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Abstract

Proper subcellular localization is critical for proteins to perform their roles in cellular func-

tions. Proteins are transported by different cellular sorting pathways, some of which take

a protein through several intermediate locations until reaching its final destination. The

pathway a protein is transported through is determined by carrier proteins that bind to

specific sequence motifs. This thesis introduces new computational methods that extract

these sequence motifs and carrier proteins, and learn the sorting pathways.

We first develop a system that utilizes the known cellular sorting pathways to learn

sequence motifs and predict locations. We proposed a discriminative motif finding method

that identifies potential targeting motifs. Our method utilizes a tree structure mimicking

the known targeting pathways. Using these motifs we were able to improve localization pre-

diction on a benchmark dataset of yeast proteins. The motifs identified are more conserved

than the average protein sequence. Using our motif-based predictions we were also able to

correct annotation errors in public databases for the location of some of the proteins.

Furthermore we present a new method that integrates sequence, motif and protein inter-

action data to model how proteins are sorted through the sorting pathways with a hidden

Markov model (HMM). Using data for yeast, we show that our model leads to accurate pre-

diction of subcellular localization. We also show that the pathways learned by our model

recover many known sorting pathways and correctly assign proteins to the path they utilize.

We extend this model to support alternative splicing and multiple cell types in higher organ-

isms. Using our method we performed the first systematic discovery of targeting pathways

in the human proteome based on confocal microscopy images on HPA. We show that our

pathways structure improves localization prediction, and the learned structure resembles

our basic understanding of cellular sorting mechanism.
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Chapter 1

Introduction

1.1 Motivation

An important challenge in systems biology is to build detailed models of cell organiza-

tion that provide accurate predictions of cell behaviors. Many (if not all) of the proteins

expressed by a given cell require proper subcellular localization in order to make their con-

tributions to those behaviors. The location of a protein provides information about its

function and interacting partners [1,2]. Aberrant localization has a role in certain diseases,

including cancer [3,4], Alzheimer’s disease [5], hyperoxaluria [6] and cystic fibrosis [7]. The

effect of some drugs depends on their role in changing protein locations [8]. The knowledge

about protein sorting will help us understand such diseases and the drug effect. Hence

a proteome-wide understanding of subcellular localization is critical in understanding the

protein behaviors within a cell. Our aim is to find out where a protein is transported in the

cell, the path it passes through, and the mechanism that determines its path.

Extensive work has been done on proteome-scale determination of location from yeast to

human at various levels of resolution, both by fractionation [9,10] and by microscopy [1,11–

14]. Automatic prediction of location based on microscopy images is now very effective [15].

Databases containing localization information curated from the literature are also available,

including SGD [16], FlyBase [17] and UniProt [18]. With these resources we believe it is

now possible to study the cellular sorting mechanism using computational analysis. This

is particularly important for the less-understood sub-compartments, considering that many

proteins are found in only a specific region of an organelle. In addition, proteins are sorted

through several compartments until reaching the destination, with each transport along the

1



CHAPTER 1. INTRODUCTION 2

Figure 1.1: The major organelles within a typical animal cell: (1) nucleolus, (2) nucleus,
(3) ribosome, (4) vesicle, (5) rough ER, (6) Golgi apparatus, (7) cytoskeleton, (8) smooth
ER, (9) mitochondrion, (10) vacuole, (11) cytosol, (12) lysosome, and (13) centriole. Image
is from http://en.wikipedia.org/wiki/File:Biological cell.svg.

path determined by a carrier-protein binding to targeting signals. Several such targeting

pathways have been widely studied, like the secretory pathway, but it is believed that there

are more non-conventional pathways.

To have greater biomedical impact we would like to support higher organism, especially

human, as well as unicellular organism like yeast. In higher organism protein locations may

vary between cell types or within the same cell type under different conditions. For example,

changes in protein subcellular location are associated with differentiation [19]. There are

tens of thousands of proteins for potentially hundreds of cell or tissue types under many

conditions, and collecting information for all combinations is infeasible. We need a system

that infers location changes in cell types or conditions. If the rules are interpretable, it

could shed light on how changes in location are regulated and will greatly benefit our

understanding of protein targeting in human.

1.2 Background

1.2.1 Major Cellular Compartments

The major cellular compartments, or organelles, are displayed in Figure 1.1. The cell is

enclosed by the plasma membrane (PM), and the interior is the cytosol which contains the

organelles, including the nucleus that stores the DNA in which proteins are encoded. The
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mitochondrion, sometimes called the “power plant” in a cell, is the organelle that generates

energy. The peroxisome breaks down fatty acids and amino acids for reuse and also rid the

cell of toxic peroxides. The secretory pathway is the most common procedure to transport

a protein out of the cell, and enzymes residing in related organelles are also sorted this

way. Most proteins are synthesized in the cytosol, and those with an N-terminal signal

peptides will be bound by the protein complex signal recognition particle (Srp) and taken

to the endoplasmic reticulum (ER) during synthesis. Then proteins with a C-terminal ER

retention signal sequence KDEL (bound by the KDEL receptor) will remain in the ER,

the reminder transported to the Golgi apparatus; from whence proteins are sorted to the

lysosome or the plasma membrane or outside the cell. The lysosome in animal cells or

vacuole in yeast and plant cells is described as the “garbage disposal” system of the cell,

responsible for digestion of macromolecules. A good introduction is given in [20].

1.2.2 Cellular Sorting Pathways

Proteins are transported to the compartments by cellular sorting pathways. A sorting path-

way sorts a protein through a series of unobserved intermediate locations until reaching the

final destination. For example, in the secretory pathway proteins are transported through

ER and Golgi, reaching either lysosome, PM, or secreted outside the cell. The decision of

moving from one intermediate location to the next is determined by carrier-proteins that

recognize specific sequence motifs. Such sorting motifs are typically short and sometimes

called signal sequences. For example, Srp binds to the ER signal peptides, taking proteins

into the secretory pathway; Erd2 binds to KDEL motif so proteins remain in ER.

Besides the secretory pathway, other sorting pathways also use such mechanism. A

protein is imported to the nucleus if the Importin binds to nuclear localization signal (NLS).

It may be further imported to the nucleulus given the nucleolar localization motif. Similarly

a protein enters the mitochondria if the translocase of the outer membrane (TOM) complex

binds to the mitochondrial targeting signal (MTS). To enter the peroxisome a protein either

contains the peroxisomal targeting signals 1 (PTS1) which is recognized by Pex5, or PTS2

which is recognized by Pex7.

These classical pathways are believed to be conserved from the simplest to the most

complex eukaryote. So far the discovery of cellular sorting pathways relies on manual

investigation and experiments focusing on a specific topic, protein, or motif. On the other

hand, there are non-classical or alternative pathways that are followed by a minor fraction



CHAPTER 1. INTRODUCTION 4

of proteins or that differ from the first discovered pathway. Non-classical pathways include

leaderless secretion pathway and cytoplasm-to-vacuole targeting (CVT) pathway. In both

cases a protein does not pass through ER and Golgi as in the classical secretory pathway, but

directly moves to the destination (secreted or vacuole, respectively). One can verify whether

a protein belongs to a non-classical pathway by inhibiting classical ones experimentally.

1.3 Related Work

Fluorescent microscopy imaging technique has provided proteome-wide data on localization

in yeast [1]. Automated determination of localization from images is also accurate [15]. The

Human Protein Atlas (HPA) team has collected confocal microscopy images using antibodies

in human [14], and automated analysis has also been performed [13, 21]. However image-

based analysis does not provide causal insight about the mechanism.

Most of the previous computational biology research on protein sorting focus on pre-

dicting the location, e.g. WoLF PSort [22], TargetP [23], LOCtree [24], PSLT2 [25] and

DC-kNN [26]. Some are based on the current (partial) knowledge of protein sorting (e.g.

signal sequences), making the decision rules interpretable. Some learn from data but the

decision rules are not interpretable (e.g. amino acid composition and support vector ma-

chine). Although the classical sorting pathways play an important role in protein sorting,

most predictors do not utilize any structure among the compartments; only a small num-

ber utilize the established pathway structure (e.g. LOCtree) and show improvement. Very

few previous methods try to extract novel sorting motifs that explain the localization. We

are not aware of any previous work that identifies novel protein carriers as well (DC-kNN

utilizes the protein network but does not provide insight on the mechanism). With the

availability of more protein localization resources, it is important to have computational

tools that extract novel sorting motifs from sequences, which is the standard mechanism

for protein sorting. In Chapter 2 these predictors are discussed in more detail.

We are not aware of prior research on learning novel sorting pathways from data. Some

methods learn decision trees for predicting subcellular localization, including PSLT2 [25]

and YimLOC [27]. While the decision trees generated by these methods are often quite

accurate, they are not intended to reflect sorting pathways, and they utilize features that,

while useful for classification, are not related to the biochemical process of protein sorting.

There are computational methods that predict whether a protein goes through a specific
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pathway or not (for example, SignalP [28] and SecretomeP [29]). However, these methods

rely on the pathway as an input and cannot be used to infer new pathways.

1.4 Overview of Thesis

The overarching goal of this thesis is to study the cellular sorting mechanism by modeling

targeting pathways, in which the path is determined by carrier-proteins and sequence motifs.

In Chapter 2 we first present a system that utilizes the known targeting pathways to learn

motifs and predict locations. We use a tree structure to mimic the targeting pathways.

Motifs are represented as profile hidden Markov models (HMM) which allow insertions

and deletions of variable-length. The HMMs are learned by a novel discriminative motif

finding method. These models search for motifs that are present in a compartment but

absent in other, nearby, compartments by utilizing a hierarchical structure that mimics the

protein sorting mechanism. This method predicts the localization at least as good as the

state-of-the-art system based on known motifs on a benchmark dataset of yeast proteins.

Both discriminative motif finding and the hierarchical structure improve the performance

in prediction. The motifs identified can be mapped to known targeting motifs and they are

more conserved than the average protein sequence. Using our motif-based predictions we

can identify potential annotation errors in public databases for the location of some of the

proteins.

Besides relying on the established knowledge of protein targeting pathways, we aim to

discover novel pathways from sequence, interaction, and localization data. In Chapter 3 we

developed a new method that integrates sequence, motif and protein interaction data to

model how proteins are sorted through targeting pathways. We use a hidden Markov model

(HMM) to represent targeting pathways. The model is able to determine intermediate

sorting states and to assign carrier proteins and motifs to the sorting pathways. In simula-

tion studies, we show that the method can accurately recover an underlying sorting model.

Using data for yeast, we show that our model leads to accurate prediction of subcellular

localization. We also show that the pathways learned by our model recover many known

sorting pathways and correctly assign proteins to the path they utilize. The learned model

identified new pathways and their putative carriers and motifs and these may represent

novel protein sorting mechanisms.

Although proteome information is more abundant in yeast, it is of more importance to
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understand targeting pathways in higher organisms, especially human. In Chapter 4, we ad-

dress challenges in higher organisms in order to support this human localization data. With

the availability of large amount of location proteomic data based on confocal microscopy

images using antibodies from Human Protein Atlas (HPA) [14], we extend our targeting

pathway model from yeast to human. The method supports alternative splicing which is

common in higher organisms. Furthermore we can utilize localization data in multiple cell

types and conditions to examine common and condition-specific carriers, motifs, and path-

ways. Using the extended model, we performed the first systematic discovery of targeting

pathways in the human proteome based on confocal microscopy images on HPA. By com-

paring to a classifier without using a structure we show that incorporating the targeting

pathway leads to more accurate prediction of the destinate compartment.



Chapter 2

Motifs Based on Predefined

Sorting Pathways1

In this chapter we present how to extract targeting motifs based on predefined targeting

pathways, and how to predict localization using the extracted motifs. In the next chapter

we will discuss how to infer pathways from protein sequence, interaction, and localization

data.

Here we develop and apply a discriminative motif finding algorithm which utilizes HMMs

that are constructed to optimize a discriminative criteria, the conditional likelihood of the

sequences given the motifs. We used maximal mutual information estimate (MMIE), a

technique that was initially applied to speech recognition, to train these HMMs discrimina-

tively. Our models select motifs that are unique to the different compartments. In addition

to their use for classification they may also provide information about the function of the

proteins in each compartment or the mechanisms involved in targeting these proteins to

their cellular locations.

A hierarchical structure or a tree has been used to represent targeting pathways in pre-

dicting subcellular localization, and accuracy improves [24,31,32]. We apply such structures

to motif discovery, rather than only prediction, by searching for discriminative motifs at

every split (internal nodes) on the hierarchical compartment structure in Figure 2.1. This

allows us to take advantage of current biological knowledge regarding the organization of

compartments within a cell.

1The content of this chapter is based on the paper [30]

7
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Figure 2.1: Hierarchical structure of compartments based on cellular sorting.

For subcellular compartment classification, our discriminative HMM method that does

not utilize any prior motif information improves upon methods that use a list of known

motifs. We also show that incorporating the protein sorting hierarchy results in better

prediction on average. Our method was able to recover known motifs and to suggest new

motifs for various compartments. These new motifs are more conserved than average amino

acids in agreement with their predicted role in protein localization. Using our predicted

motifs we were also able to reassign a number of proteins to new compartments, correcting

what we believe are errors in current annotation databases.

2.1 Related Work

2.1.1 Classifying Subcellular Localization

A number of methods have been proposed for using sequence information to predict localiza-

tion. These include WoLF PSort [22], TargetP [23], LOCtree [24], PSLT2 [25], TBpred [33],

and iPSORT [34]. While useful, some of these methods (e.g. LOCtree and WoLF PSort) are

based on general sequence characteristics (GC content etc.) and thus it is hard to interpret

the sequence features that lead to accurate classification in terms of localization mecha-

nism. Some (e.g. TargetP and WoLF PSort) are based on known motifs, making it hard

to correctly classify proteins that lack the known motifs. PSLT2 considers all motifs in the

InterPro database [35], but does not try to search for novel targeting motifs. Beside known
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motifs TargetP also uses the motif finder MEME [36] to characterize manually curated spe-

cial cases of the mitochondrial targeting signal [23]. This procedure is necessary because

no well defined sequence motif has been previously found for the mitochondrial targeting

signal, but it cannot discover novel targeting motifs. TBpred uses MEME to identify one

motif overrepresented in each of the four subcellular locations of mycobacterial proteins [33],

which is arguably not enough to explain all targeting pathways. Such a motif could also

appear in other locations and therefore may not be associated with localization. TBpred

made no attempt to examine or interpret the biological meaning of the identified motif.

iPSORT can discover two type of features, amino acid properties and pattern matching.

However amino acid properties (e.g. hydrophobic or hydrophilic) may be a result of the

biochemical characteristics of the compartments, and do not provide as much information

on the protein sorting mechanism as motifs do. iPSORT can discover patterns, but the

patterns are not as expressive as common motif representation like regular expression.

2.1.2 Generative Motif Finding

Protein sequence motifs are represented by profile hidden Markov models (HMMs), which

models local alignments using match, insert, and delete states [37]. Profile HMMs have

been successfully utilized to model protein families and domains, and they are used to

represent domains in the Pfam database [38]. Unlike position weight matrices (PWMs) (for

example, those used by MEME [36]), profile HMMs allow for variable length insertions and

deletions that are common in protein motifs, for example the nucleoplasmin nuclear location

sequence [39] and the sequence targeting proteases to the food vacuole in P. falciparum [40].

Unlike regular expressions, which have also been used to represent such motifs, profile HMMs

can assign different frequencies to each amino acid and are thus more expressive.

Traditional motif finding algorithms start by assembling a subset of sequences (for exam-

ple, all proteins in the same compartment) and then searching for motifs in those sequences.

These methods typically utilize generative models that attempt to model the process by

which the motifs were generated based on simplifying assumptions. Generative motif finding

methods and models for proteins include MEME [36] and NestedMICA [41] using PWMs,

and HMMER [37] using profile HMMs, among others.
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2.1.3 Discriminative Motif Finding

While generative motif finding is useful, these methods do not use important information

about the negative set (sequences that are assigned to other compartments) when construct-

ing the models. Such information may be useful for building refined models of the differences

between similar compartments. Relatively little work has focused on a different approach:

discriminative learning of probabilistic motif models. Discriminative methods search for

motifs that are present in one class (positive set) but absent in other classes (negative set).

Most of such methods focus on DNA motifs, usually for transcription factor binding sites.

There are string-based methods, for example DWE [42], but probabilistic models like PWM

are more expressive. Representing motifs as PWM, Segal et al. [43] established the frame-

work of discriminative motif finding that optimizes the conditional likelihood by conjugate

gradient ascent [44], as part of a regulatory network inference system that combines se-

quence and gene expression. The positive set is assumed to have exactly one occurrence

per sequence (OOPS) [45]. The initial motif parameters for gradient ascent is derived from

the exhaustive string search as in [46]. Sharanet al. [47] extended this framework to allow

positive sequences containing no motif, while negative sequences are still not allowed to

contain the motif. This model is named noisy OOPS (NOOPS) in [48].

DME (Discriminative Matrix Enumerator) [49] uses a different approach for discrimi-

native learning of a PWM. A global, enumerative search on a discrete space of PWM. The

objective function is the log likelihood ratio instead of the conditional likelihood. DME-

X [50] generalizes DME by incorporating a weight for each sequence, so that there is no

strict distinction between the positive and negative set. Multivariate regression is used to

evaluate candidate motifs.

DIPS (Discriminative PWM Search) [51] proposed a different objective function, the

difference between the average motif occurrences within the positive set and that within

the negative set. This objective function is designed to find motifs with the largest number

of occurrences in the positive set and smallest number of occurrences in the negative set,

best suited for situations with multiple occurrences per sequence, also called two-component

mixture (TCM) in MEME terminology. Optimization is achieved via heuristic hill-climbing.

Recently PWM is applied to protein motifs as well as DNA motifs in the DEME al-

gorithm [48]. DEME uses the same criterion, the conditional likelihood, as Segal-Sharan

does [43, 47]. It also employ a combination of global string search and conjugate gradient,

but the string search is designed to be more sophisticated. Both OOPS and NOOPS are
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supported. To be more effective on protein sequences DEME implemented the PAM120

substitution matrix which reflects our prior knowledge of amino acid similarities. However

PWM does not allow insertion and deletion, making it less than optimal for protein sequence

analysis. For a more detailed review of discriminative motif finding methods, see [48].

2.2 Identifying Targeting Motifs

Traditional motif finding algorithms are generative, only utilizing the positive set but not

the negative set. For example, profile HMMs are widely used to model protein domains

or motifs. The match, insert, and delete states of a profile HMM correspond to local

alignment of a protein region to the motif profile. The match states represent conserved

sites of a motif; the insert states represent insertions between two conserved sites in a

protein; the delete states represent removal of a motif site in a protein. Another generative

motif finding method, PWM, only models the conserved sites and does not model gaps in

the local alignment.

These motif models are trained to optimize the maximum likelihood estimation (MLE)

criterion. For this task, HMMs can be trained generatively with the Baum-Welch algo-

rithm [37], and similarly PWMs are trained with the expectation-maximization (EM) algo-

rithm, for example using MEME [36]. Note that for our purpose of finding motifs in proteins

located in the same compartment, the models must be learned from unaligned sequences.

These proteins do not belong to the same protein family and are too divergent for current

multiple sequence alignment programs.

2.2.1 Discriminative training of HMM

Motif finding methods using generative training search for short sequences that are over-

represented in a given set compared to a background distribution. In contrast, discrimi-

native motif finding methods use two or more sets and in each set they search for motifs

that are overrepresented compared to the other sets. This allows for better motif mod-

els, especially for similar compartments or subcompartments. For simplicity we only use

single-compartment proteins for discriminative motif finding.

Here we present a novel discriminative motif finder based on hidden Markov models. To

train this model we use a discriminative criteria, maximum conditional likelihood (that is,

the conditional likelihood of the correct class given the sequence). The conditional likelihood
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is an established criteria in discriminative training methods, e.g. logistic regression. It

has been shown in the speech recognition literature that the maximal mutual information

estimate (MMIE) technique can train a set of HMMs to optimize this criteria. We use a

MMIE algorithm termed extended Baum-Welch which iterates between aligning the motif

sites and updating parameters based on the aligned sites. The update not only favors

occurrence in the positive examples as in regular Baum-Welch, but also avoids occurrences in

the negative examples. For simplicity we use the terms generative HMM and discriminative

HMM for these two types of approaches below.

The MMIE algorithm is an extended version of the Baum-Welch algorithm [52]. Note

that we do not know where the motif instances (with substitution, insertion and deletion)

are without the motif parameters, but the motif parameters cannot be estimated without

knowledge of where the motif instances are. As in the E-step of the Baum-Welch algorithm,

we first infer the expected state of each position on each sequence based on current motif

parameters (i.e. probabilities of each position being background, match, insert or delete

state). This is equivalent to having a probabilistic alignment of the motif sites. Then in the

M-step, we update the parameters to maximize the discriminative objective function based

on the expected states above, or the probabilistic alignment. The E-step and M-step are

repeated until the improvement upon objective function is too small.

The E-step in discriminative training is similar to that in Baum-Welch, using the forward

and backward algorithm. The difference between generative and discriminative training is

in the M-step, because the objective function to maximize is different. The update in M-step

needs to increase occurrences of the motif in the positive examples and decrease occurrences

in the negative examples. This is achieved by the following sequence weighting scheme based

on the agreement between predictions and labels. Positive examples are weighted as the

posterior probability of incorrect classification, 1− p(λ(m)|On), and negative examples are

weighted as the negative of the probability of incorrect classification, −p(λ(m)|On). That is,

a positive example is given a lower weight if its probability is high which is already correct,

or given a higher weight otherwise. A negative example is given a smaller negative weight if

its probability is low which is already correct, or a higher weight if it is incorrectly believed

to be one of this class. In contrast, generative training weights positive examples as 1 and

negative examples as 0 thus only focusing on occurrences in positive examples. Note that

this interpretation is different from standard MMIE in speech recognition.
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The Extended Baum-Welch Algorithm Using Sequence Weighting

We use the following notations. Let the training sequences be {O1, O2, · · ·ON}, where

N is the number of training examples. The sequences belong to M classes (for example,

different branches in the tree of Figure 2.1) and the class labels of the sequences are given

as cn ∈ {1, 2, · · ·M}, 1 ≤ n ≤ N . The HMM for the m-th class is denoted as λ(m).

The parameters for each HMM are denoted by λ(m) = (a
(m)
ij , b

(m)
jk ), where a

(m)
ij and b

(m)
jk

are the transition and emission probabilities, respectively. The MMIE objective function,

conditional likelihood of the correct class given the observed values, can be written as

FMMIE =
∑

n

log p(cn|On) =
∑

n

log
p(On|λ

(cn))p(λ(cn))
∑

m′ p(On|λ(m′))p(λ(m′))

In the E-step, the expected count of state j at position t of sequence n according to

model λ(m) is denoted as γ
(m)
nt (j) = p(qnt = j|On, λ(m)). The expected count of transition

from state i to state j at position t of sequence n according to model λ(m) is denoted as

ξ
(m)
nt (i, j) = p(qnt = i, qn,t+1 = j|On, λ(m)). These expected counts are calculated by the

forward-backward algorithm. For simplicity we denote the expected count of transition and

emission of the entire sequence n as ξ
(m)
n (i, j) and φ

(m)
n (j, k), defined as

ξ(m)
n (i, j) =

∑

t

ξ
(m)
nt (i, j)

φ(m)
n (j, k) =

∑

t

γ
(m)
nt (j)1ynt=k

We will show the update formulas for the M-step first and then the derivation. Positive

examples are weighted as the posterior probability of incorrect classification, 1−p(λ(m)|On),

and negative examples are weighted as the negative of the probability of incorrect classi-

fication, −p(λ(m)|On). After sequence weighting the probabilities are estimated similar to

Baum-Welch, but a smoothing constant needs to be added to the probabilities of the same

state before normalizing [52, 53]. The smoothing constants prevent negative probabilities

due to negative sequence weights. The reestimation formulas in the M-step of MMIE are,
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â
(m)
ij ←

ξ(m)(i, j)− ξ(−m)(i, j) + DT a
(m)
ij

∑

j′ ξ
(m)(i, j′)− ξ(−m)(i, j′) + DT a

(m)
ij′

(2.1)

b̂
(m)
jk ←

φ(m)(j, k)− φ(−m)(j, k) + DEb
(m)
jk

∑

k′ φ(m)(j, k′)− φ(−m)(j, k′) + DEb
(m)
jk′

(2.2)

where ξ(m)(i, j), ξ(−m)(i, j), φ(m)(j, k), φ(−m)(j, k) are defined as follows for simplicity.

ξ(m)(i, j) =
∑

n|cn=m

[1− p(λ(m)|On)]ξ(m)
n (i, j), ξ(−m)(i, j) =

∑

n|cn 6=m

p(λ(m)|On)ξ(m)
n (i, j)

φ(m)(j, k) =
∑

n|cn=m

[1− p(λ(m)|On)]ϕ(m)
n (j, k), φ(−m)(j, k) =

∑

n|cn 6=m

p(λ(m)|On)ϕ(m)
n (j, k)

Following [54] we set the smoothing constants to twice the smallest value that ensures

nonnegative transition and emission probabilities. This was found to lead to fast conver-

gence empirically [54].

The MMIE literature does not use the sequence weighting perspective for the update

formula, due to the large number of classes. Here we will show that the update formula

originally developed for MMIE can be expressed as our sequence weighting forms. We

will only derive the equation for transition probability since the derivations for emission

probability is the same. The original update formula for MMIE is [52],

âij ←

a
(m)
ij

∂

∂a
(m)
ij

F(Λ) + DT a
(m)
ij

∑

j′ a
(m)
ij′

∂

∂a
(m)
ij

F(Λ) + DT a
(m)
ij′

(2.3)

The partial derivative of the objective function with respect to the transition probability

aij can be calculated as follows.

∂

∂a
(m)
ij

F(Λ)

=
∂

∂a
(m)
ij

∑

n

log
p(On|λ

(cn))p(λ(cn))
∑

m′ p(On|λ(m′))p(λ(m′))
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=
∂

∂a
(m)
ij

∑

n|cn=m

log p(On|λ
(m))p(λ(m))−

∂

∂a
(m)
ij

∑

n

log
∑

m′

p(On|λ
(m′))p(λ(m′))

=
∑

n|cn=m

∂ log p(On|λ
(m))

∂a
(m)
ij

−
∑

n

1
∑

m′ p(On|λ(m′))p(λ(m′))

∂p(On|λ
(m))p(λ(m))

∂a
(m)
ij

=
∑

n|cn=m

ξ
(m)
n (i, j)

a
(m)
ij

−
∑

n

p(On|λ
(m))p(λ(m))

∑

m′ p(On|λ(m′))p(λ(m′))

ξ
(m)
n (i, j)

a
(m)
ij

=
1

a
(m)
ij

∑

n|cn=m

[1− p(λ(m)|On)]ξ(m)
n (i, j)−

1

a
(m)
ij

∑

n|cn 6=m

p(λ(m)|On)ξ(m)
n (i, j)

Plugging in the above partial derivative to Equation 2.3 results in the sequence weighting

update formula, Equation 2.1. Equation 2.2 can be derived in a similar way.

2.2.2 One Occurrences Per Sequence (OOPS) Model

For learning discriminative HMM, generative HMM, and MEME, we assume there is one

occurrence of the motif in all sequences in the same compartment. Such a distribution is

called one occurrence per sequence (OOPS) in MEME. Although a targeting motif may not

appear on every sequence in a compartment, our analysis shows that distributions other than

OOPS do not generate relevant motifs. We tried a method assuming zero or one occurrence

per sequence (ZOOPS) but the results of these runs looked much poorer than the OOPS

model when using MEME. For these runs ZOOPS usually found long subsequences shared

among very few homologs (for example 3 proteins) which did not generalize well to the test

data. Generative models do not have a constraint on the absence of motifs in the negative

set, so without the requirement of OOPS (or, covering as many sequences as possible)

there will be no mechanism to associate motifs extracted with localization. Another way

to explain the improvement seen when using OOPS is that our method involves both the

motif discovery and the use of SVM to classify proteins using the discovered motifs. Motifs

that are too weak to provide any discriminative power will be of little use for the classifier

and would thus not be used in the final outcome. However, the advantage of using weak

motifs (which are usually found using OOPS) with SVM is that, while each one on their

own may not be very informative a combination of weak motifs may still be very powerful.

If such a combination exists the SVM method would identify it and use it to correctly

classify proteins. In contrast, if these motifs were discarded at an earlier stage (in the motif

discovery procedure) that would not have been available for the classifier to use.
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2.2.3 Motif Finding Based on Predefined Pathways

An advantage of our discriminative training is that it can fully utilize the hierarchical

structure that is used to sort proteins in the cell (see Figure 2.1). We now describe how

this structure can be used for training and classification. For discriminative motif finding

at a specific split, we find motifs for each branch discriminating only against proteins in the

other branches of this split. Only proteins in compartments under the split are included as

training examples. For example, starting from the root, we find 10 motifs for the secretory

pathway and 10 motifs for all other (intra-cellular) compartments, discriminating between

the two sets. Then for the splits under inter-cellular compartments, we find 10 motifs

for nucleus and 10 motifs for the cytoplasm internal node, a union of proteins in cytosol,

peroxisome and mitochondria. To compare these results to generative motif finding methods

(MEME and generative HMM), we implemented a similar procedure for these methods as

well. Training examples for the leaf node in the tree (the 9 compartments) are the same

as in the flat structure. Training sets for the internal nodes are the union of descendant

nodes, e.g. we search for 10 motifs for cytoplasm which is the union of proteins in cytosol,

peroxisome, and mitochondria.

For the flat structure, all methods generate a total of 90 features (9 compartments each

having 10 motifs, see Methods). For the hierarchical structure, all methods generate a total

of 130 features (9 compartments, root and 3 internal nodes each having 10 motifs).

2.2.4 Selecting Motif Instances

After a PWM or HMM is learned, we would like to scan the sequences and only select the

strongest matches as motif instances. That is, some sequences will have no instance of a

motif while other sequences may have more than one instance. Hence for each candidate

motif, we need to rank each possible position on all sequences.

For MEME, positions are ranked by the likelihood of the subsequence given the PWM.

For HMM, the posterior probability given by posterior decoding is used. We consider two

silent states of profile HMM, the begin state and the end state of the motif, instead of

the first match state which may be skipped. For each position, we use the product of the

posterior probabilities of its begin state and the nearest end state for ranking. All positions

in all sequences are ranked by this product. According to the ranking we can retrieve the

top positions when the number of instances is given (e.g. to retrieve the top 30 positions).
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2.3 Predicting Localization

For evaluation of these three motif finders, we trained a support vector machine classifier

(SVM). The feature set for the SVM are the motif scores. For MEME, the likelihood of

the motif instance given the model is used as a feature. For generative and discriminative

HMM, the log likelihood ratio of the entire sequence over the background model is used as

a feature. The background model is the default one in HMMER. We carried out a 10-fold

cross-validation procedure, so these three methods are trained on part of the dataset and

tested on proteins not used to learn the motifs.

We use the SVM classifier in two different ways. The first is with a flat structure (one

vs. all) and the second is with the hierarchical structure. For the hierarchical structure we

train a separate SVM for each node in the tree and follow the classification results until

we reach a leaf which denotes the final prediction for a compartment. For example, we

first use our SVM to determine whether a protein is localized to the secretory pathway or

to intra-cellular compartments. Based on that prediction, we use another SVM at each

descending split (e.g. distinguishing between nucleus and cytoplasm). Some of the internal

nodes have more than two descending splits (e.g. three compartments under cytoplasm),

so each split is treated as an one vs. all classification. As in motif finding, only proteins in

compartments under an internal node are included in SVM training. Accuracy calculation

in hierarchical structure is the same as in flat structure. A prediction is considered correct

only if it chooses the correct leaf node out of the 9 compartments; internal nodes are not

counted toward accuracy.

The classifier enables us to rank the motifs found by MEME, generative and discrimi-

native HMM. The ranking is based on the contribution for predicting locations. We rank

the motifs by 1-step backward selection. For our SVM, the accuracy after removing each

feature (corresponding to a motif) is recorded. The feature or motif that leads to the largest

decrease in accuracy is selected as the top motif and the process is repeated until the desired

number of motifs are selected.

The confidence of the prediction of each protein-compartment pair is also evaluated

based on the classifier. For the flat structure or for each split on the tree structure, we

convert SVM margins to conditional probability of observing the protein given a branch.

For the tree structure, the confidence of a compartment given a protein sequence is the

product of conditional probability on each split along the path from the root to the leaf



CHAPTER 2. MOTIFS BASED ON PREDEFINED SORTING PATHWAYS 18

corresponding to the compartment.

2.4 Implementation and Details

We compare the results of our discriminative HMM model to generative training of HMMs

and PWMs. Implementation of the generative and discriminative HMM are based on the

HMMER 2.3.2 source code [37], and compared to motif finding using MEME 3.2.1 [36].

Unless explicitly mentioned below or in the main text, the default settings of HMMER

2.3.2 and MEME 3.2 are used. To make the comparison fair, we make similar assumptions

and use the same options for discriminative HMM, generative HMM, and PWM learned by

MEME: motif length is set to 4 (for HMM the number of match states is 4) and the one-

occurrence-per-sequence (OOPS) model is assumed. For generative HMM, the Baum-Welch

algorithm is executed with 100 random initialization and 100 iterations at most. HMMs

are initialized by randomly selecting a 4-mer from the training sequences and setting all

transition probabilities to the default values. The transition probabilities of background

states before and after motif are defined according to the median protein length of our

dataset, 530 amino acids. The emission probabilities of background states are the average

amino acid composition of SwissProt 34 [55] as default. The background model is also

the default one in HMMER, a HMM with a single state whose emission and transition

probabilities the same as the background state in the profile HMM described above. For

discriminative HMM, we first run the generative HMM algorithm using the same setting

described above, then run the extended Baum-Welch algorithm on the one with highest

likelihood with at most 100 iterations. For both generative and discriminative HMM, after

a motif is found we mask the amino acids assigned to match states by Viterbi algorithm

with random amino acids, and repeat the process until 10 motifs are found.

We classify the protein location by SVM using the motif scores as features. Training

and testing of SVM are performed by the software SVMlight [56] with the linear kernel

to avoid overfitting. The default options are used except that we tested three values for

the trade-off between error and margin (0.001, 0.01 and the default value of SVMlight) and

report the best cross-validation result.
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Output of classifier
Cyt ER Gol Vac Mit Nuc Per Mem Sec

(13.5) (9.7) (0.6) (2.5) (30.2) (32.2) (0.0) (11.3) (0.0)

Cytosol (15.7) 25.4 2.0 0.0 0.7 26.8 43.8 0.0 1.1 0.2
ER (7.0) 14.2 30.7 1.3 0.6 22.5 26.3 0.0 4.4 0.0
Golgi (2.1) 8.3 16.5 3.2 2.4 23.7 38.9 0.0 6.8 0.0
Vacuole (2.5) 12.7 16.1 0.0 15.3 11.4 33.9 0.0 10.6 0.0
Mitochondria (25.8) 9.3 2.3 0.0 0.6 71.7 14.7 0.0 1.5 0.0
Nuclear (37.6) 12.9 0.6 0.0 0.6 19.5 64.6 0.0 1.5 0.2
Peroxisome (1.4) 5.0 0.0 0.0 0.0 70.0 25.0 0.0 0.0 0.0
Membrane (7.1) 8.5 7.0 0.8 2.3 7.0 29.0 0.0 45.5 0.0
Secreted (0.8) 25.0 12.0 0.0 0.0 19.0 13.3 0.0 30.7 0.0

Table 2.1: Confusion matrix of discriminative HMM using the tree compartment structure.
Parenthesis after the columns are percentage of predictions (output) while parenthesis after
the rows are percentage of labels (only single-compartment proteins counted as these are
the training data).

2.5 Results

2.5.1 Prediction Accuracy

We applied our discriminative motif finding method to a yeast protein localization dataset [25].

This dataset consists of 1,521 S. cerevisae proteins with curated localization annotation in

SwissProt [55]. Proteins were annotated with nine labels: nucleus, cytosol, peroxisome,

mitochondria, endoplasmic reticulum (ER), Golgi apparatus, vacuole, plasma membrane,

and secreted. We tested two different ways to search for motifs in discriminative training.

The first uses a one vs. all approach by searching for motifs in each compartment while

discriminating against motifs in all other compartments. The second uses a tree structure

(Figure 2.1) to search for these motifs. The hierarchy of compartments utilizes the prior

knowledge of cellular sorting by identifying refined sets of motifs that can discriminate

compartments along the same targeting pathway. It has been shown previously that pre-

diction accuracy can be improved by incorporating a hierarchical structure on subcellular

compartments according to the protein sorting mechanism [24].

In addition to the two sets of motifs we find for discriminative HMMs, we find 10 motifs

for each compartment using MEME and generative HMMs. For all methods the number of

amino acid positions is set to four, although since HMMs allow for insertions and deletions

the instances of motifs represented could be longer or shorter.
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Figure 2.2: Accuracy of predictions based on known motifs for PSLT2, SVM using amino
acid frequencies as features, and SVM using motifs discovered by MEME, generative and
discriminative HMM. Results for the PSLT2 methods are taken from [25].

Because our goal is to identify novel targeting motifs and current understanding of tar-

geting signals is still limited, we evaluate motif finding results by using them to predict

localization as we describe above. We also compare the prediction accuracy of our method

with that of a Bayesian network classifier that used curated motifs in InterPro [35]. The

results for this prediction comparison are presented in Figure 2.2. As expected, the hierar-

chical structure, which provides another layer of biological information that is not available

for the flat classification task, generally leads to improvement in classification results for

all methods. When focusing only on generative training methods that do not utilize nega-

tive examples, profile HMMs outperformed MEME. This can be explained by the greater

expressive power of the former model which allows for insertion and deletion events that

cannot be modeled in MEME. Discriminative training that utilizes both this expressive

set of options and positive and negative examples outperforms both other methods and its

performance in the flat training setting is close to prediction based on known motifs. When

using the hierarchical setting we can further improve the discriminative HMM results since

internal nodes lead to more similar sets of motifs and discriminative training is most ben-

eficial when the two groups are more similar to each other. For this setting discriminative

HMMs achieve the most accurate classification results compared to all other methods we

tested. Specifically, even though it does not use previous knowledge of motifs, discriminative

HMMs improve upon results that were obtained using a list that included experimentally



CHAPTER 2. MOTIFS BASED ON PREDEFINED SORTING PATHWAYS 21

validated motifs. The confusion matrix of the discriminative HMM is shown in Table 2.1.

The coverage of compartments with fewer training sequences is low, e.g. proteins predicted

as peroxisome and secreted are too few. This is most likely due to choosing the overall

accuracy as the objective function to optimize.

We have applied the best classifier, discriminative HMM utilizing a hierarchical struc-

ture, to predict localization of all 6,782 proteins from SwissProt. The curated annotation

of 1,521 proteins in the above dataset is used as training data. The predictions and the

confidence are on the support website

(http://murphylab.web.cmu.edu/software/2009 TCBB motif/).

Prediction Based on Amino Acid Composition

It is informative to compare classifications based on motif with those based on amino acid

composition. We only utilize the amino acid composition of the whole sequence and not the

N-terminal, C-terminal, or other more sophisticated compositions as in LOCtree [24]. We

compared a number of SVM kernels for this data and concluded that a radial basis function

(RBF) kernel works best. We set the gamma parameter of the RBF kernel to the default

value of SVMlight. As shown in Figure 2.2, amino acid composition is as good as generative

HMM and better than MEME, but accuracy is lower than discriminative HMM.

We have also used the classification result based on amino acid composition to evaluate

whether our discriminative HMM method actually identified motifs, or was just utilizing

the different AA decomposition of the proteins in each compartment. The predictions made

by a SVM classifier based on discriminative HMM (using a tree structure) are compared to

the predictions based on amino acid composition. 10-fold cross validation is used in both

cases. Overall 27.1% of the proteins are only predicted correctly by our method and are

assigned to wrong compartments by the amino acid composition classifier. A breakdown

for each compartment is listed in Table 2.2. For peroxisome, vacuole, golgi, cytosol, and

ER, most of the predictions require motifs and amino acid composition is not enough. For

some compartments including nucleus, membrane and mitochondrion, there is a significant

overlap between the two methods. This shows that the motifs identified (e.g. those in

Figure 2.6 and 2.7 discussed below) are not just a different representation of amino acid

frequencies but rather represent real sequence signature.



CHAPTER 2. MOTIFS BASED ON PREDEFINED SORTING PATHWAYS 22

Disc HMM Disc HMM only
recall not AA freq

Cytosol 53.0 43.7

ER 40.4 30.8

Golgi 13.0 11.7

Vacuole 23.3 20.9

Mitochondria 67.8 35.7

Nuclear 56.1 00.6

Peroxisome 04.2 04.2

Membrane 40.5 15.9

Secreted 00.0 00.0

Table 2.2: The first column is the percentage of proteins correctly predicted by our method
in each compartment. The second column is the percentage of proteins correctly predicted
by our method but not by a classifier based on amino acid composition. Discriminative
HMM using the tree structure and amino acid composition using the flat structure are
evaluated by 10 fold cross validation as described above as in Figure 2.2.

Prediction After Homology Reduction

It is important to examine how many homologous proteins are contained in this dataset,

and how such redundancy affects the results. For this we have created a subset of proteins

which contains no redundancy, and compare the classification performance of our method

on this subset. This subset is filtered so that no pairs have more than 40% sequence

identity, measured by BLASTALL 2.2.20. 98 proteins are filtered out, corresponding to

only 6% of the original dataset. We performed the same procedures and parameters, and

the cross validation accuracies are shown in Figure 2.3. The performance of the classifiers

are robust against homology reduction compared to the results for the full dataset: amino

acid composition and MEME have similar accuracy, generative HMM have slightly higher

accuracy and discriminative HMM have slightly lower accuracy.

Precision-Recall Curves

We can obtain the precision and recall values of predicting one compartment at various

threshold of confidence. Figure 2.4 shows the precision-recall curves of classification us-

ing SVM and three different motif finders, MEME, generative and discriminative HMM.

Different methods performed better at different regions. For example, generative and dis-

criminative HMM work well for mitochondria and ER, the later better on high precision
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Figure 2.3: Cross validation accuracies of classification based on different methods using
the redundancy-removed subset.

area. For peroxisome discriminative HMM is better than generative HMM which is bet-

ter than MEME. In some areas, like high precision for membrane and secreted, MEME

and generative HMM are better than discriminative HMM. Considering compartment sizes,

overall discriminative HMM still outperforms other methods.

2.5.2 Recovering Known Motifs

After establishing the usefulness of our motif discovery algorithm for localization prediction

we looked at the set of motifs discovered to determine how many of them were previously

known.

Defining Known Targeting Motifs

There are a number of challenges we face when trying to compare the list of motifs identified

by our methods with known motifs. Foremost is that evaluation of large sets of potential

targeting motifs is hard when only a few targeting motifs are currently known. In addition,

many of the motifs identified by our method are not directly involved in targeting proteins

even if they are useful for subcellular classification. For example, DNA binding domains

suggest that a protein would be localized to the nucleus though they are probably not the

ones targeting it to that compartment. Thus restricting our comparison to classic motifs

like ER retention signals may be misleading.
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Figure 2.4: Comparing classifications using precision-recall curves of SVM whose features
are motifs discovered by MEME, generative and discriminative HMM. Different thresholds
are put on confidence derived from SVM margin.
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Figure 2.5: The number of known targeting motifs found by different methods and their
significance. The p-values are calculated by generating random motifs.

To overcome these issues we collected a list of known targeting motifs from two databases,

Minimotif Miner [57] and InterPro [35]. Minimotif Miner includes motifs that were exper-

imentally validated to be involved in protein targeting. These motifs are represented as

regular expressions. We also selected InterPro motifs that are associated with localization.

To determine such association we perform a simple filtering step using the software Inter-

ProScan [58]. Any InterPro motif that occurs more than 4 times in one compartment and

occurs in at most 3 compartments is considered associated with localization. Together we

have a list of 56 known targeting motifs, 23 of them from MiniMotif Miner and 33 from

InterPro.

Recovery Made by Different Methods

We ran MEME, generative and discriminative HMM on all sequences in our dataset to find

10 candidate motifs for each of the 9 compartments. The parameters of these methods are

determined by cross-validation as described in the previous section. The candidate motif

instances are matched against the known list derived from the Minimotif and InterPro

scans. A known motif is considered to be recovered if one-third of its instances are correctly

identified (overlapping at least half the motif length) when the number of predictions is 4

times the number of instances. For example, if a known motif has 12 instances, we retrieve

the top 48 positions of each motif as described above and check if there are more than 4

overlaps.
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Although directly comparing candidate motif models with known motifs has its advan-

tages (e.g. not relying on a set of annotated sequence), it is difficult because each method

outputs a different motif model. For example, MEME outputs a PWM while a HMM also

allows for variable length insertions and deletions that cannot be accounted for in PWMs.

We have thus decided to compare the different outputs by mapping their predictions back

onto the proteins and comparing the proteins segments predicted to contain the motif with

known motifs. This type of comparison has been used in the past [45,59]. Once the predic-

tions are mapped to the proteins, determining whether the identified segment is a “hit” for

a known motif also requires the determination of several parameters which we selected as

above. We believe that these strike a good balance between specificity (overlap for at least

half the motif) and sensitivity (a third of instances recovered). Note that the same criteria

was applied to all methods so even if the criteria is not optimal the comparison is still valid

and can be used to discuss the ability of each of the method to retrieve known instances.

The numbers of known motifs found are presented in Figure 2.5. Generative HMM was

able to identify the most motifs followed by MEME. Although discriminative HMM works

best for the classification task, it recovers less known motifs when compared to generative

HMM and MEME. We provide possible explanations in the Discussion.

Significance of Known Motifs Recovered

To estimate statistical significance of recovering known motifs by MEME and HMMs, we

generate 1000 sets each containing 90 random motifs as follows. Each motif is a randomly

generated profile HMM. First a random 4-mer is generated assuming uniform distribution

among the 20 amino acids. Then we construct a HMM and estimate the emission proba-

bilities of the match states assuming this 4-mer is observed 10 times with a pseudocount of

1. Other emission and transition probabilities are set to default values of HMMER. After

90 such random HMMs are created, the same criteria for MEME and HMM motifs is used

to count how many known motifs are recovered by these random HMMs. The p-value of

recovering x known motifs is estimated as the number of motif sets that recovered x or more

known motifs divided by 1000. For example generative HMM recovered 4 known motifs,

and 9 motif sets out of 1000 recovered 4 or more known motifs, so the p-value is estimated

as 0.009.
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Recovered? Correct compartment Other compartments
(hits / total) (hits / total)

Microbodies targeting signal
or PTS1 (SKL)

Yes 6 / 24 9 / 1497

Nuclear localization signal Yes 191 / 647 119 / 874

Membrane C-terminal ger-
anylgeranylation site

No 13 / 126 12 / 1395

ER retention signal (HDEL) No 8 / 156 1 / 1365

Table 2.3: Distribution of known signals from MiniMotif Miner.

Distribution of Known Targeting Motifs

In order to understand why a certain known targeting motif is recovered while another is

not, we analyzed the distribution of motifs in MiniMotif Miner [57] which include classical

localization signals in the literature. Note that some well known targeting signals, like

the signal peptide and the mitochondrial targeting sequence, are not in MiniMotif Miner

due to lack of a clear consensus sequence. To our knowledge such signals rely one special

programs like SignalP [28] and have not been represented as regular expression, PWM

or HMM in previous knowledge-based localization prediction methods [31, 60]. Based on

regular expression in MiniMotif Miner, there are four motifs that are significantly associated

with localization on our yeast dataset, as listed in Table 2.3. Two of them are recovered by

our method. We notice that not all well known localization signals are as discriminative as

one would hope. Some signals like the ER retention signal are well conserved across species

but can only explain a small portion of protein targeting in yeast.

Logos for Identified Motifs

The 20 most discriminative motifs and the known motifs found by discriminative HMM using

flat and hierarchical compartment structure are shown in Figure 2.6 and 2.7 respectively.

The most discriminative motifs are defined by backward feature selection as described in

previous section. Motifs are visualized using HMM logos [61]. The nuclear localization

signal motif is discovered by both methods. Discriminative HMM using flat structure finds

the microbodies targeting signal, a motif known to be involved in peroxisome import [62].

Discriminative HMM using hierarchical structure finds the stress-induced protein motif

(SRP1/TIP1), also known to be associated with the membrane in yeast [63]. Known motifs

are sometimes ranked very highly, as SRP1/TIP1 above, but not always. This observation
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Figure 2.6: Top 20 motif candidates that are most predictive of localization, discovered
by discriminative HMM using the flat compartment structure. Known motifs recovered
by our methods are also shown with InterPro ID and regular expressions, which partially
matches the HMM logo [61]. Pink columns are insert states of profile HMM; widths of
dark and light pink columns correspond to the hitting probability and the expected length
respectively (shortened when necessary to make the letters clear).
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Figure 2.7: Top 20 motif candidates that are most predictive of localization and known
motifs, discovered by discriminative HMM using the hierarchical compartment structure;
detailed description in Figure 2.6.
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suggests that there may be previously uncharacterized motifs that are highly associated

with localization.

It is important to note that not all found motifs are necessarily involved in localization.

Many may be involved in other functions that proteins in a given compartment need to

carry out, or may reflect differences in amino acid composition between proteins localizing

to different compartments. For example, the tryptophan motif for secreted proteins shown in

Figure 2.7 presumably reflects a statistically higher frequency of that amino acid in secreted

proteins than in other proteins but does not imply (or rule out) that that amino acid is

important for the sorting process leading to secretion. Similarly, the “cytosolic retention

signal” motif might not have any retention role but could simply be a motif associated with

binding of cytosolic proteins to structures such as the cytoskeleton.

The motif found that matches to known NLS is presumably that of a single basic cluster

corresponding to one half of a bipartite NLS. As such, non-basic amino acids in the conserved

basic positions is perhaps surprising. However, it is possible that NLS still functions with

the presence of non-basic amino acids either to the left or right of two or more basic amino

acids. Since the HMM logos cannot capture correlation between positions (and the HMM

only capture first order dependence), these motifs might match with some sequences that

are unlikely to function as an NLS. It should however match well with many valid NLS. In

other words, we might expect the motif in the form shown in Figure 2.6 and 2.7 to have

some false positives but high recall of valid NLS.

2.5.3 Motif Conservation

Since at least some of the discovered motifs may play an as yet unidentified role in localiza-

tion, we sought other ways of validating them as potential sorting signals. One approach

was based on analysis of motif conservation: we expect motifs targeting proteins to their

subcellular location to be more conserved among evolutionarily close species [64].

Protein Homolog Alignment

To evaluate the conservation of the motifs identified by each of the methods we used Saccha-

romyces Genome Database (SGD) fungal alignments for 7 yeast species [16]. The default

alignment result is used. Sequence and homology information were derived from integra-

tion of two previous comparative genomics studies [65, 66]. For these species amino acid

sequence alignment was performed by ClustalW, and four conservation states were defined
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Figure 2.8: Percentage of conserved motif instances of the top 20 candidate motifs found
by different methods. Conservation is based on SGD fungal alignment. A motif instance is
considered conserved if all sites are strongly conserved. The p-values are denoted for each
method (see Methods for the statistical test).

for each amino acid: no conservation versus weak, strong and identical conservation (across

7 species).

Measure of Conservation

The analysis below is based on the 20 most discriminative motif candidates, defined by

backward feature selection as described previously. For each of the 20 motifs, we retrieve

the top 30 positions based on likelihood or posterior probability. Then for each motif

instance, it is considered conserved if all sites are labeled as having strong or identical

conservation by ClustalW.

Significance of Motif Conservation

The statistical significance of motif conservation is calculated as follows. We scan through

all proteins in our dataset using a sliding window of 4 amino acids (the motif length we

used) to obtain the number of conserved 4-mer and total possible 4-mers. For each motif

finding method, we have the number of conserved motif instances and the total number of

top motif instances. With these counts we use a hypergeometric test to calculate a p-value

for each method.
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Conservation of Motifs Found by Different Methods

The percentage of conserved motif instances for MEME, generative and discriminative HMM

(flat or hierarchical structure) as well as the significance for each of these methods are

presented in Figure 2.8. The conservation analysis clearly indicates that motif instances

discovered by all methods are significantly conserved when compared to random protein

regions. Using a sliding window of the same length as the motifs, we find that only 41% of

4-mers are conserved. In contrast, for motifs identified by discriminative HMM using flat

or hierarchical structure, 49% and 51% of motif instances are conserved respectively. For

generative HMM 48% of motif instances are conserved and for MEME 45% instances are

conserved. The conservation achieved by discriminative HMM using hierarchical structure

is the highest among the methods we looked at.

Conservation After Randomizing Annotations

To further evaluate the significance of the motif conservation, we tested the conservation

analysis on motifs extracted from training data with randomized compartment annotations.

The fraction of each compartment (estimated from single-compartment proteins) is kept.

We then perform motif discovery and conservation analysis on the randomized annotations.

In Figure 2.9 we can see that the conservation after randomizing annotations is much lower

than that using the correct annotations, except conservation of motifs found by MEME is

similar to the original one which is not significant. Note that although the annotation is

random, the motif finders may still extract overrepresented motifs related to other functions

(not random 4-mers in hypergeometric test) and display some conservation that is stronger

than background.

2.5.4 Reannotating Protein Localization

The motifs discovered by our method successfully predict the subcellular localization of close

to 60% of all proteins. Still, we were interested in looking more closely at the other 40%

for which we do not obtain the expected result. Several other factors can effect localization

and our method clearly does not discover all targeting motifs. Still, we hypothesized that

at least some of these mistakes can be explained by incorrect annotation in the SwissProt

database.

To test this we have used the entire dataset as training set for both motif finding
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Figure 2.9: Motif conservation after randomizing annotation of the training data. The
setting is the same as the conservation analysis in the main text using the correct annota-
tions; percentage of conserved motif instances of the top 20 candidate motifs found by each
method is shown. See methods in the main text for p-value calculation.

and the SVM classifier. Next, we examined more closely those proteins for which none

of the motif-based methods (PSLT2, MEME, generative and discriminative HMM using

hierarchical structure) agrees with the annotation in the SwissProt database. There are 42

such proteins out of 1,521 entries in the dataset we worked with. We have found at least 8

proteins for which there is strong reason to believe that the annotations in SwissProt are

incomplete, discussed below.

Ski3/YPR189W

The protein superkiller 3 (Ski3), which is involved in mRNA degradation, was annotated

as nuclear in the previous version of SwissProt used to create our annotated protein set.

However, all motif-based classifiers (including MEME and HMM) predicted cytosol. The

latest version of SwissProt, as well as SGD, lists it as localizing to both the nucleus and

the Ski complex (in the cytoplasm). This illustrates that the motif-based classifiers can

potentially complement protein databases and image-based annotations.

Frq1/YDR373W

The N-myristoylated calcium-binding protein, Frq1, is annotated as bud neck in SwissProt

but manually curated as Golgi membrane on SGD, in agreement with the MEME prediction.

The GFP image in the UCSF database is consistent with Golgi localization (Figure 2.10A).



CHAPTER 2. MOTIFS BASED ON PREDEFINED SORTING PATHWAYS 34

Figure 2.10: Fluorescence microscope images for some of the proteins whose subcellu-
lar location predicted from sequence differs from annotations in SwissProt. Each im-
age shows the DNA-binding dye DAPI (red) and the GFP-tagged proteins (green).
The proteins are Frq1/YDR373W (upper left), Ppt1/YGR123C (upper right), and
Gsg1/YDR108W (lower). Images were obtained from the UCSF GFP-localization database
(http://yeastgfp.ucsf.edu/).
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Ppt1/YGR123C

Ppt1, or protein phosphatase T, is curated as present in both the cytoplasm and the nucleus

on SGD. Cytoplasm is predicted by PSLT2 and MEME even though SwissProt only lists

nucleus. The GFP tagged protein shows cytoplasmic localization (Figure 2.10B).

Vac8/YEL013W

Vac8 is labeled as vacuole by human experts, but is also involved in nucleus-vacuole (NV)

junctions [67]. This could be the reason that an image-based automated classifier [15] and

all motif finders agree on Vac8 being localized to the nucleus.

Pom152/YMR129W

According to SwissProt, the protein Pom152 is a component of the nuclear pore complex

and is localized to the nucleus, but according to SGD it is localized to both nucleus (curated)

and mitochondria (highthroughput). The GFP image on the UCSF database actually shows

a cytoplasmic (non-nuclear) pattern, and an automated image-based classifier [15] predicted

vacuole. The GFP evidences agrees with all motif based classifiers that predict Pom152 to

be localized to the cytosol, although it is quite possible that the protein is mis-localized due

to the GFP tagging. The results suggest that motif-based methods are helpful in identifying

proteins at the boundary between two compartments.

Axl1/YPR122W

Axl1, a protein involved in axial budding, is labeled as bud neck or membrane on both

SwissProt and SGD. GFP tagging also suggests cytosol, as predicted by the HMM motif

finder.

Gsg1/YDR108W

Gsg1 is labeled as Golgi on SwissProt and SGD but the GFP image (Figure 2.10C) can also

be interpreted as cytosol, agreeing with MEME and generative HMM.

Frt1/YOR324C

Frt1 is labeled as ER on SwissProt and SGD but predictions based on PSLT2 and generative

HMM are mitochondria and cytosol respectively, which are possible based on the GFP
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image.

2.6 Discussion

We have developed and used a new method that relies on discriminative HMMs to search

for protein targeting motifs. We used our method to identify new motifs that control

subcellular localization of proteins. Our method led to improvement over other methods

when predicting localization using these motifs. While many of the motifs identified by

our method were not known before, they are more conserved than average amino acids in

protein coding regions indicating their importance for proper functioning of the proteins.

We have also used our method to identify proteins that we believe are missannotated in

public datasets. Some of the predicted annotations are supported by imaging data as well.

Our discriminative HMM can be considered as an extension over the maximum discrimi-

nation training of HMM suggested by Eddy et al [68]. The criterion used by both methods,

conditional likelihood of the class given the data, is the same. However the maximum dis-

crimination method proposed by Eddy et al only uses positive examples discriminating

against background data. Thus, it cannot utilize negative examples as our method does.

When compared to known motifs, the set of motifs identified by discriminative HMM

contains less known motifs than generative HMM and MEME, even though they lead to the

highest prediction accuracy. One way to explain this result is the relatively small number

of known targeting motifs. Thus, it could be that there are still many strong targeting

motifs that are unknown and discriminative HMM was able to identify some of these. In

addition, most known motifs are represented as consecutive peptides without insertion or

deletion, hence they follow more closely the MEME model. It is worth noting that the

results in this chapter are achieved without incorporating information on position relative

to sequence landmarks like the N- or C-terminus or cleavage sites (like most motif finders).

Thus it does not find elements, such as the signal peptide, that can be found using such

alignments [69]. We will propose a solution in the next chapter.



Chapter 3

Inferring Targeting Pathways

In Chapter 2 we showed how to learn motifs and predict locations based on a tree repre-

senting targeting pathways. However this approach is too simplified to model the actual

protein sorting mechanism. The tree we used is only a selected subset of the known path-

ways, and there may be more targeting pathways unknown to us. Hence we would like

to model protein targeting using a more general structure and to discover new targeting

pathways.

To perform their function(s), protein usually need to be localized to the specific com-

partment(s) in which they operate. Subcellular localization of proteins is typically achieved

by sorting pathways involving carrier proteins. Disruption of these pathways leading to

inaccurate localization plays an important role in several diseases, including cancer [3,4,8],

Alzheimer’s disease [5], hyperoxaluria [6] and cystic fibrosis [7]. Thus, an important problem

in systems biology is to determine how proteins are localized to their target compartments,

the carriers and motifs that govern this localization and the pathways that are being used.

While the above experimental methods provide some information on sorting pathways,

no method exists to try and infer global sorting pathways from current localization informa-

tion. In this chapter, we show that by integrating sequence, motif and protein interaction

data we can develop global models for the process in which proteins are localized to subcel-

lular compartments. We use a hidden Markov model (HMM) to represent sorting pathways.

Carrier proteins and motifs are used to define internal states in this model and the com-

partments serve as the final (goal) state. Using this model we identified several sorting

pathways, the carrier proteins that govern them and the proteins that are being sorted ac-

cording to these pathways. Simulation data indicates that the models learned are accurate

37
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(leading to 81% prediction accuracy with a noise level of 5%, see Figure 3.4). Using data

from yeast we show that our model leads to accurate classification of protein compartments

while at the same time enabling us to recover many known pathways and the proteins that

govern these pathways. Several new predictions are provided by the model representing

new putative sorting pathways.

3.1 Related Work

Recent advances in fluorescent microscopy coupled with automated image-based analysis

methods provide rich information about the compartments to which proteins are localized

in yeast [1,15] and human [13,14,21]. Several computational methods have been developed

to predict subcellular localization by integrating sequence data with other types of high

throughput data [22–25, 33, 34, 70, 71]. These methods either treat the problem as a one

vs. all classification problem [22,23,70,71] or utilize a tree that corresponds to the current

knowledge regarding intermediate compartments, for example LOCtree [24], BaCelLo [72]

and discriminative HMMs [73]. The tree based methods were shown to be superior to the

one vs. all methods; however, these methods do not attempt to learn the sorting pathways,

relying instead on current (partial) knowledge of protein sorting mechanism.

A number of methods have learned decision trees for predicting subcellular localization.

These include PSLT2 [25] which refines the location into sub-compartments using a decision

tree learned from data and YimLOC [27] which learns a decision tree for the mitochondrion

compartment only using features that include predictions from SherLoc [74], an abstract-

based localization classifier. While the decision trees generated by these methods are often

quite accurate, they are not intended to reflect sorting pathways, and they utilize features

that, while useful for classification, are not related to the biochemical process of protein

sorting.

In contrast to the global localization prediction methods, several experimental researchers

have focused on trying to assign a specific sorting pathway to a small number of proteins.

For example, proteins containing a signal peptide are exported through the secretory path-

way [20], while some proteins without a classical N-terminal signal peptide are found to be

exported via the non-classical secretory pathway [75]. A number of computational methods

were developed to use this information to predict, for a given pathway, whether a protein

goes through that pathway or not based on its sequence (for example, SignalP [28] and
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SecretomeP [29]). However, these methods rely on the pathway as an input and cannot be

used to infer new pathways.

There are many methods developed for reconstruction of pathways of other types, for

example for signaling pathways [76–78] and metabolic pathways [79–81]. These pathways

are used to describe information flow: one protein senses the environments and by activating

a signaling or regulatory pathway passes that information along so that the cells can mount

a response. We focused on a completely different meaning of pathway: physical movement

of a specific protein. When referring to sorting pathways we mean that a single protein

is being carried from one location to another. Unlike information flow pathways, which

involve different molecules along the way, physical sorting pathways always involve the same

proteins interacting with a set of different proteins. This makes it much more complicated

to infer the order in which this is performed (since it is always the same protein). In

addition, the outcome of an information flow pathway is often a change in genes expression

which can be readily measured using microarrays. In contrast, the outcome of a sorting

pathway is the localization of a single (or a few) proteins to a compartment. Again, this

requires different methods for inference. We are not aware of any prior paper discussing

computational methods for large scale inference of pathways describing physical movement

of a protein.

3.2 Input Data

Our input data is composed of the localization of all proteins, their interactions and their

sequences. Each protein is labeled with one or more locations. Generative HMM search

for motifs present in one compartment and discriminative HMM search for motifs present

in one compartment but absent in other compartments. We also collected all interacting

partners of the protein and the occurrences of a set of known motifs from public databases

(denoted as deterministic motifs to distinguish from novel motifs extracted from sequence

described below), specifically InterPro [35] domains and and three signal sequence feature

from UniProt [18]: signal peptides, transmembrane region, and GPI anchor (more detail in

section 3.5.2). We perform feature selection by a hypergeometric test to identify features

with a significant association with a location before learning our model.

We extract novel motifs associated with a location using the generative and discrimina-

tive HMM motif finder we have previously described [73]. We will compare two approaches
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to convert each sequence to motif features: sequence likelihood and binary occurrence. The

first approach use the sequence likelihood given the motif as feature, Pr(S|λk) where λk

is the profile HMM of the motif (see next section). It represents how strong the instance

matches the motif. Note that what really matters is the likelihood ratio of motif versus back-

ground, as described below. The second approach use a binary value to represent whether a

motif occurs in a sequence instead of a real value. Binary motif occurrence are determined

by posterior decoding as described in the previous chapter (also in the paper [73]).

3.3 Modeling Sorting Pathway by Hidden Markov Models

We used a HMM to model the process of sorting proteins to their compartments, determined

by the interactions and sequence motifs. HMM is a generative model and thus provides the

set of events that lead to the observed localization of the proteins (see Figure 3.1). An

allowed pathway through the HMM state space structure represents a possible protein

sorting pathway. All proteins start at the same start state, representing their translation

in the cytoplasm. (While those few proteins that are translated in mitochondria would not

begin in the cytoplasm, there were no mitochondrially-encoded proteins in our datasets and

we can ignore this possibility.) The assigned (final) compartment of a protein is represented

by a state in the model that does not have any outgoing transitions. Intermediate states

correspond to intermediate compartments or to sorting events (for example, interaction

with a carrier protein). These internal states emit observed features that are related to the

sorting events, namely motifs (implying that the targeted protein uses that motif to direct it

to that state) and carrier proteins that target proteins to the state. The emitted features of a

protein are observed and determine its path in the state space. Emission is probabilistic and

so certain proteins can pass through states even if they do not contain any of the motifs and

do not interact with any of the carriers for that state. Note that while the compartment

information is available during training, we do not know how many intermediate states

should be included in the model (some sorting pathways may be short and others long,

and several compartments can share parts of the pathways). Thus, unlike traditional HMM

learning tasks that focus on learning the transition and emission probabilities, for our model

we also need to learn the set of states that are used in the sorting HMM.
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Figure 3.1: (A) The graphical model representation of a sample HMM for sorting pathways.
Variables X1 · · ·X4 are unobserved intermediate sorting states at each level or each step.
Z1 · · ·Z3 are the emission responsible for protein sorting at each step. S is the sequence and
F corresponds to the binary feature observations. (B) The simplified HMM that maintains
conditional independence between steps. (C) A sample state space: The top block is the root
and its outgoing arrows correspond to initial probabilities. Bottom nodes are compartment
states. The blocks are states and the arrows are transitions, with transition probabilities
labeled. The items listed inside a blocks are top features emitted by the states, and emission
probabilities are given on the left. Diamond-shaped blocks are silent states that emit the
background feature only.
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3.3.1 A HMM for the Sorting Pathways Problem

We will discuss the likelihood of our HMM in detail here (see Figure 3.1). The following

description applies to using likelihood for motif features, but can be easily adapted to

the case of binary motif features by removing the sequence variable S and include motif

occurrences in the binary feature variables F (see below). As discussed above, in our

HMM model all proteins move from a single start state to their final compartment. For

reasons that will become clear when talking about learning the parameters of the model,

we associate each state in our model with a specific level. The root state is level 0, all

compartment states are associated with the final level (T ) and each intermediate state is

associated with a specific level t (0 < t < T ). The number of levels T is inferred from

the data during structure initialization as described in section 3.4. We require that a state

at level t can be reached from the root after exactly t transitions; connections that are

more than one level apart move through several “silent” states so that transitions are only

between adjacent levels (diamond-shaped states in Figure 3.1). Silent states only emit a

“background” feature (probabilities of the background feature are discussed later). Let Xt

denote a hidden state at level t, t = 1, 2, · · · , T in a T -level model. The value of Xt can be

one of J possible states, Xt ∈ {1, 2, · · · , J}.

In addition to transition probabilities states are associated with emission probabilities.

State Xt emits a feature index Zt. Zt can either be one of M motifs (represented as a

likelihood score for each protein), or one of K binary features which include interactions

with selected carriers, selected deterministic motif occurrences based on UniProt, or the

background feature emitted by silent states. Hence Zt ∈ {1, 2, · · ·M + K + 1}, where the

motifs are indexed from 1 to M and the features are indexed from M + 1 to M + K.

Let S denote the sequence observed for each protein, F be the binary features from

interaction databases and UniProt, and Y be the compartment assignments for a protein.

The data likelihood of our HMM model (Figure 3.1), is defined as:

Pr(S, F, Y |Θ) =
∑

X1

· · ·
∑

XT

∑

Z1

· · ·
∑

ZT−1

Pr(S, F, Y, X1, · · ·XT , Z1, · · ·ZT−1|Θ)

These joint probabilities can be decomposed based on the HMM independence assumptions

as follows:

Pr(S, F, Y, X1, · · ·XT , Z1, · · ·ZT−1|Θ)
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= Pr(X1)
T−1
∏

t=1

Pr(Xt+1|Xt)Pr(Zt|Xt)Pr(S|Z1, · · ·ZT−1)Pr(F |Z1, · · ·ZT−1)Pr(Y |ZT ).(3.1)

The parameters of our HMM are the initial, transition and emission probabilities, Θ =

(π, A, B), defined as

πi = Pr(X1 = i), Aij = Pr(Xt+1 = j|Xt = i), Bik = Pr(Zt = k|Xt = i).

where πi is the initial probability of transition from the root to state i, Aij is the transition

probability between state i and state j, and Bik is the emission probabilities from state i

to emission k. Since each state only transits to a small number of states and emits a small

number of features, these matrices are sparse.

3.3.2 Defining the Emission and Transition Probabilities for Our Model

As indicated above the feature observation includes the sequences and interactions selected

carriers inferred by feature selection described above. Note that these observations are static

and so may depend on all levels in the HMM. The emission probability for the sequence S is

thus Pr(S|Z1, · · ·ZT−1). Since probability depends on several motif models (one per level),

which may be dependent (for example for overlapping motifs) and is thus computationally

intractable given many combinations of motifs. As is commonly done [51] we approximate

this term by the product of the conditional probabilities of the sequence given an individual

emission at each level:
∏T−1

t=1 Pr(S|Zt). Similarly we calculate the conditional probability

of the binary features Pr(F |Z1, · · ·ZT−1) using the product of the conditional probabilities

of individual emissions (unlike for the sequence data this computation is exact since they

are provided as independent events):
∏T−1

t=1 Pr(F |Zt). This leads to the more typical HMM

model shown in Figure 3.1B.

To translate the sequence information to a probability we use the likelihood of the

sequence given the motif, Pr(S|λk), where λk is the motif mode. We use a profile HMM

model but any other probabilistic models would also work, for example a position weight

matrix (PWM) which specifies a weight for each amino acid at each motif position, assuming

independence between positions. This likelihood is termed the motif score, and indicates

how well the sequence agrees with the motif model. For states emitting one of the binary

features or the background feature, the likelihood of the sequence is Pr(S|λ0), where λ0 is

the background model for which we use a 0th-order Markov model, which assumes that each



CHAPTER 3. INFERRING TARGETING PATHWAYS 44

position in the sequence are generated independently according to amino acid frequencies.

Combined, the sequence likelihood is given by

Pr(S|Zt = k) =

{

Pr(S|λk) if 1 ≤ k ≤M

Pr(S|λ0) if M + 1 ≤ k ≤M + K + 1
(3.2)

The binary features observations, F = (F1, F2, · · · , FK), Fk ∈ {0, 1} correspond to ob-

served protein interactions and deterministic motifs as discussed above. As mentioned

above we assume independence in noisy observation of these features, which is a necessary

simplification. This lead to

Pr(F |Zt = k) =

K
∏

j=1

Pr(Fj |Zt = k)

The conditional probability of observing a feature Fj given an emission Zt is

Pr(Fj = 1|Zt = k) =

{

νj if k 6= M + j

ν0 if k = M + j
, 1 ≤ j ≤ K (3.3)

where νj is probability of observing this interaction across all proteins in our dataset (back-

ground distribution) and 1−ν0 is the probability of false negatives, .i.e. proteins that should

go through this state but do not have this interaction / motif. Note that we need to use

νj since an interaction or a motif may be observed even if the corresponding feature is not

emitted by one of the states since many interactions are not related to protein sorting but

rather to another pathway in which this protein is a member.

The conditional probability of the compartment given the final state is denoted by:

Pr(Y |XT ). If a single compartment is given for a protein, the bottom state XT is known for

that protein and so this probability is 1 for that compartment and 0 for others. If the training

data contains multiple compartments for a protein, it is reflected by the given compartment

likelihood Pr(Y = y|XT = c), which is assumed to be uniform for all compartments listed for

that protein. In other words we consider multiple localization as uncertainty. For example,

a protein might be considered to be 50% certain as one compartment and 50% certain as

another compartment.
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3.3.3 Approximation and Feature Levels

Unlike a typical HMM learning problem, the emission data we observe (sequence and in-

teraction data) is static and so cannot be directly associated with any sequence of events.

In addition, since our features are static, they can be emitted multiple times along the

same path. However, if this happens the independence assumptions of HMMs are violated.

Specifically, if a feature is emitted by a state in level t and then again by a state in level

t+1 then it is not true anymore that the probability of emitting the feature given the state

is independent of any emission events in previous states (since, if it was emitted before the

protein can still emit it again). We thus constrain all features in our model so that each is

only associated with a specific level and can only be emitted by states on that level. The

level is determined in the initial structure estimation step discussed in the next section.

Since no transitions are allowed between states on the same level no feature can thus be

emitted more than once along the path and so the independence assumption holds. This

requirement guarantees that the likelihood function obtained from the model presented in

Figure 3.1B is a constant factor approximation of the likelihood function of our original

model (Figure 3.1A).

Here we will describe how to approximate the full model in Figure 3.1A by the simplified

model in Figure 3.1B, given that each feature has a fixed level. Recall that the joint

probabilities of the original model in Figure 3.1A is given in Equation (3.1). First we focus

on the emission probabilities of the feature observations, and show that the likelihood ratio

of the emission versus the background equals the product of this likelihood ratio on all

levels.

Pr(Fj = 1|Z1, · · ·ZT−1)

νj
=

T−1
∏

t=1

Pr(Fj = 1|Zt)

νj
(3.4)

where νj is the likelihood given the background feature. From Equation (3.4) we can

naturally obtain

Pr(Fj = 1|Z1, · · ·ZT−1) = ν2−T
j

T−1
∏

t=1

Pr(Fj = 1|Zt)

for each feature, and it is combined as

Pr(F |Z1, Z2, · · ·ZT−1) = (
∏

j

ν2−T
j )

T−1
∏

t=1

Pr(F |Zt) (3.5)
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The full emission probability for each feature, Pr(Fj |Z1, Z2, · · ·ZT−1), is defined as a

noisy observation (with false positive and false negative) of the OR function over Zt,

Pr(Fj = 1|Z1 = k1, Z2 = k2, · · ·ZT−1 = kT−1) =

{

νj if ∀t kt 6= M + j

ν0 if ∃t kt = M + j

However the OR function is unnecessary because we require feature Fj to have a fixed level,

so only one level can emit the corresponding emission such that Zt = kt = M + j. Now

to prove Equation (3.4), when one of the levels indeed emit the corresponding emission, we

start from the right hand side of Equation (3.4) and apply Equation (3.3),

T−1
∏

t=1

Pr(Fj = 1|Zt)

νj
=

ν0ν
T−2
j

νT−1
j

=
ν0

νj
=

Pr(Fj = 1|Z1, · · ·ZT−1)

νj

and reach the left hand side of Equation (3.4). Similarly when none of the levels emit the

corresponding emission,

T−1
∏

t=1

Pr(Fj = 1|Zt)

νj
=

νT−1
j

νT−1
j

=
νj

νj
=

Pr(Fj = 1|Z1, Z2, · · ·ZT−1)

νj

Hence we have derived Equation (3.4) given the requirement that each feature must have a

fixed level.

The above derivation for feature likelihood term is exact, but approximation is necessary

for the sequence likelihood term. Similar to feature observations, we approximate the

likelihood ratio of emission probabilities for sequence by a set of motifs over the background

likelihood as the product of this likelihood at each level,

Pr(S|Z1, Z2, · · ·ZT−1)

Pr(S|λ0)
≈

T−1
∏

t=1

Pr(S|Zt)

Pr(S|λ0)
(3.6)

where λ0 is the null model as in Equation (3.2). We assume that motifs are independent to

each other since motif length is set to be short (either set to 4 peptides or 3 to 7 peptides)

comparing to the sequence length, as is the case in most known targeting motifs. This is

a common assumption (e.g. [51]) and necessary for avoiding overfitting. However as we

discussed in section 2.4 this assumption requires that no motif is emitted twice in different

levels, which is achieved by fixing the level of each feature. Similar to Equation (3.5) we
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1. Estimate the associations between features and compartments

using a hypergeometric test.

2. Select features significantly associated with at least one compartment.

2. Start with an initial structure estimated from associations

between features and compartments.

3. While BIC score improves do

a. For each level, create a candidate structure as follows.

i. Add a node (state) at this level.

ii. Link from all upper nodes and link to all lower nodes.

iii. Run EM to optimize parameters.

iv. Prune edges (transitions) rarely visited based on the parameters.

v. Prune emissions rarely used based on the parameters.

vi. Run EM again to adjust parameters.

b. Create candidate structures by randomly splitting the state

with largest number of out-transitions.

i. Create a new state at the same level.

ii. Each out-transition has 1/2 probability to be moved

to the new state.

iii. Copy the in-transitions to the new state.

iv. Run EM to optimize parameters.

v. Prune transitions and emissions rarely visited.

vi. Repeat for a fixed number of times, e.g. the number of levels.

c. Choose the candidate structure with highest BIC score.

d. If improving, update to that structure; otherwise stop.

Figure 3.2: Algorithm for structure search.

also write the sequence likelihood term as

Pr(S|Z1, Z2, · · ·ZT−1) = Pr(S|λ0)
2−T

T−1
∏

t=1

Pr(S|Zt). (3.7)

By combining Equation (3.5) and (3.7), we show that the likelihood of the full model in

Figure 3.1A and the likelihood of the simplified model in Figure 3.1B is approximately up

to a constant factor, so that optimizing the simplified model also optimizes the original

model.
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3.4 Structure Learning

In addition to learning the parameters (emission and transition probabilities) we also need

to learn the set of states that should be included in our model. The learning algorithm

is formally presented in Figure 3.2. We start by associating potential features (protein

interactions and known motifs) with compartments. For a potential feature, we use the

hypergeometric distribution to determine the significance of this association (by looking at

the overlap between proteins assigned to each compartment and proteins that are associated

with each of the features). We next identify a set of significantly associated compartments

(p-value < 0.01 with Bonferroni correction) for each potential feature. Features that are sig-

nificantly associated with at least one compartment are selected and the remaining features

are removed.

After feature selection, we estimate an initial structure by using the association between

features and compartments. All features that correspond to the same set of associated

compartments are grouped and assigned to a single state, such that this state emits these

features with uniform probability. These features are fixed to the level corresponding to

the number of compartments they are significantly associated with and can only be emitted

by states on that level (we tried optimizing these feature levels as part of the iterative

learning process but this did not improve performance while drastically increasing run

time). Initial transition between states is determined from the inclusion relationship of the

set of compartments (states for which features are associated with more compartments are

assigned to higher levels). We initially only allow transitions between two states where

the second state contains features that are associated with a subset of the compartments

of the first state. That is, the initial structure resembles a partially ordered set when the

states are ordered by inclusion. The transition probability out of a state is also set to the

uniform distribution. The number of levels of this structure, T , will be fixed throughout

the structure search process.

Starting with this initial model, we use a greedy search algorithm which attempts to

optimize the Bayesian information criterion (BIC), which is the negative data log likelihood

plus a penalty term for model selection.

BIC = −2 log Pr(S,F,Y|Θ) + |Θ| log N

where S,F,Y are the collection of sequences, feature observations, and compartments of
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the proteins in the training data. Θ = π, A, B) denote the parameters of the HMM. |Θ| is

the number of parameters according to the structure, which is a function of the number of

states and the number of transitions and emissions of each state. Complicated structures

will have large |Θ| while simple structures will have small ones. N is the number of proteins

in our training data. BIC is asymptotically consistent while Akaike information criterion

(AIC) is not, and BIC is chosen particularly because we prefer sparser structures [82].

Since use of BIC can sometimes lead to overfitting, we compared the use of BIC to 4-fold

internal cross-validation for model selection. BIC is faster than internal cross validation

and performed better on simulated data (see section 3.5.1).

To improve the initial structure described above we perform two types of local moves

at each search iteration: adding a new state and splitting the largest state. For each level,

we try adding a state which is fully connected to all states in levels above and below it

and emits all features on that level. We run standard EM algorithm [83] to optimize the

parameters of the model for all states (transition and emission probabilities). Transitions

and emissions with probabilities lower than a specific threshold are pruned. Features not

emitted by any states are also pruned, so the feature set becomes smaller and smaller. Then

we run EM algorithm again because the parameters are changed. A candidate model and

structure is created by this process for each level. We also try splitting the largest state,

defined as the state with the largest number of out-transitions. A randomly chosen half

of the out-transitions will be moved to a newly created state which shares the same in-

transitions and emissions. As above we run EM algorithm, prune transitions and emission,

and run EM algorithm again to obtain a candidate structure. We try this for a fixed number

of times, usually the number of levels so that half of the local moves are adding and half are

splitting. Among all candidate structures obtained by adding and splitting, the one with

the highest BIC score is chosen. This procedure is repeated until the BIC score no longer

improves.

3.5 Results

3.5.1 Simulated Data

We first tested our method using simulated data in order to determine how well it can

recover a known underlying structure given only information on destinations, carriers and

motifs. We manually created structures with 7, 14, 23, 25, and 31 states with multiple
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Figure 3.3: An example of a HMM state space that represents protein sorting pathways.
Motifs or carriers are denoted as mi. The top block is the initial state, and the compartments
in a dataset (blocks with names) correspond to the bottom blocks. The shaded blocks and
arrows are supplementary structures that make the state space compatible with a HMM of
fixed length.
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Figure 3.4: (A) Testing accuracy of simulated dataset generated from a structure with 25
states with varying levels of noise (false positive and false negative in features). The training
sample size was fixed at 1400. (B) Testing accuracy versus different training sample sizes.
The noise level was fixed at 2%. (C) The ratio of overlapping nodes and edges between the
learned model and the true model with varying levels of noise. The training sample size was
fixed at 1400. (D) The ratio of overlapping nodes and edges with varying training sample
sizes. The noise level was fixed at 2%.

emitted features per state (see Supporting Website for the structure of these models). For

each structure we simulate the probabilistic generative procedure and record the emitted

features. 1,200 proteins are generated from the model, with varying levels of noise (leading

to false positive and false negative features for proteins). We also tested various sizes of

input sets with a fixed noise level.

Predicting Protein Locations

While it is not its primary goal, our method can provide predictions regarding the final

localization of each protein. For each training dataset, we therefore generated a test dataset

with 4,000 proteins from the same model and evaluated the accuracy of predicting protein

localization for the test data using the structure and model learned by our method. Our

method is compared to predictions made by the true model (note that due to noise, the true

model can make mistakes as well) and by a linear support vector machine (SVM) learned

from the training data using the features associated with each protein. Prediction accuracy

on the 25-states dataset is shown in Figure 3.4 and the accuracy of other simulated datasets

are available on the Supporting Website. As can be seen, when noise levels are low our

model performs well and its accuracy is similar to that obtained by the true model for

both simple and more complicated models. Both the learned model and the true model
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outperform SVM which does not try to model the generative process in which proteins are

sorted in cells relying instead on a one vs. all classification strategy. We compare model

selection based on BIC versus 4-fold internal cross validation. BIC achieved similar accuracy

with less computation, and matched the true structure better.

Recovering the True Structure

To quantitatively evaluate how well a learned structure resembles the true structure, we

use the graph edit distance to measure their topological similarity [84]. First we need to

match the nodes in a learned structure to a node in the true structure. We run the Viterbi

algorithm on proteins in the testing data, and count the state co-occurrence matrix W

whose elements Wij is the co-occurrence of state i in the learned model and state j in

the true model, i.e. the number of proteins in which the two states i and j occur in the

Viterbi path inferred by the two models. The optimal one-to-one matching M , denoted as

a set containing pairs of matched state indexes, can be found by running the Hungarian

algorithm on the co-occurrence matrix W optimizing the objective function
∑

(i,j)∈M Wij .

With the optimal matching we use the maximum common subgraph (MCS) and min-

imum common supergraph in the graph edit distance methodology to quantify similarity

between two structures. Given two graphs G1 and G2, let Ĝ and Ǧ be the MCS and mini-

mum common supergraph of G1 and G2. Denote |G| as the size, or the number of edges and

nodes of a graph, we define the overlap rate as |Ĝ|/|Ǧ|, i.e. the percentage of overlapping

edges and nodes. The overlap rate comparing to the true model on the 25-states dataset is

shown in Figure 3.4C. Structural comparison on other datasets is available on the support-

ing website. As can be seen, our algorithm successfully recovers the correct structure in all

cases with 0% noise. As the noise increases the accuracy decreases. However, even for very

high levels of noise the two models share a substantial overlap (around 40% of states and

trnasitions could be matched).

3.5.2 Yeast Data

We next evaluated our method using subcellular locations of yeast proteins derived from

fluorescence microscopy (the UCSF yeast GFP dataset [1]). This dataset contains 3,914

proteins that were manually annotated, based on imaging data, to 22 compartments. We

collected the features from the following sources. Protein-protein interaction (PPI) data

was downloaded from BioGRID (BiG) [85]. For deterministic motifs we use the annotated
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occurrences of InterPro [35] domains and the following three signal sequences listed on

UniProt [18]:

1. Signal peptides: UniProt defines this sequence feature based on the literature or

consensus vote of four programs, SignalP, TargetP, Phobius and Predotar.

2. Transmembrane region: UniProt annotates a sequence with this feature either based

on literature or consensus vote of four programs, TMHMM, Memsat, Phobius and

Eisenberg.

3. GPI anchor: UniProt annotation for this feature either relies on literature or predic-

tion by the program big-PI.

The above features are filtered by a hypergeometric test to identify features with a

significant association with a final destination (p-value < 0.01 with Bonferroni correction)

before learning the model.

To extract novel motifs associated with localization, we downloaded protein sequences

from UniProt [18] and run generative and discriminative HMM motif finder [73]. We extract

20 motifs for each compartment, and compared setting all to length 4 versus setting the

length to range from 3 to 7. The performance in all following evaluations are similar and

we show results based on motif length as 4. We will compare using likelihood and binary

occurrence for motif features. For binary motif occurrence, a motif is considered present

if posterior probabilities of the begin state and the end state of the motif are both greater

than 0.9 (detail in [73]).

Predicting Protein Locations

As with the simulated data, we first evaluated the accuracy of predicting the final subcellular

location for each protein. This provides a useful benchmark for comparison to all other

computational methods for which this is the end result. The performance is evaluated by

10-fold cross-validation. In each fold both feature selection and motif finding are restricted

to the training data without accessing the testing data. We use three conventional measure

in information retrieval: the accuracy, micro-averaging F1 and macro-averaging F1 [86].

For the accuracy, a prediction is considered correct if it matches any of the true locations.

The F1 score is the harmonic mean of precision and recall [87]. Micro-averaging takes the

average of the F1 score over all proteins, giving each protein an equal weight; in other
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Figure 3.5: The accuracy of predicting the final subcellular location. For kNN we use the
reported accuracy based on PPI information from BiG, deterministic InterPro motif anno-
tation from UniProt, and amino acid composition of different length, gaps, and chemical
properties using leave one out cross validation [26]. For HMM we also show micro-averaging
and macro-averaging F1 score in 10-fold cross validation. The features for HMM include
InterPro and BiG, and three signal sequences from UniProt. The novel motifs are learned
using generative or discriminative HMM of length 4, represented by likelihood and binary
features (GenHMM/DiscHMM b)

words, the classes are weighted by their sizes. Macro-averaging takes the average of the

score over classes, giving each class an equal weight. Including macro-averaging F1 ensures

smaller classes are not ignored since other measures are dominated by large classes. The

result is shown in Figure 3.5. We compared our method with the k-Nearest Neighbors

(kNN) from Lee et al [26] which was shown by the authors to outperform other methods.

As can be seen in Figure 3.5 PPI information (BiG) provides the major contribution for

accurate predictions while InterPro motifs do not contribute as much. This agrees with

previous studies [25, 26]. When adding more features the performance improves and the

best result is achieved using all features. Note that the accuracy of our method is very close

to that of the kNN method. However, it is important to note that our method performs

the much harder task of simultaneously learning the sorting pathways as well as predicting

locations. Unlike these prior methods our method correctly determines pathways and not

just end points. This is an important contribution of the method which is achieved while

not compromising prediction accuracy.
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Evaluation of the Learned Structure

To evaluate the accuracy of the learned structure, we collected information about known

sorting pathways from the literature. We were able to find information regarding 13 classical

and non-classical sorting pathways. For each of these pathways we identified a set of carriers

or motifs that govern the pathway and, when available, the set of proteins that are predicted

to use this pathway. Figure 3.6 presents the pathways we collected from the literature. For

example the classical HDEL pathway into ER has two steps. In the first, proteins with

signal peptide (SP) are introduced into this pathway by the SRP complex. In the second,

proteins with the HDEL motif are retained in ER by interaction with proteins Erd1 and

Erd2. The full list of carriers and motifs for these pathways is provided on the supporting

website.

We first wanted to check if the databases we used for obtaining features contain the

carrier information for the literature pathway. We filtered pathways for which carrier in-

formation in the BIG database did not contain enough proteins (and thus no method can

identify this pathway based in this input data). This leaves 10 pathways that could, in

principal, be recovered by computational models. Sorting steps that were filtered out in

this way are represented as shaded links in Figure 3.6.

To determine whether we accurately recovered a pathway in our model we looked at

the carriers and motifs that are associated with that pathway in the literature. A step in

a literature pathway can be matched to a state if the state emits any carrier or motif in

that step. A known pathway is considered recovered in a learned structure if its steps can

be matched to the states along a path from the root to the compartment to which it leads.

A pathway is partially recovered if only some of its steps can be matched. For example,

the MVB pathway (Figure 3.6) is only partially recovered (66.7%) because the third step

does not have a well-represented carrier in the data sources. The numbers of recovered

pathways for different sets of features are listed in Table 3.1. The ranges correspond to

the different folds in our cross validation analysis. Fractions represent partial matches as

discussed above. When using the full set of input features our algorithm is able to recover

roughly 80% of known pathways. Most of these pathways are recovered in all 10 folds

(Table 3.1). Note that because some carriers do not appear in our database not all steps in

all pathways can be matched and the best possible recovery is 8.7. Thus, the 7.7 recovery

obtained is very close to optimal.

We rely on the hypergeometric test for feature selection. If a feature (e.g. a specific
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Figure 3.6: Protein sorting pathways collected from the literature. Each pathway is a path
from cytosol to a compartment at the bottom, consisting of one or more steps (the links)
that transport proteins between intermediate locations. Each step has a list of carriers and
motifs responsible for the transportation by which we can verify whether the pathway is
recovered. Shaded links denote steps whose carriers are underrepresented on BiG (covering
less than 5% of proteins transported to the corresponding compartment in the GFP dataset).
Dashed lines denote steps taken by default without specific carriers. The percentage under
pathway name is the protein sorting precision when the pathway is recovered, as described
in Table 3.2.

carrier) is not selected, it could never occur in the model. For carriers, feature selection

depend on the data in BiG, but the interaction of a carrier and its cargos may not be

present. For example, because of lack of evidence (the motif and carrier detection steps

did not find the Vam3, Vam7, or the Vps41 features), the classical vacuole import pathway

(Vac in Figure 3.6) and the alternative Vps41 pathway can only be 50% recovered (each

missing a step). For both, the step of signal peptide (SP) is accurately found, but alternative

motifs/carriers are selected to route proteins to the vacuole or cell periphery. We believe

that Vam3 and Vam7 interact with more vacuolar proteins, but the interaction is missing

in BiG so they are filtered out by the feature selection process.

We further collected lists of proteins indicated as following specific pathways in the lit-

erature for 4 of the pathways, NLS, HDEL, Sec and MVB, and tested whether the recovered

pathways indeed sort proteins on the correct path to the correct destination (allowing close

compartments as above). For each protein, we use the Viterbi algorithm to infer the highest

probability path of states the protein is expected to follow according to our learned model,

and compare the Viterbi path to the known pathways. Again counting partial match of

a multi-step pathway as above, on average using all features results in correctly assigning
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Table 3.1: Pathway recovery results of structure learned from different feature sets. The
precision of inferred protein path is also listed here. Mean, minimum and maximum among
the 10 folds are shown.

Features Pathway recovery Inferred protein path

HMM BiG 5.9 (4.7 - 8.0) 7% (4% - 10%)
HMM BiG + Ipr + Signals 7.2 (5.7 - 8.7) 8% (6% - 11%)
HMM BiG + Ipr + Signals + GenHMM b 6.2 (4.3 - 7.7) 8.4% (6% - 11%)
HMM BiG + Ipr + Signals + DiscHMM b 6.2 (5.3 - 7.3) 8.4% (6% - 11%)
HMM BiG + Ipr + Signals + GenHMM 7.7 (6.7 - 8.7) 17.9% (13% - 23%)
HMM BiG + Ipr + Signals + DiscHMM 7.7 (6.7 - 8.7) 19% (15% - 23%)

21% of 63 proteins. Focusing on a representative feature set, detailed protein path results

for each pathway are also given in Table 3.2. The recovered NLS pathway sorted 39% of

proteins correctly, and the recovered HDEL pathway sorted 33% correctly but sorted the

other 25% via SP. Similarly the recovered MVB pathway sorted 23% to go through two

of the three steps (SP and MVB) and other 9% to one of the three steps. The recovered

Sec pathway only sorted 2% of the proteins to go through SP and end at cell periphery.

However, this was due to the fact that while 17 of the 28 proteins collected from literature

as being secreted were included in the GFP dataset, the majority are labeled as ER and

vacule and none are labeled as cell periphery. Overall the GFP dataset include 40 out of

the 63 proteins whose pathway is known, of which only 28% are labeled in agreement with

our lierature survey.

It is important to note that our analysis of the learned structure may underestimate its

accuracy, since it may have recovered correct pathways that could not be verified due to

insufficient detection of relevant motifs or carriers in the input data.

Figure 3.7 shows one of the learned structures obtained using all features. Besides

carriers and motifs included in our literature pathway collection (marked as boldface),

many other features were found that are also known to participate in protein trafficking as

curated in SGD [16] (marked with an asterisk). For those compartments not covered by

our collection of known pathways, the general topology of this structure agrees with our

basic understanding of cell biology. For example microtubule share a step with spindle pole,

which in turn share a step with nuclear periphery, and cell periphery share steps with bud

neck, which in turn share steps with bud and actin.
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Table 3.2: Recovery and protein sorting results of each pathway using the features BiG +
InterPro + Signals + DiscHMM 4.

Compartment Pathway Recovery Steps Sorting
(#proteins) (folds)

Nucleus NLS(15) 10/10 all 39%

Pex5 1/10 all
Peroxisome Pex7 10/10 all

PMP 9/10 all

ER HDEL(11) 10/10 SP+HDEL 33%
SP 25%

Cell periphery Sec(28) 10/10 SP 2%

Vac 10/10 SP
MVB(9) 10/10 SP+MVB 23%

Vacuole SP 9%
Vps41 10/10 SP
CVT 10/10 all

Prioritizing Pathway Predictions for Possible Experiments

Given that the sorting routes taken by many proteins are currently unknown, the most

important part of our work is the potential to identify novel pathways. In this regard, we

note that, just like hand-constructed pathways, any novel putative pathways contained in

our learned model can be readily tested experimentally by perturbing motifs and/or carriers.

Our pathway HMM is composed of hidden states that correspond to intermediate locations,

and the emissions correspond to carriers or motifs that are responsible for transportation

into a location. Sometimes we do not have the same confidence over an entire path from

root to destination. To perform validation experiments more efficiently, it would be better

to focus on the more confident part of the learned structure. Hence we developed the

following criterion to prioritize the hidden states, which also serve as basic units for possible

experiments.

Our goal is to assign higher confidence to a state that leads to correct inference of

the destination. We measure the association between occurrence of each state and the

correctness of inferred destination. Occurrence of states is based on the optimal path

inferred by the Viterbi algorithm. We use the testing data (held-out data not utilized

during training) to calculate confidence. The hypergeometric test is used to rank whether

a state is significantly associated to correct destination. This way a top state must have

high precision (correct destination if proteins pass through this state) and high coverage
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Table 3.3: Prioritized biological predictions on protein sorting mechanism. Each row denotes
a HMM state with high confidence that corresponds to an intermediate location, and the
carriers or motifs responsible for import into that location. Such states are the confident part
of the learned pathways. Confidence of a state is based on whether it lead to correct inference
of final destination. States significantly associated with correct inference of destination
are listed, ranked by the p-value. Selected states all have high precision (accuracy given
the occurrence of this state). Transportation mechanism into a state can be validated
experimentally by perturbing one of the top 3 carriers or motifs. All possible destination
compartments from a state are also listed. The upper part contains pathway prediction of
the fold with highest accuracy in cross validation, and the lower part is from another fold
with good performance.
State p-value Prec Carrier / motif Possible destination

111 < .01 86% Dnf1, Trs120, Gga2 late Golgi
77 .01 100% Trs33, Tvp15, Cka1 late Golgi
75 .04 100% Sed5, Sec21, Cog1 Golgi, early Golgi
98 .04 100% Cog3, Cho2, Sla1 punctate composite, early/late

Golgi, vacuole, lipid particle
112 .04 100% Svp26, Tos1, Tip20 Golgi
25 .05 80% Arf1, Sys1, Erv14 Golgi, early/late Golgi

107 < .01 81% Ypp1, Sec14, Mup1 punctate composite
80 < .01 75% Vps51, Arl1, Chc1 punctate composite

106 .01 86% Fth1, Vma10, Atg27 vacuole membrane
89 .01 78% Cog3, signal peptides, late Golgi, vacuole, vacuole membrane,

Kex1 nuclear periphery, peroxisome
27 .04 100% Fah1, Get1, Drs2 cytosol, ER, ER-Golgi, late Golgi,

actin, bud neck, spindle pole

(many proteins pass through this state). Note that confidence calculation does not involve

any established knowledge in the literature, because our aim is to infer novel pathways.

The prioritized pathway predictions are listed in Table 3.3. The predicted transportation

mechanisms are mostly based on carriers, but in one case also based on the motif of signal

peptides. Many carriers listed in Table 3.3 are annotated as trafficking-related on SGD [16],

but there could still be novel discovery. Interestingly, the highly confident states may

center around one compartment in one learned structure (one fold in cross validation),

while another structure is more confident around other compartments. The structure in the

upper part of Table 3.3 focus on Golgi and the structure in the lower part is more confident

around punctate composite and vacuole.
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3.6 Discussion

The goal of this research is to propose hypotheses about protein sorting mechanisms, not

just to make predictions. We propose, for what we believe is the first time, a method

to learn sorting pathways from protein localization annotation, based on co-occurrence of

interacting partner and sequence motif. Our method is able to recover a significant part

of known pathways collected from the literature, and to infer the correct path of proteins

known to follow these pathways.

Using a HMM naturally simulate the transportation path of a protein among unobserved

intermediate states. Although the path is unobserved, the most likely one can be inferred

by the Viterbi algorithm of the HMM based on observed features. The model is proba-

bilistic and returns a distribution of possible compartments, instead of a single predicted

compartment. Proteins that are targeted to more than one compartment in the training

data can be handled by treating multiple localization as uncertainty.

An additional advantage of building comprehensive sorting models is that potential

inconsistencies in canonical models can be identified and experiments performed to resolve

them. We have derived a list of biological prediction of protein transportation mechanism

based on carriers (receptors) and motifs. This list is ranked by confidence calculated on

the learned structure, allowing biologists to focus on the more confident part of the inferred

pathways and reduce the experimental efforts.
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Figure 3.7: The HMM state space structure learned by our method that corresponds to potential protein sorting pathways.
A state is represented by a block; its transitions are shown as arrows and its top 3 emitting features are listed inside the
block. The sparse transition and emission probabilities are omitted here. The initial state probabilities are denoted as
arrows from the root block at the top. The bottom states are the final destination compartments. Some transitions are
shaded only because of visual clarity, including transitions across levels or from and to the highly connected state (state
58). While silent states are not explicitly displayed (to remove clutter) they are actually implicitly present. Any time an
edge jumps more than one level it is going through silent state(s). For example, the right most edge coming out of the root
goes through a silent state in the first level. Carriers and motifs that matches our literature pathway collection are shown
in boldface; other features potentially related to protein trafficking according to SGD are marked with an asterisk.



Chapter 4

Extending to Higher Organisms

We have demonstrated the utility of discriminative motif finding using known targeting

pathways in Chapter 2, and proposed to model and discover targeting pathways in budding

yeast without using prior knowledge in Chapter 3. Although proteome information is more

abundant in yeast, it is of more importance to understand targeting pathways in higher

organisms, especially human. There are many potential biomedical applications, e.g. the

study of cancer and other diseases [3–6]. Yet the mechanism of subcellular localization in

human cells is not well understood as in yeast cells. Recently the Human Protein Atlas

(HPA) has collected a large amount of location proteomic data in human [88]. About

5000 confocal microscopy images using antibodies are added to the Atlas to provide more

detailed protein localization, and images of more proteins are expected to be generated [14].

It has been shown that automated determination of location based on the Atlas images is

highly accurate [21]. This resource provides reliable training data for our model. The

cellular transport machinery is more complex in human than in yeast. First, alternative

splicing is much more common in human. Second, unlike in yeast which is unicellular, in

human we need to consider many cell types combined with different conditions. For the

HPA dataset, there are three cell lines and more than half of the proteins change one of the

locations between cell lines. Most proteins are expected to remain in the same compartment

across conditions and cell types, but some will have altered compartment under specific

condition. We have extended our model in Chapter 3 to support alternative splicing and

to incorporate condition into localization path prediction and inferring condition-specific

targeting pathways. The extended model is applied to human localization data manually

annotated based on HPA confocal microscopy images.

62
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4.1 Related Work

Since most of the protein sorting mechanisms are conserved across a wide range of species,

many localization classifiers support human or mammalian proteins. The programs TargetP

and LOCtree are both tested in human and the results are compared with that in other

species [23, 24]; PSLT is trained and tested for human proteins [89]. DC-kNN, a classifier

that utilizes not just sequence but also Gene Ontology (GO) annotation, protein interaction,

and known motifs, has been extensively tested in human as well as fruit fly and yeast [26].

However none of these sequence-based systems considers the unique challenges described

above (either the cell conditions or alternative splicing).

When microscopy images under different conditions are available, automated image anal-

ysis systems can determine the localization under a large number of conditions (with com-

binations). This approach has been successfully applied to identify proteins whose location

changes between human cancer and normal tissues, using immunohistochemistry (IHC) im-

ages provided by HPA [90]. With the immunofluorescence (IF) confocal microscopy images

which provides higher resolution, more accurate automated analysis has been performed

on three different cell lines [21]. We believe that there will be more such studies in the

near future. However image-based analysis does not provide insight into the mechanism of

location changes due to conditions, which is what we want to address in the next section.

4.2 Alternative Splicing

Most databases containing subcellular localization information (including the HPA dataset

we use) associate locations to a gene, not an isoform. Although alternative splicing some-

times affects protein sorting [91, 92], there is little resource of isoform-specific localization

information. Similarly, most of the relevant protein features are available on the gene level

(sometimes based on the most representative isoform) and not the isoform level in databases.

Such is the case for PPI and known motifs (sequence annotation on UniProt, see Results

section for details). For simplicity we use the term protein for an entry in the localization

and feature dataset (typically a gene) which may have many splicing variants (or isoforms).

However we need to take special care for alternative splicing when utilizing novel motifs

extracted from sequences. To support the large amount of alternative splicing in human

we modify the two steps of generating motif features, motif discovery and feature vector

calculation, as follows.
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For motif discovery, all valid splicing variants of a protein in sequence databases are

included. In generative motif finding, we search for motifs present in all splicing variants

of all sequences in the positive set. In discriminative motif finding, we search for motifs

present in all splicing variants of all proteins in the positive set and absent in all splicing

variants of all proteins in the negative set. Note that the presence and absence of a motif

are not strict but probabilistic. Sequences of proteins with only one splicing variant are

duplicated three times (three being the median number of splicing variants), in order to

avoid bias towards proteins with more variants.

As in the previous chapter, there are two approaches to convert each sequence to motif

features: binary occurrence (of a motif instance), and sequence likelihood (representing

how strong a motif instance is). With alternative splicing, we combine the feature vectors

generated from a protein’s isoform sequences into a feature vector of this protein. Our

goal is that a motif is considered present in a protein if it is present in any of the splicing

variants. For binary motif feature we combine the feature vector of the isoforms as follows.

For a protein with V isoforms, let F
(v)
k denote the occurrence of motif k on the isoform

sequence v, 1 ≤ v ≤ V . We define the combined binary motif feature Fk of this protein to

be true if it is true in any F
(v)
k ,

Fk ≡
V
⋃

v=1

F
(v)
k .

For sequence likelihood feature, the feature vectors are combined as follows. For sim-

plicity we use the sequence log likelihood instead of likelihood in Equation 3.2,

log Pr(S|Zt = k) =

{

ℓ(S|λk) if 1 ≤ k ≤M

ℓ(S|λ0) if M + 1 ≤ k ≤M + K + 1
(4.1)

where ℓ(S|λ0) is the combined background log likelihood and ℓ(S|λk) is the combined log

likelihood of the protein sequences given motif k. The combined background log likelihood

is the average over all isoforms,

ℓ(S|λ0) ≡
1

V

V
∑

v=1

log Pr(S(v)|λ0).

The combined log likelihood given the motif k is set to the highest log likelihood ratio (LLR)
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among all isoforms plus the combined background log likelihood,

ℓ(S|λk) ≡ ℓ(S|λ0) + max
v

log Pr(S(v)|λk)− log Pr(S(v)|λ0)

It is defined this way to make the combined LLR of a motif model versus background as

the highest LLR among all isoforms.

4.3 Cell Line Specific Localization

In higher organisms there are much more variables (and their combinations) related to

localization, including cell lines, tissue types, perturbations, diseases versus normal samples,

etc. In the scope of this thesis we consider any such variable a condition, and focus on one

variable, the cell lines, because of the data available. Note that the problem formulated

below is not tied to cell lines and can apply to any simple set of condition (no structure

among the conditions is considered). Our aim is to find out not only where the proteins

are transported in different cell lines, but also how they are transported, i.e. motifs and

interacting partners (carriers) that are activated or deactivated in certain cell lines (e.g.

by post-translational regularization). As in the previous chapter our method consists of

feature selection (motifs and carriers) and structure search for targeting pathways HMM.

The extensions on these two parts are discussed below.

We use a simple extension to handle multiple cell lines in feature selection: treating

locations in all cell lines as multiple locations. This directly applies to both the hypergeo-

metric test for binary features (PPI and known motifs) and motif discovery. The underlying

assumption is that such a motif (or carrier) is required even if a protein is transported to

that location in only one cell line. This treatment tends to find motifs and carriers that are

required in all cell lines, but a motif or carrier activated or deactivated in one cell line can

also be found since the occurrences are probabilistic. After the features are selected, the

activation or deactivation in the cell lines will be learned in the next phase, the HMM of

targeting pathways.

An overview of the extension to the structure search algorithm is in Figure 4.2. We first

collect a subset of proteins in the training data that do not change location among different

cell lines, called the “common subset.” Using this common subset only we learn a pathway

HMM model, called the core model, by the standard structure search algorithm. For the

core model the rarely visited transitions are pruned but the emissions are not. Then using
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Figure 4.1: Overview of the two-phase structure search algorithm for multiple cell lines
(this is a sample pathways structure). First we learn a structure from the subset of proteins
whose localization is the same across all cell lines. Then for each cell line we run structure
search again to fit cell line specific localizations, keeping track of the addition and removal
of states, emissions and transitions. Cell line specific states represent pathways activated
in an individual cell line.
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1. Consider the locations in all cell lines as multiple locations

and apply the feature selection procedure, including motif discovery.

2. Collect the common subset of proteins whose localization is the same

across all cell lines.

3. Learn the core model by structure search with the common subset,

pruning rarely visited transitions but not emissions.

4. For each cell line do

a. Starting from the common structure above, run structure search

with cell line specific localization annotations, removing

rarely visited transitions and emissions.

b. Record the transitions and emissions removed and states added

in this cell line.

c. Examine cell line specific states, emissions and transitions.

Figure 4.2: The two-phase structure search algorithm that supports multiple cell lines.

localization data for each cell line (regardless of whether the location is the same or different

in other cell lines) we run structure search again. As in the standard structure search, the

first step is to run EM algorithm to optimize the parameters and to prune transitions and

emissions based on these parameters. The pruned transitions and emissions will be different

in each cell line. At each search iteration after the first step, we try adding a new state or

splitting the largest state, to see if it fits the training localization data in this cell line. Thus

we obtain a modified structure for each cell line. The added states and pruned emissions

and transitions correspond to pathways and carriers activated or deactivated in a specific

cell line. See Figure 4.2 for the formal algorithm.

4.4 Results

We evaluate the extended algorithm on human protein localization data obtained from

confocal microscopy images in the HPA database. Localization is annotated manually by

experts in the HPA team based on fluorescent microscopy images of release 5.0, with further

corrections after the public release [14]. 2,889 proteins, the majority of this dataset, are

used except a few invalid ones that lack entries on Ensembl [93] or UniProt [18]. Local-

ization is annotated in three different cell lines, A-431, U-251MG, and U-2 OS. Only 1,123

proteins are in the same location across three cell lines. The locations are grouped to ten

classes: centrosome, cytoskeleton, cytosol, ER, Golgi, mitochondria, nuclei, nucleoli, plasma
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Table 4.1: Features and data sources for HPA dataset
Feature type Data source

Novel motifs Extracted by generative and discriminative HMM [73]
Protein interactions Downloaded from BiG [85]
Known short motifs Represented by regular expression in Minimotif Miner [57]

Sequence annotations Presence of sequence annotations defined on UniProt [18]
Active site Amino acid(s) directly involved in the activity of an enzyme
Binding site Binding site for any chemical group (co-enzyme, etc)
Calcium binding Position(s) of calcium binding region(s) within the protein
Compositional bias Region of compositional bias in the protein
Cross-link Residues participating in covalent linkage(s) between proteins
Disulfide bond Cysteine residues participating in disulfide bonds
DNA binding Position and type of a DNA-binding domain
Domain Position and type of each modular protein domain (InterPro)
Glycosylation Covalently attached glycan group(s)
Initiator methionine Cleavage of the initiator methionine
Lipidation Covalently attached lipid group(s)
Metal binding Binding site for a metal ion
Modified residue Modified residues excluding lipids, glycans and protein cross-links
Motif Short (up to 20 amino acids) sequence motif of biological interest
Nucleotide binding Nucleotide phosphate binding region
Peptide Extent of an active peptide in the mature protein
Propeptide Part of a protein that is cleaved during maturation or activation
Signal Sequence targeting proteins to the secretory pathway
Transit peptide Extent of a transit peptide for organelle targeting
Transmembrane Extent of a membrane-spanning region
Zinc finger Position(s) and type(s) of zinc fingers within the protein

membrane (PM), and vesicles.

The features and corresponding data sources are described in Table 4.1. Novel motifs

are extracted from amino acid sequences downloaded from Ensembl [93]. Again we use the

generative and discriminative HMM motif finder described in Chapter 2 [73]. PPI data is

downloaded from BiG [85]. Since human cells are more complicated than yeast, we use

two more informative feature types for known motifs. One is short motifs represented as

regular expression in the database Minimotif Miner [57]. We include motifs marked as

traffick related. The other is presence of sequence annotations on UniProt [18]. Three such

annotations have been utilized in yeast, but we extend to all sequence annotations except

one that relies on localization information (resulting in circular reasoning) and those too
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general (e.g. secondary structure and coiled coil). The list of annotation subtype is listed

in Table 4.1. As in yeast, we apply the hypergeometric test to select features having a

significant association with any destinate compartment (here using p-value < 0.05) before

learning the model.

4.4.1 Predicting Protein Locations

Similar to the evaluation we performed in the previous chapter, although our goal is learning

the pathways predicting the final subcellular location remains an objective way to evaluate

the performance of our method. The performance is evaluated by 10-fold cross-validation,

in which the testing data is kept away from both feature selection and model training. The

result is shown in Figure 4.3. We compare our method to SVM using the same feature set as

a classifier that do not utilize any pathway structure (the linear kernel and default setting

of SVMlight are used [56]). As in section 3.5.2, evaluation is based on three conventional

measures in information retrieval: the accuracy, micro-averaging F1 and macro-averaging

F1 [86]. HMM performs better than SVM on the three measures in most of the feature sets,

indicating the importance of learning the pathway structure. Yet when using likelihood

scores as novel motif features HMM is less accurate than SVM or HMM using binary

occurrence for novel motifs. We do not see significant improvement by adding novel motifs

extracted from sequence, either generative or discriminative motifs. Most likely this is

because the known motif information provided by sequence annotation in UniProt and

regular expression in Minimotif Miner is already very comprehensive. The confusion matrix

using the feature set of sequence annotation and Minimotif Miner is shown in Table 4.2.

Proteins belonging to compartments with fewer training examples are often incorrectly

predicted to be in larger compartments, especially nuclei in cell line U-251MG, cytosol in cell

line U-2 OS and A-431. The most likely reason is that the optimization objective function,

BIC score, correlates with overall likelihood which is dominated by larger compartments.

4.4.2 Evaluation of the Learned Structure

As in yeast, we also collected a list of known sorting pathways from the literature in human

(see Figure 4.4). We identified 9 sorting pathways in human, most being well known and

some less common. Each step in these pathways corresponds to a list of carriers or motifs

responsible for that transport according to the literature. In yeast we rely on PPI for the

validation of almost every known pathway. In human the classical sorting pathways are
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Figure 4.3: The performance of predicting the final subcellular location. Predication is eval-
uated by accuracy, micro-averaging F1, and macro-averaging F1 in 10-fold cross validation.
We compared the result of different combinations of several feature types, including PPI in
the BiG database, sequence annotation in UniProt, regular expression in Minimotif Miner,
and novel motifs of length 4 extracted by generative and discriminative HMM.
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Prediction for cell line A-431
Cent Cyto ER Golgi Mito Nuclei Nucleoli PM Cytoskel Vesicles

Cent 0.0 83.7 0.0 0.0 0.0 15.2 0.0 0.0 0.0 1.1
Cyto 0.1 78.3 0.3 0.6 1.9 16.9 0.1 0.9 0.0 0.9
ER 0.0 69.7 6.1 1.0 2.0 18.7 0.0 0.0 0.0 2.5
Golgi 0.0 71.1 0.0 0.4 0.9 22.9 0.9 2.0 0.0 1.9
Mito 0.0 68.2 0.7 0.0 20.8 9.0 0.0 0.3 0.4 0.7
Nuclei 0.1 71.7 0.0 0.5 1.7 24.1 0.1 0.9 0.0 0.9
Nucleoli 0.0 74.7 0.0 0.4 1.5 22.9 0.5 0.0 0.0 0.0
PM 0.0 75.8 0.5 0.3 1.9 17.0 0.5 2.5 0.0 1.5
Cytoskel 0.0 83.5 0.0 0.6 1.9 12.5 0.0 0.6 0.0 1.0
Vesicles 0.0 80.9 0.0 0.4 1.3 17.4 0.0 0.0 0.0 0.0

Prediction for cell line U-251MG
Cent Cyto ER Golgi Mito Nuclei Nucleoli PM Cytoskel Vesicles

Cent 0.0 10.5 0.0 0.0 2.0 87.5 0.0 0.0 0.0 0.0
Cyto 0.3 15.3 0.6 0.3 1.2 80.7 0.2 0.5 0.2 0.8
ER 0.0 10.4 4.8 0.0 1.1 81.6 0.0 0.0 0.0 2.0
Golgi 0.0 10.8 0.6 0.7 1.7 84.8 0.5 0.9 0.0 0.0
Mito 0.0 9.7 0.7 0.0 21.0 67.8 0.0 0.9 0.0 0.0
Nuclei 0.2 12.4 0.4 0.1 1.3 84.1 0.1 0.6 0.1 0.8
Nucleoli 0.0 11.2 0.0 0.0 2.6 84.5 0.5 0.9 0.0 0.3
PM 0.5 16.0 0.6 0.5 0.6 77.2 0.5 3.6 0.6 0.0
Cytoskel 0.0 14.2 0.0 0.0 0.7 85.1 0.0 0.0 0.0 0.0
Vesicles 0.0 15.0 0.0 0.4 1.5 82.5 0.0 0.5 0.0 0.0

Prediction for cell line U-2 OS
Cent Cyto ER Golgi Mito Nuclei Nucleoli PM Cytoskel Vesicles

Cent 0.0 90.8 0.0 0.0 0.0 7.5 0.0 0.0 0.0 1.7
Cyto 0.0 81.4 0.3 0.3 1.6 15.1 0.2 0.2 0.2 0.8
ER 0.0 80.8 3.5 0.0 0.0 13.7 0.0 0.0 1.0 1.0
Golgi 0.0 73.3 0.0 0.0 1.6 19.7 0.6 3.9 0.0 0.9
Mito 0.0 70.8 0.7 0.0 20.0 6.8 0.0 0.9 0.0 0.7
Nuclei 0.0 72.8 0.1 0.0 1.6 24.3 0.1 0.5 0.1 0.5
Nucleoli 0.0 81.1 0.0 0.5 1.5 16.0 0.5 0.0 0.0 0.4
PM 0.0 86.0 0.4 0.0 1.0 10.4 0.0 0.9 0.4 0.9
Cytoskel 0.0 87.3 0.0 1.0 1.2 9.9 0.0 0.7 0.0 0.0
Vesicles 0.0 80.2 0.0 0.5 2.0 14.4 0.0 1.0 0.0 1.9

Table 4.2: Confusion matrix of our pathway model in three cell lines A-431, U-251MG, and
U-2 OS. Prediction is based on two feature types of known motifs: sequence annotation in
UniProt and regular expression in Minimotif Miner.



CHAPTER 4. EXTENDING TO HIGHER ORGANISMS 72

VW XY Z[\]^_[\Y]`a^bacde]fgh^_[h\

VWij`a\a_
ka_l] mefc\nka_l]gop Xmpq[rfh_` sqVo p[^ij`a\a_ ka_l]

gh^_[h\gh^_[a_h\ ompkmpgoop gVp Ymp
Figure 4.4: Protein sorting pathways collected from the literature. Each pathway is a path
from cytosol to a compartment at the bottom, consisting of one or more steps (the links)
that transport proteins between intermediate locations. Each step has a list of carriers and
motifs responsible for the transportation by which we can verify whether the pathway is
recovered. Dashed lines denote steps taken by default without specific carriers.

conserved and the few classical carriers (e.g. Importin proteins) are known to perform

the same function. However none of these carriers have enough interactions present on

BiG to be selected due to insufficient PPI information in human. Unable to validate the

learned structure based on PPI, we rely on motif information in the literature to validate

the learned structure instead. Fortunately the sequence annotation features provide more

classical protein sorting motifs which are the key components of these pathways. Minimotif

Miner also provides reference of involvement in sorting pathways for several motif features

(i.e. the regular expressions). For example, using the Importin proteins we can validate

the nuclear import pathway being recovered in yeast. Validation of the recovery of this

pathway in human must rely on either the NLS motif in UniProt sequence annotation, or the

corresponding regular expressions in Minimotif Miner, but not interaction with Importin.

The same method described in the previous chapter is also applied to examine the

recovery of a specific pathway. A step in a literature pathway is considered recovered if

there is a state on a path from the root to the destination that emits any motif in that step;

a pathway is partially recovered if only some of its steps are recovered.

The pathway recovery results for different feature sets of features are listed in Table 4.3.

This validation is based on known motif we collected from the literature. When the feature
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Table 4.3: The number of pathways recovered out of 10 pathways based on different feature
sets. The results are averaged over three cell lines and 10 folds. Minimum and maximum
are also shown (best possible result would be 10). Fractions represent partial matches.

Features Pathway recovery

HMM MnM 4.0 (2.5 - 6.0)
HMM Anno 6.3 (5.5 - 7.5)
HMM Anno + MnM 7.9 (7.0 - 9.0)
HMM BiG + Anno + MnM + GenHMM b 7.9 (6.5 - 9.5)
HMM BiG + Anno + MnM + DiscHMM b 7.9 (6.5 - 9.5)
HMM BiG + Anno + MnM + GenHMM 8.4 (7.5 - 8.5)
HMM BiG + Anno + MnM + DiscHMM 8.5 (8.0 - 8.5)

set only contains protein sorting motifs in MiniMotif Miner, our method is able to recover

on average 40% of the pathways are recovered. When the feature set only contains sequence

annotation, 63% are recovered, and using both 79% can be recovered. Using all features

our method can recover about 85% of the known pathways. Again, a pathway might be

recovered that we are not aware of, because the carrier or motif used is not in our collection.

4.4.3 Visualizing Differences in Sorting Pathways Learned from Localiza-

tion in Three Cell Lines

We show a representative set of learned structures in Figure 4.5 (A-431), 4.6 (U-251MG)

and 4.7 (U-2 OS). The relationship between compartments basically agrees with the estab-

lished knowledge of protein sorting. The nuclei and cytosol share a path; compartments

on the secretory pathway share several states as well, especially the state emitting the GPI

signal sequence; within the secretory pathway Golgi is closer to PM. Because of our cell

line specific structure search algorithm, we can match the common states in different cell

lines to those in the common structure. Using this matching the differences in transitions

and emissions in each cell line can be compared and displayed in the figure (marked by

the thickness of lines). By this representation one can easily spot states, transitions and

emissions common to all three cell lines, as well as cell line specific ones. Interestingly, in

three cell lines our method added a state not previously learned the common subset (the

thin block), but we can see that it correspond to a shared pathway unchanged between cell

lines. On the other hand there are several transitions unique to one cell line or absent in

one cell line. For example only in cell line U-2 OS there is a transition from the the secre-

tory pathway to vesicles, and the transition from the secretory pathway to cytoskeleton is
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absent in cell line U-251MG. It would be interesting to investigate whether such differences

correspond to novel or known differential regularization in a specific cell line, but this is

beyond the scope of this thesis.

4.5 Discussion

We have extended our targeting pathway model from yeast to human. The method supports

alternative splicing which is common in higher organisms. The two phase structure search

algorithm can utilize localization data spanning multiple cell lines, or potentially different

cell types and conditions. It enables us to examine common and condition-specific carriers,

motifs, and pathways. Using the extended model, we performed the first systematic dis-

covery of targeting pathways in the human proteome based on confocal microscopy images

on HPA. By comparing to a classifier without using a structure we show that incorporating

the targeting pathways leads to more accurate prediction of the destinate compartment.

The learned structure recovered about 85% of classical pathways we collected from the lit-

erature. The learned structure resembles our knowledge of protein sorting in the cell. Our

cell line specific structure search algorithm enables visualization of the differences in sorting

pathways between three cell lines, highlighting transitions unique to a cell line or absent in

a cell line. For future work it would be interesting to examine whether such differences are

related to unique properties of these cell lines. We would also like to investigate why all

three structures learned from different cell lines added a similar state that should have been

created in the common structure, for example try more random initialization or run more

iterations (since the common structure is the basis for further structure search). Another

possibility is that the common subset only has about half of the proteins, resulting in BIC

choosing a simpler structure. We could try including the proteins that change locations

between cell lines in the common subset but adjust the uncertainty of multiple localization.

Our method can be applied to any conditions (e.g. diseases, drug effect, or different tis-

sues). The inferred pathways, motifs and carriers can be tested experimentally as described

in the previous chapter. We aim to further examine if we have discovered novel pathways

in human.
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Figure 4.5: A representative HMM state space structure learned by our method that corresponds to potential protein
targeting pathways in human cell line A-431. A state is represented by a block; its transitions are shown as arrows and its
top 3 or 4 emitting features are listed inside the block. The bottom states (in gray) are the final destination compartments.
Transitions across more than one level are shaded. Thin lines and blocks are specific to this cell line, and the thickest ones
are shared among all three cell lines. Emissions in bold are shared among three cell lines, those in italic are shared in two
cell lines, and others are specific to one cell line. Transitions across more than one levels are colored in gray for clarity.
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Figure 4.6: The HMM state space structure learned from localization data in cell line U-251MG. See Figure 4.5 for legend.
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Figure 4.7: The HMM state space structure learned from localization data in cell line U-2 OS. See Figure 4.5 for legend.



Chapter 5

Conclusions and Future Work

In the previous chapters, we developed computational tools to study the protein sorting

mechanism in different aspects. The proposed methods and the learned pathway structure

provided better understanding of the protein sorting pathways in yeast and human.

This chapter summarizes the contributions and conclusions of this thesis (section 5.1)

and points out potential future work (section 5.2).

5.1 Conclusions

Our goal is to learn novel cellular sorting pathways from proteomic data. For this purpose

we first focused on extracting novel sorting motifs using the established sorting pathways

(Chapter 2). These novel motifs served as features for discovering novel sorting pathways (in

this case, not utilizing established pathways but using a flat structure instead). Combining

the novel motifs with known motifs and PPI, we proposed a method to systematically learn

novel sorting pathways in yeast (Chapter 3). We extended the method to higher organisms

and applied to human data (Chapter 4). The highlights of each chapter are described as

follows.

In Chapter 2 we developed the generative and discriminative HMM motif finding meth-

ods, and applied them to extract sorting motifs. Discriminative motif finding searches

for motifs that are present in a compartment but absent in other, nearby, compartments

by utilizing a tree structure that mimics the protein sorting pathways. We showed that

both discriminative motif finding and the tree structure improve localization prediction on

a benchmark dataset of yeast proteins. The motifs identified can be mapped to known
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sorting motifs and the motif instances were found to be more conserved than the average

protein sequence. Using our motif-based predictions we have identified potential annotation

errors in public databases for the location of some of the proteins.

Instead of relying on the established sorting pathways, we developed a method to learn

the pathway structure without prior knowledge on sorting pathways in Chapter 3. We use

a HMM that naturally simulates the transportation of a protein among unobserved inter-

mediate states; the path was determined by protein carriers and sequence motifs, based on

the actual protein sorting mechanism. Our method relied on the co-occurrence of inter-

acting partner and sequence motif to infer the structure. We believe that this is the first

method to systematically learn sorting pathways from proteomic data. In simulation stud-

ies, the method has accurately recovered the underlying sorting models. Using the yeast

GFP dataset, we showed that our model leads to accurate prediction of subcellular localiza-

tion. We also showed that the pathways learned by our model recover many known sorting

pathways and assign proteins following both classical and alternative pathways according

to the literature to the correct path. The learned model identified new pathways and their

putative carriers and motifs and these may represent novel protein sorting mechanisms.

To experimentally validate potentially novel pathways efficiently, we have derived a list of

highly confident prediction of protein sorting carriers and motifs.

In Chapter 4 we further extended our method to support higher organisms. Our method

is applied to localization data from HPA based on confocal microscopy images on HPA. Two

new issues common in higher organisms are addressed: alternative splicing and multiple

cell lines. Our method learned cell line specific pathways which can be easily spot when

visualized on each pathway structure. The learned structure led to accurate prediction of

protein localization, and recovered about 85% of the classical pathways collected from the

literature.

While most of the previous works only predict the final destination, we have addressed

the question of where and why a protein goes to a specific location, and by what route.

One key component of the protein sorting mechanism is sequence motif. When utilizing

the classical sorting pathways, discriminative HMM has indeed extracted conserved sorting

motifs that are informative enough to give good prediction accuracy. When we assume no

prior pathway knowledge, these novel motifs are not enough and other features including

PPI and known motifs are necessary. In yeast, the discriminative motifs still help improve

prediction accuracy and pathway recovery, and are more informative than generative motifs
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based on our evaluation. On the other hand, generative and discriminative HMMs are not as

useful in human data comparing to UniProt sequence annotation that covers a wide range of

protein properties. It is possible that the human protein sequences are more heterogeneous,

making motif finding difficult. In the future we would try enhancing our motif finder to

tackle the heterogeneity in large sequence dataset.

Another key component of the protein sorting mechanism is the interaction with a

protein carrier. PPI information is critical for learning sorting pathways in yeast, but not

so in human. This is certainly due to the lack of PPI information in human, but also

because the budding yeast is the species that has the richest resource in PPI. The known

motifs, especially UniProt sequence annotation, are the most informative features for human

data. Some of the sequence annotations are based on experimental results and have better

specificity comparing to motif scanning using regular expression or profile HMM. These

annotation features are distinguished from those based on computational prediction which

are marked as “potential”. The later has lower specificity but wider coverage, and our

model could utilize such differences because these are different features. These advantages

provided by UniProt may explain the importance of sequence annotation in human data.

As discussed above, the novel motifs extracted from sequence is not as useful in human as

well in terms of prediction accuracy, because the sequence annotation already has a good

coverage and human protein sequences are more heterogeneous.

By combining sequence motifs and the carrier proteins that recognize them (inferred

from PPI), our results demonstrated that we can learn sorting pathways successfully in

yeast and human. The sorting pathways HMM predicted the destination accurately and

recovered the majority of known sorting pathways. Comparing to other systems that focus

on prediction, we showed that a generative model that simulates the unobserved path a

protein takes within the cell better explains the dynamic process of protein sorting.

5.2 Future Work

While the method has been successful, an HMM-based approach also suffers from a number

of limitations. The input data used by our method is static while HMM expects sequential

data. This requires us to rely on a number of assumptions including limiting each of the

features to a unique level, and assuming independence between the features. The structure

search algorithm requires substantial computation since the EM algorithm must be run
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every time a candidate structure is being tried. Improving the search strategy is a direction

for future work.

5.2.1 Physical Location of Intermediate States

Another issue we wish to address in the future is the inference of the actual location of the

intermediate states. For example, we might associate an internal state with the ER or Golgi.

To determine such locations, we will start with matching the learned structure to known

pathways in the literature, which is part of our evaluation procedure. Because physical

locations of the entire pathways have been described in the literature, we can assign the

locations to the states that correspond to known pathways accordingly. Ideally the locations

of these states should be uniquely determined, but there may be conflicts when a state is

assigned to more than one location. How many conflicts exist would be the first issue to

investigate. The assignment described above is limited to states that correspond to known

pathways, not the more interesting novel pathways, but this assignment is highly confident

when there is no conflict.

We also want to assign locations to other states even though there are uncertainties.

When a state is matched to a transportation step on a known pathway, there may be

other states on the path between this state and the destination. There are less uncertainty

when there is only one such path. We can assign these states to the intermediate locations

of the known pathway as well. For example, consider the case where a known pathway

indicates transportation from ER to Golgi, and we already matched one state to the step

of transportation into ER. If there is only one path from this state to Golgi, then the states

in between are either in ER or Golgi. Again, this is limited to states on the path that

correspond to a known pathway, only that the state (i.e. the emission of this state) does

not match the known pathway directly.

Assigning locations to other states not described above is more difficult. We could list

all final destinations of proteins in the training data that pass through a state. For example,

70% of the proteins passing through a state go to the nuclei and 30% go to the cytosol. This

will be an informative reference for investigation, but there is no guarantee of the physical

location even if 100% of the proteins go to a specific compartment.
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5.2.2 Alternative Splicing

Although our method supports alternative splicing in higher organisms, there is no attempt

to study whether alternative splicing could affect protein sorting. With our model it is

possible to predict whether different isoforms will result in different localization. That is, if a

protein sorting motif occurs in a cassette exon on one protein, the predicted location may be

different between the isoforms. Specifically, both the novel motifs extracted from sequences

and known motifs based on sequence annotation in UniProt [18] and regular expression

in Minimotif Miner [57] already indicate the position of the motif instances. Combining

with isoform information on Ensembl [93], it is straightforward to derive a list of predicted

locations of each isoform. Such a list of isoform-dependent localization will be a unique

contribution to understanding protein sorting. However, the relation between isoform and

location is not included in HPA or in any database that we are aware of, making it difficult

to validate this result. Since we may not have isoform-dependent location as training data,

we could verify whether the locations of different isoform match the multiple locations. For

example, if the model predicts that isoform 1 is targeted to cytosol but isoform 2 is targeted

to PM, we could check whether the multiple locations are cytosol and PM. For proteins

that are predicted to change location due to alternative splicing, if the prediction matches

the multiple locations, they can be further investigated.

5.2.3 Model Identifiability Issue

Unfortunately in simulation studies we find that a structure with some difference from the

true underlying structure can still achieve 100% accuracy. By using BIC score, we are

making the assumption that a simpler structure is more preferable. To further resolve the

identifiability issue, a specific post-processing procedure that eliminates duplicated states,

transitions and emissions would be helpful. We would like to further investigate the design

and application of such post-processing procedure in the future.

In Figure 3.4 (C) and (D), internal cross-validation achieved similar prediction accuracy

as BIC does, but the learned structures sometimes do not resemble the true structure. A

closer examination revealed that internal cross-validation added too many states. This is

also related to the model identifiability issue. The reason BIC results in structures close

to the true structures in the simulation study might be that the true structures are simple

(at most 31 states). We tested internal cross-validation on human data using some of the
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feature sets, and prediction accuracy is similar (result not shown). Because of the heavy

computational cost we always end the search in 20 iterations for both BIC and internal

cross-validation, which may limit the difference between the two as well. In the future if we

can enhance the speed, we would like to perform further tests on internal cross-validation.

5.2.4 Combining with Unsupervised Learning of Locations from Images

With the availability of unsupervised learning of unmixing subcellular patterns of different

locations [94], it would be even possible to perform such analysis without relying on human

categorization of the patterns. This would enable learning new knowledge from the growing

subcellular image collection, without relying on subjective manual annotation.
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