractivities on a workstation

and identify what activity the user is working on so the intelligent assistant could provide

activity-specific information or services to the user.

In this research [38], we attempted a combinatorial approach consisted of clustering

emails based on their text content and social network cliques, and constructing a structured

representation of each cluster (activity), associating calendar meeting and person names

with the activity. Figure 1.1 is an example of our activity exaction results. We obtained

some good activity descriptions by this combinatorial approach even from noisy clustering

as long as the majority of documents in a cluster were associated with the same activity.

• Activity Name: CALO ActivityExtractor

• Keywords (omitting person names): ActivityExtractor, TFC, IRIS, clustering, heads, emails, collected,
clusters, SRI, ...

• Person Names: Adam Cheyer (0.49), Ray Perrault (0.36), Hung Bui (0.32), Melissa Beers (0.30), James
Arnold (0.28), Jack Park (0.26), Sophie Wang (0.25), Tomas Uribe (0.25), jeanne ledbetter (0.24), Leslie
Pack Kaelbling (0.24), . . .

• Meetings: CALO TFC telecon (0.59), CALO phone call (0.55), SRI Meeting - Chicago (0.48), SRI TFC
Telecon and quarterly rpt (0.47), SRI visit. Bill and Ray. Call Melissa Beers when arriving (0.47), CALO
annual mtg at SRI (0.45), . . .

• Primary Senders: tom.mitchell@cmu.edu (75), sophie.wang@cs.cmu.edu (20), adam.cheyer@sri.com
(16), perrault@ai.sri.com (14), tgd@eecs.oregonstate.edu (13), . . .

• Primary Recipients: tom.mitchell@cmu.edu (94), adam.cheyer@sri.com (40),
william.cohen@cs.cmu.edu (35), perrault@ai.sri.com (19), . . .

• Emails: [email125], [email72], . . . (245 emails in total)

• User Activity Fraction : 245/2822=0.086 of total emails

• User Involvement: user authored 30% of email (default 31%)

Figure 1.1: An example of an activity description created automatically from clustering
and information extraction.

The lesson learnt was that incorporating unsupervised clustering and information ex-
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traction techniques enhances a user’s comprehension of autonomously generated results.

However, the overall performance was still far from perfection, which we suspected was

what an average user would expect from an intelligent assistant. By investigating pos-

sible reasons behind the huge gap between an autonomous clustering result and a user’s

ideal result, we identified three major problems (the clustering mismatch problem, the

user teaching problem, and the user learning problem) in theunsupervised clustering ap-

proaches. The continuing research to tackling these problems led to this thesis work on

mixed-initiative clustering.

1.2 From Unsupervised Clustering to Mixed-Initiative Clus-

tering

1.2.1 Clustering Mismatch Problem

The first and obvious problem of unsupervised clustering is the difference between a ma-

chine’s autonomous clustering result and a user’s ideal result. We call this difference

“clustering mismatch.” An unsupervised clustering algorithm typically produces a cluster-

ing that optimizes certain statistical properties of data according to its model assumption,

which is unlikely to match a user’s understanding of major topics in the data. In practice,

an autonomous clustering generated by an unsupervised clustering algorithm is rarely per-

fect to users.

Let’s use a fabricated task of sorting a set of pictures into two clusters to visualize

clustering mismatch. Figure 1.2.1(a) represents a possible autonomous clustering for this

task, while Figure 1.2.1(b) represents that a user named Maureen wants to have a cluster

of cats and a cluster of dogs, in which two semantic meaningful topics are applied as her

clustering model for this sorting task. From Maureen’s point of view, there are several

errors in the autonomous clustering (Figure 1.2.1(a)) thatcontradict her clustering model

(Figure 1.2.1(b).)

Furthermore, different users may have different preferences of meaningful topics about

the same data. Given the same set of pictures as in the above mentioned task of separating

them into two groups, Figure 1.2.1(b)(c) illustrates two different users’ clustering models:

Maureen wants to highlight the difference between animal species while Joe wants to

emphasize the difference between real animals and animatedones. As a consequence,
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(a) A possible clustering result generated by a computer on this set of pictures.

(b) Maureen’s preference of splitting the same set of pictures is by animal species.

(c) Joe’s preference is to separate real animals to animatedones.

Figure 1.2: A fabricated task of sorting a set of pictures into two clusters visualizes the
clustering mismatch problem. Due to diversified user preferences on what are meaningful
topics for this clustering task, the clustering mismatch for Maureen, the difference between
(a) and (b), is different from the clustering mismatch for Joe, the difference between (a)
and (c). User involvement is important for a machine to correct clustering errors and learn
the right set of topics for each user.
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even in the perfect situation where an unsupervised clustering algorithm can produce a

clustering result of no clustering mismatch, without knowing the user is Maureen or Joe, a

machine still doesn’t know how to choose between more than one possible user clustering

model. User involvement is important for a machine to correct clustering errors and learn

the right preference for each user. The most popular user involvement is requesting a user

to label some examples for each target cluster. In machine learning literatures, the study

of using a small amount of labeled examples to improve clustering quality for a majority

of unlabeled examples is called semi-supervised clustering [39][7][26].

1.2.2 User Teaching Problem

Once a user is involved in a clustering task, the user teaching problem asks what is a good

communication language a user can use to teach a machine. Theteaching-by-example

approach in semi-supervised clustering can be considered as one specific way of commu-

nicating a user’s clustering model to a machine. We believe it is not the only way. For

example, in the fabricated task, Maureen wants a cluster of cats and a cluster of dogs.

Using the teaching-by-example approach, Maureen is restricted to teach a machine some

examples of cats and dogs, or correct errors one by one in the mismatched clustering re-

sult, e.g., Figure 1.2.1(a). Wouldn’t it be more intuitive for her to teach a machine “I want

a cluster of cats and a cluster of dogs” directly?

The challenges for addressing the user teaching problem include (1) enriching intuitive

types of user feedback so that a user can communicate abstract ideas about her clustering

model to a machine, and (2) developing machine clustering algorithms so a machine can

adapt to new user feedback types.

1.2.3 User Learning Problem

The user learning problem addresses a even more fundamentalproblem in a clustering

task: when a user is not familiar with data and still needs time to figure out what are mean-

ingful topics in the data, can a clustering system provide enough information to assist the

user finding these meaningful topics? In other words, it is necessary to enrich a machine’s

communication to a user so the user can understand the data and identify meaningful top-

ics in the data quickly. For example, keywords in Figure 1.1 help a user figure out which

activity this cluster is about better than reading content of 245 emails clustered to this

5



cluster. Solutions to this problem are critical because a user who resorts to clustering tech-

niques usually wants to discover new topics in the data rather than teaching a machine a

clustering model she already knows. The user learning problem is often not addressed in

semi-supervised clustering, because typically, semi-supervised clustering assumes its ex-

amples are labeled by an oracle user, meaning the user understands targeting categories a

priori.

We propose to solve the user learning problem through mixed-initiative clustering. We

believe when a user cannot be an oracle knowledge provider toa machine, she can still be

a good collaborator as long as a machine and a user are able to provide useful guidance to

each other.

1.3 Thesis

The goal of this research is to move unsupervised and semi-supervised clustering forward

to mixed-initiative clustering in order to solve the clustering mismatch problem, the user

teaching problem, and the user learning problem. In order toachieve this goal, mixed-

initiative clustering should enhance the communication between a user and a machine so

they can learn and teach each other efficiently, and be able tointeract with each other in

real time. We hypothesize that mixed-initiative clustering can help auser achieve better

clustering results than non-mixed-initiative approachesdue to the enriched communica-

tion and the interactive learning and teaching between a user and a machine.

Contributions of this thesis include a framework for mixed-initiative clustering, suc-

cessfully building systems with enriched communication languages and real-time interac-

tion, and design of user studies for examining effectiveness of a mixed-initiative clustering

system. Results of the user studies prove our hypothesis is correct – mixed-initiative clus-

tering indeed has advantages over non-mixed-initiative approaches.

The remaining of this thesis is organized as follows. Chapter 2 introduces our frame-

work for mixed-initiative clustering. Chapter 3 and Chapter 4 describe the details of en-

riching communication in mixed-initiative clustering systems and practical issues encoun-

tered when building an interactive system. In order to test the hypothesis of this thesis,

Chapter 5 proposes a user study design and its experimental results to examine the effec-

tiveness of mixed-initiative clustering. The last chapterconcludes this thesis study.
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Chapter 2

Framework of Mixed-Initiative

Clustering

Mixed-initiative clustering consists of an interactive loop between a machine and a user in

which the machine and the user work as partners. They need to learn from each other and

teach each other about their up-to-date model revisions, which are expected to converge

to each other. The communication between the two are carriedout through an interface

specifically designed for mixed-initiative clustering. Figure 2.1 depicts this relationship.

Model

Communication

Machine Interface User

Machine Learning

Machine Teaching User Learning

User TeachingLu→c

Lc→u

Mc Mu

↑

↑
−→ −→

↓

↓

←−←−

Figure 2.1: The framework of mixed-initiative clustering.A mixed-initiative clustering
system consists of a machine and a user. They communicate with each other through an
interface. The interactive loop iterates through the machine learning phase, the machine
teaching phase, the user learning phase and the user teaching phase.
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Let’s start to examine the interactive loop from the machine’s side. A machine learns

its clustering model,Mc, from statistical distributions of words in the text corpusand from

all previously accumulated user feedback. Then the machineneeds to teach its current

model to its user partner. Since most clustering models are not in a human-readable form,

a machine needs to extract human-readable properties ofMc such as a graph depicting its

hierarchy of clusters and keywords associated with each cluster in the hierarchy. In addi-

tion to properties extracted fromMc, information of instances and target clusters is also

necessary for a user to gain basic understanding of a clustering task. Different property

types describe information about the clustering task andMc from different aspects to a

user. The computer-to-user language,Lc→u, is defined by all types of properties that the

computer uses to communicate to the user.

The user side also has a learning phase followed by a teachingphase. In the learning

phase, a user develops her own clustering model,Mu, from reading the machine-proposed

properties in the interface. A user’s clustering model is anontology of meaningful top-

ics discussed in the data.1 The user then teaches her ontology to the machine through

confirming good properties and correcting inappropriate properties. This is also known

as user feedback, and all user feedback types allowed in the interface define the user-to-

computer language,Lu→c. As this process iterates, the agreement between the user and

the machine on all properties increases. The machine’s clustering model, which is learned

from these properties, and the user’s clustering model, which the user applies in modifying

inappropriate properties during the process, can hopefully converge.

2.1 Active Learning as a Special Case of Mixed-Initiative

Clustering

Active learning[48][10] is a subfield in machine learning that also consists of an interactive

loop between a machine and a user. In the interactive loop of active learning, the machine

asks an oracle user a query most likely to decrease overall uncertainty, and the oracle user

answers the machine by providing a label for the query. A typical query posted by an

1We use “user clustering model” and “user ontology,” interchangeably in this thesis. “User clustering
model” emphasizes that it is the counter-part of the machine’s clustering model in the mixed-initiative clus-
tering framework. “User ontology” emphasizes that a user excerpts from her real world knowledge some
meaningful topics into a specialized hierarchical ontology in order to solve a clustering task.
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active learner is one unlabeled data instance, for example,a document in text clustering.

Through the interaction, an active machine learner is expected to progressively shrink the

plausible region of its model hypothesis space.

Active learning can be considered as a special case of mixed-initiative clustering. The

research of active learning mainly focuses on the machine learning phase in our frame-

work. Strategies are proposed to decide which query is the best query to ask a user. The

machine teaching phase presents the list of target clustersand the query selected by the

active learner. No additional information is extracted to further explain the query to the

user. Since the user in active learning is assumed to be an oracle user, which means the

user already establishes a clustering model of the target clusters, the user learning phase

is neglected in active learning. The user identifies the cluster label of the query in the user

teaching phase by applying the existing user model to the query.

Figure 2.2 illustrates the idea of applying our framework toanalyze communication

languages in active learning. Although communication in active learning study is mostly

simulated, we visualize how an active learning interface for a text classification task should

look like on the right hand side of the figure. The computer-to-user language,Lc→u,

summarizes what types of properties a machine discloses to auser through the interface.

In the active learning case, its computer-to-user languagecontains only the basic clustering

task information of target clusters and (unlabeled) instances one at a time. We present this

computer-to-user language as two unfilled rectangles, one for target clusters and one for

queried documents, underneath the simulated interface. There is no edge between the

unfilled cluster and document rectangles because the document-to-cluster property type

is not included in thisLc→u. In the other communication direction, the user-to-computer

language,Lu→c, defines what types of user feedback are allowed in the interface In active

learning,Lu→c contains only one feedback type, giving an instance a cluster label. In

other words, the labeling feedback adds new document-to-cluster properties to share with a

machine. Beneath the interface illustration, we representthe user-to-computer language by

drawing a new edge between clusters and instances and highlighting the labeling feedback

type in a colored rectangle. The communication languages inactive learning are quite

primitive because an oracle user doesn’t need to learn and always knows how to answer.

Proactive learning study [14] addresses the unrealistic oracle user assumption in ac-

tive learning and argues the importance to learn from imperfect oracle users who make

individual errors, and sometimes are reluctant to give feedback. However, this study still

9



(a) In an active learning interface, the computer-to-user’s communication,Lc→u, contains
target clusters and one unlabeled instance.

(b) The user reads the document and then labels the document to one of target clusters. The
user-to-computer’s communication,Lu→c, contains one feedback type, giving an instance
a cluster label.

Figure 2.2: An illustration of communication languages used in active learning.

assumes that a user’s role is a teacher and a machine’s role isa learner so it suggests a

machine-learning centric approach – combining teaching efforts from multiple imperfect

oracle users. Mixed-initiative clustering, on the other hand, suggests a user-learning cen-

tric approach to drop the unrealistic oracle user assumption. It treats a non-oracle user

as a collaborator who can learn from and teach a machine. In order to achieve this goal

of collaboration, mixed-initiative clustering needs enriched computer-to-user communica-

tion so a user can learn effectively and efficiently from a machine, and enriched user-to-

10



computer communication so a user can teach a machine in intuitive ways. The primitive

communication languages in active learning would fail to assist a collaborative user in

both communication directions.

2.2 Enriching Communication Languages

Good communication between a user and a machine is the key to the success of a mixed-

initiative system. However, although a person can communicate easily with another per-

son through common natural languages, and a machine can communicate with another

machine by following protocols, communication between a machine and a user is not easy

due to the fundamental differences between natural languages and computer protocols.

If we want to embed natural language communication in mixed-initiative clustering, it

is necessary to design a dialogue system capable of discussing a clustering task, but that

would divert the main focus of this study. On the other hand, ahuman user is more in-

telligent than a machine. She can understand what a machine says more easily than vice

versa. Thus, we choose to define thecomputer-to-user language, Lc→u, as property types

that a machine knows how to exact, and theuser-to-computer language, Lu→c, as user

feedback types that an interface is designed to support. Given the definitions of communi-

cation languages,communication enrichmentis equivalent to adding new property types

into the computer-to-user language,Lc→u, and adding new user feedback types into the

user-to-computer language,Lu→c.

2.2.1 Computer-to-User Communication Language

The goal of the computer-to-user communication is to introduce the clustering task and

describe its current clustering model,Mc, to a user. Each property type included in the

computer-to-user language,Lc→u, should contribute to this communication goal.

Formally speaking, a machine in a mixed-initiative clustering task tries to groupN

instances{X1, . . . , XN} into Ĉ clusters{Ŝ1, . . . , ŜĈ
}, and a user also tries to group the

same set of instances intoC clusters,{S1, . . . , SC}. The content of an individual instance,

Xi ∈ {X1, . . . , XN}, is a fundamentalsingle instance contentproperty that can be shown

in an interface. The label of each individual machine-learned cluster,̂Sj ∈ {Ŝ1, . . . , ŜĈ},

is asingle cluster labelproperty for a clustering task.

11



Let Xi indicate theith instance, and̂Yi indicate the cluster to whichXi is assigned us-

ing the machine’s clustering model.̂Yi is derived from the following function,Mc(Xi) =

Ŷi ∈ {Ŝ1, . . . , ŜĈ
}, whereMc is the machine’s clustering model that predicts the cluster

association of each instance. Similarly, we useYi to refer to a user’s clustering result of

Xi, Mu(Xi) = Yi ∈ {S1, . . . , SC}, whereMu is the user’s clustering model. An optimal

mixed-initiative clustering is achieved when each machine-learned cluster corresponds to

one topic in a user’s clustering ontology,∀Ŝj ∈ {Ŝ1, . . . , ŜĈ}, Ŝj ∈ {S1, . . . , SC}, Ĉ = C,

and each instance-to-cluster property agrees with a user’sideal clustering result.Mc(Xi) =

Ŷi = Yi = Mu(Xi).

Each machine’s prediction,Mc(Xi) = Ŷi, can be shown as aninstance-to-cluster prop-

erty in the interface. In some clustering models, especially similarity-based models, an

additionalinstance-to-instance propertytype,Mc(Xi) = Mc(X
′
i) or Mc(Xi) 6= Mc(X

′
i),

can be derived to indicate if two instances should or should not belong to a same cluster.

For the machine learning purpose, each instance,Xi, is typically represented as a fea-

tures vector,〈F1(Xi), . . . , FM(Xi)〉, whereFm(Xi) is a feature function that extracts a

specific piece of information from an instance. For example,the bag-of-word representa-

tion in text clustering consists of a set of feature functions, each feature function counts

the number of times a particular word appears in the content of Xi. Often, multiple types

of features can be extracted from instances. While representing an instance as a feature

vector is good for machine learning, representing a clusterby key features is good for user

learning because it tells a user what features contribute greatly to the machine’s instance-

to-cluster predictions, and hint the difference between the target cluster and remaining

clusters. We call key features of a clusterfeature-to-cluster properties.

In addition, hierarchical clustering provides ancluster-to-cluster propertytype that

depicts relationships between two clusters. For example, if a cluster is a child cluster of

another cluster in a machine’s proposed hierarchy, it tellsa user that the machine thinks

the parent cluster corresponds to a more general topic, and the child cluster corresponds to

a sub-topic of the general topic.

Below, we give a detailed description for each of the above mentioned property types

that a computer-to-user language,Lc→u, may include and use to communicate with a user

in the interface. We need to point out that this is not an exhausted list.

• single instance content: This property type refers to showing the whole content of

one instance,Xi, in the interface, e.g., displaying the text content of a document for
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text clustering. Contents of data instances,{X1, . . . , XN}, are basic information for

a clustering task.

• single cluster label: One single cluster label,̂Sj , corresponds to one target cluster

in the clustering task. This property type assumes the existence of the cluster. In

active learning or semi-supervised clustering tasks, the number of target clusters,C,

is fixed and cluster labels are pre-determined. However, thebest value ofC, and

the best set of cluster labels may not be known in advance for amixed-initiative

clustering task. In addition, a system can apply an automatic naming algorithm to

generate meaningful cluster labels than cluster indices.

• instance-to-cluster property: This property is obtained by a clustering predicted

by the machine’s clustering model,Mc(Xi) = Ŷi ∈ {Ŝ1, . . . , ŜĈ}. An instance-to-

cluster property shows which cluster label an instance is assigned to,̂Yi = Ŝj.

• instance-to-instance property: An instance-to-instance property shows a pair of

instances in the interface and tells a user that a machine thinks these two instances

belong or don’t belong to a same cluster. This property type is based on the model

prediction of two instances:̂Yi = Ŷj or Ŷi 6= Ŷj.

• feature-to-cluster property: A feature-to-cluster property indicates that a feature

is a key feature for a cluster. Given instance feature vectors,〈F1(Xi), . . . , FM(Xi)〉,

and a clustering ofMc(Xi) = Ŷi, Ŷi ∈ {Ŝ1, . . . , ŜĈ}, a feature selection algorithm,

FS(Fm, Ŝj|{Xi, Ŷi}), measures how representative a featureFm is to a cluster̂Sj.

Top K features with the highest representative scores for clusterŜj become the clus-

ter’s feature-to-cluster properties.

• cluster-to-cluster property: This property type, which is introduced by hierarchi-

cal clustering, considers relationships between two clusters in a hierarchy. A hier-

archy of clusters shown to a user consists of several parent-cluster-to-child-cluster

properties in the form ofParent(Ŝi) = Ŝp, where cluster̂Sp is a parent cluster

of clusterŜi. A child-cluster-to-parent-cluster property,Ŝi ∈ Child(Ŝp), is a re-

verse property toParent(Ŝi) = Ŝp. A symmetric cluster-to-sibling-cluster prop-

erty, Ŝi ∈ Sibling(Ŝj), can be also derived from two parent-cluster-to-child-cluster

properties ifParent(Ŝi) = Ŝp ∧ Parent(Ŝj) = Ŝp. We refer to all these properties

in a hierarchy as the cluster-to-cluster property type.

Many information visualization techniques can be applied to show properties in an
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interface. For example, a list of feature-to-cluster properties can be shown as tag cloud.

2.2.2 User-to-Computer Communication Language

The user-to-computer communication can be considered as the user’s response/critique to

the computer-to-user communication. A user teaches a machine her updated topic on-

tology by confirming machine-proposed properties that fit her ontology, and correcting

inappropriate machine-proposed properties that contradict her clustering ontology. In fu-

ture revisions, a machine can learn to anchor confirmed properties, not to reproduce the

original properties before correction, and to generate thecorrected properties.

Most property types included in a computer-to-user language, except the intrinsic sin-

gle instance content property type, can be confirmed, or corrected by a user, and there

can be more than one method to correct a property. For example, disapproval/removal

feedback corrects the wrong existence assumption of a property, addition feedback cor-

rects the wrong non-existence assumption of a property, andthe moving feedback corrects

a wrong association relationship to a right one. A user feedback type corresponds to a

specific confirming/correcting method on a specific propertytype. The user-to-computer

language,Lu→c, includes all user feedback types that a mixed-initiative interface provides

for its users.

Table 2.1 lists several possible user feedback types to be included in an mixed-initiative

clustering interface for each property type mentioned in Section 2.2.1. It also describes in

which situations a user wants to give these types of feedback, and how to translate these

feedback types into property anchoring and property modification for machine learning.

The same as the property type list, this feedback type list isnot an exhausted list.
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Table 2.1: This table lists possible feedback types according to

their target property types, describes situations in whicha user

may find these feedback types useful, and illustrates implication

of machine learning in terms of property anchoring and modifica-

tion.

Lc→u Lu→c

single cluster label:̂Sj

confirm When a user thinks a cluster corresponds to a topic in her cluster-

ing model,Ŝj ∈ {S1 . . . SC}, she can confirm̂Sj so this property can

be anchored in future revisions of{Ŝ1 . . . ŜĈ
}.

disapprove When a cluster doesn’t relate to any topic in a user’s clustering

model,Ŝj /∈ {S1 . . . SC}, she can disapprove/removêSj so it won’t

appear again in future revisions, e.g.,{Ŝ1 . . . ŜĈ
} \ Ŝj.

add When a user finds a topic in her clustering model is missing,Sj /∈

{Ŝ1 . . . ŜĈ
}, she can add a cluster to represent this topic. In future

revisions, a machine should propose{Ŝ1 . . . ŜĈ
} ∪ {Sj} as its single

cluster label properties.

modify A user can modify a cluster label which she is not satisfied

with. This feedback makes the following property modification:

Label(Ŝj) = ‘unsatisfying label’⇒ Label(Ŝj) = ‘good label’.

This feedback also implicitly confirms the cluster,Ŝj ∈ {S1 . . . SC}.
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instance-to-cluster

property:

Ŷi = Ŝj

confirm When a user agrees with a machine’s clustering of an instance,

Mu(Xi) = Yi = Ŷi, she can confirms the corresponding instance-

to-cluster property, so future clustering revisions learnto keep this

confirmed property.

disapprove When a user disagrees with a machine’s clustering of an in-

stance,Mu(Xi) = Yi 6= Ŷi, she can give disapproval feedback on the

corresponding instance-to-cluster property. This feedback gives the

following property constraint in future revisions:

Mc(Xi) = Ŷi ∈ {Ŝ1 . . . ŜĈ
} \ Ŝj.

label When an instance is not assigned to any cluster by a machine (null

property), a user can add an instance-to-cluster property,Ŷi = Ŝj,

according to the content of a single instance.

move This feedback type allows her to move the instance from the inap-

propriate machine-assigned cluster,Ŷi = Ŝj , to her desirable cluster,

Ŷi = Ŝj′ ∈ {S1 . . . SC}.

instance-to-instance

property:

Ŷi = Ŷj or Ŷi 6= Ŷj

confirm When a user agrees with a must-link (Yi = Yj agrees withŶi =

Ŷj) or cannot-link (Yi 6= Yj agrees witĥYi 6= Ŷj) instance-to-instance

property, she can confirm it. This confirmed property should be kept

in future revisions.

disapprove When a user disagrees with a must-link (Yi 6= Yj contradicts

Ŷi = Ŷj) or cannot-link (Yi = Yj contradictsŶi 6= Ŷj) instance-to-

instance property, she can disapprove it. In future revisions, Ŷi 6= Ŷj

should be generated instead of the disapprovedŶi = Ŷj property and

vice versa.
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feature-to-cluster

property:

top KFms with the

highest scores of

FS(Fm, Ŝj|{Xi, Ŷi})

confirm When a user thinks a machine-proposed key feature,Fm, is repre-

sentative to a cluster,̂Sj, she can confirm this feature-to-cluster prop-

erty. HighFS(Fm, Ŝj |{Xi, Ŷi}) score should be kept in future clus-

tering revisions.

disapprove When a user thinks a machine-proposed key feature,Fm,

doesn’t fit the topic of a cluster,̂Sj, she can disapprove this feature-to-

cluster property. The score ofFS(Fm, Ŝj|{Xi, Ŷi}) should be tuned

down greatly in future revisions.

move If a user thinks a key feature,Fm, of a cluster is better suit-

able for another cluster, a user can move the key feature fromits

original cluster, Ŝj to the other cluster,Ŝk. This feedback im-

plies that any future clustering obtained by a retrained model, Mc,

shouldn’t have highFS(Fm, Ŝj|{Xi, Ŷi}) score, but should have

highFS(Fm, Ŝk|{Xi, Ŷi}) score.

re-rank When a user agrees with a machine that two key-features,Fm and

Fn, are both representative to a cluster, she may weigh the impor-

tance of these two key-features differently than what a machine pro-

poses. A re-rank feedback type allows a user to adjust the impor-

tance order of key-features. This feedback makes the following prop-

erty modification:FS(Fm, Ŝj |{Xi, Ŷi}) > FS(Fn, Ŝj |{Xi, Ŷi})⇒

FS(Fm, Ŝj|{Xi, Ŷi}) < FS(Fn, Ŝj|{Xi, Ŷi}).
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cluster-to-cluster

property:

Parent(Ŝi) = Ŝp

Child(Ŝp) = {Ŝi}

Sibling(Ŝi) = {Ŝj}

move When a user finds the topic of a cluster is not a sub-topic of itspar-

ent cluster’s topic, she can correct this property by movingthe child

cluster to another place in the hierarchy that fits her ontology for this

clustering task.Parent(Ŝi) = Ŝp ⇒ Parent(Ŝi) = Ŝp′

merge If a user finds a cluster,̂Si, duplicates the topic of another cluster,

Ŝj, she can mergêSi into Ŝj.

split If a user thinks a cluster,̂Si, is a mixture of multiple topics in her

ontology, she can split the cluster into several clusters. This feedback

makes the following property modification:

Child(Ŝi) = ∅ ⇒ Child(Ŝi) = {Ŝnew)}.

unify If a user thinks a subtree of clusters is about a same topic, she can

unify this subtree of clusters. This feedback makes the following

property modification:

Child(Ŝp) = {Ŝi} ⇒ Child(Ŝp) = ∅.

In terms of interface design, one may want to enable the multiple-selection mode so a user

can select multiple properties of a same type, and give feedback on selected properties

altogether.

Conceptual Properties

When a user works on a clustering task, she does not only groupinstances based on their

contents solely, she also applies her existing real world knowledge to the clustering task.

For example, a user categorizes a news article about a baseball game as sports news not

only because the specific article explicitly mentions “sports” several times, but also be-

cause she knows conceptually that “baseball is a type of sport.” If there is another base-

ball game article in which the word “sports” is absent, a usercan still apply the same

conceptual knowledge to categorize the second baseball article into the sports news clus-

ter. There are two alternative properties that can represent this conceptual understanding:

(1) a cluster-to-cluster property where “baseball” is a child cluster of a “sport” cluster,
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or (2) a feature-to-cluster property where “baseball” is a keyword of “sports”. In other

words, cluster-to-cluster properties and feature-to-cluster properties correspond to a user’s

conceptual understanding more closely than instance-to-cluster properties. We hypothe-

size that including conceptual property types, e.g., feature-to-cluster and cluster-to-cluster

properties, to the computer-to-user language can help a user understand clustering results

better and proceed to teach a machine more easily than without conceptual property types.

Communication Robustness of Multiple Property and Feedback Types

A user’s clustering model,Mu, is a hidden model to a machine, and may not be fully devel-

oped in the beginning of a clustering task. We hope that showing multiple and diversified

types of properties ensure user comprehension like redundancy in natural languages en-

sure the robustness of human-to-human communication. In addition, by allowing multiple

types of user feedback, even a user finds some types of properties are harder to give feed-

back upon, she may find it is easy to confirm properties or correct inappropriate properties

of other types.

Figure 2.3 illustrates the idea of showing multiple types ofproperties and allowing

multiple types of user feedback in an interface. In this example, if a machine only presents

instance-to-cluster properties such as “Cluster 3 contains Email 1, 5, 6, 8, . . . ” in the inter-

face, a user cannot learn a topic of Cluster 3 from this information. By adding key-person-

to-cluster properties (Jaime, William and Adam2 are primary recipients of Cluster 3,) and

key-word-to-cluster properties (“Mixed-initiative” and“thesis” are keywords of Cluster 3,)

a user learns that Cluster 3 corresponds to her thesis activity. The redundant clues of key

persons and keywords build up robustness in machine teaching because machine-proposed

properties often contain errors, and a user typically doesn’t pay meticulous attention to ev-

ery property shown in the interface. Once a user understandsthe topic of a cluster, she

can teach a machine through multiple types of user feedback.However, a user may be

too lazy to confirm good properties or to correct inappropriate properties, e.g., the user’s

reaction to the key-person-to-cluster properties in this example. By allowing multiple user

feedback types, we hope that at least some feedback, especially feedback on conceptual

properties, is intuitive enough for a user to give, such as confirming the keyword “thesis”

that fits precisely the user’s idea that Cluster 3 is about herthesis activity.

2They are committee members of this thesis
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Figure 2.3: An illustration of showing multiple types of properties and allowing multiple
types of user feedback in an interface.

It is important to include various property types and user feedback types in the com-

munication languages,Lc→u andLu→c. From a user’s point of view, the more natural the

communication is, the more efficiently a user can learn from machine-proposed proper-

ties and proceed to teach a machine. From a mixed-initiativeclustering system’s point of

view, with accelerated user learning and user teaching phases, the system is likely to elicit

additional interactive loops from a user.

However, arbitrary machine-extracted property types or user feedback types cannot be

added to the communication languages due to some fundamental constraints in mixed-

initiative clustering.

2.3 Constraints and Coordination

There are mainly three constraints that restrict the enrichment of communication lan-

guages.

First, the computer-to-user language and user-to-computer language share the same

interface. The shared interface has limited display space,which means the number of

property types in the computer-to-user language cannot grow without bound because they

20



need to fit in the display space of an interface. The interfacealso introduces the feedback

design limitation. Only feedback types that can be implemented are good for user-to-

computer languages.

The second constraint comes from learning capability of a computer’s clustering model,

Mc. The limit of Mc’s learning capability depends on whether a machine learning algo-

rithm can be developed to adjustMc according to each feedback type’s specific property

anchoring or property modification such as some examples listed in Table 2.1. Given dif-

ferent model assumptions, each clustering model has its ownset of learnable feedback

types. In order to save user efforts, we should either exclude un-learnable feedback types

from the user-to-computer language, or switch to a new clustering model whose set of

learnable feedback types include new types of user feedbacka mixed-initiative clustering

system wants to include.

The third constraint comes from a user’s learning capability. A user may not be able

to understand every type of properties a machine provides. For example, in image clus-

tering, values of individual pixels may not be meaningful toa user. In text clustering,

this constraint is not obvious because each word in text has its own semantic or functional

meaning. Features that are not self-explanatory should be excluded from the computer-to-

user language.

According to these constraints, developers of a mixed-initiative clustering system have

to choose its computer-to-user language, user-to-computer language, and machine’s clus-

tering model properly so they work together.Coordination between these three compo-

nents in mixed-initiative clustering is like balancing andleveling three legs of a tripod. The

coordinated computer-to-user language, user-to-computer language and machine’s cluster-

ing model can be considered as the signature of a mixed-initiative clustering system.

2.4 Related Work

Generally speaking, a mixed-initiative learning system isa system where a machine and

a user collaborate in order to achieve the user’s goal. The research directions of mixed-

initiative systems are quite diversified. Nevertheless, the framework of mixed-initiative

clustering proposed in Figure 2.1 can be conceptually used to categorize different research

directions.

Mixed-initiative systems are often designed for users who are domain experts but not
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knowledge engineers [34] [17]. In this case, a mixed-initiative system needs to enrich

a user’s teaching language so the user can contribute her domain knowledge to the ma-

chine without being a knowledge engineer. Several techniques developed in the machine

learning literature can be considered as new communicationtypes between a machine and

a user. For example, CueFlik [18] allows a user to create a library of concept rules by

giving a few positive and negative image examples of a targetconcept, and apply learned

concept rules to re-rank image search results. For text clustering specifically, various new

clustering property types and their corresponding feedback have been proposed such as

learning from labeled features [32] [19] [45] [16], learning from pair-wise must-link or

cannot-link relationships [55] [3], and re-arranging information elements through spatial

representations [28]. The communication direction from a machine to a user is also im-

portant for a human teacher in terms of knowing whether the teaching is sufficient. The

work of socially guided machine learning [52] represents a robot’s confidence level as a

learner to its human teacher through the robot’s gaze behaviors.

When users are not domain experts nor knowledge engineers, mixed-initiative learn-

ing systems need to help users learn task-specific knowledge. For example, showing di-

verse examples [44] helps users establish their preferences. This study also demonstrates

that an explanation interface inspires users’ trust. One study [56] proposes a guided ma-

chine learning approach that generates sophisticated ontologies of manually-built qual-

ity and with less manual efforts. Another study [1] introduces an interactive corpus ex-

ploration tool called InfoMagnets for topic analysis of human tutoring dialogues. Other

work [23] [49] emphasizes the importance of a combination ofmultiple types of cluster-

ing properties and corresponding rich user feedback, so a user can understand a machine’s

current clustering better and and correct errors more easily.

In cases where more than one reasonable user ontologies are available, a user chooses

the best ontology based on her preference. Some early work [37] [33] has demonstrated

that a digital personal assistant with a machine learning component gradually learns a

user’s preferences. A recent survey [40] depicts three types of interactive systems along

this research direction that learn preferences of users including recommender systems, per-

sonal assistant agents, and personalized user interfaces.There are also studies investigat-

ing how to enrich user teaching languages of expressing a user’s preference. For example,

DD-PREF[12] is a language that expresses user preferences abstractly. It allows a user to

specify the degree to which individual features should be varied (diversity) or focused on
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particular values (depth).

In addition to communication enrichment, interaction is another key component for

mixed-initiative learning. Horvitz’s work [21] provides several design considerations for

activating the interactive loop. In order to decide whetheran automatic calendar assis-

tant should be invoked, this paper proposes a utility function according to uncertainties

in knowing a user’s actual intention, a user’s attention cost and automation benefits. Scat-

ter/Gather is an interactive clustering system designed for browsing large document collec-

tions [9] or navigating retrieval results [20]. The system presents its user a “cluster digest”

of keywords and titles of the most typical documents, allowsusers to select a few clusters

of interests (gather), and re-clusters the selected clusters into finer granularity (scatter). We

can consider the Gather/Scatter system enriches its computer-to-user language of multiple

types of properties and has feedback types of cluster merging and splitting in its user-to-

computer language. User studies on the Scatter/Gather system [43] show that although

this interactive system may not be an effective tool for finding relevant documents, it can

be useful for exploring large unknown data collections.

Mixed-initiative learning is also useful for transfer learning. A military intelligent

service [51] learns knowledge-based rules interactively from experienced domain experts.

Once the rules are learnt, the same service is able to tutor incoming domain apprentices.

In terms of understanding users’ interaction with a mixed-initiative system, Stumpf

et al. [50] investigate users’ willingness to interact withmachine learning reasoning, and

what kinds of feedback users may give to machine learning systems. They find rule-based

explanations are the most understandable to users, keyword-based explanations are the

next, but similarity-based explanations have serious understandability problems. Never-

theless, the diversified preference of the winning explanation paradigm among their par-

ticipants suggests the necessity of combining multiple paradigms of explanations. Their

findings support our ideas of communication enrichment withmultiple types, especially

conceptual types, of properties and user feedback. There are also user studies on the

faceted product search and recommendation focusing on different mixed-initiative inter-

face design [44]. Their work suggests several useful guidelines such as showing example

options and diverse examples in order to help users gain preference fluency and establish

personal preference, explaining the computation behinds ranking results and compromises

made in partially satisfied results, and providing trade-off assistance in addition to the

search function. Another user study [53] observes how humans want to teach robots in
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an interactive robot training process. Its results show users treat the robot in a social way,

tending towards positive feedback, guiding the robot, and adjusting their training behavior

according to the robot’s learning limitation. It suggests that a robot communicates more of

its internal state to the human teacher, and augmenting the human reward channel because

a human teacher has various communication intents (feedback, guidance, and motivation.)

These suggestions for reinforcement learning are similar to our idea of enriching commu-

nication languages for mixed-initiative clustering. In the data visualization and analysis

domain, an exploratory tool [42], SocialAction, integrates various statistical measurements

on social network analysis and allows flexible user selection on these measurements. We

can consider each statistic measurement as one type of properties in its computer-to-user

language. Four long-term case studies examine experts’ useof this tool [41]. The out-

comes of case studies confirm the advantage of integrating statistics and visualization and

also show that experts of different domains may find different statistical measurements

useful.

All research directions mentioned above are highly relatedto one or some problems in

mixed-initiative learning. However, research that solvescommunication enrichment and

real-time interaction jointly is hugely under-explored. Also, user studies for understanding

user involvement in any mixed-initiative learning system are necessary.

We hope our study on mixed-initiative clustering provides acomplete case study to

the research community of mixed-initiative learning. Chapter 3 and Chapter 4 discuss

how to build a successful mixed-initiative clustering system that integrates communica-

tion enrichment, coordinated machine learning algorithms, and real-time interaction. In

Chapter 5, we introduce our user studies to examine the effectiveness of mixed-initiative

clustering. Our user teaching study indicates the mixed-initiative style helps users teach

efficiently, which is is similar to the result in [22][56]. Toour knowledge, the user stud-

ies conducted in this thesis are the first to investigate the user learning and user teaching

scenarios separately in the context of mixed-initiative text clustering. The study on the

initialization of the interactive loop is also unprecedented.
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Chapter 3

Communication Enrichment and

Coordination

Developers of a mixed-initiative clustering system need toenrich communication lan-

guages,Lc→u andLu→c, of the system, while coordinating the machine’s clustering model,

Mc, to learn from enriched user-to-computer communication (user feedback.) In this

chapter, we present two detailed examples of building mixed-initiative clustering sys-

tems. The first mixed-initiative clustering system enablesuser feedback on features for

non-hierarchical clustering by introducing a new clustering algorithm, the SpeClustering

model. On top of the first system, the second mixed-initiative clustering system focuses

on how to build a “hierarchical” mixed-initiative clustering system that presents cluster-

to-cluster properties in the interface and accepts hierarchical user feedback.

While focusing on communication enrichment and coordination, only one iteration of

the interactive loop in mixed-initiative clustering is experimented with in this chapter. The

experiment setting consists of an initial autonomous clustering with extracted properties, a

long user feedback session, and a machine retraining session. We leave the practical issues

of building fully interactive systems to the next chapter.

3.1 Mixed-Initiative Clustering with Feedback on Features

The first mixed-initiative clustering system we introduce in this chapter is built to im-

prove the quality of activity extraction according to user guidance. As described in Sec-
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tion 1.1, the automatic activity extractor generates a listof activity descriptions by cluster-

ing text content of a user’s email, and extracting features such as keywords and primary

senders/recipients for each cluster. We notice that machine-extracted features greatly help

a user identify some of her activities. Given the lesson learnt, this mixed-initiative clus-

tering system presents extracted features (feature-to-cluster properties) in addition to the

initial clustering result (instance-to-cluster properties) in its interface and seeks user feed-

back on all types of properties.

3.1.1 Enriching Communication Languages for Non-Hierarchical Clus-

tering

Figure 3.1 shows a snapshot of the interface of our first mixed-initiative clustering sys-

tem and annotates property types used in the computer-to-user communication language.

Using the combo-box at the top-left corner, a user selects which cluster she wants to inves-

tigate. Each selectable cluster is associated with a numerical cluster label, which means

the computer-to-user language includes the property type of single cluster labels. Given

the selected cluster, the top right panel of the interface displays a list of documents as-

signed to the cluster according to the machine’s clusteringmodel,Mc. Each document in

this panel corresponds to one instance-to-cluster property. When the user selects one doc-

ument, the text content of the selected document (single instance content property) shows

in the bottom right panel. The left side of the interface displays a list of keywords and

key-persons of the selected cluster. Each keyword corresponds to one feature-to-cluster

property and so does each key-person. Through this interface, a machine communicates

four types of properties with regard to the clustering task and its clustering model to a

user. The left side of Figure 3.3 illustrates the computer-to-user language,Lc→u with these

four property types. The feature-to-cluster properties actually contain two types of key

features, keywords and key-persons, but the drawing simplifies this difference.

During the cluster investigation, a user can decide to remove the cluster if it doesn’t

represent any of her activities, or annotate this cluster bygiving it a text description if it

represents one of her activities. This text description of the cluster is attached to the end

of the numerical cluster label. Once a cluster is kept as one of the user’s activities, a user

can further confirm or remove some email initially clusteredto the activity, and confirm or

remove some keywords or key-persons with regard to the activity she has in mind. Also,
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Figure 3.1:A snapshot of the user interface of the first mixed-initiative clustering system with
annotations for its computer-to-user communication language. This interface displays a selected
cluster, a list of documents in the selected cluster, content of a selected document, keywords and
key-persons of the selected cluster as a computer’s communication to a user.

the user can go back and forth between clusters to keep her overall feedback consistent.

Figure 3.2 shows the same interface as Figure 3.1 but annotates the interface with feed-

back types used in the user-to-computer communication language. The user-to-computer

communication of the system includes feedback types of confirming and removing single

cluster label properties, instance-to-cluster properties, and feature-to-cluster properties.

Most of these feedback types can be provided by users explicitly through the interface

except the cluster confirmation. The cluster confirmation isassumed implicitly when a

user gives a short text description of an activity cluster orconfirms some documents or

key features for a cluster. In addition, each word in the cluster description is considered

a keyword for the cluster. The right side of Figure 3.3 depicts the user-to-computer lan-

guage,Lu→c, of this system as two user feedback types, confirmation and removal, in each
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instance-to-cluster
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confirming or
removing a
feature-to-cluster
property

Figure 3.2:A snapshot of the user interface of the first mixed-initiative clustering system with
annotations for its user-to-computer communication language. This interface allows various user
feedback types such as removing a cluster, implicitly confirming a cluster by giving the cluster
an activity description, confirming/removing a document, or confirming/removing a keyword/key-
person. A user can go back and forth between clusters to keep her overall feedback consistent.

colored box attached to the three property types in the computer-to-user language,Lc→u.

By comparing Figure 3.3 and Figure 2.2 (the primitive communication languages of

active learning,) one can see why we claim this mixed-initiative clustering system enriches

the communication between a machine and a user. We consider the most important com-

munication enrichment in this non-hierarchical mixed-initiative clustering system is the

presentation of key features and user feedback on them. Thisis because, as discussed in

Section 2.2, the feature-to-cluster property type is one oftwo ways to represent a user’s

conceptual understanding of her clustering ontology.
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Lc→u Lu→c

cluster instance

feature

cluster instance
confirm

remove

confirm

remove

feature

confirm

remove

Figure 3.3: The communication languages of our non-hierarchical mixed-initiative clus-
tering system. The computer-to-user language of this system includes property types of
single clusters, instance-to-cluster properties, and feature-to-instance properties. The user-
to-computer language includes feedback types of confirmingand removing properties of
all three types defined in the computer-to-user language.

3.1.2 Coordination with the SpeClustering Model

We still need a clustering algorithm that can learn from all types of user feedback to es-

tablish the coordination of mixed-initiative clustering.One commonly used probabilistic

model for text clustering is the multinomial naive Bayes model described in [39], which

models a document as a vector of words with each word generated independently by a

multinomial probability distribution conditioned on the document’s class (i.e., conditioned

on which cluster it belongs to). However, although the naiveBayes model can learn from

user feedback on single cluster label properties and instance-to-cluster properties, it cannot

learn from user feedback on feature-to-cluster properties.

There are some works that propose methods to adapt a machine’s clustering model

from user feedback on features. For example, some work [27] uses a few user-supplied

keywords per class and a class hierarchy to generate preliminary labels to build an initial

text classifier. Another work [32] proposes a technique in which they ask a user to iden-

tify interesting words among automatically selected representative words for each class of

documents, and then use these user-identified words to re-train the classifier as in [27].
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Researchers working on active learning have also studied using feedback about key fea-

tures. For example, a user-recommended feature can be converted into a mini-document

in order to help train an SVM classifier [19]. An alternative approach [45] utilizes the key

feature information by adjusting the SVM weights associated with these key features to a

pre-defined value in binary classification tasks. A recent work of generalized expectation

criteria [35] provides a method to incorporate preferencesabout model expectations into

parameter estimation objective functions and it has been applied to learning feedback on

feature-to-cluster properties [16].

In this thesis, we propose and use the SpeClustering model for a machine to learn user

feedback on feature-to-cluster properties.

Basic ideas of the SpeClustering model

The SpeClustering model [23] is a novel probabilistic modelthat uses an idea similar to

popular topic models [5]. It stands for “Specific Clustering”, and refers to the fact that

the probabilistic model estimates a latent boolean variable for each feature to determine

whether it is relevant to or independent of a specific cluster. Put another way, the model

assumes that onlysomeof the words in the document are conditioned on the document’s

cluster, and that other words follow a more general word distribution that is independent of

which cluster the document belongs to. To see the intuition behind this model, consider a

cluster of emails about skiing. There will be some words (e.g., “snow”) that appear in this

cluster of emails because the topic is skiing, and there willbe other words (e.g., “contact”)

that appear for reasons independent of the cluster topic. The key difference between the

standard multinomial naive Bayes model and our SpeClustering model is that our model

assumes each document is generated by a mixture of two multinomials – one associated

with the document’s cluster, and the other shared across allclusters.

Formally speaking, the SpeClustering model extends the standard multinomial model

in two ways. The first modification is to add aG topic variable that is intended to capture

general topics not related to the cluster. The second modification is to introduce a boolean

decisive variable,D, associated with each wordX in a document. This boolean variable

decides whether the word is generated from the specific topicor the general topic. If

D = 1, the observation wordX is generated by the cluster-specific topicS, and ifD = 0,

the observationX is generated by a general topicG. Throughout this paper we simplify the

model by assuming there is only one general topic instead of multiple topics. Figure 3.4
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Figure 3.4: Graphical representation of SpeClustering model.S is a variable representing the
cluster-specific topic associated with a document,X represents one of the M observed words in
one of the N observed documents, andD is a boolean decisive variable that indicates whether
wordX is generated conditioned on the clusterS or whether it is generated according to a cluster-
independent general distribution of wordsG.

shows the graphical model representation of the model. Herethe outer rectangle (or plate)

is duplicated for each of the N documents, and the inner plateis duplicated for each of the

M words,X, and associated decisive variables,D. Note the general topicG is constant

across all documents and words, whereas the cluster topicS is different for each document.

The Speclustering model has four sets of parameters:

πc = P (S = c)

ξc = P (D = 1|S = c)

βcv = P (X = v|S = c)

βgv = P (X = v|G = g)

wherec ∈ {1, 2, ..., |S|}, g ∈ {1} for the simplified case andv ∈ {1, 2, ..., |X|}. |S| is

the number of clusters. We also useθ to refer to a specific SpeClustering model with all

four sets of parameters.

Most importantly, the SpeClustering model can derive a new probability directly from

its parameters:
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P (D = 1|S = c, X = v; θ) =
ξcβcv

ξcβcv + (1− ξc)βgv

This probability describes whether a particular featurev is generated by a cluster’s

specific topicc, as apposed to the general topicg. When the value of this probability is

closer to one, the featurev is more likely to be a key feature of the clusterc. We can apply

this characteristic to learn a user’s feedback on feature-to-cluster properties. When a user

confirms a featurev as a key feature for the clusterc, this feedback teaches a machine that

the value of the probabilityP (D = 1|S = c, X = v; θ) should be one. Oppositely, when

a user removes featurev from the key feature list of clusterc, this feedback is equivalent

to setting the probabilityP (D = 1|S = c, X = v; θ) to zero.

Corpus likelihood

Given a corpusC that contains n instancesC = {x1, x2, ..., xn}, andxi is represented as

a vector of observations{xij ; j ∈ {1, 2, ..., mi}}, we use the notationsi to indicate the

value of the hiddenS variable for instancexi anddij to indicate the value of the hiddenD

variable associated with observationxij . The likelihood of corpusC given a SpeClustering

model,θ, is defined as follows:

P (C|θ) =

n∏

i=1

|S|∑

si=1

P (si) ·
mi∏

j=1

[P (dij = 1|si)P (xij|si) + P (dij = 0|si)P (xij|g)]

which can be written in terms of the model parameters as follows:

P (C|θ) =

n∏

i=1

|S|∑

si=1

πsi
·

mi∏

j=1

[ξsi
βsixij

+ (1− ξsi
)βgxij

]

Parameter estimation with unobserved variables

In the unsupervised case where only a set of documents is given (variableX is observed)

but cluster assignments and key features are not available (variableS andD are unob-

served), we use an EM process [11] for parameter estimation.The EM algorithm is

commonly applied to find a (local) maximum-likelihood estimate of the parameters in
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situations when the observable data is incomplete and the model depends on unobserved

latent variables. GivenX andY as the incomplete and complete data, the algorithm iter-

ates through two steps: in the E step, we evaluateQ(θ|θt) = E[log P (Y|θ)|X , θt)], and

in the M step, we obtain new estimation of parametersθt+1 = arg maxθ Q(θ|θt). In our

SpeClustering model, the incomplete data isX = {xij ∀i ∈ {1, ..., n} j ∈ {1, ..., mi}}

and the complete data isY = {si, dij, xij ∀i ∈ {1, ..., n} j ∈ {1, ..., mi}}. The exact

estimation for each parameter in the M step is listed below.

πt+1
c =

∑n
i=1 φ

t
i(c)

n

ξt+1
c =

∑n
i=1 φ

t
i(c)

∑mi

j=1 ψ
t
ij(c)∑n

i=1 φ
t
i(c) ·mi

βt+1
cv =

∑n
i=1 φ

t
i(c)

∑mi

j=1 δ(xij = v)ψt
ij(c)∑n

i=1 φ
t
i(c)

∑mi

j=1 ψ
t
ij(c)

βt+1
gv =

∑n
i=1

∑|S|
k=1 φ

t
i(k)

∑mi

j=1 δ(xij = v)(1 − ψt
ij(k))

∑n
i=1

∑|S|
k=1 φ

t
i(k)

∑mi

j=1(1− ψ
t
ij(k))

where the following quantities are computed in the E step:

φt
i(c) ≡ P (si = c|xi; θ

t)

=
πt

c

∏mi

j=1[ξ
t
cβ

t
cxij

+ (1− ξt
c)β

t
gxij

]
∑|S|

k=1 π
t
k

∏mi

j=1[ξ
t
kβ

t
kxij

+ (1− ξt
k)β

t
gxij

]
(3.1)

ψt
ij(c) ≡ P (dij = 1|si = c, xij ; θ

t)

=
ξt
cβ

t
cxij

ξt
cβ

t
cxij

+ (1− ξt
c)β

t
gxij

(3.2)

By iterating through the E step and M step, the corpus likelihood will converge to a

(local) maximum and values of parameters will be stabilized.

Extension to multiple types of features

In many cases, instances consist of multiple types of features. For example, when clus-

tering emails we may describe each email by the set of words inits text content, plus the

set of email addresses the email is sent to. If there are multiple types of features in an in-
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Figure 3.5:Graphical representation of the SpeClustering model with two feature types, where
Xa andXb are observations with two different feature types andDa andDb are boolean variables
deciding whether their respective observations are generated from the specific topicS or the general
topicG

stance, we can extend the SpeClustering model. Figure 3.5 shows the extended model with

two feature types, a and b. Assume the original block presenttype-a features and decisive

variables, the model adds one new block of{Xb, Db} for type-b features and decisive vari-

ables.{Xb, Db} is identical and parallel to{Xa, Da}. In the activity-discovery-via-emails

task, we can apply this model to represent an activity in terms of both its key words and

the primary participants of the activity.

Parameter estimation in the extended SpeClustering model is nearly identical to the

parameter estimation of single type features. The only exception is a change to the poste-

rior probability estimate in Eq 3.1. The new posterior probability estimate in the extended

model combines generative probabilities from multiple feature types. We usemai andmbi

to indicate the numbers of features of two feature types in the ith email, and theith email

is represented asxi = {xaij ∀j ∈ {1 . . .mai}; xbih ∀h ∈ {1 . . .mbi}}. Eq 3.3 shows the

estimate from two different feature types.
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φt
i(c) ≡ P (si = c|xi; θ

t)

=
πt

c

∏mai
j=1

[ξt
acβ

t
acxaij

+(1−ξt
ac)β

t
agxaij

]
∏mbi

h=1
[ξt

bc
βt

bcxbih
+(1−ξt

bc
)βt

bgxbih
]

∑|S|
k=1

πt
k

∏mai
j=1

[ξt
ak

βt
akxaij

+(1−ξt
ak

)βt
agxaij

]
∏mbi

h=1
[ξt

bk
βt

bkxbih
+(1−ξt

bk
)βt

bgxbih
]

(3.3)

Incorporating User Feedback into the SpeClustering Model

As discussed earlier, we are particularly interested in coordinating a machine’s clustering

model to learn from the enriched user feedback. Let’s list again feedback types allowed in

the first mixed-initiative clustering system and discuss how several types of user feedback

are incorporated to retrain the SpeClustering model. The allowed user feedback in this

system are:

1. Remove an activity cluster.

2. Confirm that an email belongs to its assigned cluster or remove an email from its

assigned cluster.

3. Confirm a keyword belongs to its assigned cluster or removea keyword from the

cluster.

4. Confirm a key-person to its assigned cluster or remove a key-person from the cluster.

5. Give a short text description for an activity cluster. This feedback is considered as

a combination of confirming the described activity cluster and confirming that each

word in the description is a keyword to the cluster.

From the model adaptation point of view, the posterior probabilities in the SpeCluster-

ing model turn out to be highly related to the above types of feedback. To be more specific,

feedback 1 and 2 are related to Eq. 3.3 and feedback 3, 4, and 5 are related to Eq. 3.2.

In this particular system, we assume the number of clusters is known and fixed.1

When the user feedback includes removing a clusterS = c, we need to replace the re-

moved cluster with a new cluster in order to keep the cluster number fixed. We develop

two initialization methods to adapt the SpeClustering model to accept the cluster removal

feedback. The simple initialization method inherits the previous clustering but resets the

1It is not realistic to assume the number of clusters is known and fixed. In the next section, the hierarchical
mixed-initiative clustering system introduces various feedback types to modify cluster-to-cluster properties
like adding a new cluster and merging two clusters into one, so the fixed cluster number assumption can be
avoided.
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initial probability value ofP (si|xi; θ
t) for eachxi with si = c by distributing the prob-

ability mass uniformly among all clusters but halving the probability to clusterc. The

re-distribution of the probabilistic mass is targeted to create a cluster that replaces the re-

moved cluster, and to reduce the possibilities of documentsin the removed cluster being

assigned to the replacing cluster. Alternatively, the joint initialization method uses mul-

tiple feedback types to initialize the model. We first selectseveral documents that have

the highest cosine similarity with confirmed documents and keywords (where we treat

keywords as a mini-document) and associate them with current clusters. We then search

for a small set of similar documents that maximize inter-cluster distances and replace any

cluster that is removed in the feedback.

During each EM iteration while training the SpeClustering model, we perform feed-

back 2 to 4 adjustments. For feedback 2, we adjust the value ofP (si = c|xi; θ
t) to be

one if the hypothesized instance(xi)-to-cluster(c) property is confirmed by the user or set

it to zero if the bound is disapproved by the user. Proper adjustment to normalize posterior

probabilities of{P (si = c′|xi; θ
t) ∀c′ 6= c} is also required in this case. For feedback 3

and 4, we adjust the value ofP (dij = 1|si = c, xij = v; θt) to be one if the hypothesized

feature(v)-to-cluster(c) property is confirmed by the user or set it to zero if the property

is disapproved by the user. For feedback 5, we tokenize the description T and make each

token of T a confirmed keyword as in type 3 feedback.

Figure 3.6 summarizes this mixed-initiative clustering process in which the SpeClus-

tering model updates its parameter estimation according tothe enriched user feedback.

Since each property type in the computer-to-user language,Lc→u, corresponds to some

probability expressions in the SpeClustering model, adapting the model is equivalent to

adjusting some probability values according to user feedback. This system exemplifies

the coordination of mixed-initiative clustering with thoroughly defined computer-to-user

language, user-to-computer language and machine’s clustering model.

Connection to Supervised Classification

We have described details of the SpeClustering model. However, the model is not re-

stricted to clustering; it can also be applied to supervisedclassification tasks. The differ-

ence in classification is that the topic variableS is no longer a hidden variable – instead

S is the classification label. We can treat the classification tasks as knowing all the type 2

user feedback and replace the estimate of posterior probabilities P (si = c|xi; θ
t) with the
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Algorithm : Mixed-Initiative SpeClustering
Input : Unlabeled corpusC
Output : A SpeClustering clustering modelθ, and a set of properties agreed by the
machine and the user.
Languages: The computer-to-user languageLc→u consists of the single cluster label
property type, instance-to-cluster property type, and feature-to-cluster property type. The
user-to-computer languageLu→c consists of confirming and removing feedback types for
each of the three property types defined in the computer-to-user languageLc→u.

Method:
1. Initialize the user-to-computer communication as an empty set of modified

properties,Commu→c = {}.
2. The machine builds an initial clustering modelθini. θ = θini.
3. The machine applies the clustering modelθ to obtain the clustering result of the

corpusC. Based on the result, the machine extracts a set of properties as its
communication to the user,Commc→u = {property}. Each property inCommc→u

belongs to a property type defined in the computer-to-user languageLc→u.
4. The user gives feedback which is equivalent to modifying asubset of properties in

Commc→u. The subset of modified properties is annotated as{property∗}.
Accumulate the user’s communication to the machine as
Commu→c ← Commu→c ∪ {property

∗}.
5. The computer performs model retraining,

θnew =SpeClustering-with-Feedback(C, θ, Commu→c).
6. Update the machine’s clustering model to the newly retrained model,θ = θnew.

Repeat step 3 to 6 until the user’s satisfaction.

Algorithm : SpeClustering-with-Feedback
Input : Unlabeled corpusC. θ as the current model.Commu→c as the collection of user’s
feedback.
Output : θnew as the model after adaption according to user’s feedback.

Method:
1. θt = θ.
2. Estimate posterior probabilitiesP t of Eq 3.3 and Eq 3.2 givenC andθt.
3. AdjustP t according toCommu→c to obtainP t

adj .
4. Re-estimate model parameters usingP t

adj to obtainθt+1.
5. θt = θt+1; repeat step 2 to 5 until the model converges.
6. θnew = θt.

Figure 3.6:The mixed-initiative SpeClustering algorithm.
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true value specified by the instance label.

3.1.3 Experimental Results

Datasets

To test our non-hierarchial mixed-initiative clustering system, we used two data sets.

The first is an email dataset (EmailYH) which contains 623 emails. It had previously

been sorted into 11 folders according to the user’s activities. It contains 6684 unique

words and 135 individual people after pre-processing2. The second data set is the pub-

licly available 20-Newsgroups collection. This data set contains text messages from 20

different Usenet newsgroups, with 1000 messages harvestedfrom each newsgroup. We

derived three datasets according to [3]. The first,News-Similar-3, consists of messages

from 3 similar newsgroups (comp.graphics, comp.os.ms-windows.misc, comp.windows.x)

where cross-posting occurs often between these three newsgroups.News-Related-3con-

sists of messages from 3 related newsgroups (talk.politics.misc, talk.politics.guns and

talk.politics.mideast).News-Different-3contains 3 newsgroups of quite different topics

(alt.atheism, rec.sport.baseball, and sci.space).

We only use the text part of messages in the three newsgroup datasets because a re-

viewer won’t have the knowledge needed to decide which author is the key-person with

regard to which newsgroup. For the text part, we applied the same pre-processing we used

in (EmailYH). There are 3000 messages in these datasets.News-Different-3contains 8465

unique words,News-Related-3contains 9998 unique words andNews-Similar-3has 10037

unique words.

Measurement for Cluster Evaluation

We use two measurements to estimate cluster quality: folder-reconstruction accuracy, and

normalized mutual information (NMI) [13].

In order to calculate the folder-reconstruction accuracy,we search through all possible

alignments of cluster indicesIc, to folder indicesIf in order to find the alignment resulting

2The pre-processing for words includes stemming (Porter stemmer), stop word removal and removal of
words that appear only once in the dataset. The pre-processing for people contains reference-reconciliation
over email senders and recipients, and removal of people that are involved in only one email.
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in optimal accuracy, then report the accuracy under this optimal alignment:

Acc = maxA

∑D

i=1 δ(A(si) = fi)

D
A ∈ {Map(Ic)

1−to−1
−→ If} (3.4)

The normalized mutual information measurement is defined asEq. 3.5, whereI(S; F )

is the mutual information between cluster assignment S and folder labels F,H(S) is the

entropy of S andH(F ) is the entropy of F. It measures the shared information between S

and F.

NMI =
I(S; F )

(H(S) + H(F ))/2
(3.5)

These two measurements are correlated but show different aspects of clustering per-

formance. Accuracy calculates the ratio between major chunks of clusters to its reference.

NMI measures the similarity between cluster partitions andreference partitions.

Autonomous Clustering

This experiment checks if the SpeClustering model can produce reasonable autonomous

clustering results so we can apply the model to mixed-initiative clustering. We compared

two versions of the SpeClustering algorithm with the standard multinomial naive Bayes

model[39] as the baseline approach. We modified the baselineapproach by allowing it to

search for a good cluster initialization and to avoid situations in which one cluster gets

eliminated during the EM iterations[24]. The first version is the original SpeClustering

algorithm as described in Section 3.1.2. The second version, SpeClustering-bound, adds

range constraints on parameter valuesξ ( ξc=P(D=1|S=c) ) : for word features, the range

is [0.1, 0.4] and for person features, the range is[0.6, 0.9]. The reason for introducing

range constraints is to avoid situations where some values of parameterξc converge to 1

or 0. This is undesirable because the value ofξc reflects the percentage of specific features

(D = 1) occurring over all observations for clusterc. Both SpeClustering algorithms were

initialized using the output from the baseline naive Bayes clustering.

We made 50 individual runs onEmailYHdataset and 20 runs each onNews-Similar-3,

News-Related-3, andNews-Different-3. Table 3.1 shows the average accuracy and NMI
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results of different datasets and the three clustering algorithms. Notice in all datasets,

the SpeClustering algorithm performs better than the naiveBayes algorithm, and the

SpeClustering-bound model performs better than SpeClustering. The naive Bayes clus-

tering results are used to initialize its associated SpeClustering and SpeClustering-bound

runs, so the performance gain are directly due to the difference between the SpeCluster-

ing probabilistic model and naive Bayes model. When examining the details of individual

runs, we find that SpeClustering-bound outperforms naive Bayes in every run using the

NMI measure, and in the vast majority of these runs it also outperforms Naive Bayes in

terms of the accuracy measure. We can conclude that modelinga document as a mixture

of a general topic and a specific topic improves autonomous clustering performance.

dateset method Accuracy (%) NMI (%)

EmailYH naive Bayes clustering 48.44± 7.01 48.02± 3.93
SpeClustering 52.28± 8.61 53.25± 5.65
SpeClustering-bound 53.98± 8.04 56.25± 4.90

News-Sim-3 naive Bayes clustering 46.31± 7.21 9.86± 7.34
SpeClustering 51.38± 6.33 15.80± 6.82
SpeClustering-bound 51.98± 5.91 16.46± 6.27

News-Rel-3 naive Bayes clustering 60.18± 10.64 34.36± 10.58
SpeClustering 60.61± 11.08 36.06± 10.71
SpeClustering-bound 61.14± 11.41 36.92± 11.04

News-Diff-3 naive Bayes clustering 91.24± 13.45 79.76± 14.56
SpeClustering 93.80± 11.49 83.57± 14.27
SpeClustering-bound 96.52± 6.47 87.79± 11.56

Table 3.1:Clustering results of different datasets and different autonomous clustering algorithms.
SpeClustering and SpeClustering-bound are the SpeClustering model with unbounded and bounded
parameter values. Both versions of the SpeClustering modelout-perform the multinomial naive
Bayes clustering model and the bounded SpeClustering modelachieves the best performance.

Clustering with Enriched User Feedback

We next studied the impact of enriched user feedback on the bounded SpeClustering

model. In particular, we chose 5 clustering results using the multinomial naive Bayes

model with the best log-likelihood among 50 runs onEmailYH and presented each of

these to the user. We also chose one best run from 20 runs onNews-Different-3, News-

Related-3, andNews-Similar-3.
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The user gave feedback using the interface shown in Fig 3.1. The top left panel shows a

list of documents that are clustered into the selected cluster label, the top right panel shows

5 key-persons of the cluster and the bottom right panel shows20 keywords of the cluster.

The keywords and key-persons of the cluster shown in the interface are selected using a

Chi-squared measurement [57]. When a user clicks on a document in the document list,

the content of the document shows in the bottom left panel. The user can give various

types of feedback and the interface displays feedback the user has entered so far. The user

can also go back and forth between clusters to correct conflicting assumptions she has

made to achieve consistent cluster interpretations.

Like experiences from the activity extractor, displaying keywords and key-persons

tremendously helps users make judgements about clusterings. In fact, to decide the mean-

ing of a large cluster based only on examining the documents is extremely difficult. A

user would tend to decide based on the first several documentsshe goes through even

when the cluster contains more than hundreds of documents, and the biased decision often

causes conflicts with later clusters. The user usually chooses to remove a cluster, if the

keywords and key-persons don’t show any consistency and arenot meaningful to the user,

or if documents in the cluster are a hodgepodge from several categories. If the keywords or

key-persons of a cluster make sense to the user, the user can give various types of feedback

according to the meaning of the cluster. We don’t put constraints on how the user does the

feedback, so the user can make decisions freely based on how she perceives the clustering

results, and gives feedback using her own interpretation ofthe results.

We use the following notation to indicate feedback on various property types:

• CR: removing single cluster label properties
• PP: confirming or removing feedback on document-to-clusterproperties
• WX: confirming or removing feedback on keyword-to-cluster properties
• HX: confirming or removing feedback on keyperson-to-cluster properties

Table 3.2 shows how many entries of feedback on different property types the user

enters for each selected run. The user spends about 15 mins tofinish one run from the

EmailYHdataset and 5-10 mins to finish one run from newsgroup datasets.

We ran the SpeClustering-bound algorithm with user feedback and compared the re-

sults to the naive Bayes baseline and the SpeClustering-bound algorithm without feedback.

Without adapting user feedback, the autonomous naive Bayesclustering and the SpeClus-

tering results can be considered as outputs after one machine learning phase. The cluster-
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run doc # CR PP WX HX

Email1 623 3 99 37 30
Email2 623 3 73 35 31
Email3 623 4 92 48 26
Email4 623 7 32 28 15
Email5 623 4 91 43 28

Sim1 3000 2 39 9 -
Rel1 3000 1 29 20 -
Diff1 3000 0 16 39 -

Table 3.2:Entry numbers of different feedback types for 5 selected naive Bayes runs.

ing result produced by the SpeClustering-bound algorithm with user feedback adaptation

is the mixed-initiative clustering result after one complete iteration of the interactive loop,

consisting of a first machine learning phase, a machine teaching phase, a user learning

phase, a user teaching phase, and a second machine learning phase.

We used the simple initialization method onEmailYHdataset in order to break down

feedback to single types. Figure 3.7 shows the results usingjust one type of feedback on 5

selected runs fromEmailYHdataset. The CR feedback is independent from other types of

feedback and all other types involve feedback only from clusters that are not removed. All

5 runs with CR or PP feedback, 4 runs with WX feedback and 3 runswith HX feedback

outperform both naive Bayes baseline and SpeClustering-bound without feedback.

Figure 3.8 shows the results using combination of feedback types. User’s feedback

gives huge improvements in all runs (19.55% average accuracy improvements from naive

Bayes results to SpeClustering-bound with full feedback).SpeClustering-bound with full

feedback performs best in 4 out of 5 runs. In the remaining onerun, CR+PP feedback

(cluster removal plus feedback on document-to-cluster properties) performs best. The

quantity of PP feedback is about 1/7th to 1/9th to the whole dataset and even higher if we

exclude documents in removed clusters. The combined entry numbers of WX+HX feed-

back (feedback on feature-to-cluster properties) are fewer than the numbers of PP feed-

back (feedback on document-to-cluster properties) in these runs. However, CR+WX+HX

performs better than CR+PP in 2 runs, which shows that feedback on feature-to-cluster

properties gives comparable information like feedback on document-to-cluster properties.

More compellingly, it is also much easier to get CR+WX+HX feedback than CR+PP in

terms of time efficiency. In a study [45] that measures users’time spent on labeling a
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Figure 3.7:Performance of using single feedback types (CR, PP, WX and HX) on theEmailYH
dataset. SpeC-bound is the SpeClustering-bound model without feedback. The SpeClustering-
bound model with one type of feedback out-performs naive Bayes and SpeClustering-bound with-
out feedback in 17 out of 20 runs.
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Figure 3.8:Performance of using combination of feedback types on theEmailYHdataset. SpeC-
bound is the SpeClustering-bound model without feedback. User feedback gives huge improve-
ments in all runs.

document or a feature, it finds a user only needs 1/5th of time to label a feature compared

to the time to label a document.

For the 3 newsgroup datasets, the ratio of the amount of feedback to the corpus size

is very small. In this case, the inheritance of old results, which is noisy, in the simple

initialization overwhelms the training process. To remedythe problem, we used the joint
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Figure 3.9:Experimental results of SpeClustering with user feedback on the newsgroup datasets.
SpeCluster-bound is the model without feedback and CR+PP+WX is the SpeClustering-bound
model with full user feedback. “Sim1”, “Rel1”, and “Diff1” refer to the selected runs (with the
best autonomous naive Bayes modeling likelihood) ofNews-Similar-3, News-Related-3, andNews-
Different-3. Incorporating feedback gives significant improvement on the selectedNews-Related-3
run, whose feedback is harvested from noisy but still meaningful clustering results.

initialization method that compares documents with no userfeedback with each cluster’s

confirmed documents and keywords and initializes these documents to clusters with the

most similar confirmed documents and keywords.

The user feedback is quite different across these three runs. For the selected run of

News-Similar-3, the naive Bayes clustering results are extremely noisy andthe cluster

summarization is hardly recognizable by the user. It turns out the feedback contains the

removal of two out of three clusters and the reason that one iskept is because some key-

words weakly indicate the meaning of one newsgroup, but the documents in the remaining

cluster contain huge chunks from each newsgroup. For the selected run ofNews-Related-

3, talk.politics.guns and talk.politics.mideast are referred to two remaining clusters while

talk.politics.misc has no reference due to the removal of the last cluster, which the user

cannot figure out its meaning. The cluster summarization is noisy but comprehensible, so

the user can make positive and negative feedback easily. ForNews-Different-3, the base-

line accuracy is very high so most feedback is positive aboutthe automatically generated

summarization.

Figure 3.9 shows experimental results from user feedback onone selected run from

each newsgroup dataset. It is difficult to improve on the already accurateNews-Different-
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3 run. Incorporating feedback gives no significant improvement on the selectedNews-

Similar-3 runs whose feedback is based on extremely noisy clusters anda user is barely

able to associate meaningful criterion to any cluster. However, one sees huge improvement

from using feedback on the noisy but still meaningful cluster results. The accuracy of the

selectedNews-Related-3run jumps from 63.23% to 81.07%.

3.1.4 System Summary

In summary, the non-hierarchical mixed-initiative clustering system examines the idea

of enriching communication languages with feature-to-cluster properties in a long-user-

feedback-session setting where the interactive loop between a user and machine iterates

once. This system presents an interface that enables a user to browse clustering results with

extracted key-feature properties, and provide various types of feedback to guide machine

retraining. With extracted key features, a user can understand the clustering results more

easily. With various types of user feedback available, a user can teach a machine more in-

tuitively. In order to achieve the coordination for mixed-initiative clustering, the SpeClus-

tering model is used in the second machine learning phase because the model provides a

natural way to adjust its parameters according to a variety of types of user feedback. The

experimental results show that a mixed-initiative clustering system with enriched commu-

nication languages gains significant improvement in a personal email dataset. Given differ-

ent levels of clustering difficulties, the mixed-initiative clustering system helps a machine

learn a better clustering from user feedback on noisy but still meaningful autonomous

clustering results.
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3.2 Hierarchical Mixed-Initiative Clustering System

It is natural for users to organize personal data using hierarchies, especially in the elec-

tronic world. An obvious example is that file systems in most workstations consist of

a hierarchy of user-created directories to store documentsand other files. In fact, de-

signs of hierarchical organization prevail in computer applications such as email clients,

bookmark organizers, and contact management tools. However, due to the clustering mis-

match problem, many applications of this category rely on users’ spontaneous hierarchical

organization instead of autonomous machine organization.We believe mixed-initiative

human-machine approaches to hierarchical clustering holdgreat potential for such appli-

cations.

We extend the non-hierarchical mixed-initiative clustering system described in Sec-

tion 3.1 to hierarchical clustering, and explore new types of user feedback that are natural

for hierarchical cluster-to-cluster properties. Based onthe experiences of developing an

activity extractor described in Section 1.1, we consider a hierarchical email clustering

approach composed of the following steps: (1) generating initial hierarchical clusters of

depth two by using a generative clustering model for contentanalysis in the first level

and social network analysis in the second level3, (2) presenting the hierarchical clustering

results in a user interface and recording users’ modifications of the hierarchical cluster-

ing with time stamps, and (3) re-training the hierarchical clustering model according to

hierarchical user feedback.

Figure 3.10 shows our user interface designed for presenting hierarchical clustering

results in additional to extracted non-hierarchical properties to a user, and allowing various

types of hierarchical and non-hierarchical user feedback.The left panel shows the resulting

hierarchy. When a user selects a cluster in the hierarchy, the middle top panel shows a list

of emails in this cluster, and the middle bottom panel would show content of an email

chosen by the user (blank here for privacy reasons). The right panels show key-persons

3In email clustering, different approaches are studied to combine content analysis and social network
analysis such as using a voting scheme [15] or analyzing social connections in the first level and content of
messages in the second level [30]. However, for the general purpose of text clustering, we don’t want our
mixed-initiative clustering system to heavily rely on the social network perspective because this information
is often unavailable or incomprehensible in other text clustering tasks. Another disadvantage of social net-
work analysis is its lack of learning capability to user feedback, In the latter part of this chapter, we propose
a weighting method to simulate the social network analysis and remedy the learning problem. Given the
above reasons, we choose to analyze text content in the first level and social network in the second level.
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Figure 3.10: An interface that presents hierarchical clustering results to a user and allows
various types of hierarchical and non-hierarchical user feedback. The left panel shows the
resulting hierarchy.

and keywords associated with this cluster. In this snapshot, the user thinks cluster 4 is

related to a specific course (the confirmed key-person is the TA of the course,) which

should be under a general course cluster. The user has therefore added a ”course” cluster,

A.1, and is moving cluster 4 underneath cluster A.1.

3.2.1 Enriching Communication Languages for HierarchicalCluster-

ing

The resulting hierarchy shown in the left panel of the interface (Figure 3.10) is a set of

cluster-to-cluster properties that describe parent-child and sibling relationships between

two clusters. With this addition, the computer-to-user communication language,Lc→u,

in the hierarchical mixed-initiative clustering system consists of the following property

types:

1. single cluster label properties

2. cluster-to-cluster properties
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3. feature-to-cluster properties

4. instance-to-cluster properties

5. single instance content properties

In terms of enriching the user-to-computer communication language, several new types

of user feedback can be added to modify the newly introduced cluster-to-cluster properties.

For example, if a user finds a cluster is meaningful but is misplaced under an inconsistent

parent cluster, the user can move this cluster to a more appropriate place in the hierarchy.

We list possible feedback types for hierarchical cluster-to-cluster properties.

• Remove-Cluster(s): when a cluster is too noisy to be understood or a user doesn’t

think the idea conveyed by the cluster is significant, the user may remove this cluster

and its descendants.

• Add-A-Cluster: when there is no cluster that represents a certain idea a user has

in mind, the user can create a new empty cluster and place it under a reasonable

parent cluster. Then a user can optionally populate this cluster by moving relevant

documents into it.

• Move-A-Cluster: a user can drag and drop this cluster under amore reasonable

parent cluster.

• Merge-Clusters: when a user thinks a cluster contains a repetitive idea that has been

represented in another cluster, the user can merge the two clusters.

• Split-A-Cluster: when a cluster is noisy and a user thinks that it mixes up different

ideas but still wants to keep the cluster, a user may request that the computer splits

this cluster into smaller clusters.

• Unify-Clusters: when a user finds clusters in a branch over-specify a topic, a user can

request the computer unifies all sub-clusters to be one cluster. This feedback type

is especially useful when a user requests a cluster splitting to explore the possible

ontology space but finds the splitting not necessary.

Another enrichment of the user-to-computer language is to enable drag-and-drop ac-

tions on non-hierarchical property types such as:

• Move-A-Document: when a user thinks a document doesn’t belong to its currently

assigned cluster but it should belong to another cluster, a user can drag and drop the

document from its current cluster to the more appropriate cluster.
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Figure 3.11: The communication languages of our first version of the hierarchical mixed-
initiative clustering system. Feedback types with the pinkbackground are new introduced
feedback types to handle hierarchical clustering in this system. Feedback types with the
light yellow background are inherited from the previous non-hierarchical system.

• Move-A-Feature: when a user thinks a key feature doesn’t represent its associated

cluster but is a good key feature for another cluster, a user can drag and drop the fea-

ture from its current cluster to the more appropriate cluster. This situation happens

often when a cluster mixes documents of more than one meaningful topics.

We first integrate five of above mentioned feedback types intoour hierarchical mixed-

initiative clustering system while still keeping all user feedback types we have studied

in the previous system. The previous feedback types consistof confirming feedback on

single cluster label properties, confirming and removing feedback on instance-to-cluster

properties, and confirming and removing feedback on feature-to-cluster properties. Al-

though feedback on document-to-cluster properties is common in semi-supervised clus-

tering, feedback on feature-to-cluster and cluster-to-cluster properties is less common.

Figure 3.11 shows the communication languages used in this hierarchical mixed-initiative

clustering system.
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3.2.2 Coordination for Hierarchical Clustering

As mentioned above, we generate initial hierarchical clusters of depth two by using a

generative clustering model in the first level and applying social network analysis for the

second level to produce purer sub-clusters. The results from this approach often contain

many errors in parent-child relationships and many incorrect sibling relationships, com-

pared to the user’s desires. The benefit of using social network analysis to refine first-level

clusters into sub-clusters is to create separate social cliques (purer sub-clusters) so a user

can understand and manipulate them more easily. After a userfeedback session on this

initial hierarchical result, we retrain the hierarchical model based on the user feedback.

The re-training algorithm re-uses the user-modified hierarchy but adjusts the document-

to-cluster properties. It adopts the ”Pachinko-machine” concept described in [29]. and

trains a set of SpeClustering models [23] as classifiers for the root node and intermedi-

ate nodes in a hierarchical clustering. Each document is distributed to one sub-cluster

for further training. The distribution is based on the document’s posterior probabilities

given the model of the parent node. Details of the SpeClustering model can be found in

Section 3.1.2. Since we train separate SpeClustering classifiers for root and intermediate

clusters, this is similar to performing different soft feature selections at each cluster. The

SpeClustering algorithm can accommodate all non-hierarchical user feedback types shown

in Figure 3.11. We will refer to this hierarchical model as the ”Cascading SpeClustering

model” in the rest of the thesis. Figure 3.12 illustrate the basic idea of the Cascading

SpeClustering model – three SpeClustering models are trained in this example, one for the

root node 1 and two for the intermediate nodes 2 and 5.

As in the non-hierarchical clustering system, we extract both word features and person

features from the email corpus. The SpeClustering algorithm has an extension to assign

different weightings, e.g.,{ξa, βa} and{ξb, βb}, to different feature sets, so it can handle

word and person features jointly. In order to simulate the social network analysis that is

used to obtain the initial hierarchical clustering result,we add a ”PersonWeight” parameter

for the second and deeper levels in the hierarchy. The value of PersonWeight multiplies

counts in the person corpus, to emphasize these counts relative to word counts. Note

our algorithm for retraining the hierarchical clustering in the phase of user feedback does

not use social network analysis, because it is not obvious how to perform social analysis

sub-clustering while respecting the constraints imposed by user feedback. This weighting

of person features provides a mechanism to amplify the importance of grouping together
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Figure 3.12: An illustration of the Cascading SpeClustering model.

emails involving the same people, and is thus analogous to social network analysis, but

fits into our SpecClustering algorithm which can accept constraints imposed by enriched

non-hierarchical user feedback.

In addition, we define “complete hierarchical user feedback” as a modification from

an imperfect hierarchy, which contains undesirable parent-child and sibling relationships

(from the user’s perspective), to a reference (target) hierarchy. Since it is not practical to

expect complete hierarchical feedback from a user, a user can quit whenever they want,

and leave the machine to retrain the hierarchical model starting from the user-modified

hierarchy and subject to their non-hierarchical feedback.

When we apply a user’s hierarchical feedback for model retraining, the user modifica-

tion is most likely not complete. Therefore, we add a “StructPrior” parameter that indicates

the machine’s belief that the user left documents at the correct locations in the hierarchy.

The value of the “StructPrior” parameter is used to initialize the posterior probability dis-

tributions among sibling clusters. To be more specific, if a documentxi is assigned to a

leaf clusterc in the initial hierarchical clustering andc has three sibling clusters, the re-

training process initializes the posterior probabilityP (c|xi) = StructPrior, and the pos-

terior probabilities of each of the three sibling clusters givenxi as(1− StructPrior)/3.

When the value of the StructPrior parameter is 1, the algorithm preserves these document-

to-cluster assignments in model initialization. When the parameter value is lower, the

re-training algorithm is more likely to re-assign documents to other clusters within the

hierarchy.
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For each intermediate node, the SpeClustering classifier istrained using the relevant

feedback entries. The algorithm extracts feedback entriesrelevant to this node and all its

descendant clusters so descendants’ feedback entries can propagate to their parent and

ancestor nodes. We need to convert hierarchical feedback entries to positive/negative

feedback because the SpeClustering model accepts only non-hierarchical positive/negative

feedback. For example, a document-move feedback entry can be converted to a negative

feedback entry for the original cluster and a positive feedback entry for the target cluster.

Alternative hierarchical models like the shrinkage model [36] or Hierarchical Latent

Dirichlet Allocation [6] are both possible. For the shrinkage model, we would need to

design model adaptation heuristics for feature feedback types. Hierarchical Latent Dirich-

let Allocation was our first choice but the Markov chain processes’ slow convergence is

incompatible with our goal of efficient interaction betweenmachine and user.

3.2.3 Distance Measurement between Hierarchies

One important consideration in hierarchical mixed-initiative clustering is evaluating the

clustering results (including initial hierarchical clustering results, hierarchies modified af-

ter user feedback, and re-trained hierarchical clusteringresults), especially when two clus-

tering results have different hierarchical structures. Our approach defines an edit distance

measure between two hierarchies, and then evaluates any proposed clustering hierarchy

by its edit distance to the correct (reference) hierarchy. The reference hierarchy used in

the following experiments was constructed by the user priorto the beginning of this thesis

study.

To see the difficulty in comparing two hierarchies, considerthe two hierarchies, Ref-

erence and Clustering Result, in Figure 3.13 and the question of how to align these two

hierarchies. It is not difficult to align the left-hand side subtrees. Figure 3.13(a) shows

cluster (circle node) 2, 3, 6, and 7 can be aligned and it results in clustering errors of doc-

ument (triangle node) 13, 19, and 22. However, the alignmentof right-hand side subtrees

is not so trivial. Figure 3.13(b) shows two possible mappings from Clustering Result to

Reference. Alignment 1 sticks to the hierarchical constraints imposed by Clustering Re-

sult, while Alignment 2 violates the constraints but has higher precision and recall at the

document level.

Luckily, we figure that the distance between two hierarchiescan be measured by the
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(a) The left-hand side sub-tree (node 2, 3, 6, and 7)
can be aligned between two hierarchies and results
in 3 document clustering errors.

(b) Two different alignments from the right-hand
side sub-tree of a clustering result to a reference.

Figure 3.13: Hierarchical structure comparison
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number of editing operations needed to change one hierarchyinto the other, especially

when the set of hierarchical feedback types can be transformed naturally into a set of edit-

ing operations. For example, “Move-A-Cluster” feedback isequivalent to modifying the

parent orientation of a parent-cluster-to-child-clusterproperty in which the moved cluster

is the child cluster. Similarly, “Move-A-Document” feedback is changing the cluster end

of the moved document’s document-to-cluster property.

We define “edge modification ratio” as the minimum number of feedback steps re-

quired for complete hierarchical user feedback, divided bythe total number of edges in

the reference hierarchy. The Clustering Result hierarchy in Figure 3.13 needs five feed-

back steps that modify edge e3, e8, e12, e18, and e21 accordingly in order to match the

Reference hierarchy. There are 28 edges in the Reference hierarchy, so the edge modifica-

tion ratio is 0.18 (5/28) for this clustering result.

Ideally, evaluation for hierarchical mixed-initiative clustering should request user stud-

ies to examine real users’ comprehension of a hierarchical mixed-initiative clustering, but

user studies are very expensive. We leave the user study evaluation (see details in Chap-

ter 5) for our full-fledged mixed-initiative clustering system that integrates both commu-

nication enrichment and mixed-initiative interaction capability. Instead, the measurement

of edge modification ratio simulates a user’s feedback efforts in correcting a hierarchical

clustering. In other words, edge modification ratio serves as an automatic measurement

for a hierarchical mixed-initiative clustering system that focuses on the communication

enrichment component while skipping the interaction component, and examines whether

a hierarchical clustering model and its model retraining algorithm are feasible to learn

from enriched hierarchical feedback.

The exact implementation of calculating the edge modification ratio, e.g., simulated

feedback efforts, consists of four steps. The first step is tofind the best many-to-one

mapping from learned clusters to reference clusters. The second step chooses the optimal

one-to-one mapping from learned clusters to reference clusters. The third step adjusts

the cluster-to-cluster property of each cluster if it meetsone of the following criteria: (1)

if it is a sub-optimally mapped cluster, merge it to the optimally mapped cluster, (2) if

it is a optimally mapped cluster but its parent-child property is inappropriate, move it to

the right position in the hierarchy, and (3) if there is no mapped clusters to a reference

cluster, add a new cluster at the right hierarchical position. This step also counts how

many times cluster-to-cluster adjustment is made. The fourth step counts the number of
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remaining inappropriate document-to-cluster properties. The combined number of the

third step and fourth step is the number of edge modification that we use to simulate a

“complete hierarchical user feedback” session.

The concept of “edge modification ratio” is very similar to “tree edit distance” [4]

where different feedback types are mapped into different operations and the cost function

is uniform.

3.2.4 Experimental Results

We use the same email dataset (EmailYH) introduced in Section 3.1.3. There are 623

emails in this dataset that had been manually organized as a hierarchy prior to the start of

the mixed-initiative clustering study. We use this hierarchy as the reference hierarchy. It

consists of 15 clusters including a root, 11 leaf clusters, and 3 intermediate clusters.

In these experiments, a mixed-initiative process consistsof the generation of an ini-

tial hierarchical clustering with depth two, a long user feedback session, and model re-

training. In the feedback session, the initial clustering is presented to the email owner in

the user interface we introduced in Figure 3.10 to browse andgive feedback. The algo-

rithm for producing initial clusters is non-deterministic. We picked the same five initial

first-level clustering results used in the non-hierarchical mixed-initiative clustering exper-

iments. These initial results have the highest likelihood values among fifty autonomous

clustering results. Each of these five single-level clustering results were then extended to

two-level hierarchical clusterings by applying social network analysis.

For each of these five initial hierarchical clusterings, theemail owner performed what

we call a “diligent” feedback session and a “lazy” feedback session on different days a

couple weeks apart. In the “diligent” session, the user examines keywords and key-persons

in detail, and often checks document assignments to clusters. In the “lazy” session, the user

may select a few keywords and key-persons, and skims throughor skips documents.

The first row in Figure 3.14 shows an example of hierarchical mixed-initiative clus-

tering, derived from a single initial clustering result plus its “diligent” or “lazy” feed-

back sessions. The horizontal axis in each plot correspondsto minutes of user feedback,

whereas the vertical axis gives the quality of the hierarchical clustering at that point in

time, measured by its edge modification ratio relative to thereference (ideal) clustering.

The dot-marked (black) lines show how manual user feedback modifies the quality (the
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Figure 3.14: (a)(b): An example pair of re-trained results derived from a specific initial
result and feedback counts of two feedback sessions on this initial result. (c)(d): Averages
of 4 re-trained results in different feedback sessions.
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edge modification ratio) of the initial hierarchical clustering over time. Lower edge modi-

fication means a user can achieve the reference hierarchy using fewer remaining feedback

steps. The other lines show edge modification ratios for different clustering results ob-

tained after model re-training with different parameter settings. Each marked point rep-

resents a retrained model learnt from the user feedback on the initial hierarchy up to that

time. The cross-marked (green) lines show the edge modification ratio of results with

no special weighting on the person corpus, whereas the circle-marked (red) lines show

results that give the person corpus a high weight. The circle-marked (red) line and the

square-marked (cyan) line in a same plot show how the level oftrust of the user modified

hierarchy impacts the retrained hierarchical clustering results. The closer the StructProb

parameter sets to one, the more the machine assumes the user modified hierarchy is nearer

to complete hierarchical user feedback. The circle-markedlines show the re-trained results

with a low trust value, and square-marked lines show resultswith a high trust value.

The histogram below each plot shows the cumulative count of user feedback, with

colors indicating the different types of feedback. The diligent feedback sessions are longer

and involve larger total counts of feedback from the user. Asdesigned, the composition of

feedback is different between the diligent session and the lazy session. A user gives much

less feedback on document-to-cluster properties in the lazy session than in the diligent

session. The user also focuses on giving cluster-related feedback in the first 2 to 3 minutes

of the lazy feedback session.

For this specific initial clustering result, the diligent user benefited from the machine’s

retraining when she provided less than 7 minutes’ feedback.After the 8th minute, the

re-trained result only maintains performance similar to the user’s manual efforts. This is

because if the user has meticulously corrected all document-to-cluster errors occurred in

the initial hierarchy, the re-trained model can predict at best what a user has manually done.

On the other hand, the re-trained results from a lazy user’s feedback gets better after the

user completes the cluster-to-cluster property modifications, e.g., there is no cluster-level

feedback after the 4th minute. In terms of comparing the performances between different

user behaviors, in this specific case, a diligent user needs to spend 11 minutes correcting

the cluster hierarchy if they work alone, whereas a lazy userwith the machine’s assistance

achieved an equivalent performance in four minutes. This result proves the advantages

of adding the cluster-to-cluster property type and its corresponding feedback types to the

communication languages for hierarchical mixed-initiative clustering.
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Figure 3.14(c) and 3.14(d) show the aggregated re-trained results from four out of five

initial hierarchies with respect to two different feedbacksessions. The general trends hold

that a diligent user gains marginally and a lazy user gains more from model re-training.

Notice the edge modification ratio of the black line (user feedback) at the zeroth minute

in Figure 3.14 gives the performance of the two-step approach (flat clustering plus social

network analysis) for generating initial hierarchical results. We have learnt from the ac-

tivity extractor experiences that this approach is good at integrating different aspects of

email content to produce user comprehensible sub-clusters. The reason we switch to the

Cascading SpeClustering model for hierarchical model retraining is because the two-step

approach cannot learn from various types of user feedback including the hierarchical feed-

back. In other words, the two-step approach cannot achieve the coordination with the

enriched hierarchical communication languages.

However, given no user feedback and without weighting the person corpus heavily,

e.g., PersonWeight equals one, the edge modification ratio is much worse than the two-step

approach. This confirms our previous study that social network analysis helps generate

more user-comprehensible clusters (activities) and also shows the Cascading SpeCluster-

ing model cannot beat the good heuristics without user feedback. With PersonWeight set

to 100, the Cascading SpeClustering model is more capable ofachieving results similar to

social network analysis. Given the same StructPrior value,weighting the person corpus

heavily results in a lower edge modification ratio in the early stage and using no special

person weighting is better in the later stage. It shows that when the user’s feedback on a

hierarchy is partial, the background knowledge of social cliques is informative and when

the user’s feedback has fixed the hierarchical structure, the textual content is more helpful.

The StructProb parameter can be interpreted as the level of trust placed upon the user

modified hierarchy where a higher value means more trust. Theaggregated results in

Figure 3.14(c) and 3.14(d) show that it is better to assume the document-to-cluster assign-

ments in the user modified hierarchy are correct and initiatethe re-trained model accord-

ingly.

However, the performances of re-trained results vary greatly depending on the quality

of initial autonomous clustering results and the personal style of giving feedback. The

re-trained results using the 5th initial result are shown inFigure 3.15, which are a lot

worse and spikier than the other four pairs of re-trained results. The reason is that the 5th

initial result has two big clusters and each of these two clusters has documents belonged to
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Figure 3.15: This pair of re-trained results shows that our current model re-training method
doesn’t always help the user.

two or three reference clusters. With the feedback types allowed by this system’s user-to-

computer language, the user must resort to a sub-optimal feedback strategy like confirming

it as one reference folder and moving the other half of documents to a newly created

cluster. When a lazy user doesn’t provide enough user feedback to teach a machine, the

re-trained model may converge incorrectly as in Figure 3.15(b). A better solution is to

include the Split-A-Cluster feedback type in the user-to-computer language. In addition,

re-training a branch of clusters in the hierarchy instead ofthe entire hierarchy of clusters

also helps.

We re-implemented the first version of the hierarchical mixed-initiative clustering sys-

tem to a fully interactive system between a user and machine.In this second revamped sys-

tem, we enhance the communication languages further more byadding “Split-A-Cluster”

and “Unify-Clusters” user feedback types for cluster-to-cluster properties and “Move-A-

Feature” feedback type for feature-to-cluster properties. Also, a user can request the sys-

tem to retrain its machine’s clustering model from the root cluster, where the whole cas-

cading SpeClustering model is updated, or from a selected intermediate cluster, where only

the part of the model corresponds to the selected branch of clusters is updated. Figure 3.16
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Figure 3.16: The communication languages of the second version of the hierarchical
mixed-initiative clustering system. With the green background are feedback types newly
introduced in this version of the hierarchical system. Feedback types with the pink back-
ground are inherited from the first hierarchical system. Feedback types with the yellow
background are inherited from the non-hierarchical system.

illustrates the communication languages used in this system. With the green background

are feedback types newly introduced in this version of the hierarchical system. Feedback

types with the pink background are inherited from the first hierarchical system. Feedback

types with the light yellow background are inherited from the non-hierarchical system.

Users of this system have all basic measures for hierarchical and non-hierarchical mod-

ification. The major upgrade of this second hierarchical clustering system is the fully

interactive capability, which will be discussed in detail in the next chapter.

3.2.5 System Summary

In this section, we discuss how to enrich communication languages for hierarchical mixed-

initiative clustering and how to achieve coordinated hierarchical model retraining.

We build a first hierarchical mixed-initiative clustering system, and apply it to hierar-

chical clustering of email. A simple hierarchical clustering model, Cascading SpeClus-

tering, is used to handle various types of user feedback including feedback on conceptual

feature-to-cluster properties and cluster-to-cluster properties. The experimental results
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show that the joint efforts of a machine and a user can usuallyachieve better edge modi-

fication ratio, or equivalently, save a user’s time comparedto manually editing the initial

clustering. We also learn that a user’s feedback style matters. A lazy user can gain more

benefits from machine’s retraining than a diligent user. From the worst case of re-trained

results, it seems safer to re-train a specified subset of a hierarchy instead of the whole

hierarchy.

3.3 Summary

In this chapter, we demonstrate how to enrich communicationlanguages in mixed-initiative

clustering by adding conceptual property types such as key features of clusters and hierar-

chical cluster-to-cluster properties toLc→u, and adding various feedback types on concep-

tual properties toLu→c.

Two example mixed-initiative clustering systems, each corresponds to one incremen-

tal step of communication enrichment, are discussed in detail. The first system enables

user feedback on features for non-hierarchical clustering. In order to achieve the coor-

dination in this mixed-initiative clustering system, we propose a new clustering model,

the SpeClustering model, which provides a natural way to adjust its parameters accord-

ing to user feedback on key features, and a mixed-initiativeSpeClustering algorithm to

adapt multiple types of user feedback altogether. On top of the first system, the second

mixed-initiative clustering system accepts various typesof user feedback on hierarchical

clustering results. A cascading version of the mixed-initiative SpeClustering algorithm is

used for coordinating hierarchical mixed-initiative clustering.

Under a long-user-feedback-session setting, we examine performances of machine’s

retrained clustering models using different combinationsof user feedback types (with or

without conceptual properties), and impacts of difficulty levels of clustering tasks and

user feedback styles. The experimental results show that using communication languages

with conceptual properties gains more improvement than using communication languages

without conceptual properties. Given different levels of clustering difficulties, the mixed-

initiative clustering system helps a machine learn a betterclustering from user feedback

on noisy but still meaningful autonomous clustering results. Given different user feedback

styles, a lazy user can gain more benefits from machine retraining than a diligent user.
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Chapter 4

Practical Issues in Mixed-Initiative

Interaction with a User

Interaction is another essential element for mixed-initiative clustering. The interactive loop

iterates through the machine learning, machine teaching, user learning and user teaching

phases. In practice, the combined time of the machine learning phase and machine teach-

ing phase should be as short as possible so a user doesn’t haveto wait too long. Also, when

a non-oracle user interacts with a mixed-initiative clustering system, she may behave and

expect differently from an oracle user who has no need to learn and knows how to teach,

which is commonly assumed in many other machine learning tasks. This chapter discusses

practical issues we encounter while building a mixed-initiative clustering system that can

interact with a non-oracle user in real time.

4.1 High-Latency vs. Low-Latency Interaction

Experiments in the previous chapter are set up as one iteration of the interactive loop of

mixed-initiative clustering, where a user gives feedback on machine-extracted properties

in a long single user feedback session. This experimental setting is targeted to collecting

sufficient user feedback for the retraining of the machine’sclustering model,Mc. This

setting is not designed to accept a user’s retraining request at any time nor to quickly

retrain the machine’s model (the machine learning phase) and update its computer-to-user

communication (the machine teaching phase.) Due to the expected long user feedback
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Figure 4.1: The difference between high-latency interaction and low latency interaction.
The X axis is a time scale. The light blue blocks correspond tothe timing where a machine
takes initiative during the interactive process, and the dark blue blocks correspond to the
timing of a user’s initiative.

sections and sup-optimal speed of interaction, we call thisinteraction typehigh-latency

interaction.

In contrast,low-latency interaction refers to mixed-initiative clustering systems that

allow their users to retrain a machine’s clustering model atany time and expedite the

process when a machine takes initiative, especially the machine learning phase. Figure 4.1

illustrates the difference between high-latency and low latency interaction. The X axis is a

time scale. The light blue blocks correspond to the periods of time when a machine takes

initiative (machine learning and teaching) during the interactive process, and the dark blue

blocks correspond to the periods of a user’s initiative (user learning and teaching.)

4.2 Exchange of Initiatives

For a low-latency mixed-initiative clustering system, exchange of initiatives is either trig-

gered by some specific types of user feedback or by an automatic mechanism that decides

when is appropriate for a machine to interrupt a user and takeits initiative [21]. We de-

velop our second hierarchical mixed-initiative clustering system using the first approach.

As described in the final part of Chapter 3, the second versionof the hierarchical
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mixed-initiative clustering system is a low-latency interactive system. Figure 3.16 illus-

trates communication languages of this second hierarchical mixed-initiative clustering sys-

tem. In the user-to-machine communication language of the system, some user feedback

types demand immediate machine retraining. These specific feedback types include:

• a user requests retraining of a subtree of the cluster hierarchy,

• a user requests splitting a leaf cluster, and

• a user removes a cluster from the hierarchy.

The machine responds to the user retraining feedback by retraining its hierarchical

clustering model, the cascading SpeClustering model, subject to all past feedback related

to the selected cluster and its descendant clusters. When the user requests splitting a leaf

cluster, the machine learns an unsupervised clustering model using documents in the leaf

cluster, assigns these documents into sub-clusters, and adds this newly learned unsuper-

vised model to the cascading SpeClustering model. When a user removes a cluster from

the hierarchy, documents in the deleted cluster need to be re-distributed to remaining clus-

ters. The machine semi-supervisedly retrains its cascading SpeClustering model for the

remaining clusters, and uses the updated model for the document redistribution. There are

two alternative definitions of remaining clusters: (1) the entire cluster hierarchy except the

deleted cluster, or (2) all sibling clusters of the deleted cluster. We tested both definitions

but couldn’t find observable evidence in clustering resultsto favor one definition over an-

other. The second definition is used in the final system because retraining a subtree of a

hierarchical clustering model is faster than retraining the whole tree.

In addition, we implemented but did not employ a retraining-by-example feedback

type that allows a user to teach a machine a few instances as labeled examples for a user-

specified number of sub-clusters. After the user completes the teaching, the machine re-

trains its clustering model according to the labeled examples. However, at least one ex-

ample for each sub-cluster is necessary, which requires additional book-keeping efforts

from a user. Due to this reason, the retraining-by-example feedback type is disabled in the

second version of the hierarchical mixed-initiative clustering system.
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4.3 Model Retraining in the Wild

4.3.1 Issues

When we pilot tested our low-latency mixed-initiative clustering system, we found three

issues with regard to retraining the machine’s clustering model,Mc, that led to improve-

ments in the final system.

The first issue is about the speed of model retraining. In low-latency mixed-initiative

clustering, model retraining should take only a few secondsinstead of several minutes

because a user has to wait for the machine during this period of time. A rule of thumb

we applied during the development of our mixed-initiative clustering system is10 sec-

onds threshold – whenever model retraining took more than10 seconds to complete, we

investigated methods to expedite the retraining .

Guideline 1: Model retraining should be as fast as possible. Our rule of

thumb is to control the time spent on each model retraining under10 seconds.

The second issue comes from users. Users tend to be lazy and since the low-latency

interaction allows a user’s model retraining request at anytime, it is possible that a user

requests machine retraining right after giving very limited feedback or even no feedback

at all. A mixed-initiative clustering system shouldn’t expect its user to give sufficient user

feedback before she hits the retraining button. Also, a userwithout machine learning back-

ground doesn’t know the importance of balancing numbers of labeled examples in each

cluster (these numbers are used to obtain the prior probabilities in model retraining.) In

low-latency mixed-initiative clustering, a user may give many labeled examples to one

cluster because she knows the cluster’s topic well, and givelimited or no labeled examples

to another cluster because she cannot recognize the topic ofthis cluster. As a result, the

numbers of labeled examples doesn’t necessarily reflect theappropriate prior probabili-

ties, and in many cases, unbalanced labeled examples are given by users unintentionally.

With unbalanced labeled examples, a probabilistic clustering model in its likelihood opti-

mization process may expand clusters with more labeled examples at a cost of shrinking

other clusters with fewer or no labeled examples, which is undesirable. A machine in

low-latency mixed-initiative clustering should prepare to learn from insufficient and un-

balanced user feedback.
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Guideline 2: Because a user tends to be lazy and may not have enough

background knowledge of how machine learning algorithms work, it is an

important capability for a machine to learn from insufficient and unbalanced

user feedback.

The third issue is what is the appropriate amount of change between the previous

machine-proposed clustering and the new clustering revision obtained from system re-

training. Too much change between two consecutive clustering results may confuse a user

instead of assisting her. This is because a user has established a (partial) topic ontology

from reading the previous clustering result. In the most common case, a user submits a

retraining request after giving the machine some feedback regarding its proposed topic

ontology. The user wants the system to learn a model that better reflects her current on-

tology instead of a model that optimizes its objective function but produces an unfamiliar

clustering result.

Nevertheless, a user also wants noticeable change in the newclustering result accord-

ing to her feedback. For example, when a user confirms a keyword to a cluster and then

requests the mixed-initiative system to retrain its clustering model, she may expect the

system to learn some other keywords that are highly related to the confirmed keyword.

When a user observes that enhancement in the new clustering result is specifically based

on her feedback, she is more likely to trust the mixed-initiative clustering system.

The emphasis on noticeable change seemingly contradicts the emphasis on similar-

ity between clustering revisions. However, they share the same principle that a mixed-

initiative clustering system needs to help a user develop her still evolving user ontology.

The similarity between clustering revisions preserves a user’s existing ontology so a user

can improve her ontology step by step. The noticeable change, on the other hand, focuses

on how a mixed-initiative clustering system should assist auser by extrapolating her feed-

back because the feedback indicates the direction of a specific step to improve her user

ontology. Combining these two concerns, we come up with the following guideline:

Guideline 3: The goal of a mixed-initiative clustering system is to help a

user develop her still evolving user ontology. Under this goal, consecutive

machine clustering revisions shouldn’t make dramatic change in order to pre-

serve a user’s existing clustering ontology, but should make specific change

by extrapolating user feedback.
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4.3.2 Heuristic Methods

Based on these guidelines, we apply several heuristic methods to extend the low-latency

interactive version of the hierarchical mixed-initiativeclustering system. These heuristic

methods are tied to the clustering algorithm used in our system, which may or may not

be applicable to other mixed-initiative clustering systems. We don’t investigate theoretical

solutions for model retraining under the low-latency interactive environment in this thesis,

but it is a good topic for future study.

The first heuristic utilizes the fact that computing a multinomial Naive Bayes model,

which uses a single-loop EM algorithm for parameter estimation, is faster than computing

a SpeClustering model, which uses a double-loop EM algorithm. The main purpose of

computing a SpeClustering model instead of a multinomial Naive Bayes model is because

it can learn from user feedback on feature-to-cluster properties. In low-latency interaction,

a user often gives limited and unbalanced feedback, which might not include feedback on

key-features. When there is no feedback on key-features, wecompute the faster multino-

mial Naive Bayes model instead of the slower SpeClustering model. For example, when

a user wants to split a cluster into sub-clusters, these yet-to-be-created sub-clusters have

no feedback at all and thus no feedback on key-features. Thisheuristic solution implies

that the machine’s clustering model is replaceable becausethe agreement between a user

and a machine in mixed-initiative clustering is established upon the shared properties, not

model assumptions. As long as a model is capable of extracting the shared properties, even

it can not learn from some types of properties after user feedback modification, it can be

used before any un-learnable user feedback is given. The general principle isif a user only

uses a subset of the feedback language, a machine can use a cheaper machine learning

algorithm.

The second heuristic method is quite simple. We limit the number of iterations to be

10 during the EM process of computing a SpeClustering model. This heuristic not only

accelerates the machine learning phase but also prevents the newly learned model from

producing a clustering result that deviates too much from the previous clustering result.

The value of10 is set heuristically by observation of clustering results and also because

the SpeClustering model usually converges in20 to 30 iterations.

The third heuristic for model retraining is aimed to boost tiny clusters. Before intro-

ducing the heuristic itself, let’s discuss the implicationof a tiny cluster first. For mixed-
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initiative clustering, each cluster should represent a salient topic, i.ė, it is well supported

by the data, in user ontology. A cluster with many fewer documents than its sibling clus-

ters either doesn’t represent a salient topic or is a clusternewly added by a user. For the

former case, we rely on a user’s cluster removal feedback to get rid of these clusters. The

later case is the target case of our third heuristic – automatically boosting sizes of tiny

clusters, especially newly-added ones. A newly-added cluster is typically tiny before re-

training because once a user gives a mixed-initiative clustering system a few examples,

she expects the system to find more similar documents for her.To be more specific, we

define a cluster as a tiny cluster when it contains less than one third of the documents of

its sibling clusters. The one third threshold is picked by observing which threshold value

results in clusterings that the system developer liked the most.

The third heuristic boosts tiny clusters by applying (pseudo) relevance feedback tech-

niques [2]. In information retrieval, relevance feedback reformulates a user’s initial query

to an expanded query by weighting words in the initial query and words in relevant docu-

ments. Pseudo relevance feedback further assumes that the top N retrieved documents are

relevant even without explicit user relevance judgement. The expanded query is expected

to be closer to relevant documents and further from the non-relevant ones than the initial

query. The Rocchio algorithm [47] is commonly used for the query expansion purpose.

The algorithm calculates the expanded query vector,~qm, using the following formula:

~qm = α~q0 + β
1

|Dr|

∑

~dj∈Dr

~dj + γ
1

|Dnr|

∑

~dj∈Dnr

~dj

where~q0 is the original query vector,~dj is the tf-idf vector for each document,Dr andDnr

are the set of known relevant and non-relevant documents respectively, andα, β, andγ

are weights that adjust the relative impact of the original query, relevant and non-relevant

documents.

Similarly, in mixed-initiative clustering, we can expand limited or empty user feed-

back of a tiny cluster by assuming that machine-proposed keywords and documents of a

tiny cluster are all positive examples unless a user says otherwise. Using the expanded user

feedback, the system can find more robustly other relevant documents than using the orig-

inal limited or empty user feedback. We take user feedback onkey features as the original

query vector while the positive and negative feedback on document-to-cluster properties
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are considered as the relevant and non-relevant documents.Unlike the query expansion,

there can be negative values in the original vector because auser can remove a key feature

from a cluster, and there is a combination of explicit feedback given by a user and pseudo

feedback. We modify the Rocchio formula to handle these differences:

~qm = α~q0 + α′~q′0 + β
1

|Dr|

∑

~dj∈Dr

~dj + β ′ 1

|D′
r|

∑

~dj∈D′
r

~dj + γ
1

|Dnr|

∑

~dj∈Dnr

~dj

where~q0 and~q′0 refer to machine-proposed key-features of a tiny cluster with and without

user feedback, andDr, Dnr andD′
r refer to machine-proposed document-to-cluster prop-

erties with confirmation feedback, with removal feedback, and without user feedback.α,

α′, β, β ′, andγ are weights attached to~q0, ~q′0, Dr, D′
r andDnr correspondingly.

In practice, we set the values ofα, β, andγ to be1.0, andα′ andβ ′ to be0.5. We don’t

fine tune these parameter values. They are obtained by suggestions in the literature [2]

and satisfactory observations in system testing. After computing the expanded feedback,

we use the cosine similarity measurement to find other similar documents and move them

into the tiny cluster until the size of the tiny cluster is no longer smaller than one third of

the sizes of its sibling clusters. However, explicit user feedback always has higher priority

than the pseudo boosting. When a document is already confirmed to a cluster but found

similar to the expanded feedback of a tiny cluster, it shouldremain in its confirmed cluster.

4.4 Managing User Feedback

In some situations, feedback items given by a user may contradict one another. For exam-

ple, a user confirms a keyword for a cluster but later decides the keyword is more suitable

for another cluster so she moves the keyword to the other cluster. In this example, the

original feature-to-cluster property is confirmed first andnegated later in the moving feed-

back. We use a simple rule of thumb to handle contradictions between feedback items

in the low-latency mixed-initiative clustering system – the later feedback overwrites the

previous one if there is a contradiction.

Due to the importance of communication enrichment, the enriched user-to-computer

language of various feedback types also introduces potential feedback contradictions. Be-

low is a general guideline for handling feedback contradictions.
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Guideline 4: Feedback items given by a user may contradict one another es-

pecially when the user is allowed to give various types of feedback in mixed-

initiative clustering. A mixed-initiative system developer should check po-

tential feedback contradictions every time a new feedback type is added. A

simple mechanism to resolve feedback contradictions is to let later feedback

overwrite the previous contradicting one.

In practice, a user may not be familiar enough with the communicative languages of

a mixed-initiative clustering system. She may give feedback that is not appropriate to the

system or feedback the system is not designed for. We call this kind of user feedback

“undesirable user feedback.” For example, when a user requests “Split-A-Cluster” feed-

back on an intermediate cluster, it is hard to tell what a userwants to do with the existing

child clusters of the intermediate cluster. A checking mechanism is necessary to handle

this situation. In our low-latency hierarchical mixed-initiative clustering system, a short

warning message will pop up and educate the user why this feedback should be avoided

when a user requests undesirable user feedback. Other undesirable user feedback includes

“Add-A-Cluster” under a leaf cluster, “Move-A-Document” to an intermediate cluster, and

requesting model retraining on a leaf cluster.

Guideline 5: A checking mechanism is necessary to filter out undesirable

user feedback and educate a user’s feedback proficiency.

In addition, we only allow a leaf cluster being merged into another leaf cluster and

a cluster being moved under another intermediate cluster. When a user drag and drops

a cluster to a destination cluster, the system decides whichuser feedback type, “Merge-

Clusters” or “Move-A-Cluster,” is appropriate based on whether the destination cluster is

a leaf cluster.

4.5 Interface Design

We re-designed the interface of the high-latency system to produce an interface that is

appropriate for users who are not the system’s developers. Asnapshot of the redesigned

interface of the low-latency mixed-initiative clusteringsystem is shown in Figure 4.2. This
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Figure 4.2: The interface for low-latency mixed-initiative clustering.

interface still contains three major areas: (1) the left panel represents the hierarchy of clus-

ters with a menu of various feedback types that will pop up next to the selected cluster upon

right clicking, (2) the middle panel represents the keywords and key-subjects of the se-

lected cluster, and (3) the right top panel represents all documents assigned to the selected

cluster and the right bottom panel shows the text content of aselected document. A user

can move a selection of documents or features to a cluster or perform cluster moving and

merging through drag-and-drop. The pop-up menu in the cluster panel allows additional

feedback types for cluster-to-cluster properties. A combo-box selection is enabled in the

feedback columns in the keyword/key-subject panels and document panel. Users can give

combined feedback of various types and request a machine to retrain its clustering model

of any branch of clusters at any time.

Comparing this interface with the previous user interface shown in Figure 3.10, we see

three major changes. The first change is automatically attaching the top two keywords of

each cluster to the numeric cluster label displayed in interfaces of previous systems. Al-
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though machine-generated text cluster labels are noisy andthe same information is dupli-

cated in the keyword panel, text cluster labels help a user quickly judge the meaningfulness

of a cluster, guess the main topic of a cluster, and maintain overall semantic consistency of

clusters in a hierarchy. An asterisk symbol, “*”, is added infront and at the end of the two

keywords indicating that they are generated automaticallyby the machine. The symbol is

removed if the text label is updated by a user’s cluster description input.

Guideline 6: Don’t generate numeric indices as cluster labels. Generatetext

labels even the automatic text labeling algorithm is far from perfect.

The second change is the swap between the key-feature panel and the document panel,

which is suggested by a third-party pilot tester of the system. The tester thinks the left to

right arrangement of the cluster hierarchy panel, key-feature panel, and document panel is

more cognitively consistent, from the most conceptual property type to the least conceptual

property type, than the document-panel-in-the-middle arrangement.

The third change is the use of a pop-up menu in the cluster panel and combo boxes for

feedback columns in the key-feature panels and document panel. The pop-up menu and

combo boxes are attached right next to their target properties that provide intuitive user

feedback manipulation. They also keep a flexible list of feedback types so extending or

disabling feedback types can be done without modifying the interface layout.

As we learned in the previous system, moving feedback through drag-and-drop is more

intuitive for users than giving positive or negative feedback. In this interface, we allow

moving feedback on all cluster-to-cluster, feature-to-cluster, instance-to-cluster properties.

Guideline 7: The interface design should arrange property panels to reduce a

user’s cognitive effort, and provide intuitive feedback interaction.

4.6 Summary

In this chapter, we distinguish low-latency interaction from high-latency interaction. Un-

like the presumption of a long user feedback session in high-latency interaction, a low-

latency mixed-initiative clustering system allows its user to retrain a machine’s clustering

model at any time and expedites the process when a machine takes initiative, especially
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the machine learning phase. We examine several practical issues which occur only in

the low-latency interactive environment. These issues include the timing of initiative ex-

change, how to retrain a machine’s clustering model with insufficient and unbalanced user

feedback, what is appropriate change between clustering revisions, how to resolve feed-

back conflict and build a user’s feedback proficiency, and ideas about interface design. We

summarize several guidelines that we learnt from building our low-latency mixed-initiative

clustering system. We also describe three heuristic methods that are implemented for re-

training a machine’s clustering model in the low-latency interactive environment.
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Chapter 5

User Studies on the Effectiveness of

Mixed-Initiative Clustering

We demonstrate how to build a mixed-initiative clustering system with enriched commu-

nication languages in Chapter 3 and with low-latency interaction in Chapter 4. In this

chapter, we evaluate the performance of the final system we built – a low-latency hierar-

chical mixed-initiative clustering system. Due to the userinvolvement in the interactive

loop, evaluations of a low-latency mixed-initiative clustering system are hard to conduct

offline. We propose a user study design for evaluation purposes and analyze results ob-

tained from testers’ interactions with the low-latency mixed-initiative clustering system.

5.1 Design of User Studies

The primary hypothesis of our mixed-initiative clusteringstudy is that mixed-initiative

clustering can help a user achieve better clustering results than non-mixed-initiative ap-

proaches due to the enriched communication and the interactive learning and teaching

between a user and a machine. In order to examine this primaryhypothesis, we present

user studies involving two scenarios, a learning scenario and a teaching scenario, that

emphasize different communication directions. The reasons behind the break down of

two scenarios are (1) non-mixed-initiative approaches often have only unidirectional com-

munication, and (2) an attempt to cover different purposes which a user would consider

mixed-initiative clustering approaches.
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In the learning scenario considered here, a user is not familiar with a large set of

documents and wants to rapidly learn an ontology of topics discussed within this document

set. The use of mixed-initiative clustering in this scenario is meant to help the user learn

a good ontology through interaction with a machine, especially by presenting the user

with rich clustering properties extracted by the machine. We compare our mixed-initiative

learning approach with two non-mixed-initiative learningapproaches, an unsupervised

approach with no interaction between a user and a machine, and a manual approach that

has no interaction nor the enriched machine-to-user communication.

In theteaching scenario, a user knows the ontology of a given document set and wants

to transfer their existing knowledge of this specific ontology to a machine. Our mixed-

initiative clustering system allows the user to teach a machine through modifying inap-

propriate properties of various types. In contrast, we consider one non-mixed-initiative

approach that interacts with a machine without enriched user-to-machine communication.

A secondary problem we want to investigate is the entry pointof the interactive loop

in mixed-initiative clustering. This problem can be boileddown to whether a machine

should propose an initial hierarchical clustering. With the machine’s initial clustering, the

system initializes from the machine’s side. Without the machine’s initial clustering, a user

starts the ontology learning/teaching by splitting a root cluster with all documents into any

number of sub-clusters of her choice.

There are advantages and disadvantages to beginning with a machine’s initial cluster-

ing. In the user learning scenario, an initial clustering provides an initial bias and this bias

can be both good and bad. It is good because the machine’s proposal usually reflects sta-

tistically important properties that are sometimes not trivial for a user to observe directly

from documents. It is bad because an initial proposal often limits a user’s direction of

exploration. In the user teaching scenario, an initial hierarchical clustering may provide

a shortcut for a user if it is similar to the ontology the user has in mind. Otherwise, a

user may spend more time to correct errors than to teach from scratch. It is not clear a

priori which initialization method is better, so we conducta secondary study to explore

this question.

The layout of our user study design can be found in Table 5.2 along with individual

learning and teaching tasks assigned to the primary study and the secondary study. Before

getting into the details of individual learning and teaching tasks, let’s introduce the data
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set we use in this study and the idea of reference ontologies for evaluation purposes.

5.1.1 Data Subsets and Reference Ontologies

We choose to use the publicly available 20 newsgroup data setcollected by Ken Lang [31]

to avoid privacy issues. These documents are collected from20 different Usenet discussion

groups, each focusing on a different topic. More specifically, we used a preprocessed

Matlab version prepared by Jason Rennie [46] that contains 18,774 documents. These

documents are sorted into a training set and testing set according to posting dates.

These newsgroups are further split into four subsets, each with five newsgroups, such

that they have an identical hierarchical graph structure and similar difficulty levels for

ontology learning and teaching. The split also attempts to maintain easily separable sibling

topics in the top level of the hierarchy and slightly more challenging sibling topics in the

second level. Table 5.1 lists the details of four subsets, each consisting of two intermediate

topics introduced for conceptual completion in addition tothe five newsgroups as the leaf

topics. For example, subset A introduces “computer” and “recreation” as the intermediate

topics and four newsgroups, two for each, are listed as theirchild topics. We call these

four hierarchies thereference ontologiesof the document subsets. Reference ontologies

are used to evaluate the performance of user-learnt ontologies and as the pre-determined

ontologies for the ontology teaching tasks. As for the number of documents in each subset,

a training subset contains about 2,800 documents and a testing subset contains about 1,850

documents.

We are fully aware that each reference ontology contains only a small set of topics.

However, due to the lack of similar field work, it is still unknown whether users can work

with a mixed-initiative clustering system successfully. We therefore decided to begin our

studies with simple ontology learning and teaching tasks sothe possibility that an ontol-

ogy itself is too difficult to learn or teach is excluded, and the studies can focus on the

effectiveness of different approaches.

5.1.2 User Learning Tasks

The primary study in the user learning scenario examines whether the mixed-initiative

clustering approach helps a user learn a topic ontology froman unfamiliar data set better

than non-mixed-initiative approaches. The comparative tasks in this study are a learning
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Subset reference ontology

A

B

C

D

Table 5.1: We organize the 20 newsgroup data set into four subsets with similar hierarchical
structures. The hierarchy between each five newsgroups is the reference ontology of each subset.
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task using the manual approach (Task 1) and a learning task using the mixed-initiative

approach (Task 2.)

Task 1 refers to the manual approach for user ontology learning. Wedisable the dis-

play of the clustering hierarchy and key features in the interface, e.g., the left half part in

Figure 4.2. Testers need to discover the topic ontology by browsing through documents’

subjects and reading the content of some documents they select. Performances of this task

will give us an idea about the baseline without communication enrichment nor interaction.

In Task 2, testers can use the fully functional mixed-initiative clustering system to

learn the topic ontology. The system first proposes a hierarchical clustering using unsu-

pervised machine learning techniques so the tester begins their learning by understanding

this initial clustering. Before they modify the initial hierarchical clustering, we ask testers

to skim through the clustering and give us their judgement ofmeaningfulness of each

cluster. If a cluster is considered meaningful, a tester is asked to give a short description.

The initial judgment reflects how a user perceives an autonomous clustering generated

by the unsupervised clustering approach plus enriched computer-to-user communication,

e.g., keywords and key-subjects extracted for each cluster. After completing this initial

judgement, testers continue to work with the mixed-initiative clustering system to refine

the initial clustering into a final ontology they like. The final ontology records the user’s

learning result of the mixed-initiative clustering approach.

The secondary user learning study examines if the mixed-initiative clustering system

should propose an initial hierarchical clustering in the learning scenario. It compares Task

2 from the primary study to a new Task 2u. InTask 2u, testers still have assistance from

the fully functional mixed-initiative clustering system,but the mixed-initiative clustering

system does not propose an initial clustering. A tester begins with a root cluster that

contains all documents and has greater freedom to interact with the mixed-initiative system

to learn an ontology.

In all learning tasks, testers are given one of the four document subsets listed in Ta-

ble 5.1. We don’t provide any prior information such as the number of topics or the

structure of the hierarchy to testers.

Evaluation Measurement

In order to evaluate the performance of user learning, we usethe idea of precision and

recall in information retrieval to compute the similarity between a learnt ontology and its
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reference ontology. Topic retrieval scores count the number of relevant topics, instead of

relevant documents, that appear in both learnt and reference ontologies. The precision

score calculates the ratio of topics in the learnt ontology that also appear in the reference

ontology. The recall score calculates the ratio of topics inthe reference ontology also re-

covered by the learnt ontology. Each reference ontology in our experimental setting, which

is unknown to testers when they perform learning tasks, contains seven topics including

two intermediate topics and five leaf topics. In contrast, the number of topics a user may

come up with can vary widely. For instance, the minimum number is 3 and the maximum

number is 24 in our records. When a learnt ontology contains many topics, it has a higher

chance to achieve high recall but low precision. On the contrary, a learnt ontology with

only a few topics may achieve high precision but low recall. The topic F-measure attempts

to balance the trade-off between precision and recall.

F-measure=
2 ∗ precision∗ recall

precision+ recall
(5.1)

It is possible that a tester identifies a topic that is not wordfor word identical to any

reference topic but is semantically equivalent to a topic inthe reference ontology. Due to

the subjective nature of topic matching, we rely on testers’self-assessment to decide which

topics in the reference ontologies were recovered in their user ontology from the learning

sessions. We argue that self-assessment is probably the best way to evaluate performance

of the user learning tasks because it is hard or equally subjective to rebuke a tester’s claim

that she or he learns a topic. Although testers may have a tendency to inflate the number

of topics found, as long as this tendency is uniform among comparative tasks, the relative

comparison is still meaningful. The last column in Table 5.3shows the topic retrieval

scores of some sample ontologies.

5.1.3 User Teaching Tasks

The primary user teaching study examines whether mixed-initiative clustering helps a user

teach an ontology to a machine better than non-mixed-initiative approaches. The compara-

tive tasks in this study are a task simulating the teaching style in semi-supervised clustering

(Task 3) and a teaching task using the mixed-initiative clustering system (Task 4.) Testers

are told which reference ontology they need to teach the system in advance for these tasks.
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They are also told the time limit for each task is ten minutes but they can stop whenever

they feel the teaching is sufficient.

Task 3 corresponds to the teaching style in semi-supervised clustering. The system

simply presents the pre-determined reference ontology butnot the document-to-cluster

assignments in the beginning. Testers have to select documents and drag-and-drop them

to proper topics in the reference ontology, which is exactlylike giving the machine a

small amount of labeled examples in semi-supervised clustering. The user-to-machine

communication in this task is limited to a single iteration of feedback on document-to-

cluster properties.

Task 4 is teaching with the mixed-initiative clustering system. To begin with, a refer-

ence ontology is shown to testers via a paper hint card. An initial hierarchical clustering is

proposed by the machine in this task, so a tester’s teaching is for the purpose of correcting

errors in the machine-proposed clustering. Testers can usethe fully functional mixed-

initiative clustering system to adjust the initial clustering into a clustering that is as close

to the ideal clustering of the reference ontology as possible.

The secondary user teaching study examines whether the mixed-initiative clustering

system should propose an initial hierarchical clustering in the teaching scenario.Task 4u

is the comparative task against Task 4 in this study. This task is identical to Task 4 except

that there is no initial hierarchical clustering proposed by a machine, so a tester can teach

the machine from a clean slate.

Table 5.2 summarizes the differences among these tasks and marks tasks used in the

primary study and the secondary study.

Task scenario approach initialization choice primary study secondary study

1
a user learns an
ontology

manual n/a X

2
mixed-initiative

machine proposes an initial clustering X X

2u user starts from scratch X

3
a user teaches a known
ontology to a machine

semi-supervised n/a X

4
mixed-initiative

machine proposes an initial clustering X X

4u user starts from scratch X

Table 5.2:Summary of user study tasks. The primary study examines whether mixed-initiative
clustering is better than non-mixed-initiative approaches under two scenarios. The secondary study
examines whether a mixed-initiative clustering system should propose an initial hierarchical clus-
tering to its user.
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Evaluation Measurement

A direct measurement for user teaching is how fast a user can complete a teaching task. If

a user can spend less time to teach a machine using approach A than approach B, approach

A is better than B in terms of teaching efficiency. An indirectmeasurement is the clustering

accuracy of a machine’s retrained model on held-out testingsubsets. This measurement

indicates how much a machine can learn from different stylesof feedback a user gives

through different user teaching approaches.

5.1.4 Participants

We target computer science students with machine learning background so they are famil-

iar with the idea and application of clustering technologies. Participants are assigned to

one of two groups.

Primary group is for the primary study focusing on the comparison with and without

assistance of mixed-initiative clustering. Testers in this group performed Task 1

and Task 2 under the user learning scenario, and Task 3 and Task 4 under the user

learning scenario.

Secondary group is for the secondary study addressing the initialization problem. Testers

in this group performed user learning Task 2 and Task 2u, and user teaching Task 4

and Task 4u.

A total of 16 testers were recruited. Eight of them were native English speakers and

the other eight were non-native English speakers. We tried our best to equally balance

testers’ language proficiency and subset-to-task assignments.

5.1.5 Experimental Procedure

A user study session consisted of a short demonstration, four tasks (two comparative tasks

for each scenario), and one questionnaire. In the beginning, the principal investigator gave

a short demonstration to help testers become familiar with our mixed-initiative clustering

system. The demonstration included (1) how the interface represents hierarchical cluster-

ing information and (2) what types of user feedback testers can give to the system. The

demonstration used a held-out email data set so testers would not gain prior knowledge of

the text corpus used in the actual tasks.
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After the demonstration, each tester performed two comparative learning tasks de-

pending on which study they were assigned to. In order to control ordering effects, we

counterbalanced the order of the two learning tasks. At the end of learning tasks, testers

were asked to draw the user ontology and answer task-relatedquestions in the question-

naire. Once two tasks were completed, the principal investigator would show them ref-

erence ontologies of both tasks and ask them to assess their performances in terms of

topic retrieval. After completing two learning tasks, eachtester performed two compara-

tive teaching tasks, again, according to their assignment to the primary or secondary user

study. The order of teaching tasks was also alternated to avoid testers performing better

in the second attempt. However, a tester always finished two learning tasks first and then

worked on two teaching tasks second to prevent them from acquiring any knowledge about

the reference ontologies prior to the learning tasks. At theend of teaching tasks, they were

asked to answer task-related questions in the questionnaire. A tester had 10 minutes each

to complete the four tasks. In order to control for difficultyacross tasks, we used a Latin

square design in which we alternated the association between tasks and data subsets.

5.2 Results

5.2.1 User Learning Results in the Primary Group

Using the manual approach, testers wrote down topics they found during the task on a

paper and summarized the learnt ontology at the end of the task. The learnt ontologies

using the manual approach were coherent conceptually. However, due to the lack of means

to summarize the large number of documents, testers tended to find topics based on a few

documents they happened to observe. The second ontology in table 5.3 is an example of a

manually learnt ontology.

Two ontologies were recorded in the mixed-initiative learning task. An initial ontology

was recorded according to how the tester perceived the initial clustering generated by the

unsupervised clustering approach. If some clusters proposed by the machine were not

meaningful to the tester, they could cross these clusters out (shown as “[X]” in Table

5.3.) At the end of the learning task, the final ontology, learnt mixed-initiatively by the

tester, was also recorded. In brief, the initial and final ontology are referred to as the

“unsupervised ontology” and “mixed-initiative ontology”. An unsupervised ontology and

83



a mixed-initiative ontology learnt by a tester are also shown in Table 5.3. In this example,

the unsupervised clustering approach helped the tester pick up ontology fragments, but

the machine-proposed hierarchy was noisy and inconsistentto the tester. For instance,

“car” and “comp.hardware” were grouped together under the same branch (they shared the

keyword “drive”.) On the other hand, the mixed-initiative ontology was more conceptually

coherent than the initial fragmented unsupervised ontology.

On average,13.0 topics were learnt by testers in the primary group using the manual

approach, and among these learnt topics,4.0 topics were shared with reference ontologies

of 7 topics. 10.5 topics were proposed by the machine’s unsupervised hierarchical clus-

terings, and testers further refined them into mixed-initiative ontologies with an average

of 8.1 topics. Unsupervised ontologies shared4.4 topics, and mixed-initiative ontologies

shared4.8 topics with reference ontologies. Table 5.2.1 shows the averages and standard

deviations of topic retrieval scores of ontologies learnt using different approaches by the

primary group testers. With assistance from our mixed-initiative clustering system, testers

obtained higher topic recall, which means recognizing moretopics in reference ontolo-

gies, and higher precision, which means obtaining more concise ontologies, than other

approaches.1

One thing we want to point out is that the reference ontologies are not the only rea-

sonable ontologies. For example, the reference ontology ofsubset B contains a inter-

mediate “computer” topic and two newsgroup topics corresponding to “IBM hardware”

and “Mac hardware.” Three testers (one using the manual approach and two using the

mixed-initiative approach) learnt sub-topics of individual hardware components such as

“cpu”, “RAM” and “monitor.” Based on our measurements, these user-learnt topics are

not counted as retrieved topics because they are not in the reference ontology. However,

testers did express their satisfaction in this alternativelearning result and one of these three

testers even argued his learnt topics should be counted right.

When we asked testers to choose their preferred learning approach, seven out of eight

testers chose the mixed-initiative approach. The remaining one gave equal preference to

the manual approach and the mixed-initiative approach. None chose the unsupervised

approach.

1In the t-test, the precision and f-measure scores of the mixed-initiative approach both reach5% level of
significance over the manual approach and the semi-supervised approach, while its recall score reaches10%
level of significance over the manual approach.
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Approach ontology score

reference
ontology

manual
R=4/7
P=4/13
F=0.40

un-
supervised

R=5/7
P=5/10
F=0.59

mixed-
initiative

R=6/7
P=6/6
F=0.92

Table 5.3:This table presents a reference ontology and several sampleontologies learnt by testers
using different approaches. Topic retrieval scores of precision (P), recall (R), and F-measure (F)
are shown in the last column for each learnt ontology.
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User learning manual unsupervised mixed-initiative

precision 0.42± 0.27 0.43± 0.09 0.67± 0.28
recall 0.57± 0.15 0.63± 0.11 0.68± 0.13

macro-average F-measure 0.43± 0.13 0.50± 0.10 0.66± 0.19
micro-average F-measure 0.48 0.51 0.67

Table 5.4:The topic retrieval scores of different user learning approaches in the primary group.
The macro-average F-measure is obtained from averaging theF-measure scores of individual user-
learnt ontologies, and the micro-average F-measure is calculated using the averaged precision and
recall scores. The result shows that with the assistant of our mixed-initiative clustering system, a
user can obtain both higher topic recall and precision scores than non-mixed-initiative approaches.

5.2.2 User Teaching Results in the Primary Group

Figure 5.1 shows the user teaching performances of eight primary group testers in terms

of user teaching efficiency and machine learning performances. The X-axis indicates the

amount of time that a tester spent on teaching a machine, and the Y-axis presents the

clustering accuracy of a machine’s model after learning from a tester’s instruction. Al-

though testers were told to finish the task in ten minutes and the investigator reminded

them to wrap up at the ninth minute, we didn’t shut down the system when the time was

up so some testers actually took longer than ten minutes to complete their teaching. With

the assistance of the mixed-initiative system, a tester on average completed the teaching

task in7.2 minutes. Five out of eight testers finished earlier than the given ten-minute

limit because they felt the machine had learned the given reference ontology. This early

completion didn’t happen when they were asked to teach a machine by giving labeled ex-

amples. Testers spent up to9.9 minutes on average to complete the teaching task using the

semi-supervised approach. Many testers described that they didn’t feel a sense of comple-

tion so they just kept teaching until the time limit was used up, and one tester abandoned

the task early on because he disliked the semi-supervised style of teaching. Two testers

spontaneously told the principal investigator that havingmachine learning knowledge was

important to the semi-supervised teaching approach, whichdidn’t happen when testers

taught the machine using the mixed-initiative approach. The model retraining performance

of the mixed-initiative system is marginally better,83.63%, than the teaching-by-example

approach,82.75%. However, the standard deviation of model performance is larger when

retraining with mixed-initiative feedback (5.9% vs. 5.7%). Some early-stopped mixed-

initiative teaching obtains poor retraining performance because the testers thought their
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Figure 5.1:User teaching performance of the primary group.

teaching was enough but in fact it was not. If the main purposeof a future mixed-initiative

clustering system is to facilitate user teaching, we suggest to include a probing mecha-

nism, such as allowing a user to reserve some documents and ask a machine to label them

after one iteration of user teaching, so a user can gauge whether she successfully transfers

the knowledge. According to the result in Figure 5.1, the mixed-initiative style of teaching

facilitates efficient teaching, but only marginally improves the clustering model retraining

at the machine’s side.2

When asked to choose which teaching approach they would prefer, eight testers out of

eight favored our mixed-initiative clustering approach.

2In the t-test, the teaching efficiency of using mixed-initiative clustering reaches5% level of significance
but the machine retraining performance doesn’t.
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5.2.3 Feedback Composition

Analysis of feedback composition reveals what feedback types are actually used by users

under different scenarios. With the assistance of the mixed-initiative clustering system,

three feedback types were available to testers, and testerswere free to choose whatever

feedback they wanted to give at any time during the tasks. Thesemi-supervised style of

teaching, on the other hand, limited testers to document-to-cluster feedback. We recorded

a feedback log file for each task except the manual learning task. The break-down analysis

for the primary group is shown in Table 5.5.

Task
cluster-to-cluster feature-to-cluster document-to-cluster

feedback feedback feedback

2: mixed-initiative learning 19.1 5.4 1.3
3: semi-supervised teaching n/a n/a 51.3
4: mixed-initiative teaching 15.1 20.4 0.8

Table 5.5: Average numbers of different feedback types given by the primary group of testers. It
shows testers preferred giving feedback on conceptual properties.

The comparison between the semi-supervised style of teaching (Task 3) and the mixed-

initiative style of teaching (Task 4) strongly indicates that testers didn’t like to give document-

to-cluster feedback, e.g., teaching by example, if they could teach in a more conceptual

level such like feedback on feature-to-cluster or cluster-to-cluster properties. In fact,

document-to-cluster feedback was almost ignored (only0.8 times per mixed-initiative

teaching task) when there were other choices. The enrichment of communication lan-

guages in our mixed-initiative clustering provided exactly these desirable choices for users.

The comparison between Task 2 and Task 4 highlights the difference between user

learning and user teaching. In the learning task, testers used more cluster-to-cluster feed-

back, e.g., moving clusters around or merging/splitting clusters, to explore the space of

possible user ontologies. When testers intended to teach a machine an ontology, they

chose to give more feature-to-cluster feedback, e.g., assigning keywords or key-subjects

to clusters.

5.2.4 Secondary Group Initialization Choice

The secondary group of testers performed the comparative tasks 2, 2u, 4 and 4u because we

want to answer the question “should a machine propose an initial hierarchial clustering?”
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In Task 2 and 4, testers were presented with an initial hierarchical clustering proposed by

the machine, which we refer to as “machine initialization,”while Task 2u and 4u started

from the user’s side with no initial hierarchical clustering, which we refer to as “user

initialization.”

Table 5.6 shows the topic retrieval scores and user preference of the initialization

choice in the learning scenario. With an initial hierarchical clustering proposed by a ma-

chine, testers on average found9.0 topics, in which5.25 topics could be found in ref-

erence ontologies of 7 topics. Without a machine’s initial proposal (user initialization),

testers found fewer topics,7.5, and only4.37 topics shared in reference ontologies. Ma-

chine initialization achieved lower precision but better recall and overall F-measure than

user initialization. When asked about their preference, five testers in the secondary group

favored an initial hierarchical clustering proposal whilethree favored no such proposal.

User learning machine initialization user initialization

precision 0.62± 0.18 0.68± 0.27
recall 0.75± 0.13 0.63± 0.15
F-measure 0.67± 0.14 0.62± 0.15
user preference 5/8 3/8

Table 5.6: The machine initialization has better overall F-measure and is favored by more testers
than the user initialization.

User teaching machine initialization user initialization

time (min) 7.66± 3.77 5.89± 2.87
accuracy (%) 78.07± 7.89 83.70± 5.66
user preference 2.5/8 5.5/8

Table 5.7:User initialization achieves better user teaching performance than machine initialization
and is favored by testers.

Table 5.7 shows the result of the initialization choice for user teaching. When testers

started teaching from scratch, the retrained model achieved 83.70% average accuracy in

predicting held-out testing sets. The performance degraded to 78.07% when testers had

to correct errors in the machine’s initial hierarchical clusterings. The average time spent

on teaching the machine when testers started without an initial clustering was also shorter,

5.89 minutes compared to7.66 minutes with initial clusterings. Unlike the user learning

study where more testers favored starting with a machine’s initial hierarchical clustering,
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testers favored no such initial clustering in the user teaching study. This result gives a

intuitive guideline about the initialization of mixed-initiative clustering: if a user already

has enough knowledge of the data, it is good to give the user more control; if a user

has limited prior knowledge about the task, it is good for a machine to propose an initial

clustering.

Language proficiency native speakersnon-native spks

user machine init. 2/4 3/4
learning user init. 2/4 1/4

user machine init. 0/4 2.5/4
teaching user init. 4/4 1.5/4

Table 5.8:The impact of language proficiency on the user preference of the initialization choice.
The nominator number indicates how many native or non-native speakers prefer this initialization
choice, and the denominator indicates there are four nativeand four non-native speakers in this
study.

Another interesting finding is about the impact of language proficiency. There are four

native speakers and four non-native speakers in the secondary study. From Table 5.8, it

seems that native speakers are more likely to prefer no initial clustering, and non-native

speakers are more likely to prefer an initial clustering proposed by a machine. However,

more testers are needed to statistically justify this finding.

5.2.5 Suggestions from Testers

Testers were asked to list other feedback types they would like the system to have, and ex-

isting feedback types they think the system should get rid ofin the questionnaire. Before

discussing individual suggestions, we want to remind readers that our testers are computer

science students with machine learning background. They are more aware of related infor-

mation technologies than average users are. As a consequence, some of their suggestions

are on the complicated end of the spectrum.

The most popular suggestion is the integration of a “keywordsearch” function. Four

testers suggested it based on two different purposes. Some testers wanted to use the key-

word search function as a judgement tool for adding a new topic into ontologies. The

idea behind is that if a topic does exist in a data set, there should be enough documents

containing the most prominent keywords of the topic as the supportive evidence. Some
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other testers wanted to teach a machine a topic by giving the machine example documents

that contain one or more topic-related keywords. Two other suggestions also exploit the

feature-to-cluster properties in different ways: (1) two testers suggested the system should

allow users to directly add keywords to a cluster, and (2) onetester wanted the interface to

include information of how many documents affiliated with a feature.

Enhancing transparency of a machine’s clustering model is the second most popular

suggestion. Three testers suggested to present a machine’sconfidence score for each clus-

ter so they can prioritize their learning efforts. One tester suggested to measure and present

a homogeneous score for each cluster. The homogeneous scorecan assist a user in judging

whether a cluster is pure enough or need further splitting.

Two testers suggested automatic retraining instead of our current user-controlled ini-

tiative exchange mechanism. However, one of the two testerswho made this suggestion

also revealed his worries about possible constant interruptions if the system can retrain its

clustering model automatically. Two testers suggested retraining-by-example feedback,

which we implemented but did not employ in these user studiesbecause the retraining-by-

example feedback is hard to perform in practice.

Two testers concerned about the manual decision of the number of clusters in cluster

splitting. One suggested that a machine should decide automatically. Another tester sug-

gested to show multiple clustering results, each with a different number of clusters, and let

a user pick which one she likes.

Some suggestions are about highlighting specific information. One testers wanted

the system to highlight keywords in the content of documents. One wanted to see the

differences between two clustering revisions highlighted. One suggested to display tag

clouds for document subjects in each cluster.

With regards to necessity of existing feedback types, two testers thought feedback

types of confirming and removing a document are not necessarybecause it is more con-

venient to move documents around. One testers thought that confirming or removing

feature-to-cluster and document-to-cluster properties are too complicated and time con-

suming. One tester stated that the initial clustering proposal barred his exploration.

Other suggestions include better automatic topic naming than the top two keywords,

allowing multi-cluster merging in addition to current pair-wise merging, multi-label clus-

tering capability, and sticky keywords so they can be manipulated later. Many testers also

commented our system is easy to use.
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5.3 Summary

In this chapter, we first discuss how to design user studies sowe can evaluate the feasibility

of a mixed-initiative clustering system, and then prove theadvantages of our low-latency

mixed-initiative clustering system by results from the user studies.

We design the user studies to test two scenarios, a learning scenario where a user tries

to learn a topic ontology from an unfamiliar data set, and a teaching scenario where a user

knows the ontology in advance and wants to transfer this knowledge to a machine.

The results of the primary user study show that our mixed-initiative clustering system

helps users in both scenarios. Users can learn more relevantand concise ontologies using

the mixed-initiative clustering system than a manual approach or an unsupervised clus-

tering approach. Users can also teach more efficiently when using our mixed-initiative

system than when they use the teaching-by-example approachin semi-supervised cluster-

ing. However, despite this reduced demand on the user’s time, the iterative mixed-initiative

process converges to a machine’s clustering model with similar accuracy to the teaching-

by-example approach. From users’ point of view, mixed-initiative learning and teaching

are significantly favored over non-mixed-initiative approaches. The analysis of feedback

composition clearly indicates that users prefer giving conceptual-level feedback such as

adjusting the clustering hierarchy and confirming keywordsof a cluster over detailed feed-

back such as labeling documents. Users want enriched communication in the interactive

process.

As the secondary study shows, it is best to choose the initialization method according

to how much prior knowledge a user knows. If a user has limitedprior knowledge about

the mixed-initiative clustering task, providing an initial clustering may better assist the

user. Otherwise, it is better to give the user control over the initial clustering. Language

proficiency may be another factor that affects the initialization choice.

Testers also gave our system many useful suggestions. The most prominent ones are

the integration of a keyword search function, which is handyfor users in both learning and

teaching scenarios, and enhancing transparency of a machine’s clustering model such as

presenting a confidence score or a homogeneous score for eachcluster.

The success of applying the mixed-initiative clustering approach under both the teach-

ing and learning scenario validates our main thesis that mixed-initiative clustering can

help a user achieve better clustering results than non-mixed-initiative approaches due to
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the enriched communication and the interactive learning and teaching between a user and

a machine. These studies also raise more rigorous research challenges. To name a few,

can mixed-initiative approaches help a user in learning or teaching more difficult ontolo-

gies? Can users without machine learning background use mixed-initiative learning sys-

tems? How to theoretically consider a user’s cognitive loadinto the design decisions of

mixed-initiative learning systems? We hope the design of user studies and findings in our

experimental results provide a good starting point for pursuing these challenging research

directions.
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Chapter 6

Conclusion

Mixed-initiative learning has become an emerging researcharea in machine learning com-

munities. By our definition, a mixed-initiative learning task should have the following

characteristics. First, a user and a machine collaborate ina mixed-initiative task by mak-

ing interleaved contributions to the task. Second, the userand the machine can both update

their model assumptions by learning from the other’s contributions. We consider our study

on mixed-initiative clustering as a case study of mixed-initiative leaning. In particular, we

study mixed-initiative “text” clustering where a user and amachine work collaboratively

to identify a topic ontology within a large set of documents.

The motivation of this research comes from problems we identified while applying un-

supervised and semi-supervised clustering techniques in aprevious study. Traditionally,

text clustering is studied using unsupervised techniques where a machine builds the model

alone, but an unsupervised clustering result is usually different from a user’s ideal cluster-

ing result. We call this difference “clustering mismatch”.Semi-supervised clustering is

proposed to solve the clustering mismatch problem in which an oracle user can provide a

small amount of labeled examples. However, to be qualified asan oracle user, a user needs

to be a domain expert, which means she doesn’t need to learn, and a knowledge engineer,

which means she already knows how to teach. In practice, it isnot realistic to assume

that a user is an oracle user. We raise the “user teaching problem” to challenge the as-

sumption that an oracle user is a knowledge engineer. To solve the user teaching problem,

one should seek intuitive user feedback types so a user can communicate her conceptual

ideas to a machine rather than requiring a user to give instance-based information, which

is typically requested by a semi-supervised clustering algorithm. On the other hand, the
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“user learning problem” challenges the assumption that an oracle user is a domain expert.

To solve the user learning problem, a machine has to provide enough information to as-

sist a user when the user is still in the process of developingher ontology for a specific

clustering task.

Our study on mixed-initiative clustering solves the user teaching problem and the user

learning problem by considering a non-oracle user as a collaborator with a machine. The

first essential component required for building a mixed-initiative clustering system is the

capability that a machine and a user can learn from each otherand teach each other in-

teractively. Next, it is important to investigate what types of information are effective and

efficient for teaching and learning in this interactive loop. Including those effective and

efficient types of information for communication between a non-oracle user and a ma-

chine, which we refer to as communication enrichment, is another essential component of

mixed-initiative clustering.

Given these two essential components, the main thesis of this study ismixed-initiative

clustering can help a user achieve better clustering results than non-mixed-initiative ap-

proaches due to theenriched communication and theinteractive learning and teaching

between a user and a machine.In order to examine our thesis, we have studied commu-

nication enrichment and interactive learning and teachingfor mixed-initiative clustering,

built a system with all new knowledge we have learnt by studying the two essential compo-

nents, and then completed user studies to evaluate whether non-oracle users can eventually

achieve better clustering results using this system. We summarize our contributions in this

study as follows.

6.1 Contributions

The first contribution of this study is providing a frameworkfor mixed-initiative cluster-

ing. This framework consists of a machine learning phase, a machine teaching phase, a

user learning phase, and a user teaching phase. These phasesare connected in an inter-

active loop that allows bi-directional communication between a user and a machine. The

bi-directional communication languages define types of information exchanged in an inter-

face. Thecomputer-to-user communication language, Lc→u defines types of properties

a machine extracts and presents in the interface, and theuser-to-computer language,

Lu→c, defines types of user feedback supported by the interface. Each user feedback type
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corresponds to a specific way to confirm or correct machine-proposed properties. Given

this framework, we can formally define communication enrichment as adding new types

of properties and allowing new types of user feedback in an interface. In particular, we

consider communication enrichment by introducingconceptual propertiessuch as key

features of clusters and hierarchical relationships between clusters in order to help a non-

oracle user learn and teach. By including multiple propertyand feedback types in com-

munication languages, communication robustness is built up as well. We also identify

the necessity ofcoordination between the communication languages and the machine’s

clustering model from this framework.

The second contribution comes from successfully building several systems using our

proposed framework. Two systems are built with incrementally enriched communica-

tion languages. We demonstrate in Chapter 3 how to enrich communication languages in

mixed-initiative clustering by adding two conceptual property types toLc→u, and various

feedback types on conceptual properties toLu→c. The first conceptual communication in-

troduced is feedback on key features of each cluster. For example, if a machine extracts

“espn” as a keyword for a “sport” cluster, a user can confirm this feature-to-cluster prop-

erty. The second conceptual communication enrichment is accepting user feedback on hi-

erarchical clustering. For example, if a machine misplacesa “baseball” cluster underneath

a “finance” cluster, a user can correct this inappropriate parent-child relationship by mov-

ing the “baseball” cluster to a suitable place in the hierarchy. With conceptual properties, a

user can understand the clustering results more easily. With various types of user feedback

available, a user can teach a machine more intuitively. In order to achieve the coordina-

tion for mixed-initiative clustering, we propose a new clustering model, the SpeClustering

model, which provides a natural way to adjust its parametersaccording to user feedback

on key features, and a mixed-initiative SpeClustering algorithm to adapt multiple types

of user feedback. For coordination in hierarchical mixed-initiative clustering, a cascad-

ing version of the mixed-initiative SpeClustering algorithm trains a set of SpeClustering

models as classifiers for the root node and intermediate nodes. The successful building

of mixed-initiative clustering systems validates our framework and also demonstrates the

possibility to develop machine learning algorithms to workwith conceptual properties.

The third contribution comes from the study of the other essential component, low-

latency interaction, in mixed-initiative clustering.Low-latency interaction refers to a

mixed-initiative learning environment in which a user can retrain a machine’s model at
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any time and a machine can complete its initiative of learning and teaching in a few sec-

onds. We examine several practical issues occurred only in the low-latency interactive

environment. These issues include the timing of initiativeexchange, how to retrain a ma-

chine’s clustering model with insufficient and unbalanced user feedback, how to resolve

feedback contradictions, how to build a user’s feedback proficiency, and how to design a

mixed-initiative interface. Below is our summarization ofguidelines for general mixed-

initiative learning problems:

1. Model retraining should be as fast as possible. If a user only uses a subset of the

feedback language, a machine can use a cheaper machine learning algorithm. Our

rule of thumb is to control the time spent on each model retraining under10 seconds.

2. Because a user tends to be lazy and may not have enough background knowledge of

how machine learning algorithms work, it is an important capability for a machine

to learn from insufficient and unbalanced user feedback.

3. The goal of a mixed-initiative clustering system is to help a user develop her still

evolving user ontology. Under this goal, consecutive machine clustering revisions

shouldn’t make dramatic change in order to preserve a user’sexisting clustering

ontology, but should make specific change by extrapolating user feedback.

4. Feedback items given by a user may contradict one another especially when the

user is allowed to give various types of feedback in mixed-initiative clustering. A

mixed-initiative system developer should check potentialfeedback contradictions

every time a new feedback type is added. A simple mechanism toresolve feedback

contradictions is to let later feedback overwrite the previous contradicting one.

5. A checking mechanism is necessary to filter out undesirable user feedback and edu-

cate a user’s feedback proficiency.

6. Don’t generate numeric indices as cluster labels. Generate text labels even the auto-

matic text labeling algorithm is far from perfect.

7. The interface design should arrange property panels to reduce a user’s cognitive

effort, and provide intuitive feedback interaction.

Using the knowledge learnt from the second and third contributions, we build a fi-

nal mixed-initiative clustering system that integrates communication enrichment and low-

latency interaction capabilities. User studies are conducted to examine the effectiveness

of this full-fledged system.
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The fourth and last contribution comes fromthe design of user studiesand user study

results. Evaluating a mixed-initiative clustering systemis not easy. We solve the evaluation

problem by designing comparative tasks under separate userlearning and user teaching

scenarios. This separation covers most of use cases for mixed-initiative clustering, and

allows comparison with non-mixed-initiative approaches.In theuser learning scenario,

a user develops a topic ontology from an unfamiliar data set,and in theuser teaching

scenario, a user knows the ontology and wants to transfer this knowledge to a machine.

Results of user studies confirm our main thesisthat mixed-initiative clustering can help

a user achieve better clustering results than non-mixed-initiative approaches. The analysis

of feedback composition clearly indicates that users prefer conceptual properties and like

to give conceptual-level feedback. From users’ point of view, mixed-initiative learning and

teaching are significantly favored over non-mixed-initiative approaches. We also learn that

a mixed-initiative clustering system should decide its initialization choice based on how

much prior knowledge its user possesses.

6.2 Future Work

There are many future research opportunities in mixed-initiative clustering and the more

general research area of mixed-initiative learning.

To expand the study on mixed-initiative clustering, we can apply techniques developed

in this dissertation to intelligent information retrieval. Some search engines have success-

fully applied autonomous clustering techniques to groups similar retrieved results together

into clusters [54]. Given an autonomous clustering on retrieved results, mixed-initiative

clustering techniques can further assist users’ followingexploratory searching activities.

Another future research topic we are particularly interested in is how to develop a

mixed-initiative collaborative filtering/recommendation system. We believe our frame-

work of mixed-initiative clustering can be applied to this new mixed-initiative learning

task. Let’s use the popular online DVD subscription service, Netflix, as an example. If

we want to build a mixed-initiative recommendation system to replace Netflix’s current

recommendation system, we can analyze this new mixed-initiative learning task in terms

of its communication languages and collaborative filteringalgorithm. As mentioned in

Section 2.3, the coordinated computer-to-user language, user-to-computer language and

machine’s clustering model can be considered as the signature of a mixed-initiative learn-
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ing system. The Netflix’s recommendation pages already present its subscribers various

types of information about movies it recommends, such as a short summary, cast, directors,

genres, comments from other subscribers, reasons of recommendation, and prediction on

user ranking, which define a well-enriched computer-to-user language,Lc→u. The other

direction of communication enrichment is slightly enriched as well. Its user-to-computer

language,Lu→s, allows subscribers to edit their genre preference (confirming and disap-

proving genre properties) in addition to rank individual movies (correcting the machine’s

prediction on ranking properties.) The trend of emphasizing genres in its recommendation

explanations and allowing user edition of genre preferencefits our finding that conceptual

properties are good to have in any human-computer communication languages. However,

this user-to-computer language still misses feedback types on many property types that

Netflix web pages also provide. One way to further enrich the user-to-computer language

is to assume each link a subscriber clicks as implicit confirmation feedback. For example,

a subscriber follows a link of an actress indicates her interest in this actress. She may also

be interested in other movies this actress played. The next challenge is how to develop a

suitable collaborative filtering algorithm,Mc, to learn from newly introduced user feed-

back types, especially the implicit feedback types. We can imagine building this mixed-

initiative recommendation system by fixingLc→u and bootstrappingLu→c andMc, i.e.,

introducing one feedback type at a time to the user-to-computer communication language

and coordinating the collaborative filtering algorithm to learn from this new feedback type.

Other research opportunities include but not limited to understanding user behaviors

and expectation in a mixed-initiative learning task, design guidelines based on users’ cog-

nitive load, and systematic analysis on machine learning algorithms and their coordinated

property types and feedback types.

Given our experiences in mixed-initiative clustering, we believe that approaching mixed-

initiative learning as a bi-directional learning and teaching task between a user and a ma-

chine helps users more substantially than studying it as an interactive user-teaching and

machine-learning task.
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