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Abstract ................................................................................................................................ 

Most of the world’s natural languages have complex morphology. But the expense of 

building morphological analyzers by hand has prevented the development of morphologi-

cal analysis systems for the large majority of languages. Unsupervised induction tech-

niques, that learn from unannotated text data, can facilitate the development of computa-

tional morphology systems for new languages. Such unsupervised morphological analysis 

systems have been shown to help natural language processing tasks including speech rec-

ognition (Creutz, 2006) and information retrieval (Kurimo and Turunen, 2008). This the-

sis describes ParaMor, an unsupervised induction algorithm for learning morphological 

paradigms from large collections of words in any natural language. Paradigms are sets of 

mutually substitutable morphological operations that organize the inflectional morphol-

ogy of natural languages. ParaMor focuses on the most common morphological process, 

suffixation. 

ParaMor learns paradigms in a three-step algorithm. First, a recall-centric search 

scours a space of candidate partial paradigms for those which possibly model suffixes of 

true paradigms. Second, ParaMor merges selected candidates that appear to model por-

tions of the same paradigm. And third, ParaMor discards those clusters which most likely 

do not model true paradigms. Based on the acquired paradigms, ParaMor then segments 

words into morphemes. ParaMor, by design, is particularly effective for inflectional mor-
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phology, while other systems, such as Morfessor (Creutz, 2006), better identify deriva-

tional morphology. This thesis leverages the complementary strengths of ParaMor and 

Morfessor by adjoining the analyses from the two systems. 

ParaMor and its combination with Morfessor participated in Morpho Challenge, a 

peer operated competition for morphology analysis systems (Kurimo, Turunen, and Var-

jokallio, 2008). The Morpho Challenge competitions held in 2007 and 2008 evaluated 

each system’s morphological analyses in five languages, English, German, Finnish, Turk-

ish, and Arabic. When ParaMor’s morphological analyses are merged with those of Mor-

fessor, the resulting morpheme recall in all five languages is higher than that of any sys-

tem which competed in either year’s Challenge; in Turkish, for example, ParaMor’s re-

call of 52.1% is twice that of the next highest system. This strong recall leads to F1 scores 

for morpheme identification above that of all systems in all languages but English. 
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Chapter 1:  Introduction 

Most natural languages exhibit inflectional morphology, that is, the surface forms of 

words change to express syntactic features—I run vs. She runs. Handling the inflectional 

morphology of English in a natural language processing (NLP) system is fairly straight-

forward. The vast majority of lexical items in English have fewer than five surface forms. 

But English has a particularly sparse inflectional system. It is not at all unusual for a lan-

guage to construct tens of unique inflected forms from a single lexeme. And many lan-

guages routinely inflect lexemes into hundreds, thousands, or even tens of thousands of 

unique forms! In these inflectional languages, computational systems as different as 

speech recognition (Creutz, 2006), machine translation (Goldwater and McClosky, 2005; 

Oflazer and El-Kahlout, 2007), and information retrieval (Kurimo and Turunen, 2008) 

improve with careful morphological analysis. 

Computational approaches for analyzing inflectional morphology categorize into 

three groups. Morphology systems are either: 

1. Hand-built, 

2. Trained from examples of word forms correctly analyzed for morphology, or 

3. Induced from morphologically unannotated text in an unsupervised fashion. 
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Presently, most computational applications take the first option, hand-encoding morpho-

logical facts. Unfortunately, manual description of morphology demands human expertise 

in a combination of linguistics and computation that is in short supply for many of the 

world’s languages. The second option, training a morphological analyzer in a supervised 

fashion, suffers from a similar knowledge acquisition bottleneck: Morphologically ana-

lyzed training data must be specially prepared, i.e. segmented and labeled, by human ex-

perts. This thesis seeks to overcome the difficulties of knowledge acquisition through lan-

guage independent unsupervised induction of morphological structure from readily 

available unannotated machine-readable natural language text. 

1.1 The Structure of Morphology 

Natural language morphology supplies many language independent structural regu-

larities which unsupervised induction algorithms can exploit. This thesis intentionally 

leverages three such regularities to discover the morphology of individual languages. The 

first regularity is the paradigmatic opposition found in inflectional morphology. Para-

digmatically opposed inflections are mutually substitutable and mutually exclusive. Take, 

for example, the Spanish word hablar ‘ to speak’, which belongs to the class of Spanish 

ar-verbs. Spanish ar-verbs inflect for the feature combination 2nd Person Present Indica-

tive with the suffix as, as in hablas ; but mark 1st Person Present Indicative with a mu-

tually exclusive suffix o: hablo . The o suffix substitutes in for as, and no verb form can 

occur with both the as and the o suffixes simultaneously, *hablaso . Every set of para-

digmatically opposed inflectional suffixes is said to fill a paradigm. In Spanish, the as 

and the o suffixes fill a portion of the verbal paradigm. Because of its direct appeal to 

paradigmatic opposition, the unsupervised morphology induction algorithm described in 

this thesis is dubbed ParaMor.  

The second morphological regularity leveraged by ParaMor to uncover morphologi-

cal structure is the syntagmatic relationship of lexemes. Natural languages with inflec-

tional morphology invariably possess classes of lexemes that can each be inflected with 

the same set of paradigmatically opposed morphemes. These lexeme classes are in a syn-
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tagmatic relationship. Returning to Spanish, all regular ar-verbs (hablar , andar , cantar , 

saltar , ...) use the as and o suffixes to mark 2nd Person Present Indicative and 1st Per-

son Present Indicative respectively. Together, a particular set of paradigmatically op-

posed morphemes and the class of syntagmatically related stems adhering to that para-

digmatic morpheme set forms an inflection-class of a paradigm of a language—in this 

case the ar inflection class of the Spanish verbal paradigm.  

The third morphological regularity exploited by ParaMor follows from the paradig-

matic-syntagmatic structure of natural language morphology. The repertoire of mor-

phemes and stems in an inflection class constrains the phoneme sequences that occur 

within words. Specifically, while the phoneme sequence within a morpheme is restricted, 

a range of possible phonemes is likely at a morpheme boundary: A number of mor-

phemes, each with possibly distinct initial phonemes, might follow a particular mor-

pheme. 

Spanish non-finite verbs illustrate paradigmatic opposition of morphemes, the syn-

tagmatic relationship between stems, inflection classes, paradigms, and phoneme se-

quence constraints. In the schema of Spanish non-finite forms there are three paradigms, 

depicted as the three columns of Figure  1.1. The first paradigm marks the Type of a par-

ticular surface form. A Spanish verb can appear in exactly one of three Non-Finite 

Types: as a Past Participle, as a Present Participle, or in the Infinitive. The three rows of 

the Type columns in Figure  1.1 represent the suffixes of these three paradigmatically op-

posed forms. If a Spanish verb occurs as a Past Participle, then the verb takes additional 

suffixes from two paradigms. First, an obligatory suffix marks Gender: an a marks 

Feminine, an o Masculine. Following the suffix of the Gender paradigm, either a Plural 

suffix, s, appears or else there is no suffix at all. The lack of an explicit plural suffix 

marks Singular. The Gender and Number columns of Figure  1.1 represent these addi-

tional two paradigms. In the left-hand table the feature values for the Type, Gender, and 

Number paradigms are given. The right-hand table presents surface forms of suffixes re-

alizing the corresponding feature values in the left-hand table. Spanish verbs which take 

the exact suffixes appearing in the right-hand table belong to the syntagmatic ar inflec-
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tion class of Spanish verbs. Appendix A gives a more complete summary of the para-

digms and inflection classes of Spanish morphology. 

To see the morphological structure of Figure  1.1 in action, we need a particular Span-

ish lexeme: a lexeme such as administrar , which translates as to administer or manage . 

The form administrar  fills the Infinitive cell of the Type paradigm in Figure  1.1. Other 

forms of this lexeme fill other cells of Figure  1.1. The form filling the Past Participle cell 

of the Type paradigm, the Feminine cell of the Gender paradigm, and the Plural cell of 

the Number paradigm is administradas , a word which would refer to a group of Femi-

nine Gender nouns under administration. Each column of Figure  1.1 truly constitutes a 

paradigm in that the cells of each column are mutually exclusive—there is no way for 

administrar  (or any other Spanish lexeme) to appear simultaneously in the Infinitive and 

in a Past Participle form: *admistradasar , *admistrardas .  

The phoneme sequence constraints implied by these Spanish paradigms emerge when 

considering the full set of surface forms for the lexeme administrar . Among the many 

inflected forms of administrar  are Past Participles in all four combinations of Gender 

Figure  1.1 Left: A fragment of the morphological structure of Spanish verbs. There are 

three paradigms in this fragment. Each paradigm covers a single morphosyntactic 

category: first, Type; second, Gender; and third, Number. Each of these three cate-

gories appears in a separate column; and features within one feature column, i.e. 

within one paradigm, are mutually exclusive. Right: The suffixes of the Spanish inflec-

tion class of ar verbs which fill the cells of the paradigms in the left-hand figure. 

Type Gender Number 

Feminine Singular 
Past Participle 

Masculine Plural 

Present Participle   

Infinitive   

 

Type Gender Number 

a Ø 
ad 

o s 

ando   

ar   
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and Number: administrada , administradas , administrado , and administrados ; the 

Present Participle and Infinitive non-finite forms described in Figure  1.1: administrando , 

administrar ; and the many finite forms such as the 1st Person Singular Indicative Pre-

sent Tense form administro . Figure  1.2 shows these forms (as in Johnson and Mar-

tin, 2003) laid out graphically as a finite state automaton (FSA). Each state in this FSA 

represents a character boundary, while the arcs are labeled with characters from the sur-

face forms of the lexeme administrar . Morpheme-internal states are open circles in 

Figure  1.2, while states at word-internal morpheme boundaries are solid circles. Most 

morpheme-internal states have exactly one arc entering and one arc exiting. In contrast, 

states at morpheme boundaries tend to have multiple arcs entering or leaving, or both—

the character (and phoneme) sequence is constrained within morpheme, but more free at 

morpheme boundaries. 

This discussion of the paradigmatic, syntagmatic, and phoneme sequence structure of 

natural language morphology has intentionally simplified the true range of morphological 

phenomena. Three sources of complexity deserve particular mention. First, languages 

employ a wide variety of morphological processes. Among others, the processes of suf-

a d m i n i s t r a n d o 

d 
a 

o 

Ø 

s 

r o 

… 

Figure  1.2: A Finite State Automaton (FSA) representing surface forms of the lexeme 

administrar. Arcs represent characters; States are character boundaries. States at 

morpheme boundaries typically have multiple arcs entering and/or exiting, while 

states at character boundaries internal to morpheme boundaries typically have a 

single entering and a single exiting arc. 
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fixation, prefixation, infixation, reduplication, and template filling all produce surface 

forms in some languages. Second, the application of word forming processes often trig-

gers phonological (or orthographic) change. These phonological changes can obscure a 

straightforward concatenative treatment of morphology. And third, the morphological 

structure of a word can be inherently ambiguous—that is, a single surface form of a lex-

eme may have more than one legitimate morphological analysis.  

Despite the complexity of morphology, this thesis holds that a large caste of morpho-

logical structures can be represented as paradigms of mutually substitutable substrings. In 

particular, sequences of affixes can be modeled by paradigm-like structures. Returning to 

the example of Spanish verbal paradigms in Figure  1.1, the Number paradigm on past 

participles can be captured by the alternating pair of strings s and Ø. Similarly, the Gen-

der paradigm alternates between the strings a and o. Additionally, and crucially for this 

thesis, the Number and Gender paradigms combine to form an emergent cross-product 

paradigm of four alternating strings: a, as, o, and os . Carrying the cross-product further, 

the past participle endings alternate with the other verbal endings, both non-finite and fi-

nite, yielding a large cross-product paradigm-like structure of alternating strings which 

include: ada, adas , ado , ados , ando , ar, o, etc. These emergent cross-product para-

digms each identify a single morpheme boundary within the larger paradigm structure of 

a language.  

And with this brief introduction to morphology and paradigm structure we come to 

the formal claims of this thesis. 
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1.2 Thesis Claims  

The algorithms and discoveries contained in this thesis automate the morphological 

analysis of natural language by inducing structures, in an unsupervised fashion, which 

closely correlate with inflectional paradigms. Additionally, 

1. The discovered paradigmatic structures improve the word-to-morpheme segmen-

tation performance of a state-of-the-art unsupervised morphology analysis system.  

2. The unsupervised paradigm discovery and word segmentation algorithms improve 

this state-of-the-art performance for a diverse set of natural languages, including 

German, Turkish, Finnish, and Arabic. 

3. The paradigm discovery and improved word segmentation algorithms are 

computationally tractable. 

4. Augmenting a morphologically naïve information retrieval (IR) system with the 

induced morphological segmentations improves performance on an IR task. The 

IR improvements hold across a range of morphologically concatenative lan-

guages.  
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1.3 ParaMor: Paradigms across Morphology 

The paradigmatic, syntagmatic, and phoneme sequence constraints of natural lan-

guage allow ParaMor, the unsupervised morphology induction algorithm described in this 

thesis, to first reconstruct the morphological structure of a language, and to then decon-

struct word forms of that language into constituent morphemes. The structures that Pa-

raMor captures are sets of mutually replaceable word-final strings which closely model 

emergent paradigm cross-products—each paradigm cross-product identifying a single 

morpheme boundary in a set of words.  

This dissertation focuses on identifying suffix morphology. Two facts support this 

choice. First, suffixation is a concatenative process and 86% of the world’s languages use 

concatenative morphology to inflect lexemes (Dryer, 2008). Second, 64% of these con-

catenative languages are predominantly suffixing, while another 17% employ prefixation 

and suffixation about equally, and only 19% are predominantly prefixing. In any event, 

concentrating on suffixes is not a binding choice: the methods for suffix discovery de-

tailed in this thesis can be straightforwardly adapted to prefixes, and generalizations 

could likely capture even non-concatenative morphological processes such as infixation. 

To reconstruct the cross-products of the paradigms of a language, ParaMor defines 

and searches a network of paradigmatically and syntagmatically organized schemes of 

candidate suffixes and candidate stems. ParaMor’s search algorithms are motivated by 

the paradigmatic, syntagmatic, and phoneme sequence constraints discussed in Sec-

tion  1.1.  Figure  1.3 depicts a portion of a morphology scheme network automatically de-

rived from 100,000 words of the Brown Corpus of English (Francis, 1964). Each box in 

Figure  1.3 is a scheme, which lists in bold  a set of candidate suffixes, or c-suffixes, to-

gether with a list, in italics, of candidate stems, or c-stems. Each of the c-suffixes in a 

scheme concatenates onto each of the c-stems in that scheme to form a word found in the 

input text. For instance, the scheme containing the c-suffix set Ø.ed.es.ing , where Ø sig-

nifies a null suffix, is derived from the words address , addressed , addresses , ad-

dressing , reach , reached,  etc. In Figure  1.3, the two highlighted schemes, Ø.ed.es.ing  

and e.ed.es.ing , represent valid paradigmatically opposed sets of suffixes that head (or-

thographic) inflection classes of the English verbal paradigm. The other candidate 
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Figure  1.3: A portion of a morphology scheme network generated from 100,000 words 

of the Brown corpus of English (Francis, 1964). The two schemes which model com-

plete verbal sub-classes are outlined in bold. 

e ed es ing 

not 
declar 

… 

Ø ed es ing 

address 
reach 

s sed ses sing  

addres 
mis 

Ø e ed es ing  

not 
stag 

 

ed es ing 

declar 
pric 

schemes in Figure  1.3 are wrong or incomplete. Crucially note, however, that as an unsu-

pervised induction system ParaMor is not informed which schemes represent true para-

digms and which do not—separating the good scheme models from the bad is exactly the 

task of ParaMor’s paradigm induction algorithms.  

Chapter 3 details the construction of morphology scheme networks over suffixes and 

describes a network search procedure that identifies schemes which contain in aggregate 

91% of all Spanish inflectional suffixes when training over a corpus of 50,000 types. 

However, many of the initially selected schemes do not represent true paradigms; And of 

those that do represent paradigms, most capture only a portion of a complete paradigm. 

Hence, Chapter 4 describes algorithms to first merge candidate paradigm pieces into lar-

ger groups covering more of the affixes in a paradigm, and then to filter out those candi-

dates which likely do not model true paradigms.  

With a handle on the paradigm structures of a language, ParaMor uses the induced 

morphological knowledge to segment word forms into likely morphemes. Recall that, as 
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models of paradigm cross-products, each scheme models a single morpheme boundary in 

each surface form that contributes to that scheme. To segment a word form, ParaMor 

simply matches the c-suffixes of each discovered scheme against that word and proposes 

a single morpheme boundary at any match point. A pair of examples:  

1. Assume ParaMor correctly identifies the English scheme Ø.ed.es.ing  from 

Figure  1.3. When requested to segment the word reaches , ParaMor finds that 

the es c-suffix in the discovered scheme matches the word-final string es in 

reaches . Hence, ParaMor segments reaches  as reach +es .  

2. Since more than one paradigm cross-product may match a particular word, a 

word may be segmented at more than one position. The Spanish word admin-

istradas  from Section  1.1 contains three suffixes, ad, a, and s.  Presuming 

that ParaMor correctly identifies three separate schemes, one containing the 

cross-product c-suffix adas , one containing as, and one containing s, Pa-

raMor will match in turn each of these c-suffixes against administradas , and 

will ultimately produce the correct segmentation: administr +ad +a +s . 

To evaluate morphological segmentation performance, ParaMor competed in two 

years of the Morpho Challenge competition series (Monson et al., 2008a; 2008b). The 

Morpho Challenge competitions pit against one another algorithms designed to discover 

the morphological structure of natural languages from nothing more than raw text (Ku-

rimo, Turunen, and Varjokallio, 2008). Unsupervised morphology induction systems 

were evaluated in two ways during the 2007 and 2008 Challenges. First, a linguistically 

motivated metric measured each system at the task of morpheme identification (Kurimo, 

Creutz, and Varjokallio, 2008; Kurimo and Varjokallio, 2008). Morpho Challenge 2007 

evaluated systems’ morpheme identification over four languages: English, German, Turk-

ish, and Finnish; while the 2008 Challenge added Arabic. Second, in a Task-Based 

evaluation, the organizers of Morpho Challenge augmented an information retrieval (IR) 

system with the morphological segmentations that each system proposed and measured 

mean average precision of the relevance of returned documents (Kurimo, Creutz, and Tu-

runen, 2007; Kurimo and Turunen, 2008).  
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As a stand-alone system, ParaMor performed on par with state-of-the-art unsuper-

vised morphology induction systems at the Morpho Challenge competitions. Evaluated 

for F1 at morpheme identification, in English ParaMor outperformed an already sophisti-

cated reference induction algorithm, Morfessor-MAP (Creutz, 2006); placing third over-

all out of the eight participating algorithm families from the 2007 and 2008 competitions. 

In Turkish, ParaMor identified a significantly higher proportion of true Turkish mor-

phemes than any other participating algorithm. This strong recall placed the solo ParaMor 

algorithm first in F1 at morpheme identification for this language.  

But ParaMor particularly shines when ParaMor’s morphological analyses are ad-

joined to those of Morfessor-MAP. Where ParaMor focuses on discovering the paradig-

matic structure of inflectional suffixes, the Morfessor algorithm identifies linear se-

quences of inflectional and derivational affixes—both prefixes and suffixes. With such 

complementary algorithms, it is not surprising that combining segmentations from the 

ParaMor and Morfessor systems improves performance over either algorithm alone. In all 

language tracks of the Challenge but English, the joint ParaMor-Morfessor system placed 

first at morpheme identification. In English the joint system moved to second. And in 

Turkish, morpheme identification of the ParaMor-Morfessor system is 13.5% higher ab-

solute than the next best submitted system, excluding ParaMor alone. In the IR competi-

tion, which only covered English, German, and Finnish, the combined ParaMor-

Morfessor system not only placed first in English and German, but also consistently out-

performed, in all three languages, a baseline IR algorithm of no morphological analysis. 

1.4 A Brief Reader’s Guide 

The remainder of this thesis is organized as follows: Chapter 2 situates the ParaMor 

algorithm in the field of prior work on unsupervised morphology induction. Chapters 3 

and 4 present ParaMor’s core paradigm discovery algorithms. Chapter 5 describes Pa-

raMor’s word segmentation models. And Chapter 6 details ParaMor’s performance in the 

Morpho Challenge 2007 competition. Finally, Chapter 7 summarizes the contributions of 
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ParaMor and outlines future directions both specifically for ParaMor and more generally 

for the broader field of unsupervised morphology induction. 



 27 

Chapter 2:                            
A Literature Review of 
ParaMor’s Predecessors 

The challenging task of unsupervised morphology induction has inspired a significant 

body of work. This chapter highlights unsupervised morphology systems that influenced 

the design of or that contrast with ParaMor, the morphology induction system described 

in this thesis. Two induction techniques have particularly impacted the development of 

ParaMor:  

1. Finite State (FS) techniques, and  

2. Minimum Description Length (MDL) techniques.  

Sections  2.1 and  2.2 present, respectively, FS and MDL approaches to morphology in-

duction, emphasizing their influence on ParaMor. Section  2.3 then describes several mor-

phology induction systems which do not neatly fall in the FS or MDL camps but which 

are nevertheless relevant to the design of ParaMor. Finally, Section  2.4 synthesizes the 

findings of the earlier discussion. 
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2.1 Finite State Approaches 

In 1955, Zellig Harris proposed to induce morphology in an unsupervised fashion by 

modeling morphology as a finite state automaton (FSA). In this FSA, the characters of 

each word label the transition arcs and, consequently, states in the automaton occur at 

character boundaries. Coming early in the procession of modern methods for morphology 

induction, Harris-style finite state techniques have been incorporated into a number of 

unsupervised morphology induction systems, ParaMor included. ParaMor draws on finite 

state techniques at two points within its algorithms. First, the finite state structure of mor-

phology impacts ParaMor’s initial organization of candidate partial paradigms into a 

search space (Section  3.1.2). And second, ParaMor identifies and removes the most 

unlikely initially selected candidate paradigms using finite state techniques (Section 

 4.4.2). 

Three facts motivate finite state automata as appropriate models for unsupervised 

morphology induction. First, the topology of a morphological FSA captures phoneme se-

quence constraints in words. As was presented in Section  1.1, phoneme choice is usually 

constrained at character boundaries internal to a morpheme but is often more free at mor-

pheme boundaries. In a morphological FSA, a state with a single incoming character arc 

and from which there is a single outgoing arc is likely internal to a morpheme, while a 

state with multiple incoming arcs and several competing outgoing branches likely occurs 

at a morpheme boundary. As described further in Section  2.1.1, it was this topological 

motivation that Harris exploited in his 1955 system, and that ParaMor draws on as well.  

A second motivation for modeling morphological structure with finite state automata 

is that FSA succinctly capture the recurring nature of morphemes—a single sequence of 

states in an FSA can represent many individual instances, in many separate words, of a 

single morpheme. As described in Section  2.1.2 below, the morphology system of Altun 

and Johnson (2001) particularly builds on this succinctness property of finite state auto-

mata.  

The third motivation for morphological FSA is theoretical: Most, if not all, morpho-

logical operations are finite state in computational complexity (Roark and Sproat, 2007). 

Indeed, state-of-the-art solutions for building morphological systems involve hand-



 29 

writing rules which are then automatically compiled into finite state networks (Beesley 

and Karttunen, 2003; Sproat 1997). 

The next two sub-sections ( 2.1.1 and  2.1.2) describe specific unsupervised morphol-

ogy induction systems which use finite state approaches. Section  2.1.1 begins with the 

simple finite state structures proposed by Harris, while Section  2.1.2 presents systems 

which allow more complex arbitrary finite state automata. 

2.1.1 The Character Trie 

Harris (1955; 1967) and later Hafer and Weiss (1974) were the first to propose and 

then implement finite state unsupervised morphology induction systems—although they 

may not have thought in finite state terms themselves. Harris (1955) outlines a morphol-

ogy analysis algorithm which he motivated by appeal to the phoneme succession con-

straint properties of finite state structures. Harris’ algorithm first builds character trees, or 

tries, over corpus utterances. Tries are deterministic, acyclic, but un-minimized FSA. In 

tries, Harris identifies those states for which the finite state transition function is defined 

for an unusually large number of characters in the alphabet. These branching states repre-

sent likely word and morpheme boundaries.  

Although Harris only ever implemented his algorithm to segment words into mor-

phemes, he originally intended his algorithms to segment sentences into words, as Harris 

(1967) notes, word-internal morpheme boundaries are much more difficult to detect with 

the trie algorithm. The comparative challenge of word-internal morpheme detection stems 

from the fact that phoneme variation at morpheme boundaries largely results from the 

interplay of a limited repertoire of paradigmatically opposed inflectional morphemes. In 

fact, as described in Section  1.1, word-internal phoneme sequence constraints can be 

viewed as the phonetic manifestation of the morphological phenomena of paradigmatic 

and syntagmatic variation.  

Harris (1967), in a small scale mock-up, and Hafer and Weiss (1974), in more exten-

sive quantitative experiments, report results at segmenting words into morphemes with 

the trie-based algorithm. Word-to-morpheme segmentation is an obvious measure of the 
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correctness of an induced model of morphology. And a number of natural language proc-

essing tasks, including machine translation, speech recognition, and information retrieval, 

could potentially benefit from an initial simplifying step of segmenting complex surface 

words into smaller recurring morphemes. Hafer and Weiss detail word segmentation per-

formance when augmenting Harris’ basic algorithm with a variety of heuristics for de-

termining when the number of outgoing arcs is sufficient to postulate a morpheme 

boundary at a trie node. Hafer and Weiss measure recall and precision performance of 

each heuristic when supplied with a corpus of 6,200 word types. The variant which 

achieves the highest F1 measure of 75.4%, from a precision of 81.8% and recall of 70.0%, 

combines results from both forward and backward tries and uses entropy to measure the 

branching factor of each node. Entropy captures not only the number of outgoing arcs but 

also the fraction of words that follow each arc.  

A number of systems, many of which are discussed in depth later in this chapter, em-

bed a Harris style trie algorithm as one step in a more complex process. Demberg (2007), 

Goldsmith (2001; 2006), Schone and Jurafsky (2000; 2001), and Déjean (1998) all use 

tries to construct initial lists of likely morphemes which they then process further. Bor-

dag (2008) extracts morphemes from tries built over sets of words that occur in similar 

contexts. And Bernhard (2008) captures something akin to trie branching by calculating 

word-internal letter transition probabilities. Both the Bordag (2008) and the Bernhard 

(2008) systems competed strongly in the Morpho Challenge competition of 2007, along-

side the unsupervised morphology induction system described in this thesis, ParaMor. 

Finally, the ParaMor system itself examines trie structures to identify likely morpheme 

boundaries. ParaMor builds local tries from the last characters of candidate stems which 

all occur in a corpus with the same set of candidate suffixes attached. Following Hafer 

and Weiss (1974), ParaMor measures the strength of candidate morpheme boundaries as 

the entropy of the relevant trie structures. 
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2.1.2 Unrestricted Finite State Automata 

From tries it is not a far step to modeling morphology with more general finite state 

automata. A variety of methods have been proposed to induce FSA that closely model 

morphology. The ParaMor algorithm of this thesis, for example, models the morphology 

of a language with a non-deterministic finite state automaton containing a separate state 

to represent every set of word final strings which ends some set of word initial strings in a 

particular corpus (see Section  3.1.2). 

In contrast, Johnson and Martin (2003) suggest identifying morpheme boundaries by 

examining properties of the minimal finite state automaton that exactly accepts the word 

types of a corpus. The minimal FSA can be generated straightforwardly from a Harris-

style trie by collapsing trie states from which precisely the same set of strings is accepted. 

Like a trie, the minimal FSA is deterministic and acyclic, and the branching properties of 

its arcs encode phoneme succession constraints. In the minimal FSA, however, incoming 

arcs also provide morphological information. Where every state in a trie has exactly one 

incoming arc, each state, q , in the minimal FSA has a potentially separate incoming arc 

for each trie state which collapsed to form q . A state with two incoming arcs, for exam-

ple, indicates that there are at least two strings for which exactly the same set of final 

strings completes word forms found in the corpus. Incoming arcs thus encode a rough 

guide to syntagmatic variation, see Section  1.1.  

Johnson and Martin combine the syntagmatic information captured by incoming arcs 

with the phoneme sequence constraint information from outgoing arcs to segment the 

words of a corpus into morphemes at exactly: 

1. Hub states—states which possess both more than one incoming arc and more than 

one outgoing arc, Figure  2.1, left. 

2. The last state of stretched hubs—sequences of states where the first state has mul-

tiple incoming arcs and the last state has multiple outgoing arcs and the only 

available path leads from the first to the last state of the sequence, Figure  2.1, 

right.  
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Stretched hubs likely model the boundaries of a paradigmatically related set of mor-

phemes, where each related morpheme begins (or ends) with the same character or char-

acter sequence. Johnson and Martin (2003) report that this simple Hub-Searching algo-

rithm segments words into morphemes with an F1 measure of 0.600, from a precision of 

0.919 and a recall of 0.445, over the text of Tom Sawyer; which, according to Manning 

and Schütze (1999, p. 21), has 71,370 tokens and 8,018 types.  

To improve segmentation recall, Johnson and Martin extend the Hub-Searching algo-

rithm by introducing a morphologically motivated state merge operation. Merging states 

in a minimized FSA generalizes or increases the set of strings the FSA will accept. In this 

case, Johnson and Martin merge all states that are either accepting word final states, or 

that are likely morpheme boundary states by virtue of possessing at least two incoming 

arcs. This technique increases F1 measure over the same Tom Sawyer corpus to 0.720, by 

bumping precision up slightly to 0.922 and significantly increasing recall to 0.590. 

State merger is a broad technique for generalizing the language accepted by a FSA, 

used not only in finite state learning algorithms designed for natural language morphol-

ogy, but also in techniques for inducing arbitrary FSA. Much research on FSA induction 

focuses on learning the grammars of artificial languages. Lang, Pearlmutter, and Price 

(1998) present a state-merging algorithm designed to learn large randomly generated de-

terministic FSA from positive and negative data. Lang, Pearlmutter, and Price (1998) also 

provides a brief overview of other work in FSA induction for artificial languages. Since 

natural language morphology is considerably more constrained than random FSA, and 

since natural languages typically only provide positive examples, work on inducing for-

mally defined subsets of general finite state automata from positive data may be a bit 

Figure  2.1: A hub, left, and a stretched hub, right, in a finite state automaton 
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more relevant here. Work in constrained FSA induction includes Miclet (1980), who ex-

tends finite state k-tail induction, first introduced by Biermann and Feldman (1972), with 

a state merge operation. Similarly, Angluin (1982) presents an algorithm, also based on 

state merger, for the induction of k-reversible languages.  

Altun and Johnson (2001) present a technique for FSA induction, again built on state 

merger, which is specifically motivated by natural language morphological structure. Al-

tun and Johnson induce finite state grammars for the English auxiliary system and for 

Turkish Morphology. Their algorithm begins from the forward trie over a set of training 

examples. At each step the algorithm applies one of two merge operations. Either any two 

states, 1q  and 2q , are merged, which then forces their children to be recursively merged 

as well; or an є-transition is introduced from 1q  to 2q . To keep the resulting FSA deter-

ministic following an є-transition insertion, for all characters a  for which the FSA transi-

tion function is defined from both 1q  and 2q , the states to which a leads are merged, to-

gether with their children recursively.  

Each arc ( )aq,  in the FSA induced by Altun and Johnson (2001) is associated with a 

probability, initialized to the fraction of words which follow the ( )aq,  arc. These arc 

probabilities define the probability of the set of training example strings. The training set 

probability is combined with the prior probability of the FSA to give a Bayesian descrip-

tion length for any training set-FSA pair. Altun and Johnson’s greedy FSA search algo-

rithm follows the minimum description length principle (MDL)—at each step of the algo-

rithm, that state merge operation or є-transition insertion operation is performed which 

most decreases the weighted sum of the log probability of the induced FSA and the log 

probability of the observed data given the FSA. If no operation results in a reduction in 

the description length, grammar induction ends.  

Being primarily interested in inducing FSA, Altun and Johnson do not actively seg-

ment words into morphemes. Hence, quantitative comparison with other morphology in-

duction work is difficult. Altun and Johnson do report the behavior of the negative log 

probability of Turkish test set data, and the number of learning steps taken by their algo-

rithm, each as the training set size increases. Using these measures, they compare a ver-

sion of their algorithm without є-transition insertion to the version that includes this op-
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eration. They find that their algorithm for FSA induction with є-transitions achieves a 

lower negative log probability in less learning steps from fewer training examples. 

2.2 MDL and Bayes’ Rule: Balancing Data Length against 
Model Complexity 

The minimum description length (MDL) principle employed by Altun and John-

son (2001) in a finite-state framework, as discussed in the previous section, has been used 

extensively in non-finite-state approaches to unsupervised morphology induction. The 

MDL principle is a model selection strategy which suggests to choose that model which 

minimizes the sum of:  

1. The size of an efficient encoding of the model, and  

2. The length of the data encoded using the model.  

In morphology induction, the MDL principle measures the efficiency with which a model 

captures the recurring structures of morphology. Suppose an MDL morphology induction 

system identifies a candidate morphological structure, such as an inflectional morpheme 

or a paradigmatic set of morphemes. The MDL system will place the discovered morpho-

logical structure into the model exactly when the structure occurs sufficiently often in the 

data that it saves space overall to keep just one copy of the structure in the model and to 

then store pointers into the model each time the structure occurs in the data.  

Although ParaMor, the unsupervised morphology induction system described in this 

thesis, directly measures neither the complexity of its models nor the length of the induc-

tion data given a model, ParaMor’s design was, nevertheless, influenced by the MDL 

morphology induction systems described in this section. In particular, ParaMor implicitly 

aims to build compact models: The candidate paradigm schemes defined in Section  3.1.1 

and the partial paradigm clusters of Section  4.3 both densely describe large swaths of the 

morphology of a language. 

Closely related to the MDL principle is a particular application of Bayes’ Rule from 

statistics. If d is a fixed set of data and m a morphology model ranging over a set of pos-
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sible models, M, then the most probable model given the data is: )|(argmax dmPMm∈ . 

Applying Bayes’ Rule to this expression yields: 

 ( ) ( ) ( )mPmdPdmP
MmMm

|argmax|argmax
∈∈

= ,  

And taking the negative of the logarithm of both sides gives:  

( ){ } ( )[ ] ( )[ ]{ }mPmdPdmP
MmMm

log|logargmin|logargmin −+−=−
∈∈

.  

Reinterpreting this equation, the ( )[ ]mPlog−  term is a reasonable measure of the length 

of a model, while ( )[ ]mdP |log−  expresses the length of the induction data given the 

model.  

Despite the underlying close relationship between MDL and Bayes’ Rule approaches 

to unsupervised morphology induction, a major division occurs in the published literature 

between systems that employ one or the other methodology. Sections  2.2.1 and  2.2.2 re-

flect this division: Section  2.2.1 describes unsupervised morphology systems that apply 

the MDL principle directly by devising an efficient encoding for a class of morphology 

models, while Section  2.2.2 presents systems that indirectly apply the MDL principle in 

defining a probability distribution over a set of models, and then invoking Bayes’ Rule. 

In addition to differing in their method for determining model and data length, the 

systems described in Sections  2.2.1 and  2.2.2 differ in the specifics of their search strate-

gies. While the MDL principle can evaluate the strength of a model, it does not suggest 

how to find a good model. The specific search strategy a system uses is highly dependent 

on the details of the model family being explored. Section  2.1 presented search strategies 

used by morphology induction systems that model morphology with finite state automata. 

And now Sections  2.2.1 and  2.2.2 describe search strategies employed by non-finite state 

morphology systems. The details of system search strategies are relevant to this thesis 

work as Chapters 3 and 4 of this dissertation are largely devoted to the specifics of Pa-

raMor’s search algorithms. Similarities and contrasts with ParaMor’s search procedures 

are highlighted both as individual systems are presented and also in summary in Sec-

tion  2.4. 
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2.2.1 Measuring Morphology Models with Efficient Encodings 

This survey of MDL-based unsupervised morphology induction systems begins with 

those that measure model length by explicitly defining an efficient model encoding. First 

to propose the MDL principle for morphology induction was Brent, Murthy, and 

Lundberg (1995; see also Brent, 1993). These authors use MDL to evaluate natural lan-

guage morphology models of a simple, but elegant form. Their models describe a vocabu-

lary as a set of three lists: 

1. A list of stems 

2. A list of suffixes, and 

3. A list of valid (stem, suffix) pairs 

Each of these three lists is efficiently encoded. The sum of the lengths of the first two en-

coded lists constitutes the model length, while the length of the third list yields the size of 

the data given the model. Consequently the sum of the lengths of all three encoded lists is 

the full description length to be minimized. As the morphology model in Brent, Murthy, 

and Lundberg (1995) only allows for pairs of stems and suffixes, each model can propose 

at most one morpheme boundary per word.  

Using this list-model of morphology to describe a vocabulary of words, V, there are 

∏ ∈Vw
w  possible models—far too many to exhaustively explore. Hence, Brent, Murthy, 

and Lundberg (1995) describes a heuristic search procedure to greedily explore the model 

space. First, each word final string, f, in the corpus is ranked according to the ratio of the 

relative frequency of f divided by the relative frequencies of each character in f. Each 

word final string is then considered in turn, according to its heuristic rank, and added to 

the suffix list whenever doing so decreases the description length of the corpus. When no 

suffix can be added that reduces the description length further, the search considers re-

moving a suffix from the suffix list. Suffixes are iteratively added and removed until de-

scription length can no longer be lowered.  

To evaluate their method, Brent, Murthy, and Lundberg (1995) examine the list of 

suffixes found by the algorithm when supplied with English word form lexicons of vari-

ous sizes. Any correctly identified inflectional or derivational suffix counts toward accu-



 37 

racy. Their highest accuracy results are obtained when the algorithm induces morphology 

from a lexicon of 2000 types: the algorithm hypothesizes twenty suffixes with an accu-

racy of 85%. 

Baroni (2000; see also 2003) describes DDPL, an MDL inspired model of morphol-

ogy induction similar to the Brent, Murthy, and Lundberg (1995) model. The DDPL 

model identifies prefixes instead of suffixes, uses a heuristic search strategy different 

from Brent, Murthy, and Lundberg (1995), and treats the MDL principle more as a guide 

than an inviolable tenet. But most importantly, Baroni conducts a rigorous empirical 

study showing that automatic morphological analyses found by DDPL correlate well with 

human judgments. He reports a Spearman correlation coefficient of 0.62 ( )001.0<<p  for 

the correlation of average human morphological complexity rating to the DDPL analysis 

on a set of 300 potentially prefixed words of. 

Goldsmith (2001; 2006), in a system called Linguistica, extends the promising results 

of MDL morphology induction by augmenting the basic model of Brent, Murthy, and 

Lundberg (1995) to incorporate the paradigmatic and syntagmatic structure of natural 

language morphology. As discussed in Chapter 1, natural language inflectional mor-

phemes belong to paradigmatic sets where all the morphemes in a paradigmatic set are 

mutually exclusive. Similarly, natural language lexemes belong to syntagmatic classes 

where all lexemes in the same syntagmatic class can be inflected with the same set of 

paradigmatically opposed morphemes. While previous approaches to unsupervised mor-

phology induction, including Déjean (1998), indirectly drew on the paradigmatic-

syntagmatic structure of morphology, Goldsmith’s Linguistica system was the first to in-

tentionally model this important aspect of natural language morphological structure. The 

paradigm based algorithms of the ParaMor algorithm, as described in this thesis, were 

directly inspired by Goldsmith’s success at unsupervised morphology induction when 

modeling the paradigm.  

The Linguistica system models the paradigmatic and syntagmatic nature of natural 

language morphology by defining the signature. A Goldsmith signature is a pair of sets 

( )FT, , T a set of stems and F a set of suffixes, where T and F satisfy the following three 

conditions: 
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1. For any stem t in T and for any suffix f in F, ft. must be a word in the vocabulary, 

2. Each word in the vocabulary must be generated by exactly one signature, and 

3. Each stem t  occurs in the stem set of at most one signature 

As in Brent, Murthy, and Lundberg (1995), a morphology model in Goldsmith’s 

work consists of three lists. The first two are, as for Brent, a list of stems and a list of suf-

fixes. But, instead of a list containing each valid stem-suffix pair, the third list in a Lin-

guistica morphology consists of signatures. Replacing the list of all valid stem-suffix 

pairs with a list of signatures allows a signature model to potentially represent natural 

language morphology with a reduced description length. A description length decrease 

can occur because it takes less space to store a set of syntagmatically opposed stems with 

a set of paradigmatically opposed suffixes than it does to store the cross-product of the 

two sets.  

Following the MDL principle, Goldsmith efficiently encodes each of the three lists 

that form a signature model; and the sum of the encoded lists is the model’s description 

length. Notice that, just as for Brent, Murthy, and Lundberg (1995), Goldsmith’s imple-

mented morphology model can propose at most one morpheme boundary per word 

type—although Goldsmith (2001) does discuss an extension to handle multiple mor-

pheme boundaries. 

To find signature models, Goldsmith (2001; see also 2006) proposes several different 

search strategies. The most successful strategy seeds model selection with signatures de-

rived from a Harris (1955) style trie algorithm. Then, a variety of heuristics suggest small 

changes to the seed model. Whenever a change results in a lower description length the 

change is accepted.  

Goldsmith (2001) reports precision and recall results on segmenting 1,000 alphabeti-

cally consecutive words from: 

1. The more than 30,000 unique word forms in the first 500,000 tokens of the Brown 

Corpus (Francis, 1964) of English: Precision: 0.860, Recall: 0.904, F1: 0.881. 

2. A corpus of 350,000 French tokens: Precision: 0.870, Recall: 0.890, F1: 0.880. 



 39 

Goldsmith (2001) also gives qualitative results for Italian, Spanish, and Latin suggesting 

that the best signatures in the discovered morphology models generally contain coherent 

sets of paradigmatically opposed suffixes and syntagmatically opposed stems. 

2.2.2 Measuring Morphology Models with Probability Distri butions 

This sub-section contains an in-depth description of two morphology induction sys-

tems which exemplify the Bayes’ Rule approach to unsupervised morphology induction: 

Snover (2002) and Creutz (2006) each build morphology induction systems by first defin-

ing a probability distribution over a family of morphology models and then searching for 

the most probable model. And, as described below, both the Snover system and that built 

by Creutz directly influenced the development of ParaMor. 

 The Morphology Induction System of Matthew Snover 

Snover (2002; c.f.: Snover and Brent, 2002; Snover, Jarosz, and Brent, 2002; Snover 

and Brent, 2001) discusses a family of morphological induction systems which, like 

Goldsmith’s Linguistica and like the ParaMor algorithm presented in this thesis, directly 

model the paradigmatic and syntagmatic structure of natural language morphology. But, 

where Goldsmith measures the quality of a morphological model as its encoded length, 

Snover invokes Bayes’ Rule—defining a probability function over a space of morphology 

models and then searching for the highest probability model (see the introduction to Sec-

tion  2.2). 

Snover (2002) leverages paradigmatic and syntagmatic morphological structure both 

in his probabilistic morphology models and in the search strategies he employs. To define 

the probability of a model, Snover (2002) defines functions that assign probabilities to: 

1. The stems in the model 

2. The suffixes in the model 

3. The assignment of stems to sets of suffixes called paradigms 
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Assuming independence, Snover defines the probability of a morphology model as the 

product of the probabilities of the stems, suffixes, and paradigms.  

Like Goldsmith (2001; 2006), Snover only considers models of morphology where 

each word and each stem belong to exactly one paradigm. Hence, the third item in the 

above list is identical to Goldsmith’s definition of a signature. Since Snover defines prob-

abilities for exactly the same three items that Goldsmith computes description lengths for, 

the relationship of Snover’s models to Goldsmith’s is quite tight.  

To find strong models of morphology Snover proposes two search procedures: Hill 

Climbing Search and Directed Search. Both strategies leverage the paradigmatic structure 

of language in defining data structures similar to the morphology networks proposed for 

this thesis in Chapter 3.  

The Hill Climbing Search follows the same philosophy as the MDL based algorithms 

of Brent, Murthy, and Lundberg (1995) and Goldsmith (2001; 2006): At each step, 

Snover’s Hill Climbing Search algorithm proposes a new morphology model, which is 

only accepted if it improves the model score—But in Snover’s case, model score is prob-

ability. The Hill Climbing search uses an abstract suffix network defined by inclusion 

relations on sets of suffixes. Initially, the only network node to possess any stems is that 

node containing just the null suffix, Ø. All vocabulary items are placed in this Ø node. 

Each step of the Hill Climbing Search proposes adjusting the current morphological 

analysis by moving stems in batches to adjacent nodes that contain exactly one more or 

one fewer suffixes. At each step, that batch move is accepted which most improves the 

probability score. 

Snover’s probability model can only score morphology models where each word con-

tains at most a single morpheme boundary. The Hill Climbing Search ensures this single 

boundary constraint is met by forcing each individual vocabulary word to only ever con-

tribute to a single network node. Whenever a stem is moved to a new network node in 

violation of the single boundary constraint, the Hill Climbing Search simultaneously 

moves a compensating stem to a new node elsewhere in the network. 

Snover’s second search strategy, Directed Search, defines an instantiated suffix net-

work where each node, or, in the terminology of Chapter 3, each scheme, in the network 
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inherently contains all the stems which form vocabulary words with each suffix in that 

node. In this fully instantiated network, a single word might contribute to two or more 

scheme-nodes which advocate different morpheme boundaries—a situation which 

Snover’s probability model cannot evaluate. To build a global morphology model that the 

probability model can evaluate, the Directed Search algorithm visits every node in the 

suffix network and assigns a one-time probability score just for the segmentations sug-

gested by that node. The Directed Search algorithm then constructs a globally consistent 

morphology model by first discarding all but the top n scoring nodes; and then, whenever 

two remaining nodes disagree on the segmentation of a word, accepting the segmentation 

from the better scoring node. 

To evaluate the performance of his morphology induction algorithm, while avoiding 

the problems that ambiguous morpheme boundaries present to word segmentation, 

Snover (2002) defines a pair of evaluation metrics to separately: 1. Identify pairs of re-

lated words, and 2. Identify suffixes (where any suffix allomorph is accepted as correct). 

Helpfully, Snover (2002) supplies not only the results of his own algorithms using these 

metrics but also the results of Goldsmith’s (2001) Linguistica. Snover (2002) achieves his 

best overall performance when using the Directed Search strategy to seed the Hill Climb-

ing Search. This combination outperforms Linguistica on both the suffix identification 

metric as well as on the metric designed to identify pairs of related words, and does so for 

both English and Polish lexicons of up to 16,000 vocabulary items. 

Hammarström (2006b; see also 2006a, 2007) presents a non-Bayes stemming algo-

rithm that involves a paradigm search strategy that is closely related to Snover’s. As in 

Snover’s Directed Search, Hammarström defines a score for any set of candidate suffixes. 

But where Snover scores a suffix set according to a probability model that considers both 

the suffix set itself and the set of stems associated with that suffix set, Hammarström as-

signs a non-probabilistic score that is based on counts of stems that form words with pairs 

of suffixes from the set. Having defined an objective function, Hammarström’s algorithm 

searches for a set of suffixes that scores highly. Hammarström’s search algorithm moves 

from one set of suffixes to another in a fashion similar to Snover’s Hill Climbing 

Search—by adding or subtracting a single suffix in a greedy fashion. Hammarström’s 
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search algorithm is crucially different from Snover’s in that Hammarström does not in-

stantiate the full search space of suffix sets, but only builds those portions of the power 

set network that his algorithm directly visits. 

Hammarström’s paradigm search algorithm is one step in a larger system designed to 

stem words for information retrieval. To evaluate his system, Hammarström constructed 

sets of words that share a stem and sets of words that do not share a stem in four lan-

guages: Maori (an isolating language), English, Swedish, and Kuku Yalanji (a highly suf-

fixing language). Hammarström finds that his algorithm is able to identify words that 

share a stem with accuracy above 90%. 

ParaMor’s search strategies, described in Chapter 3 of this thesis, were directly in-

spired by Snover’s work and have much in common with Hammarström’s. The most sig-

nificant similarity between Snover’s system and ParaMor concerns the search space they 

examine for paradigm models: the fully instantiated network that Snover constructs for 

his Directed Search is exactly the search space that ParaMor’s initial paradigm search ex-

plores (see Chapter 3). The primary difference between ParaMor’s search strategies and 

those of Snover is that, where Snover must ensure his final morphology model assigns at 

most a single morpheme boundary to each word, ParaMor intentionally permits individ-

ual words to participate in scheme-nodes that propose competing morpheme boundaries. 

By allowing more than one morpheme boundary per word, ParaMor can analyze surface 

forms that contain more than two morphemes.  

Other contrasts between ParaMor’s search strategies and those of Snover and of 

Hammarström include: The scheme nodes in the network that is defined for Snover’s Di-

rected Search algorithm, and that is implicit in Hammarström’s work, are organized only 

by suffix set inclusion relations and so Snover’s network is a subset of what Section  3.1.2 

proposes for a general search space. Furthermore, the specifics of the strategies that 

Snover, Hammarström, and the ParaMor algorithm use to search the networks of candi-

date paradigms are radically different. Snover’s Directed Search algorithm is an exhaus-

tive search that evaluates each network node in isolation; Hammarström’s search algo-

rithm also assigns an intrinsic score to each node but searches the network in a greedy 

fashion; and ParaMor’s search algorithm, Section  3.2, is a greedy algorithm like Ham-
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marström’s, but explores candidate paradigms by comparing each candidate to network 

neighbors. Finally, unlike Snover’s Directed Search algorithm, neither Hammarström nor 

ParaMor actually instantiate the full suffix network. Instead, these algorithms dynami-

cally construct only the needed portions of the full network. Dynamic network construc-

tion allows ParaMor to induce paradigms over a vocabulary nearly three times larger than 

the largest vocabulary Snover’s system handles. Snover, Jarosz, and Brent (2002) dis-

cusses the possibility of using a beam or best-first search strategy to only search a subset 

of the full suffix network when identifying the initial best scoring nodes, but does not re-

port results.  

 Mathias Creutz’s Morfessor 

In a series of papers culminating in a Ph.D. thesis (Creutz and Lagus, 2002; Creutz, 

2003; Creutz and Lagus, 2004; Creutz, 2006) Mathias Creutz builds a probability-based 

morphology induction system he calls Morfessor that is tailored to agglutinative lan-

guages. In languages like Finnish, Creutz’s native language, long sequences of suffixes 

agglutinate to form individual words. Morfessor’s ability to analyze agglutinative struc-

tures inspired the ParaMor algorithm of this thesis to also account for suffix sequences—

although the ParaMor and Morfessor algorithms use vastly different mechanisms to ad-

dress agglutination. 

To begin, Creutz and Lagus (2002) extend a basic MDL morphology model (Brent, 

Murthy, and Lundberg, 1995) to account for the morpheme sequences that are typical of 

agglutinative languages. The extension of Creutz and Lagus (2002) defines an MDL 

model that consists of just two parts: 

1. A list of morphs, character strings that likely represent morphemes, where a mor-

pheme could be a stem, prefix, or suffix; and 

2. A list of morph sequences that result in valid word forms 

By allowing each word to contain many morphs, Creutz and Lagus’ Morfessor system 

neatly defies the single-suffix-per-word restriction found in so much work on unsuper-

vised morphology induction.  
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The search space of agglutinative morphological models is large. Each word type can 

potentially contain as many morphemes as there are characters in that word. To rein in 

the number of models actually considered, Creutz and Lagus (2002) use a greedy search 

strategy where each word is recursively segmented into two strings, or morphs, as long as 

segmentation lowers the global description length.  

Creutz (2003) improves Morfessor’s morphology induction by moving from a tradi-

tional MDL framework, where models are evaluated according to their efficiently en-

coded size, to a probabilistic one, where model scores are computed according to a gen-

erative probability model (and implicitly relying on Bayes’ theorem). Where Sno-

ver (2002) defines a paradigm-based probability model, Creutz (2003) probability model 

is tailored for agglutinative morphology models, and does not consider paradigm struc-

ture. Creutz (2003) does not modify the greedy recursive search strategy Morfessor uses 

to search for a strong morphology model.  

Finally, Creutz and Lagus (2004) refine the agglutinative morphology models that 

Morfessor selects by introducing three categories: prefix, stem, and suffix. The Morfessor 

system assigns every identified morph to each of these three categories with a certain 

probability. Creutz and Lagus then define a simple Hidden Markov Model (HMM) that 

describes the probability of outputting any possible sequence of morphs that conforms to 

the regular expression: (prefix* stem suffix*)+ .  

The morphology models described in this series of three papers each quantitatively 

improves upon the previous. Creutz and Lagus (2004) compares the full Morfessor sys-

tem that uses morph categories to Goldsmith’s Linguistica using precision and recall 

scores for word-to-morpheme segmentation. They report results over both English and 

Finnish with a variety of corpus sizes. When the input is a Finnish corpus of 250,000 to-

kens or 65,000 types, the Morfessor category model achieves an F1 of 0.64 from a preci-

sion of 0.81 and a recall of 0.53, while Linguistica only attains an F1 of 0.56 from a preci-

sion of 0.76 and a recall of 0.44. On the other hand, Linguistica does not fare so poorly 

on a similarly sized corpus of English (250,000 tokens, 20,000 types): Creutz and Lagus’ 

Morfessor Category model: F1: 0.73, precision: 0.70, recall: 0.77; Linguistica: F1: 0.74, 

precision: 0.68, recall: 0.80. 



 45 

2.3 Other Approaches to Unsupervised Morphology Induction 

Sections  2.1 and  2.2 presented unsupervised morphology induction systems which di-

rectly influenced the design of the ParaMor algorithm in this thesis. This section steps 

back for a moment, examining systems that either take a radically different approach to 

unsupervised morphology induction or that solve independent but closely related prob-

lems.  

Let’s begin with Schone and Jurafsky (2000), who pursue a very different approach 

to unsupervised morphology induction from ParaMor. Schone and Jurafsky notice that in 

addition to being orthographically similar, morphologically related words are similar se-

mantically. Their algorithm first acquires a list of pairs of potential morphological vari-

ants (PPMV’s) by identifying, in a trie, pairs of vocabulary words that share an initial 

string. This string similarity technique was earlier used in the context of unsupervised 

morphology induction by Jacquemin (1997) and Gaussier (1999). Schone and Jurafsky 

apply latent semantic analysis (LSA) to score each PPMV with a semantic distance. Pairs 

measuring a small distance, those pairs whose potential variants tend to occur where a 

neighborhood of the nearest hundred words contains similar counts of individual high-

frequency forms, are then proposed as true morphological variants of one another. In later 

work, Schone and Jurafsky (2001) extend their technique to identify not only suffixes but 

also prefixes and circumfixes. Schone and Jurafsky (2001) report that their full algorithm 

significantly outperforms Goldsmith’s Linguistica at identifying sets of morphologically 

related words.  

Following a logic similar to Schone and Jurafsky (2000; 2001), Baroni, Matiasek, 

and Trost (2002) marry a mutual information derived semantic-based similarity measure 

with an orthographic similarity measure to induce the citation forms of inflected words. 

And in the information retrieval literature, where stemming algorithms share much in 

common with morphological analysis, Xu and Croft (1998) describe an unsupervised 

stemmer induction algorithm that also has a flavor similar to Schone and Jurafsky’s mor-

phology induction system. Xu and Croft start from sets of word forms that, because they 

share the same initial three characters, likely share a stem. They then measure the signifi-
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cance of word form co-occurrence in windows of text. Word forms from the same initial 

string set that co-occur unusually often are placed in the same stem class. 

Finally, this discussion concludes with a look at some work which begins to move 

beyond simple word-to-morpheme segmentation. All of the unsupervised morphology 

induction systems presented thus far, including the ParaMor algorithm of this thesis, can-

not generalize beyond the word forms found in the induction corpus to hypothesize un-

seen inflected words. Consequently, the induction algorithms described in this chapter are 

suitable for morphological analysis but not for generation. Chan (2006) seeks to close this 

generation gap. Using Latent Dirichlet Allocation, a dimensionality reduction technique, 

Chan groups suffixes into paradigms and probabilistically assigns stems to those para-

digms. Over preprocessed English and Spanish texts, where each individual word has 

been morphologically analyzed with the correct segmentation and suffix label, Chan’s 

algorithm can perfectly reconstruct the suffix groupings of morphological paradigms. 

In other work that looks beyond word segmentation, Wicentowski and Yarowsky 

(Wicentowski, 2002; Yarowsky and Wicentowski, 2000; Yarowsky, Ngai, and Wicen-

towski, 2001) iteratively train a probabilistic model that identifies the citation form of an 

inflected word from several individually unreliable measures including: relative fre-

quency ratios of stems and inflected word forms, contextual similarity of the candidate 

forms, the orthographic similarity of the forms as measured by a weighted Levenstein 

distance, and in Yarowsky, Ngai, and Wicentowski (2001) a translingual bridge similarity 

induced from a clever application of statistical machine translation style word alignment 

probabilities.  

Wicentowski’s work stands out in the unsupervised morphology induction literature 

for explicitly modeling two important but rarely addressed morphological phenomena: 

non-concatenative morphology and morphophonology. Wicentowski and Yarowsky’s 

probabilistic model explicitly allows for non-concatenative stem-internal vowel changes 

as well as phonologic stem-boundary alterations that may occur when either a prefix or a 

suffix attaches to a stem.  

More recent work has taken up the thread of both non-concatenative morphological 

processes and morphophonology. Xanthos (2007) builds an MDL-based morphology in-
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duction system specifically designed to identify the interstitial root-and-pattern morphol-

ogy of Semitic languages such as Arabic and Hebrew. While in other work, Demberg 

(2007) takes a close look at morphophonology. Demberg’s system extracts, from forward 

and backward tries, suffix clusters similar to Goldsmith’s signatures. Demberg then 

measures the edit distance between suffixes in a cluster and notes that suffixes with a 

small distance are often due to morphophonologic changes. 

Probst (2003) pursues another less-studied aspect of unsupervised morphology induc-

tion: Unlike any other recent proposal, Probst’s unsupervised morphology induction sys-

tem can assign morphosyntactic features (i.e. Number, Person, Tense, etc.) to induced 

morphemes. Like Yarowsky, Ngai, and Wicentowski (2001), Probst uses machine trans-

lation word alignment probabilities to develop a morphological induction system for the 

second language in the translation pair. Probst draws information on morphosyntactic 

features from a lexicon that includes morphosyntactic feature information for the first 

language in the pair and projects this feature information onto the second language. 

Probst’s work, as well as Chan’s and that of Yarowsky and Wicentowski’s, take small 

steps outside the framework of unsupervised morphology induction by assuming access 

to limited linguistic information.  

2.4 Discussion of Related Work 

ParaMor, the unsupervised morphology induction system described in this thesis, 

fuses ideas from the unsupervised morphology induction approaches presented in the 

previous three sections and then builds on them. Like Goldsmith’s (2001; 2006) Linguis-

tica, ParaMor intentionally models paradigm structure; and like Creutz’s (2006) Morfes-

sor, ParaMor addresses agglutinative sequences of suffixes; but unlike either, ParaMor 

tackles agglutinative sequences of paradigmatic morphemes. Similarly, ParaMor’s mor-

pheme search space is a synthesis of the paradigmatic/syntagmatic morphology structure 

modeled by Snover (2002) on the one hand, and the finite state phoneme sequence de-

scription of morphology (Harris, 1955; Johnson and Martin, 2003) on the other.  

In a related vein, while ParaMor does not model morphology in a minimum descrip-

tion length (MDL) framework as Brent, Murthy, and Lundberg (1995), Baroni (2000), 
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and Goldsmith (2001; 2006) do, and while ParaMor does not define a probabilistic model 

of morphology as Snover (2002) and Creutz (2003) do, ParaMor does acknowledge the 

premise of these systems that a compact morphology model is desirable. Indeed, the basic 

building blocks of the network search space defined in Chapter 3, schemes, are a compact 

representation of morphological structure. 

The work proposed for this thesis does not directly extend every promising approach 

to unsupervised morphology described in the first three sections of this chapter. For ex-

ample, ParaMor only models suffixing morphology, and does not follow Baroni (2000) or 

Schone and Jurafsky (2001) in addressing prefixes, or Xanthos (2007) in modeling non-

concatenative processes. ParaMor also postpones for future work the modeling of mor-

phophonologic change, as considered in Wicentowski (2002). Finally, the progress made 

by Schone and Jurafsky (2000), Wicentowski (2002), and others on identifying morpho-

logically related word forms by analyzing their semantic and syntactic distance is both 

interesting and promising. While this thesis does not pursue this direction, integrating 

semantic and syntactic information into ParaMor’s existing algorithms is an exciting path 

for future work on unsupervised morphology induction. 

Clearly, ParaMor owes a great debt to previously proposed ideas for unsupervised 

morphology induction. Without the example of previously built systems, ParaMor would 

not have been able to spearhead new work on topics including a comprehensive search 

space of candidate paradigms, innovative measures to search that space, or how to trans-

form candidate paradigms that individually model a single morpheme boundary into ag-

glutinative analyses consisting of multiple morphemes. As the next chapters will show, 

biasing the morphology induction problem with the paradigmatic, syntagmatic, and pho-

neme sequence structure inherent in natural language morphology is the powerful leg-up 

needed for an unsupervised solution to the morphology induction problem.  
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Chapter 3:                     
Paradigm Identification 
with ParaMor 

This thesis describes and motivates ParaMor, an unsupervised morphology induction 

algorithm. To uncover the organization of morphology within a specific language, Pa-

raMor leverages paradigms as the language independent structure of natural language 

morphology. In particular ParaMor exploits paradigmatic and syntagmatic relationships 

which hold cross-linguistically among affixes and lexical stems respectively. The para-

digmatic and syntagmatic properties of natural language morphology were presented in 

some detail in Section  1.1. Briefly, an inflectional paradigm in morphology consists of: 

1. A set of mutually substitutable, or paradigmatically related, affixes, and 

2. A set of syntagmatically related stems which all inflect with the affixes in 1. 

This chapter describes and motivates ParaMor’s unsupervised strategies to initially 

isolate likely partial models of paradigmatic structures. These initial paradigm models are 

partial in two ways. First, most of ParaMor’s initial models will only describe a subset of 

the affixes in any particular paradigm. The clustering algorithm described in Chapter 4 is 
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specifically designed to join initial models that describe subsets of the same underlying 

paradigm. Second, while many natural languages combine several morphemes to form a 

single word, each of ParaMor’s paradigm models can only describe a single morpheme 

boundary lying between a pair of morphemes. The word-to-morpheme segmentation al-

gorithm described in Chapter 5 will recombine ParaMor’s individual paradigm models to 

segment a single word into more than two morphemes. 

ParaMor’s paradigm discovery algorithms begin with the definition of a search space 

over natural groupings, or schemes, of paradigmatically and syntagmatically related can-

didate suffixes and candidate stems (Section  3.1). As Chapter 1 motivated, this thesis fo-

cuses on identifying suffix morphology. Then, with a clear view of the search space, Pa-

raMor searches for those schemes which most likely model the paradigm structure of true 

suffixes within the language, (Section  3.2). 

3.1 A Search Space of Morphological Schemes 

3.1.1 Schemes 

The constraints implied by the paradigmatic and syntagmatic structure of natural lan-

guage can organize candidate suffixes and stems into the building blocks of a search 

space in which to identify language specific models of paradigms. This thesis names 

these building blocks schemes, as each is “an orderly combination of related parts” (The 

American Heritage® Dictionary, 2000).  

Scheme organization begins by proposing candidate morpheme boundaries at every 

character boundary in every word form in a corpus vocabulary. The scheme-based ap-

proach to unsupervised morphology induction is designed to work on orthographies 

which at least loosely code each phoneme in each word with a separate character; and, as 

such, ParaMor’s induction approach does not extend to the standard writing systems of 

many East Asian languages, including Chinese and Japanese.  

Languages often mark a specific feature value combination by explicitly not chang-

ing the form of a stem. One way to describe these empty changes is with an attached null 
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affix, Ø. To account for null suffixes, the set of candidate morpheme boundaries the Pa-

raMor algorithm proposes include the boundary after the final character in each word 

form. Since this thesis focuses on identifying suffixes, it is assumed that each word form 

contains a stem of at least one character. Hence, the boundary before the first character of 

each word form is not considered a candidate morpheme boundary.  

Call each string that occurs before a candidate morpheme boundary a candidate stem 

or c-stem, and each string after a proposed boundary a c-suffix. Let V be a set of strings—

a vocabulary of word types. Let VT  be the set of all c-stems generated from the vocabu-

lary and VF be the corresponding set of all c-suffixes. With these preliminaries, define a 

scheme C  to be a pair of sets of strings (CT , CF ) satisfying the following four condi-

tions: 

1. V
C TT ⊂ , called the adherents of C 

2. V
C FF ⊂ , called the exponents of C 

3. VftFfTt CCCCCC ∈∈∀∈∀ . , ,  

4. C
V

C
V

CC
VV TtVftFfTt ∈∈∈∀∈∀  then . , if ,   

The first three conditions require each of the syntagmatically related c-stems in a scheme 

to combine with each of the paradigmatic c-suffixes of that scheme to form valid 

vocabulary words. The fourth condition forces a scheme to contain all of the syntagmatic 

c-stems that form valid words with each of the paradigmatic c-suffixes in that scheme. 

The number of c-stems in CT  is the adherent size of C , and the number of c-suffixes in 

CF  is the paradigmatic level of C . 

At this point, it is worth noting two facts about the definition of a scheme. First, the 

definition of a scheme allows a single word to contribute to two or more schemes which 

divide the word differently into c-stem and c-suffix. Although seemingly inoccuous, the 

fact that different schemes, derived from the same vocabulary, can model different 

morpheme boundaries in the same word will be the key to ParaMor’s ability to segment 

words into sequences of agglutinative morphemes, see Chapter 5. 

The second fact of note is that the fourth condition in the definition of a scheme is 

intentionally asymmetric. Condition four only requires a scheme to contain all the c-stems 
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that combine with all the c-suffixes in the scheme, but not necessarily all the c-suffixes 

that combine with all the c-stems of a scheme.  

This asymmetry in the scheme definition has two far-reaching consequences. First, 

the asymmetry creates a unique scheme for any and every set of c-suffixes derived from a 

vocabulary. This one-to-one correspondence between each scheme, C, and the set of 

c-suffixes in C allows unambiguous reference to a scheme by its set of c-suffixes. But 

more importantly, it is the one-to-one correspondence between schemes and sets of 

c-suffixes that permits, as discussed in Section  3.1.2, the organization of schemes into a 

search space in which ParaMor identifies initial candidate paradigms.  

The second consequence of the asymmetry in the definition of a scheme will impact 

the search algorithm that ParaMor uses to find likely paradigms (see Section  3.2). 

Specifically, the assymmetric definition of a scheme implies that any stem that is part of a 

scheme, C, must also be in every scheme that is built from a subset of the suffixes in C. 

 Schemes: An Example 

To better understand how, in practice, schemes succinctly capture both the paradig-

matic and syntagmatic regularities of natural language morphology, let us look at a few 

illustrative schemes from a small example. Each box in Figure  3.1 contains a scheme de-

rived from one or more of the word forms listed at the top of the figure. The vocabulary 

of Figure  3.1 mimics the vocabulary of a text corpus from a highly inflected language 

where few, if any, lexemes will occur in the complete set of possible surface forms. Spe-

cifically, the vocabulary of Figure  3.1 lacks the surface form blaming of the lexeme 

BLAME , solved  of the lexeme SOLVE, and the root form roam  of the lexeme ROAM.  

Proposing, as ParaMor’s procedure does, morpheme boundaries at every character 

boundary in every word form necessarily produces many ridiculous schemes such as the 

paradigmatic level three scheme ame.ames.amed , from the word forms blame , blames , 

and blamed  and the c-stem bl . Dispersed among the incorrect schemes, however, are also 

schemes that seem very reasonable, such as Ø.s, from the c-stems blame  and solve .  

Schemes are intended to capture both the paradigmatic and syntagmatic structure of 

morphology. For example, the fact that the paradigmatically related c-suffixes Ø, and s 
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each concatenate onto both of the syntagmatically related c-stems solve  and blame  sug-

gests that the c-stem blame  should be an adherent of the scheme Ø.s—just as the given 

definition of a scheme requires. But note that if schemes were limited to containing 

c-stems that concatenate only the c-suffixes in that scheme, then the c-stem blame  could 

not be part of the Ø.s scheme, as the c-stem blame  also occurs in the form blamed .  

Before moving on, observe two additional intricacies of scheme generation. First, 

while the scheme Ø.s arises from the pairs of surface forms (blame , blames ) and (solve , 

solves ), there is no way for the form roams  to contribute to the Ø.s scheme because the 

surface form roam  is not in this vocabulary. Second, as a result of English spelling rules, 

Vocabulary:  blame  solve 
 blames roams solves 
 blamed roamed 
  roaming solving 

lame lames lamed 
b 

ame ames amed 
bl 

me mes med 

bla 
e es ed 

blam 
Ø s d 
blame 

oams oamed oaming 
r 

lame lames 
b 

ame ames 
bl 

me mes 
bla 

e es 
blam solv 

Ø s 
blame solve 

olve olves olving 
s 

lame lamed 
b 

ame amed 
bl 

me med 
bla 

e ed 
blam 

Ø d 
blame … 

lames lamed 
b 

ames amed 
bl 

mes med 
bla 

es ed 
blam 

s d 
blame 

s ed ing 
roam 

e es ing 
solv 

lame 
b 

ame 
bl 

me 
bla 

e 
blam solv 

 s ed 
roam 

e ing 
solv 

lames 
b 

ames 
bl 

mes 
bla 

es 
blam solv 

s 
blame roam solve 

s ing 
roam 

es ing 
solv 

lamed 
b 

ames 
bl ro 

med 
bla roa 

ed 
blam roam 

d 
blame roame 

ed ing 
roam 

ng 
roami solvi 

Ø 
blame blames blamed roams roamed roaming solve solves solving 

ing 
roam solv 

g 
roamin solvin 

 

Figure  3.1: Some of the schemes, arranged in a systematic but arbitrary order, de-

rived from a small vocabulary (top). Each scheme is specified as a space delimited 

set of c-suffix exponents in bold  above a space delimited set of c-stem adherents 

in italics 
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the scheme s.d , generated from the pair of surface forms (blames , blamed ), is separate 

from the scheme s.ed , generated from the pair of surface forms (roams , roamed ). 

 One Scheme, One Morpheme Boundary 

Behind each scheme, C, is a set of licensing word forms, W, which contribute c-stems 

and c-suffixes to C. Each c-suffix in C which matches the tail of a licensing word, Ww∈ , 

segments w in exactly one position. Although it is theoretically possible for more than 

one c-suffix of C to match a particular licensing word form1, in empirical schemes that 

arise from natural language text, each word w typically matches just one c-suffix in C. 

Hence, a naturally occurring scheme, C, models only a single morpheme boundary in 

each word w that licenses C.  

But words in natural language may possess more than one morpheme boundary. In 

Spanish, as discussed in Section  1.1 of the thesis introduction, Past Participles of verbs 

contain either two or three morpheme boundaries: one boundary after the verb stem and 

before the Past Participle marker; one boundary between the Past Participle marker and 

the Gender suffix; and, if the Past Participle is plural, a final morpheme boundary be-

tween the Gender suffix and the Plural suffix, s; see Figure  1.1 on p. 18.  

Although a single scheme models just a single morpheme boundary in a particular 

word, together separate schemes can model all the morpheme boundaries of a word. In 

Spanish Past Participles, the Ø.s scheme can model the paradigm for the optional Num-

ber suffix, while another scheme, a.as.o.os,  models the cross-product of the Gender 

and Number paradigms, and yet another scheme, which includes the c-suffixes ada, 

adas , ado , and ados , models the cross-product of three paradigms: Verbal Form, Gen-

der, and Number. In one particular corpus containing 50,000 unique word types of 

newswire Spanish, there are 5501 c-stem adherents of the Ø.s scheme, 892 adherents of 

the a.as.o.os scheme, and 302 c-stems in the ada.adas.ado.ados scheme. Notice that it 

                                                 
1Consider, for example, a hypothetical corpus vocabulary containing just three words: ac, abc , and 

abbc . These three words could give rise to the scheme bc.c containing the stems a and ab. Reconcate-

nating the stems and suffixes in this hypothetical scheme gives the boundary annotated forms: a+bc , a+c, 

ab+bc , and ab+c—but a+bc and ab+c are different segmentations of the same licensing word, abc .  
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is only when a scheme models the final morpheme boundary of the scheme’s licensing 

words that a scheme can model an individual traditional paradigm. When a scheme cap-

tures morpheme boundaries that are not word final, then the scheme’s c-suffixes encapsu-

late the cross-product of two or more traditional morphemes. 

Although the only traditional paradigms that schemes can directly model are word-

final, schemes still provide this thesis with a strong model of natural language morphol-

ogy for two reasons. First, as noted in the previous paragraph, while any particular 

scheme cannot by itself model a single word-internal paradigm, in concert, schemes can 

identify agglutinative sequences of morphemes. Second, the cross-product structures that 

are captured by schemes retain the paradigmatic and syntagmatic properties of mutual 

substitutability and mutual exclusivity that define traditional inflectional paradigms. Just 

as suffixes in a traditional paradigm can be interchanged on adherent stems to form sur-

face forms, the c-suffixes of a cross-product scheme can be mutually substituted to form 

valid surface forms with the adherent c-stems in the scheme: A traditional paradigm 

might replace the final s in the Spanish word form administradas  with Ø to yield the 

valid form administrada , while a scheme might suggest replacing the final cross-product 

c-suffix as with o to form the grammatical Spanish word form administrado .  

Ultimately, restricting each scheme to model a single morpheme boundary is compu-

tationally simpler than a model which allows more than one morpheme boundary per 

modeling unit. And, as Chapters 5 and 6 show, algorithms built on the simple scheme al-

low ParaMor to effectively analyze the morphology of even highly agglutinative lan-

guages such as Finnish and Turkish. 

3.1.2 Scheme Networks 

Looking at Figure  3.1, it is clear there is structure among the various schemes. At 

least two types of relations hold between schemes. First, hierarchically, the c-suffixes of 

one scheme may be a superset of the c-suffixes of another scheme. For example the 

c-suffixes in the scheme e.es.ed are a superset of the c-suffixes in the scheme e.ed. Sec-

ond, cutting across this hierarchical structure are schemes which propose different mor-
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pheme boundaries within a set of word forms. Compare the schemes me.mes.med and 

e.es.ed ; each is derived from exactly the triple of word forms blame , blames , and 

blamed , but differ in the placement of the hypothesized morpheme boundary. Taken to-

gether the hierarchical c-suffix set inclusion relations and the morpheme boundary rela-

tions impose a lattice structure on the space of schemes.  

Figure  3.2 diagrams a scheme lattice over an interesting subset of the columns of 

Figure  3.1. Each box in Figure  3.2 is a scheme, where, just as in Figure  3.1, the c-suffix 

exponents are in bold  and the c-stem adherents are in italics. Hierarchical c-suffix set in-

clusion links, represented by solid lines ( ), connect a scheme to often more than one 

parent and more than one child. The empty scheme (not pictured in Figure  3.2), contain-

ing no c-suffixes and no c-stems, can be considered the child of all schemes of paradig-

matic level 1 (including the Ø scheme). Horizontal morpheme boundary links, dashed 

lines ( ), connect schemes which hypothesize morpheme boundaries which differ by 

a single character. In most schemes of Figure  3.2, the c-suffixes all begin with the same 

character. When all c-suffixes begin with the same character, there can be just a single 

morpheme boundary link leading to the right. Similarly, a morphology scheme network 

contains a separate leftward link from a particular scheme for each character which ends 

some c-stem in that scheme. The only scheme with explicit multiple left links in Figure 

 3.2 is Ø, which has depicted left links to the schemes e, s, and d. A number of left links 

emanating from the schemes in Figure  3.2 are not shown; among other links absent from 

the figure is the left link from the scheme e.es that would lead to the scheme ve.ves  with 

the adherent sol . Section  4.4.2 defines morpheme boundary links more explicitly. 

The scheme network of Figure  3.2 is a portion of the search space in which the Pa-

raMor unsupervised morphology induction algorithm would operate given the small vo-

cabulary of Figure  3.1. But it is important to note that the ParaMor algorithm would not 

necessarily instantiate every scheme node in Figure  3.2. The number of schemes in a full 

scheme network is the size of the powerset of the set of all word-final strings in the vo-

cabulary! Much too large to exhaustively search or build for even moderately sized cor-

pora. As Sections  3.2.2 and  3.2.4 discuss, ParaMor dynamically creates just those por- 
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C-Suffix set inclusion links 

Morpheme boundary links 



 58 

tions of the scheme search space that are most likely to correctly model true paradigms of 

a language. 

Two additional graphical examples, these generated from naturally occurring text, 

will help visualize scheme-based search spaces. Figure  3.3 contains a portion of a search 

space of schemes automatically generated from 100,000 tokens of the Brown Corpus of 

English (Francis, 1964); while Figure  3.4 diagrams a portion of a hierarchical lattice over 

a Spanish newswire corpus of 1.23 million tokens (50,000 types). As before, each box in 

these networks is a scheme and the c-suffix exponents appear in bold . Since most 

schemes contain more c-stem adherents than can be listed in a single scheme box, abbre-

viated lists of adherents appear in italics. The number immediately below the list of 

c-suffixes is the total number of c-stem adherents that fall in that scheme. 

The scheme network in Figure  3.3 contains the paradigmatic level four scheme cover-

ing the English c-suffixes Ø.ed.ing.s . These four suffixes, which mark combinations of 

Tense, Person, Number, and Aspect, are the exponents of a true sub-class of the Eng-

lish verbal paradigm. This true paradigmatic scheme is embedded in a lattice of less satis-

factory schemes. The right-most scheme in each row posits, in addition to true inflec-

tional suffixes of English, the derivational suffix ly . Immediately below Ø.ed.ing.s , a 

scheme comprising a subset of the suffixes of the true verbal sub-class appears, namely 

Ø.ed.ing . To the left, Ø.ed.ing.s is connected to d.ded.ding.ds , a scheme which pro-

poses an alternative morpheme boundary for 19 of the 106 c-stems in the scheme 

Ø.ed.ing.s .  

Notice that since left links effectively slice a scheme on each character in the orthog-

raphy, adherent count monotonically decreases as left links are followed. Similarly, adhe-

rent count monotonically decreases as c-suffix set inclusion links are followed upward. 

Consider again the hierarchically related schemes Ø.ed.ing.s and Ø.ed.ing , which have 

106 and 201 adherents respectively. Since the Ø.ed.ing.s scheme adds the c-suffix s to 

the three c-suffixes already in the Ø.ed.ing scheme, only a subset of the c-stems which 

concatenate the c-suffixes Ø, ed, and ing  also concatenate s to produce a word form 

found in this corpus of English. And so, only a subset of the c-stems in the Ø.ed.ing  
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scheme adhere to the scheme Ø.ed.ing.s . The decrease in adherent c-stem count when 

moving upward through a scheme lattice is a consequence of the asymmetry in the defini-

tion of a scheme, see Section  3.1.1. 

Now turning to Figure  3.4, this figure covers the Gender and Number paradigms on 

Spanish adjectival forms. As with Spanish Past Participles, adjectives in Spanish mark 

Number with the pair of paradigmatically opposed suffixes s and Ø; and Gender with 

the pair of strings a and o. Together the Gender and Number paradigms combine to 

form an emergent cross-product paradigm of four alternating strings: a, as, o, and os . 

Figure  3.4 contains: 

1. The scheme containing the true Spanish exponents of the emergent cross-product 

paradigm for Gender and Number: a.as.o.os . The a.as.o.os scheme is outlined 

in bold . 

2. All possible schemes whose c-suffix exponents are subsets of a.as.o.os , e.g. 

a.as.o , a.as.os , a.os , etc. 

3. The scheme a.as.o.os.ualidad , together with its descendents, o.os.ualidad and 

ualidad . The Spanish string ualidad  is arguably a valid Spanish derivational suf-

fix, forming nouns from adjectival stems. But the repertoire of stems to which 

ualidad  can attach is severely limited. The suffix ualidad  does not form an inflec-

tional paradigm with the adjectival endings a, as, o, and os . 
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3.2 Searching the Scheme Lattice 

Given the framework of morphology scheme networks outlined in Section  3.1, an un-

supervised search strategy can automatically identify schemes which plausibly model true 

paradigms and their cross-products. Many search strategies are likely capable of identify-

ing reasonable paradigmatic suffix sets in scheme networks. Snover (2002), for example, 

describes a successful search strategy over a morphology network in which each network 

node is assigned a global probability score (see Chapter 2). In contrast, ParaMor’s search 

strategy, presented in this section, gauges a scheme’s value by computing a local score, 

non-probabilistic, over the scheme’s network neighbors.  

3.2.1 A Bird’s Eye View of ParaMor’s Search Algorithm 

Figure  3.5 abstractly visualizes ParaMor’s initial search for partial paradigms. The 

two dimensional area of Figure  3.5 represents ParaMor’s lattice-structured search space. 

Embedded in ParaMor’s search space are schemes whose c-suffixes match the suffixes of 

true paradigms—in Figure  3.5, the large circles, atop the shaded triangles, symbolize 

these correct schemes. ParaMor’s paradigm search seeks to find these correct schemes. 

However, ParaMor is often unable to extract sufficient evidence from the input corpus 

during this initial search phase to fully reconstruct the paradigms of a language. And so, 

the primary goal of ParaMor’s initial search is to identify schemes which individually 

model subsets of the suffixes in true paradigms, and which jointly cover as many correct 

suffixes as possible. It will then be up to ParaMor’s clustering algorithm, described in 

Section  4.3, to merge the initially selected scheme-models of partial paradigms. 

In a scheme lattice, the descendents of a scheme, C, are those schemes whose c-suffix 

sets are subsets of the c-suffix set in C. Figure  3.5 conceptualizes the descendents of a 

scheme as a cone projecting downward. In particular, the shaded triangles in Figure  3.5, 

headed by the large paradigm circles, represent schemes whose c-suffix sets are subsets 

of true paradigms. Hence, to model paradigmatic suffixes, ParaMor’s search algorithm 

should seek to identify schemes within the shaded cones. Moreover, ParaMor should pre-
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fer widely spaced schemes located high in the lattice—so as to maximize c-suffix cover-

age.  

To identify candidate partial paradigms, ParaMor adopts a bottom-up search strategy.  

(ParaMor will harness the horizontal morpheme boundary links, which also connect net-

worked schemes in a later stage of the algorithm, see Section  4.4.2). At the bottom of a 

scheme network, and, conceptually, at the bottom of Figure  3.5, are the paradigmatic 

level one schemes which contain a single c-suffix each. A priori, ParaMor does not know 

which sets of c-suffixes model paradigms, and so, the initial search algorithm attempts to 

grow models of paradigmatic suffix sets by starting with single c-suffix schemes.  

To ensure a wide spacing in the selection of schemes, ParaMor pursues a separate 

upward search path from each level-one scheme. By starting separate paths from all indi-

vidual c-suffixes, ParaMor awards to every c-suffix the chance for consideration as a true 

suffix. This magnanimous policy is recall-centric: ParaMor’s initial search hopes to find 

scheme models of as many true suffixes as possible. However, in starting a separate 
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search path from each c-suffix, ParaMor also increases the number of incorrectly selected 

c-suffixes—many search paths begin from c-suffixes which model no valid inflectional 

suffix. ParaMor relies on a series of filters, described in Chapter 4, to weed out the poorly 

chosen initial schemes.  

From each level one scheme, ParaMor follows a single upward path. In a greedy 

fashion, ParaMor selects a single c-suffix to add to the current scheme. ParaMor limits 

each upward search to a single greedy path for computational reasons—the full search 

space of candidate paradigm schemes is immense and following all reasonable paths 

quickly leads to an explosion in the number of paths to follow (see Section  3.2.4).  

Returning to Figure  3.5: Each jagged line in Figure  3.5 is a search path ParaMor pur-

sues. Search paths originate at the bottom of the figure and move upward through the lat-

tice. The terminal schemes of each search path, marked by small circles in Figure  3.5, are 

the final output of ParaMor’s initial search. Some of ParaMor’s search paths originate 

within a shaded triangle—these are paths that begin from a c-suffix that models a true 

suffix in some paradigm. But other search paths inevitably begin from c-suffixes that 

model no suffix in the language. Furthermore, some paths which begin at schemes which 

do model suffixes eventually take a wrong turn, introducing an incorrect c-suffix and 

thereby leaving the shadow of a true paradigm. 

The final point to note from Figure  3.5 concerns the left-most paradigm in the figure. 

For several of the schemes which terminate search paths that originate beneath the left-

most paradigm, Figure  3.5 indicates c-suffix subset cones with dashed lines. The union of 

the bases of these dashed cones closely coincides with the base of the shaded cone of the 

left-most paradigm. The base of each subset cone contains all schemes which contain just 

a single c-suffix from the scheme at the cone’s apex. Thus, if the c-suffixes from the 

schemes at the bases of the dashed cones were reunited, the resultant paradigm model 

would closely match a true paradigm. This is exactly ParaMor’s strategy: Section  4.3 will 

describe a clustering algorithm that unites schemes which each model subsets of suffixes 

from individual paradigms. 
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 Why a Bottom-Up Search? 

The choice to design ParaMor’s initial paradigm identification algorithm as a re-

peated series of bottom-up search paths through a scheme network, a la Figure  3.5, was 

explicitly taken so as to leverage the paradigmatic and syntagmatic structure that is cap-

tured by the vertical c-suffix set inclusion links of the scheme network search space. At 

the bottom of a network of schemes, syntagmatic c-stem alternations are evident but each 

scheme contains only a single c-suffix. At successively higher levels, the networked 

schemes contain successively more paradigmatically opposed c-suffixes, but also succes-

sively fewer syntagmatic c-stems. ParaMor’s search strategy moves upward through the 

network, trading off syntagmatic c-stem alternations for paradigmatic alternations of 

c-suffixes. 

Consider the paradigmatic and syntagmatic structure captured by and between the 

schemes of the Spanish network in Figure  3.4 from p. 61. The schemes at the bottom of 

this network each contain exactly one of the c-suffixes a, as, o, os , or ualidad . The syn-

tagmatic c-stem evidence for those level 1 schemes which model productive inflectional 

suffixes of Spanish, namely a, as, o, and os , is significantly greater than the syntagmatic 

evidence for the unproductive derivational c-suffix ualidad : The a, as, o, and os  

schemes contain 9020, 3182, 7520, and 3847 c-stems respectively, while the ualidad  

scheme contains just 10 c-stems.  

Moving up the network, paradigmatic-syntagmatic tradeoffs strongly resonate. 

Among the 3847 c-stems which allow the c-suffix os  to attach, more than half, 2390, also 

allow the c-suffix o to attach. In contrast, only 4 c-stems belonging to the os  scheme 

form a corpus word with the c-suffix ualidad : namely, the c-stems act , cas , d, and 

event . Adding the suffix a to the scheme o.os again reduces the c-stem count, but only 

by 41%, from 2390 to 1418; and adding as, just lowers the c-stem count by a further 

37%, to 899. There is little syntagmatic evidence for adding c-suffixes beyond the four in 

the scheme a.as.o.os . Adding the non-paradigmatic c-suffix ualidad , for example, dras-

tically reduces the count of syntagmatic c-stems by over 99%, to a meager 3.  

It is insightful to consider why morphology scheme networks capture paradigmatic-

syntagmatic tradeoffs so succinctly. Take a particular c-suffix, f, which models a true in-
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flectional suffix (or cross-product of suffixes). Disregarding morphophonologic change, 

the paradigmatic property of inflectional morphology implies f will be mutually substitut-

able for some distinct c-suffix f ′ . Consequently, both f  and f ′  will occur in a text corpus 

attached to many of the same syntagmatically related c-stems. In our example, when f is 

the c-suffix os  and f ′  the paradigmatically related o, many c-stems to which os  can at-

tach also allow o as a word-final string. Conversely, if the f and f ′  suffixes lack a para-

digmatic relationship in the morphological structure of some language, then there is no a 

priori reason to expect f and f ′  to share c-stems: when f is os  and f ′  ualidad , a c-suffix 

which is not paradigmatically opposed to os , few of the c-stems which permit an os  

c-suffix admit ualidad . 

3.2.2 ParaMor’s Initial Paradigm Search: The Algorithm 

With the motivation and background presented in the previous sub-section, the spe-

cifics of ParaMor’s search algorithm follow: The bottom-up search treats each individual 

non-null c-suffix (that is, all suffixes but Ø) as a potential gateway to a model of a true 

paradigm cross-product. ParaMor considers each one-suffix scheme in turn beginning 

with that scheme containing the most c-stems, and working toward one-suffix schemes 

containing fewer c-stems. From each bottom scheme, ParaMor follows a single greedy 

upward path from child to parent. As long as an upward path takes at least one step, mak-

ing it to a scheme containing two or more alternating c-suffixes, ParaMor’s search strat-

egy accepts the terminal scheme of the path as a model of a portion of a morphological 

paradigm. 

To take each greedy upward search step, ParaMor first identifies the best scoring par-

ent of the current scheme according to a particular scoring function. Section  3.2.5 will 

propose and evaluate one reasonable class of parent scoring function. ParaMor then ap-

plies two criteria to the highest scoring parent. The first criterion is a threshold on the 

parent’s score. ParaMor’s upward search will only move to a parent whose score passes 

the set threshold.  
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The second criterion governing each search step helps to halt upward search paths be-

fore judging parents’ worth becomes impossible. As noted in the second half of Section 

 3.2.1 above, c-stem counts monotonically decrease with upward network moves. But 

small adherent c-stem counts render statistics that assess parents’ strength unreliable. Pa-

raMor’s policy is to not move to any scheme that does not contain more c-stems than it 

has c-suffixes. Moreover, this second halting criterion serves ParaMor well for two addi-

tional reasons. First, requiring each path scheme to contain more c-stems than c-suffixes 

ensures high suffix recall by setting a low bar for upward movement at the bottom of the 

network. Hence, search paths which begin from schemes whose single c-suffix models a 

rare but valid suffix, can often take at least one upward search step and manage to be se-

lected. Second, this halting criterion requires the top scheme of search paths that climb 

high in the network to contain a comparatively large number of c-stems. Reigning in 

high-reaching search paths, before the c-stem count falls too far, captures path-terminal 

schemes which cover a large number of word types. In a later stage of ParaMor’s para-

digm identification algorithm, presented in Sections  4.3.1 and  4.3.2, these larger terminal 

schemes effectively vacuum up the useful smaller paths that result from the more rare 

suffixes.  

At times, ParaMor’s search algorithm can reach the same scheme along more than 

one path. But, since ParaMor’s upward search from any particular scheme is determinis-

tic, there is no need to retrace the same best path more than once. While it might be rea-

sonable to follow a next-best path each time a scheme is re-encountered, ParaMor instead 

simply abandons the redundant path. In practice, the large number of individual paths that 

ParaMor follows ensures that ParaMor discovers all the prominent paradigms, without 

the need for next-best searching. 

Pseudo code for ParaMor’s bottom-up initial search for candidate paradigmatic 

schemes is given in Figure  3.6. The core search() method calls searchOneGree-

dyPath(·) once for each scheme which contains a single c-suffix. Most of the function 

names in the pseudo code are self-explanatory, but note that the initializeDy-

namicNetwork(·) method does not build the full scheme lattice. This initialization 
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// Global initializations  
dynamicSchemeNetwork = initializeDynamicNetwork( corpus ) ; 
visitedSchemes = emptySet;  // Keep track of all sc hemes in any path 
 
// Follow a separate upward search path for each sc heme  
// that contains just a single c-suffix. 
search() { 
 selectedSchemes = emptySet ; 
 levelOneSchemes = dynamicSchemeNetwork. getNonNullLevelOneSchemes() ; 
 sortedLevelOneSchemes = sortByDecreasingCStemCount( levelOneSchemes ) ; 
 foreach  ( levelOneScheme in  sortedLevelOneSchemes )  {  
  selectedScheme = searchOneGreedyPath( levelOneScheme ) ; 
  if  ( selectedScheme !=  null)   
   selectedSchemes. add( selectedScheme ) ; 
 } 
 return  selectedSchemes; 
} 
 
searchOneGreedyPath( levelOneScheme ) {  
 currentScheme = levelOneScheme; 
 while  (true) {  
  [ bestParentScheme, scoreOfBestParentScheme ] =  
   dynamicSchemeNetwork. 
    getBestParentSchemeWithScore( currentScheme ) ; 
 
  // The two criteria a parent scheme must pass for   
  // ParaMor to move upward 
  if ((scoreOfBestParentScheme < threshold) ||        
     ( ! ( bestParentScheme. getNumberOfCStems() >   
        bestParentScheme. getNumberofCSuffixes()))) 
 
   // If the parent doesn’t qualify then, as long a s this search 
   // path took at least one upward step, return th e current,   
   // now terminal, scheme. 
   if  ( currentScheme. getNumberOfCSuffixes()  > 1 )  
    return  currentScheme; 
   else 
    return  null ; 
 
  // Abandon redundant paths 
  if  ( visitedSchemes. contains( bestParent ))  
   return  null ; 
    
  // Loop updates 
  visitedSchemes. add( bestParent ) ; 
  currentScheme = bestParent; 
 } // End while 
} 

 

Figure  3.6: Pseudo-code implementing ParaMor’s initial search for scheme models of 

partial paradigms. 



 69 

method merely prepares the necessary data structures that enable ParaMor to quickly 

build schemes as needed. Details on ParaMor’s dynamic network generation appear in 

Section  3.2.4. 

Experiments with a range of languages, including Spanish, English, German, Finnish, 

and Turkish, show that ParaMor’s bottom-up search algorithm takes less than 10 minutes 

to complete, when given a paradigm induction corpus containing 50,000 unique types. 

ParaMor is currently implemented in Java and runs on a standard Linux server. 

3.2.3 ParaMor’s Bottom-Up Search in Action 

Figure  3.7 contains a number of search paths that ParaMor followed when analyzing 

a Spanish newswire corpus of 50,000 types and when using one particular metric for par-

ent evaluation (See Section  3.2.5 for a discussion of scheme parent-evaluation metrics). 

Most of the paths in Figure  3.7 are directly relevant to the analysis of the Spanish word 

administradas . As mentioned in Chapter 1, the word administradas  is the Feminine 

Plural Past Participle form of the verb administrar , ‘to administer or manage’. The word 

administradas  gives rise to many c-suffixes including: stradas , tradas , radas , adas , 

das , as, s, and Ø. Of these candidate suffixes, s marks Spanish plurals and is a word fi-

nal string of 10,662 word forms in this Spanish corpus—more than one fifth of the unique 

word forms in end in s! Additionally, in the word administradas , the left edges of the 

word-final strings as and adas  occur at Spanish morpheme boundaries. All other derived 

c-suffixes incorrectly segment administradas : The c-suffixes radas , tradas , stradas , 

etc. erroneously include part of the stem; The c-suffix das , in the analysis of Spanish 

morphology adopted by this thesis, places a morpheme boundary internal to the Past Par-

ticiple morpheme ad; and the null c-suffix Ø does not mark any morphosyntactic feature 

on Spanish adjectives when it occurs after a Plural suffix. Of course, while we can dis-

cuss which c-suffixes are reasonable and which are not, an unsupervised morphology in-

duction system has no a priori knowledge of Spanish morphology. ParaMor does not 

know what strings are valid Spanish morphemes, nor is ParaMor aware of the feature 

value meanings associated with morphemes. 
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Figure  3.7: Eight search paths that ParaMor follows in search of schemes which likely model 

inflectional paradigms. Search paths begin at the bottom of the figure and move upward. 

All c-suffixes appear in bold . The underlined c-suffix in each scheme is the c-suffix added 

by the most recent search step. Each scheme gives the number of adherent c-stems it 

contains. Horizontal links between schemes connect sets of c-suffixes that differ only in 

their initial character. 

n 
6039 

a 
9020 

s 
10697 

a an 
1045 

a an ar  
417  

a an ar ó  
355 

a ado an ar ó 
318 

a ado an ar aron  ó 
263 

a ada ado 
an ar aron ó 

206 

a ada ado 
ados  an ar aron ó 

172 

a ada adas  ado 
ados an ar aron ó 

148 

rada radas rado 
rados rar raron ró 

33 

rada radas rado 
rados rar  

46 

rada radas  
rado rados 

53 

rada 
rado 

rados  
67 

rada 
rado 

89 

ra rada radas 
rado rados rar 

raron ró 
26 

ra rada radas 
rado rados ran  

rar raron ró 
23 

Ø n 
1863 

 

Ø n r  
512 

 

Ø do n r  
357 

 

Ø do n r ron  
272 

 

Ø da do n r ron 
211 

Ø da do 
dos  n r ron 

176 

Ø da das  do 
dos n r ron 

150 

Ø da das do 
dos n ndo  r ron 

115 

a o 
2325 

 

a o os  
1418 

 

a as o os  
899 

 

Ø s 
5513 

 

trada  
trado 

19 

trada 
trado 

tró  
15 

trada 
trado 
trar  
tró 
13 

trada 
tradas  
trado 
trar 
tró 
12 

strada  
strado 

12 

strada 
strado 

stró  
9 

strada 
strado 
strar  
stró 

8 

strada 
stradas  
strado 
strar 
stró 

7 

es 
2750 

Ø es 
845 

 

Ø r s 
281 

 

trada tradas trado 
trados  trar tró 

10 

trada tradas 
trado trados 

trar traron  tró 
8 

rada radas rado 
rados rar ró  

42 

   

1st 2nd  3rd  4th  5th  71st  484th  1113th  



 71 

Each search path of Figure  3.7 begins at the bottom of the figure and proceeds up-

wards from scheme to scheme. In Spanish, the non-null c-suffix that can attach to the 

most stems is s; and so, the first search path ParaMor explores begins from s. This first 

search path is the right-most path shown in Figure  3.7. At 5513 c-stems, the null c-suffix, 

Ø, can attach to the largest number of c-stems to which s can attach. The parent-

evaluation function gave the Ø.s scheme the highest score of any parent of the s scheme, 

and the score of Ø.s passed the parent score threshold. Consequently, the first search step 

moves to the scheme which adds Ø to the c-suffix s.  

ParaMor’s parent-evaluation function then identifies the parent scheme containing 

the c-suffix r as the new parent with the highest score. Although no other c-suffix can at-

tach to more c-stems to which s and Ø can both attach, r can only form corpus words in 

combination with 281 or 5.1% of the 5513 c-stems which take s and Ø. Accordingly, the 

score assigned by this particular parent-evaluation function to the Ø.s.r scheme falls be-

low the stipulated threshold; and ParaMor does not add r, or any other suffix, to the now 

closed and selected partial paradigm s.Ø. That ParaMor did not follow a path to the Ø.s.r 

scheme is indicated in Figure  3.7 by the horizontal bar above the Ø.s scheme. 

Continuing leftward from the s-anchored search path in Figure  3.7, ParaMor follows 

search paths from the c-suffixes a, n, es, and an in turn. The 71st c-suffix from which Pa-

raMor grows a partial paradigm is rado . The search path from rado  is the first path to 

build a partial paradigm that includes the c-suffix radas , a c-suffix potentially relevant 

for an analysis of the word administradas . Similarly, search paths from trado  and 

strado  lead to partial paradigms which include, respectively, the c-suffixes tradas  and 

stradas —two c-suffixes which also occur in administradas . The search path from 

strado  illustrates the second criterion that restricts ParaMor’s upward search. From 

strado , ParaMor adds four c-suffixes one at a time: strada , stró , strar , and stradas . 

Only seven c-stems form words when combined singly with all five of these c-suffixes. 

Adding any additional c-suffix to these five brings the c-stem count in this corpus down 

at least to six. Since six c-stems is not more than the six c-suffixes which would be in the 

resulting parent scheme, ParaMor does not add a sixth c-suffix—halting this upward 

search path.  
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3.2.4 The Construction of Scheme Networks 

It is computationally impractical to build full morphology scheme networks, both in 

terms of space and time. The space and time complexities of full network creation are 

directly related to the number of schemes in a network. Returning to the definition of a 

scheme in Section  3.1.1, each scheme contains a set of c-suffixes, VFF ⊂ , where VF  is 

the set of all possible c-suffixes generated by a vocabulary. Thus, the set of potential 

schemes from some particular corpus is the exponentially large powerset of VF , with 
VF

2  members. In practice, the vast majority of potential schemes have no adherent 

c-stems—that is, for most VFF ⊂ there is no c-stem, t, such that ftFf . ∈∀  is a word 

form in the vocabulary. If a scheme has no adherent c-stems, then there is no evidence for 

that scheme, and even an exhaustive network generation algorithm would not need to ac-

tually create that scheme.  

Unfortunately, the number of schemes which do possess adherent c-stems also grows 

exponentially. The dominant term in the number of schemes with a non-zero c-stem 

count comes from the non-empty scheme with the largest set of c-suffixes. In one corpus 

of 50,000 unique Spanish types, a scheme exists that has a single adherent c-stem and 

5816 c-suffixes. This one 5816th level scheme implies the existence of all 58162  of its de-

scendents. The number 58162  is truly astronomical, larger than 50010 , or larger, by far, 

than the number of hydrogen atoms in the observable universe. 

Because of the difficulty in pre-computing full scheme networks, during the initial 

upward scheme search (described in Sections  3.2.1 and  3.2.2) any needed schemes are 

calculated dynamically. The rest of this section spells out ParaMor’s scheme-building 

procedure in detail.  

 Most-Specific Schemes 

ParaMor builds individual schemes dynamically from most-specific schemes. Like 

full-blooded schemes, each most-specific scheme, M, is a pair of sets of strings, 

( MT , MF ): MT  a set of c-stems, and MF  a set of c-suffixes. Furthermore, as in the defini-

tion of a scheme found in Section  3.1.1, four conditions stipulate which c-stems and 
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c-suffixes occur in each most-specific scheme. The first three conditions for most-

specific schemes are identical to the first three conditions on full schemes: 

1. V
M TT ⊂  — where VT is the set of all c-stems generated by a vocabulary 

2. V
M FF ⊂  — VF the set of all c-suffixes generated by a vocabulary 

3. VftFfTt MMMMMM ∈∈∀∈∀ .  , ,  — V  being the corpus vocabulary 

But the fourth condition changes in the definition of most-specific scheme. The new con-

dition is: 

4′.  VftFfFfTt V
MM

VVV
MM ∈∉∈¬∃∈∀ .such that    ,  ,  

This new fourth condition requires each MM Tt ∈  to form vocabulary words with exactly 

and only the c-suffixes in MF  (exactly the situation imagined in connection with Figure 

 3.1 for the c-stem blame  and the scheme Ø.s in Section  3.1.1 on p. 53). 

A consequence of this new fourth restriction that differentiates most-specific schemes 

from basic schemes is that each corpus c-stem occurs in precisely one most-specific 

scheme: Suppose a c-stem t belonged to two most-specific schemes, M = ( MT , MF ) and 

M ′ = ( MT ′ , MF ′ ), MM FF ≠′ . Since MM FF ≠′ , without loss of generality, there must exist 

MFf ′∈′  such that MFf ∉′ . And because MTt ′∈ , it follows that Vft ∈′. . But this situa-

tion violates the specification of M as a most-specific scheme: There exists a c-stem in 

MT , namely t, and a c-suffix that is not in MF , namely f ′ , that concatenate to form a vo-

cabulary item. Hence, t cannot be an element of MT . And t cannot belong to both M and 

M ′ . 

The idea of the most-specific scheme has been proposed previously: translating into 

the terminology of this thesis, Demberg (2007) stores c-stems that are not surface types 

themselves in most specific schemes. Furthermore, as the c-suffixes of a most-specific 

scheme, C, exactly specify the yield of the c-stems in C, the states in the minimal (for-

ward) character-based finite state automaton that exactly accepts a vocabulary are in a 

one-to-one correspondence with the set of most-specific schemes generated by that vo-

cabulary. And so, finite state approaches to morphology induction, such as Johnson and 

Martin (2003), also implicitly compute most-specific schemes. But to my knowledge, no 
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one has suggested dynamically generating full-fledged schemes from their most-specific 

cousins, as is proposed here. 

 Computing Most-Specific Schemes 

Since the number of most-specific schemes is bounded above by the number of 

c-stems in a corpus, the number of most-specific schemes grows much more slowly with 

vocabulary size than does the total number of schemes in a network. In the 50,000 type 

Spanish corpus from above, a mere 28,800 (exact) most-specific schemes occurred.  

A two-part algorithm can quickly compute the set of most-specific schemes from a 

corpus. The first half of the algorithm associates each c-stem, t, with a set of c-suffixes, 

tF , where each c-suffix intF  forms a vocabulary word when combined with t. To find tF  

for each t, ParaMor loops through each (c-stem t, c-suffix f ) division of each vocabulary 

word. Whenever ParaMor encounters a specific c-stem, t, ParaMor adds the correspond-

ing f c-suffix of the current pair to tF . In the second half of the algorithm to compute the 

set of most-specific schemes, ParaMor associates each unique set of c-suffixes, F, that 

was computed in the algorithm’s first half with the set of c-stems that individually 

pointed to identical copies of F. Pseudo-code for the creation of most-specific schemes is 

given in Figure  3.8.  

Overloading the | · | operator to denote both the size of a set and the length of a string, 

the time complexity of this two-part algorithm to compute most-specific schemes is 

( )V
Vv TvaveVO +∈* , where, as above, V is the vocabulary size and VT is the set of all 

c-stems generated from a vocabulary. In practice, computing the most-specific schemes 

from corpora of 50,000 types takes the current Java implementation of ParaMor less than 

five minutes on a standard Linux server, with ParaMor spending about equal time in the 

first and second halves of the algorithm. 

 To Schemes from Most-Specific Schemes 

From the full set of most specific schemes, the c-stems, CT , of any particular scheme, 

C = ( CT , CF ), can be directly computed. Since a single c-stem can belong to multiple 
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schemes but to only one most-specific scheme, the c-stems of the C scheme are scattered 

among various most-specific schemes. Recall from the definition of a scheme (Section 

 3.1.1) that the c-stems in CT  are all those c-stems which form words with all (but not 

only) the c-suffixes in CF . Let M = ( MT , MF ) be a most-specific scheme where 

MC FF ⊆ , and let MM Tt ∈ . Since all c-stems in MT  form words with all c-suffixes in 

MF , and since MC FF ⊆ , Mt  must form a word with all c-suffixes in CF . Hence, Mt  be-

longs in CT . The converse, that if MC FF ⊄  then Mt  does not belong in CT , follows from 

similar logic. Consequently, to dynamically compute CT , ParaMor must place in CT  all 

// De fine a c - stem, c - suffix pair  
struct  SegmentedWord {  
 cStem; 
 cSuffix; 
} ; 
 
// Two structures in which to save the results of  
// the first and second halves of the algorithm 
Hash<cStem, Set< cSuffix >> cStemToCSuffixes; 
Hash<Set< cSuffix >, Set< cStem >> mostSpecificSchemes; 
 
// First Half: Find all c-suffixes that can attach to each c-stem. 
foreach  ( word in  corpus.vocabulary )  {  
 Set< SegmentedWord > segmentations = corpus. getAllSegmentations( word ) ; 
 foreach  ( segmentation in  segmentations )  {  
  cStemsToCSuffixes { segmentation.cStem } . add( segmentation.cSuffix ) ; 
 } 
} 
 
// Second Half: Find all c-stems of each c-suffix s et. 
foreach  ( cStem in  cStemsToCSuffixes )  {  
 cSuffixes = cStemToCSuffixes { cStem } ; 
 mostSpecificSchemes { cSuffixes } . add( cStem ) ; 
} 

Figure  3.8: Pseudo-code for computing most-specific schemes. Note that this code uses 

curly braces ‘{ }’ to index into hashes. And as this algorithm is heavily dependent on 

data structures, this code segment is strongly typed: pointy brackets ‘< >’ indicate the 

data type that a hash or set may contain. 
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c-stems from all most-specific schemes whose c-suffix sets are (proper or improper) su-

persets of CF . 

Let C
FM  denote the set of all most-specific schemes whose c-suffix sets are supersets 

of CF . And in general, given a set of c-suffixes, F, define FM  as the set of most specific 

schemes whose c-suffixes are a (proper or improper) superset of F. To quickly compute 

the c-stems of any particular scheme, C = ( CT , CF ), ParaMor must efficiently compute 

C
FM , i.e. without exhaustively comparing CF  to the c-suffix set of every most specific 

scheme.  

Consider { }CfM , the set of all most-specific schemes whose c-suffix sets contain Cf , 

for each c-suffix CC Ff ∈ . These { }CfM  are inexpensive to compute: for each most-

specific scheme, M = ( MT , MF ), and for each c-suffix MM Ff ∈ , simply add M to the set 

of all most-specific schemes that Mf  occurs in. Furthermore, }{ VfM  for any particular 

c-suffix Vf  from a vocabulary need only be computed once. Figure  3.9 gives pseudo-

code, that ParaMor calls just once, to compute }{ VfM  for all individual Vf  c-suffixes that 

are generated by a corpus. 

computeMostSpecificAncestorsOfAllSingleCSuffixes( mostSpecificSchemes ) {  
  
foreach ( mostSpecificScheme in  mostSpecificSchemes ) {  
  foreach ( cSuffix in  mostSpecificScheme.cSuffixes ) {  
   mostSpecificAncestors { cSuffix } . add( mostSpecificScheme ) ; 
  } 
 } 
 return  mostSpecificAncestors; 
} 

Figure  3.9: Pseudo-code to compute }{ VfM , the set of all most-specific schemes whose 

set of c-suffixes include Vf , where Vf  ranges over all c-suffixes generated by a cor-

pus. The pseudo-code refers to }{ VfM  as the ancestors of Vf : Imagining a network 

of most-specific schemes mirroring the scheme networks of Section  3.1.2, the set 

}{ VfM  contains all the upward, or ancestor, most-specific schemes of the Vf  node. 

As in Figure  3.8, curly braces ‘{ }’ index hashes. 
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But to dynamically compute the c-stems of a scheme, C = ( CT , CF ), ParaMor’s must 

find C
FM , the set of all most-specific schemes whose c-suffix sets are supersets of CF , 

not individual { }CfM . As the following Lemma shows, C
FM  can be computed from the set 

of all { }CfM  where Cf  ranges over all c-suffixes in CF : 

Lemma: { } C

C

F
F MMC C

f
f =∈I  

To show { }
I C

C
F

F
∈⊆ C Cf

fMM : If the most-specific scheme M CFM∈ , where 

M = ( MT , MF ), that is, if MC FF ⊆ , then CC Ff ∈∀ , MC Ff ∈ , and { } MC Ff ⊆ . 

And so CC Ff ∈∀ , { }CfM∈M . And thus { }
I CFM ∈∈ C C

f
fM .  

To show { } C

C

F
F MMC Cf

f ⊆∈I : If the most-specific scheme M { }
I CF∈∈ C Cf

fM , 

where M = ( MT , MF ), then CC Ff ∈∀ , { }CfM∈M . And By the def of •M , 

CC Ff ∈∀ , { } MC Ff ⊆ ; and of course MC Ff ∈ . But suppose CFM M∉ , then there 

must exist CC Ff ∈  such that MC Ff ∉ —a contradiction. So, CFM M∈  and 
{ } C

C

F
F MMC Cf

f ⊆∈I . The lemma has been proved. 

In summary then, for any scheme C = ( CT , CF ), with a specified c-suffix set, CF , the 

c-stems CT  are the union of the c-stems from all most-specific schemes in C
FM , that is, 

U CFM MC
TT M∈= , while the members of each C

FM are found by intersecting the pre-

computed sets of most-specific schemes in the { }CfM , or 
{ }

I C

C
F

F
∈= C C

f
fMM .  The key is 

that both the intersection step as well as the unification step take just linear time to com-

pute. Pseudo code for the full algorithm to dynamically compute a scheme from a set of 

most-specific schemes is given in Figure  3.10. 

3.2.5 Upward Search Metrics 

As described in detail in Sections  3.2.1 and  3.2.2 of this chapter, at each step of Pa-

raMor’s bottom-up search, the system selects, or declines to select, a parent of the current 

scheme as most likely to build on the paradigm modeled by the current scheme. A key 
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element of ParaMor’s bottom-up search is the exact form of the parent-evaluation metric 

used to select the most promising parent. The parent metric must reliably determine 

where and when to expand the current candidate paradigm using only the limited infor-

mation available to an unsupervised induction system. ParaMor has no knowledge of, for 

example, the part of speech or morphosyntactic features that individual words mark. In-

computeTheCStemsOfAScheme( cSuffixesOfScheme, mostSpecificAncestors ) {  
 
 // Intersect the pre-computed sets of most-specifi c scheme ancestors  
 // of each individual c-suffix in cSuffixesOfSchem e. 
 mostSpecificAncestorsOfScheme = emptySet; 
 foreach ( cSuffix in  cSuffixesOfScheme ) {  
  if ( mostSpecificAncestorsOfScheme == emptySet )  
   mostSpecificAncestorsOfScheme. 
    addAll( mostSpecificAncesors { cSuffix }) ;  // Deep Copy 
  else {  
   foreach ( mostSpecificAncestor in  mostSpecificAncestorsOfScheme ) {  
    if ( ! mostSpecificAncestors { cSuffix } . 
         contains( mostSpecificAncesor ))  
     mostSpecificAncestorsOfScheme. remove( mostSpecificAncestor ) ; 
   } 
  } 
 } 
  
 // Compute the union all c-stems in all the most-s pecific scheme  
 // ancestors of the scheme we are building. 
 foreach ( mostSpecificAncestor in  mostSpecificAncestorsOfScheme ) {  
  cStemsOfScheme. add( mostSpecificAncestor.cStems ) ; 
 } 
 
 return  cStemsOfScheme; 
} 
 

Figure  3.10: Pseudo-code to dynamically compute the c-stems that belong to the 

scheme containing the specific set of c-suffixes found in cSuffixesOfScheme . This 

algorithm uses the relevant sets of most-specific schemes found in }{ VfM , as pre-

computed in Figure  3.9, where Vf  is a c-suffix generated by the corpus. As in Figure 

 3.9, the }{ VfM  are saved in the variable mostSpecificAncestors  as a hash on 

c-suffixes. Curly braces ‘{ }’ index into hashes. 
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stead, ParaMor’s parent-evaluation function must work from co-occurrence statistics of 

words and of word substrings, e.g. from c-suffix and c-stem counts in schemes. 

Clearly, ParaMor’s parent-evaluation procedure directly impacts performance. A va-

riety of parent-evaluation measures are conceivable, from simple local measures to statis-

tical measures which take into consideration the schemes’ larger contexts. This section 

investigates one class of localized metric and concludes that, at least within this metric 

class, a conceptually and computationally simple metric gives as accurate an indication of 

the paradigmatic worth of a parent scheme as more complex and expensive metrics. 

 The Parent Selection Dilemma 

To motivate the metrics under investigation, consider the plight of an upward search 

algorithm that has arrived at the a.o.os  scheme when searching through the Spanish mor-

phology scheme network of Figure  3.4 from p. 61. All three of the c-suffixes in the 

a.o.os  scheme model inflectional suffixes from the cross-product paradigm of Gender 

and Number on Spanish adjectives. In Figure  3.7 on p. 70, the second upward search 

path that ParaMor pursues brings ParaMor to the a.o.os  scheme (the second search path 

in Figure  3.7 is the second path from the right). In both Figure  3.4 and in Figure  3.7, just 

a single parent of the a.o.os  scheme is shown, namely the a.as.o.os scheme. But these 

two figures cover only a portion of the full scheme network derived from the 50,000 

types in this Spanish corpus. In the full scheme network there are actually 20,949 parents 

of the a.o.os  scheme! The vast majority of the parents of the a.o.os  scheme occur with 

just a single c-stem. However, 1,283 parents contain two c-stems, 522 contain three 

c-stems, and 330 contain four, etc.  

Seven of the more likely parents of the a.o.os  scheme are shown in Figure  3.11. Out 

of nearly 21,000 parents, only one correctly builds on this adjectival inflectional cross-

product paradigm of Gender and Number: The a.as.o.os  parent adds the c-suffix as, 

which marks Feminine Plural. The parent scheme of a.o.os  that has the second most 

c-stem adherents, also shown in Figure  3.11, adds the c-suffix amente . Like the English 

suffix ly , the Spanish suffix (a)mente  derives adverbs from adjectives quite productively. 

The other parents of the a.o.os  scheme given in Figure  3.11 arise from c-suffixes that 
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model verbal suffixes or that model derivational morphemes. The verbal c-suffixes are ar, 

e, and es, while the derivational c-suffixes are Ø and ualidad .  

The primary reason for the fairly high c-stem counts among the ‘verbal’ parents of 

the a.o.os  scheme is that Spanish syncretically employs the strings a and o not only as 

adjectival suffixes marking Feminine and Masculine, respectively, but also as verbal suf-

fixes marking 3rd Person and 1st Person Present Indicative. However, for a c-stem to 

occur in a ‘verbal’ parent of a.o.os , such as a.ar.o.os , the c-stem must somehow com-

bine with os  into a non-verbal Spanish word form—as the c-suffix os  does not model 

any verbal inflection. In the a.ar.o.os scheme in Figure  3.11, the four listed c-stems 

cambi , estudi , marc , and pes  model verb stems when they combine with the c-suffixes 

a and ar, but they model, often related, noun stems when they combine with os , and the 

Spanish word forms cambio , estudio , marco , and peso  can ambiguously be both verbs 

and nouns. 

Figure  3.11: Seven of the 20,949 parents of the a.o.os  scheme derived from the 

same Spanish newswire corpus of 50,000 types as Figure  3.4. The c-suffix added 

by each parent is underlined. 
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 Motivation for Paradigmatic-Syntagmatic Parent-Evaluation Metrics 

The task laid before the parent-evaluation function in ParaMor’s bottom-up scheme 

search algorithm is, then, to select, out of potentially thousands of candidates, at most a 

single parent which best extends the paradigm modeled by the current scheme. As de-

tailed in the second half of Section  3.2.1, ParaMor relies on the paradigmatic-syntagmatic 

frequency structure of scheme networks to make these parent selection decisions. 

To briefly recapitulate the paradigmatic-syntagmatic tradeoffs captured in scheme 

networks: suppose P  is a set of suffixes which form a paradigm or paradigm cross-

product. And let PF ⊂  be the set of c-suffixes in some scheme. Because the suffixes of 

P  are mutually substitutable, it is reasonable to expect that, in any given corpus, many of 

the stems which occur with F  will also occur with other suffixes, Pf ∈ , Ff ∉ . Hence, 

when moving upward through a scheme network among schemes all of whose c-suffixes 

belong to a single paradigm, adherent c-stem counts should fall only slowly. Conversely, 

there is no reason to expect that some c-suffix Pf ∉′  will form valid words with the 

same c-stems that form words with c-suffixes in P.  

 The C-Stem Ratio: A Simple and Effective Parent-Evaluation Metric 

Taking another look at Figure  3.11, the parents of the a.o.os  scheme clearly display 

paradigmatic and syntagmatic structure. More than 63% of the c-stems in the a.o.os  

scheme form a word with the c-suffix as, a c-suffix which is paradigmatically tied to a, o 

and os  through the Spanish adjectival paradigm. Only 10% of the c-stems in a.o.os  form 

corpus words with the c-suffix ar, part of a productive inflectional verbal paradigm with 

a and o. And only 0.2% of the c-stems in the a.o.os  scheme form words with the deriva-

tional c-suffix ualidad , which is not part of a productive inflectional paradigm with any 

of the three c-suffixes a, o or os . 

Among all parents of the a.o.os  scheme, the correct paradigmatic parent, a.as.o.os , 

retains by far the highest fraction of the child’s c-stems. Parent-child c-stem ratios are 

surprisingly reliable predictors of when a parent scheme builds on the paradigmatic 

c-suffix interaction of that scheme, and when a parent scheme breaks the paradigm. In-

deed, while the remainder of this chapter presents and motivates a variety of parent met-
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rics, an empirical evaluation discussed below (p. 91) suggests that no examined metric 

significantly outperforms the parent-child c-stem ratio at paradigm identification. 

 Parent-Evaluation Metrics beyond C-Stem Ratios 

Parent-child c-stem ratios are a simple measure of a parent scheme’s paradigmatic 

strength, but it seems reasonable that a more sophisticated measure might more accu-

rately predict when a parent extends a child scheme’s paradigm. In particular, the c-stem 

ratio metric does not at all account for the fact that some suffixes occur less frequently 

than others. In Spanish, for example, although the derivational suffix (a)mente  so pro-

ductively converts adjectives to adverbs that its paradigmatic behavior is nearly that of an 

inflectional suffix, in naturally occurring text, relatively few unique types end in amente . 

In comparison, the verbal infinitive suffix ar is much more common. In one corpus of 

50,000 unique types 1448 word forms ended in ar but only 332 ended in amente .  But 

the parent-child c-stem ratio does not strongly differentiate between the parent of the 

a.o.os  scheme which introduces the productive (de)adjectival c-suffix amente  and the 

parent which introduces the non-adjectival verbal c-suffix ar. Referring to Figure  3.11, 

both the schemes a.amente.o.os and a.ar.o.os have very nearly the same number of 

c-stems, 173 and 145 respectively, and so have very similar parent-child c-stem ratios of 

0.122 and 0.102. The higher frequency of ar forms ensures that a reasonable number of 

c-stems adhere to the a.ar.o.os  scheme. 

Five additional parent-evaluation metrics are discussed below. All five incorporate 

the frequency of the expansion c-suffix, that is, they incorporate the frequency of the 

c-suffix introduced by the parent scheme under consideration. In a scheme network, the 

frequency of the expansion scheme is found in the level 1 scheme which contains the sin-

gle c-suffix which expands the current scheme.  

Figure  3.12 depicts expansion schemes, with their c-stem frequencies, for four par-

ents of the a.o.os  scheme. These four parents were chosen to aid exposition. The expan-

sion schemes are: as, amente , ar, and ualidad , respectively the fourth member of the 
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Figure  3.12: Four parents of the a.o.os  scheme, together with the level 1 expansion 

schemes which contain the single c-suffix which expands a.o.os  into the parent 

scheme. Beneath each expansion scheme is a table of c-stem counts relevant to 

a.o.os  and that parent. These schemes and c-stem counts come from a Spanish 

newswire corpus of 50,000 types. 
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adjectival cross-product paradigm, a productive deadjectival derivational suffix, a verbal 

suffix that is not paradigmatically related to os , and an unproductive deadjectival deriva-

tional suffix. 

 The Dice Metric 

There are many ways the c-stem information from expansion schemes might be ex-

ploited. One method is to average parent-expansion c-stem ratios with parent-child 

c-stem ratios. In the a.amente.o.os example, the ratio of c-stem counts from the parent 

scheme a.amente.o.os  to the expansion scheme amente , at 173/332, can be averaged 

with the ratio of c-stems from the parent scheme to the child scheme a.o.os , namely 

173/1418. The bottom-up search of scheme networks particularly seeks to avoid moving 

to schemes that do not model paradigmatically related c-suffixes. Taking the harmonic 

mean of the parent-expansion and parent-child c-stem ratios, as opposed to the arithmetic 

mean, captures this conservative approach to upward movement. Compared with the 

arithmetic mean, the harmonic mean comes out closer to the lower of a pair of numbers, 

effectively dragging down a parent’s score if either c-stem ratio is low.  

Interestingly, after a bit of algebra, it emerges that taking the harmonic mean of the 

parent-expansion and parent-child c-stem ratios is equivalent to measuring the dice simi-

larity metric on the sets of c-stems present in the child and expansion schemes. The dice 

metric, a standard measure of set similarity (Manning and Schütze, 1999, p. 299), is de-

fined as ( ) ( )YXYX +∩2 , for any two arbitrary sets X and Y. In the context of schemes, 

the intersection of X and Y is the intersection of the c-stem sets of the child and expansion 

schemes—or exactly the c-stem set of the parent scheme.  

As hoped, the relative difference between the dice scores for the amente  and ar par-

ents is larger than the relative difference between the parent-child c-stem ratios of these 

parents. The dice scores are 0.198 and 0.101 for the amente  and ar parents respectively, 

a difference of nearly a factor of two; as compared with the relative difference factor of 

1.2 for the parent-child c-stem ratios of the amente  and ar parents. Note that it is mean-

ingless to directly compare the numeric value of a parent-child c-stem ratio to the nu-
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meric value of the dice measure of the same parent—the two scores operate on different 

scales. 

The parent-child c-stem ratio metric and the dice metric are the first two of six met-

rics that ParaMor investigated as potential guiding metrics for the vertical network search 

described in Sections  3.2.1 and  3.2.2. All six investigated metrics are summarized in 

Figure  3.13. Each row of this figure details a single metric. After the metric’s name 

which appears in the first column, the second column gives a brief description of the met-

ric, the third column contains the mathematical formula for calculating that metric, and 

the final four columns apply each row’s metric to the four illustrative parent schemes of 

the a.o.os scheme from Figure  3.12: For example, the parent-child c-stem ratio from the 

a.o.os scheme to the a.o.os.ualidad  parent is given in the upper-right cell of Figure  3.13 

as 0.002. 

The variables in the mathematical notation of the third column of Figure  3.13 refer to 

c-stem counts of schemes involved in the evaluation of parent schemes.  For example, the 

formula, in the first row of Figure  3.13, to calculate a parent-child c-stem ratio is P/C, 

where P is the count of the c-stems in the parent scheme, and C is the count of c-stems in 

the current scheme. Comparing the metric formulas in the third column of Figure  3.13, 

the parent-child c-stem ratio is by far the simplest of any metric ParaMor examined. In 

addition to P and C, the formulas in Figure  3.13 refer to two other variables: E represents 

the total number of c-stems that can attach to the c-suffix that expands the current scheme 

into the parent (i.e. the c-stem adherent size of the paradigmatic level one expansion 

scheme), and V is the size of the vocabulary over which the network was built. The for-

mula for the dice metric uses E in addition to P and C: 2P/(C+E). 

 Pointwise Mutual Information as a Parent-Evaluation Metric 

Of the six parent-evaluation metrics that ParaMor examined, the four which remain 

to be described all look at the occurrence of c-stems in schemes from a probabilistic per-

spective. To convert c-stem counts into probabilities, ParaMor must estimate the total 

number of c-stems which could conceivably occur in a single scheme. ParaMor takes this
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Figure  3.13: Six metrics which might gauge the paradigmatic unity of parent schemes during ParaMor’s search of a vertical mor-

phology scheme network. Each row describes a single metric. The top three metrics are heuristic measures of paradigmatic co-

herence. The bottom three metrics treat the current and expansion schemes as random variables and test their statistical correla-  

    

 P  E 
    
 C  V 

 

tion. In the Formula column: C, E, and P are the c-stem counts of the Current, Expansion, and Parent schemes respec-

tively, while V  is the size of the corpus Vocabulary. An expansion scheme heads each of the final four columns, which 

each contain the value of that row’s metric applied from the a.o.os  scheme of Figure  3.12 to that column’s expansion 

scheme. The mini-table at left shows where C, E, P, and V fall in a 2x2 table of c-stem counts, a la Figure  3.12. 
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upper limit to be the corpus vocabulary size. With this upper limit in hand, the maximum 

likelihood estimate of the probability that a c-stem will occur in a given scheme, S, is the 

count of the adherent c-stems in S over the size of the corpus vocabulary, or, in the nota-

tion of Figure  3.13, C/V. Note that the joint probability of finding a c-stem in the current 

scheme and in the expansion scheme is just the probability of a c-stem appearing in the 

parent scheme. 

The first parent-evaluation metric that makes use of the probabilistic view of c-stem 

occurrence in schemes is pointwise mutual information. The pointwise mutual informa-

tion between values of two random variables measures the amount by which uncertainty 

in the first variable changes when a value for the second has been observed. In the con-

text of morphological schemes, the pointwise mutual information registers the change in 

the uncertainty of observing the expansion c-suffix when the c-suffixes in the current 

scheme have been observed. 

The formula for pointwise mutual information between the current and expansion 

schemes is given on the third row of Figure  3.13. Like the dice measure, the pointwise 

mutual information identifies a large difference between the amente  parent and the ar 

parent (reference the final columns of Figure  3.13). As Manning and Schütze (1999, 

p. 181) observe, however, pointwise mutual information increases as the number of ob-

servations of a random variable decrease. And since the expansion schemes amente and 

ualidad have comparatively low c-stem counts, the pointwise mutual information score is 

higher for the amente and ualidad parents than for the truly paradigmatic as—

undesirable behavior for a metric guiding a search that must identify productive, and 

therefore likely frequent, paradigmatic suffixes. 

 Three Statistical Tests for Parent-Evaluation Metrics 

While the three heuristic parent-evaluation metrics, namely parent-child c-stem ra-

tios, dice similarity, and pointwise mutual information scores, seem intuitively reason-

able, it would be theoretically appealing if ParaMor could base an upward search decision 

on a statistical test of a parent’s worth. Just such statistical tests can be defined by view-

ing each c-stem in a scheme as a successful trial of a boolean random variable.  
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Taking the view of schemes as boolean random variables, the joint distribution of 

pairs of schemes can be tabulated in 2x2 grids. The grids beneath the four expansion 

schemes of Figure  3.12 hold the joint distribution of the a.o.os scheme and the respective 

expansion scheme. The first column of each table contains counts of adherent c-stems 

that occur with all the c-suffixes in the current scheme; While the second column con-

tains an estimate of the number of c-stems which do not form corpus words with each 

c-suffix of the current child scheme. Similarly, the table’s first row contains adherent 

counts of c-stems that occur with the expansion c-suffix; And the second row gives esti-

mates for the number of c-stems which do not co-occur with the expansion suffix. Con-

sequently, the cell at the intersection of the first row and first column contains the adher-

ent stem count of the parent scheme.  

The bottom row and the right-most column of each 2x2 table contain marginal adher-

ent counts. In particular, the bottom cell of the first column contains the count of all the 

c-stems that occur with all the c-suffixes in the current scheme. In mirror image, the 

right-most cell of the first row contains the adherent count of all c-stems which occur 

with the expansion c-suffix. The corpus vocabulary size, as the estimate of the total num-

ber of c-stems, is the marginal of the marginal c-stem counts, and appears in the bottom 

right-hand corner of each 2x2 table. A mini-table at the bottom left of Figure  3.13 sum-

marizes where to find the c-stem counts for the current, parent, and expansion schemes 

together with the estimate of vocabulary size in a 2x2 joint-distribution grid. 

Treating sets of c-suffixes as boolean random variables, we must ask what measur-

able property of random variables might indicate that the c-suffixes of the current scheme 

and the c-suffix of the expansion scheme belong to the same paradigm. One answer is 

correlation. As described both earlier in this section as well as in Section  3.2.1, suffixes 

which belong to the same paradigm are likely to have occurred attached to the same 

stems—this co-occurrence is statistical correlation. Think of a big bag containing all pos-

sible c-stems. We reach our hand in, draw out a c-stem, and ask: Did the c-suffixes of the 

current scheme all occur attached to this c-stem? Did the expansion c-suffix occur with 

this c-stem? If the expansion c-suffix belongs to the same paradigm as the c-suffixes in 
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the current scheme, then the answer to both of these questions will often be the same, and 

the random variables will be correlated. 

A number of standard statistical tests are designed to detect when two random vari-

ables are correlated. In designing ParaMor’s parent-evaluation metric, three statistical 

tests were examined:  

1. Pearson’s χ2 test, 

2. The Wald test for the mean of a Bernoulli population, and 

3. A likelihood ratio test for independence of Binomial random variables 

Pearson’s χ2 test is a nonparametric test designed for categorical data, that is, data in 

which each observed trial point can be categorized as belonging to one of a finite number 

of types. Pearson’s test compares the expected number of occurrences of each category 

with the observed number of occurrences of that category. In a 2x2 table, such as the ta-

bles of c-stem counts in Figure  3.12, the four central cells in the table are the categories. 

Pearson’s χ2 test statistic relies on the observation that if two random variables are inde-

pendent, then the expected number of observations in each cell is the product of the mar-

ginal probabilities along that cell’s row and column. Pearson’s test statistic for a 2x2 ta-

ble, given in the fourth row of Figure  3.12, converges to the χ2 distribution as the size of 

the data increases. (DeGroot, 1986 p. 536). 

The second statistical test investigated for ParaMor’s vertical scheme search is a 

Wald test of the mean of a Bernoulli population (Casella and Berger, 2002 p. 493). This 

Wald test compares the observed number of c-stems in the parent scheme to the number 

which would be expected if the child c-suffixes and the expansion c-suffixes were inde-

pendent. When the current and expansion schemes are independent, the central limit theo-

rem implies that the statistic given in the fifth row of Figure  3.13 converges to a standard 

normal distribution.  

Since the sum of Bernoulli random variables is a Binomial distribution, we can view 

the random variable which corresponds to any particular scheme as a Binomial. This is 

the view taken by the final statistical test ParaMor considers as a potential parent-

evaluation metric for the initial bottom-up scheme search. In this final test, the random 
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variables corresponding to the current and expansion schemes are measured for inde-

pendence using a likelihood ratio statistic from Manning and Schütze (1999, p. 172). 

When the current and expansion schemes are not independent, then the occurrence of a 

c-stem, t, in the current scheme will affect the probability that t appears in the expansion 

scheme. On the other hand, if the current and expansion schemes are independent, then 

the occurrence of a c-stem, t, in the current scheme will not affect the likelihood that t 

occurs in the expansion scheme. The denominator of the formula for the likelihood ratio 

test statistic, given in the final row of Figure  3.13, describes the likelihood of current and 

expansion schemes which are not independent; while the numerator gives the independ-

ent case. Taking two times the negative log of the ratio of these likelihoods produces a 

statistic that is χ2 distributed. 

One caveat, both the likelihood ratio test and Pearson’s χ2 test only assess the inde-

pendence of the current and expansion schemes, they cannot disambiguate between ran-

dom variables which are positively correlated and variables which are negatively corre-

lated. When c-suffixes are negatively correlated it is extremely likely that they do not be-

long to the same paradigm. Clearly, ParaMor’s search strategy should not move to parent 

schemes whose expansion c-suffix is negatively correlated with the c-suffixes of the cur-

rent scheme. Negative correlation occurs when the observed frequency of c-stems in a 

parent scheme is less than the predicted frequency assuming that the current and expan-

sion c-suffixes are independent. Thus, when evaluating parent schemes with either the 

likelihood ratio test or Pearson’s χ2 test, ParaMor explicitly checks for negative correla-

tion. 

Returning to Figure  3.13, the values of the three statistical tests for the four parents of 

the a.o.os scheme suggest that the tests are generally well behaved. For each of the tests, 

a larger score indicates that an expansion scheme is more likely to be correlated with the 

current scheme—although, again, comparing the absolute scores of one test to the nu-

meric values from another test is meaningless. All three statistical tests correctly score the 

unproductive derivational ualidad  scheme as the least likely of the four expansion 

schemes to be correlated with the current scheme. And each test gives a large margin of 

difference between the amente  and the ar parents. The only obvious misbehavior of any 
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of these statistical tests is that Pearson’s χ2 test ranks the productive but derivational 

amente  parent as more likely than the inflectional as parent to be correlated with the cur-

rent scheme. 

 An Empirical Comparison of Parent-Evaluation Metrics 

To quantitatively compare parent-evaluation metrics at their ability to identify para-

digmatically coherent schemes, ParaMor performed an oracle experiment. This oracle 

experiment places on an even playing field all six parent-evaluation metrics summarized 

in Figure  3.13. Looking at Spanish data, the oracle evaluation assessed each metric at its 

ability to identify schemes in which every c-suffix is string identical to a suffix of some 

single inflectional paradigm. The inflectional paradigms of Spanish used as the oracle 

answer key in this experiment were hand complied from a standard Spanish textbook 

(Gordon and Stillman, 1999), and are detailed in Appendix A. 

The methodology of the oracle experiment that ParaMor used to quantitatively com-

pare parent-evaluation metrics is as follows: ParaMor visited every scheme that contained 

only c-suffixes which model suffixes from a single inflectional paradigm—call such 

schemes sub-paradigm schemes. Each parent of a sub-paradigm scheme is either a sub-

paradigm scheme itself, or else the parent’s c-suffixes no longer form a subset of the suf-

fixes of a true paradigm. The oracle experiment evaluated each metric at its ability to 

classify each parent of each sub-paradigm scheme as either being a sub-paradigm scheme 

itself or as introducing a non-paradigmatic c-suffix.  

Notice that the oracle experiment does not directly evaluate parent metrics in the con-

text of the greedy upward search procedure described in Sections  3.2.1 and  3.2.2. Follow-

ing the methodology of this oracle experiment allows a direct comparison between par-

ent-evaluation metrics: where ParaMor’s greedy search is not guaranteed to visit identical 

sets of schemes when searching with different upward metrics or with different halting 

thresholds, the oracle experiment described here evaluates all metrics over the same set of 

upward decisions.  

Also, the non-greedy methodology of this oracle experiment necessitated using a 

considerably smaller corpus than do other experiments that are reported in this thesis. 
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Figure  3.14 gives results of the oracle evaluation over a corpus of free-running Spanish 

newswire text containing 6,975 unique types. A small corpus is necessary because the 

oracle experiment visits all parents of all sub-paradigm schemes, and as is discussed in 

Section  3.2.4,  a larger corpus creates a search space that is too large to fully instantiate. 

To compare parent-evaluation metrics ParaMor must factor out threshold effects. 

Each metric’s performance at identifying sub-paradigm schemes varies with the cutoff 

threshold below which a parent is believed to not be a sub-paradigm scheme. For exam-

ple, when considering the c-stem ratio metric at a threshold of 0.5, ParaMor would take 

as a sub-paradigm scheme any parent that contains at least half as many c-stems as the 

current scheme. But if this threshold were lowered to 0.25, then a parent need have only 

one-quarter the number of c-stems as the child to pass for a sub-paradigm scheme.  

Moreover, while each of the six metrics described in the previous section score each 

parent scheme with a real value, the scores are not normalized. The ratio and dice metrics 

produce scores between zero and one, Pearson’s χ2 test and the Likelihood Ratio test pro-

duce non-negative scores, while the scores of the other metrics can fall anywhere on the 

real line. But even the scores of metrics which lie in the same range are not comparable. 

Referencing Figure  3.13, the ratio and dice metrics, for example, can produce very differ-

ent scores for the same parent scheme. Furthermore, while statistical theory can give a 

confidence level to the absolute scores of the metrics that are based on statistical tests, the 

theory does not suggest what confidence level is appropriate for the task of paradigm de-

tection in scheme networks. The ratio, dice, and pointwise mutual information metrics 

lack even an interpretation of confidence.  

To remove threshold effects and fairly compare parent-evaluation metrics, the oracle 

experiment performs a peak-to-peak comparison. The oracle evaluation measures the 

precision, recall, and F1 of each metric over a range of threshold values relevant to that 

metric. And the maximum F1 value each metric achieves is its final score.  

Figure  3.14 reports the peak F1 score for each of the six metrics presented in this sec-

tion. Two results are immediately clear. First, all six metrics consistently outperform the 

baseline algorithm of considering every parent of a sub-paradigm scheme to be a sub-
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paradigm scheme. Although a seemingly weak baseline, the always-move-up rule cor-

rectly classifies the paradigmatic integrity of scheme parents with an F1 score above 70%. 

The second result evident from Figure  3.14 is that the most simple metric, the parent-

child c-stem ratio, does surprisingly well, identifying parent schemes which contain no 

extra-paradigmatic suffixes just as consistently as more sophisticated tests, and outper-

forming all but one of the considered metrics. The primary reason the parent-child c-stem 

ratio performs so well appears to be that the ratio metric is comparatively robust when 

0.5 0.6 0.7 0.8 0.9 1

F1

 

Likelihood Ratio Test 

C-Stem Ratio 

Wald Test  

Pearson’s χ2 Test 

Pointwise Mutual Information 

Dice 

Always Move Up 

F1 

Figure  3.14: A small-scale oracle evaluation of six metrics at the task of identifying 

schemes where each c-suffix models a suffix in the same true inflectional para-

digm. Each bar reports the peak F1 of its metric over a range of cutoffs appropriate 

for that metric. 
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data is sparse. In 79% of the oracle decisions that each metric faced, the parent scheme 

had fewer than 5 c-stems!  

Interestingly, Hammarström (2006b) has also found that simple c-stem ratios are un-

expectedly effectively at identifying suffixes that paradigmatically contrast. In the con-

text of a stemming algorithm designed for information retrieval, Hammarström reports 

that, in assessing the c-stem coherence of sets of c-suffixes, he “has not had much success 

with standard vector similarity measures.” Hammarström then turns to parent-child 

c-stem ratios to define a novel measure of the extent to which c-suffixes share c-stems. 

Hammarström’s metric, which, unfortunately, this oracle evaluation does not investigate, 

looks only at parent-child c-stem ratios that occur at the bottom of scheme networks, 

namely, between paradigmatic level 2 and level 1 schemes.  

In addition to strong performance in this oracle evaluation, the parent-child c-stem 

ratio has a second, unrelated, advantage over other metrics: simplicity of computation. In 

taking each upward step, ParaMor’s bottom-up search procedure, described in Sections 

 3.2.1 and  3.2.2, greedily moves to that parent with the highest score. Hence, to find the 

best greedy parent, ParaMor need not necessarily compute the scores of parent schemes, 

all ParaMor must do is identify which parent would have the highest score. As the c-stem 

ratio metric does not incorporate the frequency of the expansion c-suffix, and as the 

number of c-stems in the current scheme does not change, the parent scheme with the 

largest c-stem ratio is always that parent with the most c-stems—an easily computable 

statistic. 

On the basis of both the sturdy performance in the oracle evaluation, as well as the 

simplicity and speed of identifying the parent with the largest c-stem ratio, all further ex-

periments in this thesis use the parent-child c-stem metric to guide ParaMor’s vertical 

search.  

 Setting the Halting Threshold in ParaMor’s Bottom-Up Search 

Having settled on the parent-child c-stem ratio as the parent-evaluation metric of 

choice, ParaMor must next select a threshold value at which to halt upward search paths. 

The oracle experiment described in this section was designed to ascertain which parent-
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evaluation metric most accurately identifies paradigmatic parents. Somewhat in contrast, 

ParaMor’s greedy search algorithm, described in Sections  3.2.1 and  3.2.2, prizes caution 

ahead of accuracy. As discussed in Section  3.2.1, ParaMor’s greedy search takes a sepa-

rate upward path from all individual single-c-suffix schemes. Pursuing many paths in 

parallel, it is likely that most c-suffixes that model a true suffix will be selected as part of 

some path, thereby yielding high suffix recall. ParaMor then relies on a clustering algo-

rithm, described in Chapter 4, to bring together paradigmatically related c-suffixes that 

only appear in separate search paths. A cautious initial search helps ParaMor to keep ini-

tially selected models of partial paradigms largely free of non-paradigmatic c-suffixes.  

The threshold value at which the parent-child c-stem ratio achieved its peak F1 in the 

oracle experiment of Figure  3.14 is 0.05. At this threshold, for ParaMor’s greedy search 

to accept a parent scheme, the parent need only contain one-twentieth the number of 

c-stems as the current scheme. A qualitative examination of ParaMor’s selected schemes 

suggests a threshold of 0.05 is not cautious enough; Over a corpus of 50,000 Spanish 

types, at the 0.05 threshold, ParaMor’s greedy search selects many schemes that include 

both inflectional paradigmatic c-suffixes and c-suffixes that model only marginally pro-

ductive derivational suffixes. Hence, the remainder of this thesis sets the parent-child 

c-stem ratio threshold at the more cautious value of 0.25.  

It is possible that a threshold value of 0.25 is sub-optimal for paradigm identification. 

And future work should more carefully examine the impact that varying this threshold 

has on morphological segmentation of words (Chapter 5). However, the quantitative 

evaluations of Chapter 6 will show that the current setting of 0.25 leads to morphological 

segmentations of a diverse set of natural languages that out-perform the segmentations of 

state-of-the-art unsupervised morphology induction systems.  

3.3 Summarizing the Search for Candidate Paradigms 

This chapter has presented the strategy that ParaMor employs to identify initial can-

didate paradigms. This strategy has three main steps. First, ParaMor organizes candidate 

stems and candidate suffixes into natural groupings, or schemes, that model potential in-
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flectional paradigms. Second, ParaMor relates the scheme groupings to one another, in 

the process forming a network of candidates. And third, ParaMor searches the candidate 

paradigm network in a recall-centric fashion for schemes which individually cover di-

verse portions of the paradigms of a language. 

Although, as the next chapter will show quantitatively, ParaMor’s initial paradigm 

search successfully uncovers most suffixes of languages like Spanish, the output of the 

search is still far from a tight model of paradigm structure. With ParaMor’s search fo-

cused on recall, many of the initially selected candidate paradigms are erroneously se-

lected. And of those which are correct, many redundantly cover overlapping portions of 

the same paradigms. Overcoming these two shortcomings of the initial search procedure 

is the topic of the next chapter. 
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Chapter 4:                     
Clustering and Filtering 
of Initial Paradigms 

This chapter builds on the initial models of paradigms that are selected by ParaMor’s 

greedy bottom-up search strategy of Chapter 3. Taking in the initial set of scheme mod-

els, this chapter consolidates and purifies a focused set of paradigm models. And, in turn, 

the algorithms described in Chapter 5 wield these focused models to segment words into 

morphemes. 

4.1 From Schemes to Comprehensive Models of Paradigms 

The bottom-up search strategy presented in Chapter 3 is a solid first step toward iden-

tifying useful models of productive inflectional paradigms. However, as Section  3.2.1 

explains, ParaMor’s greedy bottom-up search strategy narrowly focuses on finding partial 

models of paradigms that, in aggregate, concentrate on recall. ParaMor’s recall-centric 

strategy of starting upward paths from all individual c-suffixes inevitably seeds some 

paths with c-suffixes which do not model suffixes. And while ParaMor’s initial scheme-
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models jointly recover many inflectional suffixes, individual schemes will likely cover 

only portions of full linguistic paradigms. Section  4.1.1 illustrates, by way of an extended 

example, the successes and shortcomings of ParaMor’s initially selected schemes, while 

Section  4.1.2 outlines the strategies that ParaMor takes to mitigate the shortcomings. Sec-

tions  4.2,  4.3, and  4.4 then present each mitigation strategy in detail. And finally, Sec-

tions  4.5 and  4.6 analyzes the paradigm models that ParaMor ultimately produces. 

4.1.1 A Sample of Initially-Selected Schemes 

To better see the strengths of the schemes that ParaMor initially selects as paradigm 

models, and to motivate the steps ParaMor takes to overcome gaps in the initial models, 

Figure  4.1 presents a range of schemes selected during a typical run of ParaMor’s bot-

tom-up search procedure, from Chapter 3. Each row of Figure  4.1 lists a scheme selected 

while searching over a Spanish newswire corpus of 50,000 types using the parent-child 

c-stem ratio metric at a halting threshold of 0.25 (see the final sub-section of Sec-

tion  3.2.5). On the far left of Figure  4.1, the RANK column states the ordinal rank at which 

that row’s scheme was selected during the search procedure: the Ø.s scheme was the 

terminal scheme of ParaMor’s 1st upward search path, a.as.o.os  the terminal scheme of 

the 2nd path, ido.idos.ir.iré  the 1592nd, etc. The right four columns of Figure  4.1 present 

raw data on the selected schemes, giving the number of c-suffixes in that scheme, the 

c-suffixes themselves, the number of adherent c-stems of the scheme, and a sample of 

those c-stems.  

Between the rank on the left, and the scheme details on the right, are columns which 

categorize the scheme on its success, or failure, to model a true paradigm of Spanish. Ap-

pendix A lists the inflectional paradigms of Spanish morphology. A dot appears in the 

columns marked N, ADJ, or VERB if multiple c-suffixes in a row’s scheme clearly repre-

sent suffixes in a paradigm of that part of speech. The verbal paradigm is further broken 

down by inflection class: ar, er, and ir . A dot appears in the DERIVATION column if at least 

one c-suffix of a scheme models a derivational suffix.  
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 The remaining six columns of Figure  4.1 classify the correctness of each row’s 

scheme. The GOOD column of Figure  4.1, for example, is marked if the c-suffixes in a 

scheme take the surface form of true suffixes. Initially selected schemes in Figure  4.1 that 

correctly capture real paradigm suffixes are the 1st, 2nd, 4th, 5th, 12th, 30th, 40th, 127th, 

135th, 400th, 1592nd, and 2000th selected schemes.  

Most true inflectional suffixes of Spanish are modeled by some scheme that is se-

lected during the run of ParaMor’s initial search that is presented in Figure  4.1: The bot-

tom-up search identifies partial paradigms which, between them, contain 91% of all 

string-unique suffixes of the Spanish verbal inflectional paradigms, as summarized in 

Appendix A. If we ignore as undiscoverable all suffix strings which occurred at most 

once in the Spanish newswire corpus, ParaMor’s coverage jumps to 97% of unique verbal 

suffixes. In addition to verbal suffixes, ParaMor identifies schemes which model: 

1. Each of the two phonologically determined inflection classes that express Num-

ber on nouns: the 1st selected scheme models Ø.s, while the 4th selected scheme 

models Ø.es; and 

 2. The full adjectival cross-product paradigm of Gender and Number, a.as.o.os , in 

the 2nd selected scheme.  

But, while most true inflectional suffixes are modeled by some scheme selected in 

the initial search, ParaMor’s initially selected schemes also display two broad shortcom-

ings.  

 A First Shortcoming of Initial Schemes: Fragmentation 

No single initially selected scheme comprehensively models all the suffixes of the 

larger Spanish paradigms. Instead, c-suffix models of paradigm suffixes are fragmented 

across large numbers of schemes. The largest schemes that ParaMor identifies from the 

newswire corpus are the 5th and 12th selected schemes: Shown in Figure  4.1, both of these 

schemes contain 15 c-suffixes which model suffixes from the ar inflection class of the 

Spanish verbal paradigm. But the full ar inflection class has 36 unique surface suffixes. 

In an agglutinative language like Turkish, the cross-product of several word-final para-



100 

 

MODEL OF ERROR 

VERB 

RA
NK

 

N AD
J 

ar er ir DE
RI
VA

TIO
N 

GO
OD

 
CO

MP
LE

TE
 

PA
RT

IA
L 

ST
EM

-IN
TE

RN
AL

 
SU

FF
IX

-IN
TE

RN
AL

 
CH

AN
CE

 
 C-SUFFIXES  C-STEMS 

1 ● ●     ● ●     2 Ø s 5501 apoyada barata hombro oficina reo … 
2  ●     ● ●     4 a as o os 892 apoyad captad dirigid junt próxim … 
3   ●      ●  ●  15 Ø ba ban da das do dos n ndo r ra ron rse rá rán 17 apoya disputa lanza lleva toma …  
4 ● ●     ● ●     2 Ø es 847 emir inseguridad orador pu ramon … 
5   ●    ●  ●    15 a aba aban ada adas ado ados an ando ar aron arse ará arán ó 25 apoy desarroll disput lanz llev … 

10  ●      ●  ●   5 ta tamente tas to tos 22 cier direc insóli modes sangrien … 
11   ●      ●  ●  14 Ø ba ción da das do dos n ndo r ron rá rán ría 16 acepta celebra declara fija marca … 
12   ●    ●  ●    15 a aba ada adas ado ados an ando ar aron ará arán e en ó 21 apoy declar enfrent llev tom … 
20  ●      ●  ●  ● 6 Ø l ra ras ro ros 8 a ca coste e ente gi o pu 
30    ● ●  ●  ●    11 e en ida idas ido idos iendo ieron ió ía ían 16 cumpl escond recib transmit vend … 
40 ● ●    ● ● ●     7 Ø es idad ización izado izar mente 8 actual final natural penal regular … 

100            ● 8 Ø a an e ea en i ino 9 al c ch d g p s t v 
127    ●   ●  ●    9 e en er erá ería ido ieron ió ía 11 ced deb ofrec pertenec suspend … 
135    ● ●  ●  ●    10 a e en ida ido iendo iera ieron ió ía 12 assist cumpl ocurr permit reun un … 
200      ●    ●   4 tal tales te tes 5 acciden ambien continen le pos 
300      ●      ● 4 o os ual uales 7 act cas concept event grad man us 
400   ●   ● ●  ●    8 a aciones ación ados an ar ativas ó 10 administr conmemor estim investig … 

1000    ●     ● ●   8 ce cen cer cerán cido cieron ció cía 9 apare estable ofre pertene ven … 
1592     ●  ●  ●    4 ido idos ir iré 6 conclu cumpl distribu exclu reun … 
2000    ● ●  ●  ●    4 e en ieron iesen 5 aparec crec impid invad pud 
3000            ● 2 Ø zano 3 li lo man 
4000            ● 2 icho io 4 b capr d pred 
5000   ●      ● ●   2 egará ega 3 desp entr ll 

…             … … … … 
                 

Figure  4.1: Schemes selected by ParaMor’s initial bottom-up search algorithm over a Spanish corpus of 50,000 types. While some se-

lected schemes contain c-suffixes that correctly model paradigmatic suffixes, others are incorrect collections of word final strings. 
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digms may have an effective size of hundreds or thousands of suffixes, and ParaMor will 

only identify a minute fraction of these in any one scheme.  

In Figure  4.1, the COMPLETE column is marked when a scheme contains separate 

c-suffixes that correspond to each suffix of a paradigm or paradigm cross-product. On the 

other hand, if a scheme’s c-suffixes model suffixes of a paradigm of Spanish, but manage 

to model only a portion of the full paradigm, then Figure  4.1 has a dot in the PARTIAL  

column. Among the many schemes in Figure  4.1 which faithfully describe significant 

partial fractions of legitimate paradigms are the 5th, 12th, and 400th selected schemes. 

These three schemes each contain c-suffixes which clearly model suffixes from the verbal 

ar paradigm—but each contains c-suffixes that correspond to only a subset of the suffixes 

in the full ar inflection class. Notice that while some legitimate inflectional suffixes occur 

in only one ar scheme, e.g. aban and arse in the 5th selected scheme, other c-suffixes 

appear in two or more schemes that model the ar paradigm, e.g. a, ados , ó. Indeed, the 

ados  c-suffix occurs in 31 schemes that were selected during this run of ParaMor’s initial 

search. The search paths that identified these 31 schemes each originate from a distinct 

initial c-suffix, including such c-suffixes as: an, en, ación , amos , etc.  

Separate scheme patchworks cover the other inflection classes of Spanish verbs as 

well. For example, schemes modeling portions of the ir  inflection class include the 30th, 

135th, 1592nd, and 2000th selected schemes. Consider the 1592nd scheme, which contains 

four c-suffixes. Three of these c-suffixes, ido , idos , and ir , occur in other schemes se-

lected during the initial search, while the uncommon 1st Person Singular Future Tense 

suffix iré  is unique to the 1592nd selected scheme—in all the schemes selected during this 

run of ParaMor’s initial bottom-up search, the c-suffix iré  occurred in only one. Pa-

raMor’s recall-centric search has correctly identified the iré  suffix, but as yet iré  is iso-

lated from most other c-suffixes of the ir  paradigm. 

 A Second Shortcoming of Initial Schemes: Poor Precision 

The second broad shortcoming of ParaMor’s initial search strategy, apparent from 

Figure  4.1, is simply that many schemes do not satisfactorily model Spanish morphologi-

cal suffixes. The vast majority of schemes with this second shortcoming belong to one of 
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two sub-types. The first sub-type of unsatisfactory paradigm model comprises schemes 

which systematically misanalyze word forms. These systematically incorrect schemes 

come in two flavors: a scheme will either hypothesize morpheme boundaries in its licens-

ing words that fall internal to true stems or a scheme will propose boundaries that are 

consistently internal to suffixes.  

Schemes which misanalyze morpheme boundaries in Figure  4.1 are marked in the 

ERROR: STEM-INTERNAL  or ERROR: SUFFIX-INTERNAL  columns, and comprise the 3rd, 10th, 

11th, 20th, 200th, 1000th, and 5000th selected schemes. Of these, the 3rd and 11th selected 

schemes place a morpheme boundary at suffix-internal positions, truncating the full suf-

fix forms: Compare the 3rd and 11th selected schemes with the 5th and 12th. In symmetric 

fashion, a significant fraction of the c-suffixes in the 10th, 20th, 200th, 1000th, and 5000th 

selected schemes hypothesize morpheme boundaries for their licensing word forms inter-

nal to real Spanish stems. In placing morpheme boundaries internal to stems, these 

schemes inadvertently include the final characters of verb stems as leading characters on 

their c-suffixes. In a random sample of 100 Spanish schemes from the 8339 schemes 

which the initial search strategy selected, 48 schemes incorrectly placed morpheme 

boundaries stem-internally, while one scheme hypothesized morpheme boundaries at lo-

cations inside the suffixes of the scheme’s licensing forms. 

The second sub-type of unsatisfactory paradigm model exemplified in Figure  4.1 oc-

curs when a scheme’s c-suffixes are related not by belonging to the same paradigm, but 

rather by a chance string similarity of surface type. Schemes which arise from chance 

string collisions are marked in the ERROR: CHANCE column of Figure  4.1, and include the 

20th, 100th, 3000th, and 4000th selected schemes. In the random sample of 100 schemes 

selected by ParaMor’s initial bottom-up search, 40 were schemes produced from a chance 

similarity between word types.  

These chance schemes are typically small along two distinct dimensions. First, the 

string lengths of the c-stems and c-suffixes of these chance schemes are often quite short. 

The longest c-stem of the 100th selected scheme is two characters long; while both the 

100th and the 3000th selected schemes contain the null c-suffix, Ø, which has length zero. 

That ParaMor might erroneously select schemes because of their short c-stem and 
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c-suffix lengths is easily explained combinatorially: While the inventory of possible 

strings grows exponentially with the length of the string, there just aren’t very many 

length-one or length-two strings. Within the restricted space of short strings, it should 

come as no surprise when a variety of (often short) c-suffixes happen to occur attached to 

the same set of very short c-stems.  

Schemes arising through a chance string similarity of word types are small on a sec-

ond dimension as well. Chance schemes typically contain few c-stems, and, by virtue of 

the details of ParaMor’s search procedure (see Section  3.2.2), even fewer c-suffixes. For 

example, the 3000th selected scheme contains just three c-stems and two c-suffixes. The 

evidence for this 3000th scheme arises, then, from a scant six (short) types, namely: li , a 

Chinese name; lo , a Spanish determiner and pronoun; man , part of an abbreviation for 

‘Manchester United’ in a listing of soccer statistics;  lizano , a Spanish name; lozano , a 

Spanish word meaning ‘leafy’; and manzano , Spanish for ‘apple tree’.  

Schemes formed from a chance string similarity of a few types, such as the 3000th se-

lected scheme, are particularly prevalent among schemes chosen later in the search pro-

cedure, where search paths originate from level 1 schemes whose single c-suffix is less 

frequent. Although there are less frequent c-suffixes that do correctly model portions of 

true paradigms (including the c-suffix iré , which led to the paradigmatically coherent 

1592nd selected scheme, see above) the vast majority of less frequent c-suffixes do not 

model true suffixes. And because the inventory of word final strings in a moderately 

sized corpus is enormous, some few of the many available c-suffixes happen to be inter-

changeable with some other c-suffix on some few (likely short) c-stems of the corpus.  

4.1.2 ParaMor’s Paradigm-Processing Pipeline 

This chapter describes the algorithms ParaMor adopts to remedy the two shortcom-

ings of ParaMor’s initially selected schemes that were identified in Section  4.1.1. To con-

solidate the patchwork modeling of paradigms and to corral free c-suffixes into structures 

which more fully model complete paradigms, ParaMor adapts an unsupervised clustering 

algorithm to automatically group related schemes. Meanwhile, to remove schemes which 
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fail to model true suffixes, ParaMor takes a two pronged approach: First, a clean-up of 

the training data reduces the incidence of chance similarity between strings, and second, 

targeted filtering algorithms identify and discard schemes which likely fail to model para-

digms.  

To organize these additional steps of paradigm identification, ParaMor adopts a pipe-

line architecture. ParaMor’s initial morphology network search algorithm, described in 

Chapter 3, becomes one step in this pipeline. Now ParaMor must decide where to add the 

pipeline step that will cluster schemes which model portions of the same paradigm, and 

where to add steps that will reduce the incidence of incorrectly selected schemes.  

At first blush, it might seem most sound to place steps that remove incorrectly se-

lected schemes ahead of any scheme-clustering step—after all, why cluster schemes 

which do not model correct suffixes? At best, clustering incorrect schemes seems a waste 

of effort; at worst, bogus schemes might confound the clustering of legitimate schemes. 

But removing schemes before they are clustered has its own dangers. Most notably, a dis-

carded correct scheme can never be recovered: If the distraction of incorrect schemes 

could be overcome, corralling schemes into monolithic paradigm models might safeguard 

individual useful schemes from imperfect scheme-filtering algorithms. And by the same 

token, scheme filters can also mistake incorrect schemes for legitimate models of para-

digms. Hence, if a clustering algorithm could place together such misanalyses as the 3rd 

and 11th selected schemes from Figure  4.1, which both model the same incorrect mor-

pheme boundaries in their licensing types, then clustering incorrect schemes might actu-

ally facilitate identification and removal of misanalyzed schemes.  

As Section  4.3 explains, ParaMor’s clustering algorithm can, in fact, accommodate 

schemes which hypothesize incorrect morpheme boundaries, but has more difficulty with 

non-paradigmatic schemes which are the result of chance string similarity. To retain a 

high recall of true suffixes within the framework of a pipeline architecture, ParaMor takes 

steps which reduce the inventory of selected schemes only when necessary. Section  4.2 

describes a technique that vastly reduces the number of selected schemes which result 

from chance string similarity, while insignificantly impacting correctly selected schemes. 

Section  4.3 then describes ParaMor’s scheme-clustering algorithm. And Section  4.4 pre-
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sents two classes of filtering algorithm which remove remaining incorrectly selected, but 

now clustered, schemes. 

4.2 Training Corpus Clean-Up 

ParaMor’s clustering algorithm (Section  4.3) is specifically tailored to leverage the 

paradigmatic structure of schemes, and, as such, is ill-suited to schemes which do not ex-

hibit a regular paradigmatic alternation. Schemes which result from chance similarities in 

word forms pointedly lack such paradigmatic structure. Thus ParaMor seeks to remove 

chance schemes before the scheme-clustering step.  

As mentioned in Section  4.1.1, the string lengths of the c-suffixes and c-stems of 

chance schemes are typically quite short. And if the c-suffixes and c-stems of a scheme 

are short, then the underlying types which license the scheme are also short. These facts 

suggest the simple data clean up step of excluding short types from the vocabulary that 

ParaMor uses to induce paradigms. As described momentarily, placing this simple word-

length requirement on the paradigm-induction vocabulary virtually eliminates the entire 

category of chance scheme. 

For all of the languages considered in this thesis ParaMor has raw text corpora avail-

able that are much larger than the 50,000 types used for paradigm induction. Conse-

quently, for the experiments reported in this thesis, ParaMor does not merely remove 

short types from the induction vocabulary, but replaces each short word with a new 

longer word. ParaMor’s word-to-morpheme segmentation algorithm, presented in Chap-

ter 5, is independent of the set of types from which schemes and scheme-clusters are 

built. Consequently, removing short types from training does not preclude these same 

short types from being analyzed as containing multiple morphemes during segmentation.  

The string length below which words are removed from the paradigm-induction vo-

cabulary is a free parameter. ParaMor is designed to identify the productive inflectional 

paradigms of a language. Unless a productive paradigm is restricted to occur only with 

short stems, a possible but unusual scenario (as with the English adjectival comparative, 

c.f. faster but *exquisiter), we can expect a productive paradigm to occur with a reason-
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able number of longer stems in a corpus. Hence, ParaMor needn’t be overly concerned 

about discarding short types. A qualitative examination of Spanish data suggested exclud-

ing types 5 characters or less in length. All experiments reported in this thesis which ex-

clude short types only permit types longer than this 5 character cutoff.  

 An Evaluation of Schemes from a Vocabulary that Excludes Short Types 

When restricted to a corpus containing types longer than 5 characters in length, the 

schemes that ParaMor selects during the initial search phase are remarkably similar to the 

schemes that ParaMor’s search algorithm selects over a corpus containing types of all 

lengths—except for the notable absence of incorrect chance schemes. In a random sample 

of 100 schemes selected by ParaMor over a type-length restricted corpus of Spanish 

newswire containing 50,000 unique word forms, only 2 schemes resulted from a chance 

similarity of word forms—this is down from 40 chance schemes in a random sample of 

100 schemes selected from a corpus unrestricted for type length.  

The 3000th selected scheme, Ø.zano , shown in Figure  4.1 and discussed in the final 

sub-section of Section  4.1.1, is an example of the kind of scheme ParaMor’s search algo-

rithm no longer selects once a type-length restriction is in place. The Ø.zano  scheme 

contains just three c-stems: li , lo , and man . Because the Ø.zano  scheme contains the null 

c-suffix, Ø, the three surface word types, li , lo , and man , are among those that license 

this scheme. And because all three of these word types are not longer than 5 characters in 

length, all three are excluded from the Spanish paradigm induction corpus. Removing 

these three types strips the Ø.zano  scheme of all evidence for the Ø c-suffix, and the 

3000th scheme cannot be selected by the search algorithm.  

In all, ParaMor’s search algorithm selects 1430 fewer schemes, 6909 vs. 8339 when 

training over a type-length restricted corpus. However, including additional long types in 

the paradigm-induction vocabulary can actually increase the fragmentation of true para-

digms across schemes. For example, the number of schemes that contain the c-suffix 

ados, which models a suffix from the ar verbal paradigm of Spanish, increases from 31 

to 40 when restricting the paradigm-induction corpus to contain no short word types.  
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Because the training corpus has changed, schemes selected from a corpus restricted 

for type length are often not identical to schemes selected from an unrestricted corpus. 

But, in Spanish, ParaMor continues to identify schemes which model the major inflection 

classes of nouns, adjectives, and verbs. Moreover, with one notable exception, the 

schemes which model these major paradigms of Spanish contain numbers of c-suffixes 

that are similar to the numbers of c-suffixes of corresponding schemes induced over an 

unrestricted corpus.  

From the type-length unrestricted corpus, ParaMor directly models the Ø.es inflec-

tion class of Number on Spanish nouns with the scheme Ø.es (see Figure  4.1 on p. 100); 

But from the corpus that is restricted for type-length, ParaMor only models the two suf-

fixes Ø and es of this less common nominal paradigm in combination with derivational 

suffixes: in schemes like Ø.es.idad.idades.mente . In Spanish, although nouns, such as 

fin ‘end’, pluralize by adding an es suffix, fines , many words which end in es cannot 

strip off that es to form a new surface form. For example, to form the Singular of the Plu-

ral adjective grandes  ‘big’, only the s is removed, yielding the word grande .  It so hap-

pens that in the type-length restricted Spanish corpus only 751 of the 3045 word strings 

which end in es can remove that es to form a new word that occurred in the Spanish cor-

pus. And 751 out of 3045 is 24.7%—just short of the 25.0% c-stem ratio threshold used 

in the upward search algorithm. Additionally, since the ParaMor search strategy does not 

begin any search path from the Ø scheme, the only search paths which include the 

c-suffixes Ø and es necessarily begin from some third c-suffix—like the fairly produc-

tive derivation suffix idad . The idad suffix is the Spanish analogue of the English deriva-

tional suffix ity . As Chapter 5 discusses, ParaMor can still analyze the morphology of 

inflected forms despite the distracting presence of derivational suffixes in a scheme. 

Thus, although ParaMor is no longer able to identify the Ø.es scheme in isolation, the 

type-length restriction does not cause ParaMor to lose the ability to morphologically ana-

lyze Spanish nouns that mark Plural with es.  
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4.3 Clustering of Partial Paradigms 

With the careful weeding of the paradigm-induction corpus described in the previous 

section, ParaMor largely avoids selecting schemes which arise through chance string 

similarity. And with the non-paradigmatic chance schemes out of the way, ParaMor is 

free to apply a clustering algorithm so as to group paradigmatically related schemes that 

hypothesize compatible morpheme boundaries.  

As an unsupervised algorithm, ParaMor must use an unsupervised clustering algo-

rithm to merge schemes. A variety of unsupervised clustering algorithms exist, from 

k-means to self-organizing kohonen maps. ParaMor’s current clustering algorithm is an 

adaptation of bottom-up agglomerative clustering. Two reasons underlie the choice of 

bottom-up agglomerative clustering. First, agglomerative clustering is simple, there are 

just two steps:  

1. Clustering begins with each item, i.e. scheme in this application, as its own sepa-

rate cluster; and 

2. At each time step, unless a halting criterion is met, that pair of clusters which is 

most similar is merged to form a new cluster. 

The second reason ParaMor adopts bottom-up agglomerative clustering is that the al-

gorithm produces a tree structure that can be examined by hand. And as the remainder of 

this section describes, careful examination of scheme-cluster trees directly led to adapta-

tions of vanilla agglomerative clustering which accommodate the unique structure of 

paradigmatic schemes.  

4.3.1 Three Challenges Face any Scheme-Clustering Algorithm 

ParaMor’s scheme-clustering algorithm must address three challenges that arise 

when schemes are the items being clustered. Two of the three challenges concern intrin-

sic properties of linguistic paradigms; and two of the three involve schemes as computa-

tional models of paradigms. First, the purely linguistic challenge: morphological syncre-
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tism. Common cross-linguistically, syncretism occurs when distinct paradigms in a single 

language contain surface-identical suffixes. Syncretism implies there will be schemes 

which should not be merged even though they contain some identical c-suffixes.  

Second, ParaMor faces the wholly computational challenge of deciding when to halt 

clustering. Whenever possible, an unsupervised algorithm, such as ParaMor, would like 

to avoid introducing free parameters that must somehow be tuned. To decide when to 

stop merging clusters, bottom-up agglomerative clustering typically uses a free parame-

ter: Clustering ends when the similarity score between the pair of most similar clusters 

falls below a threshold. To avoid introducing this tunable halting parameter, it is desir-

able to devise a threshold-free method tailored to the peculiarities of paradigmatic 

schemes.  

The third challenge ParaMor must overcome has both linguistic and computational 

roots: competing schemes may hypothesize rival morpheme boundaries in a common set 

of surface types, but such competing schemes should not be merged into the same cluster 

as they are distinct models of morphological structure. Different individual schemes hy-

pothesize different morpheme boundaries in a single word type both for the computa-

tional reason that ParaMor does not know, a priori, where the correct morpheme bounda-

ries lie, but also because, in natural language, morphological agglutination allows a single 

word type to legitimately contain more than one morpheme boundary. The following sub-

sections motivate and present adaptations to the basic bottom-up agglomerative clustering 

algorithm that address these three challenges. 

 The First Challenge: Syncretism 

Some examples will help elucidate the first challenge facing ParaMor’s clustering al-

gorithm: surface identical c-suffixes in distinct paradigms, or syncretism. Figure  4.2 lists 

six syncretic schemes taken from Figure  4.1: As a refresher, the schemes in Figure  4.1 

were selected by ParaMor’s initial search over a Spanish corpus of 50,000 types unre-

stricted for type length.  

In Spanish, verbs that belong to the er paradigm systematically share many inflec-

tional suffixes with verbs of the ir  paradigm. In Figure  4.2 the 30th, 135th, and 2000th se-
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lected schemes all contain only c-suffixes which model suffixes found in both the er and 

the ir  inflection classes. But grammars of Spanish still distinguish between an er and an ir  

inflection class because er and ir  verbs do not share all inflectional suffixes. In Figure 

 4.2, the 127th selected scheme contains the c-suffixes er, erá, and ería which all only oc-

cur on er verbs, while the 1592nd selected scheme contains the c-suffixes ir  and iré  which 

only occur attached to ir  verbs. A scheme-clustering algorithm must not place the 127th 

and 1592nd selected schemes into the same cluster, but should instead produce distinct 

clusters to model the er and ir  inflection classes.  

More insidious than the suffix overlap between the er and ir  inflection classes of 

Spanish verbs, is the overlap between the verbal ar inflection class on the one hand and 

the er and ir  inflection classes on the other. While shared surface suffixes in the er and ir  

inflection classes consistently mark identical sets of morphosyntactic features, most suf-

fixes whose forms are identical across the ar and the er/ir  inflection classes mark differ-

ent morphosyntactic features. The Present Tense suffixes as, a, amos , and an mark 

various Person-Number features in the Indicative Mood on ar verbs but Subjunctive 

Mood on er and ir verbs. Conversely, es, e, emos (imos on ir verbs), and en mark In-

dicative Mood on er verbs, but these e-forms mark Subjunctive on ar verbs. Of course, 

ParaMor is unaware of morphosyntactic features, and so an appeal to syntactic features is 
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12   ●    ●  ●    15 a aba ada ... arán e en ó 21 apoy declar enfrent llev … 
30    ● ●  ●  ●    11 e en ida idas ido idos ... 16 cumpl escond recib vend  … 

127    ●   ●  ●    9 e en er erá ería ido ieron ... 11 ced deb ofrec pertenec … 
135    ● ●  ●  ●    10 a e en ida ido iendo iera ... 12 assist cumpl ocurr permit … 

1592     ●  ●  ●    4 ido idos ir iré 6 conclu cumpl distribu reun … 
2000    ● ●  ●  ●    4 e en ieron iesen 5  aparec crec impid invad pud 

                 

 

Figure  4.2: An excerpt from Figure  4.1. Six schemes selected by ParaMor’s initial bot-

tom-up search algorithm that exhibit syncretism in the ar, er, and ir  inflection classes 

of the Spanish verbal paradigm. 
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irrelevant to ParaMor’s current algorithms. But clearly, ParaMor must carefully consider 

the 12th and 30th selected schemes (Figure  4.2), which ultimately model the ar and er/ir 

classes respectively, but which contain the c-suffixes e and en in common. 

Syncretic paradigm overlap is widespread in languages beyond Spanish. In English, 

many nouns form their plural with the suffix s, but verbs can also take an s suffix, mark-

ing 3rd Person Present Tense. Important for the evaluation of the work in this thesis, 

paradigm overlap also occurs in German, Finnish, Turkish, and Arabic which, together 

with English, comprise the evaluation languages of the Morpho Challenge competitions 

(see Chapter 6). When modeling the inflectional paradigms of English, Spanish, German, 

Finnish, Turkish, Arabic or any other language, ParaMor must retain distinct models of 

each paradigm, though some of their suffixes might be string identical. 

Suffix string identity overlap between paradigms has direct implications for the 

scheme similarity measure ParaMor employs during clustering. Bottom-up agglomerative 

clustering, like most unsupervised clustering algorithms, decides which items belong in 

the same cluster by measuring similarity between and among the items being clustered. 

To cluster schemes, ParaMor must define a similarity between pairs of scheme-clusters. 

Perhaps the most intuitive measure of scheme similarity would compare schemes’ 

c-suffix sets. But because a suffix surface form may appear in more than one paradigm, 

comparing c-suffix sets alone could spuriously suggest that schemes which model distinct 

but syncretic paradigms be merged.  

Two facts about paradigm structure can rescue c-suffix-based scheme similarity 

measures from the complication of paradigm overlap. First, as a robust rule of thumb, 

while two paradigms may share the surface forms of one or more suffix, each paradigm 

will also contain suffixes the other does not. For example, although the ar, er, and ir in-

flection classes of the Spanish verbal paradigm have suffixes in common, each contains 

suffixes which the others do not—the infinitive suffixes ar, er, and ir themselves 

uniquely distinguish each inflection class. Similarly, in English, although verbal and 

nominal paradigms share the string s as a suffix, the verbal paradigm contains the suf-

fixes ing and ed which the nominal paradigm does not; and the nominal paradigm con-

tains suffix surface forms which the verbal paradigm does not: the English possessive 
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ending, which appears after the optional Number suffix, yields the orthographic para-

digm cross-product forms: ’s , s’s , and s’ , which are unique to nouns.  

The second useful fact about paradigm structure that can aid a clustering algorithm is 

that a single lexical item can only belong to a single paradigm. In Spanish, any particular 

verb will belong to exactly one of the three inflection classes: ar, er, or ir . In the Spanish 

newswire corpus of 50,000 types that Figure  4.2 is built from, for example, no c-stem 

forms a word type by attaching the c-suffix adas while also forming a separate word by 

attaching idas : The c-suffixes adas and idas mark the Past Participle Feminine Plural in 

the ar and in the ir /er inflection classes respectively. Since adas and idas share no 

c-stem, it is reasonable to propose that adas and idas belong to distinct paradigms and 

that the 12th selected scheme, which contains adas , and the 30th selected scheme, which 

contains idas (see Figure  4.2), should not be merged  

These two facts about paradigm structure lead ParaMor to permit no scheme-cluster 

to be formed which would contain a pair of c-suffixes which share no c-stems. The gen-

eral technique of preventing induced clusters from containing items that are significantly 

dissimilar is known as discriminative clustering. ParaMor easily calculates the set of 

c-stems that two c-suffixes, f1 and f2, have in common by revisiting the morphology 

scheme network used in the initial search for candidate schemes, see Chapter 3. The level 

2 network scheme subsuming f1 and f2 exactly holds the c-stems which form words with 

both f1 and f2. Typically, the f1 . f2 scheme will be empty of c-stems exactly when, without 

loss of generality, f1 is a c-suffix that is unique to a paradigm to which f2 does not belong. 

Note that since the initial search will only select schemes containing a positive number of 

c-stems, if f1 and f2 are not mutually substitutable on at least one c-stem, then no single 

selected scheme can contain both f1 and f2.  

ParaMor’s discriminative clustering requirement that every pair of c-suffixes in a 

cluster share some c-stem is not foolproof. First of all, the general rule that distinct para-

digms contain some distinct surface suffix is not a language universal. Even in Spanish, 

the two suffixes in the paradigm of Number on adjectives are identical to the suffixes of 

the largest inflection class of the Number paradigm on nouns—both paradigms contain 
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exactly the two suffixes Ø and s. And, indeed, both adjectives and nouns appear in Pa-

raMor’s final cluster which contains the Ø.s scheme.  

At the same time, it is also possible for two lexical items that participate in two dif-

ferent paradigms to have surface-identical stems. In English, many verbal lexical items 

have a nominal counterpart: to run vs. a run , a table vs. to table , etc. And in Spanish, 

where stems do not readily convert part-of-speech without a change in the form of the 

stem, there are still lexical collisions. Among the most egregious collisions are pairs of 

unrelated Spanish verbs whose stems are surface identical but which belong to distinct 

inflectional paradigms: parar ‘to stop’ vs. parir ‘to give birth,’ crear ‘to create’ vs. creer 

‘to believe.’ Thus, pairs of c-suffixes that uniquely distinguish paradigms, such as the in-

finitive endings ar and ir , or ar and er, can still share c-stems.  

In practice, pairs of stem-identical lexical items are rare enough, and paradigm 

unique suffixes common enough, that with the discriminative restriction on clustering in 

place ParaMor is able to identify paradigms. Nevertheless, when a paradigm has no dis-

tinguishing suffix, or when two distinct paradigms contain many lexemes with surface-

identical stems, ParaMor struggles to prevent distinct paradigms from merging—this is a 

clear area for future research. 

 The Second Challenge: Halting ParaMor’s Clustering 

In addition to helping keep distinct paradigms separate, ParaMor’s discriminative re-

striction on the c-suffixes which can belong to a cluster also provides a principled halting 

criterion that avoids the introduction of an arbitrary similarity cutoff parameter. ParaMor 

allows agglomerative clustering to proceed until merging any pair of clusters would place 

into the same cluster two c-suffixes that share no c-stem. Thus, discriminatively restrict-

ing clustering by c-suffixes solves two of the three challenges facing a scheme-clustering 

algorithm. 

 The Third Challenge: Isolating Distinct Morpheme Boundaries 

Now ParaMor must solve the third challenge: To not coalesce schemes that model 

competing morpheme boundary hypotheses. Consider the 1st, 2nd, 3rd, 5th, and 12th se-
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lected schemes, as first presented in Figure  4.1 and repeated in Figure  4.3 for conven-

ience. Each of these five schemes is licensed by the Spanish word apoyadas  ‘supported 

(Adjectival Feminine Plural)’ : The 1st selected scheme contains the c-stem apoyada and 

the c-suffix s, the 2nd scheme has the c-stem apoyad and the c-suffix as, the 3rd contains 

apoya and das , while the 5th and 12th selected schemes each contain the c-stem apoy and 

the c-suffix adas . Between them, these five schemes model, correctly or incorrectly, four 

distinct morpheme boundaries in the same word: apoyada+s , apoyad+as , apoya+das , 

and apoy+adas . As the 5th and 12th selected schemes hypothesize the same boundary, 

apoy+adas , it is reasonable to consider placing this pair of schemes in a single cluster. 

The other schemes licensed by apoyadas each hypothesize distinct morpheme bounda-

ries and should remain in separate clusters. 

Now consider the implications for a scheme similarity metric that arise from compe-

tition between schemes over their morpheme boundary hypotheses. Since schemes pos-

sess syntagmatic information in their sets of adherent c-stems, it seems reasonable to add 

information from c-stems to information from c-suffixes when evaluating scheme simi-

larity. It also seems reasonable to give c-stem similarity and c-suffix similarity approxi-

mately equal weight. Fair representation of c-stems and c-suffixes is of concern as the 

number of c-stems can far outstrip the number of c-suffixes in a scheme: the 1st scheme 

selected in the ParaMor run of Figure  4.3 contains just two c-suffixes but more than five 

thousand c-stems.  

MODEL OF ERROR 
VERB RA

NK
 

N AD
J 

ar er ir DE
RI
V. 

GO
OD

 
CO

MP
LE

TE
 

PA
RT

IA
L 

ST
EM

 
SU

FF
IX

 
CH

AN
CE

 

C-SUFFIXES C-STEMS 

1 ● ●     ● ●     2 Ø s 5501 apoyada barata hombro  … 
2  ●     ● ●     4 a as o os 892 apoyad captad dirigid junt  … 
3   ●      ●  ●  15 Ø ba ban da das do dos ... 17 apoya disputa lanza lleva …  
5   ●    ●  ●    15 a aba aban ada adas ado ... 25 apoy desarroll disput lanz … 

12   ●    ●  ●    15 a aba ada adas ado ados ... 21 apoy declar enfrent llev … 
                 

 

Figure  4.3: An excerpt from Figure  4.1. Five schemes licensed by the word apoyadas . 
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To fairly weight syntagmatic and paradigmatic information in a scheme similarity 

metric, ParaMor compares schemes based on the sets of word types which license each 

scheme. Comparing schemes by their sets of licensing types weights the aggregate evi-

dence from c-stems equally with the aggregate evidence from c-suffixes because each 

licensing type consists of one c-stem and one c-suffix. But, because a single word, such 

as apoyadas , may license two or more schemes which hypothesize distinct morpheme 

boundaries, directly measuring scheme similarity by comparing sets of licensing word 

types could erroneously merge schemes such as Ø.s and a.as.o.os  which model distinct 

morpheme boundaries in many of the same words!  

To address the problem of separating schemes which model distinct morpheme 

boundaries, ParaMor annotates each licensing type of each scheme with the morpheme 

boundary proposed by that scheme. For example, ParaMor annotates the licensing type 

apoyadas  as apoyada+s for the Ø.s scheme, but as apoyad+as for the a.as.o.os 

scheme. Then, to compute the similarity between any pair of schemes, ParaMor measures 

the similarity between the pair’s sets of morpheme boundary annotated types. Morpheme 

boundary annotated types retain the naturalness of measuring scheme similarity through 

sets of licensing word types, while distinguishing between schemes that model distinct 

morpheme boundaries,  

To measure the similarity between pairs of scheme-clusters, as opposed to pairs of 

lone schemes, ParaMor must specify for each cluster the set of morpheme boundary an-

notated word types the cluster covers. There are at least two reasonable ways to define 

the set of boundary annotated types covered by a cluster. First, ParaMor could define this 

set as the union of the sets of morpheme boundary annotated types which belong to any 

individual scheme in the cluster. Alternatively, ParaMor could define a cluster’s set of 

morpheme boundary annotated types as the cross-product of all c-stems and all c-suffixes 

contained in any scheme in the cluster. ParaMor opts for the more conservative first op-

tion. By allotting to each cluster just those morpheme boundary annotated types which 

explicitly license some selected scheme, ParaMor guarantees that reconcatenating the 

c-stem and c-suffix portions of any boundary annotated type in any cluster will produce a 

word that directly occurred in the paradigm induction corpus. 
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 As long as scheme-cluster similarity is measured over sets of morpheme boundary 

annotated licensing types, ParaMor’s performance at clustering schemes is not signifi-

cantly affected by the particular set similarity metric used. For the experiments reported 

in this thesis, ParaMor relies on the cosine metric of set similarity. The formula for the 

cosine similarity of two arbitrary sets X  and Y  is: ( ) 2/1YXYX ∩ . 

4.3.2 Clustering Large and Clustering Small 

To finish out the description of ParaMor’s clustering algorithm, this section presents 

an adaptation that ParaMor makes to the basic agglomerative clustering algorithm that 

prevents schemes which are all individually licensed by very few types from joining 

forces to form a single larger cluster. The adaptation described in this section has a rela-

tively mild impact on the final set of scheme-clusters that ParaMor induces. However, 

this section’s adaptation is described for completeness, as all experiments reported in this 

thesis take this step. 

Because individual schemes that receive support from few licensing types may still 

introduce valid c-suffixes, ParaMor does not want to simply discard all small selected 

schemes. Instead, ParaMor leverages larger selected schemes to rope in the valid small 

schemes. Specifically, ParaMor requires at least one large scheme for each small scheme 

a cluster contains, where the size of a scheme is measured as the number of unique mor-

pheme boundary annotated word forms that license it. The threshold size above which 

schemes are considered large is a free parameter. As described in Section  4.4, the scheme 

size threshold is reused during ParaMor’s filtering stage. Section  4.4.1 details the setting 

of this scheme size threshold. 

4.3.3 An Examination of ParaMor’s Scheme-Clusters 

By tailoring bottom-up agglomerative clustering of schemes with first, a discrimina-

tive restriction over the c-suffixes a cluster may contain, and second, a similarity measure 
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over sets of morpheme boundary annotated types, ParaMor solves the three challenges 

that face a scheme-clustering algorithm. ParaMor: 

1. Recognizes syncretic c-suffix overlap in paradigms,  

2. Halts the agglomerative clustering algorithm without introducing a free parame-

ter, and  

3. Preserves the differing morpheme boundary hypotheses proposed by competing 

schemes.  

As a technical summary of ParaMor’s scheme-clustering algorithm, Appendix B contains 

a pseudo-code implementation of bottom-up agglomerative clustering adapted for 

schemes as described in Sections  4.3.1 and  4.3.2. This section focuses instead on illustrat-

ing the output of ParaMor’s agglomerative clustering algorithm by looking at clusters 

built over Spanish selected schemes. 

But first a note on the runtime complexity of ParaMor’s clustering algorithm: In the 

worst case, standard bottom-up agglomerative clustering runs in O(n3) time, where n is 

the number of items to be clustered. In practice, the discriminative and scheme-size re-

strictions ParaMor places on clustering significantly speed up computation. The current 

Java implementation of ParaMor’s scheme-clustering algorithm completes operation 

within ten minutes when clustering schemes induced from a corpus of 50,000 unique 

word types. 

Figure  4.4 contains typical scheme-clusters that ParaMor builds after the three pipe-

lined steps of: 

1.  Data clean-up (Section  4.2),  

2.  Initial scheme selection from a morphology network (Chapter 3), and  

3.  Scheme clustering (Sections  4.3.1 and  4.3.2).  

Like Figure  4.1 found on p. 100, Figure  4.4 was built from a Spanish newswire corpus of 

50,000 types, but all word types in the corpus from which the clusters in Figure  4.4 were 

built are longer than five characters. Because the corpus underlying Figure  4.1 is not  
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1 1 11055 3 ● ●    ●  ●   4 Ø menente mente s 5401 apoyada barata hombro inevitable segura … 

2 2 4740 23   ●   ●    ● 37 
Ø ba ban cion ciones ción da das do dor dora doras dores dos 
miento mos n ndo r ra ran remos rla rlas rle rles rlo rlos rme rnos ron 
rse rá rán ré ría rían 

1805 apoya compra disputa genera lanza lleva 
reclama senti utiliza visite … 

3 3, 11 4142 4  ●    ●  ●   11 a amente as illa illas o or ora oras ores os 976 apoyad captad frank guerr negociad … 
4 

5    
12 

(400) 
1909 23   ●   ●  ●   41 

a aba aban acion aciones ación ada adas ado ador adora adoras 
adores ados amos an ando ante antes ar ara aran aremos arla arlas 
arlo arlos arme aron arse ará arán aré aría arían ase e en ándose é ó 

113 apoy celebr desarroll genera hall lanz llev  public realiz termin utiliz visit … 

5 - 1095 16      ● ●    22 
ion iona ionaba ionada ionadas ionado ionados ionamiento  
ionamientos ionan ionando ionantes ionar ionario ionaron ionará 
ionarán ione ionen iones ionó ión 

418 administrac condic cuest emoc gest les ocas 
pres reacc sanc ses vinculac … 

10 10 722 4  ●    ●   ●  7 ta tamente tas titud to tos tísimo 324 cier direc gra insóli len modes sangrien ... 
11 

30 
127 
(135) 

720 17    ●  ●  ●   29 
e edor edora edoras edores en er erlo erlos erse erá erán ería erían 
ida idas ido idos iendo iera ieran ieron imiento imientos iéndose ió í  
ía ían 

62 
abastec aparec crec cumpl desconoc es-
cond ofrec ocurr permit pertenec recib reun 
sal suspend transmit vend … 

17 1592 384 11     ● ●  ●   20 ida idas ido idor idores idos imos ir iremos irle irlo irlos irse irá irán iré 
iría irían ía ían 39 abat conclu cumpl distribu eleg exclu permit 

persegu recib reun segu transmit … 
21 1000 344 18    ●  ● ●    29 

ce cedores cemos cen cer cerlo cerlos cerse cerá cerán cería cida 
cidas cido cidos ciendo ciera cieran cieron cimiento cimientos cimos 
ció cí cía cían zca zcan zco 

26 abaste apare agrade compare conven est-
able fortale ofre pertene recono ven … 

100 - 82 2  ●       ●  4 eta etas eto etos 33 atl bol concr libr metrall papel secr tarj … 
122 (40) 58 2 ●          6 Ø es idad idades mente ísima 15 casual fort important irregular primer … 
200 - 35 1         ●  5 staba stado star staron stará 7 co conte entrevi gu in manife pre 
300 - 30 1           5 pondrán pone ponen poner puesta 6 com dis ex im pro su 

1000 - 15 1         ●  3 dismo dista distas 5 bu ovie parti perio perre 
2000 - 12 1         ●  3 ral rales ralismo 4 electo libe neolibe plu 
3000 - 8 1         ●  2 unas unos 4 alg fa oport vac 
5000 - 6 1         ●  2 ntra ntrarse 3 ade ce conce 

…  …            … … … … 
                 

Figure  4.4: Typical clusters produced by ParaMor over a Spanish corpus of 50,000 types each longer than 5 characters. 
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identical to the corpus backing Figure  4.4, the schemes from which the clusters of Figure 

 4.4 were built are not identical to the schemes in Figure  4.1. But most schemes from 

Figure  4.1 have a close counterpart among the schemes which contribute to the clusters 

of Figure  4.4. For example, Figure  4.1 contains a Ø.s scheme, modeling the most fre-

quent inflection class of Number on Spanish nouns and adjectives. A Ø.s scheme also 

contributes to the first cluster given in Figure  4.4, but where the Ø.s scheme of Figure  4.1 

contains 5501 c-stems, the Ø.s scheme contributing to the 1st cluster of Figure  4.4 has a 

c-stem count of 5399. Note that only full clusters are shown in Figure  4.4, not the Ø.s 

scheme, or any other scheme, in isolation. As another example of similarity between the 

schemes of Figure  4.4 and those of Figure  4.1, turn to the third cluster of Figure  4.4. This 

third cluster contains a scheme model of Gender and Number on Spanish adjectives that 

consists of the same c-suffixes as the 2nd selected scheme in Figure  4.1, namely 

a.as.o.os .  

Further correspondences between the clusters of Figure  4.4 and the schemes of 

Figure  4.1 are given in the second column of Figure  4.4, labeled CORRESPONDS TO 

FIGURE  4.1. If the cluster of a row of Figure  4.4 contains a scheme whose set of c-suffixes 

is identical, or nearly identical, to that of a scheme in Figure  4.1, then the rank of the cor-

responding scheme of Figure  4.1 is given outright in the CORRESPONDS column of Figure 

 4.4; if the majority of the c-suffixes of a scheme of Figure  4.1 appear in a cluster of 

Figure  4.4, but no particular scheme in that cluster exactly corresponds to the scheme of 

Figure  4.1, then the CORRESPONDS column of Figure  4.4 gives the rank of the Figure  4.1 

scheme in parentheses.  

The clusters in Figure  4.4 are sorted by the number of unique morpheme boundary 

annotated surface types which license schemes of the cluster—this number of unique li-

censing types appears in the third column of Figure  4.4. Because most c-stems do not oc-

cur in all of a cluster’s schemes, the number of unique licensing types of a cluster is not 

simply the number of c-suffixes multiplied by the number of c-stems in the cluster. The 

fourth column of Figure  4.4 gives the number of schemes which merged to form that 

row’s cluster. The only other column of Figure  4.4 which does not also appear in Figure 

 4.1 is the column labeled ALLO . The ALLO . column is marked with a dot when a row’s 
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cluster models an allomorphic alternation. Clusters marked in the ALLO . column are dis-

cussed further in Section  4.4.2. For additional explanation of the other columns of Figure 

 4.4, reference their description in Section  4.1.1. 

Zooming in close on one scheme-cluster, Figure  4.5 contains a portion of the cluster-

ing tree for the scheme-cluster from Figure  4.4 with the 4th most licensing types—a clus-

ter covering suffixes which attach to ar verbs. The cluster tree in Figure  4.5 is of course 

binary, as it was formed through bottom-up agglomerative clustering. Schemes in Figure 

 4.5 appear in solid boxes, while intermediate clusters consisting of more than one scheme 

are in dotted boxes. Each scheme or cluster lists the full set of c-suffixes it contains, 

where a cluster contains all c-suffixes that appear in any scheme it subsumes. Leaf 

schemes also report their full sets of c-stems; and clusters state the cosine similarity be-

tween the sets of boundary annotated licensing types of the cluster’s two children. It is 

interesting to note that similarity scores do not monotonically decrease moving up the 

tree structure of a particular cluster. Non-decreasing similarities are a consequence of 

computing similarities over sets of objects, in this case sets of morpheme boundary anno-

tated types, which are unioned up the tree.  

The bottom-most cluster of Figure  4.5, which covers 343 types, is built directly from 

two schemes. Two additional schemes then merge in turn with the bottom-most cluster. 

Finally, the top-most cluster of Figure  4.5 is built from the merger of two clusters which 

already have internal structure. The full cluster tree continues upward beyond the small 

branch shown in Figure  4.5 until the cluster contains 23 schemes. Although ParaMor can 

form clusters from children which do not both introduce novel c-suffixes, each child of 

each cluster in Figure  4.5 brings to its parent some c-suffix not found in the parent’s other 

child. In each intermediate cluster of Figure  4.5, any c-suffix which does not occur in 

both children is underlined. 

Keeping in mind Figures 4.4 and 4.5, examine ParaMor’s scheme-clusters in light of 

the two broad shortcomings of the initially selected schemes, as discussed in Sec-

tion  4.1.1, namely:  

1. The fragmentation of language paradigms across many scheme models, and  

2. The poor precision of selected models against underlying paradigms.  
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19: a aba aciones ación ada adas ado ados 
an ando ar arlo aron arse ará arán aría 

ándose ó 

Cosine Similarity: 0.369 

524 Covered Types  

Figure  4.5: A portion of a cluster tree ParaMor built from schemes selected during a 

search run over 50,000 Spanish types longer than 5 characters. This cluster tree 

was constructed using ParaMor’s bottom-up agglomerative clustering algorithm 

adapted for schemes as described in Sections  4.3.1 and  4.3.2. Each scheme ap-

pears in a solid box; each intermediate cluster in a dotted box. The c-suffixes of each 

scheme or cluster of schemes are in bold , c-stems are in italics. Each c-suffix in a 

cluster which uniquely originates in one child is underlined. 

16: a aba aban ada adas ad o ados an ando  
ar aron arse ará arán aría ó 

17: alcanz, anunci, aplic, celebr, consider, control,   
declar, entreg, estudi, expres, inici, investig, 

negoci, otorg, present, realiz, utiliz 

272 Covered Types  

16: aba aban ada adas ado ados amos  
an ando ar ara aron arse  ará arán aría 

Cosine Similarity: 0.696 

343 Covered Types  

18: a aba aban ada adas ado ados amos  an 
ando ar ara  aron arse ará arán aría ó  

Cosine Similarity: 0.504 

461 Covered Types  

15: aba aban ada adas ado ados an 
ando ar aron arse ará arán aría arían 

16: alcanz, aplic, apoy, celebr, control, elev, 
entreg, estudi, form, hall, lleg, llev, ocup, otorg, 

realiz, utiliz 

240 Covered Types  

19: a aba aban ada adas ado ados 
amos  an ando ar ara  aron arse ará 

arán aría arían  ó 

Cosine Similarity: 0.589 

505 Covered Types  

23: a aba aban  aciones  ación  ada adas ado 
ados amos  an ando ar ara  arlo  aron arse 

ará arán aría arían  ándose  ó 

Cosine Similarity: 0.364 

842 Covered Types  

15: aba aban ada adas ado ados amos an 
ando ar ara aron ará arán aría 

16: acept, alcanz, apoy, consider, declar,           
entr, estudi, expres, lanz, llam, lleg,                

llev, marc, ocup, realiz, trat 

240 Covered Types  

15: aba aban ada adas ado ados an ando 
ar ara aron arse ará arán aría 

19: alcanz, anunci, apoy, consider, declar, entreg, 
estudi, expres, hall, inici, lanz, llam, lleg,           

llev,   ocup, otorg, present, realiz, trat 

285 Covered Types  
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 Clustering Improves Fragmentation 

ParaMor’s scheme clustering was specifically designed to address the patchwork 

fragmentation of paradigms across schemes. One of the most striking features of Figure 

 4.4 are the clusters which merge schemes that jointly and correctly model significant 

fractions of a single large Spanish paradigm.  

One such significant joint model is the cluster with the 4th largest number of licensing 

types. A portion of this 4th largest cluster appears in the cluster-tree of Figure  4.5. All 

told, the 4th cluster contains 41 c-suffixes, more than any other scheme-cluster. These 41 

c-suffixes model Spanish suffixes which attach to ar verb stems: 7 c-suffixes model ag-

glutinative sequences of a non-finite inflectional suffix followed by a pronominal clitic, 

namely: arla , arlas , arlo , arlos , arme , arse , and ándose ; 9 of the c-suffixes are various 

surface forms of the relatively productive derivational suffixes ación , ador , and ante ; 

And more than half of the c-suffixes in this cluster are inflectional suffixes in the ar in-

flection class proper: This 4th cluster contains 24 c-suffixes which model inflectional ar 

suffixes, as presented in Appendix A; while one additional c-suffix, ase, is a less com-

mon alternate form of the 3rd Person Singular Past Subjunctive. Counting just the 24 

c-suffixes, the 4th scheme-cluster contains 64.9% of the 37 unique surface forms found 

among the suffixes of the ar inflection class of Spanish verbs that is listed in Appen-

dix A. Among the 24 inflectional suffixes are all of the 3rd Person endings for both Sin-

gular and Plural Number for all seven Tense-Mood combinations that are marked in 

Spanish. These 3rd Person endings are: a, an, ó, aron , aba, aban , ará, arán , aría, arían , 

e, en, ara, and aran . Since newswire is largely written in 3rd Person, it is to be expected 

that the 3rd Person morphology is most readily identified from a newswire corpus.  

Focusing in on one suffix of the ar verbal paradigm, ados , an example suffix fol-

lowed throughout this chapter, clustering reduces the fragmentation of this one suffix 

across partial paradigms. Before clustering, the c-suffix ados  occurred in 40 schemes, 

after clustering it is present in just 13 distinct clusters. Clearly, ParaMor’s clustering al-

gorithm has considerably consolidated the fragmented models of the Spanish ar verbal 

paradigm that were output by the initial bottom-up scheme search.  
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The ar inflection class is the most frequent of the three regular Spanish verbal inflec-

tion classes, and so is most completely identified by ParaMor. But the clusters with the 

11th and 17th most licensing types cover, respectively, the er and ir inflection classes 

nearly as completely as the 4th cluster covers the ar paradigm: The 11th cluster models 19 

of the 37 unique inflectional suffixes in the er inflection class, 4 inflection+clitic se-

quences, and 6 derivational suffixes; And the 17th cluster contains 14 of the 36 unique 

surface forms of inflectional suffixes in the ir  inflection class, 4 inflection+clitic se-

quences, and 2 derivational suffixes. 

 Cluster Precision 

Now consider how the clusters of Figure  4.4 stack up against the second broad short-

coming of ParaMor’s initially selected schemes: the many original schemes that did not 

model paradigms. First, the data clean-up step, described in Section  4.2, which excludes 

short types from ParaMor’s paradigm-induction corpus, virtually eliminated the first sub-

class of unsatisfactory schemes, namely those schemes which resulted from chance string 

similarities between word types. None of the scheme-clusters in Figure  4.4, for example, 

are built from schemes that arise from chance lexical collisions.  

Although ParaMor now avoids constructing non-paradigmatic schemes that result 

from accidental string similarities, because ParaMor’s bottom-up scheme search begins 

an upward path from each individual c-suffix, frequent or infrequent (Section  3.2.2), the 

initial search algorithm constructs many schemes that are licensed by very few word 

types. Some of these small schemes are absorbed into larger clusters, but ParaMor’s 

c-suffix discriminative restriction on scheme clustering (Section  4.3.1), in combination 

with ParaMor’s heuristic restriction on the number of small schemes which a cluster may 

contain (Section  4.3.2), prevents the majority of these small schemes from joining any 

cluster. From the 6909 original schemes that ParaMor selects when training on a corpus 

of types longer than 5 characters, clustering only reduces the total number of separate 

paradigm models to 6087 scheme-clusters.  

The last six rows of Figure  4.4 all contain ‘clusters’ consisting of just a single scheme 

that was prevented from merging with any other scheme. All six singleton clusters are 
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licensed by no more than 35 word types. And none of the clusters correctly models in-

flectional affixes of Spanish. Five of the six singleton clusters misanalyze the morpheme 

boundaries in their few types, while the cluster with the 300th most licensing types treats 

a set of unproductive verbal prefixes as c-stems, placing valid verb stems into the c-suffix 

set. Section  4.4.1, directly addresses ParaMor’s strategy for removing the many small in-

correct singleton clusters that the clustering procedure produces. 

In addition to the large number of incorrect singleton clusters, many initially created 

clusters misanalyze morpheme boundaries. But these incorrect morpheme boundary 

models are expected: As described in Section  4.1.2, ParaMor intentionally postpones dis-

carding schemes which hypothesize unlikely morpheme boundaries until after the 

schemes have been clustered, in the hope that clustering might aggregate schemes which 

all model the same incorrect boundaries. Half of the clusters in Figure  4.4 hypothesize 

inferior morpheme boundaries in their licensing types. The largest such cluster is the 

cluster with the 2nd most licensing types. Like the 2nd selected scheme of Figure  4.1 

which it subsumes, the 2nd cluster places morpheme boundaries after the a vowel which 

begins most suffixes in the ar inflection class. And exactly as hoped, the 2nd cluster has 

nicely unified schemes which all hypothesize the same morpheme boundaries in a large 

set of types—only this time, the hypothesized boundaries happen to be incorrect. Section 

 4.4.2 describes steps of ParaMor’s pipeline which specifically remove clusters which hy-

pothesize incorrect morpheme boundaries.  

 A New Shortcoming: Overgeneralization 

Before moving on to a discussion of the algorithms ParaMor employs to improve the 

c-suffix precision of scheme-clusters, note that clustering introduces a new shortcoming 

into ParaMor’s models of paradigms: overgeneralization. Each scheme, C, is a computa-

tional model that the specific set of c-stems and c-suffixes of C are paradigmatically re-

lated. When ParaMor merges C to a second scheme, C′, the paradigmatic relationship of 

the c-stems and c-suffixes of C is generalized to include the c-stems and c-suffixes of C′ 

as well. Sometimes a merger’s generalization is well founded, and sometimes it is mis-

placed. When both C and C′ model inflectional affixes of the same paradigm on syntacti-
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cally similar stems, then the c-stems of C usually do combine to form valid words with 

the c-suffixes of C′. For example, the suffixes iré and imos are regular inflectional suf-

fixes of the ir inflection class of Spanish verbs. Although the c-suffix iré  never occurs in 

any selected scheme with the c-suffix imos , and although the Spanish word cumplimos 

‘we carry out’ never occurs in the Spanish corpus from which ParaMor learns paradigms, 

the cluster of Figure  4.4 with the 21st most licensing types places the c-suffixes iré  and 

imos  in the same cluster together with the c-stem cumpl —correctly predicting that 

cumplimos  is a valid Spanish word form.  

On the other hand, when a c-suffix, f, of some scheme, C, models a syntactically or 

idiosyncratically restricted suffix, it is unlikely that f forms valid words with all the 

c-stems of a merged cluster C′. Consider the 1st scheme-cluster of Figure  4.4 which joins 

the scheme Ø.s with the schemes Ø.mente.s and menente.mente . The c-suffixes Ø and 

s mark Singular and Plural Number, respectively, on nouns and adjectives; The suffix 

(a)mente productively converts an adjective into an adverb, something like the suffix ly 

in English; and the string menente  is simply a misspelling. Where the Ø.s scheme con-

tains 5399 c-stems, the scheme Ø.mente.s contains 253, and the scheme me-

nente.mente contains just 3 candidate stems: inevitable , unáni , and única . The 1st 

scheme-cluster of Figure  4.4 contains many Spanish c-stems that represent only nouns, 

including hombro  ‘shoulder’ listed in the C-STEM column of Figure  4.4. These nominal 

c-stems originate in the Ø.s scheme and do not form legitimate Spanish adverbs by at-

taching mente : *hombromente  ‘*shoulderly’. Furthermore, productively assuming that 

the c-suffix menente  can attach to any candidate stem is wrong. Thus this 1st cluster has 

overgeneralized in merging these three schemes.  

Overgeneralization is endemic to all clustering algorithms, not just unsupervised bot-

tom-up agglomerative clustering of schemes. And in the particular case of scheme clus-

tering, it would be difficult for any unsupervised method to reliably distinguish between 

infrequent inflectional affixes on the one hand and reasonably frequent derivational af-

fixes, such as mente , on the other. Chapters 5 and 6 of this thesis describe applying Pa-

raMor’s induced scheme-clusters to a morphological analysis task: Specifically ParaMor 

segments word forms into constituent morphemes. But before ParaMor could be applied 
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to a generation task that would propose novel full form words, the problem of overgener-

alization in scheme-clusters would need to be seriously addressed. 

4.4 Filtering of Merged Clusters 

With most valid schemes having found a safe haven in a cluster with other schemes 

that model the same paradigm, ParaMor focuses on improving precision by removing er-

roneous scheme-clusters. ParaMor applies two classes of filters to cull out unwanted clus-

ters. These two filter classes address the two remaining types of cluster-precision error 

described in Section  4.3.3, p. 116. The first filter class, detailed in Section  4.4.1, targets 

the many scheme-clusters with support from only few licensing types. The second class 

of filter, presented in Section  4.4.2 identifies and removes remaining scheme-clusters 

which hypothesize incorrect morpheme boundaries. 

4.4.1 Filtering of Small Scheme-clusters 

ParaMor’s first class of filtering algorithm consists of just a single procedure which 

straightforwardly removes large numbers of erroneous small clusters: the filter discards 

all clusters that are licensed by less than a threshold number of morpheme boundary an-

notated word types. To minimize the number of free parameters in ParaMor, the thresh-

old below which this filter discards small clusters is tied to the clustering threshold de-

scribed in Section  4.3.2, which restricts the number of small schemes that may join a 

cluster to be no more than the number of large schemes in the cluster. These two thresh-

olds can be reasonably tied together for two reasons. First, both thresholds limit the influ-

ence of small erroneous schemes. Second, both thresholds measure the size of a cluster as 

its number of licensing morpheme-boundary annotated types.  

Figure  4.6 graphs the number of clusters that ParaMor identifies over a Spanish cor-

pus after first clustering schemes with a particular setting, k, of the cluster-size threshold 
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and then filtering out those clusters which are not licensed by at least k word types. 

Figure  4.6 also contains a plot of suffix recall as a function of these tied thresholds. Pa-

raMor calculates suffix recall by counting the number of string-unique surface forms of 

Spanish inflectional suffixes, as given in Appendix A, that appear in any identified clus-

ter. The technique described in this section for removing small clusters was developed 

before ParaMor adopted the practice of only training on longer word types; and Figure 

 4.6 presents the cluster count and suffix recall curves over a corpus that includes types of 

all lengths. Figure  4.6 presents results over corpora that are not restricted by type length 

because it is from the unrestricted corpus data that the threshold for small cluster filtering 

was set to the value which ParaMor uses in experiments throughout this thesis. As noted 
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Figure  4.6: The number of clusters and their recall of unique Spanish suffixes as the 

scheme-cluster size threshold varies. The graph marker of each function at the 

threshold value of 37 unique licensing types is larger in size because it is this value of 

37 which ParaMor uses in experiments reported in this thesis. 
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below, over a Spanish corpus that only includes types longer than 5 characters, the effect 

of filtering by licensing type count is similar. 

Looking at Figure  4.6, as the size threshold increases, the number of clusters that Pa-

raMor retains quickly drops. But suffix recall only slowly falls during the steep decline in 

cluster count: ParaMor is therefore discarding mostly bogus schemes containing illicit 

suffixes. Because recall degrades gracefully, the exact size threshold below which clus-

ters are discarded should have a relatively minor effect on the paradigms that ParaMor 

induces. At a threshold size of 37 morpheme-boundary annotated licensing word types, 

ParaMor retains more than 80% of the string-unique inflectional suffixes of Spanish, 

while significantly reducing the number of clusters that ParaMor selects.  

At this threshold value of 37, all but 137 of the 7511 clusters that formed from the 

8339 originally selected schemes are removed, a 98.2% reduction in the number of clus-

ters. Note that the vertical scale on Figure  4.6 goes only to 1000 clusters. Counting in an-

other way, before filtering, the scheme-clusters contained 9896 unique c-suffixes, and 

after filtering just 1399, an 85.9% reduction. The recall of unique inflectional suffixes at 

a threshold value of 37 licensing types is 81.6%, or 71 out of 87. Except where otherwise 

noted, all experiments reported in this thesis use a cluster-size threshold of 37. 

Before filtering schemes for the number of licensing types they contain, 92.0% of the 

unique suffixes of Spanish morphology appeared as a c-suffix in some scheme-cluster. 

But this automatically derived value of 92.0%, or 80 of 87, is somewhat misleading. At a 

threshold value of 37, nine unique c-suffixes which are string identical to true Spanish 

suffixes are lost. But six of the nine lost unique c-suffixes appear in schemes that do not 

model Spanish inflectional suffixes. For example, one c-suffix that is removed during 

cluster size filtering is erías , which is string identical to a 2nd Person Singular Present 

Conditional Spanish verbal suffix. But the c-suffix erías  appears in only one cluster—a 

cluster which clearly does not model Spanish verbs. The cluster in which erías  occurs 

consists of the single scheme ería.erías.o.os with its c-stems escud.ganad.grad.libr.-

mercad . Although the c-suffixes ería, erías , and o are all string identical to suffixes in 

the Spanish er verbal paradigm, in this scheme these c-suffixes do not arise from verbal 

licensing forms: Reconcatenating c-stems and c-suffixes, most word forms which both 
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license this cluster and end in ería or erías , like librería /librerías ‘ library/libraries’ and 

ganadería /ganaderías ‘ ranch/ranches’, are not verbs but nouns; And forms with the 

o/os endings, like libro/libros ‘book/books’ and ganado/ganados ‘cattle (sg/pl)’, are 

derivationally related nouns. After ignoring c-suffixes which appear in schemes where 

the c-suffix does not model a Spanish inflectional suffix given in Appendix A, only three 

true c-suffixes are lost during this first filtering step that removes small clusters. 

When training from a Spanish corpus that consists entirely of types longer than 5 

characters in length, the numbers follow a similar pattern to those given for the unre-

stricted corpus: Before clustering, ParaMor identifies 6909 schemes; this is reduced to 

6087 after clustering; and after filtering at a threshold of 37, only 150 clusters remain. 

The recall of unique suffixes, when training over a Spanish corpus restricted for type 

length, are identical to the values over the unrestricted corpus: 92.0% before filtering and 

81.6% after, although, oddly, ParaMor does not either identify or filter exactly the same 

set of inflectional suffixes. Of the clusters presented in Figure  4.4, the six clusters in the 

last six rows, repeated here as Figure  4.7, each contains fewer than 37 licensing types, 

and each is therefore discarded.  

MODEL OF ERR. 
VERB 

RA
NK

 
 4.1

ER
RO

R! 
RE

FE
RE

NC
E 

LIC
EN

SI
NG

 
TY

PE
S 

#  
OF

 SC
HE

ME
S 

N AD
J 

ar er ir DE
RI

V. 
AL

LO
. 

GO
OD

 
ST

EM
 

SU
FF

IX
  C-SUFFIXES  C-STEMS 

200 - 35 1         ●  5 staba stado star staron stará 7 co conte entrevi gu in ... 
300 - 30 1           5 pondrán pone ponen poner puesta 6 com dis ex im pro su 

1000 - 15 1         ●  3 dismo dista distas 5 bu ovie parti perio perre 
2000 - 12 1         ●  3 ral rales ralismo 4 electo libe neolibe plu 
3000 - 8 1         ●  2 unas unos 4 alg fa oport vac 
5000 - 6 1         ●  2 ntra ntrarse 3 ade ce conce 

                  

Figure  4.7: An excerpt from Figure  4.4: Six scheme-clusters that are removed by Pa-

raMor’s small-cluster filter. Each removed cluster is licensed by fewer than the 

threshold number of licensing types, 37. The third column gives the number of types 

that license each scheme-cluster. 
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And finally, when inducing paradigms over a corpus restricted by word-length, para-

digm fragmentation improves for the particular suffix of the ar inflection class that this 

chapter follows: After filtering, 7 clusters remain out of the original 13 clusters which 

contained the c-suffix ados . Two of the six discarded clusters that contain ados  are 

clearly correctly discarded as they are among the few surviving clusters which arise from 

chance string similarities between word types. Of the additional four clusters containing 

ados  that ParaMor removes, each models at least one relatively unproductive deriva-

tional suffix. The discarded cluster ado.ados.amento.amentos.ando , for example, con-

tains c-suffixes which model the inflectional suffixes ado , ados , and ando , but also c-

suffixes modeling forms of the derivational suffix amento /amentos , which forms nouns 

from some ar verbs. As ParaMor is designed to identify productive inflectional morphol-

ogy, it is not unreasonable or unexpected that scheme-clusters modeling unproductive 

derivational suffixes are lost. 

4.4.2 Morpheme Boundary Filtering 

In Spanish, as described in Section  4.4.1, filtering scheme-clusters by thresholding 

the number of types that must license each cluster drastically reduces the number of clus-

ters that ParaMor proposes as models for inflectional paradigms. From the thousands of 

initially created scheme-clusters, type-license filtering leaves fewer than two hundred. 

This is progress in the right direction. But as Spanish has less than ten productive inflec-

tional paradigms, see Appendix A, ParaMor still vastly over estimates the number of 

Spanish paradigms.  

A hand analysis of scheme-clusters reveals that the major type of erroneous cluster 

which persists after size filtering are those clusters that incorrectly model morpheme 

boundaries. After training and filtering over a Spanish corpus of 50,000 types that are 

each longer than 5 characters in length, exactly 150 scheme-clusters remain. And of these 

150 clusters, more than two-thirds, 108, hypothesize an incorrect morpheme boundary in 

their licensing types. That misplaced morpheme boundaries are the major source of error 

in the remaining scheme-clusters is not surprising. Morpheme boundary errors comprised 



 131 

one of the major error classes of the initially selected schemes identified in Section  4.1.1. 

And thus far in ParaMor’s processing pipeline no algorithm has specifically dealt with 

boundary errors. Indeed, as described in Section  4.1.1, ParaMor has intentionally post-

poned the removal of schemes and scheme-clusters that hypothesize incorrect morpheme 

boundaries until after ParaMor’s scheme-clustering step.  

 The Problem: Mutual Substitutability 

ParaMor’s initial bottom-up morphology network search strategy, described in Chap-

ter 3, is designed to detect the hallmark of inflectional paradigms in natural language: 

mutual substitutability between sets of affixes. However, when the c-suffixes of a scheme 

break not at a morpheme boundary, but rather at some character boundary internal to a 

true morpheme, the incorrect c-suffixes are sometimes still mutually substitutable. Figure 

 4.8 contains three scheme-clusters, built over a Spanish corpus, that illustrate non-

paradigmatic mutual substitutability. The schemes of Figure  4.8 were first shown in 

Figure  4.4. The scheme-cluster on the 1st row of Figure  4.8 incorrectly hypothesizes a 

morpheme boundary that is after the a vowel which begins many inflectional and deriva-

tional ar verb suffixes. In placing the morpheme boundary after the a, this scheme-cluster 

cannot capture the full paradigm of ar verbs. Compare, for example, the cluster on the 2nd 

row of Figure  4.8, which includes inflectional suffixes such as o 1st Person Singular 

Present Indicative and é 1st Person Singular Past Indicative which do not begin with a. 

Nevertheless, the (incorrect) c-suffixes which appear in the 1st row’s cluster are mutually 

substitutable: in the Spanish word administrados ‘administered (Adjectival Masculine 

Plural)’ , the erroneously segmented c-suffix dos can be replaced by Ø to form the Span-

ish word administra ‘administer (3rd Person Singular Present Indicative)’, or by the 

c-suffix da to form administrada ‘(Adjectival Feminine Singular)’, etc.  

Similarly, the scheme-cluster on the 3rd row of Figure  4.8 models some of the many 

Spanish adjective stems which end in t, abiert o ‘open’, ciert o ‘certain’, pront o ‘quick’ 

etc.—but this cluster incorrectly prepends the final t of these adjective stems to the adjec-

tival suffixes, forming c-suffixes such as: ta, tas , and to . And these prepended c-suffixes 

are mutually substitutable on adjectives whose stems end in t: abierto  becomes abiertas  
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when to  is replaced by tas . Encountering schemes like those that contribute to the clus-

ters on the 1st and 3rd rows of Figure  4.8, ParaMor’s initial search strategy discovers mu-

tual substitutability and erroneously selects these incorrectly segmented c-suffix sets. 

Since ParaMor cannot rely on mutual substitutability of suffixes to identify correct mor-

pheme boundaries, ParaMor turns to a secondary characteristic of paradigms. 

 The Solution: Letter Successor Variety 

The secondary characteristic that ParaMor adapts in order to identify and discard 

those scheme-clusters which hypothesize incorrect morpheme boundaries is letter succes-

sor variety. Letter successor variety is an idea that was originally proposed by Harris 

(1955). Take any string t. Let F be the set of strings such that for each Ff ∈ , t.f is a 

word form of a particular natural language. Harris noted that when the right edge of t falls 
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Figure  4.8: An excerpt from Figure  4.4. The rank 2 cluster hypothesizes a morpheme 

boundary internal to true suffixes; the rank 4 cluster correctly models morpheme 

boundaries that immediately follow verbal stems; while the rank 10 cluster models 

boundaries internal to stems. 
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at a morpheme boundary, the strings in F typically begin in a wide variety of characters; 

but when t divides a word form at a character boundary internal to a morpheme, any le-

gitimate word final string must first complete the erroneously split morpheme, and so will 

begin with the same character. This argument similarly holds when the roles of t and f are 

reversed.  

Harris harnesses this idea of letter successor variety by first placing a corpus vocabu-

lary into a character tree, or trie, and then proposing morpheme boundaries after trie 

nodes that allow many different characters to immediately follow. Consider Harris’ algo-

rithm over a small English vocabulary consisting of the twelve word forms: rest , rests , 

resting , retreat , retreats , retreating , retry , retries , retrying , roam , roams , and roam-

ing . The upper portion of Figure  4.9 places these twelve English words in a trie. The bot-

tom branch of the trie begins r-o-a-m. Three branches follow the m in roam , one branch 

to each of the trie nodes Ø, i, and s. Harris suggests that such a high branching factor in-

dicates there may be a morpheme boundary after r-o-a-m. The trie in Figure  4.9 is a for-

ward trie in which all vocabulary items share a root node on the left. A vocabulary also 

defines a backward trie that begins with the final character of each vocabulary item. 

 Adapting Letter Successor Variety to Schemes 

Interestingly there is a close correspondence between trie nodes and ParaMor 

schemes. Each circled sub-trie of the trie in the top portion of Figure  4.9 corresponds to 

one of the four schemes in the bottom-right portion of the figure. For example, the right-

branching children of the y node in retry form a sub-trie consisting of Ø and i-n-g, but 

this same sub-trie is also found following the t node in rest , the t node in retreat , and the 

m node in roam . ParaMor conflates all these sub-tries into the single scheme Ø.ing with 

the four adherent c-stems rest , retreat , retry , and roam . Notice that the number of leaves 

in a sub-trie corresponds to the paradigmatic c-suffix level of a scheme, e.g. the level 3 

scheme Ø.ing.s  corresponds to a sub-trie with three leaves ending the trie paths Ø, i-n-g, 

and s. Similarly, the number of sub-tries which conflate to form a single scheme corre-

sponds to the number of adherent c-stems belonging to the scheme.  
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Just as schemes are analogues of trie nodes, ParaMor can link schemes in a fashion 

analogous to transition links between nodes in forward and backward tries. Transition 

links emanating to the right from a particular scheme, C, will be analogues of the transi-

tion links in a forward trie, and links to the left, analogues of transition links in a back-

ward trie. To define forward scheme links from a scheme, C, let the set hF  consist of all 

c-suffixes of C which begin with the same character, h. Strip h from each c-suffix in hF , 

forming a new set of c-suffixes, 
h

F . Link C to the scheme containing exactly the set of 

c-suffixes 
h

F . Schemes whose c-suffixes all begin with the same character, such as 

t.ting.ts and t.ting , have exactly one rightward path that links to the scheme where that 

leading character has been stripped from all c-suffixes. For example, in Figure  4.9 the 

t.ting.ts scheme is linked to the Ø.ing.s scheme.  

Leftward links among schemes are defined by reversing the roles of c-stems and 

c-suffixes as follows: for each character, h, which ends a c-stem in a particular scheme, 

C, a separate link takes C to a new scheme where h starts all c-suffixes. For example, the 

Ø.ing.s scheme contains the c-stems rest and retreat , which both end in the character t, 

hence there is a link from the Ø.ing.s scheme to the t.ting.ts scheme. Note that when all 

the c-suffixes of a scheme, C, begin with the same character, the rightward link from C to 

some scheme, C′, exactly corresponds to a leftward link from C′ to C.  

Drawing on the correlation between character tries and scheme networks, ParaMor 

ports Harris’ trie based morpheme boundary identification algorithm quite directly into 

the space of schemes and scheme-clusters. Just as Harris identifies morpheme boundaries 

by examining the variety of the branches emanating from a trie node, ParaMor identifies 

morpheme boundaries by examining the variety in the trie-style scheme links. ParaMor 

employs two filters which examine trie-style scheme links: the first filter seeks to identify 

scheme-clusters, like the cluster on the 1st row of Figure  4.8, whose morpheme boundary 

hypotheses are placed inside true suffixes; while the second filter removes scheme-

clusters that hypothesize stem-internal morpheme boundaries, as the cluster on the 3rd 

row of Figure  4.8 does. 
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 Filtering Suffix-Internal Morpheme Boundary Errors 

To identify scheme-clusters whose morpheme boundary hypotheses are incorrectly 

suffix-internal, ParaMor’s first boundary filter examines the Harris-style letter successor 

variety of the leftward trie links of the schemes in a cluster. When a scheme places its 

morpheme boundaries at locations that are internal to true suffixes, leftward trie links lead 

back toward the stem and back toward the correct morpheme boundary of each licensing 

type. 

Following Hafer and Weiss (1974) in a trie algorithm and Goldsmith (2001; 2006) in 

a paradigm-based system, ParaMor measures letter successor variety using entropy. Each 

leftward scheme link, l, can be weighted by the number of c-stems in that scheme whose 

final character advocates l. In Figure  4.9 two c-stems in the Ø.ing.s scheme end in the 

character t, and thus the leftward link from Ø.ing.s to t.ting.ts receives a weight of two. 

ParaMor then measures the entropy of the distribution of the c-stem weighted links. A 

leftward link entropy close to zero indicates that the c-stems of a scheme have little vari-

ety in their final character; And minimal character variety is the sign of a boundary hy-

pothesis placed at a morpheme-internal position. 

To judge whether a cluster of schemes hypothesizes an incorrect morpheme bound-

ary, ParaMor’s suffix-internal boundary filter examines the leftward link entropy of each 

scheme in each cluster. Each scheme with a leftward link entropy below a threshold is 

flagged as an error. And if at least half of the schemes in a cluster are flagged, then Pa-

raMor’s suffix-internal error filter discards that cluster. ParaMor’s suffix-internal filter is 

conservative in discarding schemes. ParaMor uses a threshold value, 0.5, over the left-

ward link entropy that only flags a scheme as containing a boundary error when virtually 

all of a scheme’s c-stems end in the same character. Figure  4.10 is a pseudo-code im-

plementation of ParaMor’s algorithm to filter out suffix-internal morpheme boundary er-

rors. 

 Filtering Stem-Internal Morpheme Boundary Errors 

ParaMor employs a second morpheme boundary filter to identify scheme-clusters 

which incorrectly hypothesize boundaries that are internal to the stems of the words 
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which license the cluster. This filter over stem-internal boundary errors is designed to 

remove schemes like that found on the 2nd row of Figure  4.11, where the final t of true 

Spanish stems has been stripped away and erroneously added to the front of all c-suffixes 

in the scheme. 

 But consider ParaMor’s quandary when examining the morpheme boundaries pro-

posed by the schemes on the 1st and 3rd rows of Figure  4.11. The schemes on the 1st and 

2nd rows of Figure  4.11 are taken from Figure  4.1 on p. 100, which lists schemes selected 

in one particular Spanish run of ParaMor’s initial scheme-search procedure. The scheme 

on the 3rd row of Figure  4.11 is a valid scheme which ParaMor could have selected, but 

FilterSuffixInternalBoundaryErrors( schemeClusters ) {  
 foreach ( schemeCluster in schemeClusters ) { 
  countOfErrorSchemes = 0; 
  countOfNonErrorSchemes = 0; 
  foreach ( scheme in schemeCluster ) {  
   if ( likelyModelOfAMorphemeLeftEdge( scheme))  
    countOfNonErrorSchemes ++;    
   else 
    countOfErrorSchemes ++; 
  } 
  if ( countOfErrorSchemes >= countOfNonErrorSchemes ) {  
   schemeClusters. remove( schemeCluster ) ; 
  } 
 } 
 return schemeClusters; 
} 
 
// Measure the entropy of a scheme’s leftward trie- style links 
likelyModelOfAMorphemeLeftEdge( scheme) {  
 foreach ( cStem in scheme.cStems ) {  
  stemFinalChars { cStem. finalChar()}++ ; 
 } 
 if ( entropy( stemFinalChars ) > threshold )  
  return  true ; 
 else  
  return false ; 
} 

Figure  4.10: A pseudo-code implementation of ParaMor’s algorithm to filter out scheme-

clusters that likely hypothesize morpheme boundaries for their licensing types that fall 

internal to true suffixes. 
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did not. The schemes on the 1st and 3rd rows of Figure  4.11 both attempt to model inflec-

tional suffixes of the verbal ar paradigm. The potentially selected 3rd row scheme arises 

from the same word types which license the 1st row’s scheme, but proposes different 

morpheme boundaries in this set of words. And indeed, it is somewhat ambiguous where 

to place the morpheme boundary in Spanish verbs. All of the c-stems of the 1st row’s 

scheme end with the character a, but all of the c-suffixes of the 3rd row’s scheme begin 

with the character a. While traditional grammarians would likely prefer the boundaries 

hypothesized by the scheme on the 3rd row, many linguists would argue that the inflec-

tional suffix of a Spanish verb begins after the characteristic vowel, as the 1st row’s 

scheme suggests. ParaMor adopts a pragmatic view, when there is ambiguity about a 

morpheme boundary, ParaMor retains the left-most reasonable boundary. In Figure  4.11, 

it is the scheme on the 3rd row that proposes the left-most boundary that is consistent with 

the word forms which license the 1st and the 3rd rows’ schemes. So ParaMor should dis-

card the 1st row scheme. 

Biasing ParaMor’s morpheme boundary filters toward preferring the left-most rea-

sonable boundary requires that a filter designed to identify misplaced stem-internal 

boundaries cannot merely be the mirror image of the suffix-internal error filter. As de-

scribed in the previous sub-section, the suffix-internal boundary error filter will note the 
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arse ará arán 
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                 Figure  4.11: The first two rows contain schemes first encountered in Figure  4.1. The 

final row is a valid scheme not selected by ParaMor. 
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low entropy of the c-stem-final character distribution among the c-stems of the scheme 

on the 1st row of Figure  4.11; consequently the suffix-internal error filter will flag the 1st 

row’s scheme as hypothesizing an incorrect morpheme boundary. If the stem-internal er-

ror filter were simply the mirror image of the suffix-internal filter, then, because all of the 

c-suffixes of the 3rd row’s scheme begin with the same character, the scheme on the 3rd 

row of Figure  4.11 would also be flagged as not modeling a correct morpheme boundary! 

ParaMor’s stem-internal error filter achieves asymmetry from the suffix-internal filter by 

examining both rightward and leftward scheme links. Indeed, the core subroutine of the 

suffix-internal error filter, that measures the entropy of leftward scheme links, is called 

from within ParaMor’s stem-internal filter.  

The first requirement that a scheme, C, must meet to be flagged as a stem-internal 

boundary error is that all the c-suffixes in C must begin with the same character, or 

equivalently, that the entropy in the distribution of the initial characters of C’s c-suffixes 

must be zero. When all the c-suffixes of C begin with the same character, ParaMor strips 

that character from each c-suffix in C and examines the scheme, C′, that contains exactly 

the stripped set of c-suffixes. For example, since all the c-suffixes in the scheme on the 

3rd row of Figure  4.11 begin with the character a: a.aba.aban.ada.adas.ado.ados.an.-

ando.ar.ara.aron.arse.ará.arán , ParaMor’s stem-internal boundary error filter follows 

the single rightward path along the character a to the scheme found on the 1st row of 

Figure  4.11, namely Ø.ba.ban.da.das.do.dos.n.ndo.r.ra.ron.rse.rá.rán . Similarly, be-

cause all of the c-suffixes that belong to the scheme on the 2nd row of Figure  4.11 begin 

with the character t: ta.tamente.tas.to.tos , ParaMor examines the scheme a.amente.as.-

o.os . 

Once ParaMor has identified a C′ scheme that lies along an unambiguous rightward 

scheme link, ParaMor considers the likelihood that C′ is the left edge of a morpheme 

boundary. If C′ does fall at a likely morpheme boundary then ParaMor discards the origi-

nal C scheme—ParaMor assumes that the original C misplaced the morpheme boundary a 

little bit to the left of the correct location, accidentally moving inside a true stem. To as-

sess the likelihood that C′ correctly models the left edge of a morpheme boundary, Pa-

raMor simply asks the suffix-internal morpheme boundary error filter to measure the en-
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tropy of the leftward distribution of c-stem-final characters of C′. For example, when C is 

the scheme on the 2nd row of Figure  4.11 and C′ is the scheme a.amente.as.o.os  (a 

scheme which correctly models morpheme boundaries that divide adjectival stems and 

suffixes) the suffix-internal boundary error filter finds that C′ does indeed mark a mor-

pheme boundary—and so ta.tamente.tas.to.tos is rightly flagged as erroneously hy-

pothesizing a stem-internal morpheme boundary. Conversely, when C is the scheme on 

the 3rd row of Figure  4.11 and C′ is the 1st row’s scheme, the 3rd row’s scheme will not be 

discarded, because the suffix-internal error filter will not flag the 1st row’s scheme as ly-

ing at a morpheme boundary—the c-stems of the 1st row scheme end in a wide variety of 

characters. 

The scheme on the 2nd row of Figure  4.11 has mis-hypothesized morpheme bounda-

ries exactly one character inside the stems of its licensing types. But it is not uncommon 

for ParaMor to select schemes that clip two or more characters off the tail of each stem. 

To catch stem-internal boundary errors that are placed deep inside stems, ParaMor fol-

lows chains of rightward scheme links. Specifically, if ParaMor can reach a scheme along 

a non-branching rightward path that scores as a likely left edge of a morpheme boundary, 

then the original scheme is discarded. 

Two examples will help illustrate rightward scheme chains in the stem-internal filter. 

First, as mentioned, when ParaMor’s stem-internal error filter evaluates the scheme from 

the 3rd row of Figure  4.11, the filter first visits the scheme on the 1st row of Figure  4.11 

and decides that the 1st row’s scheme does not model a morpheme boundary. At this 

point, the stem-internal error filter attempts to strip off yet another character from the 

front of the c-suffixes that belong to the 1st row’s scheme. But the c-suffixes of the 

scheme on the 1st row of Figure  4.11 do not all begin with the same character: the null 

c-suffix, Ø, begins with the null character, the c-suffix ba begins with b, the c-suffix da 

with d, etc. Since multiple rightward paths emanate from the 1st row’s scheme, the stem-

internal error filter cannot examine any more schemes. And, as the stem-internal filter 

encountered no rightward scheme with high leftward entropy, ParaMor accepts the 

scheme a.aba.aban.ada.adas.ado.ados.an.ando.ar.ara.aron.ar se.ará.arán as model-

ing a valid morpheme boundary. 
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As a second example of rightward scheme chains, consider the diagram in Figure 

 4.12. Each circle in this diagram abstractly represents a scheme. With its multiple left-

ward scheme links and consequent high leftward entropy, the double-circled scheme in 

the center of the figure is correctly identified as a morpheme boundary. Although the far-

left scheme-circle in Figure  4.12 also has high leftward entropy, a non-branching path 

leads rightward. To determine that the far-left scheme is in fact a stem-internal boundary 

Figure  4.12: An illustration of ParaMor’s morpheme boundary error filters. In this 

diagram, each circle represents a scheme. Schemes are connected along 

transition links that follow c-stem-final characters to the left and c-suffix-initial 

characters to the right. ParaMor examines schemes’ transition-link distributions 

to decide which schemes most likely model true morpheme boundaries. 

Suffix-Internal Errors  

Both of these schemes have little variety in their 
distributions of c-stem-final characters. Indeed both 
of these schemes have just a single leftward link. A 
distribution with little variety will have low entropy. 

Stem-Internal Error  

Although this scheme has high entropy 
in its distribution of c-stem-final charac-

ters (i.e. many leftward links) and so 
might be mistaken for a morpheme 

boundary, it has little variety among the 
characters which occur c-suffix initially. 
Indeed a non-branching rightward path 

leads to the double-circled scheme 
which is the left edge of a morpheme 

boundary. 

A Morpheme Boundary  

The double-circled scheme that forms 
the left edge of this ambiguous mor-
pheme boundary, or stretched hub 

(Johnson and Martin, 2003), is the mor-
pheme boundary that ParaMor ulti-

mately retains. 
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error, ParaMor’s stem-internal filter must follow two rightward links to reach the double-

circled scheme. 

In summary, ParaMor will flag a scheme, C, as likely hypothesizing an erroneous 

stem-internal morpheme boundary if there exists a non-branching rightward path from C 

leading to a scheme, C′, such that ParaMor believes C′ falls at the left edge of a correct 

morpheme. Like the suffix-internal morpheme boundary error filter, to discard a cluster 

of schemes, the stem-internal error filter must flag half of the schemes in a cluster as hy-

pothesizing an incorrect morpheme boundary. Figure  4.13 contains a pseudo-code im-

plementation of ParaMor’s stem-internal morpheme boundary error filter. The computa-

tional expense of all three of ParaMor’s filtering algorithms is negligible—the run time of 

each is linear in the number of scheme-clusters to consider. The small-cluster filter and 

both morpheme boundary error filters conclude their analyses in a matter of seconds. 

4.5 ParaMor’s Paradigm Models 

Section  4.4 completes the description of all steps in ParaMor’s paradigm 

identification pipeline. The description of ParaMor’s pipeline began in Chapter 3 with the 

initial scheme search and continued in this chapter with scheme clustering and filtering. 

Figure  4.14 is a graphical representation of ParaMor’s pipelined paradigm discovery al-

gorithms. Beginning at the top of the figure: A monolingual natural language corpus is 

screened of all words 5 characters or less in length (Section  4.2). From the new corpus of 

longer types, ParaMor searches a network of candidate paradigms, or schemes, for those 

which most likely model true inflectional paradigms (Chapter 3). The many overlapping 

and fragmented scheme models of partial paradigms are then clustered into unified mod-

els of individual inflectional paradigms (Section  4.3). And finally, three filtering algo-

rithms remove those clusters which, upon closer inspection, no longer appear to model 

inflectional paradigms: one filter removes small singleton clusters; while two others ex-

amine for errors the morpheme boundaries that the proposed scheme-clusters hypothesize 

in their licensing types. After these six steps, ParaMor outputs a relatively small and co-
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herent set of scheme-clusters which it believes model the inflectional paradigms of a lan-

guage.  

The remainder of this section assesses the quality of ParaMor’s Spanish paradigm in-

duction performance after the full set of pipelined induction steps has been taken. Section 

 4.5.1 concludes the in-depth examination of ParaMor’s Spanish paradigm models that 

began in Section  4.1.1: Where Section  4.1.1 discussed the initial schemes that ParaMor’s 

FilterStemInternalBoundaryErrors( schemeClusters ) {  
 foreach ( schemeCluster in schemeClusters ) { 
  [ countOfErrorSchemes, countOfNonErrorSchemes] = [0, 0]; 
  foreach ( scheme in schemeCluster ) {  
   if ( boundaryIsLikelyStemInternal( scheme))  
    countOfErrorSchemes ++;    
   else 
    countOfNonErrorSchemes ++; 
  } 
  if ( countOfErrorSchemes >= countOfNonErrorSchemes )  
   schemeClusters. remove( schemeCluster ) ; 
 } 
 return schemeClusters; 
} 
 
// If an unbranching rightward path exists from ‘sc heme’, follow the 
// path until either 1) the path forks or 2) we rea ch a scheme that is 
// likely the left edge of a morpheme—i.e. we reach  a scheme with high 
// leftward entropy. If we do reach a scheme that i s a likely left edge 
// of a morpheme then return ‘true’, that is, retur n that ‘scheme’ 
// likely models an incorrect stem-internal morphem e boundary. 
boundaryIsLikelyStemInternal( scheme) { 
 currentScheme = scheme; 
 while ( currentScheme. allCSuffixesBeginWithSameNonNullCharacter()) {  
  foreach ( cSuffix in  currentScheme.cSuffixes ) {  
   rightwardCSuffixes. add( cSuffix. removeFirstCharacter()) ; 
  }  
  currentScheme =   
   dynamicSchemeNetwork. generateScheme( rightwardCSuffixes ) ; 
  if ( likelyModelOfAMorphemeLeftEdge( currentScheme ))  
   return true ; 
 } 
 return false ; 
} 

Figure  4.13: A pseudo-code implementation of ParaMor’s algorithm to filter out scheme-

clusters that likely hypothesize morpheme boundaries for their licensing types that fall 

internal to true stems. 



 144 

bottom-up search procedure produces, Section  4.5.1 takes a detailed look at ParaMor’s 

final set of filtered Spanish scheme-clusters. Section  4.5.2 then presents an experiment 

over Spanish data that measures the robustness of ParaMor’s paradigm building pipeline 

to a reduction in the size of the induction corpus. Section  4.6 in this chapter, together 

with Chapters 5 and 6, will broaden the evaluation of ParaMor to include English, 

German, Finnish, Turkish, and Arabic. 

 

Section  4.4.2 

Section  4.4.1  Licensing Type  
Count Filter  

Stem-Internal 
Morpheme Boundary 

Data Cleanup: 
Exclude Short Types  

Scheme Search  

Scheme Clustering  

Suffix-Internal 
Morpheme Boundary  Filters  

Figure  4.14: The steps of ParaMor’s data processing pipeline: Together scheme 

search, clustering, and filtering transform raw natural language text into models of 

inflectional paradigms consisting of clusters of schemes.  

Raw Text  

Paradigm Models:  
Scheme-Clusters 

Section  4.2 

Chapter 3 

Section  4.3 

Section  4.4.2 
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4.5.1 ParaMor’s Final Scheme-Clusters as Viable Models of Paradigms 

This section evaluates the final scheme-clusters that ParaMor produces over a 

Spanish newswire corpus of 50,000. As described in Section  4.4.1, after scheme search, 

scheme clustering, and the filtering out of small scheme-clusters, ParaMor retains 150 

scheme-clusters. Of these 150, the stem-internal and suffix-internal morpheme boundary 

error filters remove all but 42; And of the 108 scheme-clusters which hypothesized an 

incorrect morpheme boundary only 12 are not discarded by the morpheme boundary fil-

ters. Unfortunately, ParaMor’s morpheme boundary error filtering does have collateral 

damage: Recall of string-unique Spanish suffixes drops from 81.6% to 69.0%. All to-

gether, 11 unique c-suffixes that are string identical to Spanish inflectional suffixes given 

in Appendix A no longer appear in any cluster that ParaMor retains.  

Four of these unique c-suffixes were only found in clusters which did not model a 

Spanish paradigm. Consider the fate of the c-suffix iste which is string identical to the 

verbal er/ir suffix that marks 2nd Person Singular Past Indicative. The only cluster in 

which the c-suffix iste  occurs is iste.isten.istencia.istente.istentes.istiendo.istir .-

istió.istía —a cluster which ParaMor’s stem-internal morpheme boundary error filter cor-

rectly deletes. This iste -containing cluster is an incorrect segmentation of verb forms 

whose stems end in the string ist . Among the licensing types of this iste -containing clus-

ter are consiste , existe , persiste , etc. Where this scheme-cluster hypothesizes the seg-

mentations are cons +iste , ex +iste , etc., the correct segmentations of these words re-

moves only the word-final e, an inflectional morpheme which marks 3rd Person Singular 

Present Indicative. 

But, unfortunately, 7 of the 11 lost unique c-suffixes model true Spanish suffixes. All 

7 of these lost c-suffixes model Spanish pronominal clitics. And all 7 were lost when the 

only cluster which modeled these Spanish clitics was removed by the suffix-internal 

morpheme boundary error filter. The specific cluster that was removed is: Ø.a.emos.la.-

las.le.lo.los.me.on.se.á.án.ía.ían . In this cluster, the c-suffixes la, las , le, lo , los , me, 

and se are all pronominal clitics, the c-suffix Ø correctly captures the fact that not all 

Spanish verbs occur with a clitic pronoun, and the remaining c-suffixes are incorrect 

segmentations of verbal inflectional suffixes.  
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While it is worrisome that an entire category of Spanish suffix can be discarded with 

a single mistake, Spanish clitics had two counts against them. First, ParaMor was not de-

signed to retrieve rare paradigms, but pronominal clitics are very rare in formal Spanish 

newswire text. And second, the pronominal clitics which do occur in newswire text al-

most exclusively occur after an infinitive morpheme, usually ar. Exacerbating the prob-

lem, the c-suffixes which appear alongside the clitics in this cluster are incorrect suffix-

internal segmentations whose c-stems also end in r. As so many c-stems in the Ø.a.-

emos.la.las.le.lo.los.me.on.se.á.án.ía.ían  cluster end in r, the suffix-internal boundary-

error filter believes this cluster to hypothesize an erroneous morpheme boundary. Pa-

raMor’s bias toward preferring the left-most plausible morpheme boundary will fail 

whenever the c-suffixes of a cluster consistently follow the same suffix, or even when 

they consistently follow the same set of suffixes which all happen to end with the same 

character. This is a weakness of ParaMor’s current algorithm. Note however, that Pa-

raMor retains clusters that contain c-suffixes that model cross-product sequences of ver-

bal inflectional suffix + clitic. For example, turning to Figure  4.15, one cluster that Pa-

raMor retains is the scheme-cluster on the 4th row of Figure  4.15. This 4th row cluster 

contains such inflectional suffix + clitic cross-product c-suffixes as: arla , arse , and án-

dose . 

Figure  4.15 is a reprint of Figure  4.4 from p. 118 which contained a sampling of 17 

clusters that ParaMor constructed from initially selected schemes before any filtering. 

Keeping in mind ParaMor’s full paradigm induction pipeline, here are the fates of the 

scheme-clusters first introduced in Figure  4.4: The cluster on the top row of Figure  4.4 

(or Figure  4.15) models the most prevalent inflection class of Number on Spanish nouns 

and adjectives, containing the scheme Ø.s. This 1st cluster is correctly retained after all 

filtering steps. The 2nd scheme-cluster in Figure  4.15 incorrectly places a morpheme 

boundary after the epenthetic vowel a which leads off most suffixes in the ar inflection 

class. ParaMor’s suffix-internal morpheme boundary error filter correctly and success-

fully removes this 2nd cluster. ParaMor correctly retains the scheme-clusters on the 3rd, 

4th, 7th, and 8th rows of Figure  4.15. These clusters have respectively the 3rd, 4th, 11th, and 

17th most licensing types of any cluster that ParaMor builds. The 3rd scheme-cluster cov-
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ers the scheme, a.as.o.os , which models the cross-product of Gender and Number on 

Spanish adjectives, and which was the 2nd selected scheme during ParaMor’s initial 

search. The other candidate suffixes in this cluster include a version of the adverbial suf-

fix (a)mente , and a number of derivational suffixes that convert adjectives to nouns. The 

4th, 11th, and 17th scheme-clusters in Figure  4.15 are correct collections of inflectional and 

derivational suffixes that correspond to, respectively, the verbal ar, er, and ir  paradigms. 

The 5th scheme-cluster in Figure  4.15 segments a Spanish nominalization internally. 

But ParaMor’s morpheme boundary filters are unsuccessful at removing this scheme-

cluster because this Spanish nominalization suffix has four allomorphs: sion , cion , sión , 

and ción . The 5th scheme-cluster places a morpheme boundary immediately before the i 

in these allomorphs. The suffix-internal morpheme boundary error filter is unable to re-

move the cluster because some c-stems end in s while others end in c, increasing the 

leftward link entropy. But the stem-internal boundary error filter is also unable to remove 

the cluster, because, from a majority of the schemes of this cluster, after following a 

rightward link through the initial i of these c-suffixes, ParaMor’s stem-internal error filter 

reaches a scheme that, although still morpheme-internal, has two rightward trie-style 

paths, one following the character o and one following the character ó.  

In fact, the largest class of errors in ParaMor’s remaining 42 scheme-clusters consists 

of clusters which, like the 5th cluster, involve allomorphic variation in their c-stem or 

c-suffix sets: Thirteen final clusters contain allomorphic errors. In Figure  4.15, in addi-

tion to the 5th cluster, the cluster on the 9th row, ranked 21st for the size of its set of licens-

ing types, is also led astray by an allomorphic alternation—this time it is the stem that has 

multiple allomorphic surface forms. In the orthography of some Spanish verbs, stem-final 

c allomorphically becomes zc. The 21st cluster hypothesizes a morpheme boundary to the 

left of the true stem boundary, erroneously including stem-final characters within its 

c-suffixes. The only way ParaMor can model an allomorphic stem change is by expand-

ing the c-suffixes of a scheme or cluster to include the variable portion of the verb stems. 

Both the 5th cluster and the 21st cluster are marked in the ALLO . column of Figure  4.15. 
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122 (40) 58 2 ●          6 Ø es idad idades mente ísima 15 casual fort important irregular primer … 
200 - 35 1         ●  5 staba stado star staron stará 7 co conte entrevi gu in manife pre 
300 - 30 1           5 pondrán pone ponen poner puesta 6 com dis ex im pro su 

1000 - 15 1         ●  3 dismo dista distas 5 bu ovie parti perio perre 
2000 - 12 1         ●  3 ral rales ralismo 4 electo libe neolibe plu 
3000 - 8 1         ●  2 unas unos 4 alg fa oport vac 
5000 - 6 1         ●  2 ntra ntrarse 3 ade ce conce 

…  …            … … … … 
                 

Figure  4.15: Figure  4.4 Revisited: Typical clusters produced by ParaMor over a Spanish corpus of 50,000 types. 
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Nearing the end of Figure  4.15, the scheme-cluster on the 6th row of Figure  4.15, with 

the 10th most licensing types and the scheme-cluster on the 10th row, with the 100th most 

licensing types hypothesize morpheme boundaries in adjectives at stem-internal posi-

tions. Both the 10th and the 100th clusters are rightly removed by ParaMor’s stem-internal 

morpheme boundary error filter. Correctly, neither the suffix-internal nor the stem-

internal morpheme boundary filter removes the scheme-cluster with the 122nd most li-

censing types, which models Plural Number on nouns. Finally, as mentioned in Section 

 4.4.1, the last six scheme-clusters in Figure  4.15 are correctly removed by ParaMor’s 

cluster size filter that looks at the number of licensing types in a cluster.  

In summary, of the scheme-clusters in Figure  4.15 (and Figure  4.4), ParaMor retains 

only those clusters with the 1st, 3rd, 4th, 5th, 11th, 17th, 21st, and 122nd most licensing word 

types; and of these, all but the 5th and 21st exactly model true Spanish morphological 

paradigm. Overall, the scheme-clusters that ParaMor produces as models of Spanish 

paradigms are generally quite reasonable. In the course of ParaMor’s paradigm induction 

pipeline, ParaMor builds models of all major inflectional paradigms of Spanish including: 

both major sub-paradigms marking Number on nouns, the paradigm cross-product of 

Gender and Number on adjectives, and all three sub-paradigms of Spanish verbs. In 

Chapter 5, ParaMor will take the paradigms that are built for any particular natural 

language and morphologically segment word-forms of that language. 

4.5.2 Paradigm Learning and Vocabulary Size 

As a final examination of the paradigms that ParaMor builds from a Spanish corpus, 

this section considers the lower limit of the vocabulary size from which ParaMor can 

confidently learn morphological paradigm structure. Where the majority of this and the 

previous chapter held the vocabulary size constant and focused on devising strong algo-

rithms for identifying the paradigms of a language in an unsupervised fashion, this sec-

tion takes ParaMor’s full paradigm identification pipeline as given (see Figure  4.14 on 

p. 144) and investigates the effects of limiting the size of the vocabulary. 
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While ParaMor’s algorithms are accepted as given, this vocabulary experiment still 

requires careful consideration of how to set ParaMor’s free parameters. ParaMor has four 

free parameters: one parameter thresholds the scheme c-stem ratios in ParaMor’s bottom-

up initial search phase; one parameter sets the entropy value at which ParaMor discards 

scheme-clusters that seem to model incorrect morpheme boundaries; one parameter sets 

the minimum word length for the vocabulary; and finally, one parameter thresholds the 

minimum number of word types which must license a scheme-cluster. Of these four, the 

only parameter which need vary with vocabulary size is the cutoff on the minimum num-

ber of word types that a cluster must contain. In thresholding a ratio of c-stems, the pa-

rameter controlling ParaMor bottom-up search is inherently agnostic to absolute counts; 

as described in Section  4.4.2 the threshold over morpheme boundary errors is already set 

conservatively; and this experiment will leave unchanged the requirement that all input 

words be at least five characters long. The cluster size threshold, on the other hand is sen-

sitive to vocabulary size—with fewer types in the induction vocabulary, a scheme built 

from the same c-suffix set will likely have fewer adherent c-stems. And, indeed empiri-

cally, when the cluster size threshold is left at the value set in Section  4.4.1, namely 37, 

ParaMor removes an unreasonable number of scheme-clusters at lower vocabulary sizes. 

Hence, for this experiment, the cluster size threshold is linearly scaled with vocabulary 

size such that at a vocabulary of zero types the cluster size threshold would also be zero. 

This section uses two metrics to evaluate ParaMor’s performance at identifying the 

suffixes of true paradigms. First, to gauge success at uncovering suffixes, ParaMor’s final 

scheme-clusters are measured for global recall of Spanish inflectional suffixes, where 

global recall is defined as the recall in any scheme-cluster of any string-unique suffix 

from a true paradigm. Second, to evaluate ParaMor’s ability to succinctly group suffixes 

into paradigms, this section reports the final number of clusters ParaMor identifies. 

It is reasonable to expect suffix recall to drop somewhat as the size of the induction 

vocabulary falls simply because in a smaller vocabulary the more rare suffixes may sim-

ply not occur. The more serious question for ParaMor is whether there is a vocabulary 

size at which ParaMor’s morphology induction algorithms break down; a lower limit on 

vocabulary size where ParaMor is unable to identify even those suffixes which do occur 
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in the data. Similarly, in measuring the number of clusters ParaMor produces, the objec-

tive is to discover a vocabulary size at which ParaMor begins to fail at reliably grouping 

suffixes into paradigms. ParaMor’s final cluster count would reveal a failure to form 

paradigms if, as vocabulary size decreased, the number of clusters grew unreasonably. 

Figure  4.16 plots ParaMor’s paradigm identification performance over a corpus of 

Spanish as the vocabulary size varies down from 50,000 types to 5,000. Three separate 

series are plotted in Figure  4.16. The bottom, dashed, line reports ParaMor’s final cluster 

count at each vocabulary size, while the two upper lines report recall scores. The central, 
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Figure  4.16: A learning curve – Spanish morpheme recall and the number of paradigm-

clusters ParaMor identifies as the vocabulary size varies from 50,000 down to 5,000. 

Achievable Recall is calculated out of those valid Spanish suffixes which occur at 

least twice in the induction vocabulary as word-final strings. 
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solid, line is ParaMor’s global recall of all string-unique Spanish suffixes. The upper, 

dashed, line gives ParaMor’s global recall of all suffixes that occurred as a word-final 

string on at least two types in that vocabulary—it seems reasonable to allow any mor-

phology induction system to discount as noise those morphemes that only occur once in a 

corpus. Note, however, that when the induction vocabulary is varied, as in this experi-

ment, the set of suffixes that occur at least twice in the vocabulary will change. In par-

ticular, because the smaller vocabularies in this experiment are subsets of the larger vo-

cabularies, the set of achievable suffixes can only decrease as the vocabulary size shrinks. 

Also, since the number of achievable suffixes will never be larger than the full set of suf-

fixes in a language, achievable recall will never fall below the strict global recall. 

Look first at the central solid global suffix recall curve in Figure  4.16. While suffix 

recall does fall as vocabulary size decreases, the fall is initially gradual. Reducing the vo-

cabulary size from 50,000 types to 20,000 results in only an 8.0% absolute drop in global 

recall: from 67.8% to 59.8%. Reducing the vocabulary size further begins a more precipi-

tous decline in recall. Moving from 20,000 to 10,000 vocabulary types reduces recall by 

10.4% absolute, down to 49.4%; and then moving to 5,000 reduces recall by an additional 

13.8% absolute, falling all the way to 35.6%.  

ParaMor’s performance at achievable recall supports the conclusion that ParaMor’s 

morphology induction algorithms are less robust at finding Spanish suffixes when the vo-

cabulary size is below 20,000 types. From 50,000 types down to 20,000 achievable recall 

declines only 4.5% absolute. But then, like global recall, when provided with 10,000 

unique types, achievable recall falls significantly more steeply, by 8.6%; and again by an 

additional 11.2% when moving to 5,000 types. In all, ParaMor identifies less than half, 

just 47.7%, of all true suffix strings that occurred two or more times in the corpus of 

5,000 unique types. At these smaller vocabulary sizes, ParaMor’s algorithms are no 

longer able to find even those suffixes that are present in the corpus. 

For ParaMor to find a suffix there must be paradigmatic and syntagmatic evidence 

for that suffix. At a minimum, ParaMor’s initial search strategy cannot identify any 

c-suffix as likely modeling a true suffix without:  
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1. The syntagmatic evidence of the c-suffix appearing attached to at least three 

c-stems, and without  

2. The paradigmatic evidence of those same three c-stems all accepting some other 

c-suffix.  

At vocabulary sizes below 20,000 types in Spanish, these paradigmatic and syntagmatic 

requirements are just not met. 

Turn now to ParaMor’s performance at grouping suffixes into paradigms. Empiri-

cally, as the vocabulary size decreases from 50,000 types, the number of clusters that Pa-

raMor groups the selected c-suffixes into first moves up from 41 to 50 and then back 

down to 31. But examining this empirical behavior in two halves reveals an interesting 

behavior: When the vocabulary size is above 20,000 types ParaMor’s cluster count is 

relatively stable between 41 and 50; Then, as suffix recall falls off at vocabulary sizes 

below 20,000, the number of clusters that ParaMor identifies also drops. At the smaller 

vocabulary sizes, the number of clusters roughly follows the number of identified suf-

fixes. It may be that ParaMor is reasonably grouping into paradigms those suffixes that 

ParaMor is able to identify. Indeed, although individual clusters contain fewer c-suffixes 

and c-stems when induced from a small vocabulary, a qualitative analysis of ParaMor’s 

Spanish scheme-clusters could find no significant difference in the paradigmatic coher-

ence of individual clusters formed from 50,000 vocabulary types and those formed from 

5,000.  

Although paradigmatic coherence of scheme-clusters does not significantly change at 

smaller vocabulary sizes, there is one crucial difference between the clusters formed from 

large and those formed at small vocabularies—but this difference is a failure of suffix 

identification not a failure of paradigm grouping. At smaller vocabulary sizes, clusters for 

some paradigms are simply missing. At 10,000 types there is no paradigm that corre-

sponds to the Ø.es paradigm that marks Number on Spanish nouns, and at 5,000 types 

ParaMor also finds no scheme-cluster to model those suffixes of the Spanish ir  verbal 

paradigm that are not shared with the er paradigm.  

In summary then, the preceding analysis finds that, at least for Spanish, to identify a 

significant fraction of the suffixes of a language requires a corpus of at least 20,000 
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unique types. However, with some confidence, ParaMor will organize the suffixes that 

are identified into reasonable paradigm-like structures, even for very small vocabulary 

sizes. All of the analysis in this section has been over Spanish. For languages with a mor-

phological system different than that of Spanish, it may be that a vocabulary larger than 

20,000 is necessary. Section  6.2 investigates the question of the necessary vocabulary 

size for English and German. 

4.6 Scheme-Clusters in Languages Beyond Spanish 

Thus far, this thesis has described ParaMor’s performance at paradigm identification 

by closely examining the paradigm models that ParaMor constructs when analyzing 

Spanish text. But ParaMor’s unsupervised induction methods are intended to enable 

paradigm discovery in any language. Quantitatively assessing the quality of ParaMor’s 

induced paradigms for a language, as has been done for Spanish throughout Chapters 3 

and 4, requires compiling by hand a definitive set of the paradigms of a language. Decid-

ing on a single set of productive inflectional paradigms can be difficult even for a lan-

guage with relatively straightforward morphology such. Appendix A describes the chal-

lenge of deciding whether Spanish pronominal clitics are inflectional paradigms. More-

over, for an agglutinative language like Turkish, the combinatorial number of potential 

suffix sequences makes a single list of paradigm cross-products extremely unwieldy. 

Hence, rather than separately define paradigm sets for each language that ParaMor ana-

lyzes in this thesis, Chapter 5 will apply ParaMor’s induced paradigm models to the task 

of word-to-morpheme segmentation. And Chapter 6 will empirically evaluate ParaMor’s 

morphological segmentations in English, German, Finnish, Turkish, and Arabic. 

Nevertheless, it is enlightening to look at a few global statistics describing the kinds 

of scheme-clusters that ParaMor builds over a range of languages. Figure  4.17 tabulates, 

for all six natural languages examined in this thesis, the counts of schemes (or scheme-

clusters) that ParaMor constructs after each step in ParaMor’s paradigm induction pipe-

line. 
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The six languages in Figure  4.17, Spanish, English, German, Finnish, Turkish, and 

Arabic, fall into three general categories. First, Spanish, English, and German have rela-

tively simple morphological structure that is primarily suffixing. Of these first three lan-

guages, English has the least inflectional morphology, and German has the added compli-

cation of productive, written, compounding. The second group of languages examined for 

this thesis encompasses Finnish and Turkish: These two languages have rich morphologi-

cal structures of agglutinative suffixes. In agglutinative languages multiple affixes (suf-

fixes in the case of Finnish and Turkish) can occur on a single surface word form one af-

ter the next. Finally, among this set of six languages Arabic is in a class by itself. Like 

Finnish and Turkish, Arabic has a rich morphological structure. But Arabic words contain 

not only suffixes, but also prefixes and templatic morphology that interleaves sequences 

of vowels and consonants to form new words. 

The scheme and cluster counts of Figure  4.17 reflect this three-way classification of 

these six languages. The counts for Spanish, English, and German are roughly similar. In 

# of                 
Schemes / Clusters Spanish  English German Finnish Turkish Arabic 

Search 8339 8767 10778 10774 10340 12528 

Excluding           
Short Types 6909 6733 9851 10495 9618 14247 

Clustering 6087 6396 9145 8797 6898 12744 

Small Clus ter         
Filtering 150 193 206 280 258 87 

Morpheme Boundary 
Filtering 42 40 48 116 100 27 

 
 

Figure  4.17: The number of schemes or scheme-clusters that ParaMor produces for 

six languages after each search, clustering, or filtering step in ParaMor’s paradigm 

induction pipeline. 
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particular, the final sets of scheme-clusters that ParaMor produces for these three lan-

guages are in a similar range, 42 for Spanish, 40 in English, and 48 for German. The 

higher counts of German schemes and scheme-clusters that occur on the first three rows 

of Figure  4.17, before ParaMor’s ‘Small Cluster Filtering’ (Section  4.4.1) and ‘Mor-

pheme Boundary Filtering’ (Section  4.4.2) steps, are primarily due to schemes that model 

morpheme boundaries between compound nouns. But noun compounding does not ex-

hibit the same paradigmatic regularities as inflectional morphology and many of the 

compounding scheme-clusters are discarded during ParaMor’s filtering steps. 

The scheme and cluster counts for the agglutinative languages Finnish and Turkish 

are also quite similar to one another. ParaMor’s processing of both languages finishes 

with cluster counts about double those for Spanish, English, or German, at or just above 

100. Considering that Finnish and Turkish have more complex morphological structures 

than Spanish, English, or German, it is to be expected that ParaMor requires additional 

scheme-clusters to adequately describe the morphology of these two languages. 

Finally, ParaMor’s scheme-cluster counts for Arabic follow a pattern unlike that for 

any of the other languages. Initially, ParaMor’s bottom-up scheme-search procedure se-

lects more schemes for Arabic than for any other language. But most of these schemes 

are discarded in the 4th row of Figure  4.17 by ParaMor’s ‘Small Cluster Filtering’ (Sec-

tion  4.4.1). And ParaMor ultimately retains the fewest scheme-clusters for Arabic out of 

any language, just 27. The many clusters that ParaMor discards for Arabic primarily at-

tempt to model morpheme boundaries between prefixes and stems. These erroneous pre-

fix models place prefixes into schemes’ c-stem sets and stems into schemes’ c-suffix sets. 

While ParaMor’s initial search finds enough ‘paradigmatic’ evidence to select these pre-

fixational schemes, ParaMor’s paradigmatic clustering algorithm is unable to meaning-

fully group them, and consequently the vast majority of these schemes are removed by 

ParaMor’s filtering steps.  

This preliminary look at ParaMor’s performance at paradigm identification for lan-

guages beyond Spanish is preparation for their more extensive evaluation in the next two 

chapters. Chapter 5 will lay the groundwork, defining a methodology to segment words 

into constituent morphemes that uses the scheme-cluster models of paradigms that Pa-
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raMor produces when following the paradigm induction pipeline described in Chapters 3 

and 4. Chapter 6 then reports quantitative evaluations of ParaMor’s morphological seg-

mentations. 
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Chapter 5:                     
Morphological 
Segmentation 

Chapters 3 and 4 presented the steps of ParaMor’s paradigm discovery pipeline. This 

chapter and the next will apply ParaMor’s induced paradigms to the natural language 

processing task of morphological word segmentation. The job of a morphological seg-

mentation algorithm is to break full form words at morpheme boundaries. For example, 

the correct segmentation of the Spanish word apoyar would be apoy +ar . This apoy +ar  

segmentation is correct because in the word apoyar  ‘ to support’, the stem apoy  carries 

the lexical meaning of ‘support’, while the ar marks Infinitive. Crucially, however, a mor-

phological segmentation algorithm is not required to associate morphosyntactic features 

with the morpheme pieces that it proposes: When segmenting the word apoyar  a word-

to-morpheme algorithm is not asked to notate the meaning of the stem apoy , nor must a 

segmentation algorithm state that ar signifies the Infinitive. 

While not a full morphological analysis from a linguistic perspective, morphological 

segmentation can nonetheless advance performance in a variety of natural language proc-

essing tasks. Oflazer and El-Kahlout (2007) improve a Turkish-English statistical ma-
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chine translation system by morphologically segmenting Turkish. The morphological 

segmentation system that Oflazer and El-Kahlout use is hand-built. In contrast, Creutz 

(2006) significantly improves a Finnish speech recognition system using an unsupervised 

morphology induction system called Morfessor to morphologically segment the training 

data for the speech system’s language model. Linguistically naïve word stemming, a 

crude form of morphological segmentation, is also standard in information retrieval. And 

Section  6.4.2 of this thesis discusses a simple embedding of ParaMor’s unsupervised 

morphological segmentations into an information retrieval system that gives promising 

results.  

For two reasons, the paradigm models that ParaMor produces are well-suited to the 

task of word-to-morpheme segmentation. First, while ParaMor can identify morpheme 

segments within word forms, ParaMor is unable to provide a more complete morphosyn-

tactic analysis of words: ParaMor does not associate morphosyntactic features with the 

c-suffixes in each discovered cluster. ParaMor might know that the c-suffix ar attaches to 

a class of c-stems including apoy , but ParaMor does not know that apoy  carries the lexi-

cal meaning of ‘support’, or even that the apoy -class of c-stems models Spanish verbs; 

nor does ParaMor know that the ar suffix forms the Infinitive. Second, ParaMor’s para-

digm models are best suited to morphological tasks, like segmentation, that analyze word 

forms, as opposed to generation tasks that propose novel surface forms. As noted in Sec-

tion  4.3.3, most of ParaMor’s clusters contain c-suffixes which do not form valid surface 

words with all the c-stems in the cluster. These invalid (c-stem, c-suffix) pairs are incor-

rect generalizations that would hurt performance in a morphological generation task.  

Despite the suitability of ParaMor’s scheme-cluster models of paradigms to the task 

of morphological segmentation, ParaMor’s segmentation algorithm must be carefully de-

vised so as to segment a wide range of words. Even though clustering introduces some-

times erroneous model generalization, the scheme-clusters that ParaMor produces remain 

highly specific. By associating a set of c-suffixes with a particular set of c-stems, a strict 

interpretation of ParaMor’s paradigm models would constrain ParaMor’s analyses only to 

the word types covered by each (c-stem, c-suffix) pair in the scheme-cluster. Section  5.1 

proposes a segmentation algorithm that successfully generalizes overly specific scheme-
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clusters to morphologically segment the wide range of word forms that occur in a large 

corpus. 

5.1 The Segmentation Algorithm 

Two principles guide ParaMor’s approach to morphological segmentation. First, Pa-

raMor only segments word forms when the discovered scheme-clusters hold paradigmatic 

evidence of a morpheme boundary. Second, ParaMor’s segmentation algorithm must 

generalize beyond the specific set of types which license individual scheme-clusters. In 

particular, ParaMor will be able to segment word types which did not occur in the data 

from which ParaMor induced its scheme-clusters.  

ParaMor’s segmentation algorithm is perhaps the most simple paradigm inspired 

segmentation algorithm possible that can generalize beyond the specific set of licensing 

types in each scheme-cluster. To segment any word, w, ParaMor examines all segmenta-

tions of w into an initial non-null stem, t, and a final non-null suffix, f, such that t.f = w. 

For each such stem + suffix segmentation of w, ParaMor identifies all scheme-clusters, C, 

that contain f as a c-suffix. If there is some second c-suffix, f ′ , in C such that t.f ′  is a 

word form found either in the corpus from which ParaMor induced its scheme-clusters or 

else found in the corpus of text that ParaMor is to segment, then ParaMor segments w be-

tween t and f.  

The rationale behind ParaMor’s segmentation algorithm is that since f and f ′  are mu-

tually substitutable suffixes from the same induced paradigm model, ParaMor has found 

paradigmatic evidence of a morpheme boundary. Note that the c-suffix f ′  need not arise 

from the same original scheme as f, but merely from the same scheme-cluster C.  

If ParaMor finds no complex analysis, then ParaMor proposes w itself as the analysis 

of the word. On the other hand, if ParaMor discovers more than one potential morpheme 

boundary in w, ParaMor accepts them all—producing a single analyzed form of w con-

taining multiple morpheme boundaries. Figure  5.1 gives a pseudo-code implementation 

of ParaMor’s word-to-morpheme segmentation algorithm. 
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// the substring(String, startIndex, endIndex) method works as foll ows: 
//   substring(“abcde”, 0, 2) yields “ab” 
//   substring(“abcde”, 2, 5) yields “cde” 
// 
segmentWords( 
  words, schemeClusters, paradigmInductionCorpus, cor pusToSegment ) { 
 
 foreach ( word in  words ) { 
  morphemeBoundaryIndexes = emptySet ; 
  wordLength = word. length(); 
 
  for ( charIndex = 1 ; charIndex <= wordLength-1; charIndex ++) {  
   stem = substring( word, 0, charIndex ) ; 
   suffix = substring( word, charIndex, word. length()) ; 
   foreach ( schemeCluster in  schemeClusters ) { 
    foreach ( cSuffix in  schemeCluster ) { 
     if ( cSuffix == suffix ) { 
      foreach ( cSuffixPrime in  schemeCluster ) {  
       if ( cSuffixPrime !=  cSuffix ) { 
        possibleWord = stem + cSuffixPrime; 
        if ( paradigmInductionCorpus. contains( possibleWord ) || 
            corpusToSegment. contains( possibleWord )) { 
         morphemeBoundaryIndexes. add( charIndex ) ; 
  } } } } } } } // end ‘for (charIndex = 1...’ 
  
  // segmentedWords is a hash on each word to an ar ray which holds  
  // the morphemes of the word. 
  startIndex = 0 ; 
  foreach  ( boundaryIndex in morphemeBoundaries ) { 
   morpheme = substring( word, startIndex, boundaryIndex ) ; 
   segmentedWords { word } . add( morpheme) ; 
   startIndex = boundaryIndex; 
  } 
 
  // And add the final segment of the word as a fin al morpheme 
  morpheme = substring( word, startIndex, word. length() ; 
  segmentedWords { word } . add( morpheme) ; 
 } 
 
 return  segmentedWords; 
} 

Figure  5.1: Pseudo-code implementing ParaMor’s word segmentation algorithm. 
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5.2 A Sample of ParaMor’s Word Segmentations 

Figure  5.2 contains examples of Spanish word-to-morpheme segmentations that Pa-

raMor produces. ParaMor segmented the word forms of Figure  5.2 using scheme-cluster 

models of paradigms that were induced over the same newswire corpus of 50,000 types 

used throughout Chapters 3 and 4. But the segmented words in Figure  5.2 come from a 

larger newswire corpus of 100,000 types which includes the 50,000 type corpus as a sub-

set. Each row of Figure  5.2 contains segmentation information about a single word. The 

word forms of the first thirteen rows of Figure  5.2 were hand selected to illustrate the 

range of analyses that ParaMor’s segmentation algorithm is capable of. And then, to pro-

vide a flavor for the typical segmentations that ParaMor outputs, the forms in the last six 

rows of Figure  5.2 were randomly selected from the words in ParaMor’s segmentation 

corpus of 100,000 unique word forms.  

Starting with the leftmost column, each row of Figure  5.2 specifies:  

1. The row number; 

2. A particular Spanish word which ParaMor segmented;  

3. An English gloss for that word form;  

4. The word’s correct morphological segmentation;  

5. A full morphosyntactic analysis of the Spanish word form;  

6. Each separate morpheme boundary that ParaMor matches;  

7. ParaMor’s full segmentation of the word; and  

8. The rank of one or more scheme-clusters which provide paradigmatic support for 

ParaMor’s segmentation of that row’s word form.  

Elaborating on the 8th column of Figure  5.2: Whenever a scheme-cluster from Figure 4.4 

on p. 118 leads ParaMor to propose a morpheme boundary in Figure  5.2, then the rank of 

the Figure  4.4 cluster is given in the final column of Figure  5.2. In the few cases where no 

Figure  4.4 cluster supports a morpheme boundary that is proposed in Figure  5.2, then the 

rank of a supporting cluster appears in parentheses. Many morpheme boundaries that Pa- 
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 Row 
Word      
Form Gloss 

Correct 
Segmentation 

Morphosyntactic   
Analysis 

Individual 
Boundaries 

ParaMor’s     
Segmentation 

Cluster 
Rank 

1 sacerdote priest sacerdote sacerdote sacerdote sacerdote - 
2 sacerdotes priests sacerdote +s sacerdote +pl sacerdote + s sacerdote +s 1 
3 regulares ordinary regular +es ordinary +pl regular +es regular +es 122 
4 chancho filthy chanch +o chancho +masc chanch +o chanch +o 3 

5 incógnitas unknown incógnit +a +s incognito +fem +pl incógnit +as, 
incógnita +s incógnit +a +s 1, 3 

6 descarrilaremos we will be derailed descarril +aremos descarrilar +1pl.fut.indic descarril +aremos descarril +aremos 4 

7 accidentarse to have an accident accident +ar +se accidentarse +inf +reflex accident +arse accident +arse 4 

8 errados wrong, mistaken 
(Masculine Plural) err +ad +o +s errar +adj +masc +pl 

err +ados 
errad +os 
errado +s 

err +ad +o +s 1, 3, 4 

9 agradezco I thank agradec +o agradecer +1sg.pres.indic agrade +zco agrade +zco 21 

10 agradecimos we thank agradec +imos agradecer +1pl.past.indic agrade +cimos 
agradec +imos agrade +c +imos 17, 21 

11 antelación (in) advance antel( +)acıón antelar +ción.N antel +ación 
antelac +ión antel +ac +ión 4, 5 

12 tanteador storekeeper tante( +)ador tantear +ador.N tante +ador tante +ador 4 

Ill
us

tr
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e 

W
or

d 
F
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m

s
 

13 vete he/she should veto vet +e vetar +3sg.pres.subjunc vet +e vet +e 4 
14 bambamg not a Spanish word bambamg bambamg bambamg bambamg - 

15 clausurará he/she will con-
clude clausur +ará clausurar +3sg.fut.indic clausur +ará clausur +ará 4 

16 hospital hospital hospital hospital hospit +al 
hospital +l hospit +a +l (7), (41) 

17 investido invested (Masculine 
Singular) invest +id +o investor +adj +masc 

invest +ido 
investi +do 
invested +o 

invest +i +d +o 3, 11, 17, 
(28) 

18 pacíficamente peaceably pacífic +amente pacíficamente pacific +amente 
pacifíca +mente pacific +a +mente 1, 3, 122 R

an
do

m
ly

 S
el

ec
te

d 
 

19 sabiduría wisdom sabiduría sabiduría sabiduría sabiduría - 

 Figure  5.2: Morphological segmentations of some Spanish word forms produced by ParaMor over a corpus of 100,000 types. 
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raMor proposes gain paradigmatic support from two or more scheme-clusters. For any 

particular morpheme boundary, Figure  5.2 only lists the rank of more than one supporting 

cluster when each supporting cluster appears in Figure  4.4.  

The 1st row of Figure  5.2 contains ParaMor’s segmentation of the monomorphemic 

word form sacerdote  ‘priest’. ParaMor’s segmentation algorithm correctly analyzes 

sacerdote  as containing no morpheme boundaries. The 2nd row of Figure  5.2 segments 

sacerdotes  ‘priests’. Since both the word forms sacerdote  and sacerdotes  occurred in 

the Spanish corpora, and because ParaMor contains a scheme-cluster which contains both 

of the c-suffixes s and Ø, namely the cluster from Figure  4.4 with rank 1, ParaMor de-

tects sufficient paradigmatic evidence to successfully suggest a morpheme boundary be-

fore the final s in sacerdotes , giving sacerdote +s . ParaMor similarly correctly seg-

ments the form regulares  ‘ordinary (Plural)’ before the final es, giving regular +es , us-

ing the rank 122 scheme-cluster; and the form chancho ‘ filthy (Masculine Singular)’ be-

fore the final o, yielding chanch +o , by drawing on the rank 3 cluster.  

The particular forms sacerdote , sacerdotes , regulares , and chancho of the first 

four rows in Figure  5.2 illustrate the ability of ParaMor’s segmentation algorithms to cor-

rectly generalize. The forms sacerdote  and sacerdotes  directly contribute to the Ø.s 

scheme that participates in the rank 1 scheme-cluster of Figure  4.4. And so to segment 

sacerdotes  required no generalization whatsoever. On the other hand, the c-stem regu-

lar does not occur in the rank 122 scheme-cluster, and the c-stem chanch does not occur 

in the rank 3 cluster, but ParaMor was yet able to generalize from the rank 122 cluster 

and the rank 3 cluster to properly segment the word forms regulares  and chancho  re-

spectively. ParaMor segmented regulares  because: 1. The rank 122 scheme-cluster con-

tains the Ø and the es c-suffixes; and 2. The word forms regular  and regulares both oc-

cur in the corpus from which ParaMor learned its scheme-clusters. The occurrence of 

regular and regulares provides the paradigmatic evidence that ParaMor requires to sug-

gest segmentation. ParaMor’s justification for segmenting chancho is similar to the rea-

soning behind regulares but takes generalization one step further—the form chancho  

did not occur in the corpus from which ParaMor induced paradigms, but only occurred in 

the larger corpus of 100,000 word types that ParaMor segments. 
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The 5th row of Figure  5.2 illustrates ParaMor’s ability to segment a single word into 

more than two morphemes. The fifth row contains the Plural Feminine form of the Span-

ish adjective incógnito  ‘unknown’:  incógnitas . The Gender is marked by the a in this 

form, while Plural Number is marked in the final s. And so, the correct segmentation 

contains three morphemes and two morpheme boundaries, incógnit +a +s . ParaMor’s 

scheme-cluster models of paradigms successfully identify both morpheme boundaries in 

the word incógnitas . Unfortunately, ParaMor’s segmentation algorithm is not always so 

perfect when it proposes multiple morpheme boundaries. In the segmentation of the word 

form agradecimos  ‘we thank’ as agrade +c +imos , on row ten of Figure  5.2, while the 

morpheme boundary before the final imos  is reasonable, the character c is rightfully part 

of this verb’s stem and should not be segmented off as a suffix.  

The 6th row of Figure  5.2 gives an example of the rank 4 scheme-cluster from Figure 

 4.4 correctly segmenting a Spanish verb; the rank 4 scheme-cluster, capturing suffixes 

from the Spanish verbal ar paradigm, contains more c-suffixes than any other cluster that 

ParaMor induces over this Spanish corpus. The 7th row in Figure  5.2 is an example of Pa-

raMor’s failure to analyze Spanish pronominal clitics. As discussed in Section  4.5.1, Pa-

raMor’s suffix-internal morpheme boundary error filter mistakenly discards the scheme-

cluster which contains the majority of Spanish clitics. Where there should be a morpheme 

boundary before the reflexive clitic se, in accidentar +se , ParaMor places none. Pa-

raMor’s correct segmentation of the adjectival verb, errados ‘wrong (Masculine Plural)’ 

as err +ad +o +s , on row 8 of Figure  5.2 contrasts with the incorrect oversegmentation of 

another adjectival verb, investido ‘ invested (Masculine Singular)’ as invest +i +d +o , on 

the table’s 17th row. In the segmentation of investido , there should be no morpheme 

boundary between the characters i and d. 

The 9th, 10th, and 11th rows of Figure  5.2 illustrate some of the incorrect segmenta-

tions that ParaMor produces from scheme-clusters which involve allomorphic variation. 

The 9th and 10th rows contain the 1st Person Singular Present Indicative and the 1st Per-

son Plural Past Indicative forms, respectively, of the Spanish verb agradecer ‘ to thank’. 

The stem of the verb agradecer has two written surface forms: before suffixes which be-

gin with the back vowels a and o, the stem agradezc  occurs; but, before the front vowels 
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e and i, the stem is agradec . In fact, this c/zc alternation is a feature of a reasonably 

sized minority of Spanish verbs, and hence, the rank 21 cluster of Figure  4.4 attempts to 

model this stem alternation by fusing the variable stem material to the front of c-suffixes. 

Thus, where the 1st Person Singular Present Indicative morpheme is o, ParaMor re-

moves zco, giving agrade +zco ; and where the morpheme marking 1st Person Plural 

Past Indicative in er verbs (like agradecer ) is imos , ParaMor identifies both a c-suffix 

that matches the correct imos  morpheme but also a c-suffix that matches cimos , ulti-

mately producing the oversegmented form agrade +c +imos . 

In contrast to the varying stems of the word forms in the 9th and 10th rows of Figure 

 5.2, it is the suffix of antelación , on the 11th row, that appears in distinct allomorphic 

surface forms in different words. As discussed in Section  4.5.1, the four related suffixes 

ción , sión , cion , and sion confound ParaMor’s morpheme boundary error filters such 

that ParaMor is unable to remove the 5th ranked scheme-cluster which contains the 

c-suffix ión . The consequence of ParaMor’s failure to detect this morpheme boundary 

error in the scheme-cluster paradigm models is that the word antelación  is incorrectly 

oversegmented before the word-final string ión , yielding antel +ac +ión . 

ParaMor was designed to identify inflectional morphemes. Consequently, most of Pa-

raMor’s segmentations in Figure  5.2 split off inflectional suffixes. The segmentations that 

ParaMor gives for the word forms of the 11th and 12th rows of Figure  5.2, however, seg-

ment the derivational morphemes ación and ador respectively. The suffix ación forms 

abstract nouns from verbs, while ador is the agentive.  

Also, the short word form vete , ‘veto (3rd Person Singular Present Subjunctive)’ on 

the table’s 13th row, is correctly segmented by ParaMor even though its four characters 

excluded it from the corpus from which ParaMor induced scheme-clusters. 

The final six rows of Figure  5.2 place ParaMor in the wild, giving segmentations of a 

small random sample of Spanish words. ParaMor successfully leaves unsegmented the 

Indonesian proper name bambamg  and the monomorphemic Spanish word sabiduría  

‘wisdom’. ParaMor correctly segments the verbal form clausurará ‘conclude (3rd Per-

son Singular Future Indicative)’ as clausur +ará ; but oversegments the three forms hos-

pital  ‘hospital’, investido , ‘invested (Adjectival Masculine Singular)’ and pacificamente  
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‘peaceably’. The oversegmentations of both investido and pacificamente occur because 

of morpheme boundary errors that ParaMor makes while attempting to model legitimate 

morphemes: the Adjectival Masculine Singular suffix ido on er and ir verbs, and the 

productive adjectival suffix amente , respectively.  

But the double mis-segmentation of the monomorphemic hospital , as hospit +a +l , 

is conspicuous. Both of the mis-hypothesized morpheme boundaries in the word 

hospital , that before al and that before the final character l (el), occur because of an 

incorrect overgeneralization in ParaMor’s segmentation algorithm. The boundary before 

the word-final string al occurs when ParaMor incorrectly applies a cluster that contains, 

among other c-suffixes, the adjectival c-suffixes al ‘Adjectival Singular’ and ales ‘Adjec-

tival Plural’. This adjectival cluster is derived from Spanish words that include acciden-

tal  ‘accidental (Adjectival Singular)’ and accidentales  ‘accidental (Adjectival Plural)’). 

Because the Spanish noun hospital  happens to end in the character sequence al, and 

because the plural form of hospital  is hospitales , ParaMor’s segmentation algorithm 

overgeneralizes to apply this adjectival cluster to segment a noun. In a similar fashion, 

ParaMor places a boundary before the final character l in hospital because of a cluster 

that contains incorrect suffix-internal segmentations of these same adjectival al and ales 

suffixes—the incorrect cluster contains the c-suffixes l and les . 

5.3 Morpheme Segmentation Enables Evaluation 

ParaMor’s word-to-morpheme segmentation algorithm, defined in this chapter, 

provides a practical way to evaluate, for a range of languages, the quality of ParaMor’s 

scheme-cluster models of natural language morphological paradigms. Cannonical 

morphological analyses are available for the words of many natural languages; And 

ParaMor’s morphological segmentations can be directly compared to these cannonical 

analyses. Moreover, for a number of natural language processing applications, it is 

possible to replace raw word-forms with morphological segmentations and to then 

measure the (hopefully positive) impact of using the segmented forms. Chapter 6 will 

evaluate ParaMor’s induced scheme-cluster models of paradigms both against cannonical 
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morphological analyses as well as by embedding ParaMor’s morphological segmenta-

tions in an information retrieval system.  
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Chapter 6:                         
ParaMor and 
Morpho Challenge 

With the development, in Chapter 5, of an unsupervised morphological segmentation 

algorithm, the ParaMor morphology induction system can now analyze the morphology 

of individual words. To evaluate ParaMor’s word-to-morpheme segmentations, ParaMor 

competed in two years of the Morpho Challenge competition series. In May 2007 and 

again in June 2008, the Adaptive Informatics Research Center at the Helsinki University 

of Technology sponsored a Morpho Challenge. This series of Challenges pits against one 

another algorithms that, like ParaMor, are designed to discover the morphological struc-

ture of natural languages from nothing more than raw text (Kurimo, Turunen, and Varjo-

kallio, 2008). Evaluating ParaMor through participation in the Morpho Challenge compe-

titions permits direct comparison of ParaMor’s morphological analyses to the analyses 

produced by other state-of-the-art unsupervised morphology induction systems.  

The remainder of this chapter is structured as follows: Section  6.1 will describe the 

evaluation methodology used in the 2007 and 2008 Morpho Challenge competitions. 
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Then, using the evaluation methodology of Morpho Challenge, Sections  6.2 and  6.3 ex-

amine ParaMor’s performance at morphological segmentation from two perspectives: 

Section  6.2, an ablation study, weighs the contributions that each of ParaMor’s major 

sub-algorithms separately make toward the final morpheme segmentations that ParaMor 

produces; And Section  6.3 considers ParaMor’s ability to identify inflectional, as opposed 

to derivational, morphology. Finally, Section  6.4 presents ParaMor’s performance in the 

Morpho Challenge competitions proper. 

6.1 Evaluation Methodology at Morpho Challenge 2007/2008  

The Morpho Challenge competitions of 2007 and 2008 appraised participating algo-

rithms on their morphological analyses of five languages: English, German, Finnish, 

Turkish, and Arabic. As the ParaMor algorithm was developed while analyzing Spanish 

data, participation in the Morpho Challenge competitions will allow ParaMor to show 

language independence.  

ParaMor’s induction algorithms were specifically designed around the natural orga-

nizing structure of inflectional morphology: the paradigm (see Chapters 1 and 3). Hence, 

ParaMor will likely be able to learn the inflectional structure of languages other than 

Spanish. However, ParaMor has several free parameters, and it is conceivable that pa-

rameter settings that produce strong paradigm models for Spanish will yield imperfect 

paradigms for other languages. Nevertheless, setting ParaMor’s parameters anew for each 

separate language would void ParaMor status as an unsupervised algorithm. Hence, for 

all languages, ParaMor holds parameters at the settings which produce reasonable Span-

ish suffix sets, as determined in Chapters 3 and 4. Section  6.4 will demonstrate that these 

parameter settings do, in fact, reasonably transfer to the languages of the Morpho Chal-

lenge competitions. 

For each of the five language tracks in the competition, the Morpho Challenge orga-

nizing committee provided text corpora with vocabulary sizes much larger than the 

50,000 Spanish types that the ParaMor algorithms were developed over. The English cor-

pus contains nearly 385,000 unique types; the German corpus, 1.26 million types; Fin-
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nish, 2.21 million; Turkish, 617,000; while the Arabic corpus is the smallest, with just 

under 143,000 unique types. To increase the likelihood that ParaMor’s parameter settings 

will transfer from Spanish to other language corpora, ParaMor keeps the size of the para-

digm induction vocabulary constant at 50,000 types. As ParaMor has a choice over which 

types to place in the paradigm induction vocabulary, ParaMor selects, from each larger 

language corpus, the 50,000 most frequent word types that pass ParaMor’s string-length 

criterion (Section  4.2). Once ParaMor has learned paradigm models of a language from 

the 50,000 most frequent types, ParaMor segments all the word types in the Morpho 

Challenge corpus for that language, following the methodology of Chapter 5. 

The Morpho Challenge competitions held in 2007 and 2008 scored each contending 

algorithm’s morphological analyses in two ways: First, a Linguistic Evaluation measured 

a system’s morpheme identification against an answer key of morphologically analyzed 

word forms (Kurimo and Varjokallio, 2008; Kurimo, Creutz, and Varjokallio, 2008). And 

second, a Task-Based Evaluation embedded each algorithm’s morphological analyses in 

an information retrieval (IR) system (Kurimo and Turunen, 2008; Kurimo, Creutz, and 

Turunen, 2007). Sections  6.1.1 and  6.1.2 describe the Linguistic and Task-Based Evalua-

tion procedures of the Morpho Challenge competitions in turn. 

6.1.1 The Linguistic Evaluation of Morpho Challenge 2007/2008 

While the majority of the unsupervised morphology induction systems, including Pa-

raMor, which have participated in Morpho Challenge competitions, perform simple mor-

phological segmentation, the Linguistic Evaluation of the 2007 and 2008 Morpho Chal-

lenge competitions was not purely a word segmentation task. In both years, the Linguistic 

Evaluation compared each system’s automatic morphological analyses against an answer 

key containing the full morphological analysis of each word form. Although a more chal-

lenging standard than word-to-morpheme segmentation, evaluating an unsupervised mor-

phology induction system against full morphosyntactic analyses is less arbitrary than 

evaluating against an artificial segmentation standard—Only in an idealized world are 

morphemes consistently strung together in a purely concatenative fashion. In actual natu-



174 

ral languages, morphophonological processes often change the surface form of both stem 

and affix morphemes at the time of affixation; and moreover, in a language like Arabic, 

morphemes are often non-concatenative to begin with, rendering the idea of a gold-

standard morphological segmentation meaningless. 

The morphosyntactic answer keys of Morpho Challenge are in the same format as the 

analyses found in the MORPHOSYNTACTIC ANALYSIS column of Figure  6.1. Extracted from 

Figure  5.2, the rows and columns of Figure  6.1 contain morphological analyses of five 

Spanish words. The analyses in the MORPHOSYNTACTIC ANALYSIS column of Figure  6.1, 

and the analyses of words in a Morpho Challenge answer key, contain one or more lexi-

cal stems and zero or more inflectional or derivational morpheme feature markers. Both 

stems and feature markers are strings: feature markers have a leading ‘+’. In addition to 

the Morpho Challenge style morphosyntactic analyses for each of five Spanish words, 

Figure  6.1 gives an English gloss of the Spanish word and the morphological segmenta-

tion that ParaMor produces for the word. 

As a morphosyntactic answer key, distinct surface forms of the same morpheme are 

marked with the same lexical stem or feature marker. For example, Spanish builds the 

Plural of sacerdote  ‘priest’ by appending an s, while Plural is marked on the Spanish 

form regular with es. But in both cases, a Morpho Challenge style morphosyntactic an-

WORD      
FORM GLOSS MORPHOSYNTACTIC          

ANALYSIS  
PARAMOR’S     

SEGMENTATION 

sacerdote priest sacerdote sacerdote 
sacerdotes priests sacerdote +pl sacerdote +s 
regulares ordinary ordinary +pl regular +es 
agradezco I thank agradecer +1sg.pres.indic agrade +zco 

agradecimos we thank agradecer +1pl.past.indic agrade +c +imos 

 

Figure  6.1: Full morphosyntactic analyses in the style found in the answer 

keys of the Linguistic Evaluation at Morpho Challenge, together with Pa-

raMor’s Morphological segmentations of five Spanish word forms. Pa-

raMor produced these segmentations when analyzing a Spanish corpus 

of 100,000 unique types.  
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swer key would mark Plural with the same feature marker—+pl in Figure  6.1. The orga-

nizing committee of Morpho Challenge designed the linguistic answer keys for each lan-

guage to contain feature markers for all and only morphosyntactic features that are 

overtly marked in a word form. Since Singular forms are unmarked on Spanish nouns, the 

Morpho Challenge style analysis of the word sacerdote  in Figure  6.1 does not contain a 

feature marker indicating that sacerdote is Singular. Also important for the ParaMor al-

gorithm is that the morphosyntactic answer keys for the Linguistic Evaluation of Morpho 

Challenge analyze not only inflectional but also derivational morphology (See Section 

 6.3). 

Against each morphosyntactic answer key, the Linguistic Evaluation of Morpho 

Challenge assessed systems’ precision and recall at identifying the stems and feature 

markers of each word form. But to calculate these precision and recall scores, the Morpho 

Challenge Linguistic Evaluation must account for the fact that label names assigned to 

stems and to feature markers are arbitrary. In Figure  6.1, morphosyntactic analyses mark 

Plural Number with the space-saving feature marker +pl , but another human annotator 

might have preferred the more verbose +plural —in fact, any unique string would suffice.  

Since the names of feature markers, and stems, are arbitrary, the Linguistic Evalua-

tion of Morpho Challenge does not require each unsupervised morphology analysis sys-

tem to guess the particular names used in the answer key. Instead, to measure recall, the 

automatic Linguistic Evaluation selects a large number of word pairs such that each word 

pair shares a morpheme in the answer key. The fraction of these word pairs which also 

share a morpheme in a system’s automatic analyses is the Morpho Challenge recall score 

for that system. Precision is measured analogously: a large number of word pairs are se-

lected where each pair shares a morpheme in the automatically analyzed words. Out of 

these pairs, the number of pairs that share a morpheme in the answer key is the precision.  

To illustrate the scoring methodology of the Linguistic Evaluation of Morpho Chal-

lenge, consider a recall evaluation of the Spanish words in Figure  6.1. To calculate recall, 

the Linguistic Evaluation routine might select the pairs of words: (agradezco , agradeci-

mos ) and (sacerdotes , regulares ) for sharing in the answer key the stem agradecer 

and the feature marker +pl , respectively. ParaMor would get recall credit for its ‘agrade 
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its ‘agrade +zco ’  and ‘agrade +c +imos ’  segmentations as these segmentations share 

the morpheme string agrade . Note here that the stem in the answer key, agradecer , is 

different from the stem ParaMor suggests, agrade , but ParaMor still receives recall 

credit. On the other hand, ParaMor would not get recall credit for the (sacerdotes , regu-

lares ) pair, as ParaMor’s segmentations ‘sacerdote +s ’  and ‘ regular +es ’  do not con-

tain any common pieces.  

It is possible for a word pair to share more than one morpheme. In this case the Lin-

guistic Evaluation of Morpho Challenge credits a system’s precision or recall with a frac-

tional count of correctly identified morphemes. For example, suppose the morphological 

answer key for a language states that a word pair (w1, w2) shares two morphemes in 

common, but a particular morphological analysis system analyzes w1 and w2 to share just 

one morpheme. In this situation, the denominator of the recall calculation increments by a 

full word pair, while the numerator is incremented by one-half a pair—for finding one of 

the two morphemes. 

The Linguistic Evaluation of Morpho Challenge also normalizes precision and recall 

scores when a surface word has multiple analyses. It is not uncommon for a single word 

type to be ambiguous between two or more morphological analyses: consider ‘he 

dances ’ where dances  is a 3rd Person Singular verb and ‘the dances ’ where dances is 

a Plural noun. Because morphology can be inherently ambiguous, the Morpho Challenge 

Linguistic Evaluation permits for each word: 

1. Multiple morphological analyses in the answer key for a language, and 

2. A morphological analysis system to propose more than one analysis. 

The probability with which the Morpho Challenge Linguistic Evaluation selects any par-

ticular word, w, for participation in a morpheme-sharing word pair during the calculations 

of precision and recall is proportional to the number of morphological analyses that w 

has—the more ambiguous morphological analyses there are of w, the more pairs that w 

will appear in. To reduce the influence that ambiguous word forms have on precision and 

recall, the Linguistic Evaluation down-weights word-pairs that contain the ambiguous 

word w by a factor again proportional to the number of analyses that exist for w. 
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Once a precision and a recall score has been calculated, the Morpho Challenge Lin-

guistic Evaluation uses F1, the harmonic mean of precision and recall, as a single overall 

performance measure for each algorithm and each language. The official specification of 

the Linguistic Evaluation procedure for the 2007 and 2008 Morpho Challenge competi-

tions appears in Kurimo, Creutz, and Varjokallio (2008). 

6.1.2 The Task-Based Evaluation of Morpho Challenge 2007/2008 

The 2007 and 2008 Morpho Challenge competitions balanced the Linguistic Evalua-

tion described in the previous sub-section against a Task-Based Evaluation in which the 

morphological analyses of each competing unsupervised morphology induction system 

are embedded in an information retrieval (IR) system. The Task-Based IR Evaluation 

consists of queries over a language specific collection of newswire articles. To measure 

the effect that a particular morphological analysis algorithm has on newswire IR, the 

Task-Based Evaluation replaces all word forms in all queries and all documents with their 

morphological decompositions, according to that analysis algorithm.  

Separate IR tasks were run for English, German, and Finnish, but not Turkish or Ara-

bic. For each language, the IR task made at least 50 queries over collections ranging in 

size from 55,000 (Finnish) to 300,000 (German) articles. The evaluation data included 

20,000 or more binary relevance assessments for each language. The IR Evaluation em-

ployed the LEMUR toolkit (Ogilvie and Callan, 2002), a state-of-the-art retrieval suite; 

and used okapi term weighting (Robertson, 1994). To account for stopwords, terms in 

each run with a frequency above a threshold, 75,000 for Finnish, 150,000 for English and 

German, were discarded. The performance of each IR run was measured with Uninterpo-

lated Average Precision. For additional details on the IR Evaluation of Morpho Challenge 

please reference Kurimo and Turunen (2008) and Kurimo, Creutz, and Turunen (2007). 
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6.2 An Ablation Study 

Before delving into the official results of the Morpho Challenge competitions from 

2007 and 2008, this section uses the Morpho Challenge evaluation methodology to ex-

plore the contributions that each major sub-piece of ParaMor’s paradigm induction algo-

rithm makes toward ParaMor’s final word segmentations. ParaMor’s algorithm for unsu-

pervised paradigm induction consists of the pipelined sub-algorithms described in Chap-

ters 3 and 4, and summarized in Section  4.5. At a high level, ParaMor’s paradigm induc-

tion breaks down into three major steps: 

1. The initial search for scheme-models of paradigms, as described in Chapter 3; 

2. The agglomerative scheme-clustering algorithm, detailed in Section  4.3; and 

3. The filtering procedures, Sections  4.2 and  4.4, that were designed to both limit 

the creation of and to then discard unlikely paradigm models. 

To examine the separate impacts that the search, clustering, and filtering algorithms 

each have on morphological word segmentations, this section evaluates the English and 

German word segmentations that four configurations of these three sub-algorithms pro-

duce. All four configurations begin with ParaMor’s initial search: ParaMor’s scheme 

search procedure is prerequisite to both clustering and filtering. The first of the four con-

figurations consists solely of the initial search, skipping entirely both the clustering and 

all filtering procedures. The second configuration clusters schemes, but does not filter out 

the poorer candidates. The third configuration filters out unlikely candidate paradigms, 

but does not cluster the initially selected schemes into coherent paradigmatic groups. And 

the fourth configuration applies the full suite of algorithms: first searching for candidate 

schemes, then clustering the candidates into consolidated paradigms, and finally filtering 

out the least promising clusters.  

A few further specifics on the experimental setup are in order. To begin, although 

Chapter 4 presented four distinct procedures designed to filter out less desirable paradigm 

models, this section only measures their aggregate effect. In addition to the cluster-size 

filter that removes clusters with support from few licensing types (Section  4.4.1), and the 
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two filters designed to detect and discard schemes which hypothesize incorrect mor-

pheme boundaries (Section  4.4.2), this experiment counts as a filtering algorithm the 

technique described in Section  4.2 that requires all word types in the paradigm induction 

corpus to consist of more than a threshold number of characters. The corpus word length 

requirement is categorized as a filtering algorithm here because it was specifically de-

signed to eliminate (i.e. filter) the production of schemes that result from accidental string 

similarities between corpus word types, see Section  4.2.  

Also concerning experimental setup: The order in which ParaMor invokes the 

scheme-search, filtering, and clustering algorithms is the fixed order presented in Figure 

 4.14 of Section  4.5. Specifically, the filtering step of excluding short types from the para-

digm induction vocabulary always occurs immediately before ParaMor’s scheme search; 

ParaMor’s clustering algorithm is run just following scheme search; and after clustering, 

ParaMor removes scheme-clusters that have support from few licensing word types, dis-

cards scheme-clusters that propose morpheme boundaries suffix-internally, and discards 

clusters whose boundaries fall stem-internally—in that order. When a specific experimen-

tal configuration omits the clustering or filtering steps, the clustering algorithm or all fil-

tering procedures are simply skipped in the pipeline. 

Figure  6.2 tabulates ParaMor’s Morpho Challenge-style precision, recall, and F1 

scores for word segmentation of English and German under each of the four search-clus-

ter-filter configurations. After each precision, recall, or F1 value, Figure  6.2 gives (in pa-

rentheses) the standard deviation for that value. The standard deviation values were ob-

tained by calculating precision, recall, and F1 scores on multiple non-overlapping sets of 

1000 feature-sharing word pairs. For each experimental-configuration of Figure  6.2 and 

for each language, ParaMor applied the paradigm induction pipeline to a corpus of 50,000 

unique word types. With the resultant models of morphological paradigms, ParaMor then 

segmented the same full data used in the Morpho Challenge 2007/2008 competitions: an 

English corpus containing almost 385,000 unique words, and a German corpus of 1.26 

million types. 

The top two lines of Figure  6.2 are the experimental configurations that exclude Pa-

raMor’s filtering steps, while the lower two rows include filtering. And the top-most row 
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of Figure  6.2 gives the word-to-morpheme segmentation performance that ParaMor at-

tains in the absence of both the clustering and all filtering procedures. In this search-only 

configuration ParaMor’s scheme search algorithm identifies paradigm models that have 

high recall and low precision: recall near 80% with precision in the mid-teens. That Pa-

raMor’s initially selected schemes trade high morpheme boundary recall for low preci-

sion is not unexpected. In beginning separate search paths from all individual c-suffixes, 

a bias toward high recall, at the expense of precision, was intentionally built into Pa-

raMor’s search procedure (See Section  3.2).  

Now consider the effect that scheme clustering has on ParaMor’s performance at 

morphological segmentation. ParaMor’s clustering algorithm was designed to group to-

gether all c-suffixes that belong to the same paradigm. Particularly relevant for this word 

segmentation experiment is the fact that clustering can join pairs of c-suffixes into a sin-

gle paradigm that did not co-occur in any individual scheme. Recall that ParaMor seg-

ments words exactly when a pair of c-suffixes that co-occur in a scheme-cluster are mu-

 
 

  English German 

Search  Cluster  Filter  P R F1 P R F1 

••••   14.2 (±0.5) 82.8 (±1.0) 24.2 (±0.7) 13.1 (±0.4) 78.6 (±1.0) 22.5 (±0.5) 

•••• ••••  14.0 (±0.5) 83.0 (±1.0) 24.0 (±0.7) 13.1 (±0.4) 78.6 (±1.0) 22.5 (±0.6) 

••••  •••• 63.0 (±1.0) 47.8 (±1.3) 54.3 (±0.9) 48.4 (±0.9) 41.6 (±1.0) 44.7 (±0.6) 

•••• •••• •••• 57.2 (±1.1) 48.8 (±1.3) 52.7 (±0.9) 54.1 (±1.0) 38.9 (±1.0) 45.2 (±0.6) 

               

 Figure  6.2: An ablation study. ParaMor’s Precision, Recall, and F1 scores (and their 

standard deviations in parentheses) at word-to-morpheme segmentation using four 

configurations of ParaMor’s scheme search, clustering, and filtering algorithms.  A dot 

in the Search, Cluster, or Filter columns indicates that the relevant step(s) in Pa-

raMor’s paradigm induction pipeline took part in that configuration. Paradigm models 

were induced using corpora of 50,000 unique word types. 
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tually interchangeable on some c-stem from a corpus. Therefore, increasing the number 

of c-suffixes which co-occur in paradigm models can increase the number of morpheme 

boundaries that ParaMor places. More frequent segmentation may translate into higher 

recall but may also lower precision. With ParaMor’s segmentation recall already quite 

high, it is questionable how much clustering could improve recall. Empirically, in the ab-

sence of filtering, ParaMor’s clustering algorithm has a negligible effect on both preci-

sion and recall. Apparently, most common pairs of English and German c-suffixes al-

ready co-occur in some scheme. 

In contrast to ParaMor’s clustering step, scheme filtering has a significant effect on 

ParaMor’s morpheme segmentation performance. The paradigm filtration steps were de-

signed to increase the initially low precision of ParaMor’s selected schemes (See Section 

 4.3.3). ParaMor’s filtering algorithms reduce the number of morpheme boundaries that 

ParaMor hypothesizes; And with such low initial precision, as long as a reasonable ma-

jority of the morpheme boundaries that ParaMor drops are the incorrect ones, precision 

will increase. ParaMor’s filtering algorithms will decrease the number of morpheme 

boundaries that ParaMor proposes in two ways. First, individual erroneous c-suffixes can 

be entirely eliminated from ParaMor’s paradigm models when all schemes or scheme-

clusters that contain a particular c-suffix are removed—if a c-suffix doesn’t exit, then it 

can’t match against the tail of a word. Second, just as clustering can join pairs of 

c-suffixes into a paradigmatic relationship, deleting a scheme or a scheme-cluster can re-

move the hypothesis that a particular pair of c-suffixes are paradigmatically related. And 

lacking paradigmatic evidence, ParaMor will be unable to propose certain morpheme 

boundaries. Of course, ParaMor’s filtration algorithms are imperfect, so it is likely that 

some correct schemes and some correct c-suffixes will be discarded—decreasing recall.  

The 1st and 3rd rows of Figure  6.2 contain the configurations of ParaMor’s paradigm 

induction steps that contrast in paradigm filtering in the absence of scheme clustering. In 

both English and German, precision rises significantly when scheme filtering is added: 

from 14.2% to 63.0% in English, and from 13.1% to 48.4% in German: These are im-

provements of 48.8% and 35.3% absolute for English and German respectively. Unfortu-

nately, among the paradigm models that are discarded during the scheme filtering steps 
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are a significant number of models that propose correct morpheme boundaries: recall de-

clines from 82.8% to 47.8% in English and from 78.6% to 41.6% in German, absolute 

percentage falls of 35.0% and 37.0% respectively. On balance, however, after filtering, 

the harmonic mean of precision and recall immensely improves for both languages: F1 

approximately doubles in each case to 54.3% for English and to 44.7% for German. 

Now compare the final two rows of Figure  6.2. Both of these experimental configura-

tions invoke both the search and the filtering routines, but the next-to-last row has no 

clustering while the final row does merge schemes. In English, as was the case when 

moving from the non-clustering to the clustering configuration without filtering (top two 

rows), precision falls and recall rises—although the magnitudes of the changes in recall 

and particularly precision are significantly greater in the presence of ParaMor’s filtering 

routines.  

However, while in English precision falls and recall rises when introducing Pa-

raMor’s scheme-clustering algorithm in the presence of the filtering routines, interactions 

between ParaMor’s clustering algorithm and filtering algorithm make it possible for re-

call to fall and precision to rise, as happens in this corpus of German. During clustering, a 

scheme, C, which alone is not removed by ParaMor’s morpheme boundary error filters, 

can form a cluster with schemes that ParaMor does believe mark morpheme boundaries. 

When ParaMor’s morpheme boundary error filters flag 50% or more of the schemes in a 

cluster as hypothesizing a morpheme boundary, the cluster is removed—consequently, in 

the presence of ParaMor’s scheme clustering, the C scheme will now be filtered from Pa-

raMor’s set of paradigm models. If C was the basis of hypothesized morpheme bounda-

ries, then these boundaries will not be proposed when ParaMor’s filtering algorithms are 

run after clustering. Hence, recall can drop and precision rise.  

In German, the scheme Ø.n fills the role of the C scheme in the previous paragraph. 

A word-final n can mark a variety of morphosyntactic features in German including Plu-

ral Number and/or Dative Case on nouns. The stems of many, but not all, German words 

which inflect with a final n end in e, c.f. Auge  ‘eye (Singular)’ becomes Augen  ‘eye 

(Plural)’, but Fenster  ‘window (Singular Nominative)’ can inflect to Fenstern  ‘window 

(Plural Dative)’. Because the c-stems of the Ø.n scheme end in a sufficient variety of 
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characters, the Ø.n scheme is not flagged as modeling an incorrect morpheme boundary 

by ParaMor’s suffix-internal morpheme boundary error filter. However, during Pa-

raMor’s scheme-clustering phase, the Ø.n scheme is merged with several more-

specialized schemes whose sets of c-stems end exclusively in the character e. ParaMor 

flags these now-merged e-schemes as incorrectly hypothesizing morpheme boundaries 

that lie internal to true suffixes, and the Ø.n scheme is consequently removed. 

Significantly for German, the Ø.n scheme introduces some 133,891 morpheme 

boundaries into the 1.26 million unique German words that ParaMor segments! More 

than 10% of German words end in n and alternate with a surface form that lacks the n. 

Thus, the choice to include or discard this single Ø.n scheme from among ParaMor’s 

paradigm models has a significant impact on the precision and recall scores that ParaMor 

receives for morphological segmentation. Comparing the two experimental configura-

tions on the bottom two rows of Figure  6.2: when ParaMor filters but does not cluster 

schemes (thus retaining the Ø.n scheme) recall lies at 41.6% and precision at 48.4%; but 

when ParaMor both clusters schemes and filters the resulting clusters (in the process los-

ing the Ø.n scheme), recall of course falls to 38.9% (as ParaMor is unable to correctly 

analyze words like Augen ) but precision also rises considerably, to 54.1%.  

ParaMor’s precision significantly increases when the Ø.n scheme is removed because 

in many German words a final n does not constitute a morpheme. One common error 

caused by the Ø.n scheme occurs in German verbs. Consider three inflected forms of one 

particular verb: spielen ‘play (Infinitive)’, spiele ‘play (1st Person Present Indicative)’, 

and spielt ‘play (3rd Person Past Indicative)’. The correct morphological analysis of the 

verb spielen treats the string spiel as the verb stem and segments off the infinitive mor-

pheme en, i.e. spiel +en . However, the existence of the form spiele incorrectly allows 

the Ø.n scheme to segment spilen as spiele +n . Overall, the significant increase in Pa-

raMor’s precision leads to a slight increase in F1 for German when schemes are clustered 

in addition to being filtered. 

While scheme clustering increases F1 in German, in English, ParaMor’s clustering 

algorithm actually lowers F1 in the presence of scheme filtering, from 54.3% down to 

52.7%. The scheme-clustering procedure manages to raise English recall only slightly, 
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from 47.8% to 48.8%, while significantly lowering precision through the introduction of 

many incorrect overgeneralized morpheme boundaries. Precision falls from 63.0% to 

57.2%  

As the ultimate effect of ParaMor’s scheme-clustering algorithm on F1 can differ 

from language to language, it is difficult to discern whether scheme clustering is fully ap-

propriate for the word segmentation task. However, Section  4.3.3 demonstrated that 

scheme clustering significantly reduces the number of separate partial paradigm models 

that ParaMor produces. Because of this clear reduction in paradigm fragmentation, Pa-

raMor’s word segmentation submissions to the Morpho Challenge competition (Section 

 6.4) are produced when including the scheme-clustering algorithm in ParaMor’s para-

digm induction pipeline.  

 Limiting the Vocabulary 

As a second look at the individual contributions that ParaMor’s major sub-algorithms 

make toward morphological segmentation, consider ParaMor’s performance when induc-

ing paradigm models from a much smaller corpus. Where all other word-to-morpheme 

segmentation experiments in this thesis run ParaMor’s paradigm induction algorithms 

over corpora of 50,000 unique word types, the results in Figure  6.3 were obtained from a 

corpus of 20,000 types. Like Figure  6.2, Figure  6.3 reports precision, recall, and F1 scores 

(and the value of one standard deviation in parentheses) for morphological segmentations 

of English and German for four configurations of ParaMor’s scheme-search, clustering, 

and filtering algorithms. The smaller corpus size of 20,000 unique types was chosen be-

cause the experiments in Section  4.5.2 demonstrated that in Spanish the quality of Pa-

raMor’s induced paradigm models begins to quickly degrade below a vocabulary size of 

20,000. 

Before turning to the experimental results, it is important to keep in mind that both 

this experiment over corpora of 20,000 types and that of Figure  6.2 over 50,000 types, as 

well as all other word segmentation experiments reported in this thesis, segment words 

over corpora that are much larger than the corpora from which paradigms are initially 

learned. The large size of the segmentation corpus is important because the more unique 
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word types that are present in the segmentation corpus the more likely that a particular 

lexeme will occur in more than one inflected form, providing the paradigmatic evidence 

that ParaMor requires to propose a morpheme boundary. By holding the segmentation 

corpus fixed, this experiment evaluates the quality of ParaMor’s induced paradigms, as 

applied to the word-segmentation task, when the size of the paradigm induction vocabu-

lary is reduced. 

Overall, ParaMor’s word segmentation algorithm is remarkably resilient to a reduc-

tion in the size of the paradigm induction corpus. In particular, the F1 scores for the full 

ParaMor algorithm of search, clustering, and filtering at a vocabulary of 20,000 types 

(Figure  6.3) are within two standard deviations of the F1 scores for paradigms trained 

over 50,000 types (Figure  6.2). In German, F1 is slightly lower at 44.7% vs. 45.2%; And 

in English, F1 is actually higher when paradigms are learned from the smaller vocabulary 

of 20,000 types, 53.8% vs. 52.7%.  

This increase in English F1 at word segmentation reflects small increases in both pre-

cision (from 57.2% to 57.6%) and in recall (from 48.8% to 50.6%) when learning para-

digms from a smaller corpus. At first blush, increases in recall, let alone precision and F1, 

 
 

  English German 

Search  Cluster  Filter  P R F1 P R F1 

••••   18.1 (±0.6) 75.1 (±1.3) 29.1 (±0.7) 16.2 (±0.5) 72.7 (±1.1) 26.5 (±0.6) 

•••• ••••  17.9 (±0.6) 75.5 (±1.3) 28.9 (±0.7) 16.2 (±0.5) 73.0 (±1.1) 26.5 (±0.7) 

••••  •••• 58.0 (±1.0) 48.4 (±1.2) 52.8 (±0.8) 55.4 (±1.0) 36.0 (±1.0) 43.6 (±0.7) 

•••• •••• •••• 57.6 (±1.1) 50.6 (±1.2) 53.8 (±0.8) 44.0 (±0.9) 45.4 (±1.0) 44.7 (±0.6) 

Figure  6.3: An ablation study when inducing paradigm models over 20,000 unique word 

types. ParaMor’s Precision, Recall, and F1 scores (and their standard deviations in 

parentheses) at word-to-morpheme segmentation using four configurations of Pa-

raMor’s scheme search, clustering, and filtering algorithms. (See also Figure  6.2). 
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are counterintuitive for paradigm induction over a smaller data set. It would seem that 

ParaMor should find fewer total c-suffixes from a smaller corpus, and that this smaller set 

of c-suffixes should propose fewer morpheme boundaries. If this smaller set of discov-

ered c-suffixes is more focused, then precision might increase, but surely recall should go 

down. Indeed, a consistent pattern of lower recall scores at smaller vocabulary sizes does 

occur among the experimental configurations that do not include ParaMor’s filtering al-

gorithms: Recall is at least 5% absolute higher for both English and German in the top 

two rows of Figure  6.2 than in the top two rows of Figure  6.3. However, in three of the 

four experiments that include ParaMor’s filtering algorithms (the bottom two rows of 

Figures 6.2 and 6.3), the morpheme recall is higher when vocabulary size is smaller.  

These recall statistics suggest that ParaMor’s filtering algorithms are behaving in a 

less aggressive fashion at lower vocabulary sizes. As discussed in Section  4.5.2, ParaMor 

has one parameter that is not invariant to vocabulary size. The filtering algorithm that 

discards scheme-clusters which are not licensed by a sufficient number of word forms 

(Section  4.4.1) employs a threshold that must be adjusted with the size of the vocabulary. 

To compensate for the change in vocabulary size, the experiments in this section set the 

cluster-size threshold using the same procedure as the experiments in Section  4.5.2: the 

cluster-size threshold is linearly scaled with the vocabulary. In the Spanish experiments 

of Section  4.5.2, the linear adjustment of the cluster-size threshold was sufficient to en-

sure that the number of unique correct c-suffixes discovered by ParaMor should decrease 

with vocabulary size. But empirically, a linear scaling of the cluster-size filtering thresh-

old does not prevent the inventory of discovered c-suffixes in English and German from 

increasing at lower vocabulary sizes. And hence, recall increases. 

Now look beyond the morphology segmentation scores that the full ParaMor algo-

rithm achieves in the small-vocabulary scenario of Figure  6.3 to the experimental con-

figurations that omit the scheme clustering or filtering steps, or both. The segmentation 

scores of these other experimental configurations reveal a pattern broadly similar to that 

of the larger vocabulary experiments from Figure  6.2: When filtering is omitted, Pa-

raMor’s segmentation recall is high, precision low, and clustering has little effect. And 

again, as when learning from the larger vocabulary, invoking ParaMor’s filtering algo-
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rithms brings recall and precision into closer balance. At the smaller vocabulary size of 

20,000 words types, ParaMor attains a maximum F1 score, for both English and German, 

when ParaMor’s full suite of search, clustering, and filtering algorithms is applied. 

6.3 Inflectional vs. Derivational Morphology 

As mentioned in Section  6.1.1 the Linguistic Evaluation of Morpho Challenge explic-

itly requires analyzing both inflectional and derivational morphology. But ParaMor is de-

signed to discover paradigms—the organizational structure of inflectional morphology. 

The experiment of Figure  6.4 makes concrete ParaMor’s relative strength at identifying 

inflectional morphology and relative weakness at analyzing derivational morphology.  

Figure  6.4 contains Morpho Challenge style linguistic evaluations of English and 

German. For English and German, the official answer keys used in the 2007 and 2008 

Morpho Challenge competitions were created from the widely available Celex morpho-

logical database (Burnage, 1990). To create the official Morpho Challenge answer keys, 

the Morpho Challenge organization extracted from Celex both the inflectional and the 

derivational structure of word forms. For the experiment in Figure  6.4, I constructed from 

Celex two Morpho Challenge style answer keys for English and two for German. First, 

because the Morpho Challenge organization did not release their official answer key, I 

built an answer key for each language very similar to the official Morpho Challenge an-

swer keys where each word form is analyzed for both inflectional and derivational mor-

phology. Second, I constructed from Celex answer keys for both English and Germen 

which contain analyses of only inflectional morphology.  

From the 50,000 most frequent types in the Morpho Challenge English and German 

data that pass ParaMor’s word-length restriction (see Section  4.2), ParaMor built scheme-

cluster models of paradigms. And then Figure  6.4 evaluates ParaMor’s morphological 

segmentations against both the answer key which contains only inflectional morphology 

and against the answer key which contains inflectional and derivational morphology. As 

described in Section  6.2, a minor modification to the Morpho Challenge scoring script 
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allowed the calculation of standard deviations. The standard deviation of F1 is reported in 

the σ column of Figure  6.4.  

Figure  6.4 reveals that ParaMor attains remarkably high recall of inflectional mor-

phemes for both English, at 70.1%, and for German, at 66.5%. When evaluated against 

analyses which include both inflectional and derivational morphemes, ParaMor’s mor-

pheme recall scores are 20 to 30 absolute percentage points lower, English: 48.8% and 

German: 38.9%. 

In addition to evaluating ParaMor’s segmentations, Figure  6.4 evaluates segmenta-

tions produced by a morphology analysis system called Morfessor Categories-MAP 

v0.9.2 (Creutz, 2006). Morfessor is a state-of-the-art minimally supervised morphology 

induction algorithm that has no bias toward identifying inflectional morphology. To ob-

tain Morfessor’s segmentations of the English and German Morpho Challenge data used 

in this experiment, I downloaded the freely available Morfessor program and ran Morfes-

sor over the data myself. Morfessor has a single free parameter. To make for stiff compe-

tition, Figure  6.4 reports results for Morfessor at that parameter setting which maximized 

F1 in each separate evaluation scenario.  

Figure  6.4: ParaMor segmentations compared to Morfessor’s (Creutz, 2006) evaluated 

for Precision, Recall, F1, and standard deviation of F1, σ, in four scenarios. Segmen-

tations over English and German are each evaluated against correct morphological 

analyses consisting, on the left, of inflectional morphology only, and on the right, of 

both inflectional and derivational morphology. 

 Inflectional Only Inflectional & Derivational 

 English German English German 

 P R F1 σ P R F1 σ P R F1 σ P R F1 σ 

ParaMor 40.2 70.1 51.0 0.9 37.6 66.5 48.0 0.8 57.2 48.8 52.7 0.9 54.1 38.9 45.2 0.6 

Morfessor  53.3 47.0 49.9 1.3 38.7 44.2 41.2 0.8 73.6 34.0 46.5 1.1 66.9 37.1 47.7 0.7 
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Morfessor’s unsupervised morphology induction algorithms, described briefly in 

Chapter 2, are quite different from ParaMor’s. While ParaMor focuses on identifying 

productive paradigms of usually inflectional suffixes, Morfessor is designed to identify 

agglutinative sequences of morphemes. Looking at Figure  6.4, Morfessor’s strength 

emerges to be the accurate identification of morphemes: both inflectional and derivation-

al. In English and in German, Morfessor’s precision against the answer key that contains 

both inflectional and derivational morphology is significantly higher than ParaMor’s. 

And, as compared with ParaMor, a significant portion of the morphemes that Morfessor 

identifies are derivational. Morfessor’s relative strength at identifying derivational mor-

phemes is particularly clear in German. Against the German answer key of inflectional 

and derivational morphology, Morfessor’s precision is higher than ParaMor’s; but Pa-

raMor has a precision comparable to Morfessor’s when identifying just inflectional mor-

phemes—indicating that many of the morphemes Morfessor correctly identifies are deri-

vational. Similarly, while both ParaMor and Morfessor score lower at recall when re-

quired to identify derivational morphology in addition to inflectional; Morfessor’s recall 

falls much less than ParaMor’s—indicating that many of Morfessor’s suggested segmen-

tations which were dragging down precision against the inflection-only answer key were 

actually modeling valid derivational morphemes. 

Clearly, the ParaMor and Morfessor morphology induction systems focus on very 

different areas of morphology. These two systems’ complementary nature suggests pool-

ing their morphological segmentations—a suggestion that will be realized in Section 

 6.4.1.  

6.4 Morpho Challenge 2007/2008 

Where the ablation study of Section  6.2 clarified the contributions of the sub-

components of the ParaMor algorithm toward morphological segmentation, and Section 

 6.3 examined ParaMor's relative performance at learning inflectional and derivational 

morphological structure, this section focuses on the full ParaMor algorithm under the 

strict requirements of the Morpho Challenge competitions held in 2007 and 2008. In 
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these two years of the Morpho Challenge, systems competed in a Linguistic Evaluation of 

up to five languages: English, German, Finnish, Turkish, and Arabic; and in a Task-

Based Information Retrieval (IR) Evaluation in up to three languages: English, German, 

and Finnish. The scores from both the Linguistic and Task-Based Evaluations of the 2008 

competition are directly comparable to scores from the 2007 Challenge because:  

1. Both the Linguistic and Task-Based IR Evaluations used the same methodology in 

the 2007 and 2008 competitions; and moreover,  

2. The more recent 2008 challenge scored systems over the same corpora and 

against the same answer keys as the 2007 competition. 

While comparing systems from the 2007 and the 2008 Morpho Challenge competitions is 

reasonable, comparing the scores of even the same system across different languages is 

meaningless. Each language has radically different morphological structure and the Lin-

guistic Evaluation uses different morphologically annotated answer keys for each lan-

guage. 

An early prototype of the ParaMor morphology induction algorithm competed in 

Morpho Challenge 2007 (Monson et al., 2008a). And the fully developed ParaMor algo-

rithm participated in the 2008 Challenge (Monson et al., 2008b). Only ParaMor’s im-

proved performance from the 2008 Challenge is reported for ParaMor in this thesis. In the 

Morpho Challenge held in 2008, ParaMor took part in all five language tracks of the Lin-

guistic Evaluation, and in all three language tracks of the Task-Based IR Evaluation. The 

next two sub-sections detail ParaMor’s performance in the Linguistic and Task-Based 

Evaluations respectively. 

6.4.1 Linguistic Evaluation Results from Morpho Challenge 2007/2008 

Figure  6.5 summarizes ParaMor’s performance in the Linguistic Evaluation of Mor-

pho Challenge 2008 and places ParaMor’s results into the context of the best performing 

systems from the 2007 and 2008 Challenges. Figure  6.5 contains the precision (P), recall 

(R), and F1 scores of nine individual unsupervised morphology induction algorithms for 
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the five languages of the Linguistic Evaluation. Six of the nine systems in Figure  6.5 

competed in Morpho Challenge 2008, while three systems participated in the 2007 chal-

lenge. Of the six systems from Figure  6.5 which competed in the 2008 challenge, three 

are systems that Monson et al. (2008b) submitted, while three are systems built and sub-

mitted by others. The three systems which Monson et al. (2008b) entered in Morpho 

Challenge 2008 are:  

1. The ParaMor system alone, (2nd column of Figure  6.5), 

2. An instance of the unsupervised morphology induction system Morfessor 

(Creutz, 2006) which I trained myself (3rd column), and  

3. A joint ParaMor-Morfessor system which combines the analyses of 1. and 2., (1st 

column of Figure  6.5). 

The joint ParaMor-Morfessor system was developed to leverage the complementary 

strengths of the ParaMor and Morfessor systems. As uncovered in Section  6.3: ParaMor 

excels at identifying inflectional morphology, while the Morfessor system discovers the 

most regular and frequent morphological structures of a language, whether inflectional or 

derivational. And as discussed in Section  6.1.1, the Morpho Challenge competition per-

mits a system to submit more than one (ostensibly ambiguous) analysis of a single word. 

The ParaMor-Morfessor system joins analyses from ParaMor and Morfessor by simply 

adding Morfessor’s segmentation of each word to ParaMor’s segmentation as a separate, 

ambiguous, analysis. 

The ParaMor algorithm has several free parameters that control the paradigm discov-

ery phase. These parameters were set to values that produced reasonable Spanish para-

digms. The parameters were then frozen before learning the morphology of the languages 

in the Morpho Challenge. In the experiments which adjoin ParaMor and Morfessor analy-

ses, Morfessor’s single free parameter was optimized for F1 separately for English, Ger-

man, and Turkish. To optimize Morfessor’s parameter for these three languages, morpho-

logical answer keys were constructed from pre-existing morphological data and tools. 

The source for the English and German morphological answer keys was the Celex data- 
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  MONSON ET AL . (2008b) OTHER AUTHORS 
  2008 2008 2007 

  ParaMor + 
Morfessor  ParaMor  Morfessor  Morfes sor  

MAP Zeman Kohonen  Bernhard  Bordag  Pitler  

P 50.6 58.5 77.2 82.2 53.0 83.4 61.6 59.7 74.7 

R 63.3 48.1 34.0 33.1 42.1 13.4 60.0 32.1 40.6 

E
N

G
LI

S
H

 

F1 56.3 52.8 47.2 47.2 46.9 23.1 60.8 41.8 52.6 

P 49.5 53.4 67.2 67.6 53.1 87.9 49.1 60.5 - 

R 59.5 38.2 36.8 36.9 28.4 7.4 57.4 41.6 - 

G
E

R
M

A
N

 

F1 54.1 44.5 47.6 47.8 37.0 13.7 52.9 49.3 - 

P 49.8 46.4 77.4 76.8 58.5 92.6 59.7 71.3 - 

R 47.3 34.4 21.5 27.5 20.5 6.9 40.4 24.4 - 

F
IN

N
IS

H
 

F1 48.5 39.5 33.7 40.6 30.3 12.8 48.2 36.4 - 

P 51.9 56.7 73.9 76.4 65.8 93.3 73.7 81.3 - 

R 52.1 39.4 26.1 24.5 18.8 6.2 14.8 17.6 - 

T
U

R
K

IS
H

 

F1 52.0 46.5 38.5 37.1 29.2 11.5 24.7 28.9 - 

P 79.8 78.6 90.4 90.2 77.2 - - - - 

R 27.5 8.5 21.0 21.0 12.7 - - - - 

A
R

A
B

IC
 

F1 40.9 15.4 34.0 34.0 21.9 - - - - 

 

Figure  6.5: Results from the Linguistic Evaluation of Morpho Challenge. The unsu-

pervised morphology induction systems which appear in this table are the nine 

best-performing systems from the 2008 and 2007 challenges. Systems partici-

pated in up to 5 language tracks. In each language track all participating systems 

were scored at Precision, Recall, and F1 of morpheme identification. The ground 

truth against which Morpho Challenge compares systems in the Linguistic 

Evaluation is a morphologically analyzed answer key that includes both inflec-

tional and derivational morphology. For each language track, the system or sys-

tems which place first at F1 by a statistically significant margin appear in bold . 
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base (Burnage, 1990); while in Turkish, a hand-built morphological analyzer provided by 

Kemal Oflazer was used as the basis of a morphological answer key. Having limited ac-

cess to morphologically annotated Finnish and Arabic data, Morfessor’s parameter was 

not directly optimized for these languages. Instead, as Finnish and Arabic both have rich 

morphological systems, Morfessor’s segmentations for these two languages were gener-

ated using the parameter value which performed best on the morphologically complex 

Turkish language.  

The six systems from Figure  6.5 that were prepared by groups other than Monson et 

al. (2008b) are those systems with the top competing performances in the Linguistic 

Evaluation of the Morpho Challenge competitions from 2007 and 2008. The system la-

beled Morfessor MAP is a second instance of the same Morfessor algorithm that I 

trained, submitted, and joined with ParaMor. But the Morfessor MAP submission was 

prepared by Kurimo and Varjokallio (2008) and likely uses a different parameter setting 

for each language from the settings used in my Morfessor submissions. A change in pa-

rameter setting can sometimes result in quite different performance for Morfessor, 

c.f. Finnish. The remaining five systems, found in the right-most columns of Figure  6.5, 

bear the names of their principle authors. If multiple versions of a single algorithm com-

peted in the 2007 and/or 2008 Morpho Challenge, then the scores reported in Figure  6.5 

are from the algorithm variant which attained the highest F1 score.  

Because the number of morpheme-sharing word pairs that were used to calculate the 

precision and recall scores in the Linguistic Evaluation of Morpho Challenge was quite 

large, most score differences between systems in Figure  6.5 are statistically significant. 

All F1 differences of more than 0.5 between systems which competed in Morpho Chal-

lenge 2007 are statistically significant (Kurimo, Creutz, and Varjokallio, 2008); and simi-

larly, all F1 differences of more than 0.5 among the Morpho Challenge 2008 systems are 

also statistically significant (Kurimo and Varjokallio, 2008). 

To begin the examination of the results of the Linguistic Evaluation of Morpho Chal-

lenge, turn to the 2nd column of Figure  6.5 and examine the precision, recall, and F1 

scores that the ParaMor algorithm achieves alone. In all language tracks but Arabic, Pa-

raMor holds its own against the state-of-the-art unsupervised morphology induction sys-
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tems which competed in Morpho Challenge. Against the six best-performing systems 

from the 2007 and 2008 Morpho Challenge competitions that were not prepared by Mon-

son et al. (2008b), and looking at F1, the ParaMor algorithm places first in Turkish with 

46.5%, second in English with 52.8%, third in Finnish at 39.5%, and fourth in German 

with 44.5%.  

Although ParaMor’s recall scores are consistently lower than precision for each lan-

guage (in English precision is 58.5% vs. a recall of 48.1%, in German precision is 53.4% 

and recall 38.2%, etc.), the precision and recall scores of the lone ParaMor algorithm are 

often more balanced than the scores of other systems. ParaMor’s balance in precision and 

recall is particularly noticeable in Turkish, where the morpheme recall of other unsuper-

vised systems is anomalously low. In Turkish, the spread between ParaMor’s precision, 

56.7%, and recall, 39.4%, is 17.3 percentage points. In contrast, the smallest spread in 

any competing system is 47.0 percentage points in the Zeman (2008) system. ParaMor’s 

focus on a recall-centric morphology induction procedure (see Chapter 3) and on a 

segmentation procedure that can propose more than one morpheme boundary in a single 

word (see Chapter 5) pays strong dividends when analyzing the highly agglutinative 

Turkish language. 

Although ParaMor alone performs respectably, it is when ParaMor’s analyses are ad-

joined with Morfessor’s that ParaMor shines. In German, Finnish, Turkish, and Arabic, 

the combined ParaMor-Morfessor system achieves the highest F1 of any system which 

competed in the 2007 or 2008 Challenges. And in English, the joint ParaMor-Morfessor 

system places a strong second. It is the precision score of the joint ParaMor-Morfessor 

system that drags the English F1 under that of the first place system, Bernhard (2008). In 

Finnish, the Bernhard system’s F1 is likely not statistically different from that of the Pa-

raMor-Morfessor system. 

The joint ParaMor-Morfessor system attains its higher F1 scores by balancing preci-

sion and recall. The trend for precision to be above recall that was noted for ParaMor is 

even more pronounced in the Morfessor system: Morfessor’s lowest precision and highest 

recall scores both occur in German: 67.2% precision and 47.6% recall. Because of the 
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elevated precision scores in both ParaMor and Morfessor, a boost in the harmonic mean 

of precision and recall can be achieved by sacrificing precision for a decent gain in recall.  

This tradeoff of precision for recall is exactly accomplished by adjoining the morpho-

logical segmentations that are proposed by the ParaMor and Morfessor systems. Combin-

ing the analyses of any two systems will increase the total number of morphemes in the 

analysis of each word—likely lowering precision but possibly increasing recall. But Sec-

tion  6.3 suggests that the morphological analyses that the ParaMor and Morfessor sys-

tems propose are particularly suited for joining: the mostly inflectional morphemes that 

ParaMor identifies differ substantially from the mix of inflectional and derivational mor-

phemes that Morfessor induces. Hence, although combining ParaMor’s analyses with 

those from Morfessor almost always hurts precision, in all five languages, the improve-

ment in recall significantly boosts F1 over that of either ParaMor or Morfessor alone.  

The performance of the ParaMor-Morfessor system is particularly striking in Turkish 

and in Arabic. In Turkish, the recall of the joint ParaMor-Morfessor system is double that 

of all non-ParaMor Turkish systems. This high recall leads to an improvement in F1 over 

the next best system, Morfessor alone, of 13.5% absolute or 22.0% relative.  

Contrasting with ParaMor’s strong performance at Turkish, the language that the lone 

ParaMor algorithm performs most poorly at is Arabic. New to Morpho Challenge in 

2008, Arabic’s morphology is distinctly different from that of the other four languages in 

the challenge. Arabic morphology differs most notably in possessing templatic morphol-

ogy, where a consonantal root is interleaved with vowels to produce specific surface 

forms. Equally important, from ParaMor’s perspective, is that Arabic is the only language 

in Morpho Challenge with significant prefixation: Not only does Arabic verbal morphol-

ogy include inflectional prefixes, but Arabic orthography also attaches a number of com-

mon determiners and prepositions directly onto the written form of the following word. 

These attached function words act as prepositions in text. With no strategy for identifying 

prefixes, let alone templatic morphology, the ParaMor algorithm recovers just 8.5% of 

the morphemes in the Arabic words. Such low recall pulls ParaMor’s F1 down to 15.4%. 

It is some small consolation that no lone unsupervised morphology induction system re-

covered even a quarter of the morphemes in the Arabic answer key. 
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Despite ParaMor’s own poor performance at uncovering the morphological structure 

of Arabic, when ParaMor’s analyses are presented in combination with Morfessor’s the 

increase in recall between the two systems is practically additive. Morfessor’s Arabic Re-

call is 21.0%, ParaMor’s is 8.5%, and the recall of the joint ParaMor-Morfessor system is 

27.5%. This significant jump in recall implies very little overlap between the morphemes 

which the ParaMor and Morfessor systems identify. When recall scores are depressed, an 

increase in recall implies an increase in F1. And indeed, the ParaMor-Morfessor system 

receives the highest F1 of any system which analyzed Arabic morphology.  

In the near term, since prefixes are the mirror image of suffixes, a simple augmenta-

tion of ParaMor’s algorithms could allow analysis of prefixation. The ability to identify 

prefixes would not only improve morpheme recall in Arabic, but help identify German 

verbal prefixes, and English derivational prefixes as well.  

6.4.2 The Task-Based Evaluation of Morpho Challenge 2007/2008 

The Task-Based Information Retrieval (IR) Evaluations of the 2007 and the 2008 

Challenge covered three languages: English, German, and Finnish. To measure the im-

pact that a morphology analysis system has on an IR system, the Morpho Challenge com-

petition replaced all words in all documents and queries from each IR corpus with the 

morphological analyses the morphology system suggests for that language. In both years 

of the Morpho Challenge the same information retrieval corpus and query set were used, 

making results from 2007 comparable with results from 2008. The Morpho Challenge 

organizing committee did not measure the statistical significance of average precision 

scores in the IR Evaluation. Additional details on the procedure used in the Task-Based 

IR Evaluation of Morpho Challenge are given in Section  6.1.2 as well as in Kurimo and 

Turunen (2008) and Kurimo, Creutz, and Turunen (2007). 

Figures 6.6 and 6.7 contain the results of the Task-Based IR Evaluations of Morpho 

Challenge 2007 and 2008. Figure  6.6 contains the average precision IR scores for the 

eight best performing systems from the 2007 and 2008 challenges; while Figure  6.7 con-

tains average precision scores for four baseline metrics, namely: 
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1. NO MORPHOLOGY: IR experiments run over the raw documents and queries; 

2. SNOWBALL (PORTER): All words in each document and query are stemmed using 

the Snowball package of language stemmers. In the case of English, the Snowball 

stemmer is the Porter stemmer; 

3. ANSWER KEY: Document and query words are replaced with their morphological 

analyses from the answer keys that were used in the Linguistic Evaluation of 

Morpho Challenge. Note that the answer keys used in the Linguistic Evaluations 

contain only a subset of the full set of word types found in the IR corpora; and 

4. TWO-LEVEL: Each word is replaced with the morphological analysis provided by a 

hand-built rule-based morphological analysis system. No hand-built morphologi-

cal analysis system was evaluated for German. 

In the IR Evaluation of Morpho Challenge, the ParaMor system alone placed third in 

English, while the combined ParaMor-Morfessor system placed first in English and Ger-

man, and fourth in Finnish. The IR Evaluation is a black-box experiment, and so it is not 

completely clear why the ParaMor-Morfessor system fared worse in the Finnish track. 

The most likely explanation is that replacing each word in each document and query with 

both the ParaMor and the Morfessor analyses is inappropriate for a language with com-

plex morphology such as Finnish. It is unfortunate that Morpho Challenge did not con-

duct IR experiments for the morphologically complex Turkish and Arabic languages. It 

would be particularly interesting to see ParaMor’s IR performance on Turkish, which, 

like Finnish, is agglutinative.  

The ParaMor systems also perform well in comparison to the baseline algorithms of 

Figure  6.7. Most notably, in all languages, both the lone ParaMor algorithm and the joint 

ParaMor-Morfessor system improve on the average precision scores the IR system 

achieves when no morphological analysis is performed. With no morphological analysis, 

the IR system scores 32.9% average precision for English, 35.1% for German and 35.2% 

for Finnish; while the joint ParaMor-Morfessor system scores 39.9% for English, 47.3% 

for German, and 46.7% for Finnish.  
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  MONSON ET AL . (2008)  OTHER AUTHORS 
  2008 2008 2007 

  ParaMor + 
Morfessor  ParaMor  Morfessor  Morfessor  

MAP 
Morfessor 
Baseline  McNamee Bernhard  Bordag  

ENGLISH 39.9 39.3 36.4 37.1 38.6 36.3 39.4 34.3 

GERMAN 47.3 36.3 46.7 46.4 46.6 43.9 47.3 43.1 

FINNISH 46.7 39.7 46.8 44.4 44.3 49.2 49.2 43.1 

 

Figure  6.6: Average precision scores for unsupervised morphology induction systems 

which participated in the Information Retrieval (IR) Evaluation of Morpho Challenge. 

The unsupervised morphology induction systems which appear in this table are the 

eight best systems from the 2008 and 2007 challenges. Systems participated in up 

to three language tracks. The best performing system(s) for each track appear in 

bold  font. 

 NO            
MORPHOLOGY 

SNOWBALL 
(PORTER) ANSWER KEY TWO- LEVEL 

ENGLISH 32.9 40.8 37.3 39.6 

GERMAN 35.1 38.7 33.5 - 

FINNISH 35.2 42.8 43.1 49.8 

 

Figure  6.7: Average precision scores of four reference algorithms for 

the Information Retrieval (IR) Evaluation of Morpho Challenge.  
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The best performing unsupervised systems, including the ParaMor-Morfessor system, 

also outperform the baseline ANSWER KEY scenario: demonstrating that imperfect mor-

phological analysis performed by unsupervised morphology induction systems can trump 

perfect analysis of a subset of the words found in a task. ParaMor and the other unsuper-

vised systems face stiffer competition in the two hand-built morphological baselines that 

have some generalization capacity, SNOWBALL (PORTER) and TWO-LEVEL. The Porter 

stemmer has the best average precision of any method against English; but unsupervised 

systems, the joint ParaMor-Morfessor system among them, outperform the Snowball 

rule-based stemmers for both German and Finnish. And finally, although the hand-built 

two-level morphological analyzer improves average precision more than any unsuper-

vised induction method does in Finnish; the joint ParaMor-Morfessor system edges out 

the hand-built English morphological analysis system. 
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Chapter 7:                        
Conclusions and 
Future Work 

ParaMor, the unsupervised induction system developed for this thesis automatically 

discovers the morphological paradigms of natural language from unannotated text in a 

three step process. First, ParaMor lays out a space of candidate partial paradigms and ap-

plies a recall-centric search strategy to that space (Chapter 3). Second, ParaMor merges 

candidate paradigms that likely describe portions of the same true paradigm (Section  4.3). 

And third, ParaMor culls out the least likely candidates (Sections  4.2  4.2and  4.4). With a 

firm grasp on the paradigmatic structure of a particular language, ParaMor then segments 

individual words of that language exactly when there is paradigmatic evidence that a 

word adheres to a discovered paradigm (Chapter 5).  

ParaMor’s identified paradigmatic models organize inflectional morphology by 

grouping mutually substitutable suffixes into paradigm-like structures. With its focus on 

inflectional paradigms, ParaMor contrasts with other unsupervised morphology induction 

systems, such as Morfessor (Creutz, 2006), which seek to identify all morpheme types 

whether inflectional or derivational. With their emphasis on very different aspects of 

morphology, ParaMor’s morphological analyses are largely complementary to those of a 
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system like Morfessor. And this thesis leverages the individual strengths of the general 

purpose morphology induction system Morfessor and the inflection specific system Pa-

raMor by combining the analyses from the two systems into a single joint analysis.  

The combined ParaMor-Morfessor system competed in the 2007 and 2008 Morpho 

Challenge competitions, which evaluated unsupervised morphology induction systems at 

morpheme identification. In four of the five language tracks of the 2007/2008 Morpho 

Challenge competitions, in German, Finnish, Turkish, and in Arabic, the ParaMor-

Morfessor system achieved an F1 score for morpheme identification at or above that of all 

other systems which competed. The primary reason for the combined ParaMor-Morfessor 

system’s success at morpheme identification is its strong morpheme recall. In Turkish, 

the combined system’s recall, at 52.1%, is twice that of the next highest system.  

Results from the Morpho Challenge competitions also suggest that the ParaMor mor-

phology analysis system is helpful in higher-level natural language processing tasks. 

Augmenting an Information Retrieval (IR) system with the morphological analyses that 

are proposed by the ParaMor system alone significantly improves average precision over 

a morphologically naïve baseline. ParaMor’s improvement over the baseline IR scores 

occurs in all three languages of the Task-Based IR Evaluation at Morpho Challenge. Fur-

thermore, the IR average precision scores of the joint ParaMor-Morfessor system place 

first among all competing systems in English and German. 

Despite ParaMor’s successes, this thesis, naturally, could not exhaustively investigate 

all areas of the ParaMor algorithm. Nor could this thesis explore every aspect of unsuper-

vised morphology induction in general. The next two sections outline particular sugges-

tions for extending ParaMor and specific recommendations to all who will pursue unsu-

pervised morphology induction in the future. 

7.1 Improving the Core ParaMor Algorithms 

Developing ParaMor’s large suite of algorithms necessitated prioritizing implementa-

tion. The foremost priority for this thesis was to create a complete system that could both 

identify paradigms and then segment word forms. Unfortunately, focusing on the full Pa-
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raMor system required limiting the investigation of both the paradigm identification algo-

rithm as well as the segmentation algorithm individually. Beginning with the paradigm 

identification algorithm and moving toward the segmentation algorithm, five specific 

pieces of ParaMor’s current algorithms warrant further work. 

First, although ParaMor’s scheme-clustering algorithms of Section  4.3 significantly 

reduce the fragmentation of true paradigms across ParaMor’s paradigm models, the final 

scheme-clusters remain disjointed. For example, among the 42 scheme-clusters that Pa-

raMor outputs over a training corpus of 50,000 Spanish types, nine separate clusters 

model portions of the ar inflection class of Spanish verbs. But ParaMor was unable to 

merge these nine clusters because ParaMor’s c-suffix based discriminative restriction on 

clustering, described in Section  4.3.1, prevents any cluster from containing a pair of 

c-suffixes that are not mutually substitutable on at least one c-stem. The verbal c-suffixes 

ándoles  and arme , for example, which are each built of a non-finite verb suffix in com-

bination with a pronominal clitic, did not both attach to any single c-stem in this Spanish 

corpus. Although both the ándoles  and the arme  c-suffixes belong to the ar inflection 

class, any one ParaMor cluster is prevented from containing them simultaneously. In fail-

ing to merge models which clearly describe portions of the same paradigm, ParaMor does 

not capture the full generality and power of paradigms.  

In a similar vein, ParaMor’s clustering restrictions prevent distinct inflection classes 

of the same paradigm from coalescing. For example, in Spanish ParaMor keeps separate 

those scheme-clusters that model the ar verbal inflection class from those clusters that 

model the er inflection class of verbs, which are separated again from models of the ir  

inflection class. On the one hand, it was an intentional choice to prevent ParaMor from 

merging distinct inflection classes of the same underlying paradigm: Although all verbs 

in Spanish inflect for the same morphosyntactic features, verbs which adhere to distinct 

inflection classes use distinct suffixes to mark the same feature sets, and sometimes even 

use the same surface suffix to mark distinct sets of features (see Chapter 4). While it is 

clearly important, then, to somehow distinguish between distinct inflection classes, Pa-

raMor’s separated models prevent the segmentations of the 3rd Person Singular Present 
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Indicative Spanish word forms bebe ‘she drinks’  and habla ‘she speaks’, as beb + e and  

habl + a  respectively, from containing matching suffixes. 

The second area of ParaMor that warrants further work is a scaling up of ParaMor’s 

paradigm identification algorithms from the relatively small vocabulary size of 50,000 

unique types to the orders of magnitude larger vocabularies used in the Morpho Chal-

lenge competitions. While ParaMor’s segmentation algorithms can segment arbitrarily 

large corpora, in this thesis ParaMor included at most 50,000 types from any corpus in 

the paradigm induction vocabulary. There is no significant barrier to scaling up Pa-

raMor’s paradigm identification algorithms to larger vocabulary sizes. Each step in Pa-

raMor’s paradigm induction pipeline will scale with larger vocabularies: ParaMor’s on-

demand instantiation of the morphology scheme network allows the scheme search pro-

cedure to scale reasonably with vocabulary size both in time and space complexity. And 

bottom-up agglomerative scheme clustering is at worst cubic in time with the number of 

initial schemes. The primary reason this thesis did not scale up ParaMor’s paradigm iden-

tification algorithms is that ParaMor’s parameters were set over the smaller vocabulary 

size, and time did not permit empirical adjustment of the parameter settings to accommo-

date larger vocabularies.  

In contrast to scaling up ParaMor’s paradigm identification phase, the third ParaMor-

specific question this thesis does not answer is how ParaMor’s segmentation algorithms 

scale down to smaller vocabulary sizes. The larger the vocabulary that ParaMor seg-

ments, the more likely ParaMor will be to find evidence that a word belongs to a particu-

lar paradigm. The vocabularies of the language corpora in the Morpho Challenge 2007 

and 2008 competitions were very large. But an unsupervised morphology induction sys-

tem might be most useful for languages with limited machine readable data available. 

Thus, it will be important to scale ParaMor’s segmentation algorithms down to smaller 

vocabulary sizes. In ParaMor’s current morphological segmentation algorithm, a word-

final string, f, of a particular word form, w, must be mutually substitutable with another 

c-suffix of a paradigm before ParaMor will place a morpheme boundary in w before f. 

Perhaps in scenarios where more limited data is available, ParaMor’s morphological 
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segmentation algorithm should require less evidence that a stem adheres to a particular 

paradigm before segmenting. 

 A fourth area that this thesis did not fully investigate is the effect that ParaMor’s 

four free parameters have on ParaMor’s ultimate morphological segmentations. Pa-

raMor’s free parameters directly control the induced paradigms. ParaMor’s first parame-

ter is the cutoff in the morphology scheme network search on when a parent scheme is 

deemed likely to correctly extend the coverage of the current scheme (Chapter 3). The 

second parameter is the lower boundary on the string length of the word forms used in the 

paradigm induction corpus (Section  4.2). The third parameter decides when to discard a 

scheme-cluster based on the number of word types a scheme-cluster covers (Section 

 4.4.1). And the fourth parameter governs the suffix-internal and stem-internal morpheme 

boundary error filters (Section  4.4.2). ParaMor’s four free parameters were set not by ex-

amining word-to-morpheme segmentations, but by examining the candidate paradigms, 

i.e. schemes and scheme-clusters, that ParaMor created.  

The chronological development of ParaMor’s core algorithms largely followed the 

order of ParaMor’s processing pipeline. In particular, ParaMor’s word-to-morpheme 

segmentation algorithm was only developed after ParaMor’s paradigm identification al-

gorithms were in place. Hence, no experiments directly measured changes in word seg-

mentation quality as ParaMor’s parameters varied. As described in Section  6.3, Pa-

raMor’s free parameters were intentionally set to maximize the recall of inflectional mor-

phemes. Only empirical experimentation could determine if a more restrictive search pa-

rameter or more aggressive filtering of scheme-clusters would significantly improve Pa-

raMor’s precision at the word-to-morpheme segmentation task without severely hurting 

recall.  

Finally, this thesis leaves to future work the development of a more satisfactory ap-

proach for combining the segmentations of ParaMor and Morfessor. The current algo-

rithm does not attempt, for any particular word, to merge the morphological segmenta-

tions from the two systems. Instead, the procedure described in this thesis simply sug-

gests each system’s segmentation as an alternative analysis. A more sophisticated system 

could select from among the morpheme boundaries that are suggested by the two sys-



206 

tems, and produce a single unified segmentation. In fact, a general purpose solution to the 

problem of combining segmentations that come from multiple morphology analysis algo-

rithms could be used to combine segmentations produced by additional unsupervised 

morphology induction systems beyond ParaMor and Morfessor.  

7.2 The Future of Unsupervised Morphology Induction 

This section looks beyond specific extensions to the ParaMor algorithm to the 

broader picture of the steps future unsupervised morphology induction systems must take. 

The field of unsupervised morphology induction is still in its infancy. Although unsuper-

vised morphology induction is a large and complex problem, implemented systems al-

most universally focus on a narrow slice of the most simple forms of morphology. Three 

areas where very little work has been done on morphology induction from an unsuper-

vised perspective are:  

1. Morphological processes other than suffixation,  

2. Morphophonemics, and  

3. Mapping from morphemes to morphosyntactic features.  

The next three sub-sections examine these underserved areas in turn. 

7.2.1 Beyond Suffixation 

This thesis joins most other unsupervised morphology induction work in addressing 

the most prevalent morphological process, suffixation. While other morphological proc-

esses play an important role in many languages, suffixation plays a significant role in the 

morphology of nearly all the world’s languages, including those that also employ other 

morphological processes (Dryer, 2008). Still, suffixation is only the most common mor-

phological process among many, including: prefixation, infixation, reduplication, vowel 
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and consonant mutation, templatic morphology (as in Arabic), as well as suprasegmental 

changes such as tone or stress.  

The next step in the field of unsupervised morphology induction will be to address 

these additional morphological processes. To date, the most promising work on unsuper-

vised induction of non-concatenative morphology is Wicentowski (2002), which explic-

itly assumes an underlying morphology that is not purely concatenative. However, most 

work on unsupervised induction of morphology has focused on concatenative processes. 

Morfessor (Creutz, 2006), for example, agnostically discovers any concatenative morpho-

logical processes. Indeed, ParaMor could be easily extended to analyze the concatenative 

operation of prefixation by treating initial substrings of words as candidate prefixes in 

paradigmatic relationships and final substrings as the syntagmatic candidate stems.  

7.2.2 Morphophonological Change 

Not only does ParaMor restrict morphological analysis to suffixation, ParaMor also 

requires the modeled suffixation to be purely concatenative. But in fact, suffixation is of-

ten not strictly concatenative. Suffixation, like all morphological processes, can be ac-

companied by phonologic changes. Even English’s limited morphology is rife with ex-

amples of morphophonology: many nouns voice a final fricative before the plural, i.e. 

wolf becomes wolves not *wolfs. But more can change than just the word final consonant: 

both Finnish and Turkish, evaluated in the 2007 and 2008 Morpho Challenge competi-

tions, have vowel harmony where vowels in a suffix change to match vowels in the stem.  

Although Wicentowski (2002), again ahead of its time, and Goldwater and Johnson 

(2004) begin to approach the unsupervised learning of morphophonology, most current 

generation unsupervised morphology induction systems do not address morphophonol-

ogy. In particular, neither ParaMor nor Morfessor (Creutz, 2006) model morphophonol-

ogy in a systematic fashion. A logical next step for the ParaMor algorithm would be to 

extend the definition of a scheme from a strict concatenation of c-stems and c-suffixes to 

allow for phonological change when a stem and affix are joined. 
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7.2.3 Mapping Morphemes to Features 

Finally, isolating the stem of a word by identifying and separating off inflectional 

suffixes, as ParaMor does, constitutes only the first step of full morphological analysis. A 

full analysis must also specify the set of morphosyntactic features marked by each identi-

fied affix. Probst (2003) is the only prior attempt I am aware of to automatically associate 

induced suffixes with morphosyntactic features such as Person, Number, or Tense. Be-

ing able to map morphosyntactic features onto discovered morphemes would be particu-

larly useful for syntactic transfer based machine translation, where unification rules over 

morphosyntactic features restrict the set of applicable translation rules.  

Deriving a mapping from surface morphemes to morphosyntactic features requires 

knowledge of the grammatical features that exist in the specific language. Ongoing work 

in the Language Technologies Institute at Carnegie Mellon University (Clark, Frederking, 

and Levin, 2008) plans to acquire this knowledge of grammatical features through a proc-

ess of feature detection. Figure  7.1 pictures the general process of feature detection, 

where a bilingual informant aligns the words in pairs of translated of sentences. In this 

example, a bilingual informant translates the two English sentences “The tree fell” and 

“The trees fell” into Spanish. The feature detection system then compares sets of features 

that are associated with the English sentences. In Figure  7.1, the feature detection system 

would find that the morphosyntactic feature structures associated with this pair of sen-

tences are identical except for one feature value—the Subject Number. To discover 

whether Subject Number is marked in Spanish, the feature detection system compares 

the Spanish words which are aligned to the head, to the dependent, and to the governor of 

the sentence subject. During these comparisons the feature detections system learns that 

Subject Number is marked in all three possible locations, i.e. on the head árbol vs. ár-

boles , on the dependent, El vs. Los , and on the governor cayó vs. cayeron , because 

each of these surface string pairs differ. And now, with knowledge of what features are 

marked in Spanish, c-suffixes like es on árboles , and Ø on árbol(Ø ) can be associated 

with Singular and Plural Number. 
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El cayó árbolØ 

((TENSE past) (LEXICAL-ASPECT activity) 

 (SUBJ ((NUM sg ) (PERSON 3sg) ...))) 

((TENSE past) (LEXICAL-ASPECT activity) ... 

 (SUBJ ((NUM pl ) (PERSON 3sg) ...))) 

S 

NP VP 

V Det N 

The trees fell 

Los cayeron árboles 

  

Subject Number marked in 3 places:  
 

 1. on N head with Ø=sg, es=pl,  
 2. on dependent Det with El=sg, Los=pl, and  
 3. on governing V with ó=sg, eron=pl 

S 

NP VP 

V Det N 

The tree fell 

  

Figure  7.1: A General schema for feature detection from word-aligned translated sen-

tences and associated feature structures. 

7.3 ParaMor: A Successful Morphology Induction Algorithm 

This thesis has empirically shown that the inherent paradigmatic organization of in-

flectional morphemes can be leveraged to induce the morphological structure of natural 

languages in an unsupervised fashion. With algorithms specifically tailored to the unique 

structure of natural language morphology, as the scheme-search and scheme-clustering 

procedures of Chapters 3 and 4 are, the ParaMor system is able to recover models of the 

paradigmatic relationships that exist between the inflectional morphemes of a language. 
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This thesis validated the quality of the discovered paradigmatic models both by direct 

comparison of the induced paradigm models against hand-crafted paradigm descriptions 

(Chapter 4) and by ParaMor’s improvements on state-of-the-art performance in the Mor-

pho Challenge competitions held in 2007 and 2008 (Chapter 6).  
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Appendix A: A Summary of Common Spanish Suffixes 

A Summary of Common 
Spanish Suffixes 

This appendix provides the basic knowledge of Spanish morphology needed to un-

derstand the examples which appear in the main body of this thesis. Spanish has both in-

flectional and derivational morphology. Since ParaMor is designed to identify the basic 

organizational unit of inflectional morphology, namely the paradigm, this appendix pri-

marily describes the inflectional morphology of Spanish. However, Figure A.8, at the end 

of this appendix, lists a few common derivational suffixes of Spanish, including most 

derivational suffixes which occur in examples in this thesis. This guide to Spanish mor-

phological paradigms is based on Gordon and Stillman (1999), an intermediate Spanish 

textbook. 

 Figures A.1 through A.7 present sets of inflectional suffixes and word-final clitics 

that together describe the inflectional morphology of Spanish. Figures A.1 through A.3 

describe the inflectional morphology of Spanish verbs. Verbal suffixes in Spanish mark 
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combinations of Tense, Aspect, and Mood together with Subject Number, Subject 

Person, and in the case of past participles a Gender feature. The verbal paradigm has 

three inflection classes. The inflection classes of the verbal paradigm are morphologically 

stipulated—neither phonology nor syntax determines which inflection class a particular 

lexical verb belongs to.  

Figures A.4 and A.5 give the two phonologically conditioned inflection classes of the 

Number paradigm on Spanish nouns. These two inflection classes mark Singular verses 

Plural on nouns, adjectives, and past participles. Figure A.6 contains the four suffixes 

which constitute the cross-product of the adjectival Number and Gender paradigms. 

In addition to the inflectional suffixes of Figures A.1 through A.6, Spanish has a sys-

tem of pronominal clitics which mimic true inflectional morphemes in Spanish orthogra-

phy. Spanish pronominal clitics are written as a single orthographic word when they oc-

cur immediately following a non-finite verb form. There are three sets of pronominal cli-

tics in Spanish which each masquerade as a separate paradigm: one set of clitics marks 

Accusative Case, another Dative Case, and a third clitic set contains reflexive pronouns. 

Figure A.7 presents the three sets of Spanish pronominal clitics. Although rare, it is pos-

sible for a single non-finite Spanish verb form to attach clitics from each separate set of 

pronominal clitics. In a Spanish written word that contained a clitic from each pronomi-

nal clitic set, the order of the clitics would be: Accusative, Dative, Reflexive—this is the 

order in which the columns of clitics appear in Figure A.7. 

At times the main body of this thesis refers to the set of string unique inflectional 

Spanish suffixes (see for example Section  4.4.1). The Spanish suffixes which contribute 

to this set of inflectional suffixes are the surface forms which appear in Figures A.1 

through A.7. 
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Infinitive er  

Present Participle  iendo  

  
Singular  Plural 

  

Feminine ida idas  
Past Participle  

Masculine  ido idos  

 

1st 
Person 

Singular 

2nd 
Person 

Singular 

3rd 
Person 

Singular 

1st 
Person 
Plural 

2nd or 3 rd 
Person 
Plural 

Present Indicative o es e emos en 

Past Indicative Perfect í iste ió imos ieron 

Past  Indicative Imperfect  ía ías ía íamos ían 

Future Indicative eré erás erá eremos erán 

Conditional ería erías ería eríamos erían 

Subjunctive Perfect a as a amos an 

Subjunctive Imperfect iera ieras iera iéramos ieran 
      

Figure A.1:  The suffixes of the ar inflection class of Spanish verbs 

Figure A.2:  The suffixes of the er inflection class of Spanish verbs 

Infinitive ar  

Present Participle  ando  

  
Singular  Plural 

  

Feminine ada adas  
Past Participle  

Masculine  ado ados  

 

1st 
Person 

Singular 

2nd 
Person 

Singular 

3rd 
Person 

Singular 

1st 
Person 
Plural 

2nd or 3 rd 
Person 
Plural 

Present Indicative o as a amos an 

Past Indicative Perfect é aste ó amos aron 

Past  Indicative Imperfect  aba abas aba ábamos aban 

Future Indicative aré arás ará aremos arán 

Conditional aría arías aría aríamos arían 

Subjunctive Perfect e es e emos en 

Subjunctive Imperfect ara aras ara áramos aran 
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Infinitive ir  

Present Participle  iendo  

  
Singular  Plural 

  

Feminine ida idas  
Past Participle  

Masculine  ido idos  

 

1st 
Person 

Singular 

2nd 
Person 

Singular 

3rd 
Person 

Singular 

1st 
Person 
Plural 

2nd or 3 rd 
Person 
Plural 

Present Indicative o es e imos en 

Past Indicative Perfect í iste ió imos ieron 

Past  Indicative Imperfect  ía ías ía íamos ían 

Future Indicative iré irás irá iremos irán 

Conditional iría irías iría iríamos irían 

Subjunctive Perfect a as a amos an 

Subjunctive Imperfect iera ieras iera iéramos ieran 

      

Figure A.3:  The suffixes of the ir  inflection class of Spanish verbs 

Singular Ø 

Plural s 

Singular Ø 

Plural es 

 Masculine Feminine  

Singular o a 

Plural os as 

 

Figures A.4 and A.5:  The suffixes of the two 

inflection classes of the Spanish paradigm 

for Number on nouns and adjectives 

Figure A.6:  The suffixes of the 

cross-product of the adjectival 

Gender and Number para-

digms. 
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  Accusative   Dative  Reflexive 

 1st Person   
Singular me  me  me 

 2nd Person 
Singular te  te  te 

Masculine  lo   

Feminine  

3rd Person  
Singular la  

le 
 

se 

 1st Person   
Plural nos  nos  nos 

Masculine  los   

Feminine  

2nd or 3 rd    
Person         
Plural las  

les se 

 

Figure A.7:  The pronominal clitics which appear in Spanish orthogra-

phy as three separate paradigms of suffixes. 

Derivational 
Suffix 

Inflected Surface Forms  
that Appear in Examples 

in this Thesis 
Meaning 

ador ador, adores, adora, adoras  Verb → Noun,  Agentive of ar verbs 

idor idor, idores, idora, idoras  Verb → Noun,  Agentive of er and ir verbs

ación ación, ción, sión, aciones, etc.  Verb → Noun,  Abstract noun 

amente amente, mente  Adjective → Adverb  

idad idad, idades  Adjective → Noun  

izar ización  Noun → Verb  

Figure A.8:  A few of the most frequent derivational suffixes of Spanish. 
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Appendix B: Scheme Clustering, a Pseudo-Code Implementation 

Scheme Clustering,      
the Pseudo-Code        

Pseudo-code implementing ParaMor’s scheme-clustering algorithm as described in 

Section  4.3. At base ParaMor employs a bottom-up agglomerative clustering algorithm. 

However, Sections  4.3.1 and  4.3.2 describe several adaptations to the basic agglomerative 

algorithm that aid the clustering of scheme-models of paradigms. All of the adaptations 

discussed in Sections  4.3.1 and  4.3.2 are present in the pseudo-code that begins on the 

next page. 
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//////////////////////////////////////////// 
// The Data Structure of a Scheme-Cluster // 
//////////////////////////////////////////// 
 
// Each cluster is one of two types: 
//   1) A leaf cluster is a wrapper for a scheme 
//   2) A compound cluster is a cluster that result s from the merger of  
//      two child clusters. Each child cluster of a  compound cluster can 
//      either be a leaf cluster or a compound clus ter itself. 
// 
// Leaf clusters and compound clusters inherit comm on properties from 
// the base Cluster struct. 
struct  Cluster { 
 
 // For every ‘small’ scheme a CompoundCluster cont ains, that  
 // CompoundCluster must contain one ‘large’ scheme  (See Section 
 //  4.3.2). Hence, each cluster, whether a Leaf or a Co mpoundCluster,  
 // keeps track of the number of ‘large’ and small’  schemes it  
 // contains. 
 largeSchemeCount = 0; 
 smallSchemeCount = 0; 
 
 // Each Cluster keeps track of the set of morpheme -boundary annotated  
 // word types that license the Cluster 
 licensingBoundaryAnnotatedTypes = null ; 
} ; 
 
struct Leaf subStructOf Cluster { 
 scheme = null ; 
} ; 
 
struct CompoundCluster subStructOf Cluster { 
 childA = null ; 
 childB = null ; 
} ; 
 
 
/////////////////////////////////////////////////// ////////// 
// The Bottom-Up Agglomerative Scheme-Clustering Al gorithm // 
/////////////////////////////////////////////////// ////////// 
 
clusterBottomUp( schemes ) { 
 clusters = buildLeafClusters( schemes ) ; 
 while (true) { 
  [ bestClusterA, bestClusterB ]  = findClustersToMerge( clusters ) ; 
 
  // Stop clustering when there is no pair of clust ers that are  
  // permitted to merge. 
  if ( bestClusterA == null) 
   return clusters; 
 
  newCluster = merge( bestClusterA, bestClusterB ) ; 
  clusters. removeAll( bestClusterA, bestClusterB ) ; 
  clusters. add( newCluster ) ; 
 } 
} 
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buildLeafClusters( schemes ) {  
 foreach ( scheme in schemes ) {  
  leaf = new  Leaf() ; 
  leaf.scheme = scheme; 
  if ( scheme.numberOfLicensingWords >= threshold ) {  
   leaf.largeSchemeCount = 1 ; 
  } else { 
   leaf.smallSchemeCount = 1 ; 
  } 
  foreach ( cSuffix in  scheme.cSuffixes ) { 
   foreach ( cStem in scheme.cStems ) { 
    leaf.licensingBoundaryAnnotatedTypes. add( cStem.‘+’.cSuffix ) ; 
   } 
  } 
  leafClusters. add( leaf ) ; 
 } 
 return  leafClusters; 
} 
 
findClustersToMerge( clusters ) {  
 bestClusterScore = null ; 
 clusterToMergeA, clusterToMergeB = null ; 
 foreach ( clusterA in  clusters ) {  
  foreach ( clusterB greaterThan clusterA in  clusters ) {  
   if ( isMergePermitted( clusterA, clusterB )) {  
    score =  
     cosine( clusterA.licensingBoundaryAnnotatedTypes,  
            clusterB.licensingBoundaryAnnotatedType s) ; 
    if ( score > bestClusterScore ) {  
     bestClusterScore = score; 
     clusterToMergeA = clusterA; 
     clusterToMergeB = clusterB; 
    } 
   } 
  } 
 } 
 return [ clusterToMergeA, clusterToMergeB ] ; 
} 
 
merge( clusterA, clusterB ) {  
 newCluster = new  CompoundCluster () ; 
 
 newCluster.childA = clusterA; 
 newCluster.childB = clusterB; 
 newCluster.largeSchemeCount =  
  clusterA.largeSchemeCount + clusterB.largeSchemeCount; 
 newCluster.smallSchemeCount = 
  clusterA.smallSchemeCount + clusterB.smallSchemeCount; 
 newCluster.licensingBoundaryAnnotatedTypes =  
  union( clusterA.licensingBoundaryAnnotatedTypes,  
        clusterB.licensingBoundaryAnnotatedTypes ) ; 
 
 return  newCluster; 
} 
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isMergePermitted( clusterA, clusterB ) { 
 
 // There are two restrictions on clustering 
 // 
 // Restriction 1: ParaMor discriminatively require s that each pair  
 //   of c-suffixes in each cluster be able to form  words that  
 //   occurred in the paradigm induction corpus by separately  
 //   attaching to a common c-stem. 
 foreach ( cSuffixA in  clusterA ) {  
  foreach ( cSuffixB in  clusterB ) {  
   schemeOfTwoCSuffixes =  
    dynamicSchemeNetwork. generateScheme( cSuffixA, cSuffixB ) ; 
   if ( schemeOfTwoCSuffixes.cStems.size == 0 )  
    return false ; 
  } 
 }  
 
   // Restriction 2: ParaMor requires that there be at  least as many  
 //   ‘large’ schemes as there are ‘small’ schemes in each cluster. 
 if (( clusterA.smallSchemeCount + clusterB.smallSchemeCount ) >  
     ( clusterA.largeSchemeCount + clusterB.largeSchemeCount )) { 
 
  return false ; 
 } 
 
 return true ; 
} 


