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Abstract

Much recent work in natural language generation has relied on deep learning, often using neural net-
works with soft attention mechanisms to select salient aspects from data and then construct fluent natural
language text. However, in naturally occurring descriptions of data, humans often refer to higher-level
patterns which may require complex computations on data. In many cases, neural models using soft
attention mechanisms alone struggle to extract such patterns. Moreover, users might often find such
models to be difficult to interpret and control. In this thesis, I propose methods for inducing certain types
of discrete hierarchical operations on data and text for grounded natural language generation. Compared
to using attention alone, such hierarchical operations can better model complex patterns in data, expose
interpretable intermediate computations, and enable controllable generation. In the first half of the the-
sis, I will discuss adding specific discrete hierarchical operations to neural models for different grounded
natural language generation tasks, such as image and table captioning, dialog response generation, and
constructing reasoning chains for multi-hop question-answering. These tasks span various data modal-
ities (including images, tabular data, numerical data, and knowledge bases). In the second half, I will
describe hierarchical methods for content planning in text decoders, studying rhyming patterns in poetry
generation and discrete plans for coherent narrative text generation.
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1 Introduction

We live in an era of big data, with billions of devices constantly collecting and storing raw data. However,
such data is useless without an expert to analyze it and communicate the findings to relevant stakeholders.
For example, there has been rapid digitization of personal medical data, including test reports and data
from sensors on wearable devices such as digital watches. However, such data is of not much use if
people can’t understand it. An automated system can potentially unlock valuable insights by, for instance,
detecting and giving an early warning for potential health disorders. Given the exponentially increasing
volume of data that is becoming available, there has been an increased effort in building smart systems
to assist people in making sense of such data. Importantly, natural language is a key medium for such
smart machines to effectively deliver useful insights since users might not have the expertise to interpret a
graph or understand a spreadsheet. Thus, extracting useful insights from data, and communicating them
to users through automatically generated natural language descriptions, has emerged as an important
application area for artificial intelligence (AI) technologies. However, real-world applications of such
systems need to be configurable to user preferences and should be as transparent and/or interpretable as
possible. Therefore, there is a need to enable some degree of user-control over system outputs as well as
expose some working of such systems.

But building such technologies presents a challenge - how can we build systems that reason about
data and present their results effectively in natural language? Can we leverage natural language to help
systems learn useful abstractions of data similar to what humans often do? Can we learn models that can
demonstrate controllable and interpretable use of data on output?

1.1 Motivation

This thesis deals with certain aspects of Grounded NLG (Natural Language Generation). I’ll discuss
the motivation of the work presented in this thesis in light of the framework proposed in Reiter (2007)
which describes four stages in grounded Natural Language Generation as follows: Signal Analysis, Data
Interpretation, Document Planning, Micro-planning, and Realization. While much recent work involves
neural models trained through end-to-end learning, the framework is still relevant to conceptually under-
stand and analyze how different aspects of models for grounded NLG.

1. Signal analysis involves information extraction typically not extending beyond shallow pattern
extraction. In contemporary neural models, this would typically be neural data encoders, often
including self-attention mechanisms.

2. Data Interpretation typically refers to higher-level complex patterns and should be employed
when the final text communicates more than basic patterns.

3. Planning typically involves high-level text planning involving content selection, which would also
govern aspects such as overall coherence and structure planning of text. Contemporary attention
mechanisms could be considered as a popular means to achieve this.

4. Micro planning and realization for fluent text generation, taking into account any stylistic aspects
of the text.
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In the rest of this subsection, I will briefly summarize how many of the contemporary techniques
are often not able to adequately model Data Interpretation and Planning aspects of NLG. Towards this
goal, I will be discussing two major existing issues: (1) Failure to model useful abstractions for complex
patterns (2) Failure to expose interpretable intermediate decisions, and enabling controllable generation.
Modeling complex patterns on data can be considered to fall into Data Interpretation and Planning buck-
ets, while modeling useful structures on text can be viewed to fail into Planning aspects (i.e. Planning
encompasses both data and text aspects.).

1.1.1 Modeling Complex Patterns for Data Interpretation and Planning aspects

Recently, there has been interest in automatic description of tabular data to generate biographies from
tables of biographical information (Lebret et al., 2016; Wiseman et al., 2018), or recipes from ingredient
lists (Kiddon et al., 2016a). In many of these tasks, the main focus is on designing systems that aggregate
information into a low dimensional vector or a set of such vectors and using neural attention mechanisms
to select entries. However, in many naturally occurring descriptions of data, humans often refer to
higher-level patterns. For example, consider the following stock market description ‘the stock prices
peaked towards the end of the day’. To be able to generate such descriptions from stock market data
would require a model to be able to effectively identify the notions of ‘peak’ and ‘towards the end’. As I
will discuss in more detail later, simply using popular neural encoder-decoder frameworks often leads to
inferior results and are less interpretable.

Much prior work on text generation relies on recurrent and transformer neural networks trained to
maximize the likelihood of data. However, such models, including more recent large pre-trained models
such as GPT2 (Radford, 2018), often fail to capture the overall structure and coherency in multi-sentence
or long-form text (Bosselut et al., 2018; Holtzman et al., 2018; See et al., 2019). To rectify this, prior work
has proposed loss functions that encourage overall coherency or other desired behavior (Li et al., 2016b;
Zhang and Lapata, 2017; Bosselut et al., 2018). However, most of these approaches rely on manually
provided definitions of what constitutes a good or suitable structure, thereby limiting their applicability.
In this thesis, I propose and discuss methods to induce such patterns from data itself, such as learning
rhyming constraints from poetry data without being provided any external phonetic information.

1.1.2 Interpretable and Controllable Generation

While recent progress has achieved great success in being able to generate fluent text, there still exist
many issues. For instance, consider the task of difference description between a pair of images. A
model for this task would need to screen out noisy isolated changes, group together related changes, and
describe one change at a time. A straightforward method for this task would be to pass the images through
a deep neural encoder and train it to predict the difference captions. However, such a model performs
rather poorly. Firstly, it is difficult to interpret if the model actually screens out noise and groups pixels
as expected. Attempts to use attention weights as explanations can be unreliable (Jain and Wallace,
2019). Secondly, since there can be multiple differences between two images, the above model is opaque
with respect to which particular one is being described. Issues of such nature are observed across a
wide spectrum of text generation models and tasks and include lack of effective means of controlling the
output, hallucinating content which is not present, lack of generalization to unseen contexts, and so on.
While past work with neural module networks (Andreas et al., 2016a) has explored such goals for tasks
such as question answering, there has been a lack of work in such direction for data-to-text tasks.

Much prior work on text generation has relied on directly generating the target text, without exposing
or generating interpretable plans for a generation. Some recent work has shown the usefulness of adding
the correct level of planning (Yao et al., 2019; Fan et al., 2019). However, most prior techniques rely on
first tagging data with desired structure or plan, and then using such codes directly for training and/or
decoding. While this provides a certain level of explanation and control, naturally occurring data often
lacks such tags. Thus there is a need for a new set of models and training techniques for inducing such
useful structures or plans from the data itself.
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Figure 1.1: Overview: The figure highlights the focus of this thesis in context of a conceptual framework
for grounded natural language generation proposed by Reiter (2007). Reiter (2007) outlined four major
conceptual stages in grounded natural language generation. In this thesis, I propose and discuss how
models with induced hierarchical operations for (data interpretation and planning aspects of) grounded
natural language generation often generate better quality outputs, expose patterns to effectively control
the output, and are much more interpretable compared to many contemporary methods relying on neural
attention alone.

1.2 Thesis Overview

Thesis statement: Models with Induced Hierarchical Operations for (data interpretation and planning
aspects of) Grounded Natural Language Generation often generate better quality outputs, often expose
patterns to effectively control the output, and are much more interpretable compared to many contempo-
rary methods relying on neural attention alone.

Hierarchical Interpretable Operations: I use the term Hierarchical Interpretable Operations to refer
to a variety of discrete (and often of hierarchical nature) operations including but not limited to discrete
content selection, sequence of deterministic programs of increasingly abstract nature, alignment between
portions of data and text, sparse hierarchical grouping, and so on. For example, many of the proposed
methods in this thesis leverage discrete latent random variables for data selection and alignment. This
is in contrast to the more popular way of using neural soft attention mechanisms on the entire input. As
we will demonstrate in various chapters, the proposed hierarchical interpretable operations are 1) more
interpretable to humans 2) often acts as useful inductive biases leading to improved perplexity, and other
metrics 3) often exhibit desirable characteristics such as controllable text generation. 1

Part 1: Learning Interpretable Hierarchical Operations on Data: In the first part of the thesis, I dis-
cuss applying the notion of hierarchical operations in model architectures for modeling complex patterns
in data for different tasks such as image captioning, knowledge-based dialog response generation, con-
structing reasoning chains for multihop question-answering, etc. spanning across various data modalities
(such as images, structured data, numerical data, knowledge bases). The proposed approach is in contrast
to popular contemporary techniques of encoding entire data input using neural soft attention instead of
learning and exposing more interpretable operations.

1. Chapter 2: Difference Description Generation via Interpretable Hierarchical Operations: In
Chapter 2, I discuss models for difference descriptions in structured data (Jhamtani et al., 2018)

1 A note on Interpretability: In context of machine learning models, interpretability can refer to a variety of notions and
corresponding objectives (Lipton, 2016). For example, a high level English language explanation of a model for an end user
versus a gradient based visualization of model parameters for debugging purposes. In this thesis, I do not limit to a single
global definition of model interpretability, and instead separately describe the contours of interpretability being evaluated for
the experiments and models in question.
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and images (Jhamtani and Berg-Kirkpatrick, 2018) via latent interpretable operations. We release
two new datasets, one for chess game move commentary generation, and the second one for our
proposed task of captioning differences between a pair of similar images. Through experiments,
we demonstrate that the proposed models using latent operations perform better than just using
neural soft attention as per various automated and human evaluation studies. Our methods for
difference description generation have applications in computer assisted tracking of changes in
media assets, automated game commentary generation, and generating summaries of changes in
documents.

2. Chapter 3: Fine-grained Reasoning for Knowledge Base Grounded Text Generation: In this
chapter, we propose novel modeling approaches using latent reasoning chains over knowledge base
for explanation generation in multi-hop question answering (Jhamtani and Clark, 2020) and incor-
porating common-sense knowledge in a dialog system (Majumder and Jhamtani et al. (2020)).
We compare proposed methods against prior work which encodes a subset of relevant knowledge
instead of performing fine-grained selection. We observe that the proposed modeling techniques
expose interpretable reasoning chains over knowledge base, lead to improved output quality over
baselines, and are more robust to certain types of perturbations to the input. Our proposed methods
for explanation generation has applications in building tutoring systems for children. Additionally,
proposed techniques of incorporating commonsense knowledge in dialog system can enable more
natural conversations between people and dialog agents.

3. Chapter 4: Inducing Neuro-Symbolic Rules for Numerical Data: In this chapter, we propose
methods to induce modules that detect useful trends such as peak or dip in time series numeri-
cal data, being guided only by accompanying natural language descriptions (Jhamtani and Berg-
Kirkpatrick, 2021). We propose a novel truth-conditional method to learn modules that combine
in a latent computation graph, which outputs the truth value of whether the feature represented by
the composed computation graph holds true for a given data point or not. Outputs from the pro-
posed model demonstrate higher precision and diversity compared to various baselines, and can
potentially be extended for use in other natural language generation setups to improve on factual
correctness of machine generated text.

Part II: Latent Discrete Plans for Long-form Text Generation: In the second part of the thesis, I
discuss how related techniques of hierarchical operations can be leveraged to induce latent global plans
for text generation. Many neural language models often fail to capture higher-level structures present
in text: for example, rhyming patterns present in poetry or narrative plan for coherent long-form text
generation2. Prior work has heavily relied on the injection of external knowledge such as rhyming
knowledge, or the use of external tools to tag narrative plans, to effectively model such long-range
patterns. In the second part of the thesis, I focus on investigating whether such long-range patterns or
structures can be treated as latent variables, and be learned from the data, resulting in better quality
outputs.

1. Chapter 5: Structured Discriminators for Modeling Long-Range Latent Patterns: Much
prior work on poetry generation uses manually defined rhyming and rhythm constraints. We pro-
pose a novel structured discriminator in a generative adversarial setup that operates on a matrix
of self-similarity values of all pairs of line-ending words. The proposed discriminator (1) induces
an accurate rhyming metric, and (2) guides a generator to learn rhyming patterns in data without
being provided with phonetic information (Jhamtani et al., 2019). We successfully apply simi-
lar techniques for modeling self-repetition in music generation (Jhamtani and Berg-Kirkpatrick,
2019), which induces pitch and rhythm-based musical measure similarities. Such models have
applications in assisting creative professionals and students for applications such as music gener-
ation.

2 In such cases, the generated text can be considered as grounded in some latent data such as a specific rhyming scheme.
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2. Chapter 6: Latent Discrete Generation Plans for Controllable and Coherent Generation:
Prior work has shown that long-form text generation can benefit by first creating a rough sketch
or plan for the content and then generates text conditioned on the plan. However, naturally oc-
curring data is not tagged with such plans. Compared to rhyming scheme constraints, this type of
structure is less restricted and much less formal. We propose a deep generative model which uses
a hierarchical discrete latent plan realized via a sequence of keywords. To train the model (Jham-
tani and Berg-Kirkpatrick, 2020), we propose a constrained inference network which (1) learns to
identify useful keywords from sentences (2) guides the model in learning to generate sequences of
keywords in the generation plan.

3. Chapter 7: Retrieved Snippets as Discrete Plans for Guided Generation Outputs of many
existing dialog models are limited by the ’knowledge’ available to the models at training time.
In this chapter, I discuss methods to introduce relevant additional ‘knowledge’ at decoding time
without the need to re-train the models. In Majumder et al. (2021), we equip persona grounded
dialog models with ‘background stories’ related to a persona by retrieving fictional narratives from
existing story datasets (e.g. ROCStories). In Jhamtani et al. (2021), we equip dialog models with
dictionary translations of figurative English expressions to their literal counterparts to improve
dialog model handling. Such proposed techniques of incorporating commonsense knowledge in
dialog system can enable more natural conversations between people and dialog agents.
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2 Difference Description via Hierarchical
Interpretable Operations

In this chapter I discuss inducing useful hierarchical abstractions on data guided by accompanying natural
language annotations contrasting the differences between two states or a pair of data points. Modeling the
changes or edits is important as our thinking is often grounded in relative states or conditions. In addition
to being a useful task in itself, this can be a useful approach to learn fine-grained classifiers (Khosla
et al., 2011), and as a tool for eliciting variety of lexicon (Maji, 2012). A straightforward approach to
such difference description generation tasks can be to simply apply popular encoders on the data. We
however are interested in learning useful and interpretable hierarchical abstractions on data, which can
hopefully outperform baselines as well. First I discuss Spot-the-diff (Jhamtani and Berg-Kirkpatrick,
2018), where we propose a model to expose salient groups of pixels to describe difference between two
similar images. Our approach begins with pixel-level difference for removal of uninteresting isolated
changes, followed by clustering of pixels for object grouping and spatial similarity, and finally followed
by cluster alignment to text description. We observe that the proposed approach acts as a useful inductive
bias leading to improved performance, and leads to controllable and interpretable caption generation. I
conclude the chapter with a brief discussion on chess commentary generation (Jhamtani et al., 2018),
where we discuss models for a chess move commentary by comparing successive chess board states
through operations which elicit which piece has moved, potential piece interactions, and game score
changes.

2.1 Introduction

The interface between human users and collections of data is an important application area for artificial
intelligence (AI) technologies. Can we build systems that effectively interpret data and present their
results concisely in natural language? One recent goal in artificial intelligence has been to build models
that are able to interpret and describe visual data to assist humans in various tasks. For example, image
captioning systems (Vinyals et al., 2015b; Xu et al., 2015; Rennie et al., 2017; Zhang et al., 2017)
and visual question answering systems (Antol et al., 2015; Lu et al., 2016; Xu and Saenko, 2016) can
help visually impaired people in interacting with the world. Another way in which machines can assist
humans is by identifying meaningful patterns in data, selecting and combining salient patterns, and
generating concise and fluent ‘human-consumable’ descriptions. For instance, text summarization (Mani
and Maybury, 1999; Gupta and Lehal, 2010; Rush et al., 2015) has been a long standing problem in
natural language processing aimed at providing a concise text summary of a collection of documents.

In this paper, we propose a new task and accompanying dataset that combines elements of image
captioning and summarization: the goal of ‘spot-the-diff’ is to generate a succinct text description of
all the salient differences between a pair of similar images. Apart from being a fun puzzle, solutions to
this task may have applications in assisted surveillance, as well as computer assisted tracking of changes
in media assets. We collect and release a novel dataset for this task, which will be potentially useful
for both natural language and computer vision research communities. We used crowd-sourcing to collect
text descriptions of differences between pairs of image frames from video-surveillance footage (Oh et al.,
2011), asking annotators to succinctly describe all salient differences. In total, our datasets consist of
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Figure 2.1: Examples from Spot-the-diff dataset: We collect text descriptions of all the differences between a pair of images.
Note that the annotations in our dataset are exhaustive wrt differences in the two images i.e. annotators were asked to describe
all the visible differences. Thus, the annotations contain multi-sentence descriptions.

descriptions for 13,192 image pairs. Figure 2.1 shows a sample data point - a pair of images along with
a text description of the differences between the two images as per a human annotator.

There are multiple interesting modeling challenges associated with the task of generating natural
language summaries of differences between images. First, not all low-level visual differences are suffi-
ciently salient to warrant description. The dataset presents an interesting source of supervision for meth-
ods that attempt to learn models of visual salience (we additionally conduct exploratory experiments with
a baseline salience model, as described later). Second, humans use different levels of abstraction when
describing visual differences. For example, when multiple nearby objects have all moved in coordina-
tion between images in a pair, an annotator may refer to the group as a single concept (e.g. ‘the row of
cars’). Third, given a set of salient differences, planning the order of description and generating a fluent
sequence of multiple sentences is itself a challenging problem. Together, these aspects of the proposed
task make it a useful benchmark for several directions of research.

Finally, we experiment with neural image captioning based methods. Since salient differences are
usually described at an object-level rather than at a pixel-level, we condition these systems on a first-
pass visual analysis that exposes clusters of differing pixels as a proxy for object-level differences. We
propose a model which uses latent discrete variables in order to directly align difference clusters to
output sentences. Additionally we incorporate a learned prior that models the visual salience of these
difference clusters. We observe that the proposed model which uses alignment as a discrete latent variable
outperforms those that use attention alone.

2.2 ‘Spot-the-diff’ Task and Dataset

We introduce ‘spot-the-diff’ dataset consisting of 13,192 image pairs along with corresponding human
provided text annotations stating the differences between the two images. Our goal was to create a dataset
wherein there are meaningful differences between two similar images. To achieve this, we work with
image frames extracted from VIRAT surveillance video dataset (Oh et al., 2011), which consists of 329
videos across 11 frames of reference totalling to about 8.5 hours of videos.

2.2.1 Extracting Pairs of Image Frames

To construct our dataset, we first need to identify image pairs such that some objects have changed
positions or have entered or left in the second image compared to the first image. To achieve this, we
first extract a certain number of randomly selected image frame pairs from a given video. Thereafter, we

7



Total number of annotations 13,192
Mean (std dev.) number

of sentences per annotation 1.86(1.01)

Vocabulary size 2404
Frequent word types
(>=5 occurrences) 1000

Word tokens that are
frequent word types 97%

Mean (std dev.) number
of words in sentence: 10.96(4.97)

% Long sentences
(> 20 words) 5%

Table 2.1: Summary statistics for spot-the-diff dataset

Figure 2.2: AMT (Amazon Mechanical Turk) HIT (Human Intelligence Task) setup for data collection. We provide
the annotators with detailed instructions, along with an example showing how to perform the task. We request the
annotators to write complete English sentences, with each sentence on a separate line. We collect a total of 13,192
annotations.

compute the L2 distance between the two images in each pair (under RGB representation). Finally, we
set a lower and a upper threshold on the L2 distance values so calculated to filter out the image pairs with
potentially too less or too many changes. These thresholds are selected based on manual inspection. The
resulting image pairs are used for collecting the difference descriptions.

2.2.2 Human Annotation

We crowd-sourced natural language differences between images using Amazon Mechanical Turk. We re-
strict to annotators from primarily Anglophone countries: USA, Australia, United Kingdom, and Canada,
as we are working with English language annotations. We limit to those participants which have lifetime
HIT > 80%. We award 5 cents per HIT (Human Intelligence Task) to participants. We provide the anno-
tators with an example on how to work on the task. We request the annotators to write complete English
sentences, with each sentence on a separate line. We collect a total of 13192 annotations.

2.2.3 Dataset statistics

Table 2.1 shows some summary statistics about the collected dataset. Since we deal with a focused
domain, we observe a small vocabulary size. On an average there are 1.86 reported differences / sentences
per image pair. We also report inter-annotator agreement as measured using text overlap of multiple

8



Dataset BLEU-1/2/3/4 ROUGE-L
Spot-the-diff

(A = 3) 0.41/0.25/0.15/0.08 0.31

MS-COCO
(A = 3) 0.38/0.22/0.13/0.08 0.34

MS-COCO
(A = 5) 0.66/0.47/0.32/0.22 0.48

Table 2.2: Human agreement for our dataset: We report measures such as BLEU and ROUGE when
‘evaluating’ one set of human generated captions against the remaining sets. A = k represents k captions
per data point, out of which 1 is chosen as hypothesis, while remaining k−1 act as references.

annotations for the same image pair. We collect three sets of annotations for a small subset of the data
(467 data points) for the purpose of reporting inter-annotator agreements. We thereby calculate BLEU
and ROUGE-L scores by treating one set of annotations as ‘hypothesis’ while remaining two sets act as
‘references’(Table 2.2). We repeat the same analysis for MS-COCO dataset and report these measures
for reference. The BLEU and METEOR values for our dataset seem reasonable and are comparable to
the values observed for MS-COCO dataset.

2.3 Modeling Difference Description Generation

We propose a neural model for describing visual difference based on the input pair of images that uses
latent alignment variable to capture visual salience. Since most descriptions talk about higher-level
differences rather than individual pixels, we first perform a visual analysis that pre-computes a set of
difference clusters in order to approximate object-level differences, as described next. The output of this
analysis is treated as input to a neural encoder-decoder text generation model that incorporates a latent
alignment variable and is trained on our new dataset.

2.3.1 Exposing Object-level Differences

We first analyze the input image pair for the pixel-level differences by computing a pixel-difference mask,
followed by a local spatial analysis which segments the difference mask into clusters that approximate
the set of object-level differences. Thereafter, we extract image features using convolutional neural mod-
els and use these as input to a neural text generation model, described later.

Pixel-level analysis: The lowest level of visual difference is individual differences between correspond-
ing pixels in the input pair. Instead of requiring our description model to learn to compute pixel-level
differences as a first step, we pre-compute and directly expose these to the model. Let X = (III111, III222) rep-
resent the image pair in a datum. For each such image pair in our dataset, we obtain a corresponding
pixel-difference mask MMM. M is a binary-valued matrix of the same dimensions (length and width) as
each of the images in the corresponding image pair, wherein each element in the matrix is 1 (active) if
the corresponding pixel is different between the input pair, and 0 otherwise. To decide whether a pair
of corresponding pixels in the input image pair are sufficiently different, we calculate the L2-distance
between the vectors corresponding to each pixel’s color value (three channels) and check whether this
difference is greater than a threshold δ (set based on manual inspections).

While the images are extracted from supposedly still cameras, we do find some minor shifts in the
camera alignment, which is probably due to occasional wind but may also be due to manual human in-
terventions. These shifts are rare and small, and we align the images in the pair by iterating over a small
range of vertical and horizontal shifts to find the shift with minimum corresponding L2-distance between
the two images.
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Figure 2.3: Exposing Object-level Differences: Before training a model to describe visual difference,
we first compute pixel-level differences, as well as a segmentation of these differences into clusters, as
a proxy for exposing object-level differences. The first row shows the original image pair. Bottom left
depicts the pixel-difference mask, which represents extracted pixel-level differences. The segmentation
of the pixel-difference mask into clusters is shown in the bottom right.

Figure 2.4: The figure shows the pixel-difference mask for the running example, along with the two
original images, with bounding boxes around clusters. Typically one or more difference clusters are used
to frame one reported difference / sentence, and it is rare for a difference cluster to participate in more
than one reported difference.

Object-level analysis: Most visual descriptions refer to object-level differences rather than pixel-level
differences. Again, rather than requiring the model to learn to group pixel differences into objects,
we attempt to expose this to the model via pre-processing. As a proxy for object-level difference, we
segment the pixel-level differences in the pixel-difference mask into clusters, and pass these clusters
as additional inputs to the model. Based on manual inspection, we find that with the right clustering
technique, this process results in groupings that roughly correspond to objects that have moved, appeared,
and disappeared between the input pair. Here, we find that density based clustering algorithms like
DBScan (Ester et al., 1996) work well in practice for this purpose. In our scenario, the DBScan algorithm
predicts clusters of nearby active pixels, and marks outliers consisting of small groups of isolated active
pixels, based on a calculation of local density. This also serves as a method for pruning any noisy pixel
differences which may have passed through the pixel-level analysis.

As the output of DBScan, we obtain segmentation of the pixel difference matrix M into difference
clusters. Let the number of difference clusters be represented by K (DBScan is a non-parametric cluster-
ing method, and as such the number of clusters K is different for each data point.). Now, let’s define CCCkkk
as another binary-valued mask matrix such that the elements in matrix corresponding to the kth difference
cluster are 1 (active) while rest of the elements are 0.
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X=(I1,I2) : Image pair in the datum
M : Pixel-difference mask is a binary-valued

matrix depicting pixel-level changes
F1,F2 : Image feature tensors for I1 and I2

respectively
K : Number of segments
Ck : Cluster mask corresponding to kth

difference cluster
T : Number of reported differences /

sentences
zi : Discrete alignment variable for the ith

sentence. zi ∈ {1,2, ...,K}
S1, ..,ST : List of T Sentences

Table 2.3: Summary of notation used in description of the method.

2.3.2 Text Generation Model

We observe from annotated data that each individual sentence in a full description typically refers only
to visual differences within a single cluster (see Figure 2.4). Further, on average, there are more clusters
than there are sentences. While many uninteresting and noisy pixel-level differences get screened out
in preprocessing, some uninteresting clusters are still identified. These are unlikely to be described by
annotators because, even though they correspond to legitimate visual differences, they are not visually
salient. Thus, we can roughly model description generation as a cluster selection process.

In our model, which is depicted in Figure 2.5, we assume that each output description, which consists
of sentences S1, . . . ,ST , is generated sentence by sentence conditioned on the input image pair X =
(I1, I2). Further, we let each sentence Si be associated with a latent alignment variable, zi ∈ {1, . . . ,K},
that chooses a cluster to focus on (Vinyals et al., 2015a). The choice of zi is itself conditioned on the
input image pair, and parameterized in a way that lets the model learn which types of clusters are visually
salient and therefore likely to be described as sentences. Together, the probability of a description given
an image pair is given by:

P(S1, ..,ST |X) = ∑
z1,..,zT

T

∏
i=1

P(Si|zi,X ;θ))︸ ︷︷ ︸
decoder

P(zi|X ;w)︸ ︷︷ ︸
alignment prior

(2.1)

The various components of this equation are described in detail in the next few subsections. Here,
we briefly summarize each. The term P(zi|X ;w) represents the prior over the latent variable zi and is
parameterized in a way that lets the model learn which types of clusters are visually salient. The term
P(Si|zi,X ;θ) represents the likelihood of sentence Si given the input image pair and alignment zi. We
employ masking and attention mechanisms to encourage this decoder to focus on the cluster chosen by
zi. Each of these components conditions on visual features produced by a pre-trained image encoder.

The alignment variable zi for each sentence is chosen independently, and thus our model is similar
to IBM Model 1 (Brown et al., 1993) in terms of its factorization structure. This will allow tractable
learning and inference as described in subsection 2.3.3. We refer to our approach as DDLA (Difference
Description with Latent Alignment).

Alignment prior: We define a learnable prior over alignment variable zi. In particular, we let the multi-
nomial distribution on zi be parameterized in a log-linear fashion using feature function g(zi). Specif-
ically, we consider the following four features: the length, width, and area of the smallest rectangu-
lar region enclosing cluster zi, and the number of active elements in mask Czi . Specifically, we let
P(zi|X ;w) ∝ exp(wT g(zi)).
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Figure 2.5: Model architecture for generating difference descriptions. We incorporate a discrete latent
variable z which selects one of the clusters as a proxy for object-level focus. Conditioned on the cluster
and visual features in the corresponding region, the model generates a sentence using an LSTM decoder.
During training, each sentence in the full description receives its own latent alignment variable, z.

Visual encoder: We extract images features using ResNet (He et al., 2016) pre-trained on Imagenet data.
Similar to prior work (Xu et al., 2015), we extract features using a lower level convolutional layer instead
of fully connected layer. In this way, we obtain image features of dimensionality 14 ∗ 14 ∗ 2096, where
the first two dimensions correspond to a grid of coarse, spatially localized, feature vectors. Let F1 and F2
represent the extracted feature tensors for I1 and I2 respectively.

Sentence decoder: We use an LSTM decoder (Hochreiter and Schmidhuber, 1997) to generate the
sequence of words in each output sentence, conditioned on the image pair and latent alignments. We
use a matrix transformation of the extracted image features to initialize the hidden state of the LSTM
decoder for each sentence, independent of the setting of zi. Additionally, we use an attention mechanism
over the image features at every decoding step, similar to the previous work (Xu et al., 2015). However,
instead of considering attention over the entire image, we restrict attention over image features to the
cluster mask determined by the alignment variable, Czi . Specifically, we project binary mask Czi from the
input image dimensionality (224*224) to the dimensionality of the visual features (14*14). To achieve
this, we use pyramid reduce down-sampling on a smoothed version of cluster mask Czi . The resulting
projection roughly corresponds to the subset of visual features with the cluster region in their receptive
field. This projection is multiplied to attention weights.

2.3.3 Learning and Decoding

Learning in our model is accomplished by stochastic gradient ascent on the marginal likelihood of each
description with alignment variables marginalized out. Since alignment variables are independent of one
another, we can marginalize over each zi separately. This means running backpropagation through the
decoder K times for each sentence, where K is the number of clusters. In practice K is relatively small
and this direct approach to training is feasible. Following equation 2.1, we train both the generation and
prior in an end-to-end fashion.

For decoding, we consider the following two problem settings. In the first setting, we consider the
task of producing a single sentence in isolation. We evaluate in this setting by treating the sentences in
the ground truth description as multiple reference captions. This setting is similar to the typical image
captioning setting. In the second setting, we consider the full multi-sentence generation task where the
system is required to produce a full description consisting of multiple sentences describing all differences
in the input. Here, the generated multi-sentence text is directly evaluated against the multi-sentence an-
notation in the crowd-soured data.
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Single-sentence decoding: For single sentence generation, we first select the value of zi which maxi-
mizes the prior P(zi|X ;w). Thereafter, we simply use greedy decoding to generate a sentence conditioned
on the chosen zi and the input image pair.

Multi-sentence decoding: Here, we first select a set of clusters to include in the output description,
and then generate a single sentence for each cluster using greedy decoding. Since typically there are
more clusters than sentences, we condition on the ground truth number of sentences and choose the
corresponding number of clusters. We rank clusters by decreasing likelihood under the alignment prior
and then choose the top T .

2.4 Experiments

Model Bleu 1/2/3/4 Meteor Cider Rouge-L Perplexity
NN 0.226 0.111 0.057 0.026 0.102 0.120 0.201 -

CAPT 0.304 0.194 0.126 0.073 0.105 0.263 0.256 16.78
CAPT-MASKED 0.301 0.200 0.131 0.078 0.108 0.285 0.271 15.12

DDLA-UNIFORM 0.285 0.175 0.108 0.064 0.106 0.250 0.247 9.96
DDLA 0.343 0.221 0.140 0.085 0.120 0.328 0.286 9.73

Table 2.4: Single sentence decoding: We report automatic evaluation scores for various models under single sentence
generation setting. DDLA model fares better scores than various baseline methods for all the considered measures. Both the
DDLA models get much better perplexities than baseline methods.

We split videos used to create the dataset into train, test, and validation in the ratio 80:10:10. This
is done to ensure that all data points using images from the same video are entirely in one split. We re-
port quantitative metrics like CIDEr (Vedantam et al., 2015a), BLEU (Papineni et al., 2002a), METEOR
(Denkowski and Lavie, 2014), and ROUGE-L, as is often reported by works in image captioning. We
report these measures for both sentence level setting and multi-sentence generation settings. Thereafter,
we also discuss some qualitative examples. We implement our models in PyTorch (Paszke et al., 2017).
We use mini-batches of size 8 and use Adam optimizer1. We use CIDEr scores on validation set as a
criteria for early stopping.

Baseline models: We consider following baseline models: CAPT model considers soft attention over the
input pair of images (This attention mechanism is similar to that used in prior image captioning works
(Xu et al., 2015), except that we have two images instead of a single image input). We do not perform
any masking in case of CAPT model, and simply ignore the cluster information. The model is trained
to generate a single sentence. Thus, this model is similar to a typical captioning model but with soft
attention over two images. CAPT-MASK model is similar to CAPT model except that it incorporates the
masking mechanism defined earlier using the union of all the cluster masks in the corresponding image.
We also consider a version of the CAPT model wherein the target prediction is the whole multi-sentence
description – CAPT-MULTI – for this setting, we simply concatenate the sentences in any arbitrary order
2. Additionally, we consider a nearest neighbor baseline (NN-MULTI), wherein we simply use the an-
notation of the closest matching training data point. We compute the closeness based on the extracted
features of the image pair, and leverage sklearn’s (Pedregosa et al., 2011b) Nearest-Neighbor module.
For single sentence setting (NN), we randomly pick one of the sentences in the annotation.

We also consider a version of DDLA model with fixed uniform prior, and refer to this model as
DDLA-UNIFORM . For single sentence generation, we sample z j randomly from the uniform distribu-
tion and then perform decoding. For the multi-sentence generation setting, we employ simple heuristics

1 Our data set can be obtained through https://github.com/harsh19/spot-the-diff

2 Note that we do not provide CAPT-MULTI with ground truth number of sentences
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Model Bleu 1/2/3/4 Meteor Cider Rouge-L LenRatio
NN-MULTI 0.223 0.109 0.056 0.026 0.087 0.105 0.181 1.035

CAPT-MULTI 0.262 0.146 0.081 0.045 0.094 0.235 0.174 1.042
DDLA-UNIFORM 0.243 0.143 0.085 0.051 0.094 0.217 0.213 0.778

DDLA 0.289 0.173 0.103 0.062 0.108 0.297 0.260 0.811

Table 2.5: Multi-sentence decoding We report automatic evaluation scores for various models under multi-sentence gener-
ation setting. DDLA model achieves better scores compared to the baseline methods. Note that these scores are not directly
comparable with single sentence generation setting. LenRatio is the ratio of the average number of tokens in the prediction to
the average number of tokens in the ground truth for the test set.

Figure 2.6: Predictions from various methods for two input image pairs.

to order the clusters at test time. One such heuristic we consider is to order the clusters as per the de-
creasing area of the bounding box (smallest rectangular area enclosing the cluster).

Results: We report various automated metrics for the different methods under single sentence generation
and multi-sentence generation in Tables 2.4 and 2.5 respectively. For the single sentence generation
setting, we observe that the DDLA model outperforms various baselines as per most of the scores on
the test data split. DDLA-UNIFORM method performs similar to the CAPT baseline methods. For the
multi-sentence generation, the DDLA model again outperforms other methods. This means that having
a learned prior is useful in our proposed method. Figure 2.6 shows an example data point with predicted
outputs by different methods.

2.4.1 Discussion and Analysis

Qualitative Analysis of Outputs We perform a qualitative analysis on the outputs to understand the
drawbacks in the current methods. One apparent limitation of the current methods is the failure to ex-
plicitly model the movement of same object in the two images (Figure 2.7) – prior works on object
tracking can be useful here. Sometimes the models get certain attributes of the objects wrong. e.g. ‘blue
car’ instead of ‘red car’. Some output predictions state an object to have ‘appeared’ instead of ‘disap-
peared’ and vice versa.

Do models learn alignment between sentence and difference clusters? We performed a study on 50
image pairs by having two humans manually annotate gold alignments between sentences and difference
clusters. We then computed alignment precision for the model’s predicted alignments. To obtain model’s
predicted alignment for a given sentence Si, we compute argmaxkP(zi = k|X)P(Si|zi = k,X). Our pro-
posed model achieved a precision of 54.6%, an improvement over random chance at 27.4%.

Clustering for pre-processing Our generation algorithm assumed one sentence uses only one cluster
and as such we tune the hyper-parameters of clustering method to get large clusters so that typically
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Figure 2.7: Some drawbacks with the current models: One apparent drawback with the single cluster selection is that it misses
opportunity to identify an object which has moved significantly- considering it as appeared or disappeared as the case may be.
In this example, the blue truck moved, but the DDLA model predicts that the truck is no longer there.

a cluster will entirely contain a reported difference. On inspecting randomly selected data points, we
observe that in some cases too large clusters are marked by the clustering procedure. One way to mit-
igate this is to tune clustering parameters to get smaller clusters and update the generation part to use
a subset of clusters. As mentioned earlier, we consider clustering as a means to achieve object level
pre-processing. One possible future direction is to leverage pre-trained object detection models to detect
cars, trucks, people, etc. and make these predictions readily available to the generation model.

Multi-sentence Training and Decoding As mentioned previously, we query the models for a desired
number of ’sentences’. In future works we would like to relax this assumption and design models which
can predict the number of sentences as well. Additionally, our proposed model doesn’t not explicitly
ensure consistency in the latent variables for different sentences of a given data point i.e the model does
not make explicit use of the fact that sentences report non-overlapping visual differences. Enforcing this
knowledge while retaining the feasibility of training is a potential future direction of work.

2.5 Related Work

Modeling pragmatics: The dataset presents an opportunity to test methods which can model pragmat-
ics and reason about semantic, spatial and visual similarity to generate a textual description of what has
changed from one image to another. Some prior work in this direction (Andreas and Klein, 2016; Vedan-
tam et al., 2017) contrastively describe a target scene in presence of a distractor. In another related task
– referring expression comprehension (Kazemzadeh et al., 2014; Mao et al., 2016; Hu et al., 2017) – the
model has to identify which object in the image is being referred to by the given sentence. However, our
proposed task comes with a pragmatic goal related to summarization: the goal is to identify and describe
all the differences. Since the goal is well defined, it may be used to constrain models that attempt to learn
how humans describe visual difference.

Natural language generation: Natural language generation (NLG) has a rich history of previous work,
including, for example, recent works on biography generation (Lebret et al., 2016), weather report gener-
ation (Mei et al., 2016), and recipe generation (Kiddon et al., 2016a). Our task can viewed as a potential
benchmark for coherent multi-sentence text generation since it involves assembling multiple sentences
to succinctly cover a set of differences.

Visual grounding: Our dataset may also provide a useful benchmark for training unsupervised and
semi-supervised models that learn to align vision and language. Plummer et al. (2015) collected anno-
tation for phrase-region alignment in an image captioning dataset, and follow up work has attempted to
predict these alignments (Wang et al., 2016; Plummer et al., 2017; Rohrbach et al., 2016). Our proposed
dataset poses a related alignment problem: attempting to align sentences or phrases to visual differences.
However, since differences are contextual and depend on visual comparison, our new task may represent
a more challenging scenario as modeling techniques advance.
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Image change detection: There are some works on land use pattern change detection ((Radke et al.,
2005)). These works are related since they try to screen out noise and mark the regions of change
between two images of same area at different time stamps. (Bruzzone and Prieto, 2000) propose an
unsupervised change detection algorithms aim to discriminate between changed and unchanged pixels
for multi-temporal remote sensing images. (Zanetti and Bruzzone, 2016) propose a method that allows
unchanged class to be more complex rather than having a single unchanged class. Though image diff
detection is part of our pipeline, our end task is to generate natural language descriptors. Moreover, we
observe that simple clustering seems to work well for our dataset.

Other relevant works: (Maji, 2012) aim to construct a lexicon of parts and attributes by formulating
an annotation task where annotators are asked to describe differences between two images. Some other
related works model phrases describing change in color (Winn and Muresan, 2018), and code commit
message summarizing changes in code-base from one commit to another (Jiang et al., 2017). There exist
some prior works on fine grained image classification and captioning (Wah et al., 2014; Nilsback and
Zisserman, 2006; Khosla et al., 2011). The premise of such works is that it is difficult for machine to find
discriminative features between similar objects e.g. birds of different species. Such works are relevant
for us as the type of data we deal with are usually of same object or scene taken at a different time or
conditions.

2.6 Application to Chess Commentary Generation

We discuss application of the proposed technique in chess game commentary generation, where we
model a game move as being represented by a pair of successive game states. Our approach utilizes a
set of fixed programs on the game states to extract successively higher levels of abstractions : (1) which
pieces has moved, (2) which other pieces are under threat, and (3) overall game is in which player’s
favor. The proposed approach leads to better overall performance compared to straightforward sequence
to sequence baselines.

Automated game commentary generation can be a useful learning aid. Novices and experts alike can
learn more about the game by hearing explanations of the motivations behind moves, or their quality.
In fact, on sites for game aficionados, these commentaries are standard features, speaking to their inter-
estingness and utility as complements to concrete descriptions of the game boards themselves. Game
commentary generation poses a number of interesting challenges for existing approaches to language
generation. First, modeling human commentary is challenging because human commentators rely both
on their prior knowledge of game rules as well as their knowledge of effective strategy when interpreting
and referring to the game state. Secondly, there are multiple aspects of the game state that can be talked
about for a given move — the commentator’s choice depends on the pragmatic context of the game. For
example, for the move shown in Figure 6.1, one can comment simply that the pawn was moved, or one
may comment on how the check was blocked by that move. Both descriptions are true, but the latter is
most salient given the player’s goal. However, sometimes, none of the aspects may stand out as being
most salient, and the most salient aspect may even change from commentator to commentator. Moreover,
a human commentator may introduce variations in the aspects he or she chooses to talk about, in order
to reduce monotony in the commentary.

We introduce our new large-scale Chess Commentary dataset, share some statistics about the data,
and discuss the variety in type of commentaries. The data is collected from the online chess discussion
forum gameknot.com, which features multiple games self-annotated with move-by-move commen-
tary. Prior work has explored game commentary generation. (Liao and Chang, 1990; Sadikov et al.,
2006) have explored chess commentary generation, but for lack of large-scale training data their meth-
ods have been mainly rule-based. (Kameko et al., 2015) have explored commentary generation for the
game of Shogi, proposing a two-step process where salient terms are generated from the game state and
then composed in a language model. In contrast, given the larger amount of training data available to
us, our proposed model uses an end-to-end trainable neural architecture to predict commentaries given
the game state. Our model conditions on semantic and pragmatic information about the current state
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Figure 2.8: A multi-move, single commentary example from our data. Here, the sequence of moves Ba4
→ b5→ Nd6→ bxa4→ e5 is commented upon.

Statistic Value
Total Games 11,578
Total Moves 298,008
Average no. of recorded steps in a game 25.73
Frequent Word Types3 39,424
Rare Word Types 167,321
Word Tokens 6,125,921
Unigram Entropy 6.88
Average Comment Length (in #words) 20.55
Long Comments (#words > 5) 230745 (77%)

Table 2.6: Dataset and Vocabulary Statistics

and explicitly learns to compose, conjoin, and select these features in a recurrent decoder module. We
perform an experimental evaluation comparing against baselines and variants of our model that ablate
various aspects of our proposed architecture. Outputs on the ‘Move Description’ subset of data from our
final model were judged by humans to be as good as human written ground truth commentaries on mea-
sures of fluency and correctness. The dataset consists of 298K aligned game move/commentary pairs.
Some commentaries are written for a sequence of few moves (Figure 2.8) while others correspond to
a single move. For the purpose of initial analysis and modeling, we limit ourselves to only those data
points where commentary text corresponds to a single move. Additionally, we split the multi-sentence
commentary texts to create multiple data points with the same chess board and move inputs.

What are commentaries about?: Commentary-type Ontology We observe that there is a large
variety in the commentary texts. To analyze this variety, we consider labelling the commentary texts in
the data with a predefined set of categories. The choice of these categories is made based on a manual
inspection of a sub-sample of data. We consider the following set of commentary categories (Also shown
in Table 2.7):

• Direct move description (MoveDesc4): Explicitly or implicitly describe the current move.

• Quality of move (Quality5): Describe the quality of the current move.

• Comparative: Compare multiple possible moves.

4 MoveDesc & ‘Move Description’ used interchangeably

5 Quality and ‘Move Quality’ used interchangeably
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Category Example % in
data

Val
acc.

Direct Move
Description An attack on the queen 31.4% 71%

Move
Quality A rook blunder. 8.0% 90%

Comparative
At this stage I figured
I better move my knight. 3.7% 77.7%

Planning /
Rationale

Trying to force a way to
eliminate d5 and
prevent Bb5.

31.2% 65%

Contextual
Game Info

Somehow, the game I
should have lost turned
around in my favor .

12.6% 87%

General
Comment Protect Calvin , Hobbs 29.9% 78%

Table 2.7: Commentary texts have a large variety making the problem of content selection an important
challenge in our dataset. We classify the commentaries into 6 different categories using a classifier trained
on some hand-labelled data, a fraction of which is kept for validation. % data refers to the percentage of
commentary sentences in the tagged data belonging to the respective category.

• Move Rationale or Planning (Planning): Describe the rationale for the current move, in terms
of the future gameplay, advantage over other potential moves etc.

• Contextual game information: Describe not the current move alone, but the overall game state –
such as possibility of win/loss, overall aggression/defence, etc.

• General information: General idioms & advice about chess, information about players/tourna-
ment, emotional remarks, retorts, etc.

The examples in Table 2.7 illustrate these classes. Note that the commentary texts are not necessarily
limited to one tag, though that is true for most of the data. A total of 1K comments are annotated by two
annotators. A SVM classifier (Pedregosa et al., 2011a) is trained for each comment class, considering
the annotation as ground truth and using word unigrams as features. This classifier is then used to predict
tags for the train, validation and test sets. For “Comparative” category, we found that a classifier with
manually defined rules such as presence of word “better” performs better than the classifier, perhaps due
to the paucity of data, and thus we use this instead . As can be observed in Table 2.7, the classifiers used
are able to generalize well on the held out dataset

The key contributions of this study can be summarized as follows:

(1) We propose and collect a dataset of more than 298K chess move/commentary pairs across ≈
11K chess games. To the best of our knowledge, this is the first such dataset of this scale for a game
commentary generation task. We provide an analysis of the dataset and highlight the large variety in
commentary texts by categorizing them into six different aspects of the game that they discuss.

(2) We propose a chess commentary generation model to effectively use semantic and pragmatic
information about chess games and explicitly model conjunctions of features.

(3) We perform an experimental evaluation comparing with baselines and variants of our model that
ablate our proposed semantic and pragmatic features. Outputs from our final model were judged as good
as human written ground truth commentaries on measures of fluency and correctness.

(4) Our results demonstrate the effectiveness of our proposed method to deal with content selection
issue.
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3 Fine-grained Reasoning for Knowledge-
Base Grounded Text Generation

In this chapter, I discuss applying the notion of exposing intermediate operations to discover latent rea-
soning patterns in knowledge base grounded text generation. Consider a typical grounded NLG setup
wherein we have to generate text output for some context. Prior work has demonstrated how one can
leverage external knowledge bases to enrich models to leverage external information to generate more
favorable outputs. A popular contemporary approach is to use large dump of relevant information from
the knowledge base, instead of focusing on discovering and exposing latent reasoning patterns which
may be present. Often such reasoning involves fine grained selection of sentences from knowledge base,
as well as carefully combining the relevant pieces.

In rest of the chapter, I will describe and discuss models which uncover latent reasoning structures
via knowledge bases to compose desired final outputs. First I will discuss a model for persona-grounded
dialog (Majumder and Jhamtani et al. (2020)) which (1) performs an expansion operation to discover
common-sense implications of given persona (2) uses a discrete random variable to select which particu-
lar aspect of the expanded persona entails a given dialog response. This is in contrast to prior work which
encodes the entire persona instead of fine-grained selection. We observe that the proposed models lead
to improved generalization compared to baselines, and utilizes the giver persona in a more interpretable
and controllable manner. I will conclude the chapter with a brief discussion on applying related ideas
on uncovering abstract reasoning chains as explanations for open domain multi-hop reasoning questions
(Jhamtani and Clark, 2020). Compared to prior work which uses a dump of relevant sentences, we focus
on selection and combinations of sentences which can as reasoning chains.

3.1 Introduction

Persona-grounded dialog generation is a ‘chit-chat’ dialog setup where a dialog agent is expected to
communicate based on a given profile (Zhang et al., 2018a). Many recent works have focused on a
popular benchmark dataset for this task: PERSONA-CHAT‘ (Zhang et al., 2018a) that provides personas
as a set of sentences along with each dialog (example in 3.1). However, a careful analysis of state-of-
the-art (SOTA) models reveals that they often struggle to respond to contexts that do not closely match
given persona sentences, even when the implications might be obvious to a human.

For example, in 3.1, the user asks an indirect question to the bot related to one of its persona sen-
tences: I am an animal activist. SOTA1, which concatenates all persona sentences with dialog history
and finetunes a pre-trained generative model (e.g. GPT2) (Wolf et al., 2019), fails to infer implied com-
monsense from the dialog context and conditions on an incorrect persona. SOTA2, which separately
selects a persona sentence given the dialog history (Lian et al., 2019) manages to choose the correct
persona but merely copies it as the final response. Neither approach is in general capable of responding
to context that goes beyond what is explicitly mentioned in the available persona sentences, which limits
consistent and interesting conversation. The goal of our model is to understand that being ‘an animal
activist’ may imply that the person wants ‘to make a difference’ via their activity towards animals and
synthesizes a context-consistent and engaging response.
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Figure 3.1: State-of-the-art models struggle to respond a user’s query, where generating an engaging
response depends on commonsense reasoning.

Figure 3.2: Expansions of an original persona via (a) human rewrite (Zhang et al., 2018a), (b) paraphrase,
and (c) COMET.

In this paper, we focus on making persona-grounded chatbots more consistent with personas and
implicit dialog context. We present a framework to expand available persona sentences to their com-
monsense implications by using an existing commonsense knowledge base or paraphrasing resources
(see 3.2). We endow our dialog model with these expansions directly rather than requiring the model to
learn them from scratch for being context-consistent. We find that expansions derived from a common-
sense knowledge base are more useful to provide engaging contextual information compared to other
expansion sources.

We further propose a Common Sense and Persona Aligned Chatbot1 (COMPAC) which models
choices over the expanded persona set via a discrete latent random variable (See 3.3) as fine-grained
persona grounding. Even though it is tractable to marginalize over all expansions, that would require a
forward pass through the dialog generator for each outcome which is prohibitively slow during training.
Instead, to accommodate hundreds of persona expansions, we train the model by optimizing a lower
bound on the log-likelihood. We use amortized variational inference by approximating the true posterior
using an inference network that eventually provides useful inductive bias. Particularly, we show that our
Bayesian formulation for the fine-grained persona grounding was essential as simply providing expanded
knowledge does not help the model generate better responses.

1 Code is available at – https://github.com/majumderb/compac.
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We also outperform competitive baselines in all dialog quality metrics as well as human evaluations
which find COMPAC to be engaging and coherent. We demonstrate that COMPAC learns to be consistent
with the dialog context with accurate persona grounding especially in the presence of commonsense ex-
pansions. Finally, we show that our model can reflect a change in response generation when a grounding
persona is modified, indicating the possibility of controllable generation.

We use a popular benchmark dataset: PERSONA-CHAT‘ (Zhang et al., 2018a) for our persona-
grounded dialog generation task. It contains 10,907 dialogs between pairs of speakers where each speaker
follows their own persona; 968 dialogs are used for validation and 1,000 for testing. Each speaker is de-
scribed by 3-5 persona sentences. (e.g. ‘I love the beach’, ‘My mother is a medical doctor’). Out of
1,155 total unique personas, 100 are used for validation and 100 for testing.

The task of persona-grounded dialog generation is: given a dialog history H and grounding per-
sona sentences S, we must predict the next utterance x (Summary of notations in 3.1). Hence a dialog
model should maximize the likelihood p(x|H,S). From the PERSONA-CHAT‘ dataset, we use 131,438
utterances for training the dialog model, 15,602 for validation, and 15,024 for testing.

3.2 Persona Expansion

Persona sentences used in persona-grounded dialogs are instances of world events that often imply real-
world consequences or richer information. For example, ‘I love surfing’ naturally implies that the person
might be ‘adventurous’ or ‘loves the outdoors’. Similarly, it also means that the person wants ‘to go to
the beach’ regularly. Inferring these expansions from the original fact is non-trivial without additional
commonsense knowledge.

Zhang et al. (2018a) found evidence that having human written interpretations of a persona sentence
via rephrasing often helps in providing novel information in persona grounding. While obtaining such
expansions by manual rewriting is expensive, here we explore two automatic ways to generate them at
scale and separately evaluate them on the downstream dialog modeling task.

3.2.1 COMET

COMET (Bosselut et al., 2019) is a framework that generates rich and diverse commonsense expansions
of a given world event. It is a finetuned version of a pre-trained GPT2 (Radford, 2018) model on a
pre-existing commonsense knowledge graph such as ATOMIC (Sap et al., 2019) that can generate novel
nodes (events) and edges (relations), as seen in 3.2c. Specifically, ATOMIC provides tuples that belong
to nine relation types spanning over cause-effect interrelations between events: oEffect, oReact,
oWant, xAttr, xEffect, xIntent, xNeed, xReact, and xWant—where a prefix ‘x’ indicates an
effect or cause on the person and ‘o’ denotes the same on others. While we tried COMET finetuned on an
alternative commonsense knowledge base (e.g.) ConceptNet, not all of the expansions were appropriate
to describe a persona, mainly because we observe that persona sentences are event-like (‘I love to go to
the beach’) as opposed to concepts such as ‘beach’. For more details on COMET and ATOMIC we refer
the reader to (Bosselut et al., 2019) and (Sap et al., 2019) respectively.

We use the COMET framework to generate expansions for each persona sentence along the nine
relation types that ATOMIC provides. We obtain different samples while decoding via beam search from
COMET for more diverse and unique expansions, as shown in 3.2c. We preprocess these expansions
to add suitable prefixes to make them similar to the original persona. For example, expansions relating
to xWant and xAttr are prefixed with ‘I want’ and ‘I am’ respectively. For each persona sentence,
we generate 5 expansions per relation, i.e., in total we will obtain 5× 9 = 45 expansions per persona
sentence.
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3.2.2 Paraphrasing

To explore alternative sources for generating commonsense expansions beyond COMET, we consider
paraphrasing persona sentences. Paraphrases of a sentence convey almost the same meaning to a listener
as the original. Often paraphrases use synonymous phrases or manipulate word-syntax of the origi-
nal sentence, which implicitly involves both context comprehension and world knowledge (Zeng et al.,
2019). We obtain these in two ways:

Paraphrase Network To generate paraphrases at scale, we use an off-the-shelf paraphrasing system based
on back-translation (Xie et al., 2019; Federmann et al., 2019) with pre-trained language translation mod-
els. We make use of En-Fr and Fr-En pre-trained translation models as the components for back-
translation.2 While we tried other language pairs, the En-Fr pair proved the most satisfactory based
on qualitative analysis on 500 samples. We generate 5 paraphrases per persona sentence, which readily
provides more lexical and syntactic variants as shown in 3.2b.

Manual Paraphrasing To compare with other expansions, we reuse manually written revised versions of
persona sentences provided with PERSONA-CHAT‘ (Zhang et al., 2018a) though these are limited to only
one paraphrase per sentence. We call them revised for short (see 3.2a).

3.3 Common sense and Persona Aligned Chatbot ( COMPAC)

To infuse commonsense context in persona-grounded dialog generation, we imbue our dialog model
with the expanded persona set instead of only original personas S. But these persona expansions lead to
hundreds of new sentences as opposed to only a few given persona sentences which makes it infeasible to
encode using a single transformer, as was done in prior works (Wolf et al., 2019). Additionally, encoding
all persona sentences as a single text input leads to a lack of interpretability i.e., it is not clear which
persona sentence was used by the model in generating a particular response.

Instead, we propose COMPAC: Common Sense and Persona Aligned Chatbot that allows us to make
a fine-grained choice of a persona sentence to generate the target response. Let C denote a list of ex-
pended personas, derived from S (including S itself). We further add a null persona ∅ in C considering
that some utterances can purely condition on the dialog context. We are interested in modeling the con-
ditional p(x|H,C) = p(z|H,C)p(x|z,H,C) where z ∈ {1,2, . . . , |C|} is a latent discrete random variable,
unobserved in the data. Given the dialog history H, first we sample a particular persona sentence Cz from
a prior network pθ (z|H) (see 3.3). Next, as depicted in 3.3, the dialog response x is sampled from a
generator network pφ (x|H,Cz) by conditioning on the history H and chosen persona sentence Cz.

In the generative model described above, the latent variable z is a discrete random variable which
points to a single persona sentence. This decision (of conditioning on a single persona sentence) was
based on the observation that most dialog responses in the datasets under consideration are relevant to
only one persona sentence. It is possible to allow for multiple persona sentences by defining z to pick a
subset of |C| persona sentences instead of picking a single sentence. We leave this as a possible future
extension.

3.3.1 Persona Choice Prior

The dialog history H can hold cues regarding which persona sentence might be applicable given the
context. For example, in 3.3 the historical context suggests that ‘following fashion trends’ can be a
consequence of ‘being fashionable’.

We encode both the dialog history H and persona sentence Ck by averaging RoBERTa subword
embeddings (Liu et al., 2019a) as e(H) and e(Ck). We use an implementation from HuggingFace for

2https://github.com/google-research/uda

22

https://github.com/google-research/uda


S Set of original persona sentences

C
Set of expanded persona sentences (includes S
and a null persona ∅)

H Dialog history with alternative turns from each speaker
x Target utterance
z Discrete latent random variable ∈ {1,2, . . . , |C|}
e Mean of RoBERTa subword embeddings as an encoder
tk Expansion type for k-th expansion
fi i-th feature function for prior network; i ∈ {1,2,3}
θ Parameters for prior network pθ (z|H,C)
φ Parameters for generator network pφ (x|H,Cz)
α Parameters for inference network pα(z|x,H,C)

Table 3.1: Summary of notation used in the paper

Figure 3.3: COMPAC samples a persona sentence from the prior and generates the response conditioned
on the dialog context and sampled persona. The inference network is used only during training.

RoBERTa3 with roberta-base as the pretrained model. Then we parameterize the prior pθ (z|H,C)
as a log-linear model with the following features:

Dialog historyWe obtain f1(H,Ck): a scalar feature using a bilinear product 〈e(H),e(Ck)〉 to align the
persona sentences with the dialog history.

Expansion typesEach k-th persona expansion corresponds to an expansion type tk. In the case of COMET,
these types are the nine commonsense relations provided by ATOMIC (see 3.2.1). For paraphrased
expansions, we annotate each as type paraphrase and the original persona sentences as original.
We consider two additional features with expansion types: (a) f2(tk) that represents a global preference
over the relation type embedded via a type embedding layer; and (b) f3(tk,H) that appends the expansion
type embedding with dialog history encoding e(H), followed by a linear layer to obtain a real-valued
score for history-specific preference over the expansion type.

The dimension of the expansion type embedding was set to 5. Finally, the prior model can be rep-
resented concisely as pθ (z = k|H,C) ∝ exp( f (H,Ck, tk)), where f (H,Ck, tk) is the sum λ1 ∗ f1(H,Ck)+
λ2 ∗ f2(tk)+λ3 ∗ f3(tk,H) with λi’s are trainable parameters.

3https://huggingface.co/transformers/model_doc/roberta.html
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3.3.2 Generator Network

Following prior work (Wolf et al., 2019), we use pre-trained GPT2 (Radford, 2018) (Transformer with 12
layers, 768 hidden size, 12 heads— gpt2-small4) to generate dialog responses given the dialog his-
tory H, with the selected persona sentence Cz prepended to it. In the case of Cz being the null persona, an
empty string is prepended. We further append the target response x to the combined context (Cz;H), and
feed the sequence to GPT2, after tokenization. To distinguish between persona tokens, history tokens,
and target response tokens, we use segment indicators—{Persona, Speaker1, Speaker2}—for
which corresponding embeddings are learned via a separate segment embedding layer in the model. We
add the segment embedding to the corresponding token embedding in the model input layer. To obtain the
conditional likelihood pφ (x|H,Cz), we only consider the target tokens for cross-entropy loss calculation.

Wolf et al. (2019) also leveraged incorrect responses given a dialog history from PERSONA-CHAT‘ as
negative samples in an auxiliary loss to encourage the correct candidate to obtain the highest likelihood
compared to the incorrect ones. However, we did not find any improvement using this loss in COMPAC.

3.3.3 Learning and Inference

Our training data D consists of instances of dialog history H and ground truth dialog responses x. We
train our model parameters θ and φ to maximize the likelihood of the target dialog response x given the
dialog history: log p(x|H,C;θ ,φ) totalled over D . Since the discrete random variable z is unobserved in
the training data, we must marginalize over z to compute the desired likelihood p(x|H;θ ,φ):

log p(x|H;θ ,φ) = logEz∼pθ (z|H)[pφ (x|z,H)];

where we drop C from the conditionals for simplicity.

Inference Network Note that the number of persona expansions is typically in the range 150-250, and
thus it is computationally expensive to marginalize over the entire selection space of z during training.
We instead optimize a variational lower bound (ELBO) of log p(x|H;θ ,φ) given as

Ez∼qα (z|H)[log pφ (x|z,H)]

−KL(qα(z|x,H)||pθ (z|H)),

where we use the inference network qα(z|x,H) to compute the approximate posterior (Kingma and
Welling, 2014a). In our initial experiments, we observe that using an inference network leads to bet-
ter perplexity values than using samples from the prior.

The architecture of the inference network is similar to that of the prior network, a log-linear model.
Along with the features related to dialog history and expansion types, we additionally include another
scalar feature: a bilinear product 〈x,Ck〉 between the encoded persona and ground truth response x en-
coded with RoBERTa embeddings to align the persona choice according to the target utterance.

Optimization The parameters of the generator network (φ ) and prior network (θ ) can be trained directly
via back-propagation. Since z is a discrete latent variable, we use REINFORCE (Williams, 1992) to train
the inference network parameters α . However, the REINFORCE estimator often suffers from high vari-
ance. To reduce the variance, we found it useful to (1) use a moving average baseline (Zhao et al., 2011);
and (2) regularize the prior network by penalizing the entropy of the output categorical distribution. To
avoid KL mode collapse, we use KL-annealing (Bowman et al., 2016) where we linearly increase the
weight of the KL term beginning from 0 to 1 as training progresses.

4https://github.com/huggingface/transfer-learning-conv-ai
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System PPL BLEU-1 BLEU-2 D-1 D-2

Original
Per-CVAE (Song et al., 2019b) 48.37 0.19 0.11 0.03 0.21
LIC + KS (Lian et al., 2019) 30.50 0.18 0.07 0.07 0.24
GPT2 (Wolf et al., 2019) 21.46 1.42 0.78 0.05 0.11
COMPAC-original 19.56 3.24 1.31 0.15 0.25

Paraphrased
GPT2-revised 21.01 1.54 0.97 0.13 0.25
GPT2-paraphrase 21.57 1.61 0.86 0.16 0.35
COMPAC-revised 18.12 3.52 0.99 0.48 0.65
COMPAC-paraphrase 17.09 3.83 1.87 0.56 0.85

COMET
GPT2-COMET 21.12 1.62 0.81 0.21 0.39
COMPAC 16.21 4.12 1.82 0.87 1.07

Table 3.2: Dialog quality metrics on the PERSONA-CHAT‘ test set. PPL=Perplexity, D-1/2=% of distinct
uni- and bi-grams.

Persona:
I enjoy listening to classical music.
I’m a Hindu.
My favorite color is red.

User: Hi, recently I have got interests in religion.

GPT2 (Wolf et al., 2019): Hi! How are you?

COMPAC-original: I’m a Hindu.

COMPAC-revised: Hi! I am a Hindu too.

COMPAC-paraphrase: That’s great. I am
religious.

COMPAC: That’s great. I go to temple regularly
and learn about Hinduism.

Table 3.3: Sample generations by different models. More examples are in Appendix §C.

Decoding At decoding time, we first sample k from the prior pθ (z|H,C), and then Ck is fed to the gen-
erator network. Following previous work (Wolf et al., 2019), we use nucleus sampling (Holtzman et al.,
2020a) (with p = 0.95) to decode the final response from the probabilities produced by the generator.
We also found that high-temperature sampling from the prior often leads to more diverse generation.

3.4 Experiments

We conduct our experiments based on the following desiderata: (1) Do persona expansions help to gen-
erate high quality and diverse responses? (2) Does COMPAC achieve accurate persona grounding given a
dialog context? (3) Does COMPAC enable persona-consistent and controllable generation? Hyperparam-
eter details are in Appendix §A.
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COMPAC vs. GPT2 LIC + KS GPT2-COMET COMPAC-og COMPAC-par Gold

Metric ↓ win loss win loss win loss win loss win loss win loss

Fluency 81.2* 5.1 83.2* 6.7 90.5* 2.3 68.0 26.0 65.0 19.4 40.1 42.5
Engagement 90.5* 3.3 87.4 5.9 97.6* 0.5 86.5* 10.5 81.5* 10.5 62.1* 30.5
Relevance 78.2* 4.8 78.0* 7.7 93.2* 1.8 65.5* 18.5 62.1 15.6 32.8 54.6*

Table 3.4: Pairwise comparison between responses generated by COMPAC vs. responses generated by
other baselines (og: original, par: paraphrase) as well as the Gold response. All numbers are in per-
centages with bold indicates the highest. Ties are not shown. Entries with * denote significance with
p < 0.05 from bootstrap tests on 1000 subsets of size 50.

3.4.1 Baselines

To demonstrate the efficacy of COMPAC, we compare it with three competitive baselines on the PERSONA-
CHAT‘ dataset:

1. Per-CVAE: A CVAE model that exploits persona sentences for diverse generation with an external
memory (Song et al., 2019b)

2. LIC + KS: The best performing transformer model (Lost in Conversation i.e., LIC) in terms
of human evaluation in the ConvAI2 NeurIPS competition (Dinan et al., 2019a) combined with
a knowledge-selection (KS) mechanism Lian et al. (2019) to achieve state-of-the-art results on
PERSONA-CHAT‘;

3. GPT2: Finetuned GPT2 on PERSONA-CHAT‘ just by concatenating all persona sentences along
with dialog history (Wolf et al., 2019) to obtain the best automatic metric in the ConvAI2 compe-
tition.

A minimal version of COMPAC is also considered, COMPAC-original, which only uses the original
persona, for a direct comparison with other model architectures that only use the original persona. Fur-
thermore, to justify the choice of fine-grained persona grounding for an effective utilization of persona
expansions, we also consider baseline versions of GPT2 trained with each of the expansion strategies:
GPT2-revised, GPT2-paraphase, and GPT2-COMET. To show that COMPAC can work with persona
expansions derived from various sources, we compare with versions of COMPAC trained with paraphrase-
based expansions: COMPAC-revised and COMPAC-paraphrase. By default, COMPAC indicates it is
trained with COMET expansions.

3.4.2 Comparison of Dialog Quality

We measure perplexity for language modeling performance, and BLEU-1 (Papineni et al., 2002b) and
BLEU-2 (Vedantam et al., 2015b) scores between generated and gold utterances to measure the fidelity
of the generated responses. Given our goal of generating engaging responses with novel information, we
deem it important to consider the diversity in the generated responses which we measure using D-1 and
D-2 (percentage of distinct uni- and bi-grams respectively) (Li et al., 2016a).

3.2 shows that COMPAC outperforms three competitive baselines when trained on the original persona
in all quality metrics indicating the efficacy of our architecture. Moreover, when combined with persona
expansions, we observe a modest 3-8 point decrease in perplexity and a large improvement in both
BLEU and diversity scores which confirms that COMPAC successfully leverages the persona expansions
to improve dialog quality. COMPAC trained with COMET expansions achieves the best performance
both in terms of fidelity and diversity which shows that COMET expansions help the model to respond
to implicit context with commonsense and to explore novel information. But with revised personas, we
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System Persona Entailment Human
Prior Inference Network eval.

Original
COMPAC-original 25.5 79.3 –

Paraphrased
COMPAC-revised 20.6 78.9 40.6
COMPAC-paraphrase 27.8 87.3 67.8

COMET
COMPAC 37.9 96.4 87.3

Table 3.5: Assessment of persona grounding with and without inference network using the DNLI entail-
ment set. Human evaluation (eval.) was conducted to measure the relevance when an expanded persona
is chosen–all entries are statistically significant.

find that both COMPAC and GPT2 provide marginal performance gains, mirroring the observation from
(Zhang et al., 2018a). Finally we observe gradual degradation in performance when we trivially finetune
GPT2 with paraphrase and COMET expansions. Note that GPT-2 could have implicitly learned to focus
on a single persona attribute. However, the proposed COMPAC model performs better suggesting that
fine-grained persona grounding acts as a useful inductive bias in effectively utilizing larger expansion
sets.

3.4.3 Human Evaluation for Dialog Generation

Automatic evaluation of dialog systems is still notoriously unreliable (Liu et al., 2016; Novikova et al.,
2017a) and such systems should be evaluated by human users. Hence, we perform pairwise comparisons
between responses generated our best system, COMPAC trained on COMET expansions, and responses
generated by four strong baselines: GPT2, GPT2-COMET, COMPAC-original, COMPAC-paraphrase (the
best COMPAC model with paraphrase expansions). We also consider the gold responses for comparison.
We conduct a human evaluation with 100 test examples on three aspects critical for practical use: (1) Flu-
ency measures whether the generated output is fluent (in English); (2) Engagement measures whether
the generated response is engaging or interesting; and (3) Relevance measures whether the generated
output is relevant with respect to the dialog history. More details of the evaluation are in Appendix §B.

3.4 shows that human annotators found responses generated by COMPAC trained with COMET ex-
pansions more engaging as compared to responses from all the baselines as well as the gold responses
by statistically significant margins. This confirms our hypothesis that COMET expansions were helpful
in adding novel content. Human judges also found that despite a significant drop in perplexity, COM-
PAC was not more fluent than COMPAC-original and COMPAC-paraphrase with statistical significance,
indicating similar language modeling performance. We find the inter-annotator agreement, as measured
by Cohen’s kappa (Cohen, 1960), for fluency, engagement, and relevance were 0.62, 0.71, and 0.73
respectively.

3.4.4 Fine-grained Persona Grounding

Next we want to investigate the extent of COMPAC’s ability to ground the response generation with a fine-
grained persona choice as a probing experiment. Specifically, we want to measure whether our model
can choose a coherent persona from the available persona sentences given the dialog context. Note that in
persona-grounded chitchat, not all utterances are tied to a personas and could be purely based on dialog
context. We find that 44% of the time the model selects the null persona (∅) and conditions only on the
dialog history. To assess the persona grounding for the remaining (56%) utterances, we perform (a) a
persona entailment experiment, and (b) human evaluation.
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System Unigram Overlap BERT
Recall Precision F1 Score

Original
LIC + KS (Lian et al., 2019) 10.4 34.2 15.3 –
COMPAC-original 14.9 39.1 21.6 57.2

Paraphrased
COMPAC-revised 15.2 40.3 22.1 58.1
COMPAC-paraphrase 17.8 42.2 25.1 72.9

COMET
COMPAC 21.4 48.9 29.8 78.8

Table 3.6: Conditional generation performance on the PERSONA-CHAT‘ test set to show the similarity
between generated responses and grounding persona sentences. We omit GPT2-based models since they
do not select a particular persona sentence for grounding.

Persona Entailment We adapt the Dialogue Natural Language Inference (DNLI) dataset (Welleck et al.,
2019b) and collect persona-utterance pairs that belong to an entailment relation. This results in a subset of
4,613 utterances with associated ground truth persona sentences in our test set. Next, we obtain a persona
sentence by performing argmax over the prior pθ (z|H,C) as well as the inference network qα(z|x,H,C)
from our COMPAC models and calculate accuracy with the ground truth persona. For models that use
expanded personas, we track the original persona from the retrieved expansion for accuracy calculation.
3.5 shows that COMPAC with COMET achieves the most accurate persona grounding suggesting that
inference networks can approximate the true posterior better when a commonsense persona is available
for grounding. In the case of the prior, a better entailment accuracy than random chance (1/5) confirms
our choice of the history-conditioned prior network rather than a uniform prior.

Human Evaluation Since DNLI does not entail expanded personas, we conduct a human evaluation
to judge the relevance of a chosen persona expansion sampled from the inference network. Specifi-
cally, we ask: Is this knowledge relevant to the given dialog history?—with options as ‘Yes’, ‘No’,
and ‘Uncertain’—and with 100 examples (more in Appendix §B) for each COMPAC variant that uses
expanded personas. The inter-annotator agreement, as measured by Cohen’s kappa was 0.76. Again,
3.5 shows that models with COMET expansions can choose the most relevant persona sentence which
corroborates our claim in persona entailment experiments. On average, we noticed that COMPAC with
COMET expansions prefers to choose expanded personas 87% of the time out of all non-null persona
choices. This reduces to 62% in the case COMPAC-paraphrase. In contrast, COMPAC-revised tends to
select an original persona over an expansion more often.

3.4.5 Controllable Generation

Controllable generation of persona-grounded dialog can help to generalize the dialog agent to newer
persona details just by changing the grounding in the conditional generator. While controllable text gen-
eration with a desired attribute has gained interest recently (Dathathri et al., 2020; Kong et al., 2019), we
investigate the possibility of controlling generation with a desired persona and measure the performance
of the conditional generator. For this, we observe a set of knowledge overlap metrics—the unigram re-
call/precision/F1 scores–from Dinan et al. (2019b) and BERT score (Zhang et al., 2020) for semantic
similarity between the generated responses and the persona retrieved. 3.6 shows that conditional genera-
tion is strongest when COMPAC is trained with COMET suggesting commonsense expansions are more
appropriate to the dialog context in influencing the response generation.

Next, we create a diagnostic dataset of 100 examples where we manually edit the persona by chang-
ing an entity in a persona sentence or swapping the selected persona expansion with another relevant
one (See examples in 3.7) to directly measure controllability in response generation. We observe that
COMPAC can successfully reflect the entity-change in the generated response based on the change in the
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Performance Example

Presence of
changed entity
86%

Changing the key entity
Before: My favorite color is red
After: My favorite color is green

Conversation:
User: What is your favorite color?
Bot: My favorite color is green

BERT score with
unedited persona:
46.2
edited persona:
74.6

Swapping with another expansion
Before: I want to swim in the ocean
After: I want to buy a beach umbrella

Conversation:
User: What do you do at beaches?
Bot: I will buy an umbrella at the beach

Table 3.7: Controlled generation with edited persona

Verdict Persona Dialog History Persona Choice (z) Response

U
se

s
O

ri
gi

na
l

Pe
rs

on
a 1. I’m the youngest of five.

2. I work at the hospital as a nurse.
3. I’ve pink hair.

What do you do
for work?

I work at the
hospital as a nurse. I am a nurse.

U
se

s
E

xp
an

de
d

Pe
rs

on
a

1. I just want to have fun with my friends.
2. I don’t drink or do drugs or anything.
3. I am 19 and I cannot wait
to move out of my parents home.

Are you enjoying life?
I just want to have fun
with my friends→
wants to have a party

Not really.
I want to have a
party.

U
se

s
Im

pr
op

er
Pe

rs
on

a 1. I make a million dollars a year.
2. I’m married and have three kids.
3. I’m a baseball player.

I find it hard to support
my family working at
a bar. What about you?

Null persona (∅) I enjoy my life.

Table 3.8: Examples showing correct and incorrect persona choices in various dialog contexts by COM-
PAC model. It shows that COMPAC is capable of choosing a correct persona sentence (original or ex-
panded) but sometimes the prior network fails to sample an appropriate one (third case).

persona grounding 86% of the time. For a swapped persona expansion, we also see a higher BERT score
(74.6) between the edited persona and newly generated response as opposed to a lower score (46.2) with
the unedited persona. Together with the qualitative examples in 3.7 this suggests that COMPAC supports
controllable generation with contextually modified personas.

3.4.6 Qualitative Analysis

3.3 shows responses from different models for a sample dialog context. Qualitatively, we find that
COMPAC with COMET expansions responds to the context with commonsense using novel content from
a commonsense expansion (being Hindu → to learn about Hinduism), where other responses remain
generic or incoherent. In 3.8, we illustrate responses generated by the COMPAC model along with the
underlying persona choice sampled from the prior network. Cases show that COMPAC successfully
chooses an original or an expanded persona sentence, as appropriate, but also defaults to the null persona
(∅) that leads to a bland response.
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Q: What can cause a forest fire?
(1) rain (2) static electricity (3) microbes (4) ...

A: static electricity
Q+A (declarative): Static electricity can cause a forest fire.

Explanation (reasoning chain): [positive (valid)]
Static electricity can cause sparks // (from corpus)

AND Sparks can start a forest fire // (from corpus)
→ Static electricity can cause a forest fire // (Q+A)

Explanation (Generalized reasoning chain, GRC):
X can cause Y AND Y can start Z→ X can cause Z

Figure 3.4: Our datasets contain annotated (valid and invalid) reasoning chains in support of an answer,
allowing explanation classifier models to be trained and applied. We also find that using a variabilized
version of the chains improves the models’ robustness.

3.5 Related Work

Building personalized dialog agents has been a popular task recently, thanks to Zhang et al. (2018a)
who extensively studied the task with a new dataset PERSONA-CHAT‘, later as a form of a challenge
(Dinan et al., 2019a), where the dialog agent is seeded with a predefined persona in the form of multiple
sentences of textual description, mirroring a casual human conversation which many times draws snippets
from individual personal experiences and facts. Recent works focus on improving persona-grounded
dialog generation performance (Wolf et al., 2019; Mazaré et al., 2018; Bao et al., 2019) as well as
persona consistency in generated dialog (Welleck et al., 2019b; Li et al., 2019b; Song et al., 2019a).
Bao et al. (2019) proposed a reinforcement-learning-based framework that promoting informativeness
and persona-consistency via personal knowledge exchange. Xu et al. (2020b) focused on using plausible
topical keywords related to the available persona facts using a neural topic model to explore beyond the
given knowledge, possibly closest to our work. We rather focus on obtaining commonsense implications
of the given persona in the form of text snippets that are more expressive than topical keywords.

Persona-grounded dialog generation is a special case of knowledge-grounded dialog generation.
Knowledge grounding in dialog has many real-world applications that are well-studied in recent liter-
ature (Zhou et al., 2018b; Ghazvininejad et al., 2018a; Dinan et al., 2019b; Lewis et al., 2019). In this
work we use fine-grained grounding/selection on persona which performed better than encoding the en-
tire persona for each response. Such fine-grained selection has been found useful in prior works on
text generation such as dialog (Lian et al., 2019) and image captioning (Jhamtani and Berg-Kirkpatrick,
2018). For dialog generation, a contextual knowledge selection has been successfully applied in prior
works (Parthasarathi and Pineau, 2018). Specifically, Zhao et al. (2017) and later Song et al. (2019b) pro-
posed a conditional-VAE framework to learn latent context given the dialog history to guide knowledge
selection.

Finally, few recent works focused on augmenting grounding with commonsense knowledge with
successful applications in open-domain topical dialog generation (Ghazvininejad et al., 2018a; Moon
et al., 2019), story generation (Mao et al., 2019), etc.. In this work, we extend this effort into persona-
grounded dialog generation via augmenting grounding persona with commonsense knowledge.

3.6 Application to Constructing Reasoning Chain Explanations for Multi-hop QA

In this section I discuss applying similar notions of knowledge base grounded generation discussed above
to reasoning chain construction to act as explanations. More specifically, I propose methods for con-
structing reasoning chain explanations for multihop question answering where we 1) generates candidate
reasoning chains through a retrieval procedure, (2) carry out a delexicalization operation by identifying
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Figure 3.5: QASC contains multiple-choice questions, plus one gold (valid) reasoning chain for the
correct answer. To find valid reasoning chains, we first generate candidates for each answer option using
a 2-step retrieval process. We then collect annotations for the correct answer option chains to train and
evaluate models to detect valid reasoning chains. (Above, chains A1 and A3 are valid, while A2, B1, and
B2 are invalid).

overlapping entities in chains (3) operate in the resulting abstract pattern space to identify valid reasoning
patterns. The proposed technique performs similar or better than several baselines, is more robust under
certain perturbations, and leads to discovers of interesting reasoning patterns.

While neural systems have become remarkably adept at question answering (QA), e.g., (Clark and
Gardner, 2018), their ability to explain those answers remains limited. This creates a barrier for deploying
QA systems in practical settings, and limits their utility for other tasks such as education and tutoring,
where explanation plays a key role. This need has become particularly important with multihop question-
answering, where multiple facts are needed to derive an answer. In this context, seeing a chain of
reasoning leading to an answer, can help a user assess an answer’s validity. Our research here contributes
to this goal.

We are interested in questions where the decomposition into subquestions - hence the explanation
structure - is not evident from the question, but has to be found. For example, “Does a suit of armor
conduct electricity?” might be answered (hence explained) by first identifying what material armor
is made of, even though the question itself does not mention materials. (This contrasts with earlier
multihop QA datasets, e.g., HotpotQA (Yang et al., 2018a), where the explanation structure is evident
in the question itself. For example, “What nationality was James Miller’s wife?” implies a chain of
reasoning to first finds Miller’s wife, then her nationality. Such cases are easier but less representative
of natural questions.) Multihop datasets of this kind include OpenBookQA (Mihaylov et al., 2018) and
more recently QASC (Khot et al., 2020). However, although providing QA pairs, these datasets provide
limited explanation information. OpenBookQA does not come with any explanation data, and QASC
only provides a single gold explanation for each answer, while in practice there may be multiple valid
explanations.

To alleviate this lack of data, we contribute three new datasets: The first (and largest) is eQASC,
containing annotations on over 98K candidate explanations for the QASC dataset, including on multi-
ple (typically 10) possible explanations for each answer, including both valid and invalid explanations.
The second, eQASC-perturbed, contains semantically invariant perturbations of a subset of QASC
explanations, for better measuring the generality of explanation prediction models. Finally eOBQA adds
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X can cause Y AND Y can start Z→ X can cause Z
X is used for Y AND Z are X→ Z are used for Y
X are formed by Y AND Y are made of Z

→ X are formed by Z
X are Y AND Y are Z→ X are Z
X produce Y AND Y is a Z→ X produce Z
X increases Y AND X occurs as Z→ Z increases Y
X changes Y AND Y is Z→ X changes Z
X is Y AND X carries Z→ Y carries Z
X changes an Y AND Z are examples of X→ Z change
an Y
X are formed by Y AND X are formed through Z

→ Y can cause Z
X changes a Y AND Z start most X→ Z can change Y

Figure 3.6: Examples of the highest scoring generalized reasoning chains (GRCs) found in eQASC.

adding explanation annotations to the OBQA test set, to further test generality of models trained on
eQASC. In addition, we use these datasets to build models for detecting valid explanations, to estab-
lish baseline scores. Finally, we explore a delexicalized chain representation in which repeated noun
phrases are replaced by variables, thus turning them into generalized reasoning chains, as illustrated
in Figure 3.4. We find that generalized chains maintain performance while also being more robust to
perturbations, suggesting a promising avenue for further research. Finally, we observe that top scoring
GRCs identify interesting deductive and abductive reasoning patterns (Some of the top scoring chains
are shown in Figure Figure 3.6)
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4 Neuro-Symbolic Rules for Numerical Data

Much recent progress in various data-to-text tasks has relied on deep learning, often using neural net-
works with soft attention mechanisms to select salient aspects from data, and constructing fluent natural
language text. However, in naturally occurring descriptions of data, humans often refer to higher-level
patterns which may require complex computations on data. Consider a numerical table consisting of
stock prices of a company over a period of time. A simple description would require simply selecting
some value and state it in natural language. In contrast to it, a more complex pattern, such as ‘Stock
for DJI rose more steeply over last week compared to stock GSPC’, will require much higher level rea-
soning over multiple cells/values. But how do we effectively learn valid and interesting aggregations of
values. Can we do so in a manner which also exposes some abstractions of the underlying computations
and reasoning leading to such descriptions? Turns out that such higher level patterns often cannot be
extracted using neural models with attention alone. Moreover, even for cases where it can model some
of the complex patterns, such models tend to imprecise (e.g. generate hallucinated descriptions), and
offer little insights to a user about its working.

In this chapter, I will discuss methods for time series captioning (Jhamtani and Berg-Kirkpatrick,
2021) with truth conditional semantics. We propose methods to induce modules which detect useful
trends such as peak or dip in time series numerical data, being guided only by accompanying natural
language descriptions. The modules are combined via a latent computation graph to form programs,
which outputs truth value of whether the feature represented by the composed computation graph holds
true for a given data point or not. The resulting model gives highly precise outputs based on learned
salient patterns, and exposes the modules needed for the computation.

4.1 Introduction

There has been large interest in generating automatic text description (McKeown, 1992) of tabular data
– for example, prior work has sought to generate biographies from tables of biographical information
(Lebret et al., 2016), and generating descriptions from structured meaning representations (Gardent et al.,
2017). However, in many of these tasks the main focus is on designing systems that are able to select
entries from tabular or equivalent data during generation by using neural attention mechanisms. In many
naturally occurring descriptions of tabular data, humans often refer to higher-level patterns, for example
in the description of stock index pricing over the week in Fig. 4.1, the speaker refers to how the stock
price peaks towards the ending. Some recent work has looked into setups which require non-trivial
inference (Wiseman et al., 2017; Chen et al., 2020). However, they typically don’t involve inference
about numerical patterns in time series data. Moreover, much recent prior work on identifying more
complex patterns in data for captioning has relied on deep neural networks, often employing neural
encoders and attention mechanisms. However, such approaches often fail to generate faithful responses
and lack interpretability (Tian et al., 2019; Dhingra et al., 2019; Parikh et al., 2020).

We present a novel neural truth-conditional model for time series captioning, which learns to identify
patterns which hold true for the input time series (Figure 4.2). We first sample a latent program from
the space of learned neural operators. Each program produces a soft truth-value. Then, with probability
proportional to each program’s truth-value, a language decoder generates a caption. Thus, programs that
yield low truth values, do not produce captions. Critically, the decoder takes an encoding of the program
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Figure 4.1: We propose a neural truth conditional model for high precision and diverse time series caption generation.

itself, rather than the time series, in order to determine output text. Overall, this approach allows for both:
(a) precision in generated output through explicit truth conditioning, and explicit program structure as a
representation of time series trends, and (b) diversity in caption generation through the sampling process.

While some of the patterns in data are complex, they can be considered to have been constructed by
composing simpler concepts such as slope (rate of change of value) or comparisons (between values at
give points). As such, our programs are constructed by composing simpler operations/modules. Such
a modular design enables sharing of modules across multiple programs, leading to more data efficient
learning of module parameters, and also providing better generalization to unseen compositions of mod-
ules. We consider a relatively simple space of three module types, using which our model is able to
capture a significant fraction of the patterns present in data. The module types could be expanded in
future to capture more complex patterns. Our model treats the choice of composed computation graph
of programs as a latent variable, learned using natural language descriptions as the only supervision. In
this respect, our approach is related to neural module networks used in Andreas et al. (2016a,b), which
condition on a question to generate a program, which then operates on an image or other data to predict
an answer. In our case, the constructed computation graph operates and identifies salient patterns in the
source data directly, without being guided by an input question.

Our main contributions are as follows: We propose a novel method for time series captioning which
first induces useful patterns via composing simpler modules, identifies the programs which hold true,
and finally generates text describing the selected program. Towards this end, we collect and release
two datasets consisting of time series data with accompanying English language description of salient
patterns. We observe that the proposed method is able to learn useful patterns, exhibits compositionality
and interpretability, and generates outputs that are much more faithful to the input compared to strong
traditional neural baselines. 1

4.2 Truth-Conditional Natural Language Description

Our goal is to learn models for describing salient patterns in time series data. The main research chal-
lenge involved is to learn the types of patterns that humans find salient in time series data, using natural
language descriptions as the only source of supervision during training. Based on the novel dataset we
collect (described in Section 4.3 , we find that the patterns humans identify tend to describe increasing
or decreasing trends, volatility, comparisons of start and end values, presence of peaks and dips. They
also mention temporal location of patterns, such as ‘at the beginning’ of the time series. Thus, our model
should be able to learn patterns such as ‘increase’ or ‘ends with higher value compared to start’, and
temporal aspects such as ‘begin’ or ‘end’.

One way to operationalize this process is through the lens of formal logic: e.g. an increasing trend
at the beginning of a time series x can be represented trough the logic z:

[
∃i s.t. INCREASE(xi) AND

BEGIN(i)
]

Thereafter, if the program returns true on the input, one can condition on only the logical
program z to generate output text that describes this pattern via a decoder, p(y|z). However, this still
requires learning or defining modules for patterns and temporal location. Inspired by neural module net-
works (Andreas et al., 2016a,b), we propose to use functions parameterized by neural networks (Figure

1 Data and code can be found at https://github.com/harsh19/TRUCE.
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Figure 4.2: Method Overview: We present a truth conditional model for time series captioning, which first identifies patterns
(composed of simpler modules) which hold true for a given data point. Decoder conditions only on a sampled program z (and
not on input x), generating high precision outputs.

4.2) as modules, incorporating inductive bias through architecture design. However, unlike past work,
we condition only on an encoding of sampled programs that return true to generate output text.

4.3 Datasets

We are interested in modeling numerical patterns and trends in time series data. However, there is a
lack of existing data sources with time series data paired with natural language descriptions. Some prior
work on weather forecasting data (such as Sumtime-Mausam (Sripada et al., 2003)) are typically small
(only 1045 data instances), and are limited in the scope of patterns they encompass. ToTTo dataset
(Parikh et al., 2020) contains a small fraction of descriptions based on numerical reasoning and patterns
- however, the main challenge is to find the correct value(s) by identifying the relevant row and column
in a table. LOGIC-NLG (Chen et al., 2020) consists of 37K tables and corresponding natural language
descriptions, some of which require comparisons of cells in a table. In contrast, we focus on trends and
patterns in time series data. Thus, we construct a new dataset where natural language descriptions are
collected for naturally occurring stock price time series data (Section 4.3.1). Additionally, we collect
natural language descriptions for a synthetically constructed set of time series to evaluate and analyse
our models in a more controlled setup (Section 4.3.2).
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Figure 4.3: A program z = (zP,zL) operates on an input time series x to given final output score sz(x). The module instances
are learned from scratch during training.

4.3.1 STOCK Dataset

We collect naturally occurring time series data in the form of stock prices. We utilize the Google Finance
API to collect stock prices of 7 randomly chosen technology companies over a period of 20 years. We
collect weekly (beginning of week) as well as and daily stock price values. We sub-select a total of
1900 instances, each of consists of sequence of T(=12) values. Each instance is sampled from the stock
data as follows: (1) we pick one of the companies uniformly at random (2) we randomly pick weekly
or daily series with equal probability, (3) we pick a sequence of values of given length T, ensuring
no overlap with any previously selected time series. (4) Additionally, since different company stocks
can be in very different range of values, we normalize such that all the values are between 0 and 100:
v′ = 100 ∗ (v−min)/(max−min) . However, normalizing this way directly would create undesirable
biases in the dataset since each time series would necessarily cover entire range 0-100. Instead, to
compute max and min, we additionally consider 10 values (chosen based on manual inspection) just
before and just after the currently selected range.

Annotation collection: We collect 3 natural language annotations for each of the 1900 data points,
leading to a total of 5700 paired time-series with natural language descriptions. We split the 1900 unique
time series and associated captions into train, dev, and test splits with ratio 8:1:1.

Annotator description: We use Amazon Mechanical Turk as a crowd-sourcing platform. We limit to
annotators from Anglophone countries, with HIT (Human Intelligence Task) acceptance rates of more
than 90%, and minimum number of accepted HITs as 100. Annotators were paid 25 cents for each
annotation (which comes to average hourly rate of over USD 23).

Quality Control: Based on initial pilot studies, we found it useful to show annotators plots instead of
tables of values, as we are interested in high level patterns rather than specific values. We do not label the
plot lines with actual stock names to remove any potential biases one may have about specific company
stocks. Finally, we restrict annotations to a maximum of 9 words, so that one annotation reflects only one
pattern. Each HIT is labelled by 3 different annotators. We manually inspected at least one annotation
from each unique annotator, and ruled out (but still paid) annotations for about 7% annotators for being
poor quality.

Encouraging Lexical Diversity: We encouraged annotators (through instructions) to not limit them-
selves to words shown in examples. Additionally, we limit each annotator to a maximum of 10 HITs to
increase diversity in annotations.

Dataset Statistics: There are a total of 861 unique words across the 5700 captions. Most annotation
sentences follow a simple syntactic structure. Additionally, we picked a random subset of 100 data
points, and manually classified most of them into following major buckets: trend (increase/decrease
trends: 48%) superlative(max/min values; peaks and troughs: 20%); comparisons(comparison of start
and end values: 10%); volatility (flat/smooth; irregular: 12%).
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4.3.2 Synthetic Time Series (SYNTH)

To develop and test models in a more controlled setup, we synthetically construct time series data. Our
synthetic time series data is constructed such that each time series has exactly one of the following 6 pat-
terns: increases-in-beginning, increases-in-middle, increases-in-end, decreases-in-beginning, decreases-
in-middle, decreases-in-end. The resulting dataset consists of a total of paired 720 time series - natural
language annotations.

Each synthetic time series is generated as follows: First, the trend is chosen: increase or decrease. A
trend is realized through a straight line of length L <= T/3, with randomly chosen intercept and slope
within a range based on the trend selected. Next, we randomly select one of the 3 temporal locations :
begin, middle, end – and based on the choice, the pattern is placed in first 40 percentile, 30-70 percentile,
or 60-100 percentile respectively, of the entire length T. The region outside the trend is flat. Finally,
small noise is added to each point. The setup is such that the resulting values are always in (0,100) range.
Examples and more specific details can be found in Appendix.

4.3.3 Model

Our goal is to generate a text caption y describing a salient pattern in an input time series x. Our model’s
generative process is depicted in Figure 4.2 and operates as follows: Conditioned on an input time series
x, we first sample a program z from a learned prior, p(z|x). The latent program z is composed of several
operations/modules composed together, and outputs a truth value score. The prior is governed by the
truth-values of corresponding programs, so that we are likely to sample programs with high truth values.
Next, we sample caption y conditioning only on the encoding of sampled program z to generate the final
text – i.e. y is independent of x given z. Intuitively, if the latent program encodes sufficient information
to describe the pattern it detects, captioning need only depend on the program itself.

The set of latent ‘programs’ in our model are learned from data. On executing a program z on the
input time series data x, we obtain output score sz(x) (between 0 and 1, both inclusive). Score sz(x)
represents the model’s confidence about whether the pattern corresponding to the program holds true for
the given input time series. Note that sz(x) does not represent the prior probability of program z – since
multiple programs can be true for a given time series, and ∑z sz(x) 6= 1. We provide our model with a
set of building blocks / modules, which combine to form programs. The composition of modules into
programs as well as the module parameters are unobserved in data, and are learned during model training.
The compositionality in the program space enables modules being shared across programs, leading to
more efficient learning. The programs we consider will prove quite effective in experiments, but are
actually relatively simple, being composed of only three module types. Our framework is extensible,
however, and future work might consider larger program spaces. We refer to our proposed method as
TRUCE (TRUth Conditional gEneration).

4.3.4 Programs and Modules

As previously mentioned, each program z in our model is composed of several learnable operations/mod-
ules. Following prior work on neural modular networks (Andreas et al., 2016b), we consider multiple
module types, and incorporate inductive biases in their architecture to learn useful numerical patterns.
In the current study, however, we limit to three simple types of patterns: pattern, locate, and combine,
leaving extensions to the module space as a future direction. These modules are composed together into
programs that operate on the input time series (Figure 4.2)

The module types pattern and locate, output a vector of the same length as the input vector. Both
of them output a temporally localized vector, with each value between 0 and 1 (achieved by applying a
sigmoid activation function), representing the degree of confidence that the pattern it represents is present
at the corresponding position on the temporal axis. For example, as shown in Figure 4.3, the output of
a learned locate module is a vector with high values in the middle part, and the output of the pattern
module is high on those positions where there is a decrease in the value in the input time series.
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Method COR PPL Bleu-3/4 Cider Rouge BERT

TRUCE 92% 13.9 0.61/0.46 1.40 0.74 0.77
FCENC 39% 16.7 0.45/0.28 0.81 0.61 0.65
LSTMENC 45% 11.2 0.43/0.28 0.87 0.62 0.63
CONVENC 53% 11.0 0.47/0.32 1.00 0.66 0.67
FFTENC 39% 22.7 0.38/0.22 0.67 0.58 0.54
NEARNBR 71% NA 0.28/0.14 0.60 0.40 0.48

Table 4.1: Results on test split of SYNTH dataset: Human evaluation for correctness (COR) and various automated metrics.
TRUCE performs much better than baselines as per correctness evaluation.

For the current study, we restrict the space of programs to consist of one pattern (zP) module instance,
and one locate (zL) module instance. Outputs from the two modules are combined together using a
combine module, which carries out position-wise multiplication of outputs from zP and zL, followed by
a feed-forward layer and a sigmoid non-linearity.

Pattern modules are aimed at learning patterns such as peaks, dips, increasing trend, and so on. We
realize pattern modules through multi layer 1-D convolutions. We argue that 1D convolutions provide
appropriate architecture to induce aspects such as slopes, and compose them to identify patterns such
as peaks. The locate module types are realized though a mixture model of K fixed Gaussians placed at
equal intervals on the temporal axis of given length T . The weights of the components represent learnable
parameters for such types of modules. The combine module type learns to transform the position-wise
multiplied outputs to a real valued score, which is then passed through a sigmoid function.

4.3.5 Prior

As discussed above, the output of each program z is a real valued score between 0 and 1. We define
prior over the set of programs Z as p(z) ∝ eλ s(z), where λ is a hyperparameter. This formulation makes
an implicit assumption that a program z being true for an input time series will make other programs
less probable through conservation of probability mass. Such an assumption is necessary, as otherwise
directly trying to optimize the likelihood without normalizing across programs will lead to trivial solu-
tions, wherein each program will output high score for every input. Note that an alternative formulation
could directly use softmax on an unrestricted real-value output from modules – such a formulation loses
out on the semantics of soft truth output from the programs, and also fared worse in our preliminary
experimental evaluations in comparison with the proposed formulation.

4.3.6 Decoder

As mentioned previously, our decoder conditions only on the program z sampled from the prior p(z|x) to
generate final text. To achieve this, we need to pass a program representation to the decoder. We consider
an auto-regressive neural decoder such as LSTM or Transformer. At every step, the decoder considers
embedding of previous token as well as the input program representation.

A straightforward approach to obtain program representation is to associate each unique program
with a low dimension embedding vector. However, such an approach will not fully exploit the program
structures and shared modules. Instead, we first associate each module with an embedding. Next, the
representation of a program is constructed by appending the embeddings of the corresponding modules
(using a fixed pre-determined order of module types). Such a representation achieves sharing of module
embeddings across programs. Moreover, it enables obtaining representation of a new (unseen) program
composed using the same set of modules.
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Method COR

TRUCE 97%
FCENC 38%
LSTMENC 50%
CONVENC 59%
FFTENC 39%
NEARNBR 72%

Table 4.2: Models trained on SYNTH data (where each time series has T=12 values) are tested on another synthetic data with
T=24 without any fine-tuning.

4.4 Experiments with Synthetic Data

4.4.1 Methods

For SYNTH data, we consider several baselines listed below (More detailed descriptions are provided
in the Appendix). Note that all non-retrieval baselines use the same LSTM decoder architecture as our
model. (1) NEARNBR: The ground-truth caption of the closest matching training data instance is used
as the prediction. The closest matching instance is identified via L2 distance between input time series.
(2) FCENC: Encodes the input time series sequence using a multi-layer feed-forward encoder. (3) LST-
MENC: Encodes the input time series sequence using a LSTM recurrent neural network. (4) CONVENC:
Encodes time series using a multi layer convolutional neural network. (5) FFTENC: Encodes time series
using Fourier transform features of the input.

4.4.2 Results

For TRUCE, we pick the highest scoring program, according to the prior, for description generation. We
generate captions (using greedy decoding) from each of the methods for the test split.
Automated metrics measure overlap between model generated caption and the reference ground truth
captions. We report Perplexity (PPL), BLEU-3/4 (Papineni et al., 2002a), METEOR (Banerjee and
Lavie, 2005), ROUGE-L (Rouge) (Lin, 2004), and BertScore-Precision (BERT) (Zhang et al., 2020).
The proposed TRUCE method gets favorable scores as per various automated metrics on the test split of
SYNTH (Table 4.1).

Human Evaluations for Correctness: Automated metrics may not correlate well with actual quality
of the generated output in text generation tasks (Celikyilmaz et al., 2020). As such, we report human
evaluation results as well. We recruit human annotators who are requested to provide a binary label on
factual correctness (COR) of the captions for the test split. Each caption is annotated by three annotators,
and the majority label is used. The proposed method is able to achieve a high correctness score of
92%, which is much better than the baselines. This demonstrates the usefulness of the proposed truth-
conditional model in generating highly faithful captions. Output samples are provided in the Appendix.

4.4.3 Analysis

Generalization to different time series duration: SYNTH data consists of time series instances with
T=12 sequence of values. We experiment the extent to which models trained on SYNTH can accurately
detect patterns in time series data of different lengths without any fine-tuning. For this, we evaluate
results on a separate synthetic data consisting of 100 time series with T’=24 values per time series
(dataset created in the same manner as SYNTH and consists of the same set of 6 classes as in SYNTH).

We observe that TRUCE retains high correctness of the output captions (Table 4.2), whereas some of
the high performing baseline show significant reduction in correctness. Note that some of the employed
methods like NEARNBR and FCENC cannot work directly on inputs of length different than present in
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Module Most freq. words associated
id with learned modules

pattern-1 increases, rises
pattern-2 decreases, decline, dips
locate-1 end, late
locate-2 beginning , start, initial
locate-3 middle, halfway

Table 4.3: Some of the most frequent words associated with some of the learned module instances for SYNTH data.

the training data. For such models, we first adjust length of series. For example, for length 24 input, we
consider alternate values only, thereby reducing the series to length 12 (same as in the training data).

Analyzing Learned Modules: We analyze the characteristics of the learned modules by identifying the
top words (excluding stop words) associated with each learned module. To do so, for a given series, we
find program with highest score, and associate the annotations for that series to corresponding modules
in that program. Finally, we collect the most frequent words in annotations associated with each module.
We show a summary in the Table 4.3. The two trend modules seem to be getting activated for increase
and decrease patterns respectively.

Compositionality of Learned Modules We analyze if the proposed model uses its compositional pa-
rameterization effectively. To do so, we conduct a simple analysis as follows: We train TRUCE on a
subset of synthetic data consisting of only the following 4 patterns: increase-beginning, decreases-end,
increase-middle, decreases-middle. We examine this trained model’s behavior on test data points con-
sisting of the two unseen patterns: increase-end and decrease-beginning. More specifically, we analyze
the argmax program prediction as per the conditional prior. Based on manual inspection of modules
(similar to what we discussed for analysis in Table 4.3), we know before hand the program which should
be selected for these patterns. Model’s prediction is considered to be correct if, for example, for an input
with ‘decrease-beginning’ pattern, model assigns highest score to the program composed using mod-
ules corresponding to ‘decrease’ and ‘beginning’. We observe that the highest scoring program is the
correct/expected program for 92% of the cases in the test split.

4.5 Experiments with STOCK Dataset

4.5.1 Posterior Regularization:

In the initial experiments with STOCK dataset, we observe that our model suffers from model collapse,
and degenerates into learning a single program only. This is perhaps because randomly initialized mod-
ules do not have much guidance to begin with. To mitigate such mode collapse issues, prior work has
used mutual posterior divergence (MPD) regularization (Ma et al., 2019) −Eyi,y j KL(q(z|yi)||q(z|y j)),
where yi and y j captions for two randomly chosen data points.

However, we note that MPD term enforces the divergence in an indiscriminate manner – divergence
is encouraged even if captions are paraphrases of each other. An alternate way to encourage divergence
in the inference network prediction is to encourage divergence only when two captions yi and y j represent
different programs or patterns. However, such information is not available in the training data. Instead,
we use an approximation as follows: We identify the M most frequently occurring words excluding stop-
words (list available in Appendix) in the captions and are manually labelled to to represent pattern or
locate or neither. Each of the words labelled to be of type pattern or locate is assigned a unique pattern
or locate module id respectively. The corresponding captions thus get tagged with some heuristic (but
potentially noisy) labels for module ids. Only those captions are tagged which have exactly one ‘locate’
word and one ‘pattern’ word. This leads to about 31% of the captions being assigned such heuristic
labels, while the remaining data stays unlabelled.
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Method COR Bleu-3/4 Cider Rouge BERT

TRUCE(Ours) 88.4% 0.35 / 0.19 0.36 0.50 0.57
FCENC 64.2% 0.32 / 0.19 0.43 0.47 0.56
LSTMENC 65.5% 0.35 / 0.21 0.41 0.50 0.61
CONVENC 65.9% 0.33 / 0.18 0.41 0.49 0.59
FFTENC 61.8% 0.34 / 0.19 0.39 0.49 0.58
NEARNBR 47.2% 0.12 / 0.06 0.14 0.28 0.35

Table 4.4: Results with STOCK data: Proposed method TRUCE scores the best on correctness evaluation. The best per-
forming baseline scores 20% less on correctness evaluation. Greedy decoding was used for all the methods.

Figure 4.4: Coverage and Correctness of model outputs at different sampling settings. In general, settings with higher
coverage of human written captions have lower precision of generated captions. TRUCE achieves much higher correctness
scores compared to baselines for similar coverage values.

The above procedure does involve a small human-in-the-loop component. However, we note that it
is a pretty light-weight involvement. For example, the system presents M(=10) most frequent pairs of
words (excluding stopwords) in captions, and a person spends a couple of minutes labeling their type
(locate or pattern).

4.5.2 Results

We now report results with STOCK dataset. As mentioned above, we utilize heuristic labels as an
auxiliary loss when training the proposed method. Thus, for a fair comparison, the baselines LSTMENC,
CONVENC and FCENC also use the same set of heuristic labels via a classification loss on the encoded
representation in a multi-task learning setup.

The proposed method TRUCE produces high precision captions as judged by human annotators
(Table 4.4). We additionally report automated text overlap scores against reference captions, though
the automated metrics seem only mildly correlated with human judgement ratings. Interestingly, some
of the baselines show large differences in performance in STOCK vs SYNTH datasets. For example,
NEARNBR performs well on SYNTH but rather poorly on STOCK dataset, perhaps because of variety
in time series instances in SYNTH being small, while the same being large in STOCK.

Diversity and Coverage: Ideally, we want models which can identify all the interesting patterns present
in an input time series. Correctness results discussed earlier are indicative of faithful generation but do
not necessarily capture coverage of patterns. We compute coverage of various models via the following
procedure. First, we collect L(=12) samples per data point from the model. Next, we recruit human
annotators to rate whether a human written reference annotations for that data point is covered by the set
of L generated captions or not. For TRUCE, we perform sampling at the program selection stage, while
baselines admit sampling only at the token generation stage.

Note that this makes the coverage score depend on the settings used in the sampling process (e.g.
top-p value in nucleus sampling), which will also affect the correctness of the generated captions. In
Figure 4.4, we demonstrate coverage and correctness values of TRUCE and two of the baseline models
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Module id Most freq associated words

pattern-1 increases, rises, gains
pattern-3 stays, remains, flat
pattern-4 bottoms, out, decline, dips
loc-1 start, beginning, initially

Table 4.5: Inference Network Analysis: Analyzing words frequently present in captions when the argmax program prediction
from inference network comprises of a give module-id.

under different sampling conditions. In general, restricting samples to a low value of top-p leads to lower
coverage but higher correctness. Overall, TRUCE behaves in a more favorable manner. For example,
comparing TRUCE against CONVENC, for roughly same level of coverage (e.g. 50%), correctness is
much higher for TRUCE ( 83% against 45% for CONVENC). However, there still seems to be a gap in
the coverage of patterns, and can perhaps be addressed by incorporating more module types.

4.5.3 Analysis

Direct conditioning on the input: Our decoder conditions only an encoding of a sampled program. We
hypothesize that such an approach creates a bottleneck discouraging the decoder from learning spurious
correlations between the input time series and the output text. To inspect the usefulness of the proposed
abstraction, we consider an alternative model wherein the decoder conditions on the input time series
as well – by providing output of a convolutional encoder (same as in CONVENC) to the decoder. More
specifically, the program representation and the encoder representation are concatenated before being fed
to the decoder. Lets refer to such a model with decoder having direct access to the input as TRUCE-D.
For STOCK data, TRUCE-D gets correctness of 69% compared to 88% for TRUCE.

Analysis of Inference Network: We analyze the predictions of the inference network at the end of model
training. Particularly, we associate the set of ground truth annotations in validation split to module-
ids present in the argmax program prediction from the inference network. Next, we identify the most
frequently occurring tokens present for each module-id/module-instance. We observe that the inference
network seems to be associating semantically similar words to the same module instance (Table 4.5).

4.6 Related Work

Time-Series Numerical Data and Natural Language (Andreas and Klein, 2014) worked on grounding
news headlines to stock time series data by aligning sub-trees in sentence parses to segments of time
series. (Murakami et al., 2017) generate stock data commentary using encoders such as convolutional
and recurrent neural networks, similar to the baselines used in our experiments. (Sowdaboina et al., 2014)
focus on the task of describing wind speed and direction. Time series data in the form of charts has been
utilized in some prior work in figure question answering (Kahou et al., 2018; Chen et al., 2019a).

Past work has explored ways to handle numerical data in a variety of input data domains using
neural networks. (Trask et al., 2018) propose neural logic unit for tasks such as counting objects in
images. Prior work has investigated handling of numeracy in question answering datasets (Dua et al.,
2019; Andor et al., 2019; Gupta et al., 2020), typically using a predefined set of executable operations
or using specific distributions for number prediction (Spokoyny and Berg-Kirkpatrick, 2020; Thawani
et al., 2021).

Neuro-Symbolic Methods: Andreas et al. (2016b) proposed to use neural modular networks for visual
question answering. Since then, similar approaches have been used for several other tasks such as re-
ferring expression comprehension (Cirik et al., 2018), image captioning (Yang et al., 2019), and text
question answering (Andreas et al., 2016a; Khot et al., 2021). Compared to such past efforts, we induce
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the latent numerical and temporal detection operations, pick a high scoring program, and condition only
on a program encoding to generate the output description. In this respect, our work is also related to prior
work on neural discrete representation learning (van den Oord et al., 2017; Zhao et al., 2018), though
none of these past works explore utilizing such techniques for data to text problems. Our proposed model
abstracts the numerical pattern detection from text generation. Related ideas have been explored in the
past in other domains and tasks (Gehrmann et al., 2018; Jhamtani and Berg-Kirkpatrick, 2018; Amizadeh
et al., 2020).

Data to Text: Tabular or structured data to text generation has been explored in prior work (Lebret et al.,
2016; Novikova et al., 2017b; Wiseman et al., 2017; Jhamtani et al., 2018; Gehrmann et al., 2021). The
Rotowire dataset (Wiseman et al., 2017) is comprised of sports summaries for tabular game data which
may require modeling of numerical operations and trends. However, much of the past work has relied
on neural models with attention mechanisms, without explicit and interpretable notions of numerical
operations. Fidelity to the input in the context of neural text generation has received a lot of attention
lately (Cao et al., 2018). Prior work has approached the aspect of fidelity to input through changes in
model training and/or decoding methods (Tian et al., 2019; Kang and Hashimoto, 2020; Majumder et al.,
2021; Goyal and Durrett, 2021; Liu et al., 2021). We explore a different approach that increases fidelity
through conditional independence structure and model parameterization.
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5 Structured Discriminators for Modeling
Long-Range Latent Patterns

Existing neural language models often fail to capture higher-level structure present in text such as
rhyming constraints in poetry. Much prior work on poetry generation uses manually defined constraints
which are satisfied during decoding using either specialized decoding procedures or rejection sampling.
The rhyming constraints themselves are typically not learned by the generator. In this chapter, we pro-
pose an alternate approach that uses a structured discriminator to learn a poetry generator that directly
captures rhyming constraints in a generative adversarial setup (Jhamtani et al., 2019). By causing the dis-
criminator to compare poems based only on a learned similarity matrix of pairs of line ending words, the
proposed approach is able to successfully learn rhyming patterns in two different English poetry datasets
(Sonnet and Limerick) without explicitly being provided with any phonetic information. Finally, I will
conclude the chapter with a brief discussion on application of the proposed approach on modeling self
repetition in music generation (Jhamtani and Berg-Kirkpatrick, 2019).

5.1 Introduction

Many existing approaches to text generation rely on recurrent neural networks trained using likelihood
on sequences of words or characters. However, such models often fail to capture overall structure and
coherency in multi-sentence or long-form text (Bosselut et al., 2018; Holtzman et al., 2018). To rectify
this, prior work has proposed losses which encourage overall coherency or other desired behavior (Li
et al., 2016b; Zhang and Lapata, 2017; Bosselut et al., 2018). However, most of these approaches rely
on manually provided definitions of what constitutes a good or suitable structure, thereby limiting their
applicability. In this paper we propose a method for English poetry generation that directly learns higher-
level rhyming constraints as part of a generator without requiring strong manual intervention. Prior works
on poetry generation have focused mostly on ad-hoc decoding procedures to generate reasonable poetry,
often relying on pruning from a set of candidate outputs to encourage desired behavior such as presence
of explicitly-defined rhyming patterns (Oliveira, 2017; Ghazvininejad et al., 2018b).

We propose an adversarial approach to poetry generation that, by adding structure and inductive bias
into the discriminator, is able to learn rhyming constraints directly from data without prior knowledge.
The role of the discriminator is to try to distinguish between generated and real poems during training.
We propose to add inductive bias via the choice of discriminator architecture: We require the discrim-
inator to reason about poems through pairwise comparisons between line ending words. These learned
word comparisons form a similarity matrix for the poem within the discriminator’s architecture. Finally,
the discriminator evaluates the poem through a 2D convolutional classifier applied directly to this matrix.
This final convolution is naturally biased to identify spatial patterns across word comparisons, which, in
turn, biases learned word comparisons to pick up rhyming since rhymes are typically the most salient
spatial patterns.

Recent work by (Lau et al., 2018) proposes a quatrain generation method that relies on specific do-
main knowledge about the dataset to train a classifier for learning the notion of rhyming: that a line
ending word always rhymes with exactly one more ending word in the poem. This limits the applica-
bility of their method to other forms of poetry with different rhyming patterns. They train the classifier
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Figure 5.1: Model Overview: We propose a structured discriminator to learn a poetry generator in a generative
adversarial setup. Similarities between pairs of end-of-line words are obtained by computing cosine similarity be-
tween their corresponding representations, produced by a learned character-level LSTM encoder. The discrimina-
tor operates on the resulting matrix S representing pair-wise similarities of end words. The proposed discriminator
learns to identify rhyming word pairs as well as rhyming constraints present in the dataset without being provided
phonetic information in advance.

along with a language model in a multi-task setup. Further, at generation time, they heavily rely on re-
jection sampling to produce quatrains which satisfy any valid rhyming pattern. In contrast, we find that
generators trained using our structured adversary produce samples that satisfy rhyming constraints with
much higher frequency.

Our main contributions are as follows: We introduce a novel structured discriminator to learn a poetry
generation model in a generative adversarial setup. We show that the discriminator induces an accurate
rhyming metric and the generator learns natural rhyming patterns without being provided with phonetic
information. We successfully demonstrate the applicability of our proposed approach on two datasets
with different structural rhyming constraints. Our poem generation model learned with the structured
discriminator is more sampling efficient compared to prior work – many fewer generation attempts are
required in order to obtain an valid sample which obeys the rhyming constraints of the corresponding
poetry dataset.

5.2 Method

Many forms of poetry make use of rhyming patterns on line-ending words (Oliveira, 2017). Therefore,
to characterize a rhyming poem, a model needs (1) to know what it means to rhyme (2) to identify the
specific permissible rhyming patterns for a particular poem type. For example, a limerick is a 5 line
poem with a rhyming constraint of the type AABBA, i.e. the ends of the first, second, and fifth lines
rhyme. We consider an adversarial learning setup with a hierarchical language model and a structured
discriminator, such that the discriminator is trained to distinguish between generated examples and train-
ing examples, and the generator is trained to fool the discriminator. Our novel structured discriminator
operates on a matrix which encodes a learned pair-wise similarity function of the line ending words. We
refer to our model as RHYME-GAN.

5.2.1 Neural Generation Model

Our generator is a hierarchical neural language model (Figure 5.1) that first generates a sequence of
line-ending words, and thereafter generates the poem’s lines conditioned on the ending words. We use
recurrent neural networks for ending word generation as well line generation conditioned on ending
words. Following prior work (Lau et al., 2018), we generate words in each line in reverse order (i.e.
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right to left), and begin generation with the last line first. Let x̂ represent a sample from the current gen-
erator distribution, denoted by pθ , where θ represents the generator parameters. We initialize the word
embeddings in the generator with pre-trained word embeddings (Lau et al., 2018) trained on a separate
non-sonnet corpus.

5.2.2 Structured Discriminator

We introduce a structured discriminator, denoted by function fφ (x), which outputs the probability that x
is a sample from the dataset as opposed to generated. Our architecture defines an intermediate matrix S ∈
RT×T , where T denotes the number of lines in the poem, which encodes pair-wise similarities between
line ending words in order to capture rhyming structure. The discriminator’s output is determined by a
two layer 2D convolutional neural network applied to S. Convolutional neural networks have been shown
to capture local as well as global patterns in 2D data – for example, images. Thus, our discriminator is
composed of two main components: computation of a matrix S, and a convolutional neural network to
classify the computed matrix S. The pair-wise computation provides a useful inductive bias to identify
the notion of rhyming, whereas the convolutional network is a suitable choice to capture overall rhyming
patterns.

More specifically, let the words at the ends of lines in x be denoted by e. The number of ending words
will be same as the number of lines in x, which we denote as T . We encode each ending word using a
character-level LSTM (Hochreiter and Schmidhuber, 1997) denoted by gφg , and use the last hidden state
of the LSTM as a vector representation of the word. We let Si j be the cosine similarity between the
representations of ending words ei, e j, given by following equation:

Si j =
g(ei)g(e j)

|g(ei)||g(e j)|
(5.1)

The matrix S is passed through a convolutional neural network composed with a linear layer, together
denoted by cφc . The final output is passed through a sigmoid non-linearity, so that fφ (x) ∈ [0,1]. The
value of fφ (x) represents the discriminator’s assessment of the probability that datum x belongs to the real
dataset, rather than being a generated sample. The discriminator’s objective will train it to distinguish
between a sample x from training data X , and a generated sample x̂, in a binary classification setup.
Specifically, we define the discriminator loss for x, x̂ as follows:

d(x, x̂;φ) =− log( fφ (x))− log(1− fφ (x̂)) (5.2)

5.2.3 Learning

Generator parameters θ and discriminator parameters φ are trained together under following objective:

min
θ

[
Ex∈X

[
− log pθ (x)+λ max

φ
Ex̂∼pθ

[−d(x, x̂)]
]]

(5.3)

Note, in addition to using a traditional adversarial objective, we also include a likelihood term to help
stabilize the generator. λ is a hyperparameter which controls the relative weight of the two terms. Since
sampling of x̂ from generator involves discrete choices, we use the REINFORCE (Williams, 1992) algo-
rithm to train the generator using learning signal from the adversarial loss term. The generator simulta-
neously gets an exact gradient from the likelihood portion of the objective. We observe training is more
stable when we pretrain the LSTM word encoder gφg(.) part of the discriminator, along with a separate
LSTM decoder, using an auto-encoding objective on words in the vocabulary.
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Model Expected #Samples
SONNET LIMERICK

DEEP-SPEARE 153.8 N/A
RHYME-LM 169.5 500

RHYME-GAN-NS 4.8 26.6
RHYME-GAN 3.7 4.7

Table 5.1: Sampling efficiency: We obtain 10K samples of poetry without additional intervention during decoding,
and report the expected samples as inverse of the fraction of samples satisfying valid rhyming patterns for the
corresponding dataset. Lower values are better.

5.3 Experiments

5.3.1 Datasets

We work with the Shakespeare SONNET dataset (Lau et al., 2018) and a new LIMERICK corpus. Each
sonnet in the Sonnet dataset is made up of 3 quatrains of 4 lines each, and a couplet. The dataset consists
of 2685 sonnets in train, and 335 each in validation and test splits. The quatrains typically have one of
the following rhyming structures: AABB, ABAB, ABBA, though some deviations are observed in the
dataset. This may be because rhyming patterns are not always strictly followed in writing quatrains, and
there are possible inaccuracies in the word pronunciation dictionaries used (e.g. some words can have
multiple different pronunciations based on context).

A limerick is a form of verse with five lines. Limericks typically follow a rhyming pattern of AABBA.
We collect limericks from an online collection1. Due to a large vocabulary in the full collection, we filter
the dataset to retain only those limericks whose all the words are in a subset of 9K most frequent words.
Our final dataset consists of 10,400 limericks in train and 1300 each in validation and test splits. We
train and evaluate the models separately on each corpus.

5.3.2 Poem Generator

Sampling efficiency We compute the expected number of samples needed before we sample a quatrain
which satisfies one of the hand-defined rhyming patterns. Towards this end, we get 10K samples from
each model without any constraints (except avoiding UNK - unknown tokens). Following prior work
(Lau et al., 2018), words are sampled with a temperature value between 0.6 and 0.8. We use CMU
dictionary (Weide, 1998) to look up the phonetic representation of a word, and extract the sequence
of phonemes from the last stressed syllable onward. Two words are considered to be rhyming if their
extracted sequences match (Parrish, 2015). We consider a generated quatrain to have an acceptable
pattern if the four ending words follow one of the three rhyming patterns: AABB, ABBA, ABAB.
Similarly for LIMERICK, we consider only those samples to be acceptable which have line endings
of the rhyming form AABBA.

We consider a baseline RHYME-LM, which has the same generator architecture as RHYME-GAN but
is trained without the discriminator. We also compare with RHYME-GAN-NS which uses a simpler non-
structured discriminator. Specifically, it uses a discriminator which first runs a character-level encoder for
each ending word - similar to RHYME-GAN - but then instead of computing pair-wise similarity matrix,
it utilizes a LSTM on the sequence of the computed representations.

As can be observed from Table 5.1, DDLA needs fewer samples than other methods to produce
an acceptable quatrain or a limerick, indicating that it has learned natural rhyming structures more ef-
fectively from data. Note we do not report DEEP-SPEARE on Limerick due to their SONNET specific
assumption that for a given end-of-line word there is exactly one more rhyming word among other end-
of-line words. Additionally, RHYME-GAN-NS performs worse than RHYME-GAN, and the difference in

1http://hardsoft.us. Accessed May 2019.
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Model NLL
SONNET LIMERICK

DEEP-SPEARE 4.38 N/A
RHYME-LM 3.97 3.48
RHYME-GAN 3.98 3.49

Table 5.2: Held out negative log likelihood per token for poems in test split.

performance is more prominent in LIMERICK – demonstrating that the proposed structure in the discrim-
inator provided useful inductive bias. Note that compared to 4 line quatrains in SONNET, LIMERICK has
5 line poems and has arguably more complex rhyming pattern constraints.

Likelihood on held out data We report negative log likelihood (NLL) on test splits (Table 5.2). For
SONNET, RHYME-GAN achieves a test set NLL of 3.98. Our model without adversarial learning i.e.
RHYME-LM, achieves a test set NLL of 3.97. DEEP-SPEARE reports a test set NLL of 4.38. Note that
our language model is hierarchical while DEEP-SPEARE has a linear model. The NLL for RHYME-LM

and RHYME-GAN are very similar, though RHYME-GAN gets much better sampling efficiency scores
than RHYME-LM.

Our generator implementation is largely based on that of Lau et al. (2018). The main difference is
that we first generate all the line-ending words and then condition on them to generate the remaining
words. The change was made to make it more amenable to our proposed discriminator. However,
our hierarchical language model (RHYME-LM) performs worse than DEEP-SPEARE as per sampling
efficiency. Therefore, structured discriminator is the driving factor behind the observed improvement
with RHYME-GAN. However, committing to the ending words of all lines before completing preceding
lines can be a limitation, and addressing it is a possible future direction.

5.3.3 Analyzing Learned Discriminator

We probe the the word representations g(.) to check if rhyming words are close-by in the learned mani-
fold. We consider all pairs of words among the ending words in a quatrain/limerick, and label each pair
to be rhyming or non-rhyming based on previously stated definition of rhyming. If the cosine similarity
score between the representations of pairs of words is above a certain threshold, we predict that word
pair as rhyming, else it is predicted as non-rhyming. We report F1 scores for the binary classification
setup of predicting word-pairs to be rhyming or not. We consider some additional baselines: RHYM-EM
(Reddy and Knight, 2011) uses latent variables to model rhyming schemes, and train parameters using
EM. GRAPHEME-K baselines predict a word pair as rhyming only if the last K = {1,2,3} characters of
the two words are same.

For SONNET data, we observe that RHYME-GAN obtains a F1 score of 0.90 (Table 5.3) on the test
split (threshold chosen to maximize f1 on dev split). We repeat the above analysis on the LIMERICK

dataset and observe an F1 of 0.92 for RHYME-GAN. DEEP-SPEARE model reports F1 of 0.91 on
SONNET. As stated earlier, DEEP-SPEARE’S model is not amenable to LIMERICK - we do compare
though with the max-margin classifier in DEEP-SPEARE model trained on LIMERICK which gets F1 score
of 0.81. The scores are understandably lower since the AABBA pattern in limericks is not amenable
to SONNET specific assumptions made in DEEP-SPEARE model. On the other hand, RHYME-GAN

achieves high F1 scores for both the datasets without incorporating any domain specific rhyming pattern
information.

RHYME-GAN performs much better than RHYM-EM and GRAPHEME-K baselines. RHYM-EM does
not perform well - probably because it operates at word-level and fails to generalize. Note that RHYME-
GAN-NS gets F1 score of 0.85 in case of SONNET dataset and 0.87 for LIMERICK. These values
are lower than corresponding scores for RHYME-GAN, demonstrating that the proposed structure in the
discriminator was useful in learning the notion of rhyming.
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Model SONNET LIMERICK

GRAPHEME-1 0.71 0.79
GRAPHEME-2 0.78 0.79
GRAPHEME-3 0.69 0.67

RHYM-EM 0.71 0.73
DEEP-SPEARE/MAX-MARGIN 0.91 0.81

RHYME-GAN-NS 0.85 0.87
RHYME-GAN 0.90 0.92

Table 5.3: Rhyming probe: We use the cosine similarity score of the learned representations to predict a word pair
as rhyming or not, and report F1 score for this classification task. RHYM-EM is an unsupervised rhyming pattern
discovery method. GRAPHEME-K baselines predict based on exact match of last k characters.

5.3.4 Human Evaluations

Following prior work (Lau et al., 2018), we requested human annotators to identify the human-written
poem when presented with two samples at a time - a quatrain from the Sonnet corpus and a machine-
generated quatrain, and report the annotator accuracy on this task. Note that a lower accuracy value
is favorable as it signifies higher quality of machine-generated samples. Using 150 valid samples (i.e.
samples belonging to one of the allowed rhyming patterns), we observe 56.0% annotator accuracy for
RHYME-GAN, and 53.3% for DEEP-SPEARE – indicating that the post-rejection sampling outputs from
the two methods are of comparable quality (the difference in annotator accuracy is not statistically sig-
nificant as per McNemar’s test under p < 0.05). If we use pre-rejection samples, we observe 60.0%
annotator accuracy for RHYME-GAN, and 81.3% for DEEP-SPEARE (the difference being statistically
significant as per McNemar’s test under p < 0.05) – indicating that unfiltered samples from RHYME-
GAN are of higher quality compared to DEEP-SPEARE.

5.4 Related Work

Early works on poetry generation mostly used rule based methods (Gervás, 2000; Wu et al., 2009;
Oliveira, 2017). More recently, neural models for poetry generation have been proposed (Zhang and
Lapata, 2014; Ghazvininejad et al., 2016, 2017; Hopkins and Kiela, 2017; Lau et al., 2018; Liu et al.,
2019b). (Yan et al., 2013) retrieve high ranking sentences for a given user query, and repeatedly swap
words to satisfy poetry constraints. (Ghazvininejad et al., 2018b) worked on poetry translation using
an unconstrained machine translation model and separately learned Finite State Automata for enforcing
rhythm and rhyme. Similar to rhyming and rhythm patterns in poetry, certain types of musical com-
positions showcase rhythm and repetition patterns, and some prior works model such patterns in music
generation (Walder and Kim, 2018). Generative adversarial learning (Goodfellow et al., 2014) for text
generation has been used in prior works (Fedus et al., 2018; Wang et al., 2018, 2019b; Rao and Daumé III,
2019), though has not been explored with regard to the similarity structure proposed in this paper.

5.5 Application to Modeling Repetition in Music Generation

Musical compositions often demonstrate repetitions (Pareyon, 2011; Walder and Kim, 2018), in terms
of patterns related to rhythm, pitch, and other musical properties. Some prior works focus on modeling
long term structures in music generation (Eck and Schmidhuber, 2002; Huang et al., 2018; Roberts et al.,
2018). However, there are only few works on explicitly representing self-repetition (Walder and Kim,
2018). In this paper, we propose SSMGAN (Figure 6.2) - a generative adversarial network (Goodfellow
et al., 2014) for learning a neural model to generate monophonic compositions with rich self-repetition
structures by feeding a measure-level self-similarity matrix representation to a convolutional discrim-
inator, which can be more informative than taking localized decisions with self-attention. Instead of
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Figure 5.2: SSMGAN model: We sample a sequence of measure embeddings from the generator, which are
decoded to obtain sequences of notes. One of the discriminators operates on a self-similarity matrix obtained
via cosine similarity between pairs of measure embeddings. The proposed architecture encourages the model to
identify useful notions of similarity between measures, and identify overall self-repetition patterns from data.

explicitly defining the notion of similarity between two measures, we propose to encode a measure - a
sequence of notes - into a continuous representation, and compute a self-similarity matrix using pair-wise
cosine similarity of measure representations/embeddings in the composition.

Prior works have often chosen to characterize repetition in terms of rhythmic or other manually de-
fined musical properties, and edit distances at note level (Walder and Kim, 2018). However, musical
similarity might go beyond such simple formulations (Flexer et al., 2006; Prockup et al., 2015). By
representing measures in a continuous space, our model can learn more complex notions of similarities
between measure. Additionally, we feed a self-similarity matrix to a discriminator DS, which learns to
identify repetition structures in existing compositions using multiple layers of 2D convolution neural net-
works. Moreover, since we represent measures in a continuous space, loss from DS is fully differentiable
with respect to the measure representations.

5.5.1 Methodology

Measure and Self-repetition representations: We propose to encode a measure Ni consisting of a
sequence of notes N1

i ,N
2
i , ..,N

|Ni|
i to a low dimensional embedding Mi. We train a variational auto-

encoder (Kingma and Welling, 2013) at measure level using a LSTM encoder, denoting the last hidden
state of encoder as corresponding measure embedding Mi. However, instead of having a decoder operate
on each measure embedding individually, we propose a decoder which has access to the last hidden state
of previous measure’s decoder (Figure 5.2). The proposed decoder can lead to smoother transition across
measure boundaries. We define self-similarity matrix SM ∈ RT∗T such that Si j is the cosine similarity
score between pair of measures Ni and N j, while T is the number of measures in the composition.

GAN formulation Generative Adversarial Networks (GANs) employ two types of networks - gen-
erator and discriminator, such that discriminator is trained to identify generated examples from training
examples, and the generator is trained to fool the discriminator.

Neural Generation Model We first sample a sequence of measure embeddings M1, ..,MT such that
Mi depends on all M<i (Figure 5.2). We sample Mi from a Gaussian distribution whose mean and variance
are computed by feeding the output hi of the LSTM to two feed-forward networks. We use re-sampling
trick to train the model end-to-end. Thereafter, the decoder (same as the one used during training measure
representations) decodes the sampled sequence of measure embeddings into the final sequences of notes.
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Discriminators: We employ two discriminators operating on 1) Self-similarity matrix 2) Sequence of
measures.

DS: The discriminator DS(S) uses a multi-layer convolutional encoder to encode a self similarity ma-
trix S and is trained to distinguish S of a generated composition from that of a training data composition.

DL: We consider a convolutional neural network discriminator DL which looks at windows of K
measure embeddings at a time. We encode the sequence using a LSTM, followed by a linear layer and a
sigmoid to model this binary classification discriminator. We experiment with multiple values of K.

Training: The generator and the discriminators are trained simultaneously. We run the encoder on
training data compositions to obtain a sequence of real measure embeddings, while we sample from the
generator to get synthetic compositions. We note that training the full model end-to-end can become
problematic as the measure encoder can work with the generator to fool the structure discriminator at the
cost of generating good measure representations. So instead we pre-train and then freeze the parameters
of the measure encoder-decoder. Thereafter, we use GAN framework to train the LSTM Gaussian model
while keeping the measure encoder decoder fixed.

5.5.2 Experiments with Music Generation

We work with Nottingham dataset (GOLD) (Shlien; Boulanger-Lewandowski et al., 2012) which is a
collection of 1200 British and American folk tunes, with over 7 hours of music with a total of over 176K
notes. We identify the measure boundaries in every composition. Following prior works, we perform lis-
tening tests with human annotators on Amazon Mechanical Turk. Annotators rate the generated samples
on overall quality O on a 1-5 Likert scale, (with 5 being the most favorable score), and a binary yes/no
question about presence of repetition R (Table 5.4).

Model R (% yes) Overall (O)

SSMGAN 63% 4.28
SSMGAN (-DS) 26% 3.84

NOTE 27% 4.02
GOLD 64% 4.64

Table 5.4: Human evaluation results with 108 samples of each method on 1) self-repetition (R) 2) overall
musical quality for our method SSMGAN, a note level LSTM baseline (NOTE), and samples from
Nottingham data (GOLD). SSMGAN (-DS) denotes our method without DS discriminator.

Measure Embeddings and Self-Similarity: We use LSTM cells with hidden size of 128 as measure
encoder and decoder, with note embedding size of 128. As discussed, during pre-training phase we only
train measure encoder-decoder, and observe 1.137 note-level perplexity on test split of the Nottingham
data. Additionally, we observe similar measures are close-by in embedding space. (Some relevant visu-
alizations in Appendix B). We observe that our model learns to generate sequences with rich repetition
structures (Some relevant visualizations in Appendix A). Moreover, we observe that cosine similarity
between pairs of measure embeddings is correlated with a note level edit distance of pitch as well as
rhythm between measures (Pearson correlation coefficients of 0.40 and 0.35 respectively), demonstrat-
ing that proposed self-similarity matrices encode repetition in terms of meaningful musical properties.

Other Related Works: Dong et al. (Dong et al., 2018) and Yang et al. (Yang et al., 2017) pro-
pose GAN based methods for music generation, with latter using a 2D convolutional discriminator on
sequence of generated bars. Widmer et al (Widmer et al., 2018) use a convolutional restricted boltzmann
machine to generate music while imposing a given repetition structure of a piece. In contrast to such
earlier works, we have proposed to encode measures in a low dimensional embeddings space, and use
a discriminator on self-similarity matrix - enabling our model to automatically learn useful notions of
similarity between measures, and identify meaningful self-repetition patterns from data.
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6 Latent Discrete Generation Plans for Con-
trollable and Coherent Generation

Maintaining long-term narrative flow and consistency are important concerns when aiming to generate a
plausible story (Porteous and Cavazza, 2009; Hou et al., 2019). Prior work on long form text generation
has focused on generating consistent narratives via outlines using keywords or key phrases (Xu et al.,
2018; Yao et al., 2019), event-based representations (Riedl and Young, 2010; Martin et al., 2018; Fan
et al., 2019), plot graphs (Li et al., 2013) or a sentence representing theme (Chen et al., 2019b). However,
many these approaches have used heuristics or off-the-shelf models to first tag data with the desired type
of plan, and then train generation models in a supervised fashion. In (Jhamtani and Berg-Kirkpatrick,
2020), we propose a deep latent variable model that treats the generation plan as discrete latent variables,
and learns them from data.

6.1 Introduction

Maintaining long-term narrative flow and consistency are important concerns when aiming to generate a
plausible story (Porteous and Cavazza, 2009; Hou et al., 2019). Prior work on narrative text generation
has focused on generating consistent stories via story outlines using keywords or key phrases (Xu et al.,
2018; Yao et al., 2019), event-based representations (Riedl and Young, 2010; Martin et al., 2018; Fan
et al., 2019), plot graphs (Li et al., 2013) or a sentence representing theme (Chen et al., 2019b).

(Yao et al., 2019) note that compared to specific event based representations, using keywords to form
the outline is more generalizable and widely applicable. In this work, we consider a sequence of anchor
words as a means to model story outlines. For example, in Figure 6.1, given a story title ‘Winning the
Race’, our model first predicts a sequence of anchor words which represents a high level story plan.
Thereafter, a decoder conditions on the title and generated sequence of anchor words to generate the
final story. We assume an alignment between the anchor words and the story sentences – the ith anchor
word corresponds to the ith sentence in the story.

However, stories do not naturally occur with a tagged set of such anchor words or keywords. Many
prior works use off the shelf tools to first label stories with plan outlines, thus using external supervision
for learning plot structures. For example, (Yao et al., 2019) use the RAKE heuristic (Rose et al., 2010)
to first identify the most important keyword in each sentence, and then use this to train a model in a
supervised fashion. This approach leads to improved coherency and control, but creates a reliance on
such heuristics and does not jointly learn anchor words along with the generator.

Inspired by prior work indicating that anchor words can effectively capture and control high-level
generation structure, we investigate to what extent high-level control can be learned in a fully unsuper-
vised fashion, directly from natural story data. We design a hierarchical latent variable model (Figure
6.2) that induces sequences of anchor words that explain observed stories, while at the same time learning
to generate entire stories by first generating anchor sequences. For training, we use amortized variational
learning (Kingma and Welling, 2014b), where an inference network is used to approximate the posterior
on anchor sequences.

52



Figure 6.1: Our aim is to generate a story given a title. We propose models which first generate a high
level story plan realized via a sequence of anchor words.

At test time, given a title, we first sample a sequence of anchor words using the prior model condi-
tioned on only the title, and then generate the actual story using the decoder conditioning only on the
title and the sampled anchor words.

To induce a useful latent generation plan and to effectively condition on a sampled plan, we propose
a constrained story decoder and constrained inference network. Specifically, our constrained decoder
begins a story sentence by deterministic copying the corresponding anchor word, and then generates
words to the left and then to the right (Figure 6.3). For this decoder, the corresponding true posterior on
anchor words is sparse: the anchor word must be chosen from the observed sentence. Thus, we constrain
the output vocabulary of the corresponding inference network to the words of the input sentence. We
observe that the proposed constrained inference network does not suffer from mode collapse, leading to
models which can effectively learn useful anchor words. Further, we also contrast this approach with a
model whose decoder is not constrained to use each anchor word in each sentence. The true posterior in
this case is over the full vocabulary. We conduct experiments with both constrained and unconstrained
decoders and inference networks, and find that the best results are achieved through the combination
of an unconstrained decoder with a constrained inference network – indicating, perhaps, that while it is
more effective to use flexible models, using a constrained inference network can add a useful inductive
bias, leading the model to mimic the constraint of the inference network.

We experiment with two English story datasets, and observe that our best models achieve favorable
scores relative to several baselines when evaluated on perplexity, diversity, coherency, and controllable
story generation as per various automatic and human evaluations.

Finally, we note that our modelling approach for story generation has an interesting connection with
work that treats text as a latent variable in deep generative models (Miao and Blunsom, 2016; Wen et al.,
2017). We treat a latent sequence of anchor words as a form of hierarchical control over generated
outputs, while related work treats the latent sequence itself as sequential text that is the output of the
model.

6.2 Model

Our goal is to generate a story x, consisting of multiple sentences x1,x2, ..xK , given a title t. Our model’s
generative process is depicted in Figure 6.2 and operates as follows: First, a sequence of anchor words
representing a generation plan is sampled from an auto-regressive prior conditioned on the title. Next,
for each anchor word, a sentence is generated conditioned on the anchor words and previously generated
sentences using a decoder. During training, the sequence of anchor words is unobserved and treated as a
latent variable. As described in more detail later, we will explore several choices of decoder – those that
treat anchor words as an explicit token in the sentence to be generated, generating surrounding context to
the left and right, and those that simply treat the anchor words as conditioning information. In the former
case, the posterior must be sparse. In the latter case, our choice of variational learning scheme will bias
(but not force) the model to use anchor words in output story sentences. We shall refer to our proposed
model as Latent Anchor Plan model ( LAP).
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Figure 6.2: Model Overview: We consider multi-sentence text generation via a latent generation plan
realized through a sequence of anchor words with one word per sentence. [We show sequence models
with first-order Markov assumption for simplicity, even though all sequence models in our approach are
auto-regressive with full context.]

Figure 6.3: Simplified demonstration of generation of a sentence conditioned on anchor words and pre-
ceding sentences for the two types of decoders: (1) Unconstrained decoder is based on the story gen-
eration model of (Yao et al., 2019), which may or may not use the corresponding anchor word. (2)
Constrained decoder is forced to use anchoring words in corresponding sentences, generating words
to the left and then to the right of an anchor word. [Again, we show sequence models with a first-order
Markov assumption for simplicity, even though all sequence models are auto-regressive with full context.
]

6.2.1 Anchor Sequence Prior

We model the sequence of anchor words representing the generation plan via a sequence of discrete
random variables z1,z2, ..,zK . Since our aim is to induce latent plans, we assume z are unobserved. We
consider an auto-regressive prior model pφ (z|t) = ∏i pφ (zi|z<i, t) where each anchor word is conditioned
on preceding anchor words and the title t.

6.2.2 Story Decoder

Our decoder pθ (x|t,z) generates a story given the title t and anchor words z. As mentioned earlier, zi is
aligned to the sentence xi. We consider two decoders: (1) an unconstrained decoder which is not bound
to use zi in xi, and (2) a constrained decoder which assumes zi is present in xi, and constructs words to
the left and then to the right of the anchor word zi.

Unconstrained Decoder: Our unconstrained decoder is based on (Yao et al., 2019)’s decoder which does
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Figure 6.4: Constrained Inference Network: Proposed model is trained through amortized variational
learning using an inference network. One of the proposed models is trained using a constrained inference
network which assigns non-zero probability to only the words present in corresponding sentences.

not use any explicit alignment of anchor words to corresponding sentences (Figure 6.3). The decoder is
fed the title and the anchor words appended together, and is trained to generate the multi-sentence text.
The decoder is not bound to use the anchor word zi for xi, but may have incentive to do so depending
on the training objective, as discussed later. At the same time, the unconstrained decoder has higher
flexibility and can skip using an anchor word if it doesn’t fit with the preceding context.

Constrained Decoder: We consider a constrained decoder that always uses zi while generating xi. This is
achieved by first copying zi, then generating to the left until the sentence start, and then to the right. Such
a decoder is bound to use the corresponding anchor word by design, and will potentially demonstrate
higher control of the anchor words on the story.

Our decoder architecture follows from (Yao et al., 2019), who use a 3-layer LSTM recurrent model.
Our final reported model uses 1000 dimensional hidden layer, with tied input and output word embed-
dings. Moreover, the prior model shares the underlying LSTM modules with the decoder. Since our goal
is to induce a latent discrete plan and compare with keyword tagging based methods, we stick to the
same choice of decoder as in prior work.

6.3 Learning and Inference

Our goal is to maximize the log likelihood of the stories conditioned on the corresponding titles. Since z
is unobserved at training, we must marginalize over all possible values of z.

∑
t,x∈D

log p(x|t) = ∑
t,x∈D

logEz∼pφ (z|t)[pθ (x|t,z)]

, D represents the dataset of titles and corresponding stories. Since it is infeasible to compute the exact
marginal stated above, we use amortized variational learning by introducing an inference network qγ ,
and train the model to maximize the following evidence lower-bound (ELBO):

Ez∼qγ (z|x,t)[log pθ (x|z, t)]︸ ︷︷ ︸
Reconstruction

−KL(qγ(z|x, t)||pφ (z|t))︸ ︷︷ ︸
KL-term

We shall refer to the first term as the reconstruction term and the second term as the KL-term.

We make a mean-field assumption in the posterior approximation on z as follows: q(z|x, t)=∏
K
i=1 q(zi|xi, t).

Note that p(z|t) is auto-regressive, and thus it is intractable to exactly compute the KL term. We resort
to Monte Carlo sampling to approximate the ELBO by drawing samples from inference network; though
we will perform this differently for the KL term and the reconstruction term (more details in Section
6.3.2).
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6.3.1 Inference Network and Posterior Sparsity

Constrained Inference Network With the constrained decoder discussed earlier, the true posterior is
sparse – so making the inference net also sparse would help the learning procedure better approximate
the true posterior (Figure 6.4). To leverage this observation, we constrain the inference network’s output
distribution to have non-zero probabilities only on the tokens present in the corresponding sentence:

q(zi = v|xi, t) = 0 if v 6∈ xi

∝ exp(sv) otherwise

Here, sv is the logit output for the token v produced by the inference network. Our constrained inference
network is a BiLSTM model which generates an encoding h j for jth token in a story sentence. A linear
layer transforms h j to a score s j. Finally, for sentence xi, we compute a softmax over the scores of words
in xi to obtain q(zi|x).

Unconstrained Inference Network We also consider an unconstrained inference network which does
not constrain the inference network’s output – i.e. the output distribution is over the entire vocabulary.
We use a LSTM model to encode each sentence, obtain the last word hidden state, and then finally em-
ploy a linear layer to transform it to the vocabulary size.

When the decoder is not constrained, it may be interesting to compare the choice of inference net-
work. Using the constrained inference net with the unconstrained decoder will bias the decoder to use
the anchor words in the aligned sentences – the model is not required to do this, but variational learning
will pull the inference network and true model posterior towards each other (i.e. the ELBO objective
pressures them to agree). Thus, if the inference net is constrained, but the decoder is not, learning will
try to find a weakly constrained decoder to match the approximate posterior.

6.3.2 Optimization

Reconstruction term: As mentioned earlier, we draw samples from the inference network to approxi-
mate the reconstruction term. The decoder parameters θ can be trained directly through back-propagation
to minimize the approximate reconstruction loss. However, since z is discrete, we use the REINFORCE
(Williams, 1992) algorithm to train the parameters γ of the inference network q(z|x, t). Following prior
work (Xu et al., 2015), we use an entropy regularizer term and a moving average baseline to reduce the
variance of the resulting gradient estimator for inference network parameters γ .

KL term: Note that the KL term can be simplified as follows:

KL(qγ(z)||pφ (z)) = KL(qγ(z1)||pφ (z1))+

Ez1∼qγ (z1)[KL(qγ(z2)||pφ (z2|z1))+

Ez2∼qγ (z2)[KL(qγ(z3)||pφ (z3|z<3)]+ . . . ]]]

We draw samples of z from q(z) to approximate the KL term.

KL term for the constrained inference network: For the constrained inference network, we have a
sparse approximate posterior. Given the fact that typical sentences in our dataset are 5-20 words in
length, it is computationally easy to exactly compute individual KL(q(zi)||p(zi|z<i)) terms by summing
over the tokens in xi instead of the whole vocabulary. This is still an approximation to the full KL term
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Method Inference N/W Decoder PPL↓ NLL↓ DIV↑ DIV-B↓
test test dev plan story story

No Plan
ROC-DATA NA NA NA NA NA NA 9.01 0.23
NOPLAN-LM NA Unconstrained 17.3 154.0 160.7 NA 7.70 0.50

With Plan
SUPERVPLAN NA 1 Unconstrained ≤28.3 ≤180.3 ≤187.6 8.71 7.74 0.49
LAP-CINF-UDEV Constrained Unconstrained ≤21.3 ≤168.9 ≤176.5 9.24 7.93 0.45

LAP other variants:
LAP-CINF-CDEC Constrained Constrained ≤20.9 ≤166.9 ≤174.1 9.24 7.98 0.44
LAP-UINF-UDEC Unconstrained Unconstrained ≤17.5 ≤154.2 ≤160.9 0.01 7.67 0.52

Table 6.1: Automated metrics: We report Negative Log Likelihood (NLL), perplexity (PPL) (computed
using importance weighted samples for models with latent variables), and diversity (DIV and DIV-B).
LAP-CINF-UDEV performs better than SUPERVPLAN on perplexity as well as diversity. We also exper-
iment with two other variants for LAP. LAP-UINF-UDEC, which does not constrain the inference net-
work, suffers from posterior collapse. LAP-CINF-CDEC, which uses the constrained decoder, achieves
perplexity and diversity results that are comparable to LAP-CINF-UDEV.

since we cannot feasibly sum over the context.

KL(q(zi)||p(zi|z<i) = ∑
zi∈V

q(zi) logq(zi)/p(zi)

= ∑
zi∈xi

q(zi) logq(zi)/p(zi)

Thus, for the constrained inference network, KL computation now proceeds as follows: we first com-
pute KL(q(z1)||p(z1)) as described above. Then we sample z1∼ q(z1), and compute KL(q(z2)||p(z2|z<1)),
and so on – we still need to use samples, but can exactly compute each of the K individual KL terms, one
at each of the K steps in the plan, similar to the approach of (Yang et al., 2018b). We observe that the
constrained inference network leads to lower variance in the KL term approximation, thereby leading to
more stable gradients.

Pretraining: Pretraining the inference network in an autoencoder setup has been found useful for VAE
training (Li et al., 2019a). We pretrain the inference network in an autoencoder setup where the decoder
reconstructs the corresponding sentences (rather than whole story). Thereafter, we train the decoder and
prior keeping the inference network fixed. Finally we perform the full training with all parameters being
updated. We observe that pretraining through this procedure leads to more stable training.

6.4 Experiments

We evaluate and report generation quality of various models using automatic metrics for fluency and
diversity, as well as human evaluations for coherence of story and relevance to title. We also analyze
the ability of anchor words to control the generated story, and highlight comparisons between various
choices of inference networks and decoders.

6.4.1 Dataset

We use a subset of the ROC-stories corpus (ROC-DATA) (Mostafazadeh et al., 2016a) used earlier by
(Yao et al., 2019). (Yao et al., 2019) had chosen a subset of the original ROC corpus in order to select
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only those stories which are accompanied by a title. The train, validation and test splits consist of 78529,
9816, and 9816 stories respectively. Most of the data consist of five sentence stories. Additionally,
we experiment with the visual story dataset (only the text portion), which we discuss in more detail in
Section 6.4.8.

6.4.2 Methods

NOPLAN-LM: This baseline does not consider any story generation plan and conditions only on the
title. We use the same 3-layer LSTM as in the proposed model.

SUPERVPLAN: This baseline is based on the work of (Yao et al., 2019) which utilizes RAKE-tagged
keywords as observed anchor words. The model is trained to predict the the observed anchor words and
the story given the title. We can view this baseline as a latent variable model that was trained using
RAKE keywords as the output of a deterministic inference network.

LAP: (1) We will refer to our model with the constrained inference network and unconstrained decoder
as LAP-CINF-UDEV. (2) LAP-UINF-UDEC uses the unconstrained inference network and uncon-
strained decoder. (3) LAP-CINF-CDEC uses the constrained inference network with the constrained
decoder. We found that the model with constrained decoder and unconstrained encoder performed poorly
during training, and so we do not include it in experiments.

Decoding procedure: For all the methods, we generate samples with top-p sampling (Holtzman et al.,
2020b) with p = 0.6 at the time of story generation. Unless otherwise stated, the same decoding pro-
cedure is followed for the evaluations of diversity, story quality, and controllable generation discussed
below. Later in the analysis we discuss the effect of changing the parameter p on some of the evaluation
metrics.

6.4.3 Perplexity

For the models with latent generation plans, we use importance weighting (IW) (Burda et al., 2016)
(with 20 samples) to estimate perplexity scores since (IW) has been shown to provide a tighter bound
than ELBO for evaluation purposes (Li et al., 2019a). For the baseline, SUPERVPLAN, we also evaluate
its marginal likelihood for comparison with our model. To do this, we separately train an inference
network (with the same architecture as that used by the LAP-CINF-UDEV model) to approximate the
posterior on anchor words for the trained SUPERVPLAN (by keeping the trained model parameters fixed).
This approximate posterior is then used to compute an upper bound on NLL and perplexity.

The proposed model LAP-CINF-UDEV performs better than the baseline SUPERVPLAN, which uses
separately tagged generation plans (Table 6.1). However, the proposed method’s perplexity is close to
that of NOPLAN-LM, which does not consider any generation plan. This is not uncommon for deep
latent variable models – since their held-out likelihood is intractable, and most approximations yield
upper bounds on perplexity, their reported perplexity is always pessimistic. Among LAP variants, we
observe that LAP-UINF-UDEC suffers from posterior collapses, and behaves similarly to NOPLAN-LM
since the latent variables z are not informative or useful. Finally, LAP-CINF-CDEC performs similar on
likelihood evaluations compared to the LAP-CINF-UDEV model with an unconstrained decoder .

6.4.4 Diversity

We generate story samples for all the titles in the test split. We employ two evaluations to report diversity
in the generated outputs:

DIV We compute the geometric mean of empirical unigram, bigram, and trigram distribution entropy
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LAP-CINF-UDEV Coherence Title-Fidelity
vs Method M win-tie-loss win-tie-loss

M=SUPERVPLAN 0.31 0.37 0.32 0.39 0.27 0.34
M=NOPLAN-LM 0.36 0.35 0.29 † 0.33 0.37 0.30
M=ROC-DATA 0.12 0.08 0.80 † 0.08 0.15 0.77 †

Table 6.2: Human preference evaluations when pitting various methods against LAP-CINF-UDEV (i.e. preference
for LAP-CINF-UDEV is reported under win). Compared to SUPERVPLAN, LAP-CINF-UDEV performs better on
fidelity to title and similar on coherence. Loss vs win judgements marked with † are statistically significant under
bootstrap test (p < 0.05) considering 1000 subsets each of size 400.

from the generated set of stories (Jhamtani et al., 2018). For methods which use generation plans, we
also compute this diversity metric on anchor word sequences. Table 6.1 shows the results for various
models. LAP-CINF-UDEV performs better than SUPERVPLAN, achieving higher diversity for both story
and plans. Among the LAP variants, using the non-constrained inference network (LAP-UINF-UDEC)
leads to worse results on story diversity, and fares poorly in plan diversity (due to posterior collapse).
LAP-CINF-CDEC again performs similarly to LAP-CINF-UDEV.

DIV-B We also report inter-story BLEU4 scores (Zhu et al., 2018). We compute samples from various
methods for 1000 titles in the test split. For each generated story, the remaining 999 are treated as
references. Thus, lower values indicate higher diversity in the generated stories. Table 6.1 shows the
results. LAP-CINF-UDEV performs better than SUPERVPLAN, though is still far from the values for
human written stories in the ROC dataset itself.

6.4.5 Human Evaluations

We conduct human evaluations on Amazon Mechanical Turk to evaluate the quality of generated stories
given the title. We evaluate the story samples with respect to: (1) coherence, which measures the logical
and coherent narrative flow in a story, and (2) fidelity to title, which measures the degree to which the
story is relevant to the given title. Given two stories from two different methods, we request human
annotators to provide their preference (or mark as tie).

In order to ensure the quality of human evaluations, we restrict the annotation task to annotators
from Anglophone countries, and limited to workers with more than 90% HIT (Human Intelligence Task)
acceptance rates. We randomize the order of presented stories to avoid positional bias effects. Addition-
ally, we added two ‘check’ data points with each HIT. More specifically, to construct a ‘check’, we pick
a random story from the development set, and then prepare a ‘decoy’ story by replacing three lines of the
story with that of another randomly chosen story. The HITs where annotators marked the ‘decoy’ as the
preferred story relative to the unaltered story with respect to either coherence or fidelity for either of the
two check data points are skipped. These skipped HITs are then re-annotated.

Based on the automated metrics and manual qualitative inspection, we pick LAP-CINF-UDEV as the
best configuration among all the variants of our model for human evaluation. We randomly selected 200
titles from the test split, generate samples from all the methods under consideration, and evaluate each
method against LAP-CINF-UDEV. Each comparison is rated by three different annotators leading to a
total of 600 judgements per pair. Table 6.2 shows the results. We observe that on average, annotators
found LAP-CINF-UDEV outputs similar or better on coherence and fidelity compared to the baselines.
LAP-CINF-UDEV is judged better than NOPLAN-LM on coherence, perhaps because having a plan
provides a rough sketch of the story leading to more coherent outputs. Compared to SUPERVPLAN,
outputs from the proposed method LAP-CINF-UDEV are judged similar in quality in terms of coherence
but better in terms of fidelity to title, perhaps because the ELBO objective encourages the inference

1 We retrofit an inference network to a trained SUPERVPLAN to approximate PPL and NLL for evaluation purposes only.
Training the SUPERVPLAN model does not involve any inference network.
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Method CTRL
SUPERVPLAN 38.8%
LAP-CINF-UDEV 72.9%

LAP variants:
LAP-CINF-CDEC 100.0%
LAP-UINF-UDEC 0.0%

Table 6.3: We evaluate models for the extent to which the story follows the generation plan by evaluating the
fraction of anchor words used in corresponding sentences (CTRL). LAP-CINF-UDEV demonstrates better control
compared to SUPERVPLAN. Model with LAP-UINF-UDEC inference network collapses, while LAP-CINF-CDEC
demonstrates perfect control due to the nature of the decoder.

TITLE: the exam
ANCHOR WORDS: midterm knew nervous performed passed
STORY: I had a big geometry exam today. I knew that i would have to do it. I was nervous. I had not

performed since i was a little girl. I passed out.

TITLE: the new bed
ANCHOR WORDS: alex new store amazing glad
STORY: Alex was trying to find a new bed. She needed a new one. She went to the store to get one.

She found a amazing one. She was glad she bought it.

TITLE: picnic
ANCHOR WORDS: goes fancy least eating leave
STORY: Last week i visited my friends to the park. It was at the fancy park. They had to eat the food

and water. I had a great time eating. I had to leave.

Table 6.4: Generated samples from the proposed method LAP-CINF-UDEV. We observe that samples from the
proposed method demonstrate fidelity to the title, better follow the sampled plan of anchor word sequences, and
are in aggregate more coherent than baselines which do not consider a generation plan.

network to pick anchor words which can be more easily predicted from the title by the prior model,
leading to better title fidelity. We show example generated samples from LAP-CINF-UDEV in Table 6.4.
More examples and qualitative analysis can be found in the Appendix.

We found LAP-CINF-CDEC outputs to be slightly worse than LAP-CINF-UDEV and SUPERVPLAN

outputs on coherency. Compared to LAP-CINF-UDEV, the constrained decoder achieves slightly bet-
ter scores for perplexity and diversity (Table 6.1) and control (next subsection), but suffers on overall
coherency. This behavior is likely due to the reduced flexibility of the model architecture (an example
output is provided in Table 6.5). In contrast, the non-constrained decoder achieves a favorable balance
between control and coherency. This highlights an interesting balance between the generation plan and
the degree to which the decoder must follow the plan.

6.4.6 Controllable Generation

We evaluate models for the extent to which the story follows the generation plan. To evaluate this, we
draw one story sample per title in the test split, and report the fraction of anchor words which were used
in corresponding sentences (CTRL ). LAP-CINF-UDEV (73%) fares much better than SUPERVPLAN

(39%) (Table 6.3). We note that in some outputs from LAP-CINF-UDEV, even though the exact anchor
word was not used, we observe semantically equivalent concepts being used – for example, for the
sampled anchor word ‘dismay’, the generated story sentence was: ‘She then realized she wasn’t able to
attempt it’.

We also analyze CTRL and DIV-B values when sampling with different values of parameter p in
top-p sampling. As we increase p, we observe higher diversity in samples, along with lower scores for

60



LAP-CINF-
CDEC

TITLE: the exam
ANCHOR WORDS: failing nervous tried test shocked
STORY: Jessica was failing her math class. She was nervous to try to take the test.

She tried to help. She took the test. She was shocked and confident

LAP-UINF-
UDEC

TITLE: the new bed
ANCHOR WORDS: forms forms forms forms forms
STORY: Jane was about to get a new bed. She had been trying to catch a few new

sheets. She decided to get a new bed. She looked at the new sheets. It was
the right choice.

Table 6.5: Generated samples from LAP-CINF-CDEC and LAP-UINF-UDEC variants of the proposed model
class. We observe that when using the constrained decoder variant, story outputs lack coherence more often than
when using the unconstrained decoder, though they demonstrate better control by design. The LAP-UINF-UDEC
variant suffers from posterior collapse, leading to a generic anchor word sequence, and often produces stories that
lack overall structure.

p LAP-CINF-UDEV LAP-CINF-CDEC SUPERVPLAN
CTRL DIV-B CTRL DIV-B CTRL DIV-B

0.5 80% 0.48 100% 0.48 43% 0.54
0.6 73% 0.45 100% 0.44 39% 0.48
0.7 67% 0.41 100% 0.40 34% 0.43
0.8 59% 0.35 100% 0.34 29% 0.38

Table 6.6: Using higher p in top-p sampling leads to lower control of story via plan and higher diversity.

CTRL for LAP-CINF-UDEV as well as SUPERVPLAN (Table 6.6). This further shows an interesting
trade-off between control and diversity.

6.4.7 Inference Network

The latent plan model with no constraint on the inference network, LAP-UINF-UDEC, suffers from se-
vere mode collapse and essentially ignores the plan. This demonstrates that constraining the inference
network was useful in mitigating the posterior collapse issue. In preliminary experiments, we also ob-
served that using a bag-of-words inference network instead of the BiLSTM leads to worse performance
on perplexity, diversity and control, which indicates that the learned posteriors for the BiLSTM network
are in fact considering words in context rather than just identifying topical words in the vocabulary.

On analyzing the argmax outputs from the inference network of the trained LAP-CINF-UDEV model,
we find that 42% of the predicted anchor words are nouns, 39% of them are verbs, and 11% are adjec-
tives, compared to 58%, 33% and 6% respectively for the RAKE extracted keywords for the ROC data.
Thus, the inference network learned along-with the LAP-CINF-UDEV model has higher preference for
verbs and adjectives compared to the RAKE algorithm.

6.4.8 Visual Storytelling Dataset

We also conduct experiments with the text portion of a visual story dataset (Huang et al., 2016). The
dataset consists of 40155, 4990, and 5055 stories in train, dev, and test splits. Compared to the ROC data,
there are no titles associated with stories, and we learn unconditional anchor word sequence p(z). We
train the best model configuration LAP-CINF-UDEV (with constrained inference network and uncon-
strained decoder). To train the baseline SUPERVPLAN, we run the RAKE algorithm to tag the data with
the anchor words. We observe that LAP-CINF-UDEV performs better in terms of diversity of generated
stories and plans, as well as perplexity relative to SUPERVPLAN (Table 6.7). Diversity computations are
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Model PPL↓ DIV↑
dev test plan story

No Plan
VIZSTORYDATA NA NA NA 8.9
NOPLAN-LM 38.5 40.0 NA 6.3

With Plan
SUPERVPLAN ≤41.5 ≤42.2 6.5 6.5
LAP-CINF-UDEV ≤39.9 ≤40.8 8.0 6.6

Table 6.7: Experiments with a second story dataset. We experiment with the text portion of the Vi-
sual Story Dataset. We observe that LAP-CINF-UDEV is able to perform better than SUPERVPLAN on
perplexity and diversity.

performed with 200 generated samples. We provide further example generations from various methods
in the Appendix.

6.5 Related Work

Prior work on story generation has largely focused on plot outline via keywords or key phrases (Yao
et al., 2019; Xu et al., 2018), event-based representations (Martin et al., 2018; Fan et al., 2019), or a
sentence theme (Chen et al., 2019b). Liu et al. (2020) propose a method to generate a story conditioned
on a character description. Prior work on narrative text generation with plans has mostly relied on
external resources or tools to extract outlines (Zhou et al., 2018a; Fan et al., 2019), and then training in a
supervised manner. For example, using VADER (Hutto and Gilbert, 2014) to tag sentiment polarity (Luo
et al., 2019).

Much prior work has used manually defined objectives to encourage coherence in generated text.
In this context, reinforcement learning has been used to encourage stories to follow certain manually
defined goals such as being locally coherent (Tambwekar et al., 2018; Xu et al., 2018). Prior work on
visual story generation aim to learn topically coherent visual story generation (Huang et al., 2019; Wang
et al., 2019a). Compared to topics, keywords provide more fine-grained plan, and thus are more likely to
provide fine-grained control over generated outputs.

In this work we have proposed a constrained inference network and a constrained decoder for story
generation. Pointer networks (Vinyals et al., 2015a) have been used for amortized inference in prior work
on summarization (Miao and Blunsom, 2016), though in a semi-supervised context. Non-monotonic
sequence generation has been explored in past for tasks such as machine translation (Welleck et al.,
2019a). One of the goals of this study is to generate coherent stories relevant to a given title. Fidelity
and coverage of text input has been explored in prior work (Tu et al., 2016; Gangal et al., 2017), though
not in context of the proposed constrained decoder. In the proposed model, the generation plan can be
used to control the story via the anchor words. Hard and soft constraints for incorporating keywords
into generation have been explored in (Kiddon et al., 2016b; Miao et al., 2019; Anderson et al., 2016).
Controllable text generation has been explored in other tasks as well (Fan et al., 2018; Keskar et al.,
2019).
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7 Retrieved Snippets as Discrete Plans for
Guided Generation

Outputs of many existing dialog models are limited by the ’knowledge’ available to the models at training
time. In this chapter, I discuss methods to inject relevant knowledge at decoding time. In Majumder et al.
(2021), we equip persona grounded dialog models with ‘background stories’ related to a persona by
leveraging fictional narratives from existing story datasets (e.g. ROCStories). Our method works with a
model trained just with dialog data i.e. without access to story corpus at training time. In Jhamtani et al.
(2021), we equip dialog models with dictionary translations of figurative English expressions to their
literal counterparts to improve handling of figurative language in dialog systems. A major advantage of
such class of approaches is flexibility in adding new or updated knowledge sources without the need for
re-training the models from scratch.

7.1 Introduction

People often rely on specific incidents and experiences while conversing in social contexts (Dunbar et al.,
1997). Responses from existing chitchat dialog agents often lack such specific details. To mitigate this,
some prior work has looked into assigning personas to dialog agents (Zhang et al., 2018a; Majumder
et al., 2020b). However, persona descriptions are often shallow and limited in scope, and while they
lead to improvements response specificity, they still lack the level of detail with which humans share
experiences.

In this work, we propose methods to enrich dialog personas with relevant background events using
fictional narratives from existing story datasets such as ROCStories (Mostafazadeh et al., 2016b). For
example, for a persona attribute ‘I have two children and a dog,’ we are able to identify a relevant narrative
from a story corpus (Figure 7.1). However, such stories may not directly fit fluently in the dialog context.
Thus, retrieved stories should be adapted to construct a response that is fluent and relevant to the context.
Since existing datasets (such as PersonaChat (Zhang et al., 2018a)) do not contain responses with such
background stories, such adaptation has to be done in an unsupervised fashion with decoders trained to
generate responses conditioned only on a dialog history and persona.

To adapt a retrieved narrative incident as a relevant background story, we use a decoding procedure
which encourages the generated response to (1) be fluent with the dialog history, (2) be consistent with
the original persona, and (3) be minimally different from the retrieved story. While fluency with dialog
context is encouraged directly by the likelihood as per the underlying language model the remaining two
constraints are incorporated via iterative updates to the decoder output distributions at inference time.
Our inference-time decoding method is different from the only recent effort by Su et al. (2020) that
leverages non-dialog data (forum comments, book snippets) as distant labels to train dialog systems with
supervision. Our contributions can be summarized as follows:

• We propose a novel approach to enrich dialog agent personas with relevant backstories, relying
only on existing story datasets.
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Figure 7.1: We enrich agent personas with ‘background stories’ from an existing corpus. We propose a gradient-
based technique which encourages the generated response to be fluent with the dialog history, minimally different
from the retrieved story, and consistent with the persona. The proposed approach leads to more specific and
interesting responses.

• We propose to use an unsupervised back-propagation based decoding procedure1 to adapt the
relevant stories such that the resulting response is fluent with the dialog history and consistent
with the dialog agent persona. Our method works with a model trained just with dialog data i.e.
without access to story corpus at training time.

• Our experiments demonstrate that the proposed approach results in much more engaging and spe-
cific dialog outputs in a persona-grounded dialog setup. This fills a gap in existing dialog models
which often lack the capability to generate responses about specific events and experiences relevant
to persona attributes.

7.2 Method

Given dialog history h and persona C consisting of several (typically 3-5, example shown in Figure 7.1)
attributes, our goal is to construct a dialog response x. Our underlying model is based on the discrete
persona attribute choice model from Majumder et al. (2020b). To generate a dialog utterance x, we first
sample a persona attribute c ∼ p(c|h) conditioned on the dialog history h. x is then generated condi-
tioned on the dialog history and the chosen persona attribute. The underlying dialog model’s decoder is
initialized with a pretrained GPT-2 model, and is fine-tuned on the PersonaChat dataset (Zhang et al.,
2018a). However, in our current setup, we also have to identify relevant background stories and use them
to construct fluent responses at decoding time. Therefore, we propose a different decoding procedure.

To generate a response, we first sample a persona attribute c ∼ p(c|h). Next we retrieve stories
corresponding to the persona attribute c (Section 7.2.1). However, the underlying dialog model is trained
to generate responses conditioned only on the dialog history and persona. To incorporate the retrieved
story in the response, we perform gradient-based inference (Section 7.2.2), that only assumes a left-
to-right language model trained on dialog context and responses, and the story is handled at decoding
time in an unsupervised fashion. We refer to the proposed method as PABST (Unsupervised PersonA
enrichment with Background STories).

7.2.1 Retrieving Relevant Stories

For a persona attribute c, we aim to identify relevant stories from a story corpus. Toward this goal, we
rank the stories using the F1 component of BERT-score (Zhang et al., 2020) based retrieval using the

1 Code can be found at
https://github.com/majumderb/pabst
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persona attribute c as the query and the highest scoring story is chosen. Note that many of the stories are
written in the third person. For use as background stories, we must first transform them to first–person.
Following prior work (Brahman and Chaturvedi, 2020), we identify the protagonist of such stories as
the most frequently occurring character. Thereafter, we use co-reference resolution (Lee et al., 2017) to
identify all words or phrases that refer to the protagonist. Finally, all words or phrases so identified are
replaced with suitable first person pronouns (e.g. ‘his books’ to ‘my books’).

7.2.2 Gradient-based Inference

Our underlying dialog model is not trained to condition on a retrieved story, and cannot be directly used
to construct a desirable response using s. To tackle this, we consider a decoding strategy which, in
addition to fluency with history h, encourages response x to follow two soft constraints: (1) be minimally
different from story s, and (2) be consistent with persona c.

First, we generate an initial response based only on the dialog history. Then we perform an iterative
procedure which alternates between performing a forward pass on the language model to encourage flu-
ency, and a backward pass which updates the response via back-propagation to respect the two soft con-
straints. However, x is discrete, and cannot be directly updated using gradients from back-propagation.
Instead, we maintain and update a soft representation o of x, where oi corresponds to the last hidden state
representation for the ith token position, i.e., p(xi)∼ softmax(Woi/τ), where τ is the temperature param-
eter, W is the embedding matrix, and Woi ∈RV (V is the vocabulary size). Our approach is inspired by
recent works that use gradient-based decoding for text generation with soft constraints (Dathathri et al.,
2020; Qin et al., 2020). Next we describe the backward and forward passes of the iterative procedure.

Backward Pass with Soft Constraints We define the following soft constraints on response x:
(1) Divergence from story: We want to encourage x to be minimally different from the story s. Following
prior work (Qin et al., 2020), we compute a cross entropy loss (denoted by cross-entr henceforth) with
story s = {s1, . . . ,sT} tokens as labels and Wo1, . . . ,WoT as the logits.

(2) Consistency to persona: We want x to be consistent with persona attribute c. Consider a classifier
qφ (o,c) which predicts the probability of x (or rather the soft representation o of x) entailing c. The
classifier qφ (o,c) is a bag-of-words classification head on decoder hidden states o, fine-tuned on the
Dialogue-NLI dataset (Welleck et al., 2019b) to predict whether pairs of persona attributes and responses
are entailed or not. The objective to maximize can be written as:

L (c,s;o) = λc logqφ (o,c)−λd cross-entr(s,Wo)

where λc and λd are hyper-parameters. We update o through back-propagation by computing the gradient
∇oL (c,s;o), while keeping the model parameters constant. Let the resulting o after the gradient-based
updates be denoted by ob.

Forward Pass to Encourage Fluency Next we perform a forward pass of the underlying dialog model,
with the goal of regularizing the hidden states towards the unmodified language model values. On com-
puting the forward pass at the jth token, we mix the final hidden states o f

j from the forward pass with

ob
j computed in the backward pass, via weighted addition to get the resulting o j = γ×o f

j +(1− γ)×ob
j ,

where γ ∈ (0,1) is a hyperparameter. The resulting o j is used for computing the logits at the next time
step j+1.

We initialize the output response by performing greedy decoding from the underlying dialog model,
conditioned on the dialog history and persona attribute. Then we iteratively update o by alternate back-
ward and forward passes. We sample the final response x ∼ softmax(Wo/τ). In practice, we found that
5 iterations are sufficient to generate good quality outputs.
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Method Training Decoding D-1 D-2 ENTR

W/o Story Data
TRANSFERO PERSONA-CHAT‘ Nucleus 0.05 0.11 1.21
COMPAC PERSONA-CHAT‘ Nucleus 0.15 0.25 1.25
COMPAC CS-KB Nucleus 0.87 1.07 2.04

With Story Data
COMPAC PSEUDO Nucleus 0.91 2.45 2.89
COMPAC MULTITASK Nucleus 0.99 2.54 2.71
COMPAC PERSONA-CHAT‘ NEARNBR 2.56 9.67 3.86
PABST (Ours) PERSONA-CHAT‘ Grad. Inf. 1.56 3.57 3.21

Table 7.1: Diversity metrics on the PersonaChat test set. D-1/2 is the % of distinct uni- and bi-grams. ENTR
is the geometric mean of n-gram entropy. Grad. Inf. is the unsupervised gradient-based decoding as opposed to
Nucleus sampling (Holtzman et al., 2020a).

PABST vs. TRANSFERO COMPAC NEARNBR PSEUDO MULTITASK w/o DNLI Gold

Aspect win loss win loss win loss win loss win loss win loss win loss

Sensible 83.8 5.6 71.4 10.1 72.7 15.7 94.3 3.1 92.8 1.5 81.7 6.8 29.1 33.6
Engaging 96.7 1.8 82.6 6.7 87.2 5.3 94.7 2.1 94.1 2.6 70.9 14.8 70.2 15.6

Table 7.2: Pairwise comparison (% win/loss cases, ties not reported) between responses from PABST and from
other baselines as well as gold. All differences are significant with p < 0.05. Cohen’s Kappa (Cohen, 1960) for
sensibility and engagement were 0.79 and 0.82 respectively. Complete details of the human evaluations are in
Appendix §B.

Dialog History
Agent: How was your last trip?
User: It was great. I went to Utah and saw the Canyonlands.

Retrieved Story:
I went on a trip. I went to Florida. When we got there, there
was no air conditioning. I was irritated. It was too hot.

COMPAC: That’s great. You must be adventurous.

NEARNBR: I went on a trip. I went to Florida. When we
got there, there was no air conditioning. I was irritated.
It was too hot.

PSEUDO: I have a house in Florida.

MULTITASK: I like Florida. I went to the beaches.

PABST (λd = 5): I went on a trip. I went to Florida. I have
a house there. We do not have air condition. It was hot.

PABST (λd = 1): That’s great. I frequently go to Florida.
I have a house there but it gets hot in summer.

Dialog History
Agent: I work as stunt double. What about you?
User: I’m an engineer. I just got back from work. How’s yours?

Retrieved Story:
I was a working actor. For my new role I was a stunt double. I
started working on new stunts. When I jumped off a building
yesterday I got hurt. I had to be rushed to the hospital.

COMPAC: That’s great. I am looking for a job.

NEARNBR: I was a working actor. For my new role I was a
stunt double. I started working on new stunts. When I jumped
off a building yesterday I got hurt. I had to be rushed to the hospital.

PSEUDO: I got a new job. I am an actor.

MULTITASK: I started a new role. I got hurt.

PABST (λd = 5): I was working as a stunt double. I jumped
off a building. I got hurt. I had to be rushed to the hospital.

PABST (λd = 1): Yesterday while I was working, I jumped off
a building and I got hurt. I had to be taken to the hospital.

Table 7.3: Generations from different models. More examples are in Appendix §C.

7.3 Experiments

We evaluate methods in terms of their capability to generate diverse, fluent and engaging responses.
Hyperparameters are noted in Appendix §A.

Datasets We experiment with the PersonaChat dialog dataset (Zhang et al., 2018a) consisting of 131,438
utterances for training, 15,602 for validation, and 15,024 for testing. For stories, we use the training split
of the ROCStories dataset (Mostafazadeh et al., 2016b), that consists of 78,529 stories, each typically of
4 to 5 sentences.
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Baselines We consider two broad groups of models as baselines: (1) Without access to story corpus:
We use finetuned GPT2 (TRANSFERO) on PersonaChat, and the discrete persona attribute choice model
(COMPAC) from Majumder et al. (2020b). We also consider a version of COMPAC which enriches
personas with inferences from a commonsense knowledge base (CS-KB). (2) Baselines using story cor-
pus: To allow COMPAC models to generate story-like responses, we adapt an alternative training regime
(PSEUDO) from (Su et al., 2020), where we randomly replace some of the target dialog responses with
retrieved stories—treating them as pseudo labels. Finally, we also consider a MULTITASK training setup
from (Su et al., 2020), wherein the decoder is trained on PersonaChat as well as with a language mod-
eling objective on ROCStories. We additionally consider a NEARNBR baseline that uses the retrieved
story verbatim as the dialog response.

7.3.1 Automatic Evaluation

We hypothesize that that the proposed approach to leverage external non-dialog data can increase the
diversity of the generated responses. Following prior work (Li et al., 2016a), we report the percentage
of distinct uni-grams and bi-grams (D-1 and D-2 respectively). Note that these values do not capture the
actual frequency distribution of different word types. Therefore, we also report the geometric mean of
entropy values of empirical frequency distributions of n-grams of words (n ∈ {1,2,3}) (Jhamtani et al.,
2018), denoted by ENTR.

We observe that methods that use story data show much higher diversity compared to methods that
do not (Table 7.1). Among methods using story data, gradient-based decoding (PABST) performs better
than COMPAC trained with PSEUDO or MULTITASK. Note that just using NEARNBR outputs as-is leads
to even more diverse outputs than PABST. However, they are much less sensible with the context, as
shown in human evaluations.

7.3.2 Human Evaluation

Since we do not have ground truth story-like responses in the dialog dataset, we perform human eval-
uation with 150 test examples to investigate if PABST generates responses that are 1) sensible with the
dialog history and 2) engaging. We hired two Anglophone (Lifetime HIT acceptance % > 85) annota-
tors for every test sample. The order of the systems present in the interface is randomized. A snapshot
of the human evaluation interface is provided in Appendix §C. All differences in values from human
evaluations are significant with p < 0.05 from bootstrap tests on 1000 subsets of size 50. Cohen’s Kappa
(Cohen, 1960) to measure inter-annotator agreement for sensibility and engagement were 0.79 and 0.82
respectively.

From the results (shown in Table 7.3), we note that in comparison to responses from baselines, re-
sponses from PABST are more engaging and more sensible with respect to the dialog history. We further
make following observations. Firstly, using the gradient-based decoding approach with retrieved stories
(PABST) works significantly better than using distant supervision with stories data (PSEUDO and MUL-
TITASK). Secondly, background stories provide sufficient detail for an engaging conversation compared
to COMPAC which expands persona attributes using commonsense knowledge (Majumder et al., 2020b).
Finally, we also observe that PABST performs worse when we do not use the consistency constraint (w/o
DNLI).

Choice of λd We also experiment with different values of the weight for the divergence term (λd) in L :
High (λd = 5), Moderate (λd = 1), and Low (λd = 0.05). We consider 100 samples for this experiment.
We attribute a high λd to responses strictly copying the story. We find that PABST (moderate λd) wins
wins 81.2% and 69.1% cases against PABST (high λd) on ‘sensible’ and ‘engaging’ response criteria
respectively. Similarly, PABST (moderate λd) wins 93.2% and 84.7% cases against PABST (low λd) in
terms of sensibility and engagement respectively.
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Figure 7.2: An example illustrating how model responses are affected by figurative constructs in dialog context. Here, the
model conflates the metaphorical use of build on the sand with its literal meaning, leading to an inappropriate, atopical response.

Qualitative Analysis Table 7.3 shows responses generated by different baselines. We observe that
PABST is able to follow the retrieved story (same as output from NEARNBR) while modifying the re-
sponse to be conversation-like and sensible with dialog history. Responses from other baselines remain
verbose or incoherent. Mirroring the human evaluation, we observe that choosing a higher λd makes the
model to almost repeat the retrieved story but a lower value smooths the output to make it more sensible
with the ongoing dialog.

7.4 Related Work

A desired impact of the proposed approach is increase in diversity of the generated responses. To tackle
the issue of diversity in dialog model outputs, prior work has focused on decoding strategies such as
diversity-promoting sampling (Holtzman et al., 2020a); training strategies such as discouraging unde-
sirable responses via unlikelihood training (Li et al., 2020); model changes such as using stochastic
variables (Serban et al., 2017); and using external data such as forum data (Su et al., 2020) or exter-
nal knowledge bases (Majumder et al., 2020b). In contrast to these, our proposed method generates
responses with background stories using a gradient-based decoding approach.

One of the steps in our proposed approach is to retrieve relevant stories from an external corpus. Prior
work has explored using retrieval of similar dialog instances as an initial step in improving response
diversity and other human-like desiderata in dialog (Roller et al., 2020; Weston et al., 2018). Distant
supervision by using retrieved text snippets as pseudo responses has been explored in prior work (Su
et al., 2020; Roller et al., 2020). We use an external data source to improve dialog responses, a theme
shared with some efforts in other tasks such as machine translation (Khandelwal et al.). The use of
narrative text in dialog has been explored in prior work, mostly as a ‘script’ or template for conversation
(Xu et al., 2020a; Zhu et al., 2020). We adapted a BERT-based retrieval method (Zhang et al., 2020) in
our case to retrieve relevant story given dialog context and use retrieved story in the decoding phase.

Gradient-based for text generation with soft constraints has been explored in prior work (Dathathri
et al., 2020; Qin et al., 2020). Song et al. (2020) focused on generating response which are consistent
to given persona. Differently, we use a gradient-based decoding to generate a dialog response while
honoring constraints such as consistency to persona and similarity to retrieved story.

7.5 Application to Improved Handling of Figurative Language in Dialog Systems

People frequently employ figurative language such as metaphors (Carbonell, 1982) and idioms (Jack-
endoff, 1995) for effective and/or stylistic communication. Thus, dialog models interacting with humans
should be equipped to handle these forms of communication. However, understanding figurative lan-
guage might be challenging for machines since figurative constructions often exhibit non-compositional
semantics and may rely on shared cultural and common-sense knowledge (Carbonell and Minton, 1983).
For example, a powerful GPT2 model fine-tuned on DailyDialog dataset is unable to handle the metaphor
‘built on the sand’ (Figure 7.2), and the response seems to rely on the unintended literal sense of ‘sand’.
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In Jhamtani et al. (2021), we investigate the performance of existing dialog models when faced with
inputs containing figurative language use. We identify the subsets in existing datasets (such as DailyDi-
alog (Li et al., 2017) and PersonaChat (Zhang et al., 2018b)) which have figurative language use such
as metaphors and similes. We propose a simple defense against occurrences of figurative language in
dialog context. More specifically, we use existing classifiers to detect presence of certain types of figu-
rative language in dialog contexts, and transform them to their literal counterparts before feeding them
to the dialog models. We use detected figurative language phrases to query certain external dictionaries
to identify their literal counterparts. For example, literal equivalent of ‘on the sand’ can be ‘unstable’
(Figure 7.2). We observe that performance of dialog models improves when using literal equivalents in
place of figurative language. The proposed technique is lightweight, does not require any retraining of
the models, and is effective – though gaps still remain, leaving scope for interesting future explorations.
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8 Conclusion

8.1 Summary of Contributions

This thesis describes my work on grounded natural language generation through interpretable hierarchi-
cal operations. I have demonstrated how inducing relevant discrete structure in text generation models
can expose intermediate underlying computations, enable controllable generations, and often improve
results on automated metrics as well as human evaluations (Figure 8.1).

In Part 1 of the thesis, I discuss models for grounded text generation via latent interpretable opera-
tions. Compared to just using neural soft attention, the proposed models using latent operations perform
better than per various automated and human evaluation studies. Our analysis reveals that the proposed
models often enable controllable generation, and are more interpretable compared to various baselines.
Thus, the results establish the usefulness of inducing latent operations on data. In Part 2, I discuss
how naively trained language models often struggle in capturing of complex patterns in natural language
such as content plans in narratives and rhyming schemes in poetry. I propose new models and learning
techniques to effectively learn such complex patterns present in natural language.

Figure 8.1: Summary of Contributions: In this thesis, I discuss models that induce meaningful latent discrete structure for
grounded natural language generation. Compared to using soft attention alone, such structure can often better model complex
patterns on data, enables controllable generation, and leads to models that are more interpretable and robust compared to many
contemporary methods relying on neural soft-attention alone.

Additionally, I have put a major emphasis on inducing latent structure rather than assuming access
to data tagged with the desired structure. Focus on learning latent structure is an important aspect if
we want to effectively leverage large amounts of unlabelled data and reduce reliance of labelled data. I
discuss and propose new machine learning techniques to enable learning such structures effectively with
respect to grounded natural language generation.

8.2 Broader Impact

Business Intelligence: Grounded natural language generation has several applications in business in-
telligence to generate insightful reports of data such as sales numbers or profits. In such reports, raw
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data such as numerical tabular data and images are often accompanied by narrative insights guiding a
reader through the data. Learning to summarize interesting abstract patterns from numerical tabular data
(Jhamtani and Berg-Kirkpatrick, 2021) can be extended for automated report generation. Our proposed
approaches can leverage previously written summary reports of data to train models to identify salient
abstract patterns from the corresponding tabular data. Work on difference description generation dis-
cussed in chapter 2 (Jhamtani and Berg-Kirkpatrick, 2018; Jhamtani et al., 2018) can be extended for
tracking and summarizing interesting changes in data.

Health: There has been rapid digitization of medical data, including test reports and data from sensors
on wearable devices such as digital watches. However, such data is of not much use if people can’t
understand it. An automated system can potentially unlock valuable insights by, for instance, detecting
and giving an early warning for potential health disorders. Importantly, natural language is a key medium
for such smart machines to effectively deliver useful insights since users might not have the expertise
to interpret a graph or understand a spreadsheet. A lot of work discussed in this thesis has relevant
applications in such use cases. For example, work on describing differences between two similar images
(Jhamtani and Berg-Kirkpatrick, 2018) can be extended for comparing two body scan images taken
at different points in time. Another example is the work on accurately describing salient patterns in
numerical time series (Jhamtani and Berg-Kirkpatrick, 2021) which can be extended to summarize sensor
data for use by a patient or a doctor.

Education and Tutoring: NLP technologies have made rapid inroads in the field of education via tools
and techniques for tasks such as automated essay scoring. Grounded natural language generation has
several applications in the field of education. For example, methods for explanation generation for multi-
hop question answering (Jhamtani and Clark, 2020) discussed in the thesis have applications in building
science tutoring systems for children. Similarly, automated game commentary generation (Jhamtani
et al., 2018) can help in building systems for people to learn to play a game by consuming generated
game commentary.

Creative Content Authoring: Models for music generation (Jhamtani and Berg-Kirkpatrick, 2019), and
creative text generation such as poetry (Jhamtani et al., 2019) could be useful for creative professionals
in the music and arts industry. Additionally, systems for generative narratives (Jhamtani and Berg-
Kirkpatrick, 2020) have applications in children’s storybook generation. Furthermore, work on poetry
generation (Jhamtani et al., 2019) and portmanteau predictions (Gangal et al., 2017) has applications
in advertisement generation. While advertisements can be a high-stakes use case and not amenable to
complete automation, machine-generated outputs can still provide valuable suggestions and ideas for a
person to build upon the suggestions through some post-editing process.

Trustworthy AI: This thesis describes my work on grounded natural language generation through in-
terpretable hierarchical operations. I have demonstrated how inducing relevant discrete structures in text
generation models can expose intermediate underlying computations, often providing a certain degree of
interpretability and enabling controllable generations. The notions of interpretability and controllability
are considered important factors in improving the usability of and building user trust in NLG systems.
Additionally, I demonstrate that in many cases the proposed ideas of incorporating latent discrete struc-
ture in various grounded NLG tasks leads to significant improvements in the factuality of the output
and reduces the issue of hallucination. For example, in chapter 4, I propose a truth-conditional model-
ing (Jhamtani and Berg-Kirkpatrick, 2021) approach that is suitable for generating text outputs that are
faithful to the input data.

Green AI: Recent progress in NLP has been in part possible due to improved computational resources.
Building large models, however, often requires substantial energy consumption.One way to mitigate the
financial and environmental cost of such models is to invent new and more efficient training and inference
techniques. In chapter 7, I discuss methods to introduce relevant additional ‘knowledge’ at decoding time
without the need to re-train existing dialog models (Majumder et al., 2021; Jhamtani et al., 2021). Such
post-hoc injection methods are much more efficient compared to fine-tuning or training the models to
work with new data sources.
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8.3 Discussions and Future Work

8.3.1 Machine-learning based NLG Systems in Real-world

An automated approach for text generation is fraught with several risks. Machine-generated natural
language descriptions can hallucinate content and be factually incorrect. Therefore, such outputs can
potentially be unreliable and may cause serious harm. For example, an inaccurate machine-generated
report of some medical data can be dangerous and lead to injury. Another example of a potential issue
is that machine-generated text can be offensive and can contain biases against a race or a gender type.
However, as discussed in this thesis, machine-learning-driven NLG methods can provide certain desir-
able characteristics such as improved output diversity, interesting outputs, and generalizing to previously
unseen scenarios. Additionally, compared to a person doing manual writing, machine learning-based ap-
proaches can easily scale and has applications in automated content generation in sectors such as health,
finance, and education.

In the near term, a more feasible approach in terms of deploying NLG systems might be to aim
for a mix of neural and rule-based systems. In such cases, the system under certain situations reverts
to a ‘backup’ template or a rule-based NLG system, which is considered safer to use. Another useful
paradigm is a human-in-the-loop setup. Under such a paradigm, we expect a person to edit and verify
machine-generated outputs. Additionally, it might be possible to add some constraints to limit the space
of outputs that the machine can produce. For example, it might be possible to block some hateful words
from being generated. Finally, real-world users want to have control over the system and configure it
according to their specific needs. In such a context, continued focus on interpretability and controllability
aspects in neural NLG models seems to be important.

8.3.2 Broad Directions for Future Work

Extension to Dynamic Environments: Much of the work in this thesis deals with static datasets and
static models. More challenging situations may encompass dynamic and evolving environments, with
the need to update models based on new information, data, and even feedback from users. For example,
chapter 4 of this thesis deals with generating descriptions for high-level interesting patterns in time-
series data. However, some users might be interested in small sudden changes, while others might be
more interested in long-term trends. To account for such feedback or preferences, we need to build
systems that users can interact with to pick the desired set among the exposed programs/patterns.

NLG and Communication Goals: Many of the experiments discussed in the thesis involve human
annotators to judge the quality of generated text outputs. However, additional work is needed to eval-
uate how the generated descriptions help achieve the communication goal in question. For example,
does automatically generated commentary help people understand an ongoing chess game better? Such
considerations will require carrying out user studies with deployed systems.

Emphasis on Human-in-the-Loop Setups: Much of the work discussed in this thesis deals with ma-
chines generating the final outputs with little or no interactions with a person. Though the ability to work
with little human intervention is a desirable train in many situations, there are a plethora of cases where
having a human involved in achieving the final output is preferred. For example, in chapter 6, I discuss
narrative text generation given a title. An extension for the proposed model is to iterate on a generated
story based on some user-suggested edits. Note that the involvement of a person does not mean that
machine-generated output does not add value. Machine-generated outputs can, for example, be much
easier and faster to select from as opposed to writing from scratch, and can also be used as ideation or
collaborative tool by the users.

Compositionality of Models: Some of the work in this thesis discusses the compositionality of iden-
tified sub-patterns in data. A possible next step is to explore compositionality at a much higher level
of abstractions – perhaps to the point of composing models trained on different datasets and tasks. For
example, chapter 2 deals with the modeling of difference descriptions in images, and chapter 4 deals with
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generating descriptions for high-level interesting patterns in time-series data. Now let’s say we wish to
describe differences between two-time series. Can we leverage the two models (for difference description
and time series captioning) as high-level abstractions, and effectively combine the two systems without
the need for thousands of data points for the new task?

Extensions to Multimodal Output Space: Much of the work in this thesis focuses on only text outputs.
In many cases, there might be a choice to present insights in a visual format or mix of textual and visual
format. Some information is more suited for visual format (e.g. visualizing geo-location on a map) while
some other might be more suitable for textual format (e.g. a sentence summarizing interesting pattern in
a time series). An important future direction is to include such decisions (what information to present in
which format), and perhaps generate multi-modal making effective use of multiple modalities.
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A Data and Generated Samples

A.1 Spot the difference (Chapter 2): Data Samples

We provide some additional random data samples from our dataset in the following pages. For each
sample, we show the the image pairs in the data point, and corresponding crowd-sourced annotation
(often containing multiple sentences). We additionally provide corresponding diff images.
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1. 

 
Man by yellow poles in after pic wasn't there before. 
There are two people in middle of court that were not there earlier. 
Person crossing crosswalk is no longer there 
 

 
  



 
 
2. 

 
The person in the blue shirt is no longer present. 
The dark grey SUV is gone. 
 

 
 
  



 
3. 

 
The car in the upper left corner is gone. 
The two people in the upper part of the picture are gone. 
The person near the handicapped parking place is no longer there. 
There appears to be a figure, maybe man that was near handicapped parking place, 
standing near a pole in the bottom of the frame. 
The two people who were on the sidewalk are no longer present. 
There are two people now present near the handicapped parking place. 
 

 
 
  



4. 

 
I do not see any noticeable differences in the above photos. 

 
  



5.

 
On the right there is 6 people and in the left there are 5 people. 

 
 
 
  



A.2 Persona Grounded Dialog (Chapter 3): Sample Generations

Tables A.1 A.2 A.3 A.4 present generations from COMPAC for sampled dialog histories with comparison
across baselines.

Persona:
I’ve short hair.
I have a pet dog.
I like to go hiking.

User: Do you follow current fashion trends?

GPT2 (Wolf et al., 2019): Yes. What about you?

COMPAC-original: I have a pet dog.

COMPAC-revised: I think you really need to go shopping.

COMPAC-paraphrase: I like shopping.

COMPAC: Yes, I prefer to be fashionable.

Table A.1: Sample generations by different models.

Persona:
I just want to have fun with my friends.
I don’t drink or do drugs or anything.
I am 19 and I cannot wait to move out of my parents home.

User: Are you enjoying life ?

GPT2 (Wolf et al., 2019): Yes! What about you?

COMPAC-original: Hey yes! I don’t drink.

COMPAC-revised: Yes. I like to go out with friends.

COMPAC-paraphrase: I don’t want to be alone.

COMPAC: Not really. I want to have a party.

Table A.2: Sample generations by different models.

96



Persona:
I’ve rainbow hair.
I am an animal activist.
I spend my time bird watching with my cats.

User: What motivates you to work with animals?

GPT2 (Wolf et al., 2019): I love bird-watching.

COMPAC-original: I love bird-watching. What about you?

COMPAC-revised: I love animals.

COMPAC-paraphrase: I am in love with animals.

COMPAC: I want to protect animals to make a
difference in this world.

Table A.3: Sample generations by different models.

Persona:
I’m always wearing a hat.
I’ve a broken arm.
My friends are all skateboarders.

User: Do you skate? I do.

GPT2 (Wolf et al., 2019): Yes. How about you?

COMPAC-original: I wear a hat.

COMPAC-revised: Yes. My friends are skateboarders.

COMPAC-paraphrase: That’s great. My friends are
skateboarders.

COMPAC: My friends and I go to the park for skateboarding.

Table A.4: Sample generations by different models.
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A.3 Neuro-Symbolic Structures for Time-Series Data (Chapter 4): Additional Details

A.3.1 Additional Details on Data Sets

A downloadable json file for each of the two datasets is provided in the github repository 1.

Synthetic Data

Our synthetic time series data is constructed such that each time series has exactly one of the follow-
ing 6 patterns: increases-in-beginning, increases-in-middle, increases-in-end, decreases-in-beginning,
decreases-in-middle, decreases-in-end. The position in which the pattern is placed is based on the tem-
poral choice (begin/middle/end). i.e. L must lie withing first one-third of the time-series (0,T/3) in case
of ‘begin’ pattern, should lie in middle one-third for ‘middle’, and last one third for ‘end’ respectively.
We consider equation a*x+b of a line, where ‘a’ represents the slope and ‘b’ represents the y-axis inter-
cept. We pick a random slope value between 0 and 2, and a random intercept value between 1 and 20.
Finally, we pick |L| random integral values for x such that ax+b point lies between 0 and 1. The points
in the time series outside the pattern are fixed to be same as the nearest point in the patter. Finally, small
noise is added to each point using U(-2,2).

Some random data samples are shown in Fig. A.1. The text corresponding to ‘HUMAN’ marker
represents one of the collected annotations for the corresponding time series data.

STOCK data

Figures A.2 show data samples for STOCK dataset. The text corresponding to ‘HUMAN’ marker repre-
sents one of the collected annotations for the corresponding time series data. The total number of unique
words (considering train and validation splits) are 861, out of which only 560 words occur more than
once in the dataset.

A.3.2 Additional Results

SYNTH: Generated Samples

Additional examples are provided in Figure A.1.

STOCK: Generated Samples

Figure A.2 shows some generated samples on STOCK dataset.

Validation Split Results

Tables A.5 and A.6 show automated metrics on the validation split.

Analyzing Learned Modules

Figure A.3 shows visualization of a learned locate module when model is trained on SYNTH data.

1https://github.com/harsh19/TRUCE
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Figure A.1: SYNTH: Data and Generated Samples. The captions marked in red were judged as incorrect
by human annotators. TRUCE achieves very high precision of 95% on outputs for the test split of
SYNTH dataset.

Method PPL Bleu-3/4 Cider Rouge BERT

TRUCE 9.02 0.61/0.50 1.92 0.74 0.76
FCENC 9.66 0.41/0.34 1.17 0.63 0.57
LSTMENC 7.5 0.43/0.35 1.39 0.63 0.63
CONVENC 7.6 0.63/0.53 1.99 0.73 0.71
FFTENC 15.7 0.39/0.29 1.26 0.61 0.62
NEARNBR NA 0.32/0.19 0.68 0.50 0.48

Table A.5: Results on validation split for SYNTH dataset.

Additional Ablation Studies

We consider following ablations for the TRUCE: (1) TRUCE-NOINF: Train TRUCE without the use
of inference network (2) TRUCE-NOHEUR: Train TRUCE without the use of heuristic labels

A.3.3 Additional Training Details

We code our models in Pytorch library.

Heuristic Labels

List of the keywords selected for use in constructing heuristic labels:
— ‘locate’:[‘beginning’,‘middle’,‘end’,‘throughout’],
— ‘pattern’:[‘increase’,‘decrease’,‘peak’,‘flat’,‘dip’]

Optimizer

We use Adam optimizer with initial learning rate of 1e−4.
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Figure A.2: STOCK: Data and Generated Samples. The captions marked in red were judged as incorrect
by human annotators. (Best viewed in color)

Method Bleu-3/4 Cider Rouge BERT

TRUCE(Ours) 0.36 / 0.22 0.40 0.50 0.58
FCENC 0.32 / 0.20 0.38 0.47 0.56
LSTMENC 0.34 / 0.18 0.33 0.51 0.61
CONVENC 0.34 / 0.17 0.35 0.50 0.60
FFTENC 0.32 / 0.18 0.36 0.48 0.56
NEARNBR 0.11 / 0.05 0.11 0.27 0.37

Table A.6: Results on validation split of STOCK data.

Infrastructure

We use GeForce RTX 2080 GPUs for training models.

Additional method details

While the automated metrics are only moderately correlated with quality, we found it reasonable to select
best model configurations based on the Bleu-4 scores on validation split. The model configurations, when
using STOCK dataset, are as follows:

• LSTM Decoder: Token embedding size and hidden size are varied from the set {32,64,128,256}.

• Weight for the classification loss term (in case of multitask objective in baselines): Following three
weights of classification loss (i.e. the weight of the classification term which is present in addition
to the conditional language modeling objective) are tried: 0.3,1.0,3.0.

• TRUCE: Program embedding encoding size. Number of module instantiations are varied in fol-
lowing ranges:

– LOCATE: 4-7 instantiations of each of locate

– PATTERN: 6-10 instantiations of each of trend

– COMBINE: 1 instantiation
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Figure A.3: Visualizing a learned ’locate’ module. Our locate modules are weighted mixtures of equally
spaced Gaussians. The module’s weight on each of these components is shown, along with the resulting
distribution – the module being visualized seems to have learned to focus on middle part of the time
series.

- Module embedding is varied in the set {9,18,36,72}. Final module embedding size is 18.
- Number of trainable parameters: 466K (excluding inference network parameters since inference
network is used only at training and not at prediction time)

• FFTENC: - Number of trainable parameters: 462K - Construct features based on numpy:fft:rfft
functions, using real as well as imaginary components from the transformation.

• CONVENC: Number of trainable parameters: 463K

• LSTMENC: - Representation: A single LSTM step involves feeding an embedding of the input
and using the previous step’s hidden state. To construct an input embedding of size h for a given
number xt , we simply repeat the number xt for h times.
- Number of trainable parameters: 464K

• NEARNBR: We experiment with L2 distance and L1 distance, and observed former to perform
better in terms of automated as well as human evaluations.
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A.4 Discrete Latent Generation Plan (Chapter 6): Sample Generations

Some additional generated samples from various models are shown in Table A.7. We note that LAP-
CINF-UDEV plans often exhibits good control over the generated story. For example, samples S3 and S4
samples in Table A.7 for the same title by-and-large follow the generated plan. We do observe a certain
degree of repetition in some samples e.g in sample S2, the first and third sentences both discuss mowing
the lawn.

Sample S6 further demonstrates the generation order for LAP-CINF-CDEC. Each sentence begins
by copying the corresponding anchor word, generating words to the left and then to the right of it. Thus
LAP-CINF-CDEC model commits to using the corresponding anchor words. In contrast LAP-CINF-
UDEV has more flexibility in using the anchor words, and sometimes anchor words get dropped or get
used in a paraphrased manner. e.g. for sample S2, the model did not use the word ‘tired’ in the last story
sentence, though the second last sentence evokes similar understanding. However, this also means the
control of the story via the plan is somewhat weaker. e.g. for S4, the story does not use the anchor word
‘boiled’. Finally, compared to outputs from LAP-CINF-UDEV and LAP-CINF-CDEC, we observe that
SUPERVPLAN outputs demonstrate much weaker control of the plan on the story, and generate plans less
relevant to the title.

.
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S.no. Method Title Story

1 LAP-CINF-UDEV TITLE: race
ANCHOR WORDS: participate high challenged sure won
STORY: Jill wanted to participate in a race. She was in high school and had no

idea how to race. Jill challenged her friend to a race. She wasn’t sure if
she would win. Ultimately she won the race.

2 LAP-CINF-UDEV TITLE: lawn
ANCHOR WORDS: mowing lawn mowed every tired
STORY: I was mowing my lawn one day. I was on the lawn by myself. I mowed

the lawn. I worked on it for hours. Eventually I was able to go back to
work.

3 LAP-CINF-UDEV TITLE: the dryer
ANCHOR WORDS: load cold wash everything long
STORY: A girl got a load of laundry. She put everything in the dryer. She

wanted to wash it off. She did everything but the washing machine was
not so good. She had to take a long time to clean it up.

4 LAP-CINF-UDEV TITLE: the dryer
ANCHOR WORDS: cooking boiled dried put cooking
STORY: There was a pot of beans in the microwave. The pot was piled on the

table. They dried it and cooked it. They put the noodles in the oven.
The kids were all cooking dinner.

5 LAP-CINF-UDEV TITLE: lost phone
ANCHOR WORDS: bar opened someone left found
STORY: Tim was at the bar. He opened the door to find a phone. It was of a

person. Tim left for a couple of minutes. He took it home and it turned
out that he lost it.

6 LAP-CINF-CDEC TITLE: race
ANCHOR WORDS: entered win losing trained win
STORY: entered tim <start> a local gym. win to wanted he <start>. losing up

wound he <start> the race. trained tim <start> to get an extra. win to
decided tim <start> the race.

STORY (reordered): Tim entered a local gym. He wanted to win. He wound up losing the
race. Tim trained to get an extra. Tim decided to win the race.

7 LAP-UINF-UDEC TITLE: race
ANCHOR WORDS: forms forms forms forms forms
STORY: Cathy and his friends decided to go to the fair. Cathy was worried

about the show that she was having to be on the track team. Cathy was
worried that the race would have to be over. Cathy was nervous to win
by a point of winning the race. Cathy caught the race.

8 SUPERVPLAN TITLE: race
ANCHOR WORDS: today good day race race
STORY: I was the fastest runner on my high school track team. It was very hard

to win, but my friend convinced me to do it. I practiced with the
runners and practiced every day. I practiced every day after school. I
can go to the race every day.9 SUPERVPLAN TITLE: lost phone

ANCHOR WORDS: package wanted found battery missed
STORY: Tom was getting a new phone. He wanted to buy a new one. When he

found it it was still a broken battery. Tom was sad because it was
broken. Tom tried to save it but it wasn’t enough.

Table A.7: Samples from different methods (with minor edits such as captalization)
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A.5 Retrieved Snippets as Guiding Plans (Chapter 7): Sample Outputs

Tables 8 and 9 show generations from PABST and baselines for sampled text examples.

Dialog History
Agent: I volunteer in shelters.
User: It is a noble act.

COMPAC: Thank you. I like helping people.

NEARNBR: I was at my house bored. I couldn’t figure out
what to do. I looked on TV for answers. I saw a commercial
about homeless people. So I decided to volunteer at a
homeless shelter.

PSEUDO: Last week, I went to the local animal shelter on
the pet adaptation day.

MULTITASK: Thank you! What about you?

PABST (λd = 5.0): I was bored. I wanted to help people. I
looked on TV about homeless people. So I decided to
volunteer at a homeless shelter.

PABST (λd = 1.0): Thank you. I was inspired by a TV
commercial and I volunteered at the homeless shelter.

Table 8: Generations from different models
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Dialog History
Agent: I enjoy American sports. What sports do you like?
User: I love playing volleyball. I was in the university team.

COMPAC: That’s great. I like adventure sports.

NEARNBR: I always thought golf was for old people.
One day, my dad invited me to play golf with him.
I reluctantly accepted his invitation. On the golf range, I
saw lots of people of my age. I realized golf was a sport for
everyone to enjoy regardless of age.

PSEUDO: Last week, I went to play golf. My dad invited
me. I was reluctant.

MULTITASK: That’s great! I play volleyball during
weekend.

PABST (λd = 5.0): I like playing golf. I always thought it
is for old people. Recently I went to a golf range. But I saw
lots of people of my age. I realized golf is a
sports for everyone.

PABST (λd = 1.0): That’s great. I like playing golf. I
always thought it is for old people. Recently I went
to a golf range. But I saw lots of people of my age. I
realized golf is a sports for everyone.

Table 9: Generations from different models
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