
The Algebraic Structure of Attributed Type Signatures

Gerald B� Penn

CMU�LTI�������

School of Computer Science
Language Technologies Institute
Carnegie Mellon University

Pittsburgh� PA

Thesis Committee

Bob Carpenter� Chair
Frank Pfenning
John La�erty
Alon Lavie
Chris Manning

Submitted in partial ful�llment of the requirements
for the Degree of Doctor of Philosophy

c� Gerald Penn� ����

To three respected scholars and friends�

Arunas L� Liulevicius�
Lawrence A� McElwee�

and
William Morrison

Abstract

Feature structures are related to frames in arti�cial intelligence and to record
structures in many programming languages	 They are widely used as a data
structure for natural language processing and their formalizations often in�
clude multiple inheritance and subtyping� which allow for terser descriptions
and a logical control over non�determinism during search	 While it is widely
known that problems in empirical linguistics often under�determine the for�
mal devices that must be employed in their formal expression� it has never
been formally proven what� if anything� is gained by using subtypes� para�
metric types and
or features in a feature logic	 This� in turn� has hampered
our understanding of how typed feature structures relate to other algebraic
structures used in natural language processing and logic programming� such
as systemic networks and lattices of Prolog or �rst�order terms	 Given a
�xed signature� a declaration of types and features� what kinds of informa�
tion can feature structures distinguish with types relative to what they can
distinguish with features� Are types� parametric or otherwise� just a conve�
nient shorthand for bundles of features� If there is a formal trade�o�� can
we use that to our advantage for better �compilation of practical large�scale
grammars� when viewed as logic programs over typed feature structures�

This dissertation is a study of the algebraic structures that underlie at�
tributed type signatures and the universes of typed feature structures that
they induce	 Speci�cally� it proposes de�nitions of signature subsumption
and equivalence to answer these questions with reference to the logic of typed
feature structures as formalized in Carpenter ������	 In addition to the ob�
vious advantages of understanding what the rami�cations of changing the
signature of a program
grammar are� the present study also demonstrates�
with the support of empirical results� that the view of signatures proposed
here can substantially improve the e�ciency of programs written over the
logic of typed feature structures by showing how to embed a signi�cant class

v

vi

of signatures into the lattice of Prolog terms	 In so doing� it demonstrates
that e�cient computation with typed feature structures reduces to the more
general problems of standard logic programming in Prolog� graph coloring
and matrix multiplication	

Acknowledgements

The research program that ultimately yielded this dissertation began when
I enrolled at Carnegie Mellon University to study categorial grammar and
mathematical linguistics with Bob Carpenter	 Just one semester� he assured
me� studying feature logic and some of the computational issues surrounding
its treatment in his forthcoming book� The Logic of Typed Feature Structures�
and then we could look at the good stu�	 That was nine years ago and� as the
reader will quickly notice� this is not a dissertation about categorial grammar	

The fruit of that �rst �and second� semester of study was a logic pro�
gramming language and grammar development system based on typed fea�
ture structures called The Attribute Logic Engine �ALE�	 Its motivation was
the observation that a very simple method for coping with hitherto unwieldy
feature�based grammars could be arrived at by adapting a few proposed so�
lutions for some more general� and now well�understood� problems in the
theory of programming languages and compiler design to the needs of com�
putational linguistics� and that by being simple and well�adapted� it would
be a good method as well	 It worked	 ALE has been very widely used as
a programming and development tool for a wide range of problems both in
natural language processing and elsewhere� and to have been involved with it
may very probably remain the most satisfying experience of my professional
career	 Bob no longer actively works in the area of feature logic �having
subsequently written a very nice book on categorial grammar�� but for hav�
ing provided the inspiration and vision for this line of research� the �rst
acknowledgement and an enormous debt of gratitude goes to him	 Perhaps
more importantly� he has also shown me that research can be quite a lot of
fun	

The second acknowledgement and debt of thanks goes to the ALE users
whose questions� comments and bug reports have been an indirect but still
very great source of encouragement for me to continue with its support and

vii

viii

with further research in this area	 The work described in this dissertation�
in fact� was undertaken with very much the same motivation that ALE orig�
inally had� the search for simple� well�adapted methods� this time mostly
from discrete mathematics� to extend the state of the art in computing with
typed feature structures	 Its results will eventually be incorporated into fu�
ture versions of ALE as well	
I am also particularly grateful to Frank Pfenning for the untiring faith

and guidance he contributed to this work� and for his encyclopedic ability
to connect my questions to relevant problems in other areas of mathematics
and computer science	 Dana Scott�s advice was also quite helpful in the same
respect	 As for the other members of my thesis committee� John La�erty�
Alon Lavie� and Chris Manning� I am also grateful for their support and
willingness to answer my questions	 Herbert Simon also provided me with
a great deal of insight into the role played by early arti�cial intelligence
research in the development of typed feature logic	
Very special thanks are due to Sri Sri Swami Satchidananda� Sri Swami

Karunananda Ma� Sri Swami Divyananda Ma� Sri Swami Sevananda� Abhaya
Thiele� Palita Piperidis and the other inmates of Satchidananda Ashram for
the guidance� support and friendship they provided throughout the course of
my graduate studies	
As for the good friends I made during the four years I spent at Carnegie

Mellon� I am humbled by their comradeship and patient indulgence of my
penchant for Indian vegetarian cuisine� Stuart Eisenstadt� Michael Mecca�
Massimo Paolucci� Thomas Polzin� Shrisha Rao� and Akira Ushioda	
This research was primarily conducted during my three years of employ�

ment as a research scientist in the Sonderforschungsbereich ��� at Eberhard�
Karls�Universit�at T�ubingen	 To the directors of that project� Erhard Hinrichs
and Dale Gerdemann� I am enormously indebted for their patience and �nan�
cial support for this work	 I also bene�tted greatly from the friendship and
interaction I had with Frank Richter� Manfred Sailer� Mike Calcagno� Thilo
Goetz� Shuly Wintner and my other colleagues in T�ubingen� Bjoern Aldag�
Kordula DeKuthy� Frederik Fouvry� John Gri�th� Paul King� Valia Kordoni�
Sandra K�ubler� Detmar Meurers� Guido Minnen� and Adam Przepi�orkowski	
This research also bene�tted from an internship at the Multimedia Com�

munications Research Laboratory at Bell Laboratories during the summer
of ����	 I am indebted to the director� Sid Ahuja� and Bob Carpenter for
providing that opportunity	 I also acknowledge and thank Bell Laboratories
for making available one of the grammars used in the evaluation section at

ix

the end of this dissertation during that internship	
Most of this dissertation was actually written at the Language Technolo�

gies Institute at Carnegie Mellon University in late ����	 I am very grateful
to the director� Jaime Carbonell� for providing me with the opportunity�
resources and freedom to complete this document as quickly as possible	
Other individuals have contributed greatly to the contents of this dis�

sertation� through their publications and personal communications to me
during the course of this work� Mats Carlsson� Gregor Erbach� Andrew Fall�
Bob Kasper� Chris Mellish and Drew Moshier	 My understanding of feature�
structure�based abstract machines was greatly improved upon by my oppor�
tunity to lecture on the subject at the Seminar f�ur Sprachwissenschaft at
Universit�at T�ubingen in the summer of ���� and again with Shuly Wintner
at the Graduate Summer School for Behavioral and Cognitive Neurosciences
at Rijksuniversiteit Groningen in the summer of ����	
Portions of this dissertation have already been published as Penn� �����

Penn� ����� Penn and Carpenter� ����� Penn� ����a� Penn� ����c� Penn�
����d and Penn� ����e� and were presented at the Schloss Dagstuhl IBFI
Seminar on �E�cient Language Processing with High�level Grammar For�
malisms in late ����	 I am very grateful for the comments and discussion
that have resulted from the early dissemination of these results	

x

Contents

� Introduction �
�	� Feature Structures 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 �
�	� Types 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 �
�	� Statement of Thesis and Objectives 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 �

�	�	� Thesis 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 �
�	�	� Objectives 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 �

�	� Structure of the Dissertation 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 �
�	�	� Mathematics and Theoretical Computer Science 	 	 	 	 �
�	�	� Linguistics 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 ��
�	�	� Practical Grammar
Software Development 	 	 	 	 	 	 	 ��

� Attribute�Value Logic ��
�	� The Logic of Typed Feature Structures 	 	 	 	 	 	 	 	 	 	 	 	 	 ��

�	�	� Type Hierarchies 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 ��
�	�	� Meet Semi�lattice Completions 	 	 	 	 	 	 	 	 	 	 	 	 	 	 ��
�	�	� Feature Structures 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 ��
�	�	� Appropriateness and Attributed Type Signatures 	 	 	 ��
�	�	� Subsumption and Uni�cation 	 	 	 	 	 	 	 	 	 	 	 	 	 	 ��
�	�	� Well�Typing 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 ��
�	�	� Join Preservation 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 ��
�	�	� Signature Completion 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 ��
�	�	� Descriptions and Most General Satis�ers 	 	 	 	 	 	 	 	 ��

�	� A Brief History of Typed Feature
Structures 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 ��
�	�	� Description Lists 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 ��
�	�	� Semantic Networks 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 ��
�	�	� KL�ONE 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 ��
�	�	� Feature Structure Uni�cation and Beyond 	 	 	 	 	 	 	 ��

xi

�	� Summary 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 ��

� Abstract Feature Structures and Signature Subsumption ��
�	� Abstract Feature Structures 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 ��
�	� Order�Embeddings and Join�Preserving Encodings 	 	 	 	 	 	 	 ��

�	�	� Symmetric Join Preserving Encodings 	 	 	 	 	 	 	 	 	 	 ��
�	� Signature Equivalence and Subsumption 	 	 	 	 	 	 	 	 	 	 	 	 ��
�	� A Signature of Signatures� 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 ��
�	� Summary 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 ��

� Recursion� Finiteness� and Appropriate Values ��
�	� Product isomorphisms 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 ��

�	�	� Multi�dimensional inheritance 	 	 	 	 	 	 	 	 	 	 	 	 	 	 ��
�	�	� Systemic networks 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 ���

�	� Finiteness 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 ���
�	�	� Cyclic Types and Finite Most General Satis�ers 	 	 	 	 ���
�	�	� Recursive Types and Finite Filters 	 	 	 	 	 	 	 	 	 	 	 ���

�	� Properties of Finite Signatures 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 ���
�	� Signature Unfolding 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 ���
�	� Summary 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 ���

� Parametric Types ���
�	� Parametric Type Hierarchies 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 ���
�	� Induced Type Hierarchies 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 ���
�	� Appropriateness 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 ���
�	� Subsumption with Parametric Signatures 	 	 	 	 	 	 	 	 	 	 	 	 ���
�	� Finiteness 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 ���
�	� Appendix� Proof of Theorem �	� 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 ���
�	� Summary 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 ���

	 Arity and Prolog Terms ���
�	� Subtyping 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 ���

�	�	� Tree Encodings 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 ���
�	�	� Flat�Term Encodings 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 ���

�	� Arity Incrementation 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 ���
�	� Generalized Term Encoding 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 ���
�	� Subsumption Preservation 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 ���
�	� Summary 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 ���

xii

� The Semi�Ring Structure of Signature Speci
cations �	�
�	� Subsumption Matrices and Transitive

Closure 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 ���
�	� Rings� Quasi�Rings and Semi�Rings 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 ���
�	� An Extensible Quasi�Ring Construction 	 	 	 	 	 	 	 	 	 	 	 	 	 ���
�	� Compiling Type and Appropriateness

Restrictions 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 ���
�	�	� Subtyping Cycles 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 ���
�	�	� Meet Semi�latticehood 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 ���
�	�	� Feature Introduction 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 ���
�	�	� Value Restriction Consistency 	 	 	 	 	 	 	 	 	 	 	 	 	 	 ���
�	�	� Appropriateness Cycles 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 ���
�	�	� Join Preservation Condition 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 ���

�	� Summary 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 ���

� Practical Prolog Term Encoding of Typed Feature Struc�
tures ���
�	� Subtyping 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 ���

�	�	� Modules 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 ���
�	�	� Method �� Colmerauer�s method for meet semi�lattices ���
�	�	� Method �� Parametrized Search for an Optimal Encoding���

�	� Features 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 ���
�	� Evaluation 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 ���
�	� Summary 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 ���

� Conclusion ���

xiii

xiv

List of Figures

�	� A feature structure for subject�verb agreement in English	 	 	 �
�	� A directed�labelled�graph representation of Figure �	�	 	 	 	 	 �
�	� A typed feature structure for subject�verb agreement	 	 	 	 	 	 �
�	� A featureless type hierarchy for subject�verb agreement	 	 	 	 	 �
�	� A type hierarchy for subject�verb agreement	 	 	 	 	 	 	 	 	 	 	 �
�	� A typed feature structure in which the liker and liked are

referred to by the same index �typed feature structure	 	 	 	 	 	 ��
�	� A typed feature structure in which the liker and liked are

referred to by indices with the same substructures	 	 	 	 	 	 	 ��

�	� An example of a non�bounded�complete partial order	 	 	 	 	 	 ��
�	� An example of a bounded complete partial order	 	 	 	 	 	 	 	 ��
�	� A worst case for the Dedekind�MacNeille completion at n � �	 ��
�	� A fragment of an English grammar in which supertype branch�

ing distinguishes �dimensions of classi�cation	 	 	 	 	 	 	 	 	 	 ��
�	� The MSL completion algorithm	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 ��
�	� An example typed feature structure	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 ��
�	� A typed feature structure with an in�nite number of nodes	 	 	 ��
�	� The directed graph representation of a cyclic feature structure	 ��
�	� The AVM representation of Figure �	�	 	 	 	 	 	 	 	 	 	 	 	 	 	 ��
�	�� The AVM representation of a feature structure with an acyclic

re�entrancy	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 ��
�	�� The AVM representation of a feature structure with struc�

turally identical but non�re�entrant substructures	 	 	 	 	 	 	 	 ��
�	�� The AVM representation of the feature structure in Figure �	�	 ��
�	�� An example type signature with upward closure and right

monotonicity assumed	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 ��
�	�� The AVM representation of a feature structure with struc�

turally identical but inequated substructures	 	 	 	 	 	 	 	 	 	 	 ��

xv

�	�� An example of feature structure subsumption	 	 	 	 	 	 	 	 	 	 ��
�	�� Two feature structures whose sets of nodes intersect	 	 	 	 	 	 ��
�	�� Two feature structures whose sets of nodes do not intersect	 	 ��
�	�� A non�statically typable signature	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 ��
�	�� Well�typed uni�cation in a non�statically typable signature	 	 	 ��
�	�� A semantic representation from Pollard and Sag� ����	 	 	 	 	 ��
�	�� A semantic representation from Pollard and Sag� ����	 	 	 	 	 ��

�	� An example of the necessity of pre�x�consistent closure in A�
uni�cation	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 ��

�	� An example of the necessity of explicitly closing path inequa�
tions under path equality in A�uni�cation	 	 	 	 	 	 	 	 	 	 	 	 ��

�	� An example order�embedding that cannot translate least up�
per bounds	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 ��

�	� An example of S and R in the proof of Theorem �	�	 	 	 	 	 	 ��
�	� An example of �g in the proof of Theorem �	�	 	 	 	 	 	 	 	 	 	 ��
�	� A non�classical join�preserving encoding between BCPOs for

which no classical join�preserving encoding exists	 	 	 	 	 	 	 	 ��
�	� A classical join�preserving encoding from an in�nite ascending

binary tree to an in�nite ascending ternary tree	 	 	 	 	 	 	 	 	 ��
�	� A classical join�preserving encoding from an in�nite ascending

ternary tree to an in�nite ascending binary tree	 	 	 	 	 	 	 	 	 ��
�	� Figure �	� augmented to be equivalent to Figure �	�	 	 	 	 	 	 ��
�	�� Part of the correspondence between index values in Figures �	�

and �	�	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 ��
�	�� Two signatures with no least upper bounds along with two of

their minimal upper bounds	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 ��
�	�� Subsumption between the two lower signatures of Figure �	��

due to top�smashing	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 ��
�	�� Two signatures with greatest elements that have no least up�

per bounds and three of their minimal upper bounds	 	 	 	 	 	 ��

�	� An in�nite series of equivalent signatures	 	 	 	 	 	 	 	 	 	 	 	 	 ��
�	� An in�nite descending chain of signature approximations	 	 	 	 ��
�	� A signature with a cyclic type	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 ��
�	� A signature with cyclic types� and its in�nite descending chain

of approximations	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 ��
�	� An example of a systemic network	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 ���

xvi

�	� An attributed type signature �after MSL completion� that en�
codes the systemic network in Figure �	�	 	 	 	 	 	 	 	 	 	 	 	 	 ���

�	� A simple signature with a recursive type	 	 	 	 	 	 	 	 	 	 	 	 	 ���

�	� An outline of the classi�cation of types	 	 	 	 	 	 	 	 	 	 	 	 	 	 ���

�	� An example �nite signature for demonstrating the failure of
properties given in Section �	�	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 ���

�	�� The subtype�appropriateness graph of Figure �	�	 	 	 	 	 	 	 	 ���

�	�� Part of T T A for the signature in Figure �	�	 	 	 	 	 	 	 	 	 	 	 ���
�	�� The signature in Figure �	� plus a recursive type for lists	 	 	 	 ���

�	�� Two equivalent minimal signatures for which no apparent nor�
malization criterion is forthcoming	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 ���

�	�� Two equivalent minimal signatures with �nite T T A	 	 	 	 	 	 ���

�	� A fragment of the HPSG type signature	 	 	 	 	 	 	 	 	 	 	 	 	 ���

�	� A manually unfolded sub�hierarchy	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 ���

�	� A subtype that inherits type variables from more than one
supertype	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 ���

�	� Fragment induced by Figure �	�	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 ���

�	� The would�be induced hierarchy of Figure �	� if anelistlist ��� were
�	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 ���

�	� A parametric type hierarchy for which I�P � is not a BCPO	 	 ���

�	� A parametric type hierarchy for which I�P � is not a partial
order	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 ���

�	� A parametric type hierarchy for which a straightforward map�
ping of parameters to features fails	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 ���

�	� An example of a parametric signature that is not parametri�
cally join�preserving	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 ���

�	�� The �rst extended signature of Figure �	�	 	 	 	 	 	 	 	 	 	 	 	 ���

�	�� A schematic illustration of a parametrically separated para�
metric type hierarchy	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 ���

�	�� A would�be parametric signature with no greatest type that
does not satisfy right monotonicity� p�r����� v q�r������ but
r�����vr��r�����	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 ���

�	�� A would�be parametric signature whose parametric types are
not totally ordered that does not satisfy right monotonicity�
p�p��p������ v q�p��p������� but p��p������vr�p��p������ be�
cause p�����vp��p�����	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 ���

xvii

�	� A sample tree�encodable type signature	 	 	 	 	 	 	 	 	 	 	 	 	 ���
�	� A �type signature for Prolog terms	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 ���
�	� A type hierarchy with full�product multiple inheritance	 	 	 	 	 ���
�	� A type hierarchy with no tree encoding	 	 	 	 	 	 	 	 	 	 	 	 	 ���
�	� A �at�term encoding of Figure �	�	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 ���
�	� A Colmerauer�method encoding of Figure �	�	 	 	 	 	 	 	 	 	 	 ���
�	� A signature that introduces a feature at a join�reducible type	 ���
�	� A Colmerauer encoding of the signature in Figure �	�	 	 	 	 	 	 ���
�	� An approximate encoding of Figure �	� using a singleton vari�

able for inappropriate feature positions	 	 	 	 	 	 	 	 	 	 	 	 	 	 ���
�	�� The second case in the proof of Lemma �	�	 	 	 	 	 	 	 	 	 	 	 ���
�	�� A statically typable would�be signature that multiply intro�

duces f at join�reducible elements with di�erent value restric�
tions	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 ���

�	�� A pictorial overview of the generalized encoding	 	 	 	 	 	 	 	 	 ���

�	� An example type hierarchy	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 ���
�	� The subsumption matrix of Figure �	�	 	 	 	 	 	 	 	 	 	 	 	 	 	 ���
�	� The base subsumption matrix of Figure �	�	 	 	 	 	 	 	 	 	 	 	 ���
�	� An embedding of BOR into Z for ring multiplication	 	 	 	 	 	 ���
�	� The Boolean type hierarchy	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 ���
�	� The trivial type hierarchy lifted to produce the Boolean hier�

archy	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 ���
�	� The quasi�ring constructed from Figure �	�	 	 	 	 	 	 	 	 	 	 	 ���
�	� An example type signature	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 ���
�	� The value declaration matrix of Figure �	�	 	 	 	 	 	 	 	 	 	 	 	 ���
�	�� The value restriction matrix of Figure �	�	 	 	 	 	 	 	 	 	 	 	 	 ���
�	�� The introduction matrix of Figure �	�	 	 	 	 	 	 	 	 	 	 	 	 	 	 ���
�	�� A type signature with consistent value restrictions	 	 	 	 	 	 	 ���
�	�� The value declaration matrix of Figure �	��	 	 	 	 	 	 	 	 	 	 	 ���
�	�� The value restriction matrix of Figure �	��	 	 	 	 	 	 	 	 	 	 	 	 ���
�	�� The convolution of Figure �	��	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 ���

�	� A sample tree�encodable type signature	 	 	 	 	 	 	 	 	 	 	 	 	 ���
�	� A type hierarchy with no tree encoding	 	 	 	 	 	 	 	 	 	 	 	 	 ���
�	� A binary tree and its optimal �at�term encoding	 	 	 	 	 	 	 	 ���
�	� A type hierarchy whose �at term encoding grows linearly with

d	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 ���

xviii

�	� A type hierarchy whose �at term encoding grows logarithmi�
cally with x	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 ���

�	� The subsumption matrix for Figure �	�	 	 	 	 	 	 	 	 	 	 	 	 	 	 ���
�	� Evaluation on the ALE HPSG grammar	 	 	 	 	 	 	 	 	 	 	 	 	 ���
�	� Evaluation on the Bell Labs Categorial Grammar	 	 	 	 	 	 	 	 ���
�	� Comparison of LiLFeS and the ALE Colmerauer
optimal en�

coding on naive HPSG	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 ���

xix

xx

List of Tables

�	� Preliminary comparison of transitive closure algorithms on two
type hierarchies	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 ���

�	� Comparison of LiLFeS and ALE on the nrev��x��K benchmark	���

xxi

xxii

Chapter �

Introduction

��� Feature Structures

Feature structures have enjoyed a very wide use in linguistics� psychology
and elsewhere for the past �fty years and have been employed at every level
of linguistic theory	 They are related to the record structures found in many
programming languages� and to the �frames proposed in the context of
knowledge representation in arti�cial intelligence	

While the formal de�nitions used in these applications� where they are for�
mally de�ned at all� often vary in some important details� feature structures
are fundamentally characterized by a �nite mapping from features� sometimes
called attributes� to values	 Figure �	� shows one way of depicting a feature
structure that might be used to express the properties of a linguistic entity
in three aspects that are salient to subject�verb agreement in English	 These
aspects� which are the features� are conventionally shown in small capitals
at the left�hand side of each pair shown� with their respective values given
on the right	 Out of respect for this manner of depiction� feature structures
are sometimes called attribute�value matrices� or AVMs	 They can also be
depicted as labelled directed graphs� as shown in Figure �	�	

�
�person third
number singular
gender masc

�
�

Figure �	�� A feature structure for subject�verb agreement in English	

�

� CHAPTER �� INTRODUCTION

third
person

singular
number

masc
gender

Figure �	�� A directed�labelled�graph representation of Figure �	�	�
���
index
person third
number singular
gender masc

�
���

Figure �	�� A typed feature structure for subject�verb agreement	

In this case� the values might come from some assumed collection of atoms
that are available as values for any feature	 Often� it is assumed that values
can be feature structures themselves� in which case it makes sense to speak
of values that lie at the end of some path� or �nite sequence� of features	
The principal bene�t of feature structures is that they provide named access
to properties or substructures in the formal representation of an entity by
means of these paths	 This is in contrast to �rst�order terms� for example�
whose subterms are referred to by means of ordinals� �rst argument� second
argument of the �rst argument� etc	

��� Types

Semantic typing of feature structures is as old as feature structures them�
selves� since features were originally used to relate concepts� not speci�c
instances of concepts	 Types are typically arranged in a partial order inter�
preted by set inclusion� called type hierarchies	 Typing and type hierarchies
serve as an additional dimension along which to classify or organize knowl�
edge	 In the present study� the type of a feature structure will be indicated
in the upper left�hand corner of its AVM representation� as in Figure �	��
which shows the same feature structure having been assigned the type index	
Instead of using features and values� we could use types alone to represent

subject�verb agreement properties in a large type hierarchy rooted at the

���� TYPES �

�

index

index �

index �sg

index �

���

index �

���

index sg

index sm

index �sgmasc

index pl

index �pl index pm

index �plmasc

index masc

index �masc

index fem

���

index neut

���

Figure �	�� A featureless type hierarchy for subject�verb agreement	

�

index
person�person
number�number
gender�gender

person

�rst second third

number

singular plural

gender

masc fem neut

Figure �	�� A type hierarchy for subject�verb agreement	

type� index� part of which is shown in Figure �	�	 Many times� these partial
orders are written with the opposite orientation� but following Carpenter
������� they will be depicted here with � �pronounced �bottom� as the
most general type� with more speci�c subtypes written above their more
general supertypes� with joins corresponding to least upper bounds� and with
meets corresponding to greatest lower bounds	 A central concern to computer
scientists who work with typed feature structures is the e�cient computation
of joins� called uni�cation� which corresponds to the consistent combination
of information about concept membership	

We could also use feature�value pairs along with types� but in a more
restricted way� by imposing a set of appropriateness conditions to specify
which types of feature structures can bear a certain feature� which types of
feature structures must bear a certain feature� what the type of a feature�s
value must be �also called value restrictions�� or any combination of these	
A speci�cation of a type hierarchy� a set of features� and appropriateness
conditions is known as a type signature or attributed type signature� with the
speci�c interpretation of the appropriateness conditions remaining implicit	
Figure �	� is a type signature with no features	 Figure �	� is a type signature
with types� features and appropriateness suitable for supporting the expres�

� CHAPTER �� INTRODUCTION

sion of subject�verb agreement properties tacitly assumed in Figure �	�	 The
appropriateness conditions are depicted as subscripts on types� with value
restrictions occurring after the feature names	

Figure �	� and Figure �	� have something in common� they are both
signatures over which feature structures for describing a view of subject�
verb agreement can be articulated	 On the other hand� they are not the
same signatures they have di�erent types� features and appropriateness
conditions and they may have certain practical qualities that would cause
us to prefer one over the other	 Other possibilities also exist	 For example�
one could view index as a parametric type that maps a triple of person�
number and gender subtypes to a featureless type such as one of those in
Figure �	�	

��� Statement of Thesis and Objectives

The purpose of this thesis� broadly speaking� is to formalize what it means
for two signatures to bear this kind of similarity� with an eye towards under�
standing the structure that exists among the feature structures they induce�
particularly with respect to least upper bounds or uni�cation	 It will be
shown that this minimalist view of signatures and the algebraic structures
they induce can be used to improve our understanding of several practical
problems in computer science as they pertain to logics of computation with
typed feature structures	

In a sense� this dissertation does not argue for any new solutions to logic
programming with typed feature structures	 Instead� the claim is that ef�
�cient computation with typed feature structures� normally logic program�
ming or some fragment of it such as natural language parsing or generation�
is merely a collection of already well�studied problems in computer science
 logic programming in Prolog� matrix multiplication and graph coloring� to
name a few salient examples disguised as new problems by more super��
cial di�erences that have occupied an all�too�central position within feature�
structure�based research� particularly in computational linguistics	 The dis�
guise is removed by a proper understanding of the algebraic structure of
attributed type signatures� their feature structures and the potential equiv�
alences among them	

���� STATEMENT OF THESIS AND OBJECTIVES �

����� Thesis

The algebraic structures underlying attributed type signatures� their speci��
cations� and the sets of feature structures that they induce admit a precise
formalization of the equivalences that can intuitively appear to exist among
the information states distinguished by di�erent signatures	 This formal
equivalence can be used to substantially increase the e�ciency of the prac�
tical task of programming with typed feature structures� and lends a better
understanding to several more theoretical problems in mathematics and com�
puter science	

����� Objectives

This dissertation provides a justi�cation of this thesis by making the following
speci�c contributions�

�	 Join�preserving Embeddings it provides a better and more general
abstraction of what characterizes a join�preserving embedding� i	e	� em�
beddings of one meet semi�lattice into another that preserve the results
of uni�cation� than the conventional de�nition	

�	 Signature Subsumption and Equivalence using that generalized
de�nition� it presents a formal de�nition of these concepts that corre�
sponds to the intuitive similarity mentioned in the last section	

�	 Feature�Subtype Equivalence it proves that every type signature
is equivalent to a feature�free type signature� i	e	� a type hierarchy� but
that features do add more expressivity when one considers the case of
�nite signatures because their equivalent feature�free signatures may
be in�nite	 Conventional wisdom on this point� while acknowledging
that there is a di�erence in expressive power� has incorrectly pointed
to another cause	

�	 Parametric Typing it presents the �rst formalization of parametric
typing that is general enough to accord with its use in both the theory of
programming languages and feature�structure�based linguistic theories
such as Head�driven Phrase Structure Grammar �HPSG� Pollard and
Sag� �����	

�	 Parametric Typing Equivalence it locates an equivalence between
an important class of parametric type signatures and non�parametric

� CHAPTER �� INTRODUCTION

type signatures that can be used to extend the abilities of existing
programming languages based on attributed type signatures to handle
parametric types e�ciently and with minimal modi�cation	 Paramet�
ric types provide yet another dimension� together with subtypes and
features� along which signatures can vary while remaining equivalent	
In contrast to features� it is proven that parametric types add no extra
expressive power from a formal standpoint� but provide a far more ele�
gant means of higher�order reasoning in a type system� while allowing
for signi�cantly more compact encodings of information	

�	 Term Encoding It uses the generalized notion of join�preserving
embeddings to provide an embedding of typed feature structures over
any statically�typable attributed type signature into Prolog terms� thus
reducing logic programming over typed feature structures to a Pro�
log preprocessing step� and admitting easy solutions to the problems
of coroutining and constraint logic programming with typed feature
structures	

�	 Signature Speci
cations it corrects several previous misconceptions
about algebraic closure operations on partial orders� demonstrates that
the compilation of any attributed type signature reduces entirely to
matrix�theoretic operations on sparse matrices� and characterizes a new
class of sparse matrices useful for knowledge representation for which
specialized multiplication algorithms can be developed	 Preliminary
results suggest that these methods can improve compilation times on
large signatures by a factor of ��� or more over naive transitive closure
algorithms and by up to a factor of ���� over closure by optimized
matrix multiplication algorithms such as Strassen�s algorithm	

�	 Optimal Term Encoding combining the matrix�theoretic view of
type signatures in the absence of features with the Prolog term encod�
ing of typed feature structures� it solves the hitherto open problem of
�nding the optimal join�preserving �at �rst�order�term encoding of an
arbitrary �nite semi�lattice� along with a complexity analysis	

The combination of the practical insights derived from this work have led to
the development of an improved version of the Attribute Logic Engine �ALE�
Carpenter and Penn� ������ a logic programming language based on the logic
of typed feature structures� and its reference English grammar that is faster
than the current version of ALE by a factor of slightly more than �������	

���� STRUCTURE OF THE DISSERTATION �

��� Structure of the Dissertation

Because of the interdisciplinary nature of this work� it will be useful to con�
sider the broad structure of this dissertation in outline from more than one
perspective� each based on a discipline that will perhaps be informed by it	

����� Mathematics and Theoretical Computer Science

First and foremost� this dissertation represents an attempt to arrive at a
proper understanding of the algebra of information states that is induced by
combining a partially ordered set of types with appropriateness conditions�
a certain kind of constraint on the presence and values of their features	
Feature structures can be thought of as representing local environments

or call�stack frames� in which case feature values represent logical variables
de�ned within the scope of those environments	 The connection between
earlier versions of the logic of typed feature structures and the theory of
programming languages was �rst made by A�!t�Ka�ci ������� and later de�
veloped by Moshier ������	 The version of the logic used in the present
dissertation together with its connection to domain theory was presented
by Carpenter ������	 Several connections to category theory have also been
drawn by Moshier �����a�b�	 Central to all of these contributions has been
the attempt to isolate and explore the signi�cance of combining internally
structured objects records� essentially with the external structure of
inclusional polymorphism and the subsumption that it induces	
From a mathematical and philosophical point of view� attributed type

signatures can be thought of as very elegant and compact representations of
�often in�nite� partial orders of elements that characterize the possible par�
tial states of knowledge that one can entertain for some empirical domain	
While there is a substantial body of work on the theory of lattices and par�
tial orders that has certainly informed the development of these signatures
 most signi�cantly� the importance of least upper bounds� i	e	� uni�cation
 the evolution of attributed type signatures has been driven mainly by
empirical demands� mostly from very early work in arti�cial intelligence and
psychology on the representation of human memory and reasoning� and from
recent work in computational linguistics on the view of parsing a sentence
as the consistent combination of partial information about grammaticality
and meaning that the words of which it is comprised provide	 As a result�
attributed type signatures exhibit some rather odd but still meaningful de�

� CHAPTER �� INTRODUCTION

partures from more mainstream work in lattices� the theory of programming
languages and knowledge representation	
There has been some previous formal work on logics of feature terms or

typed feature structures	 Nearly all of that work has elected to focus on
the formal problem of �nding a model�theoretic denotational semantics that
appropriately relates feature structures to the collections of phenomena in
the world that their partial information describes� rather than to the par�
tial information states themselves	 Certainly� many of the earlier attempts
at knowledge representation from which feature structures grew are painful
reminders of how essential such an external criterion is for verifying correct�
ness	 While this endeavor is certainly faithful to those reminders and� indeed�
consistent with the introductory paragraphs of a very large body of genera�
tive linguistics literature� if that denotational semantics can only parrot the
syntax of feature structures or their signatures� as these models inevitably
have done� it is a sign either that we know far too little about the phenomena
we seek to describe or that the correct level of abstraction and the essential
properties of the correct objects in these models have still not been found	
In the present case� it is likely a combination of both	
The assumption that underlies the present study is that� introductory

paragraphs notwithstanding� the occupation in which generative linguists
are actively employed is one of providing a formal description not of lan�
guage itself but of the means by which the grammaticality of an utterance is
elegantly ascertainable� i	e	� a simple process that functionally and precisely
corresponds to formal competence while still making no epistemic commit�
ment to the biological mechanisms of linguistic comprehension	 Such an
assumption entails that the use of features or subtypes is one governed di�
rectly by practical considerations of the behavior of partial information states
relative to the algebra that captures the essential or de�ning characteristics
of that process� rather than by its consequences with respect to predicting
the existence or nature of its empirical subjects	 If in providing some mathe�
matical relief to the more immediate concerns of the former� it forsakes what
is arguably more germane to the study of language� this dissertation can
only o�er an apology in chorus with the adherents of the current generative
enterprise	
This algebraic structure itself is thus the criterial semantics that we should

be seeking	 Speci�cally� it provides a criterion that can be used to evalu�
ate the correctness of an attributed type signature as a speci�cation of the
organization and interaction of di�erent sources of knowledge �for exam�

���� STRUCTURE OF THE DISSERTATION �

ple� knowledge of language� relative to the process of consistently combining
them	 Individual feature structures themselves can then be taken to model
individual descriptions of information relative to that signature	 This is a
tacit assumption underlying the work of Carpenter ������ as well� although
the focus there favors a detailed treatment of the relationship between de�
scriptions and feature structures� much in the style of the feature structure
modelers� rather than of that between signatures and algebras of feature
structures	 The present study favors the latter primarily because of appro�
priateness and the non�modular in�uence that it exerts on signatures as a
means of classifying partial knowledge	
The next chapter presents an introduction to the logic of typed feature

structures as presented in Carpenter� ����� with the crucial di�erence that all
assumptions of �niteness are removed except the assumption that there are
�nitely many features� on which appropriateness intuitively seems to depend	
Mathematically� the assumption that there are �nitely many types� or that
feature structures have �nitely many substructures is an arbitrary restriction
that obstructs a very elegant insight� that the induced algebras of information
states can be viewed as signatures themselves	 This chapter also defends
Carpenter�s ������ view of signatures as bounded complete partial orders�
however� by noting that the appropriate abstraction of closure under bounded
completeness in this context is the same as what is known in mathematics
as the Dedekind�MacNeille completion and that� given the assumption that
most pairs of types in the original partial order are join�incompatible� this
completion can be performed e�ciently in practice	 Finally� it attempts to
put typed feature structures into an historical context in order to explain
some of their anomalies relative to other description logics and knowledge
representation languages	
Because the algebraic structure of feature structures is one de�ned al�

most exclusively by the uni�cation operator� a central concern in this study
is how to compare the behavior of two carriers with respect to this opera�
tor	 Uni�cation�preserving or join�preserving maps are a well�studied class
of functions in both lattice theory and knowledge representation theory as
providing the essential characterization of that comparison	 They are not�
however	 Chapter � presents the classical de�nition of a join�preserving em�
bedding and then generalizes it to what is argued to be a better� more essen�
tial characterization	 It also presents an abstraction of feature structures as
the formalization of our intuitive notion of �information states� and com�
bines the two to de�ne the notions of signature subsumption and signature

�� CHAPTER �� INTRODUCTION

equivalence� which provide an initial formal response to the question posed
at the beginning of this introduction� when can two signatures be regarded
as equivalent� It is then shown that the symmetric closure of signature sub�
sumption entails signature equivalence only in the �nite case� and that the
collection of all signatures forms a proper pre�order	
Chapter � presents a di�erent kind of abstraction of feature structures and

uses it to show how attributed type signatures can tractably encode some
related conceptual taxonomies in computational linguistics and computer sci�
ence� such as systemic networks� an encoding problem that was previously
thought to be intractable	 It then uses it to re�introduce Carpenter�s as�
sumptions of �niteness� and presents a classi�cation of types and signatures
that corresponds to the preservation of �niteness in the induced algebra	
For practical purposes� the relevant interpretation of the above question� of
course� is what sort of equivalence can exist among �nite signatures only	
This also establishes a result regarding the expressive power of features in an
attributed type signature� �nite signatures with features can express algebras
of information states that only an in�nite signature could without them	
The remaining chapters present some noteworthy extensions and appli�

cations of attributed type signatures	 Chapter � considers the addition of
parametric typing to attributed type signatures	 Previous work on combin�
ing inclusional and parametric polymorphism has not been general enough
to account for their use in computational linguistics	 This chapter provides
an elegant formalization of the intuition behind their use� again using the
algebraic structure of information states as an external criterion to ensure
the correctness of the formalization	 It also considers the expressive power of
parametric types and shows that� in contrast to features� parametric types
do not add any additional expressive power under assumptions of �niteness	
A construction is also presented for inducing �nite subsignatures of in�nite
signatures� which provides a kind of modularity that opens up new potential
applications for parametric types relative to how they are currently used in
linguistics	
Chapter � considers the question of Prolog term encodings of typed fea�

ture structures� beginning with a review of some important lesser�known
work on �rst�order term encodings of lattices	 It has been an open question
for the last eight years as to how to extend this work to attributed signa�
tures� i	e	� to the existence of features and appropriateness conditions	 This
chapter shows that� surprisingly� the collection of Prolog�term�encodable at�
tributed signatures is exactly the same as the collection of statically typable

���� STRUCTURE OF THE DISSERTATION ��

attributed signatures� i	e	� those signatures that require no run�time type
inference	 In other words� the potential for non�static typability �due to
the value restrictions of appropriateness conditions� is the only factor that
distinguishes algebras of typed feature structures from the lattice of Prolog
terms	 As a result� appropriateness can be viewed as a set of empirically
mandated constraints that steer what would otherwise be a record algebra
with in�nite�branching terms back to a very conservative extension of the
same terms used to generalize the partial information states of �rst�order
terms� thus providing a very elegant� although unwitting� convergence of the
needs of empirical linguistics and computational logic	
Chapter � takes a slight departure and considers the relationship between

signatures and speci�cations of signatures� which typically assume various
closure operations such as the transitive closure of subsumption	 This chapter
reconsiders the algebra that underlies transitive closure� which� contrary to
some earlier misconceptions� is argued to be matrices over the closed boolean
semi�ring	 It is shown that an extension of this algebra can be constructed
from any �nite bounded complete partial order with features and appropri�
ateness� i	e	� any �nite signature	 It also identi�es a new class of sparse matrix
multiplication algorithms that will be particularly important to typed pro�
gramming language and knowledge representation research as the number of
concepts or types in their inheritance or class hierarchies becomes su�ciently
large	
Chapter � reconsiders the problem of Prolog term encoding in the light

of the results of Chapter �	 The same matrix�theoretic reduction given there
can also be used to solve the open problem of �nding the smallest�arity �at
�rst�order term encoding of a �nite lattice	 This can also be viewed as an
interesting extension of the classical keyword con�icts or minimal intersec�
tion graph problems	 An empirical evaluation of some potential encoding
algorithms for typed feature structures is also given at the end	

����� Linguistics

This dissertation concerns provable� logical equivalences of attributed type
signatures and their consequences for the representation of partial empir�
ical knowledge with typed feature structures	 The logic of typed feature
structures is also widely used as a means of stating principles in theoretical
linguistics� although the boundary between its usage as a formal theoreti�
cal device and its usage as a tool for grammar engineering has often been

�� CHAPTER �� INTRODUCTION

blurred	 The present study focuses on partial information about empirical
objects� which is relevant not only to considerations of processing but also
to the representation of theoretically interesting sets of those objects� which
partial information states can be taken to denote	 The �rst�class represen�
tation of these sets� rather than just as a disjunction of elements� is a much
more elegant way to state generalizations over them in the principles of the
grammar	
The goal of the linguist in the theoretical pursuit is often to provide a

statement of those principles that is the simplest to conceive of� the easiest
to extend to other human languages� the most conservative in its perturba�
tion of commonly accepted principles as it encompasses new data� and
or
the most natural in terms of capturing generalizations that are important to
a given research community	 One of the consequences of the logical equiva�
lences that exist between attributed type signatures is that empirical data�
from linguistics or any other domain� necessarily under�determine their own
expression in the logic of typed feature structures when considered from a
purely formal point of view	 More aesthetic criteria such as those listed above
can be� and have been used to argue for the superiority of one or another of
various equivalent expressions as signatures	
This dissertation rejects the use of these criteria here on the grounds that�

�	 they assume a prior set of formally equivalent alternatives� and thus
assume a common and correct knowledge of formal equivalence among
attributed type signatures that did not exist �until now��

�	 they have not yet been formalized themselves to the extent that they
can be used to objectively judge otherwise equivalent signatures� and

�	 none of them enjoy a consensus of opinion on their importance or truth	

Some of the results of this dissertation can� in fact� be used to furnish the
alternatives to such debates	 An understanding of the formal equivalences
presented here� however� is a necessarily independent and preliminary one to
their own appreciation	
On the other hand� a proper understanding of attributed type signatures

alone may be enough to resolve many representation issues	 For example� a
wide range of agreement phenomena in language is represented by what is
often called structure�sharing� here called re�entrancies� among the person�
number�gender indices referred to above	 A semantic state of a�airs in which
someone likes himself may be represented as in Figure �	�	 The numerical tag

���� STRUCTURE OF THE DISSERTATION ��

�
�������

liking

liker

�
���

� index
person third
number singular
gender masc

�
���

liked �

�
�������

Figure �	�� A typed feature structure in which the liker and liked are
referred to by the same index �typed feature structure	

�
���������������

liking

liker

�
���

� index
person � third
number � singular
gender � masc

�
���

liked

�
���

� index
person �

number �

gender �

�
���

� � �

�
���������������

Figure �	�� A typed feature structure in which the liker and liked are
referred to by indices with the same substructures	

indicates that the value of liker is extensionally the same feature structure
as the value of liked	 But the signature that induces this feature structure
also induces the feature structure in Figure �	�	 In this feature structure� only
the person� number and gender values are re�entrant	 The potential re�
entrancy of the indices themselves is prohibited by an inequation� a kind of
negative re�entrancy	 The same signature also induces the feature structure
in which both indices and all of their substructures are distinct �inequated��
which conventionally means that the indices refer to two di�erent individuals	

The question for the theoretical linguist then arises as to how it might be
possible to construct an experiment that would determine when Figure �	� is
the correct representation	 If it is to be interpreted as meaning that the in�
dividuals are the same� then the experiment should distinguish it from cases
in which Figure �	� is correct� because these are not mutually consistent�
i	e	� they cannot refer to the same object in the world	 If it is to be inter�

�� CHAPTER �� INTRODUCTION

preted as meaning that the individuals are di�erent� then the experiment
should distinguish it from cases in which the third� fully�inequated alterna�
tive is correct� because these are not mutually consistent either	 This is an
important question if one principle of grammar prohibits agreement by in�
equating indices� and another principle requires identical person� number
and gender information� the feature structure in Figure �	� is still licensed
by the grammar	
This is a case in which a convention of representation� here the convention

of using features for person� number� and gender information in indices� has
persisted in the absence of a coherent picture of what information states
are actually posited by its signature �Figure �	��	 The alternative signature�
one in which only subtypes are used �Figure �	��� does not su�er from the
existence of a spurious extra possible feature structure� but was presumably
avoided because of the nuisance of working with so many explicit types	
This is a matter of convenience� however� not a matter of representation	 As
Chapter � shows� there is another alternative� one in which a parametric type�
index�third�singular�masc�� is used to represent indices	 This simultaneously
is as compact as the feature�based representation� but avoids dealing with
an extra possibility like Figure �	� because parameters cannot be re�entrant	
Parametric types have not been used in theoretical linguistics apart from
lists and sets of other types� again because of a lack of formal understanding
of their consequences	
Theoretical linguists working in the realm of typed�feature�structure�

based formalizations of grammar will hopefully be able to glean from this
dissertation a better understanding of the consequences that the design deci�
sions and changes they make with their attributed type signatures will have	
Some of those will render their grammars more or less e�ciently parseable	
The more important consequences� however� pertain to precisely predicting
all and only the grammatical utterances of some �fragment of� natural lan�
guage	 The promissory note that every �constraint�based theory of gram�
mar� including HPSG� has issued is that there will be something fundamen�
tally more modular� declarative� transparent� and� ultimately� empirically
revealing about grammars articulated as collections of constraints that de�
lineate regions of ungrammaticality on an otherwise grammatical easel	 That
this note can actually be paid is not at all a certainty� every large�scale at�
tempt at a feature�structure�based grammar� again including those based on
HPSG� has inevitably been forced to retreat into a more deductive perspec�
tive� to a great extent because of the overwhelming number of common�sense

���� STRUCTURE OF THE DISSERTATION ��

constraints that must be explicated in order to exclude pathological absur�
dities from consideration in a truly constraint�based approach an extra
principle� for example� could be added above to �unlicense Figure �	�	 These
absurdities must be addressed because they exist on that easel� and that easel
is created by the structure of the presumed attributed type signature	 If there
is any chance of producing a large�scale constraint�based grammar using the
logic of typed feature structures� it surely demands a precise understanding
of the algebra of typed feature structures induced by its signature	
Chapter � presents an introduction to typed feature structures as for�

malized in Carpenter� ����	 This can be viewed as a formalization of the
approach to feature structures taken in early work on HPSG �Pollard and
Sag� ������ and� when augmented with constraints that force every feature
structure to have a maximally speci�c type and every pair of substructures to
be either inequated or re�entrant� as a formalization of the feature structures
used in later work� as epitomized in Pollard and Sag� ����	 An overview
of their development in psychology and arti�cial intelligence research is also
provided	 One important issue that arises in the course of this survey is
whether typed feature structures are the right representation language for
semantic information that typically involves the use of a wider range of func�
tional abstractions than can elegantly be encoded using simple types and
features	
Chapter � presents the de�nitions of signature subsumption and signa�

ture equivalence	 These establish two formal criteria for determining the
equivalence of signatures	 Signature equivalence is of more direct concern to
theoretical linguists� as it provides a bijective �and thus one�to�one� mapping
between the feature structures that obey appropriateness in one signature
and those of another	 Principles of grammar over one signature� translated
into the terminology of another signature� are guaranteed to have the same
e�ect in that other signature	 Crucially� the grammaticality predictions of
a set of translated principles are also preserved	 Signature equivalence thus
provides the formal criterion for determining whether a signature plus prin�
ciples of grammar� recast into a more elegant or explanatory terminology� is
genuinely equivalent to an original grammar	 It is also proven for the case
of �nite signatures� i	e	� signatures with a �nite number of feature structures
licensed by appropriateness� that this equivalence can be inferred when two
signatures mutually subsume each other� in the sense de�ned by signature
subsumption	
Chapter � shows how attributed type signatures can be used to encode

�� CHAPTER �� INTRODUCTION

multi�dimensional inheritance and systemic networks without an explosion
in the number of types or features	 A proper understanding of the expressive
power of features in an attributed signature reveals how this can be accom�
plished	 That expressive power is then shown to be strictly greater than
the expressive power of signatures with no features� due to the existence of
recursive types� types� such as the type for non�empty lists� to which both
a feature structure and one of its substructures can simultaneously belong	
A great many types in HPSG are recursive� with some important linguis�
tic consequences	 Lists have routinely been used in HPSG to express the
generalization that a linguistic sign can stand in a particular relation with
an unbounded number of other linguistic objects	 If� in principle� syntactic
heads can have any number of arguments� or any number of long�distance
dependencies can exist in a single sentence� or any number of quanti�ers
can exist� with readings corresponding to any permutation of their scopes�
or even if the principles of immediate dominance allow for recursive phrase
structures� such as an unbounded nesting of complement clauses or of noun
phrases within relative clauses� then features must be used in these encodings	
Another interesting example is the encoding of mutual subcategorization be�
tween an attributive adjective and its noun in Pollard and Sag� ����	 This
requires the use of not only recursive types but cyclic feature structures� i	e	�
feature structures that are re�entrant with one or more of their substruc�
tures	 Cyclic feature structures can only exist in the presence of recursive
types	 The number of features used can be reduced to a bare minimum�
of course� which is a trend that has emerged within very recent research in
HPSG	 An understanding of recursive types and their relationship to the
�niteness of the induced algebra of feature structures provides the formal
criterion for guiding that minimization	
Chapter � is probably the most important chapter relative to current

feature�structure�based linguistics	 Parametric types are discussed here as an
example of how to use the algebraic structure of attributed type signatures
as a guide for extending the formal language of typed feature structures it�
self	 Parametric types are very widely used in HPSG�based linguistics	 They
are used exclusively with lists and sets and typically as a kind of macro in
which the parameter is a description of a feature structure	 In this chapter�
it is shown that parametric types cannot sensibly be regarded as macros�
and that parameters cannot be sensibly regarded as descriptions if the de�
scription language contains variables	 The good news is that signatures with
parametric types can� with some restrictions� be regarded as macros for nor�

���� STRUCTURE OF THE DISSERTATION ��

mal signatures� and that the restricted application of parametric types to lists
and sets is unnecessary	 As mentioned above� parametric types can be used
much more proli�cally to provide elegant� compact� �type�based encodings
of other linguistic objects	
Chapter � examines the relationship between Prolog term encodings and

typed�feature�structure encodings of partial empirical knowledge	 The use of
typed feature structures in linguistics was originally justi�ed on the basis of
its possession of named attributes and the fact that it provided strictly more
expressive power than �rst�order�term encodings	 In spite of that original
claim� the last twenty years of linguistic applications of feature structures
have seen a stronger type discipline and restrictions on the use of features
 culminating in appropriateness conditions that have actually pushed
feature structures back towards �rst�order terms in expressive power	 It has
been known for several years that at least one formalization of HPSG is
�rst�order equivalent� namely SRL �King� ������ in which feature structures
denote total information and therefore have only the discrete information
ordering among them	 This formalization had a profound impact on the
view of feature structures taken in Pollard and Sag� ���� and later work on
HPSG	 The logic of Carpenter ������ can be viewed as a generalization of SRL
that accommodates the representation of partial information	 The present
chapter shows that a signi�cant fragment of the logic of Carpenter ������ is
equivalent in its expressive power to Prolog terms� which in turn generalize
�rst�order terms	 The �nal chapter pursues the practical application of this
equivalence	

����� Practical Grammar�Software Development

In addition to concerns of importance to the theoretical linguist� grammar
developers� as well as developers working with knowledge representation tools
in other domains� must pay particular attention to the e�ciency and scala�
bility of their code� with respect to both parsing and generation in the case
of natural language processing� as well as to certain other development tasks
such as incremental compilation in general	 Typed feature structures are
quite useful for this kind of development because the combination of seman�
tic typing� subtyping� named attributes and appropriateness allows one to
use a very terse description language to refer to a sparse amount of informa�
tion over what are typically very large structures or terms	 The reduction of
a large amount of processing to the one fairly e�cient operation of uni�ca�

�� CHAPTER �� INTRODUCTION

tion is also quite appealing from the standpoint of constructing simple but
e�cient implementations	
Modularity in this framework� however� is quite another matter	 The

pre�eminence of uni�cation� when combined with appropriateness and the
reliance on paths of features relative to a common superstructure to refer
to the sharing of information� confers upon feature structures a disturbing
degree of non�modularity� which can re�ect poorly on their grammars� scal�
ability and robust modi�cation	 A recent trend within HPSG� which was
motivated to a great extent by this� has been to enumerate classes of lin�
guistic information as explicit types whenever possible rather than as feature
values	 This does make the representation more modular� in practice	 Fea�
tures cannot be made to disappear altogether� however� although not for the
reason that one might at �rst suspect� and as a result� the signature remains
the basic modular unit of this logic	
This dissertation can be viewed as a study of that unit� along with some

practical consequences	 In particular� the question of determining when two
signatures are equivalent invites some speculation as to when it might be
practically advantageous to convert from one signature to another equivalent
one� either internally within a development system or explicitly by a grammar
developer� since not all logically equivalent signatures will necessarily have
the same computational properties	 Where a representation prefers subtypes�
as in Figure �	�� those types have typically been represented as strings� which
are hashed by a programming language compiler	 Where a representation
prefers feature values� as in Figure �	�� the feature structures containing
those values have typically been represented as records� such that access
to the feature values involves some amount of pointer chasing at run�time	
Both of those are purely conventional	 In Chapter �� it will be shown that
in certain circumstances it is actually preferable to encode semi�lattices of
types in a record�like structure for transparency and e�ciency� whereas in
Chapter � it will be shown that� in other circumstances� feature�value�based
representations can be unfolded into subtype�based ones for an improvement
in e�ciency	
Chapter � presents an introduction to the logic of typed feature struc�

tures as formulated in Carpenter� ���� along with an historical overview of
its development	 This is a very widely used version of typed feature logic�
and is the logical basis of the ALE system and its successors	 Chapter �
then presents the formal de�nitions of signature subsumption and signature
equivalence that are required in order to certify the correctness of these trans�

���� STRUCTURE OF THE DISSERTATION ��

formations	 For internal transformation by a grammar development system�
signature subsumption of the transformed signature by the original signature
is all that is required	 Such a system can map principles� queries etc	 into the
terminology of the transformed signature by the map that witnesses signature
subsumption� carry out the computations there� and map back so that the
answer is stated in terms of the original signature	 For explicit transforma�
tion by the grammar developer� signature equivalence� a stronger condition�
is necessary in order to ensure that the explicitly transformed signature and
grammar can be modi�ed or augmented with the same e�ect as would have
taken place with the original signature and grammar	 It is also proven that
symmetric signature subsumption is equivalent to signature equivalence only
in the �nite case	
It is commonly believed that there are certain feature values that cannot

be equivalently expressed as subtypes in a signature	 That perception is
based on the unique ability of feature values to participate in re�entrancies	
Chapter � shows that re�entrancies are only contingently related to the extra
expressive power that features provide� and that the real source of extra
expressive power is the possible presence of recursive types� types� such as
the type for non�empty lists� to which both a feature structure and one of
its substructures can simultaneously belong	 Recursive types can only exist
in the presence of features under certain appropriateness conditions� and
the same information that they are capable of conveying can be conveyed
only by potentially in�nitely many subtypes alone	 Recursive types are the
unique aspect of signatures that can prevent a totally unconstrained mapping
among feature�based and subtype�based encodings of information through
transformations of �nite signatures	
Chapter � extends the logic of typed feature structures by adding para�

metric types	 While parametric types are already used in HPSG� they have
only been used for lists and sets� and even then somewhat informally	 Prop�
erly understood� they can be used much more widely to provide more compact
encodings of information than subtypes alone can� while still retaining many
of the same bene�ts	 Parametric types e�ectively provide a third alternative
to using features or subtypes to encode information in attributed type sig�
natures	 While signatures often serve as a �nite presentation of what would
otherwise be an in�nite number of types� it is also possible to induce a smaller
subsignature relative to a �xed grammar that is su�cient for processing with
that �xed grammar	 Even in the absence of parametric types� this is a very
useful idea for grammar development� as the number of types and features in

�� CHAPTER �� INTRODUCTION

a signature typically does correlate with how e�cient the encoding of feature
structures relative to that signature can be	
The remaining chapters will probably be of the most relevance to gram�

mar developers and other software developers working in knowledge represen�
tation who are interested in using the logic of typed feature structures given
their great� direct potential to improve upon the performance of feature�
structure�based logic programming languages	 Chapter � considers the alge�
braic structure underlying the speci�cation of signatures given by users of
knowledge representation tools and object�oriented programming languages	
This structure can be used to improve the e�ciency of compiling the tran�
sitive closure of signature declarations and other closure operations that are
implicitly assumed to hold by grammar development systems and typed pro�
gramming language compilers that use record�like data structures	 The de�
velopment of a large conceptual knowledge base� such as a signature� typically
involves making a very large number of small changes to the knowledge base�
possibly interleaved with tests that ensure the validity of intermediate stages
of development	 Compilation of the declarations that de�ne the knowledge
base is essential for ensuring this validity� and yet incremental compilation
is extremely di�cult due to the non�modularity of the signatures themselves
and the non�locality of least�upper�bound computations	 As the number of
types and features becomes larger� the cost of complete� non�incremental
compilation can become very expensive unless close attention is paid to the
algorithms used	 It is also conceivable that as object�oriented programming
languages become more modular� secure and portable� the number of de�
clared classes in programs written in those languages could also become pro�
hibitively large for their compilers	 Chapter � shows that all of the tasks
that must be performed in compiling and verifying the well�formedness of an
attributed type signature can be reduced to operations on sparse matrices	
Preliminary results have been so promising that incremental compilation of
signatures may not be necessary at all the closures might simply be re�
computed in their entirety	
Chapters � and � consider the problem of encoding typed feature struc�

tures as Prolog terms in an implementation of a programming language or
grammar development system	 Logic programming languages based on typed
feature structures such as ALE and its successors bear a great deal of simi�
larity to Prolog� but it has been assumed since the �rst release of ALE itself
that it was impossible to encode typed feature structures as Prolog terms in
such a way that feature structure uni�cation could reduce simply to Prolog

���� STRUCTURE OF THE DISSERTATION ��

term uni�cation	 Such a reduction has obvious practical advantages both
for system developers and system users� since both the heavily optimized
compilation for the core logic programming language itself and many of the
enhanced pieces of functionality o�ered by commercial Prolog systems be�
come available essentially for free	 As it happens� a very large and signi�cant
class of signatures� namely those that are statically typable� do admit such a
reduction	 This is proven in Chapter �� and some optimizations of the reduc�
tion and an evaluation of its performance in a practical setting is provided
in Chapter �	 These results require a serious reappraisal of using commercial
Prolog technology to support feature�structure�based logic programming and
grammar development as an alternative to designing and building customized
abstract�machine�based compilers	

�� CHAPTER �� INTRODUCTION

Chapter �

Attribute�Value Logic

The present study will use the logic of typed feature structures as formulated
in Carpenter� ���� as its starting point	 This formulation is a relatively
recent one� by comparison� and is general enough in its view of typing and
feature structures that it captures the essential characteristics of most other
formulations as speci�c instances	 It is also one of the more widely used
in both linguistic and formal work based on attribute�value logic	 Many of
the practical results of the present study� in addition� cannot accrue unless
appropriateness conditions with a fairly restrictive interpretation are assumed
to apply to type signatures� as they are through much of the development of
Carpenter� ����	

The next section of this chapter provides an introduction to the typed
feature logic of Carpenter ������ with some passing comparisons to several re�
lated logics	 It also takes two digressions to consider the feasibility of assum�
ing that all type systems are bounded complete partial orders� which� in the
�nite case� is equivalent to assuming meet�semi�latticehood �Section �	�	���
and of assuming that the set of types to which any feature is appropriate has
a unique most general type sometimes called unique feature �introduc�
tion at that most general type �Section �	�	��	 Both of these assumptions
are fairly restrictive for a knowledge representation language and have been
widely criticized since the publication of Carpenter� ���� as being incon�
venient to adhere to and computationally intractable to restore when not
adhered to	 As these two sections show� restoring meet�semi�latticehood in a
compilation stage can� in fact� be e�ciently performed in practice� although it
is intractable in theory� and restoring unique feature introduction can always
be achieved in time bounded by a low�degree polynomial	

��

�� CHAPTER �� ATTRIBUTE�VALUE LOGIC

The third section provides an account of the early history of feature struc�
tures to place their design in its proper context	

��� The Logic of Typed Feature Structures

The key to understanding Carpenter� ���� is that� in spite of its title� it
does not present a logic of typed feature structures� but a logic about typed
feature structures	 In particular� the logic developed in the course of that
work is one of expressions from a description language with features and
types drawn from a �xed signature	 The rules of the various versions of the
logic presented there choose among several classes of axiom schemes that
enforce a wide range of di�erent requirements on these descriptions� from
various hygienic properties such as the associativity and distributivity of
their connectives� to several degrees of discipline in typing relative to the
type system of the signature	 Depending on the choice of rules� a respective
collection of typed feature structures relative to the same signature serves
as the semantic model for the closure of derivations over descriptions with
the chosen logic	 In this respect� Carpenter� ���� bears more similarity to
work in domain theory� in which feature structures can be taken as models of
recursive computations �following� for example� Pereira and Shieber ��������
than to the more classical model�theoretic treatment of descriptions �King�
����� Smolka� ����� or of typed feature structures as syntactic terms in their
own right �Johnson� ������ which characterizes much of the other work on
attribute�value logics	

The actual logics themselves will not be introduced here the inter�
ested reader is referred to Carpenter� ���� for their de�nitions and proofs
of their soundness and completeness	 The present study will consider only
the algebraic operations on feature structures that were proven in that book
to correspond exactly to the closure of descriptions under those logics� i	e	�
to the least �xed points of the functions corresponding to inference steps in
these calculi	

����� Type Hierarchies

In Carpenter� ����� feature structures are typed� and those types are related
to each other in a particular kind of partial order	

���� THE LOGIC OF TYPED FEATURE STRUCTURES ��

a

b

c

g

f

e

d

Figure �	�� An example of a non�bounded�complete partial order	

De
nition ���� A partial order on a set� P � is a relation� � � P �P � such
that� for all x� y� z � P �

� �re�exivity� x � x�

� �anti�symmetry� if x � y and y � x� then x � y�

� �transitivity� if x � y and y � z� then x � z�

The partial order we consider is subsumption� written v	 If types are
interpreted as sets� then subsumption is interpreted as the inverse inclusion
relation on those sets	 Intuitively� a v b says that every feature structure
of type b is also of type a	 Figure �	� shows an example of a partially
ordered set	 We write them in a way that assumes re�exivity� anti�symmetry�
and transitivity� so that only a base immediate subsumption relation� whose
re�exive and transitive closure is the real subsumption relation� needs to be
given	 a �immediately� subsumes b� because a is lower than b� and therefore
b does not subsume a	 Similarly� b �immediately� subsumes c� so a also
subsumes c by transitivity	 a also implicitly subsumes itself	
Not every a and b may be comparable with v� but we can identify subsets

of P that are totally ordered by v�

De
nition ���� A chain is a subset� C� of a partially ordered set� hP��i�
such that for every x� y � C� either x � y or y � x�

The type system is presented as a partially ordered set� rather than just
as a set of incomparable types because the intention is to use types as labels
on feature structures to represent knowledge or information about objects�
rather than objects in the world themselves	 This view of types is� in part� the
legacy of knowledge representation languages such as KL�ONE �Brachman�
������ which could perform certain automated classi�cation tasks to assist

�� CHAPTER �� ATTRIBUTE�VALUE LOGIC

the user in drawing conclusions from partial information about the world	
It has also been reinforced by research in computational linguistics� notably
by Head�driven Phrase Structure Grammar �HPSG� Pollard and Sag� �����
����� which used feature structures to represent partial information about
linguistic entities to create a sophisticated formal language for specifying
constraints on the structure of language that could be used to parse sentences	
Carpenter ������ is particularly interested in partial orders of types for

which uni�cation makes sense� i	e	� partial orders in which the combination of
consistent partial information about type membership results in the inference
of membership in some least speci�c type that can be used to label a feature
structure	 Uni�cation may still fail because not all of our type hierarchies will
have a greatest element	 Alternatively� one could also require the existence of
a greatest element� �� and say that it is �implemented as failure in practice
during uni�cation	 This is the approach taken in A�!t�Ka�ci� ���� and Fall�
����� for example	 We will also need to look at partial orders of types in this
way in Chapter �� but it is trivial to add a topmost element to any BCPO	

De
nition ���� Given a partially ordered set� hP��i� the set of upper bounds
of a subset S � P is the set Su � fy � P j 	x � S�x � yg� The set of lower
bounds� Sl� is de�ned dually�

De
nition ���� A partially ordered set� hP��i� is bounded complete �BCPO�
i�� for every S � P such that Su ��
� Su has a least element� called the least
upper bound� or join� of S� written

W
S�

The greatest lower bound� or meet� of S� when it exists� is de�ned dually
and is written

V
S�

De
nition ���� Given a BCPO� hP��i� p � P is join reducible i� there
exist distinct consistent q� r � P not equal to p such that

W
fq� rg � p� Meet

reducibility is de�ned dually�

De
nition ��	� A type hierarchy is a non�empty� countable� bounded com�
plete� partially ordered set�

In the case of type hierarchies� where the partial order is subsumption� we
then write

W
S as

F
S� and in the special case where S has only two elements

x and y� as xty	 Least upper bounds realize our intuitions about uni�cation
on partially ordered sets of types	 Figure �	� is not a BCPO	 For example�
the set� S � fb� eg has the set of upper bounds� Su � fc� dg� which has no
least element	 Figure �	�� on the other hand� is a BCPO	 h is a join�reducible

���� THE LOGIC OF TYPED FEATURE STRUCTURES ��

h

c d

�

a

b

g

f

e

Figure �	�� An example of a bounded complete partial order	

element	 These are represent the �interesting cases of type uni�cation	

The biggest departure here from Carpenter� ���� is that the latter admits
only �nite BCPOs as type hierarchies	 Many of the remarks made in the
course of this dissertation will be speci�c to �nite BCPOs� because of their
obvious computational importance� and it will be indicated explicitly where
�niteness is assumed	

There are actually three particular kinds of �niteness that one can impose
on type hierarchies as de�ned here	 Non�empty bounded complete partial or�
ders always have a least type �and thus are always non�empty�� because S �

has the non�empty set of upper bounds� Su � P � which must have a least
element	 This element is written as � �pronounced �bottom�	 Denotation�
ally� � corresponds to the set of all objects in a model� or to put it another
way� the set of objects that satisfy an empty set of constraints or information
that we have about those objects	 Viewed in this way � is empty in the in�
formation that it provides about its objects anything could be of type �	
We will be looking at partially ordered types as successive re�nements of �
that add information about their objects	 Many times� it will be convenient
to assume that a type�s denotation cannot be achieved by an in�nite number
of distinct such re�nements�

De
nition ���� A partially ordered set� hP��i� is well�founded i� it has no
in�nite descending chains�

Well�foundedness will be critical at several points� because it will be con�
venient to de�ne characteristic functions that map types to cardinals by
exploiting the natural isomorphism that exists between a given type and the

�� CHAPTER �� ATTRIBUTE�VALUE LOGIC

set of �paths through the type hierarchy from � to that type	 With well�
foundedness� those paths are all �nite� which will allow us to dispense with
trans�nite cardinals as potential values of the characteristic functions	 The
most important of these functions is�

De
nition ���� Given a well�founded type hierarchy� hT�vi� and a type t �
T � the path length of t is given by the function � � T �� Nat� where�

��t� �

�
� if t � ��
� " max

t��ftgl
��t�� otherwise�

The path length of t is the length of the longest path of immediate sub�
sumption links� measured in types� from � to t	 In Figure �	�� ��a� � ��
��b� � �� but ��h� � �� because of the path �� g � f � e� h	
A second kind of �niteness also concerns how �deep subtyping can ex�

tend	

De
nition ���� A partially ordered set� hP��i� is Noetherian i� its dual�
hP�i� is well�founded�

Noetherian sets have no in�nite ascending chains� and well�founded sets
have no in�nite descending chains	 An in�nite ascending chain is a chain
with an in�nite number of elements and no greatest element	 These chains
still allow us to talk about path length� for example� since the values on an
in�nite ascending chain will all be �nite� although unbounded	
The third kind of �niteness concerns how �broad subtyping can fan out�

i	e	� how many subtypes a given type can immediately subsume	

De
nition ����� Given a type hierarchy� hT�vi� and a type t � T � the
branching factor of t is given by the function b � T �� Nat � f�g� where�

b�t� � jfx � ftgu j 	y � ftgu��y v x� y � x�gj �

b�t� is the number of minimal elements of the set of upper bounds of t�

De
nition ����� A type hierarchy� hT�vi� is �nitely branching i� there is
an n � Nat such that for all t � T � b�t� � n�

The n for Figure �	� is �� which is attained at h and �	
These three structural conditions are su�cient to characterize �niteness

in the usual sense of cardinality�

���� THE LOGIC OF TYPED FEATURE STRUCTURES ��

De
nition ����� A type hierarchy� hT�vi� is �nite i� jT j is �nite�

Theorem ���� A type hierarchy is �nite i� it is�

� well�founded�

� Noetherian� and

� �nitely branching�

Proof� If hT�vi is �nite� then it is trivially well�founded� Noetherian and
�nitely branching	 Suppose hT�vi is well�founded� Noetherian and �nitely
branching	 Since it is well�founded� we can use our path length function� �	
Since it is �nitely branching� there is an upper bound� n on b�T �� the image
of b on T 	 Since T has a least element� there are at most n types with a
��value of �	 Since every type� t� with ��t� � �� lies on a path that passes
through a type� t�� with ��t�� � ��t���� there at most nk types with ��values
of k	 Thus for any path length� there are a �nite number of types with that
path length	
Hence� if there is a bound� d� such that for all t � T � ��t� � d� then jT j is

�nite	 Suppose there is no such bound	 T has at least one maximal type or
else T contains an in�nite ascending chain� and is thus not Noetherian	 T has
an in�nite number of maximal types� or else the path length of the maximal
type�s� with the largest path length provides the bound d	 Similarly� for any
path length p� there are in�nitely many maximal types with path length p or
greater	 Let t� � �� which has path length � and subsumes in�nitely many
of the maximal types �in fact� all of them�	 For every ti� since it has only
�nitely many subtypes of path length i"�� there is a subtype� ti�� A ti such
that ��ti��� � i"� and ti�� subsumes in�nitely many of the maximal types	
The sequence� t� � t� � � � � forms an in�nite ascending chain in T 	 So the
bound� d� exists� and jT j is �nite	

The only fact required from bounded completeness is the existence of a
least element	 There is also a useful dual notion of branching factor� to which
we did not need recourse for characterizing �niteness�

De
nition ����� Given a type hierarchy� hT�vi� and a type t � T � the
supertype branching factor of t is given by the function � � T �� Nat � f�g�
where�

��t� �
��fx � ftgl j 	y � ftgl��x v y � y � x�g

�� �
��t� is the number of maximal elements of the set of lower bounds of t�

�� CHAPTER �� ATTRIBUTE�VALUE LOGIC

����� Meet Semi�lattice Completions

Just because it would be convenient for uni�cation to be well�de�ned does
not mean it would be convenient to think of any empirical domain�s concepts
as a bounded complete partial order� or that it would be convenient to add
all of the types necessary to a would�be type hierarchy to ensure bounded
completeness	 In the case of �nite partial orders� bounded completeness is
equivalent to another more localized condition�

De
nition ����� A partial order� hP�vi� is a meet semi�lattice i� for any
x� y � P � x u y��

Proposition ���� A �nite partial order is bounded complete i� it is a meet
semi�lattice�

u is the binary greatest lower bound� or meet operation� and is the dual
of the join operation	 Figure �	� is not a meet semi�lattice because c and d
do not have a meet� nor do a and g� for example	
The question then naturally arises as to whether it would be possible�

given any �nite partial order� to add some extra elements �types� in this
case� to make it a meet semi�lattice� and if so� how many extra elements it
would take� which also provides a lower bound on the time complexity of the
completion	
It is� in fact� possible to embed any �nite partial order into a lattice that

preserves existing meets and joins by adding extra elements	 The resulting
construction is the �nite restriction of the Dedekind�MacNeille completion
�Davey and Priestley� ����� p	 ���	

De
nition ����� Given a partially ordered set� P � the Dedekind�MacNeille
completion of P � hDM�P ���i� is given by�

DM�P � � fA � P jAul � Ag

This route has been considered before in the context of taxonomical
knowledge representation �A�!t�Ka�ci et al	� ����� Fall� �����	 While meet
semi�lattice completions are a practical step towards providing a semantics
for arbitrary partial orders� they are generally viewed as an impractical pre�
liminary step to performing computations over a partial order	 Work on more
e�cient encoding schemes began with A�!t�Ka�ci et al	� ����� and this seminal

���� THE LOGIC OF TYPED FEATURE STRUCTURES ��

��� ��� ��� ���

� � � �

Figure �	�� A worst case for the Dedekind�MacNeille completion at n � �	

paper has in turn given rise to several interesting studies of incremental com�
putations of the Dedekind�MacNeille completion in which LUBs are added
as they are needed �Bertet et al	� ����� Habib and Nourine� �����	
There are partial orders P of unbounded size for which jDM�P �j �

#��jP j�	 As one family of worst�case examples� parametrised by n� consider
a set S � f�� � � � � ng� and a partial order P de�ned as all of the size n � �
subsets of S and all of the size � subsets of S� ordered by inclusion	 Figure �	�
shows the case where n � �	 Although the maximum subtype and supertype
branching factors in this family increase linearly with size� the partial orders
can grow in depth instead in order to contain this	
That yields something roughly of the form shown in Figure �	�	�� which

is an example of a recent trend in using type�intensive encodings of linguistic
information into typed feature logic in HPSG� beginning with Sag ������	
These explicitly isolate several dimensions� of analysis as a means of classi�
fying complex linguistic objects	 In Figure �	�	�� speci�c clausal types are
selected from among the possible combinations of clausality and headed�
ness subtypes	 In this setting� the parameter n corresponds roughly to the
number of dimensions used� although an exponential explosion is obviously
not dependent on reading the type hierarchy according to this convention	
There is a simple algorithm for performing this completion� which as�

sumes the prior existence of a most general element ���� given in Figure �	�	
Most instantiations of the heuristic� �where there is no meet� add one �Fall�
������ do not yield the Dedekind�MacNeille completion �Bertet et al	� ������
and other authors have proposed incremental methods that trade greater ef�
�ciency in computing the entire completion at once for their incrementality	

Proposition ���� The MSL completion algorithm is correct on �nite par�
tially ordered sets� P � i�e�� upon termination� it has produced DM�P ��

�It should be noted that while the common parlance for these sections of the type
hierarchy is dimension� borrowed from earlier work by Erbach ����	
 on multi�dimensional
inheritance� these are not dimensions in the sense of Erbach ����	
 because not every
n�tuple of subtypes from an n�dimensional classi�cation is join�compatible�

�� CHAPTER �� ATTRIBUTE�VALUE LOGIC

�
n
�w
h
��
ll
�r
el
�c
l
in
f�
w
h
��
ll
�r
ec
l�
cl

re
d
�r
el
�c
l

si
m
p
�i
n
f�
re
l�
cl
w
h
�s
u
b
j�
re
l�
cl

b
ar
e�
re
l�
cl

�
n
�h
d
��
ll
�p
h

in
f�
h
d
��
ll
�p
h
�
n
�h
d
�s
u
b
j�
p
h

w
h
�r
el
�c
l

n
on
�w
h
�r
el
�c
l

h
d
��
ll
�p
h

h
d
�c
om
p
�p
h

h
d
�s
u
b
j�
p
h

h
d
�s
p
r�
p
h

im
p
�c
l

d
ec
l�
cl

in
te
r�
cl

re
l�
cl

h
d
�a
d
j�
p
h

h
d
�n
ex
u
s�
p
h

cl
au
se

n
on
�c
la
u
se

h
d
�p
h

n
on
�h
d
�p
h

C
L
A
U
S
A
L
IT
Y

H
E
A
D
E
D
N
E
S
S

p
h
ra
se

F
ig
u
re
�	
��
A
fr
ag
m
en
t
of
an
E
n
gl
is
h
gr
am
m
ar
in
w
h
ic
h
su
p
er
ty
p
e
b
ra
n
ch
in
g
d
is
ti
n
gu
is
h
es

�d
im
en
si
on
s
of
cl
as
si
�
ca
ti
on
	

���� THE LOGIC OF TYPED FEATURE STRUCTURES ��

�� Find two elements� t�� t� with minimal upper bounds� u� � � � uk� such that

their join t� t t� is unde�ned� i�e�� k � �� If no such pair exists� then stop�

�� Add an element� v� such that�

� for all � � i � k� v v ui� and

� for all elements t� t v v i� for all � � i � k� t v ui�

�� Go to ��	�

Figure �	�� The MSL completion algorithm	

Proof Let V �P � be the partially ordered set produced by the algorithm	
Clearly� P � V �P �	 It su�ces to show that ��� V �P � is a complete lattice
�with � added�� and ��� for all v � V �P �� there exist subsets A�B � P such
that v �

W
V �P �A �

V
V �P �B	

�

Suppose there are v� w � V �P � such that vuw�	 There is a least element�
so v and w have more than one maximal lower bound� l�� l� and others	 But
then fl�� l�g is upper�bounded and l� t l��� so the algorithm should not have
terminated	 Suppose instead that v t w�	 Again� the algorithm should not
have terminated	 So V �P � with � added is a complete lattice	
Given v � V �P �� if v � P � then choose Av � Bv � fvg	 Otherwise� the

algorithm added v because of a bounded set ft�� t�g� with minimal upper
bounds� u�� � � � uk� which did not have a least upper bound� i	e	� k � �	 In
this case� choose Av � At� �At� and Bv �

S
��i�k Bui	 In either case� clearly

v �
W

V �P �Av �
V

V �P �Bv for all v � V �P �	 �
Termination is guaranteed by considering� after every iteration� the num�

ber of sets of meet�irreducible elements with no meet� since all completion
types added are meet�reducible by de�nition	
In LinGO �LinGO� ������ the largest publicly�available LTFS�based gram�

mar� and one which uses such type�intensive encodings� there are ���� types�
the largest supertype branching factor is ��� and although dimensionality is
not distinguished in the source code from other types� the largest subtype
branching factor is ���	 Using supertype branching factor for the most con�
servative estimate� this still implies a theoretical maximum of approximately
������� completion types� whereas only ��� are necessary� ��� of which are

�These are sometimes called the join density and meet density� respectively� of P in
V �P �Davey and Priestley� ����� p� 	�
�

�� CHAPTER �� ATTRIBUTE�VALUE LOGIC

inferred without reference to previously added completion types	
Whereas incremental compilation methods rely on the assumption that

the joins of most pairs of types will never be computed in a corpus before the
signature changes� this method�s e�ciency relies on the assumption that most
pairs of types are join�incompatible no matter how the signature changes	 In
LinGO� this is indeed the case� of the ���������� possible pairs� ����������
are join�incompatible� and there are only ����� that are consistent �with
or without joins� and do not stand in a subtyping or identity relationship	
In fact� the cost of completion is often dominated by the cost of transitive
closure� which is discussed in Chapter � in more detail	
While the continued e�ciency of compile�time completion of signatures

as they further increase in size can only be veri�ed empirically� what can be
said at this stage is that the only reason that signatures like LinGO can be
tractably compiled at all is sparseness of consistent types	 In other geometric
respects� it bears a close enough resemblance to the theoretical worst case to
cause concern about scalability	 Compilation� if e�cient� is to be preferred
from the standpoint of static error detection� which incremental methods
may elect to skip	 In addition� running a new signature plus grammar over
a test corpus is a frequent task in large�scale grammar development� and
incremental methods� even ones that memoise previous computations� may
pay back the savings in compile�time on a large test corpus	 It should also be
noted that another plausible method is compilation into logical terms or bit
vectors� in which some amount of compilation �ranging from linear�time to
exponential� is performed with the remaining cost amortised evenly across
all run�time uni�cations� which often results in a savings during grammar
development	

����� Feature Structures

A type hierarchy� hT�vi� along with a �nite set of features� Feat� and a set
of nodes� Q� induces a set of typed feature structures�

De
nition ���	� A typed feature structure is a tuple� F � hQ� �q� �� ���i
where�

� Q is a countable set of nodes�

� �q � Q is the root node�

� � � Q �� T is a total node typing function�

���� THE LOGIC OF TYPED FEATURE STRUCTURES ��

a �q

q� b
f

q�
g c

q� ef

q� f

g

q� d
h

�

�

Figure �	�� An example typed feature structure	

� � � Feat �Q �� Q is a partial feature value function� and

� � � Q�Q is an anti�re�exive and symmetric inequation relation�

such that for every q � Q� there is a �nite sequence of features f�� � � � � fn �
Feat such that q � ��fn� ��fn��� � � � ��f�� ��f�� �q����� i�e�� a �nite sequence
that connects �q to q with ��
F denotes the set of all feature structures relative to the �implicit� set of

types� T � and features� Feat�

An example feature structure induced by the type hierarchy in Figure �	�
and the set of features Feat � ff�g�hg can be represented as a directed
graph� as shown in Figure �	�	 It has the set of nodes Q � f�q� q�� q�� q�� q�� q�g
with the following node typing and feature value functions� and inequation
relation�

���q� � a ��f� �q� � q� q� � q�
��q�� � b ��g� �q� � q� q� � q�
��q�� � c ��h� �q� � q�
��q�� � d ��f� q�� � q�
��q�� � e ��g� q�� � q�
��q�� � f

Notice that in this formalization of feature structures� types are not values
themselves� but only decorate the real values nodes through the typing
function� �	
The relation��� represents the set of inequations that hold between nodes

in a feature structure	 This is not simply the complement of equality	 These
are persistent� negative constraints on the identi�cation of nodes� much like
those proposed for Prolog II �Colmerauer� ����� �����	
Not much can be said about nodes apart from the fact that they can bear

types and features with values	 The set� Q� has no algebraic structure of its

�� CHAPTER �� ATTRIBUTE�VALUE LOGIC

own� and� with the exception of extensional typing� the description language
used in Carpenter� ���� provides no means of regulating the number of fea�
ture structures in F � or the number of them of any particular type	 It also
provides no means of determining whether two di�erent feature structures
have intersecting node sets unless they are both substructures of a common
feature structure� so that they can be referred to by paths of features	 In
fact� no description language can� whose descriptions are intended to describe
single feature structures �and their substructures�� rather than arbitrary col�
lections of them	

Nodes are not types� and the fact that ��f� maps nodes to nodes rather
than types to types is a signi�cant departure �with precedents� from early
conceptions of feature structures� as elaborated upon in Section �	�	 They
correspond roughly to instances of a particular concept or type� but we are
entirely dependent upon their types� features values and the existence of a
common root node �and therefore� a common super�structure� to distinguish
them� i	e	� to observe whether two nodes q�� q� � Q are such that q� � q� or
q� �� q�	 In general� there are some nodes that we simply cannot distinguish
from each other� particularly if they do not belong to a set Q of a common
feature structure	

Following one of the extensions discussed in Carpenter� ����� the set of
nodes for a given feature structure is allowed to be countably in�nite here�
which admits two possible kinds of in�nity for typed feature structures	 Just
as with type hierarchies� typed feature structures can be �deeply in�nite�
by having unboundedly long paths of nodes� or �broadly in�nite� by hav�
ing nodes� q � Q� for which there are in�nitely many features� f � Feat
such that ��f� q��	 The latter is rejected here by the assumption that the
set of features� Feat� is �nite� following Carpenter ������	� This is often re�
stricted further by appropriateness� as explained below	 This assumption is
ultimately responsible for almost every practical bene�t of the logic of typed
feature structures documented in this dissertation or earlier� and its validity
hinges on an apparent lack of empirical necessity in any domain for formal
descriptions of objects with an in�nite number of attributes or� put in the
language of �rst�order logic� in�nitely branching terms	

�It also depends on the assumption that � is a function� i�e�� that it can only take one
value for every pair of feature and node� With the arguable exception of set�valued features
�Carpenter� ����a� Manandhar� ���	� Moshier and Pollard� ���	� Richter� in prep�
 this
assumption seems to be fairly universal� and even for set�valued features� an auxiliary
accessibility relation is typically used instead of ��

���� THE LOGIC OF TYPED FEATURE STRUCTURES ��

�q

a

q�

a
f

q�

a
f

� � �
f

Figure �	�� A typed feature structure with an in�nite number of nodes	

To understand the former better� we need a formal notion of paths and
path values�

De
nition ����� A path is a �nite sequence of features� � � Feat��

De
nition ����� Given a typed feature structure� F � hQ� �q� �� ���i� its
partial path value function is a function� �� � Feat� �Q �� Q such that�

� ����� q� � q� and

� ���f�� q� � ����� ��f� q��

Following Carpenter ������� � will be used to refer to both the feature
value function and the path value function	

De
nition ����� If F � hQ� �q� �� �i� and ���� q��� then the restriction of F
to � is F�� � hQ�� �q�� ��� ��i� where�

� Q� � f������ �q�j�� � Feat�g�

� �q� � ���� �q��

� �� � �jF�Q�� and

� �� � �jQ��

De
nition ����� A typed feature structure� F � hQ� �q� �� �i� is �nite i� Q
is a �nite set�

Figure �	� depicts part of a feature structure with an in�nite number of
nodes� each of which is of type a and has a single attribute� f	 This is a
well�de�ned typed feature structure� but it is not �nite	
Typed feature structures� even �nite ones� can also be �in�nite in the

sense of having cycles� and therefore having a path value function that takes
a value for in�nitely many paths	 For example� a feature structure can have
two nodes� �q and q such that ��f� �q� � q and ��f� q� � �q	 That can be
depicted as a labelled directed graph with cycles� as shown in Figure �	��
or as an AVM� as shown in Figure �	�	 The boxed numerical tags are used

�� CHAPTER �� ATTRIBUTE�VALUE LOGIC

a �q q a

f

f

Figure �	�� The directed graph representation of a cyclic feature structure	�
� � a

f

�
a
f �

	��
Figure �	�� The AVM representation of Figure �	�	

to indicate the identity of nodes relative to paths� or �re�entrant nodes�
i	e	� nodes that have an in�degree of greater than � in the directed graph
representation of a feature structure	�

A related ability of feature structures is to have acyclic re�entrancies be�
tween paths� i	e	� sharing of substructures	 Figure �	�� is distinguished from
Figure �	��� for example� in that its f and g values are not only of the same
type with the same features� but actually the same node	 Boxed numerical
tags are also used in AVM representations to identify nodes that participate
in the inequation relation	 Figure �	�� shows the AVM representation of the
feature structure shown in Figure �	�	 In AVM representations� if no� pairs
are shown� it is assumed that ��
	

����� Appropriateness and Attributed Type Signatures

Given a set of types� T � and a �nite set of features� Feat� the set of feature
structures� F � includes� for every combination of features from Feat� a feature

�The exception is the root node� �q� which is considered re�entrant if it has an in�degree
greater than ��

�
���
a

f �

�
b
h c

	
g �

�
���

Figure �	��� The AVM representation of a feature structure with an acyclic
re�entrancy	

���� THE LOGIC OF TYPED FEATURE STRUCTURES ��

�
�����
a

f

�
b
h c

	

g

�
b
h c

	
�
�����

Figure �	��� The AVM representation of a feature structure with structurally
identical but non�re�entrant substructures	�

�����������

a
f b

g

�
� � c
f � e
g � f

�
�

h � d
� � �

� � �

�
�����������

Figure �	��� The AVM representation of the feature structure in Figure �	�	

structure that has a node bearing that combination� with� for every selection
of types from T � values of those respective types	 This may not always make
sense	 We may� in the case of linguistic knowledge representation� want to
allow some nodes that represent what is known about the syntactic status of
a verb to bear a feature mood and other nodes that represent what is known
about the syntactic status of a noun to bear a feature case� but it would
not make sense to bestow attributes such as mood and case on the same
node	 In addition� a feature such as mood could reasonably have a value of
a type such as indicative or subjunctive� but not of the type nominative or
masculine	

Pollard and Sag ������ p	 ��� �rst suggested that the type system could
be used not only to classify di�erent kinds of objects in the world� but to
prevent the cooccurrence of certain features in formal representations of those
objects	 Its importance derives� again� from viewing feature structures as
models of states of partial information about objects� in which it is important
to distinguish between features whose values are inapplicable or irrelevant to
a particular state of information and features whose values are relevant but
unknown or missing	 Of course� the type system can also be used to declare

�� CHAPTER �� ATTRIBUTE�VALUE LOGIC

e
g��

c
f�f

d
f�g

b h

a
f��

f g

�

Figure �	��� An example type signature with upward closure and right mono�
tonicity assumed	

which values make sense for a given feature	
King ������ �rst rei�ed the intuition that only certain features are relevant

or appropriate for a particular type	 Knowledge of which features these are
for each type augments our knowledge about the types and features used in
the speci�cation of a grammar	 The formalization of that extra knowledge
used here� known as appropriateness conditions� is taken from Carpenter
������	

De
nition ����� Given a type hierarchy� hT�vi� and a �nite set of features�
Feat� an appropriateness speci�cation is a partial function� Approp � Feat �
T �� T such that� for every f � Feat�

� �Feature Introduction� there is a type Intro�f� � T such that�

� Approp�f� Intro�f���� and

� for every t � T � if Approp�f� t��� then Intro�f� v t� and

� �Upward Closure � Right Monotonicity� if Approp�f� s�� and
s v t� then Approp�f� t�� and Approp�f� s� v Approp�f� t��

De
nition ����� An �attributed� type signature is a structure� hT�v�Feat�
Appropi� where hT�vi is a type hierarchy� Feat is a �nite set of features� and
Approp is an appropriateness speci�cation�

Figure �	�� depicts a type signature	 It looks like a type hierarchy� but
feature�value pairs have been added to some of the types	 By convention� a
feature annotates its introducing type� and the value �type� it occurs with
is the value of Approp at that type	 For example� in the example shown�

���� THE LOGIC OF TYPED FEATURE STRUCTURES ��

Intro�f� � a and Approp�f� a� � �	 Upward closure is assumed� so all
subtypes of an introducing type also have its introduced features	 In this
way� features can be left implicit where their presence can be inferred from
upward closure and their values can be inferred from right monotonicity	 For
example� f is appropriate to b in Figure �	��� also with value �	 The types c
and d both re�ne the value of Approp on f� but e does not� and the value of
Approp�f� e�� h� can be inferred from the uni�cation of the values at c and
d	 e does introduce a new feature� g� however	

The usage of signature is borrowed from King ������� although the de��
nition of a signature and of appropriateness there is slightly di�erent	 They
are also closely related to class hierarchies in object�oriented programming�
in that they specify where features �methods� are introduced and how they
are inherited	 Just as in object�oriented programming� one could interpret
these speci�cations as defaults and entertain various conventions for over�
riding them �Carpenter� ����b� Lascarides and Copestake� ������ although
these will not be pursued here	

In terms of identifying what provides the basic vocabulary or building
blocks of a feature structure or a description language� it might be more
fair to refer to the set of types plus the set of features as the signature�
but type subsumption and appropriateness play a very important role in
the logic�s� of Carpenter ������� in that the axiom schemes that make up
those logics depend on them in order to form genuine axioms	 Thus� a
signature� as de�ned here� is precisely what is needed to construct a logic to
accompany the descriptions that are constructed from a set of types and a
set of features	 Appropriateness is also distinguished from the more general
recursive constraint system presented as an application in Carpenter� ����
in that satisfaction is decidable	

As mentioned above� the emphasis in this presentation will be on the
algebraic operations on feature structures that correspond to the closure of
descriptions under various rules of inference	 Some of these operations are
what �enforce the requirements that an appropriateness speci�cation states
over feature structures because the �totally� well�typed feature structures are
exactly the feature structures that model those �xed points the existence
of Approp by itself guarantees nothing	 Of principal practical interest� how�
ever� is the operation of feature structure uni�cation and its progenitor� the
subsumption relation on feature structures	

�� CHAPTER �� ATTRIBUTE�VALUE LOGIC

����� Subsumption and Uni�cation

The view of feature structures as representing partial or underspeci�ed infor�
mation is what inspired us to use partially ordered sets of types	 That partial
order �ttingly induces a partial order on feature structures themselves� that
corresponds to subsumption of information content�

De
nition ����� Given a common signature� a typed feature structure� F �
hQ� �q� �� ���i subsumes another typed feature structure� F � � hQ�� �q�� ��� �����i�
written F v F � �or� where unclear� vF� i� there is a total function� h � Q ��
Q�� called a morphism� such that�

	� h��q� � �q��

� for every q � Q� ��q� v ���h�q���

�� if ��f� q��� then h���f� q�� � ���f� h�q��� and

�� if q� � q�� then h�q���
� h�q���

If F v F �� we also say that F � extends F �

The second criterion forces feature structure subsumption to obey type
subsumption on individual nodes	 The other criteria require the morphism to
establish a correspondence between nodes that preserves the starting node�
feature �and thus path� values� and inequations	 The more speci�c feature
structure� F �� can thus simulate F in the sense that we can map to a cor�
responding node using h� ask questions about path values� path equalities�
type information and inequation information� and we get the same or more
speci�c answers that we would have received from F itself	 In this sense� F �

has the same information that F has plus possibly more	
The feature structure in Figure �	��� for example� subsumes the feature

structure in Figure �	��	 The morphism that witnesses this is not an injec�
tion� because the nodes corresponding to the paths f and g in the former
are both mapped to the node corresponding to both the path f and g in
the latter in order to satisfy the third criterion	 So feature structures can be
more speci�c by virtue of having extra path equations	 The feature struc�
ture in Figure �	�� also subsumes the feature structure in Figure �	��	 In
general� a feature structure with a pair of nodes with consistent types has
a pair of more speci�c feature structures� one where their paths map to the
same node� and one where the nodes are inequated	 Neither of these sub�
sumes the other	 When a pair of nodes has inconsistent types� then only the

���� THE LOGIC OF TYPED FEATURE STRUCTURES ��

�
�������

a

f �

�
b
h c

	

g �

�
b
h c

	
� � �

�
�������

Figure �	��� The AVM representation of a feature structure with structurally
identical but inequated substructures	

�
a
f b

	
v

�
�af b
g c

�
�

Figure �	��� An example of feature structure subsumption	

inequated variant exists	 This is the more intensional version of inequated
feature structure presented in Carpenter� ����	 The other� called fully in�
equated feature structures �Carpenter� ����� p	 ����� has neither� because it
assumes that inequations can only hold between nodes in a feature structure
when there is a more speci�c feature structure in which their paths could be
shared	

The single direction of implication in the fourth criterion says that they
can also have extra path inequations	

To consider another example� the feature structures in Figure �	�� stand
in the subsumption relation shown because of the condition that ��f� q�� in
the third criterion	 Thus� feature structures can also be more speci�c by
virtue of having extra features de�ned on a particular node	

Just as type subsumption induces type uni�cation by forming least upper
bounds� feature structures subsumption induces feature structure uni�cation	
The problem� as mentioned above� is that we have no way to determine that
two feature structures have non�intersecting node sets	 We do not want
the uni�cation of the feature structures in Figure �	�� to di�er from the
uni�cation of those in Figure �	��	 As individual feature structures� both
structures in both pairs have the same information� so uni�cation should
yield a feature structure with the same information as well	 This is related
to the fact that feature structure subsumption is not a partial order because

�� CHAPTER �� ATTRIBUTE�VALUE LOGIC

�q�

a

b

f

b

g

�q�

a

b

gf

Figure �	��� Two feature structures whose sets of nodes intersect	

�q�

a

b

f

b

g

�q�

a

b

f

b

g

Figure �	��� Two feature structures whose sets of nodes do not intersect	

���� THE LOGIC OF TYPED FEATURE STRUCTURES ��

there can exist F� and F� such that F� v F� and F� v F�	 We should not
care which feature structure uni�cation returns� provided that it has the right
information content	
We can solve both concerns by creating an equivalence relation that re�

lates mutually subsuming feature structures	 Subsumption modulo this re�
lation is then a partial order	 Using the axiom of choice� we can also �nd
equivalent feature structures under this relation with non�intersecting nodes
as a precursor to uni�cation	 In the next chapter� it will be shown that this
relation corresponds exactly to abstraction away from the set of actual nodes
in a feature structure� leaving only its relevant information	

De
nition ����� Given a set� S� an equivalence relation is a relation� � �
S � S such that� for all s� s�� s�� � S�

� �re�exivity� s � s�

� �symmetry� if s � s�� then s� � s� and

� �transitivity� if s � s� and s� � s��� then s�� � s����

De
nition ����� Typed feature structures� F� and F� are alphabetic vari�
ants� written F� � F�� i� F� v F� and F� v F��

Proposition ���� � is an equivalence relation�

De
nition ���	� Given a set� S� and an equivalence relation� �� and an
element s � S� the equivalence class of s under � is�

�s�� � fs
� � Sjs � s�g�

De
nition ����� Given a set� S� and an equivalence relation� � � S � S�
the quotient set of S modulo � is�

S�� � f�s��js � Sg�

De
nition ����� Given a common signature� and F � hQ� �q� �� ���i and
F � � hQ�� �q�� ��� �����i such that Q � Q� �
� let 	
 be the �nest�grained
equivalence relation on Q �Q� such that�

� �q 	
 �q�� and

� if ��f� q��� ���f� q��� and q 	
 q�� then ��f� q� 	
 ���f� q���

�� CHAPTER �� ATTRIBUTE�VALUE LOGIC

The uni�cation of F and F � is then de�ned to be�

F t F � � h�Q �Q���	
� ��q���� �
��� �������i�

where�

� �����q���� �
F
f��q� t ���q��jq� 	
 qg�

� ����f� �q���� �

���f� q���� if q � Q�
����f� q���� if q � Q�

� �q��� ��� �q���� i� there exists q�� and q��� such that q�� � q���� q�� 	
 q and
q��� 	
 q��

provided that the joins in the de�nition of ��� exist where needed and ��� is
anti�re�exive� F t F � is unde�ned otherwise�

Proposition ���� Given a common signature� and F� F � � F � if there exists
an F �� � F such that F v F �� and F � v F ��� then F t F �� and F t F � v F ���

Proof� Proven by Moshier ������ and extended to the typed case by Carpen�
ter ������	

Notice that F t F � � F because our lack of interest in the structure of
nodes allows F t F � � F to use a set of equivalence classes as its set of
nodes	 Each equivalence class� in turn� contains nodes of F and F �	 As a
result� F t F � corresponds to one of many alphabetically variant minimal
upper bounds of F and F � with respect to v� and so t can be viewed as a
partial function from F�F to F 	 Notice that the result may have a di�erent
type than either of the operands because of joins in the type hierarchy	
By considering feature structures and subsumption modulo alphabetic

variance� the structure assumed for types� a bounded complete partially or�
dered set� is mirrored in the structure of feature structures�

Proposition ���� vF is re�exive and transitive�

Proof� It is re�exive because the identity function� id � Q �� Q is a mor�
phism	 It is transitive because composition of morphisms yields a mor�
phism	

De
nition ����� Given v and �� invariant subsumption� v� � F�� �
F�� is de�ned such that �F��� v� �F��� i� there exist F �

� � �F���� F
�
� � �F����

such that F �
� v F �

��

���� THE LOGIC OF TYPED FEATURE STRUCTURES ��

Theorem ���� hF���v�i is a type hierarchy�

Proof� Countability follows from the countability of node sets and of the
�implicit� set of types� T 	
v� is re�exive and transitive because v is re�exive and transitive	 Sup�

pose �F��� v� �F��� and �F��� v� �F���	 Then there exist F
�
� � �F����

F �
� � �F���� such that F

�
� v F �

� and F ��
� � �F���� F

��
� � �F��� such that

F ��
� v F ��

� 	 But then F
�
� � F ��

� v F ��
� � F �

�� so F
�
� � F �

� and �F��� � �F���	 So
invariant subsumption is a partial order	
Given �F��� and �F���� suppose there exists �F��� such that �F��� v

� �F���
and �F��� v� �F���	 Then there exist F

�
� � �F���� F

�
� � �F���� and F

�
�� F

��
� �

�F���� such that F� � F �
� v F �

� and F� � F �
� v F ��

� � F �
�	 By Proposition �	��

F� t F�� and F� t F� v F �
�� so �F� t F���� and �F� t F��� v� �F���	 So v

�

is bounded complete	

Of course� the use of the term �type hierarchy here is chosen mostly for
shock value	 We are really proving that it is a countable BCPO	 For the case
of feature structures without inequations� this follows directly from the proof
in Carpenter� ���� that hF���v�i is a domain	 We were not thinking of the
elements in a type hierarchy themselves as sets of feature structures �although
these are their most natural denotations�� but because we never speci�ed
exactly what our types were� they could just as well be	 hF���v�i may not
be the same type hierarchy as the one in the signature that induced it� but
recognizing this duality is the �rst step towards understanding the under�
determination of signature encodings by empirical data	 We will examine
this issue more carefully in particular� the conditions under which feature
structures form a �nite BCPO in Chapter �	

����	 Well�Typing

The next class of algebraic operations identify subsets of F that respect
the appropriateness speci�cation of its implicit signature	 There are a few
other noteworthy subsets of F that will not be discussed in detail here	
One is the set of feature structures that respect a stronger version of type
inferencing called extensionality� where nodes whose feature values and types
are identical are assumed to be the same node	 Another is of those that
are fully inequated� i	e	� that inequate every pair of paths whose nodes have
inconsistent types	 A third is of those that are sort�resolved� i	e	� that label
their nodes with only maximally speci�c types	 The �rst two are elaborated

�� CHAPTER �� ATTRIBUTE�VALUE LOGIC

upon in Carpenter� ����	 The third is discussed somewhat there� but was
not completely understood until Carpenter and King� ����	

Semi�well�typedness

There are at least three ways in which one can interpret and enforce appro�
priateness speci�cations	 One� perhaps the most basic� is as a speci�cation
of which features a node is permitted to bear� given its type	

De
nition ����� A typed feature structure� F � hQ� �q� �� ���i is semi�well�
typed i� for every q � Q� if ��f� q��� then Approp�f� ��q����
ST F denotes the set of semi�well�typed feature structures�

De
nition ����� Let TypDom � F �� F be the partial function such that�
given F � hQ� �q� �� ���i � F � TypDom�F � � hQ� �q� �D� ���i� where �D�q� �
��q� t

F
fIntro�f�jf � Feat$��f� q��g provided the joins in the de�nition of

�D exist� and is unde�ned otherwise�

Proposition ��	� For every F � F � if TypDom�F ��� then TypDom�F � �
ST F �

Proof� If the joins required by �D exist� then we know Approp�f� �D�q�� wher�
ever ��f� q�� by feature introduction �Approp�f� Intro�f����� the fact that
Intro�f� v �D�q�� and by upward closure	

The name� semi�well�typed� was bestowed by King and Goetz ������� who
used it to present an alternative to well�typing without reference to a unique
introducing type for every feature� although unique introducing types are
retained here �see Section �	�	��	 One can show that TypDom promotes any
feature structure to its least semi�well�typed extension� if one exists�

Proposition ���� If F � F � and F � � ST F � then F v F � i� TypDom�F � v
F ��

Proof� Proven by King and Goetz ������	

Corollary ���� F � ST F i� TypDom�F � � F �

Proof� By Propositions �	� and �	�� the forward direction holds	 The reverse
holds since ST F is clearly upward closed	

���� THE LOGIC OF TYPED FEATURE STRUCTURES ��

Another central issue is whether uni�cation preserves the condition that
this operator establishes	 As it happens� once we know that we are working
in ST F � uni�cation will allow us to stay there� so we will not need TypDom
anymore�

Theorem ���� If F� F � � ST F and F t F ��� then F t F � � ST F �

Proof� Uni�cation can only make types more speci�c� which is consistent
with Approp by upward closure	

Another way to look at this result is that uni�cation in F automatically
gives us uni�cation in ST F we never need to worry about dealing with
non�semi�well�typed feature structures if we wish to avoid them	

Well�typedness

A second view of appropriateness is that of a value restriction using the
value of Approp to constrain the value of an appropriate feature	 Of course�
this view will only make sense if we combine it with semi�well�typedness� to
make sure that Approp has a value� where necessary	

De
nition ����� A typed feature structure� F � hQ� �q� �� ���i is well�typed
i� for every q � Q� if ��f� q��� then Approp�f� ��q��� and Approp�f� ��q�� v
����f� q���
T F denotes the set of well�typed feature structures�

De
nition ����� Let TypRan � ST F �� ST F be the partial function such
that� given F � hQ� �q� �� ���i � ST F� TypRan�F � � hQ� �q� �R� ���i� where
�R�q� � ��q� t

F
fApprop�f� ��q���jf � Feat$q� � Q$��f� q�� � qg provided

the joins in the de�nition of �R exist� and is unde�ned otherwise�

Proposition ���� For every F � ST F � if TypRan�F ��� then TypRan�F � �
T F�

De
nition ����� Let TypInf � F �� T F be the partial function such that
TypInf � TypRan � TypDom�

Proposition ���� If F � F � and F � � T F� then F v F � i� TypInf �F � v
F ��

Proof� Proven by Carpenter ������	

�� CHAPTER �� ATTRIBUTE�VALUE LOGIC

d
f�h

h

b
f�e

c
f�f

g

a
f��

e f

�

Figure �	��� A non�statically typable signature	

Corollary ���� F � T F i� TypInf �F � � F �

Proof� On analogy to Corollary �	�	

By analogy to TypDom� TypInf ��type inferencing� promotes any feature
structure to its least well�typed extension� if one exists	
Just as with TypDom� we should also ask whether uni�cation preserves

the work of TypInf	 Unfortunately� this is not always the case	 Figure �	��
shows a counter�example	 If we unify a well�typed feature structure of type b
with a well�typed feature structure of type c� we may wind up with a feature
structure of type d� whose f value is only of type g� not h� and which is there�
fore not well�typed	 There are some signatures in the present formulation
that are inherently not statically well�typable	 As a result� uni�cation in T F
looks like uni�cation in F followed by an application of TypInf in order to
extend the result back into T F �

Theorem ���� If F� F �� F �� � T F � then F v F �� and F � v F �� i� TypInf �Ft
F �� v F ���

Proof� Proven by Carpenter ������	

Figure �	�� depicts what must happen in the case of the T F induced by
the signature in Figure �	��	

Total Well�typedness

The third view of appropriateness is that of necessary conditions on the
occurrence of certain features	 This is the converse of semi�well�typing� and
says that if a feature is appropriate to a node� then the node must bear that
feature� thus naturally bringing semi�well�typing along with it	 We will also
require well�typing	

���� THE LOGIC OF TYPED FEATURE STRUCTURES ��

�
d
f h

	

TypInf

�
d
f g

	
t

T F F nT F

�
b
f e

	 �
c
f f

	

Figure �	��� Well�typed uni�cation in a non�statically typable signature	

De
nition ����� A typed feature structure� F � hQ� �q� �� ���i is totally
well�typed i� it is well�typed and� for every q � Q�f � Feat� if Approp�f� ��q����
then ��f� q���
T T F denotes the set of totally well�typed feature structures�

De
nition ���	� Let Fill � T F �� T F be a total function such that� given
F � hQ� �q� �� ���i � T F� Fill�F � � hQ � QFill � �q� �Fill � �Fill ��i� where QFill

is a smallest set such that�

� QFill � Q �
� and for every qFill � QFill � if �Fill�f� q� � qFill and
�Fill�f�� q�� � qFill � then f � f� and q � q��

� �Fill�f� q� �

���
���

��f� q� if ��f� q���
qFill some qFill � QFill � if ��f� q�� and

Approp�f� ��q���
unde�ned otherwise

� �Fill�q� �

��q� if q � Q�
Approp�f� ��q��� if q � QFill � q � �Fill�f� q��

Proposition ����� For every F � T F � Fill�F � � T T F�

�� CHAPTER �� ATTRIBUTE�VALUE LOGIC

Notice that Fill is a total function	 We can promote any well�typed
feature structure to a totally well�typed one	 If we combine it with TypInf�
then we obtain a uni�cation function for T T F a partial function that
promotes any T T F �extensible F �uni�cation to its minimal totally well�typed
extension	

Proposition ����� If F � T F and F � � T T F � F v F � i� Fill�F � v F ��

Proof� Proven by Carpenter ������	

De
nition ����� Let TWT � F �� T T F be the partial function such that
TWT � Fill � TypInf �

Corollary ���� F � T T F i� TWT �F � � F �

Proof� On analogy to Corollary �	�	

Theorem ���� If F� F �� F �� � T T F� then F v F �� and F � v F �� i� TWT �Ft
F �� v F ���

Proof� Proven by Carpenter ������	

Total well�typing is the interpretation of appropriateness used throughout
the rest of this dissertation	 Some of its advantages with respect to simulating
non�total but well�typed interpretations will be demonstrated later� but there
are two important prior arguments for this choice as well	 The �rst is that
total well�typing captures one of the main intuitions of appropriateness
distinguishing unknown or absent information from irrelevant information	
Feature structures of a particular type represent our knowledge about objects
in the world� and those objects are known to have certain attributes on the
basis of belonging to that type� whether we know what their attributes� values
are or not	 The view of feature structures as partial information allows us
to use non�maximally speci�c types as the types of vague values of unknown
attributes� so the existence of the attributes themselves is still consistent
with that view� and should be inferred	
The other argument is a computational one	 Total well�typing allows us to

infer exactly how many attributes a feature structure of a particular type will
have	 That means we have information about the size of its representation�
which can be used to simplify memory allocation and uni�cation algorithms
that act on it	 Because features can be introduced at any type� that still
does not mean that the arity or size of a feature structure�s representation

���� THE LOGIC OF TYPED FEATURE STRUCTURES ��

will never change	 When uni�ed with another feature structure� the type of
the result could promote� and it may acquire new features	 The type of a
feature�s value could also promote upon application of TypInf because of a
di�erent �but still consistent� value restriction	 The fact that the type can
in fact promote and the fact that its arity may change when it does so are
the two signi�cant sources of complexity in working with the uni�cation of
typed feature structures in comparison to �rst�order terms� but it would be
even worse if the arity were not constant even for a �xed type	
For totally well�typed feature structures� we also have the same duality

as with general feature structures�

Corollary ���� hT T F���v�
T T Fi is a type hierarchy�

Proof� v�
T T F is just the restriction of v

� to T T F � so it is also a partial
order	 By Theorem �	�� it is bounded complete	

This can also be proven �Carpenter� ����� by showing that TWT is a
closure operator over domains	

����
 Join Preservation

In the last subsection� we saw that there are some signatures for which F �
uni�cation does not extend automatically to T F� or T T F�uni�cation	 Those
signatures can be explicitly characterized �this de�nition will be reformulated
in Chapter ���

De
nition ����� �Tentative� An appropriateness speci�cation is said to pre�
serve joins i�� for all features f � Feat� for all types s� t such that s t t��

Approp�f� s t t� �

�����
�����

Approp�f� s� t Approp�f� t� if Approp�f� s�� and
Approp�f� t��

Approp�f� s� if only Approp�f� s��
Approp�f� t� if only Approp�f� t��
unrestricted otherwise

Proposition ����� Approp is join�preserving i� for any F� F � � T F such
that F t F ��� F t F � � T F �

Proof� The forward direction was proven by Carpenter ������	 Suppose Ap�
prop is not join�preserving	 Then there are types s and t and a feature

�� CHAPTER �� ATTRIBUTE�VALUE LOGIC

f � Feat for which st t� and one of the three conditions above do not hold�
depending on whether Approp�f� s�� and
or Approp�f� t��	 Let Fs� Ft � F
be feature structures with no features and one node of type s� and t re�
spectively	 Clearly� TWT �Fs� and TWT �Ft� exist� which are the least �by
subsumption� totally well�typed feature structures of types s and t respec�
tively	 They are also in T F 	 Since they are least� they have no re�entrant
nodes� i	e	� there is a unique node q for every pair of feature and node� f� and
q�� for which ��f�� q���� and ��q� � Approp�f�� ��q���	 By right monotonicity
of Approp and the bounded completeness of the type hierarchy� TWT �Fs�
and TWT �Ft� are then uni�able	 But in TWT �Fs� t TWT �Ft�� consider
q � ��f� �q�	 Its type is either Approp�f� s�� Approp�f� t�� or Approp�f� st t��
depending on which case of join�preservation s and t belong to	 They vio�
late that case� however	 By right monotonicity� ��q� v Approp�f� s t t�� so
Approp�f� s t t� �v ��q�� and thus TWT �Fs� t TWT �Ft� �� T F 	

Proposition ����� Approp is join�preserving i� for any F� F � � T T F such
that F t F ��� Fill�F t F �� � T T F�

Proof� Suppose Approp is join�preserving	 By the preceding proposition� for
every F� F � � T T F � �F t F �� � T F 	 Fill is a total function from T F to
T T F � so Fill�F t F �� � T T F 	
Suppose Approp is not join�preserving	 In the proof of the preceding

proposition� two feature structures in T T F were used� and their uni�cation
was shown not to be in T F 	 So they fall out of the domain of Fill	

With join�preservation� one can use only Fill plus F �uni�cation� and Fill
is total� unlike TWT	 Carpenter ������ identi�es two further restrictions on
Approp� either one of which allow one to eliminate Fill as well� leaving only
F �uni�cation	

����� Signature Completion

Feature introduction has been argued not to be appropriate for certain empir�
ical domains either	 Just as with the condition of bounded completeness� we
may ask whether it is possible to take a would�be signature without feature
introduction and restore this condition through the addition of extra unique
introducing types for certain appropriate features	 The following algorithm
achieves this�

���� THE LOGIC OF TYPED FEATURE STRUCTURES ��

�	 Given candidate signature� S� �nd a feature� f� for which there is no
unique introducing type	 Let K be the set of minimal types to which
f is appropriate� where jKj � �	 If there is no such feature� then stop	

�	 Add a new type� v� to S� to which f is appropriate� such that�

� for all k � K� v v k�

� for all types� t in S� t v v i� for all k � K� t v k� and

� Approp�f� v� � Approp�f� k��uApprop�f� k��u� � �uApprop�f� kjKj��
the generalization of the value restrictions on f of the elements of
K	

�	 Go to ���	

In practice� the same signature completion type can be used for di�erent
features� provided that their minimal introducers are the same set� K	 This
clearly produces a partially ordered set with a unique introducing type for
every feature	 It may disturb bounded completeness� however� which means
that the result must undergo meet semi�lattice completion� as described in
Section �	�	�	 If generalization has already been computed� the signature
completion algorithm runs in O�fn�� where f is the number of features� and
n is the number of types	

����� Descriptions and Most General Satis�ers

The �nal algebraic operation to be considered is that of the most general
satis�er	 This operation� unlike the others� maps a description to a feature
structure� and is essentially what links the description language presented in
Carpenter� ���� to feature structures themselves	

De
nition ����� The set of descriptions over a countable set of types� T a
�nite set of features� Feat and a countable set of variables� Var� is the least
set Desc such that�

� x � Desc� for all x � Var�

� �
�
�x� for all x � Var�

� t � Desc� for all t � T �

� � � � � Desc� for all � � Feat�� � � Desc�

�� CHAPTER �� ATTRIBUTE�VALUE LOGIC

� � � �� � � � � Desc� for all �� � � Desc�

NonDisjDesc is the disjunction�free fragment of this language�

This language is a consolidated and somewhat simpli�ed form of the lan�
guage plus its various extensions used in Carpenter� ����	 In the spirit of
H�ohfeld and Smolka ������� and as suggested by Carpenter ������ and pursued
in Steinicke and Penn� ����� the path equations and path inequations estab�
lished by variables are taken as constraints on variable assignment functions�
and the scope of variables �which in many practical applications� is larger
than a single description� is implicitly closed under existential quanti�cation
of the variable assignment	 For example� we should read the description�
f � g � h � x � i � j � k � x as denoting those feature structures F � for
which there exists a feature structure� G such that the value of the path
f � g � h in F and the value of the path i � j � k in F are both G	 One
may also notice the absence of a general negation operator	 In a description
language over types with subsumption� general negation is potentially non�
monotonic	 In Figure �	��� for example� �b is true of feature structures of
type a� but not of feature structures of any subtype of a	 As proven by Car�
penter and Penn ������� provided one works in the domain of sort�resolved
feature structures �in which subsumption reduces to identity�� general nega�
tion on a variable�free fragment of this language reduces to syntactic sugar	
As proven by Steinicke and Penn ������� that reduction does not hold in the
full language	 One can only have two of variables� inequations� and general
negation with all three� there is again no sound and complete calculus for
satis�ability	 Inequations are necessary in order to encode the negation of
path equations	 Variables are quite useful to have in a logic programming
setting� and have been shown to reduce the size of disjunctive descriptions
exponentially �Kasper� ����b�	 So general negation is excluded here	
A description from this language describes a feature structure	 Typically�

many feature structures are described by a particular description	 Carpenter
������ gives a semantic notion of satis�ability in which feature structures are
taken to model descriptions�

De
nition ����� An assignment is a total function � Var �� F � Let
Assign by the set of all assignments�

De
nition ����� Where F � F is said to satisfy � � Desc� written F j�� ��
j�� is the smallest relation such that�

���� THE LOGIC OF TYPED FEATURE STRUCTURES ��

� F j�� x i� �x� � �q�

� F j�� �
�
�x i� �x� �� �q�

� F j�� t i� t v ���q��

� F j�� � � � i� F�� j�� ��

� F j�� � � � i� F j�� � and F j�� ��

� F j�� � � � i� F j�� � or F j�� ��

� is satis�able i� there is a F � F such that F j�� ��

In the absence of disjunction� there is a least such feature structure for
a satis�able description� and the set of feature structures that satisfy a de�
scription is upward closed�

De
nition ����� Given a description � � Desc� the satis�ers of � are the
feature structures that satisfy � under some assignment function� Sat��� �S

��AssignfF jF j�
� �g�

Proposition ����� If F � Sat��� and F v F �� then F � � Sat����

Proof� Proven by Carpenter ������	

Proposition ����� If � � NonDisjDesc� and � is satis�able� then there is a
most general satis�er MGSat��� � F such that F � Sat��� i� �MGSat����� v

�

�F ���

Proof� Proven by Carpenter ������	

MGSat can also be generalized to a function whose codomain is a set of fea�
ture structures in the case of disjunctive descriptions	 In the non�disjunctive
case� these two propositions establish a one�to�one correspondence between
descriptions and feature structures� up to alphabetic variance of nodes
the set of feature structures that satisfy a description is rooted at a unique
least equivalence class of satis�ers� whose principal �lter in hF���v�i �the
set of feature structure equivalence classes that it subsumes� is none other
than the equivalence classes of that set of satis�ers	
In practice� one normally uses TWT �MGSat � which provides a represen�

tative from the equivalence class of least totally well�typed feature structures
that satisfy a description	 Totally well�typed feature structures have the very

�� CHAPTER �� ATTRIBUTE�VALUE LOGIC

nice property that their descriptions can be extremely terse	 When a fea�
ture� f� is mentioned in a description� �� the type� Intro�f�� is inferred for
TWT �MGSat���� because of feature introduction� and when a type is men�
tioned or inferred� all of the features appropriate to that type are known
to be present on TWT �MGSat����	 In this way� total well�typing allows
descriptions to identify only those paths in a potentially very large feature
structure to which reference to salient information� i	e	� information more
speci�c than that provided by a most general satis�er� is needed	 This extra
level of indirection combined with a syntactic notion of variables that remains
independent of feature structures themselves are the primary practical ad�
vantages of description logics such as those of Carpenter ������ or Smolka
������� which also employs a description language with variables� over term
or record logics such as the ��terms of A�!t�Ka�ci ������	 In the latter� tags� the
analogue of variables� are actually part of the terms or records themselves�
and thus introduce an additional level of alphabetic variance� in a manner
roughly similar to that in which nodes in the formalization presented here
do	 ��terms can also have inconsistent types	 Feature structures as de�ned
in Carpenter� ���� do not there are simply some descriptions with incon�
sistent types that are not satis�able by any feature structure	

For the purposes of this study� the charm of most general satis�ers also
works the other way we can simply continue to work with and think about
�totally well�typed� feature structures rather than descriptions� because we
know that satis�able descriptions have most general satis�ers	 The only
problem that remains is the alphabetic variance introduced by nodes� which
will be addressed in the next chapter	

��� A Brief History of Typed Feature

Structures

It has been said that Aristotle sometimes mistook the rules of
Greek grammar for immutable verities of logic	 We can raise an
analogous issue about computer simulation	 To what extent do
we make implicit assumptions of psychological theory when we de�
cide to write a simulation program in an information�processing
language� 	 	 	 it is probable that psychological postulates enter
the simulation by way of the structure of the programming lan�

���� A BRIEF HISTORY OF TYPED FEATURE STRUCTURES ��

guage	 Allen Newell and Herbert A	 Simon� Computers in
Psychology� p	 ���� ����

The feature structure has� under various names� occupied a central position
in arti�cial intelligence research from the very beginning	 It began life in
experimental psychology as a means of characterizing mental representations
of concepts	 From the study of volitive acts� Narziss Ach ����� % ����� and
his colleagues in the W�urzburg school had concluded that human thought was
not only guided by associations� crudely put� but also by what Ach termed
�determining tendencies� in�uences from the presentation of a goal or task
that direct or determine the associations that most prevalently or strongly
accrue on the perception of a stimulus �Ach� ����� �����	 These determining
tendencies were alleged to give thought its intentional� ordered nature� as
opposed to some cacophonous chorus of random associations �Humphrey�
����� pp	 ��%��	
This idea was later used by psychologists working on concept learning

and category formation to formulate descriptions of objects that were used
to illustrate concepts to be learned� in which these determining tendencies
were encoded as attributes� and the concepts themselves were characterized
as collections of attribute�value pairs �Hunt� �����	 This began with the more
formal work of Hovland ������ on learning theory� and became popular with
its adoption for experimental work on concept learning� notably in Bruner
et al	� ����	

����� Description Lists

In terms of its use as a structure for representing knowledge in actual imple�
mentations� feature structures were �rst used as a data structure for encoding
relational formulae from logic in a computer�s memory in a manner inspired
by and faithful to research in experimental psychology	 When Allen Newell
and Herbert Simon embarked upon the task of creating a programming lan�
guage for simulating human reasoning� they knew that they would need very
expressive data structures that could also serve as representations of human
memory	 They saw that it was possible to encode arbitrary quanti�er�free
predicates using nested lists of attribute�value pairs by regarding attributes as
binary relational or functional symbols	 They also saw that lists of attribute�
value pairs can directly represent Ach�s directed associations� where the at�
tribute is used to select the most appropriate association given a particular

�� CHAPTER �� ATTRIBUTE�VALUE LOGIC

context for a stimulus� and thus its determining tendencies �H	 Simon� p	c	�	
These lists� called description lists� were realized as early as ���� in Logic
Language �LL�� a language for supporting the automated theorem proving
system� Logic Theorist �LT� �Newell and Simon� �����	 LL later developed
into the more widely circulated series of languages� IPL �Newell and Shaw�
������ where their use was quickly generalized to empirical domains other
than logic itself� e	g	� relations among goals and moves in a chess�playing
program �Newell et al	� �����	 Plain lists were also included in IPL for rep�
resenting normal �unlabelled� associations	

Having been incorporated into IPL� description lists were also one of the
topics presented at the Dartmouth Conference �H	 Simon� p	c	� where the
term �arti�cial intelligence is said to have been coined	 As a result of that
meeting� they were borrowed� along with lists� into LISP �McCarthy� ������
although not as a full��edged construct� but rather as a useful internal de�
vice �renamed �property lists� for tracking state information in early LISP
interpreters	 Their subservient status� however� did not prevent their contin�
ued use as an explicit knowledge representation device	 The SIR �Semantic
Information Retrieval� system �Raphael� ����� ����� was a natural language
dialog system with no built�in world knowledge that could acquire directed
associations from interaction with a user and then answer questions based
on those associations	 It was implemented in LISP and used property lists
to represent the directed associations	

SIR was a �rst in several respects	 It appears to have been the �rst natural
language processing system to use this kind of data structure� although it
used it for representing only knowledge about the domain under discussion�
not linguistic knowledge to support the vehicle of discussion	 SIR also marks
a methodological turning point in that it appears to have been one of the �rst
systems to allow the choice of this data structure to guide its decisions about
knowledge representation rather than vice versa� in Raphael� ���� �p	 ����
the choice of semantic representation is very candidly ascribed to one among
what was available in the arti�cial intelligence programming languages of
the day	 Among these decisions� and perhaps the most lasting legacy of
SIR� was the decision to explicitly represent hyponymy or subsumption as
an attribute�value pair� along with a select� closed class of other common
semantic relationships	 This is the �rst use of the so�called ISA link in an
implementation of knowledge�based reasoning or memory	� The attribute�

�Semantic networks �Quillian� ����
 or frames �Minsky� ����
 are perhaps more com�

���� A BRIEF HISTORY OF TYPED FEATURE STRUCTURES ��

SUBSET� was represented in SIR just as any other attribute� although the
justi�cation given for its inclusion and its prevalence in the examples given
in Raphael� ���� clearly indicate that it was already the princeps principium
of attributes	

����� Semantic Networks

Quillian ������ also used IPL� along with its description lists and plain lists� to
implement a semantic network for encoding the meanings of words roughly
as they appear in dictionary de�nitions	 Each concept or word meaning
could be analyzed as a bundle of properties� according to Quillian ������
p	 ����	 These properties were represented by token nodes connected in a
subnetwork �called a plane by Quillian ������� to represent their association
with the concept being de�ned� represented by a type node	 The �meaning
of a concept was then de�ned as the subnetwork� taken as a whole� accessible
from its type node	 The only properties that could de�ne concepts were other
concepts� so there were also special links� interplanar links� to connect type
nodes to their token node instances in other planes	
The associations themselves in the network were generally unlabelled	 At�

tributes were only used with numerical values� and were drawn from a closed
class including intensity� number and criteriality to indicate the �degree to
which a property was associated with other nodes	 Quillian ������ p	 ����
was aware of the relevance of directed associations� of the use of attributes to
represent them in mathematical psychology� and of the potential contradic�
tion to that work that existed in assuming that associations were undirected�
but somehow believed that the use of IPL as the underlying programming
language conferred an air of respectability on this philosophical problem�
i	e	� that there was no contradiction because there existed a programming
language that provided lists and description lists at the same time	
In other details� Quillian ������ was very much driven by the practical

problem of encoding dictionary de�nitions in a fairly literal fashion	 It used
the convention that any associative link between a type node and a token
node in a plane� i	e	� other than interplanar links� implied a hyponymous
relationship� as commonly found in dictionary entries of the form� �An X
is a Y that is
has A� B and C� in which X is taken to be a subclass of

monly credited with the idea� but the former never directly linked two concepts in a
hyponymous or any other relationship and the latter explicitly argued against �in�exible�
inclusion�oriented� knowledge representation schemes �Minsky� ����� p� ���
�

�� CHAPTER �� ATTRIBUTE�VALUE LOGIC

Y	 Links between token nodes were used to represent adjectival or adverbial
modi�cation	 There were also special links for representing conjunctive lists
and disjunctive lists in de�nitions� and a special kind of three�way link that
connected triples of token nodes with a relation�subject�object interpreta�
tion to encode events and their role assignments	 Planes of token nodes were
connected mainly in a tree pattern� although token nodes could also have
multiple associations as a result of pronominal or other kinds of coreference
in a dictionary de�nition� in which case the network was conventionally de�
picted with a special tag to indicate the identity of those paths	 This is the
historical antecedent of re�entrant nodes in feature structures	 Attributes and
their numerical values were only employed to encode the shades of meaning
contributed by modal quanti�ers such as �most or �probably in dictionary
de�nitions	
Although Quillian ������ believed that concepts could be decomposed

into more elemental properties� concepts �as type nodes� stood in a network
alongside the properties �as token nodes� of which they were composed� and
the properties themselves were merely other associated concepts	 This is not
the same type�token distinction used in philosophical literature on language�
in fact� it was introduced simply in order to partition the network into swaths
of nodes� consisting of one type node along with many token nodes� in order
to use their con�guration as a representation of meaning for the type node�s
concept �Quillian� ����� p	 ����	 In no formal sense did this kind of network
provide a semantics for its concepts	 Type nodes remained uninterpreted ab�
stractions of addresses in a computer�s memory for the purposes of describing
a particular computer program more lucidly� not concepts	
On the other hand� this graph�theoretic view of knowledge representa�

tion essentially characterizes all subsequent work in this area	 Typed fea�
ture structures are no exception	 Of course� type nodes have been moved
to a network of their own� the type signature� and types decorate the �to�
ken� nodes of graphs that correspond to individual feature structures with
an assignment function	 The legacy becomes acutely apparent� however�
whenever feature structures are used to encode higher�order functions or ab�
stractions other than the �rst�order entity�to�truth mapping that the type
assignment function can straightforwardly encode� and whenever non�trivial
choices must be made between positing sub�concepts and positing individu�
als or instances of those concepts	 In the former case� as can happen with
feature�structure�based representations of natural language semantics� such
as HPSG�s treatment of quanti�ers or representation of situation�style nuclei�

���� A BRIEF HISTORY OF TYPED FEATURE STRUCTURES ��

the representation of functions as nodes in a graph alongside representations
of objects to which they could potentially apply has the same �at�earthed feel
to it as semantic networks and� in particular� makes the prospects of �nding
a transparent� syntactic representation of state� abstraction� application or
composition rather grim	 The latter case arises� for example� in the choice
between subtype�based encodings and feature�value�based encodings of dis�
tinctions among information states that is one of the central subjects of this
study	 That choice exists to a great extent because there is no external crite�
rion or constraint to evaluate what the semantic types should correspond to	
A model�theoretic denotation could be constructed so that nodes� for exam�
ple� are interpreted in a very heterogeneous universe of entities in the world�
functions on those entities� abstract properties that they may have such as
number and gender� and whatever else is necessary the model theories
that currently exist for typed feature structures permit that but at that
point� feature structures are not being used as a formal device to represent
knowledge� but as a formal device to represent data structures that encode
formal devices to represent knowledge	 The problem is that� historically� this
was all that they were intended to achieve in work such as that of Quillian
������	
Curiously� one of the few sources of external criteria came at around this

time from Chomsky and Halle ������� who were inspired in their choice of
feature structures directly by their continued application in psychology	 It
was also the �rst use of feature structures� although of a very simple form� to
represent properly linguistic knowledge� which is now where they �nd their
widest range of application	 Values of features were always plus or minus�
and the features themselves were a �substantively universal collection of
phonetic features� over which any language must articulate its phonological
rules	 Although there was no explicit semantic typing of these structures �as
with all early uses of feature structures� and although a featureless network of
types could have been used to achieve the same e�ect� given the very limited
range of feature values� there was a clearly expressed agenda of using feature
structures to decompose language�speci�c phonemes into bundles of these
language�universal phonetic properties	 This is certainly much more in keep�
ing with the conceptual decomposition to which Quillian ������ had alluded�
and has become the standard way of using feature structures within the area
of phonology	 The use of claims about universal substantives in grammar has
never been generalized to the application of feature structures to other areas
of linguistics	 In syntax� for example� the trend has been to claim that par�

�� CHAPTER �� ATTRIBUTE�VALUE LOGIC

ticular implicational constraints of grammar are either language�universal or
language�speci�c� but that all of those constraints are free to avail themselves
of the same types and features in a common signature	

����� KL�ONE

A very useful history and survey of KL�ONE and its successors can be found
in Woods and Schmolze� ����� upon which much of this subsection is based	
The advent of KL�ONE �Brachman� ����� Brachman and Schmolze� �����

marked the beginning of a formally and computationally mature approach
to knowledge representation and classi�cation networks	 Although the in�
ventors of languages such as IPL had thought a great deal about necessary
and su�cient conditions for representations of concepts� memory etc	 from
the perspective of research in empirical psychology� subsequent applications
of those languages had become increasingly parochial and informal in their
coining of primitives and conventions of usage in order to achieve a partic�
ular su�ciency for the domain in which they were to be applied� primarily
because no precise prescription came with these languages to indicate what
the psychologically inspired structures they provided actually meant� or how
they were to be properly used	
The original goal of Brachman ������ was to provide a level of �epis�

temological primitives �including ISA links� below that of actual concepts�
that could be argued to be su�cient regardless of the empirical domain being
represented	 The desire to certify the validity of that argument formally ulti�
mately led to the additional adoption of an external� denotational semantics
that could be used to prove correctness� culminating in the KL�ONE succes�
sor language� KRYPTON �Brachman et al	� ������ and every successor since
then	
KL�ONE followed the tradition of using graphs as an abstraction for re�

lating concepts� but did not decorate the edges of the graphs with attributes	
Instead� a di�erent �avor of node was used to represent attributes �called
�roles in KL�ONE� in the graph� which could then be connected to the con�
cepts that bore them	 In this way� the connections between nodes could be
restricted to a closed class of su�cient primitives� while still allowing for an
open class of labelled associations at the conceptual level	 KL�ONE was also
the �rst formal system to provide value restrictions� although it and its suc�
cessors have typically had a much more �exible approach to appropriateness
than the one assumed by Carpenter ������	

���� A BRIEF HISTORY OF TYPED FEATURE STRUCTURES ��

KL�ONE was also crucially in�uenced by work on frames �Fahlman� �����
����� Minsky� ������ which� along with contemporaneous work on object�
oriented programming languages� was responsible for a paradigm shift in
arti�cial intelligence from the view of relatively atomic concepts being as�
sociated to other external such concepts to a view of concepts as classes of
internally structured instances that possess attributes and values that are�
in turn� internally structured instances of other concepts	 This concept�
oriented or object�oriented view of knowledge representation structures in
turn provoked an inquiry into how instances of subconcepts acquire or in�
herit attributes and values from superconcepts that they are also instances
of	 Until KL�ONE� however� work on frames centered on providing a pre�
cise operational characterization of how inheritance was computed as well as
e�cient algorithms and data structures for achieving that �Fahlman� ������
rather than a denotational characterization of what the nature and struc�
ture of a given instance actually was	 The object�oriented� recursive nature
of feature structures as well as the importance attached to the inheritance
of attributes stems from this work� although inheritance was initially con�
ceived of as inherently subject to default reasoning� a trend that did not
return to formalizations of feature logic until relatively recently �Lascarides
and Copestake� �����	
The use of denotational semantics as a means of ensuring correctness did

have some antecedents as far back as work in semantic networks� e	g	� Schu�
bert� ����� and frames� e	g	� Hayes� ����	 The most signi�cant contribution
that the early KL�ONE languages made was in showing that a formal no�
tion of correctness plus a su�cient� universal substrate of concept�structuring
primitives could be used to automate signi�cant portions of the classi�cation
process itself	 The �rst so�automated portion was a pair of greatest lower
bound and least upper bound constructions called �most speci�c subsumer
and �most general subsumee �Woods� ������ with the latter being roughly
analogous to a most general satis�er	 Such algorithms were made possible
because of common agreement on the su�ciency and meaning of the provided
primitives and thus of higher�order notions based on them	 The correctness
of the algorithms that implemented these operations could then be derived
from the formal semantics of the language	 Semantic networks� by contrast�
required human intervention to ensure that a new concept was inserted in its
proper place	
Along with automatic classi�cation come concerns about the tractability

of the tasks that are being automated	 The goal of providing formally correct

�� CHAPTER �� ATTRIBUTE�VALUE LOGIC

as well as tractable automated classi�cation in a knowledge representation
language was �rst articulated by Levesque �����a�b�� and eventually imple�
mented in KRYPTON by distinguishing a �T�box� or terminological reason�
ing component� in which conceptual terms that can participate in constraints
or rules are de�ned� from an �A�box� or assertional reasoning component�
in which the constraints or rules themselves are stated	 Although not every
subsequent system has been as strict in enforcing this separation� the T�box is
generally where restricted but automated� tractable reasoning and classi�ca�
tion can occur� while the A�box is typically where functionality is supported
that is still very much in demand but cannot necessarily support automatic or
tractable inference	 Some languages� e	g	� LOOM �MacGregor� ����� ������
include full �rst�order reasoning in their assertional component	 Within the
realm of typed feature structures� signatures correspond to T�boxes they
de�ne the types and features that can occur in rules or constraints	 Com�
putation of least upper bounds �uni�cation�� inheritance �subsumption� and
appropriateness �value restriction� are all typical operations that a KL�ONE�
style language would support in its T�box	
KRYPTON actually drew a few other subtle but important distinctions

among the statements of its language �Brachman� �����	 Those included
modality� i	e	� whether a statement is an analytic or contingent truth� quan�
ti�cation� i	e	� whether a statement is universally true or simply true by
default� and matrix� i	e	� whether an ISA statement is to be interpreted set�
theoretically as inclusion or predicatively as a material conditional	 These
distinctions have largely been eroded in successive languages simply because
of the di�culty that exists in classifying some statements according to one
or more of them
In the present formulation of typed feature structures� quanti�cation is

not an issue in the signature� but several programming languages based
on the logic of typed feature structures employ Prolog�like reasoning with
negation�by�failure� which e�ectively admits defaults into their assertional
components	 The duality between set�theoretic and material conditional in�
terpretations of signatures can be seen by comparing Carpenter� ���� with
its contemporaries� mostly set�theoretic treatments of feature logic	 Well�
typedness of feature values� for example� is enforced by the implication� �if
��f� q��� then Approp�f� ��q�� v ����f� q��� without an indication of what
the denotations of Approp�f� ��q�� and ����f� q�� actually are� or of what
nodes such as q and ��f� q� really represent	 Of course� a set�theoretic inter�
pretation can easily be provided� in fact� all of the formulations of feature

���� A BRIEF HISTORY OF TYPED FEATURE STRUCTURES ��

logic that do provide models say next to nothing about the universe of ob�
jects which they claim that nodes represent	 It is also interesting to note
that� of the four distinctions drawn by Brachman ������� matrix is the only
one not implemented in KRYPTON		

As for modality� another trend in typed feature logic� notably in King
and Goetz� ����� Gerdemann and King� ����� and Gerdemann� ����a� has
been to simultaneously reject total well�typing as the interpretation of ap�
propriateness� the unique feature introduction requirement� and the use of
assertional�component functionality� e	g	� general implicational constraints�
to specify necessary conditions that might otherwise be relegated to appropri�
ateness� such as feature value cooccurrence restrictions or subtype partition�
ing conditions	 Total well�typing is a necessary and su�cient interpretation
of appropriateness conditions� while well�typing with unique feature intro�
duction is only su�cient� and without it� neither necessary nor su�cient for
deterministic type inference	 The result is an impaired ability to exploit nec�
essary conditions in type inferencing� and an ad hoc criterion for distributing
constraints between the T�box �signature� and A�box �theory� �speci�cally�
one based on a very literal reading of Pollard and Sag� ����� �����	 The
trend in KRYPTON and other KL�ONE�like languages has been in the ex�
actly opposite direction� to exclude purely su�cient conditions entirely� or at
the very least from the T�box� or to blur the entire T�box
A�box distinction�
as in CLASSIC �Borgida et al	� ����� Patel�Schneider et al	� ������ in which
case su�cient conditions are still excluded from the de�nitional statements
that are used to drive automatic classi�cation	 There� the emphasis has been
on isolating a collection of necessary conditions �sometimes even contingent
necessary conditions� that can tractably and infallibly apply to terms in the
assertional component to force early contradictions	

����� Feature Structure Uni�cation and Beyond

A very good introduction to feature logics in the modern sense can be found
in Keller� ����	

Feature structures began to take their present form beginning with Kay
������� who used them as the basis of a language of descriptions in a model

�In a later version� KRYPTON eventually prohibited primitive concepts from having
necessary conditions attached to them in the T�box� which can be read as a rejection of
material conditional content from the T�box�

�� CHAPTER �� ATTRIBUTE�VALUE LOGIC

of human language production and comprehension	 While informally pre�
sented� the exposition makes it clear that feature structures were viewed as
being composed of sets of �basic equations between paths and either atomic
values �roughly� types� or other paths �re�entrancies�� much like the abstract
feature structures that will be presented here in Chapter �	 Kay ������
also identi�ed uni�cation as the operation par excellence to be performed on
these structures� as it was the role of grammar in this model to state the
constraints on making incomplete descriptions of utterances more complete�
either by adding semantic and functional information to a description of a
phonological string� which constitutes parsing� or by adding the necessary
phonological string to a description of semantic and functional constraints�
which constitutes generation or surface string realization	 Graph�theoretic
approaches to knowledge representation prior to this time had only explored
the possibility of unifying individuals� attribute graphs themselves �as op�
posed to calculating least upper bounds of concept pairs� to a limited extent
as a means of inference in arti�cial intelligence	 A salient example in vision
research was that of Winston ������� who calculated similarities and di�er�
ences between pairs of graphs for scene comparison and identi�cation in a
process that closely resembles graph uni�cation between feature structures	
This new view of grammar� presumably inspired by early work on uni��

cation �Robinson� ����� and logic programming �Kowalski� ����� in computer
science� sparked a revolution in formal approaches to natural language syntax
in the early ����s� leading to the advent of three new and very productive
schools of grammar� all with di�erent variations on what feature structures
were and how they were to be used� Lexical�Functional Grammar �LFG� �Ka�
plan and Bresnan� ������ Generalized Phrase Structure Grammar �GPSG�
�Gazdar et al	� ������ and Kay�s own theory� which developed into what is
now called Functional Uni�cation Grammar �FUG� �Kay� ����� �����	 Kay
������ elaborated on the signi�cance of feature structures and uni�cation
in computational linguistics relative to developments in logic programming
�which experienced an explosion of interest at around the same time�� and
claimed that the two major bene�ts of feature structures over logic program�
ming with Prolog�like terms was the use of attributes for named access to
substructures� and unbounded arity	 While this dissertation rejects the em�
pirical necessity of in�nitely branching terms as a matter of principle� the
formalization of appropriateness presented by Carpenter ������ and followed
here does still allow for a limited degree of arity incrementation relative to
the type system �which Kay ������ ����� did not have�	 As discussed earlier

���� A BRIEF HISTORY OF TYPED FEATURE STRUCTURES ��

in this chapter� all feature structures of a given type have the same arity�
but as that type is re�ned� the arity can increase in �xed signature�speci�ed
increments	
The �rst formal treatment of feature description languages in this �mod�

ern view came with A�!t�Ka�ci ������	 ��terms� as they were called there� have
already been discussed in the previous section	 A�!t�Ka�ci ������� particularly
his use of semantic types with type subsumption� along with the in�uence of
LFG and FUG� caused a substantial revision of GPSG� called Head�driven
Phrase Structure Grammar �HPSG� Pollard and Sag� �����	 HPSG was the
�rst of these linguistic theories to take typing seriously	 HPSG also had a
signi�cant impact on the logic of Carpenter ������� in so far as a straight�
forward encoding of HPSG�s type system and principles was an important
special case of its overall application	 That e�ect can be felt in both its
treatment of types Carpenter� ���� and �again� by way of HPSG� King�
���� are the only two formal approaches to feature structures that use a
partially ordered set of types and appropriateness� which was actually
�rst conceived of by King ������ as a formalization of typing constraints that
appeared to be assumed in HPSG�s treatment of feature structures	 It is also
apparent in the applications presented by Carpenter ������� such as recursive
type constraints and logic programming	
The intuition behind feature structures in HPSG initially took the view

that feature structures were partially ordered terms corresponding to succes�
sively re�ned information states about an utterance from the perspective of
language processing� as had Kay ������	 A later version of the theory �Pollard
and Sag� ����� partially rejected that view in favor of a mixture of a theory
of language proper and a practical view of how to parse relative to that in
a tractable manner	 That revision came mostly as a result of the persuasion
of King ������� who had recast HPSG in light of some of the philosophical
aspirations expressed in Pollard and Sag ������� and in so doing� recast the
language of typed feature structures as a conservative fragment of the lan�
guage of �rst�order logic	 This essentially shifted the meaning of �feature
structure from the descriptions of utterances to formal entities denoting the
utterances themselves a distinction that was not entirely clear to begin
with in HPSG	 Relative to those� Carpenter ������ falls somewhere in be�
tween� taking feature structures not to be the same as descriptions� but still
thinking of them as partially ordered	
The speci�c allocation of types and features in signatures also drifted be�

tween Pollard and Sag� ���� and Pollard and Sag� ����	 Pollard and Sag�

�� CHAPTER �� ATTRIBUTE�VALUE LOGIC

�
���
basic�circumstance
reln see
seer kim
seen sandy

�
���

Figure �	��� A semantic representation from Pollard and Sag� ����	

�
�see �w basic�circumstance�seer kim
seen sandy

�
�

Figure �	��� A semantic representation from Pollard and Sag� ����	

����� for example� represented semantic content using feature structures of
type� circumstance� with a feature� reln� describing the kind of semantic
relation that holds� along with various other features appropriate �in the
non�technical sense� to that relation	 Figure �	��� for example� could de�
pict the circumstance of someone named Kim seeing someone named Sandy�
where basic�circumstance is a subtype of circumstance for semantic relations
that are quanti�er�free and coordination�free	 In Pollard and Sag� �����
types such as see instead appear as subtypes of basic�circumstance �renamed
quanti�er�free�psoa�� with the features appropriate to seeing being introduced
by see itself and reln eliminated entirely� as in Figure �	��	 This adjustment
re�ects an e�ort on the part of the authors to de�ne signatures as closely
as possible to their intended use� speci�cally� to the intended cooccurrences
that should exist among types and features� as well as an adherence to some
intuitions concerning how types in the logic should correspond to the seman�
tic types being represented	 In simple quanti�er�free� coordination�free cases
such as those shown here� that correspondence can be rather transparent	

The early view of feature structures in LFG was formalized by Johnson
������� essentially as only a path function on �attribute�value elements� that
roughly correspond to nodes in Carpenter� ����	 They also include atomic
values which� as in the original proposal of Kay ������� could be cast into
Carpenter� ���� as mutually incomparable extensional types with no appro�
priate features	 This implies� among other things� that two feature paths
that terminate in an atomic value are considered to be re�entrant i� they
terminate in the same atomic value	 Feature structures to Johnson ������
are also not partially ordered� but represent �total information about ac�

���� A BRIEF HISTORY OF TYPED FEATURE STRUCTURES ��

tual linguistic entities	 Just as in Carpenter� ����� they are also taken to
be models of an attribute�value description language� but unlike Carpen�
ter� ����� are taken themselves to be interpretable on Gorn trees this
particular interpretation is connected with LFG�s tight association of feature
structures that represent functional linguistic information� called f�structures
with phrase�structure trees that represent certain information pertaining to
constituency� called c�structures	 Johnson ������ was also one of the �rst
to consider cyclic feature structures� along with Moshier ������	 The use of
regular expressions in feature paths� called functional uncertainty and quite
common in LFG research beginning with Kaplan and Zaenen ������� however�
was not incorporated into a feature logic until Keller� ����	 One may also
note� in this context� the possible extension of feature logic to negative and
disjunctive feature values �Karttunen� ������ which appear quite frequently
in feature�structure�based linguistics literature� as well as set�valued features
�Carpenter� ����a� Manandhar� ����� Moshier and Pollard� ����� Richter� in
prep	�� which have been essential to HPSG among other approaches	
A closely related treatment of feature logic to those of Johnson ������

and King ������ was that of Smolka ������� who presented a description lan�
guage along with a model�theoretic semantics of which feature structures �as
unordered� totally informative structures again� were one admissible model	
Smolka ������ was the �rst to combine a semantic notion of typing with the
proper level of intensionality in a description language for talking about fea�
ture structures	 Although sorts with no partial order among them were used�
terms could describe objects that were both sorted and feature�bearing	
The view of feature structures and description language in Carpenter�

���� itself was more heavily in�uenced by earlier work that took feature struc�
tures to be partially ordered information states� starting with Pereira and
Shieber� ���� and culminating in Moshier� ����� which is perhaps the closest
work in spirit to Carpenter� ����� and description languages for them� most
notably Rounds�Kasper Logic �Kasper� ����a� Kasper and Rounds� �����
����� Rounds and Kasper� �����	 Both Moshier� ���� and Rounds�Kasper
Logic were untyped in the semantic sense� although they both provided access
to a collection of atoms� much like Kay� ����	
Carpenter ������ also was the �rst to generalize the type system to in�

clude both intensional and extensional types� the �rst to provide a notion
of appropriateness that can essentially be used to de�ne the approaches to
typing taken in other accounts� and the �rst to give inequations a �rst�class
status both in feature structures and the description language	 Smolka� ����

�� CHAPTER �� ATTRIBUTE�VALUE LOGIC

and successor languages that viewed objects being described as total have
used classical negation� with the usual set�theoretic interpretation� but� in
fact� negation was a signi�cant sticking point for earlier work that assumed
partially ordered objects	 Inequations are a particular subset of negated
descriptions that can be treated very elegantly and monotonically in a par�
tially ordered setting	 The in�uence towards this choice again came from logic
programming� speci�cally treatments of negation in constraint logic program�
ming� as in Colmerauer� ����� ����	 An in�uential alternative proposal was
the use of intuitionistic negation in the description language �Moshier and
Rounds� �����	

��� Summary

This chapter presented some basic facts from Carpenter� ���� that will be
useful in the development presented later on� along with a brief history of the
use of feature structures and related structures within arti�cial intelligence	
Feature structures have proven to be useful because of their ability to combine
named attributes with subsumption in a way� due to appropriateness and
total well�typing� that allows terse descriptions to pinpoint a sparse amount
of information within potentially very large data structures	
We have also seen our �rst glimpse of the duality that exists between

subtype�based and feature�based encodings of information by noting that
the set of totally well�typed feature structures modulo alphabetic variance
is essentially a type hierarchy	 That duality is visible due to certain gen�
eralizations in the treatment of typed feature logic here that depart from a
more mundane� practical view of feature structures in which in�nite feature
structures are disallowed and the number of types must be �nite rather than
merely countable	
On the other hand� some of the other restrictions conventionally assumed

in the course of studies of feature logics� such as unique feature introduction
and bounded completeness� have been adopted here as well	 These have been
widely criticized as restricting the applicability of feature logic to linguistics	
The sections on meet semi�lattice completions and signature completions
have argued that those assumptions are warranted insofar as even very large
non�compliant signatures to date can be modi�ed so as to observe them in a
very small amount of time	

Chapter �

Abstract Feature Structures

and Signature Subsumption

In the last chapter� several results were presented that allow us to regard
F and T T F as type hierarchies� in a rather loose rendering of the term�
provided that we �rst collect their feature structures into equivalence classes
as de�ned by alphabetic variance	 In the same way that a semantic view
of feature structures abstracted away from some of the irregularities that
syntactic descriptions must admit� we can further abstract away from the al�
phabetic variance that the nodes of feature structures admit	 Abstract feature
structures were �rst introduced in the context of acyclic feature structures
with typed terminal nodes by Moshier and Rounds ������� extended to cyclic
feature structures by Moshier ������� and extended to typed feature struc�
tures by Pollard and Moshier ������	 They are also discussed by Carpenter
������	 Their presentation here extends them to typed feature structures
with inequations	 It will also be shown that the notion of total well�typing�
together with its inclusion operation� TWT� can be extended to abstract
feature structures	

Totally well�typed abstract feature structures are the right level of ab�
straction for looking at the information content of feature structures	 As
such� they are also the right level of abstraction for thinking about the abil�
ity of signatures to simulate the behavior of other signatures with respect to
uni�cation� because that simulation intuitively means that one can conduct
computations for one signature in another one� translate back� and emerge
with the same information� not with any particular correspondence between
nodes	

��

�� CHAPTER �� ABSTRACT FEATURE STRUCTURES

After introducing abstract feature structures� we will be ready to de�ne
signature equivalence and signature subsumption	 The former formalizes the
question posed in the introduction about what it means for two signatures
to be empirically equivalent	 The latter also establishes an encoding of one
signature by another but only in one direction	 This can have some practi�
cal advantage since not all logically equivalent signatures are computation�
ally equivalent	 It is also related to term encoding problems in knowledge
representation� where the embedding is implicitly into the �signature of
�rst�order terms� or a similar canonical representation	 These topics will be
addressed in later chapters	
Central to the idea of signature equivalence and subsumption is the math�

ematical construct known as a join�preserving encoding or embedding	 This
rather well�studied class of functions provides a characterization of what it
means for a correspondence between partial orders to preserve the behavior
of their elements under uni�cation	 It will be argued here that the stan�
dard de�nition of this class is not quite general enough to capture all of the
salient join�preserving correspondences that can exist� and a generalization
that accommodates these exceptions is then given	 This generalization will
be important in Chapter �� when it is used to establish a useful correspon�
dence between feature structures and Prolog terms	
Given a notion of subsumption among signatures themselves� it is only

natural to ask what structure the collection of all signatures possesses
possibly even enough structure to be a signature itself	 The fourth section
of this chapter considers this question	

��� Abstract Feature Structures

Moshier�s key insight was that nodes are valuable only insofar as they identify
paths	 Instead of de�ning types� path equations and path inequations on
nodes� then� we use types� subject to a few commonsensical restrictions�

De
nition ���� Given a set of types� T � and a set of features� Feat� an
abstract feature structure is a tuple A � h&�#��F � ��F i where�

� & � Feat� is the set of paths�

� # � & �� T is the total path typing function�

� �F � &� & is the path equation relation� and

���� ABSTRACT FEATURE STRUCTURES ��

� ��F � &� & is the path inequation relation�

such that�

� pre
x closure & is pre�x�closed�

� path equivalence �F is an equivalence relation on &�

� inequation negativity ��F is symmetric and anti�re�exive�

� inequation disjointness �F � ��F �
�

� pre
x consistency if �f � & and � �F ��� then ��f � & and �f �F

��f�

� inequation consistency if �� ��F��� �� �F ��� and �� �F ���� then
��� ��F�

�
�� and

� typing consistency if �� �F ��� then #���� � #�����

A is the set of abstract feature structures�

These are an abstraction from typed feature structures with normal in�
equations	 Fully inequated feature structures �Carpenter� ����� p	 ���� would
have more restrictions on where inequations can occur	
One can also de�ne an operation on feature structures that casts them

into their abstract feature structures	

De
nition ���� Let Abs � F �� A be the total function such that given
F � hQ� �q� �� ���i � F � Abs�F � � h&�#��F � ��F i such that�

� & � f�j���� �q��g�

� #��� � ������ �q���

� �� �F �� i� ����� �q� � ����� �q�� and

� �� ��F�� i� ����� �q�� ����� �q��

Proposition ���� Abs is a surjection� i�e�� every abstract feature structure
stands in the image of Abs�

Proof� Given A � h&�#��F � ��F i� let F � h�&��F
�#�F � ��F ���F i such that�

� #�F �����F
� � #����

� ��F �f� ����F
�� i� �f � & and ��F �f� ����F

� � ��f��F
�

�� CHAPTER �� ABSTRACT FEATURE STRUCTURES

� ����F
��F �����F

i� � ��F�
�	

#�F is well�de�ned by typing consistency	 ��F is well�de�ned by pre�x clo�
sure and pre�x consistency	 ��F is well�de�ned by inequation negativity�
consistency and disjointness	 As can easily be veri�ed� Abs�F � � A	

Abstract feature structures admit a direct characterization of subsump�
tion� just as was shown for hF���v�i	

De
nition ���� Given A � h&�#��F � ��F i� A
� � h&��#���F

�� ��F
�i � A� A

subsumes � is extended by� A�� A v A�� i��

� & � &��

� �F � �F
��

� ��F � ��F
�� and

� for all � � &� #��� v #�����

Proposition ���� F v F � i� Abs�F � v Abs�F ���

Proof� The characteristics of a morphism that witnesses F v F � �p	 ���
directly correspond to the requirements for abstract feature structure sub�
sumption	

Signi�cantly� the elements of A correspond exactly to the equivalence
classes established by the alphabetic variance relation� ��

Proposition ���� Abs�F � � Abs�F �� i� F � F ��

Proof� By the de�nition of � and the previous proposition	

As a result� the abstraction operation corresponds to reading the informa�
tion from a feature structure� and abstract feature structures correspond
to information states	 We can now de�ne uni�cation over abstract feature
structures without recourse to alphabetic variance to solve the problem with
non�intersecting node sets	 Because uni�cation is really only intended to
combine information from feature structures� it is more natural to think of
it as an operation on abstract feature structures	

De
nition ���� Given A�A� � A such that A � h&�#��F � ��F i� and A� �
h&��#���F

�� ��F
�i� the uni�cation of A and A� is A t A� � h&���#C � C� Ii�

where�

���� ABSTRACT FEATURE STRUCTURES ��

� &�� is the pre�x�consistent closure of &�&�� i�e�� the least set containing
& � &� that is pre�x�consistent �as de�ned on p� ���

� C is the transitive� pre�x�consistent closure of �F � �F
��

� I is the closure of ���F � ��F
�� under C�

� #C��� �
F
f#t����jh��� �i � Cg� and

� #t��� �

���
���
#��� t #���� if � � & � &��
#��� if only � � &�
#���� if only � � &��
� otherwise�

provided�

� the joins required by #C and #t exist� and

� C � I �
�

and is unde�ned otherwise�

Proposition ���� A�uni�cation is well�de�ned�

Proof� Pre�x closure� pre�x consistency and path equivalence trivially hold	
Inequation symmetry follows from the inequation symmetry and inequation
disjointness of A and A�	 Inequation disjointness is guaranteed by the second
stipulation	 Inequation consistency follows from the closure of ���F � ��F

��
under C	 Typing consistency follows from the closure under C in #C 	

The two conditions correspond to our intuitions about when uni�cation fails�
namely when typing information is inconsistent or when path inequations
are violated	 The explicit pre�x�consistent closures are necessary to handle
cases like Figure �	��� Neither abstract feature structure contains the path�
fh� but because of the re�entrancy between f and g on the left� and the fact
that gh is de�ned on the right� the result must have it to remain pre�x�
consistent and pre�x�closed	 These new paths are the ones that contribute
� no information to the type of their equivalence class in the last
clause of #t	 I must be explicitly closed under C to handle cases such as
Figure �	�� in which the violation is not directly inferred from the union of
their inequations	 The typing function must be closed under C for the same
reasons	
We also get the same duality as before without using quotient sets	

�Since Abs is a surjection� we are justi�ed in depicting the elements of A by concrete
feature structure representatives�

�� CHAPTER �� ABSTRACT FEATURE STRUCTURES

�
�af �

g �

�
� t

�
���
a
f b

g

�
b
h c

	
�
��� �

�
���
a

f

�
� b
h c

	
g �

�
���

Figure �	�� An example of the necessity of pre�x�consistent closure in A�
uni�cation	

�
���������

a
f �

g �

h �

i �

� � �

� � �

�
���������

t

�
�����
a
f �

g �

h �

i �

�
����� �

Figure �	�� An example of the necessity of explicitly closing path inequations
under path equality in A�uni�cation	

Proposition ���� hA�vi is a type hierarchy�

Proof� By Proposition �	�� vA is a partial order because v�
F is	 The fact

that it is bounded complete follows from the de�nition of A�uni�cation plus
the fact that set union is the least extension of consistent sets	

The notion of total well�typing also naturally extends to abstract feature
structures�

De
nition ���� A � h&�#��F � ��F i is totally well�typed i��

� for every �f � &� then Approp�f�#����� and Approp�f�#���� v
#��f�� and

� for every � � &� if Approp�f�#����� then �f � &�

T T A is the set of totally well�typed abstract feature structures�

Well�typing consists of satisfying only the �rst criterion� which gives us T A�
the set of well�typed abstract feature structures	 The extension is natural
because Abs respects the total well�typing of concrete feature structures	

���� ORDER�EMBEDDINGS AND JOIN�PRESERVING ENCODINGS��

Proposition ��	� If F � T T F� then Abs�F � � T T A�

Proposition ���� If there is an F � T T F such that Abs�F � � A� then for
all F � � F for which Abs�F �� � A� F � � T T F �

Proof� Given F � � F for which Abs�F �� � A� then Abs�F �� � Abs�F �	 By
Proposition �	�� F � � F 	 So F � v F � and therefore has a totally well�typed
extension	 By Propositions �	� and �	��� TWT �F ��� and F � v TWT �F �� v
F 	 Also� F v F �� so TWT �F �� � F � F �	 By Corollary �	�� F � is totally
well�typed	

Often� operations like TWT� Fill� etc	 will be thought of as applying to
abstract feature structures rather than concrete feature structures� which
makes sense because of this respect	

Theorem ���� If A�A�� A�� � T T A� then A v A�� and A� v A�� i�
Abs�TWT �A t A��� v A���

Proof� On analogy to Theorem �	�	

Corollary ���� hT T A�vT T Ai is a type hierarchy�

Proof� On analogy to Corollary �	�	

��� Order�Embeddings and Join�Preserving

Encodings

We can begin to consider signature equivalence by �rst asking how� in general�
two partially ordered sets may be said to be equivalent	

De
nition ��	� Given two partial orders hP�vP i and hR�vRi� a function
f � P �� R is an order�embedding i�� for every x� y � P � x vP y i�
f�x� vR f�y��

De
nition ���� f � P �� R is an order�isomorphism i� it is an order�
embedding and onto�

Order�isomorphisms preserve the structure of partially ordered sets ex�
actly� and� in so doing� preserve operations such as least upper bounds� great�
est lower bounds etc	� that are derived from that structure	 Clearly� if f is

�� CHAPTER �� ABSTRACT FEATURE STRUCTURES

f

Figure �	�� An example order�embedding that cannot translate least upper
bounds	

an order�isomorphism� so is f��� so this correspondence can be used in either
direction from a problem solving perspective	
Order�embeddings appear to establish that correspondence in only one

direction� and they do to the extent that one can ask questions such as �does
x subsume y�	 As shown in Figure �	�� however� this weaker correspondence
cannot be used in general to reason about operations such as least upper
bounds on bounded complete partial orders	 The reason is that the image
of f may not be closed under those operations in the codomain	 In fact� the
codomain could provide answers where none were supposed to exist� or� as in
Figure �	�� no answers where one was supposed to exist	 Mellish ������ �����
was the �rst to formulate the �one�way join�preserving encoding problem
in a correct fashion� by explicitly requiring the correct behavior�

De
nition ���� Given two BCPOs� P and R� f � P �� R is a classical
join�preserving encoding of P into R i��

� injectivity f is an injection�

� zero preservation f�p tP q�� i� f�p� tR f�q��� and

� join homomorphism f�p tP q� � f�p� tR f�q�� where they exist�

Join�preserving encodings are also order�embeddings because p t q � q i�
p v q	
There is actually a more general de�nition�

De
nition ���� Given two BCPOs� P and R� f � P �� Pow�R� is a join�
preserving encoding of P into R i��

� totality for all p � P � f�p� ��
�

� disjointness f�p� � f�q� ��
 i� p � q�

���� JOIN�PRESERVING ENCODINGS ��

� zero preservation for all �p � f�p�� and �q � f�q�� p tP q� i� �ptR �q��
and

� join homomorphism for all �p � f�p�� for all �q � f�q�� �p tR �q �
f�p tP q�� where they exist�

When f maps elements of P to singleton sets in R� then f is a classical join�
preserving encoding� but there is no reason in general to require that only
one element of R can represent P � provided that it does not matter which
one we choose	 The utility of this generalization can seen in the following
theorem� which shows that choosing total well�typing or well�typing is really
a matter of expressive convenience or taste�

Theorem ���� For any signature� S � hTS�vS�FeatS�AppropSi� there is�

	� a signature� R � hTR�vR�FeatR�AppropRi with a function f � T FS ��
Pow�T T FR�� that induces a join�preserving encoding� �f of T AS into
T T AR� and

� a signature� P � hTP �vP �FeatP �AppropP i with a function g � T T FS

�� Pow�T FP �� that induces a join�preserving encoding� �g of T T AS

into T AP �

Proof� ��� For each type in TS� t with k appropriate features� F � ff�� � � � � fkg�
let TR have �

k types� ftEjE � Fg	 Also�

� FeatR � FeatS�

� AppropR�f� tE�� i� AppropS�f� t�� and f � E� in which case
AppropR�f� tE� � �AppropS�f� t���� and

� tE vR t�E� i� t vS t
� and E � E �	

Clearly� vR is a partial order and bounded complete� where tE tR t�E� �
�t tS t���E	E��	
Now for F � T FS� let f�F � � fGg� where G � hQF � �G� �F ��F i� and

�G�q� � ��F �q��fhj�F �h�q�
g	 Since all that is di�erent between F and G is the
node�typing function� G is obviously well�formed in FR	 F is well�typed�
so wherever �F �j� q��� AppropS�j� �F �q�� vS �F ��F �j� q��	 To show G �
T FR� it must be shown that AppropR�j� �G�q��� and AppropR�j� �G�q�� vR

�G��F �j� q��	 The �rst is proven by noting that j � fhj�F �h� q��g	 To
prove the second� note that AppropR�j� �G�q�� � �AppropS�j� �F �q���� vR

��F ��F �j� q���� vR ��F ��F �j� q���fhj�F �h��F �j�q��
g � �G��F �j� q��	

�� CHAPTER �� ABSTRACT FEATURE STRUCTURES

a
f�b
g�b

b

�

S

aff�gg
affg

f�b�
afgg

g�b�

a� b�

�

R

Figure �	�� An example of S and R in the proof of Theorem �	�	

To show G � T T FR� it must also be shown that for all j and q� for which
AppropR�j� �G�q���� �F �j� q��	 �G�q� � ��F �q��fhj�F �h�q�
g and
AppropR�j� ��F �q��fhj�F �h�q�
g�� implies� by de�nition� that j � fhj�F �h� q��g	
So �F �j� q��	
Now let �f be the abstraction of f over the alphabetically variant equiva�

lence classes of T FS� such that �f�AbsS�F �� � fAbsR�f�F ��g	 The fact that
�f is well�de�ned and a join�preserving encoding follows directly from the
fact that G � f�F � only di�ers from F in its node typing function� and that
�G�q� only di�ers from �F �q� in its type�s subscript annotation with exactly
the features that q bears	
��� Let P � S� and for F � T T FS� let g�F � � fF � � T FSjFill�F �� � Fg�
and let �g be the abstraction of g over the alphabetically variant equivalence
classes of T T FS� such that �g�Abs�F �� � fAbs�F

��jF � � T FS$Fill�F
�� �

Fg	 �g is disjoint because Fill is a function	 Also� for all Abs� �F � � g�Abs�F ���
and Abs� �G� � g�Abs�G��� F tT T F G � �Fill � TypInf ��F t G�� means
�Fill � TypInf ��Fill� �F � t Fill� �G���	 Since Fill is total� by Proposition �	��
and Corollary �	�� �Fill �TypInf ��Fill� �F �tFill� �G�� � �Fill �TypInf �� �F t �G�
and thus� TypInf � �F t �G� � �F tT F �G� and Abs� �F tT F �G� � �g�Abs�F tT T F
G��	 The reverse of this reasoning also holds	 Thus �g is a join�preserving
encoding	

As an example of �f � one might consider the S and R shown in Figure �	�	
T FS corresponds to T T FR in a way that should be clear	 As an example
of �g� one can consider the encoding of T T FS into Pow�T FS� given in Fig�
ure �	�� where S is again as shown in Figure �	�	 Notice that the sets are
closed under uni�cation� which is a property guaranteed by the generalized
de�nition of join�preserving encodings	
�f is a classical join�preserving encoding� but �g is not	 �g designates every

well�typed approximation of a totally well�typed abstract feature structure

���� JOIN�PRESERVING ENCODINGS ��

� ���
�
�
�

b ���
�
b
��

�af b
g b

�
� ���

�
�a�

�
a
f b

	
�

�
a
g b

	
�

�
�af b
g b

�
�
��
�

Figure �	�� An example of �g in the proof of Theorem �	�	

as a representative of that structure in the BCPO of well�typed abstract
feature structures	 In fact�

S
Im��g� � T AS� i	e	� every well�typed abstract

feature structure represents something� but �g is not a bijection� because its
codomain is Pow�T AS�	 One could� for example� think of T FS as modeling
the extent to which a particular totally well�typed abstract feature structure
has been �lled in an application that uses a lazy �lling algorithm to reduce
the size of the data structures that it must copy or unify	 Lazy �lling could
potentially change which well�typed abstract feature structure is being used
as a representative in between uni�cations in such a system	 It does not
matter which representative we use because Fill is a total function� and can
be �postponed until all of the uni�cations are �nished	 Generalized join�
preserving encoding formally delineates a set of alternatives among which
lazy �lling or other algebraic operations can navigate without disturbing
join�preservation	 Generalized join�preserving encoding will be used in the
same capacity in Chapter �	

In the case of the proof above� it is possible to extract a classical encoding
from �g� namely the trivial inclusion encoding that chooses the single totally
well�typed abstract feature structure� which maps to itself under Fill� from
the set of well�typed abstract feature structures delineated by a set in the im�
age of �g	 In general� that will not be possible	 Figure �	� shows a generalized
join�preserving encoding from which no classical encoding can be extracted	
In fact� there is no classical encoding at all of S into the R shown� because no
three elements can be found in R that pairwise unify to yield a unique join	
A generalized encoding exists because we can choose three potential repre�
sentatives for d� one �h� for unifying the representatives of a and b� one �i�
for unifying the representatives of b and c� and one �j� for unifying the rep�
resentatives of a and c	 Notice again that the representatives of d must also
be closed under uni�cation	 So generalized join�preserving encoding really is
a generalization� even in the absence of other non�join algebraic operations

�� CHAPTER �� ABSTRACT FEATURE STRUCTURES

j

d h i

a b c e f g

� �

S R

f

Figure �	�� A non�classical join�preserving encoding between BCPOs for
which no classical join�preserving encoding exists	

to support	

A stronger version of this idea would also require homomorphisms and
zero preservation to hold for least upper bounds of in�nite sets� although
that will not be pursued here	

����� Symmetric Join Preserving Encodings

An important question to ask is whether the existence of a join�preserving
encoding in both directions is enough to establish an order�isomorphism�
i	e	� equivalence in the strongest sense	 Clearly if the dual join�preserving
encodings are both classical and inverses of one another� then they constitute
an order�isomorphism	 There may� however� be cases where we only know
of two join�preserving encodings� even classical ones� which only map one
BCPO into a proper subset of the other	 In the category of sets� the Schr�oder�
Bernstein Theorem guarantees the existence of a bijection in this case� but
that says nothing about whether that bijection preserves the structure of
subsumption in the desired way	

Proposition ���� If f is a classical join�preserving encoding of P into R�
then f is an order�isomorphism between P and Im�f� � R�

Proof� p vP q i� p tP q � q i� f�p tP q� � f�p� tR f�q� � f�q� i� f�p� vR

f�q�	

���� JOIN�PRESERVING ENCODINGS ��

Theorem ���� If P �or R� is �nite� and there exist a classical join�preserving
encoding� f � of P into R and a classical join�preserving encoding� g� of R
into P � then then there exists an order�isomorphism between P and R�

Proof� By Proposition �	�� f is an order�isomorphism between P and Im�f� �
R	 This means that Im�f� is a BCPO� and since f is a join�preserving en�
coding� p tIm�f� q� i� p tR q�	 So the restriction of g to Im�f�� gjIm�f��
is a join�preserving encoding	 By Proposition �	�� gjIm�f� is an order�
isomorphism between Im�f� and Im�gjIm�f�� � P 	 Since composition of
order�isomorphisms is an order�isomorphism� we have the order�isomorphism
�gjIm�f�� � f between P and Im�gjIm�f�� � P 	 Since P is �nite and order�
isomorphisms are bijective� Im�gjIm�f�� � P 	 But Im�gjIm�f�� � Im�g� �
P � so Im�g� � P also	 By Proposition �	�� g is an order�isomorphism be�
tween R and Im�g� � P 	

With the following lemma� we have the same result for generalized term
encodings as a corollary�

Lemma ���� If P �or R� is �nite� and there exist a join�preserving encoding�
f � of P into R and a join�preserving encoding� g� of R into P � then f and
g map elements of P and R� respectively� to singleton sets� i�e�� they induce
respective classical join�preserving encodings�

Proof� Because P is �nite� jP j j
S
Im�g�j� and because g is disjoint and

total� j
S
Im�g�j jRj� so R is �nite	 By the same reasoning with R and f �

jRj jP j	 Thus jP j � jRj� and j
S
Im�g�j � jP j� so g must map elements of

R to singleton sets in P � and likewise for f 	

Corollary ���� If P �or R� is �nite� and there exist a join�preserving en�
coding� f � of P into R and a join�preserving encoding� g� of R into P � then
there exists an order�isomorphism between P and R�

In the in�nite case� we are not always so lucky	 Figure �	� shows part of
a classical join�preserving encoding from an in�nite ascending binary tree to
an in�nite ascending ternary tree� and Figure �	� shows part of a classical
join�preserving encoding in the reverse direction	 These are trivially join�
preserving because they are subsumption preserving and there are no join�
reducible elements	 There can be no order�isomorphism� however� because
b� in one must map to t� in the other� since they are the only elements that
subsume everything� and thus b� and b� must map to two of ft�� t�� t�g in

�� CHAPTER �� ABSTRACT FEATURE STRUCTURES

b

b�

b�� b��

b�

b�� b��

t

t�

t�� t�� t��

t�

t�� t�� t��

t�

t�� t�� t��

Figure �	�� A classical join�preserving encoding from an in�nite ascending
binary tree to an in�nite ascending ternary tree	

t

t� t� t�

t�� t�� t��

b

b�

b�� b��

b�

b��

b���

b���� b����

b���

b���� b����

b��

Figure �	�� A classical join�preserving encoding from an in�nite ascending
ternary tree to an in�nite ascending binary tree	

���� SIGNATURE EQUIVALENCE AND SUBSUMPTION ��

the in�nite ternary tree� because they are the only elements subsumed only
by t� and themselves	 But then the third of ft�� t�� t�g cannot correspond to
anything in the in�nite binary tree without being subsumed by the correlates
of the other two	

��� Signature Equivalence and Subsumption

In the last chapter� it was noted that totally well�typed feature structures
give us the �best interpretation of appropriateness in a sense� and in the
last section� we saw that total well�typing can� in another respect� be used
as a substitute for the weaker well�typing interpretation	 We also saw that
abstract feature structures naturally represent the �information states pro�
vided by feature structures� and that they respect total well�typing	 Putting
all of this together� we �nally can obtain a formal de�nition of signature
equivalence and signature subsumption�

De
nition ����� Signature S is equivalent to signature R� written S �S R�
i� there exists an order�isomorphism between T T AS and T T AR� the totally
well�typed abstract feature structures of S and R� respectively�

De
nition ����� Signature S subsumes signature R� written S vS R� i�
there exists a �generalized� join�preserving encoding of T T AS into T T AR�

Proposition ���� �S is an equivalence relation and vS is a pre�order�

Proof� Re�exivity of both relations follows from the fact that the identity
function is an order�isomorphism	 Symmetry and transitivity of �S follows
from the fact that inversion and composition preserve order�isomorphisms	
De�ne the composition of two join�preserving encodings� f � P �� Pow�R�
and g � R �� Pow�S�� f �t g � P �� Pow�S�� such that�

�f �t g��p� �
�

p�g�p�

f��p�

It can easily be veri�ed that f �t g is also a join�preserving encoding	

We are justi�ed in calling the weaker notion �subsumption because in
that case� T T AR must be at least as re�ned in the distinctions between in�
formation states that it makes as T T AS	 We still need the stronger notion

�� CHAPTER �� ABSTRACT FEATURE STRUCTURES

�

index

index �

index �sg

index �

���

index �

���

index sg

index sm

index �sgmasc

� � �

person

�rst second third

number

singular plural

gender

masc fem neut

Figure �	�� Figure �	� augmented to be equivalent to Figure �	�	

because� as shown in the last section� the weaker notion in both directions
does not always guarantee the stronger	 The stronger� signature equivalence�
formally de�nes the equivalence that motivated this study	 The weaker no�
tion is one that is almost always easier to establish� and that retains most
of the practical bene�t as well	 If S vS R� then programs written relative
to S can be translated into programs written in R� and executed on a ma�
chine built for R� with the answers translated back into the vocabulary of S	
Because of the extra properties guaranteed by join�preservation� this transla�
tion works even in the face of computation of joins and other operations that
�respect joins in the manner described above for generalized join�preserving
encodings	

To consider the example in the introduction again� the signatures in Fig�
ures �	� and �	� are actually not quite equivalent Figure �	� requires
identical person� number and gender branches to those in Figure �	� in order
for feature structures of those types to have something to correspond to� as
shown in Figure �	�	 Given that modi�cation� some of the correspondence
between totally well�typed abstract feature structures of type index is shown
in Figure �	��	 As they stand� the signature in Figure �	� subsumes the
signature in Figure �	�� with the latter distinguishing additional information
states for self�standing abstract feature structures of types person� number�
and gender	

The next chapter considers this correspondence between signatures in
more detail	 In particular� one can create equivalent signatures directly by
adding more types and modifying appropriateness conditions	

���� SIGNATURE EQUIVALENCE AND SUBSUMPTION ��

index ���

�
���
index
person person
number number
gender gender

�
���

index sg ���

�
���
index
person person
number singular
gender gender

�
���

index �sg ���

�
���
index
person �rst
number singular
gender gender

�
���

index �sgmasc ���

�
���
index
person �rst
number singular
gender masc

�
���

Figure �	��� Part of the correspondence between index values in Figures �	�
and �	�	

�� CHAPTER �� ABSTRACT FEATURE STRUCTURES

� �

� �

Figure �	��� Two signatures with no least upper bounds along with two of
their minimal upper bounds	

�

vS

�

Figure �	��� Subsumption between the two lower signatures of Figure �	��
due to top�smashing	

��� A Signature of Signatures�

Since we have a pre�order on signatures� we may stop to ask whether there
is a signature of signatures� and if so� at what point in the signature of
signatures does it contain itself	 We can construct a true partial order over
�classes of� signatures by considering the one induced on the quotient of
signatures modulo either �S or the symmetric closure of vS	 We even have
a least element� namely the signature consisting only of �	
The set of signatures is not a bounded complete partial order� however�

and therefore not a signature	 Figure �	�� shows two signatures with two
minimal upper bounds for which there is no least upper bound between
them	 This may seem rather unfair� since if we top�smashed the signature
on the left� giving a representation to inconsistency within the signature�
it would be subsumed by the one on the right� as shown in Figure �	��	
Even if we adopt the convention that we should top�smash signatures with

���� SUMMARY ��

� � �

� �

Figure �	��� Two signatures with greatest elements that have no least upper
bounds and three of their minimal upper bounds	

no greatest element� there are still counter�examples in which no least upper
bound exists� such as in Figure �	��	
As a result� we cannot straightforwardly think of a domain of signatures�

following the development of feature structure domains by Carpenter ������	

��� Summary

This chapter has presented some of the basic concepts that establish the
view of typed feature structures and signatures upon which this dissertation
is based	 The most fundamental among those is the identi�cation of totally
well�typed abstract feature structures as the �information states that are
worth preserving algebraically	
Join�preserving embeddings were also generalized in a way that more

essentially characterizes them	 These two concepts� information and gen�
eralized join preservation� combine to give us a useful way of comparing
signatures through signature subsumption and signature equivalence	 The

�� CHAPTER �� ABSTRACT FEATURE STRUCTURES

relationship between these two relations as well as the underlying structure
of the set of all signatures has also been examined	

Chapter �

Recursion� Finiteness� and

Appropriate Values

We saw in the last chapter �Corollary �	�� that T T A has a very similar struc�
ture to the signature that induces it� namely� that of a countable� bounded
complete� partially ordered set� no matter what that signature is	 We can
even designate each abstract feature structure as a type and call it a type
hierarchy� or a type signature with no features	 We also saw how it is possible
to put signatures themselves into a subsumption relationship relative to the
totally well�typed abstract feature structures they induce	

These two facts about signatures are really opposite sides of the same
coin	 Given a total well�typedness interpretation of appropriateness� which
will be assumed throughout the rest of this work� signatures with features can
be regarded as a compact way of describing the structure of the totally well�
typed abstract feature structures that they induce	 Some are more compact
than others� and the fact that there is some variation in how compact they
can be is what leads to instances of signature equivalence between what� on
the surface� appear to be di�erent signatures	 The signature in Figure �	��
for example� is not very compact at all	 It has no features� and is therefore
isomorphic to its totally well�typed abstract feature structures� with each
type having one	 Figure �	� is more compact� but also has a T T A that is
isomorphic to the type hierarchy in Figure �	�	
In this view� signatures are merely a speci�cation of a particular partially

ordered set� T T A� and appropriate features are what make such a speci��
cation more compact	 They provide a kind of mapping of structure in one
part of a signature�s T T A back onto itself� thus eliminating the need for its

��

�� CHAPTER �� FINITENESS AND APPROPRIATE VALUES

repetition in the signature	 The �rst section of this chapter investigates this
view further� and shows how it can be used to provide tractable encodings
of multi�dimensional inheritance and systemic networks� two other means of
knowledge representation that are popular in linguistics which were previ�
ously thought not to be reconcilable to attributed type signatures or simple
partial orders� more generally	 The second section then reconsiders the dis�
cussion of �niteness from Chapter � in the light of signatures� i	e	� how to
reason about the �niteness of most general satis�ers and the �niteness of
T T A directly in terms of signatures	 In the course of this study� it will
become clear that �nite signatures with features do indeed possess more
expressive power than �nite signatures without them the �compacting
power of features can even render an in�nite T T A �nitely presentable	
The third section examines �nite signatures more closely according to

the analysis of �nite type hierarchies given in Chapter �� namely� how ap�
propriateness and total well�typing allow us indirectly to restrict T T A to be
well�founded� �nite branching and
or Noetherian	 The fourth section then
discusses the potential practical application of these results� by considering
the transformation of signatures as a device to improve the performance of
processing relative to them	

��� Product isomorphisms

In general� the features over which Approp is de�ned for a given type establish
an isomorphism between the totally well�typed abstract feature structures of
that type and the product of several �lters of totally well�typed abstract
feature structures� determined by the value of Approp on those features with
that type	

De
nition ���� A subset L � P of a partially ordered set� hP�vi is a �lter
i� it is�

� directed if x� y � L then there exists a z � L such that z v x and
z v y� and

� upward closed if x � L� y � P � and x v y� then y � L�

Filters are very closely related to the concept of most general satis�ers or
�least extension operators� such as TWT etc	� in general� because the set
of extensions of which they are least forms a �lter	

���� PRODUCT ISOMORPHISMS ��

�

a
f��

�S

�

a �

a a
f��

�S

�

a �

a a �

a a a
f��

�S � � �

Figure �	�� An in�nite series of equivalent signatures	

De
nition ���� Given a signature� S� with type hierarchy hT�vi� let T �
T �� Pow�T T AS� be such that T �t� � fA � T T ASj#A��� � tg� the set of
totally well�typed abstract feature structures of type t�

De
nition ���� Given a signature� S with type hierarchy hT�vi� let A �
T �� Pow�T T AS� be such that A�t� � fA � T T ASjt v #A���g�

Proposition ���� For any t � T � A�t� is the �lter of totally well�typed ab�
stract feature structures rooted at Abs�TWT �MGSat�t����

Proof� Abs�MGSat�t�� is the least abstract feature structure of type t� and
Abs�TWT �MGSat�t��� is its least totally well�typed extension	 A�t� is then
obviously directed� because one can always choose Abs�TWT �MGSat�t���
as z� and upward closed because it contains all totally well�typed abstract
feature structures more speci�c than Abs�TWT �MGSat�t���	

If we again compare Figures �	� and �	�� we can see that every type in
the signature of Figure �	� has a corresponding �lter in Figure �	�	 In the
case of types like person or �rst� there is just a type again	 No features are
appropriate to those	 In the case of index� there is a larger set of types� deter�
mined by every possible combination of person subtype� number subtype and
gender subtype� because these are the three appropriate features to index in
Figure �	�	 In this way� multiple appropriate features in the more compact
signature correspond to a product in the less compact signature	
Sometimes� the appropriate value restriction that a feature takes can

actually subsume the type to which the feature is appropriate	 In this case�
we can end up with an in�nite series of equivalent signatures� as shown for a
very simple case in Figure �	�	 In this case� we say a signature is recursive� or

�� CHAPTER �� FINITENESS AND APPROPRIATE VALUES

�

b a
f�� wS

�

b a �

a a
f��

wS

�

b a �

a a �

a a a
f��

wS � � �

Figure �	�� An in�nite descending chain of signature approximations	

�

a
f�a

Figure �	�� A signature with a cyclic type	

that the type a in Figure �	� is a recursive type� and f is a recursive feature	
These will be de�ned formally later	 All of the signatures in Figure �	� are
equivalent� because they all have isomorphic BCPOs of totally well�typed
abstract feature structures	 If the unfolding of the product into types is not
complete� then we have an in�nite descending chain of approximations in the
case of recursive types� as shown in Figure �	�	 There are no types a b� a a b�
etc	 to correspond to an a�typed feature structure with a substructure of type
b� so the unfolding is not complete	 There is also the kind of recursion shown
in Figure �	�	 This kind of a and f are said to be a cyclic type� and a cyclic
feature� respectively	 These are somewhat of a special case	 They also have
in�nitely many equivalent signatures� but none of those signatures are �nite	
They still have in�nite chains of �nite approximations� however� as shown
in Figure �	�	 Types with cyclic appropriate features also do not have �nite
totally well�typed most general satis�ers� and Carpenter ������ excludes them
by prohibiting appropriateness loops	 All of these will be discussed further
in the next section	
Unfortunately� in the case of multiple features� we do not always obtain

a well�behaved product	 We do in the case of Figure �	� because the value
restrictions of these features� person� number and gender� together with index
itself are pairwise join�incompatible	 That means that feature structures of

���� PRODUCT ISOMORPHISMS ��

c

a f
�b

b
g
�a

�

w
S

a
F
c

c

a
F
b
g
f
�b

b
g
�a
F
b

�

w
S

a
F
c
F
F
c

a
F
c
F
F
b

a
F
b
F
F
c

c

a
F
b
F
F
b
g
f
�b

b
g
�a
F
b
F
F
b

�

w
S
��
�

F
ig
u
re
�	
��
A
si
gn
at
u
re
w
it
h
cy
cl
ic
ty
p
es
�
an
d
it
s
in
�
n
it
e
d
es
ce
n
d
in
g
ch
ai
n
of
ap
p
ro
x
im
at
io
n
s	

�� CHAPTER �� FINITENESS AND APPROPRIATE VALUES

type index can never have re�entrancies or cycles inside them	 To handle the
general case� we need a special kind of product�

De
nition ���� Given a �nite family of �lters of abstract feature structures�
L � fL�� � � � � Lng� the shared product of L with respect to t is the set of all
tuples ht� A�� � � � � An��� ��i� such that t � T and� for all � � i� j� i�� i

�
�� i�� i

�
� �

n�

� membership Ai � hPi�#i��i� ��ii � Li�

� path equivalence � is an equivalence relation over f�g�P��� � ��Pn�

� inequation negativity �� is a symmetric� anti�re�exive relation over
f�g � P� � � � � � Pn�

� inequation disjointness � � �� �
�

� pre
x consistency if �f � Pi and hi� �i � hj� ��i� then ��f � Pj and
hi� �fi � hj� ��fi�

� inequation consistency if hi�� ��i��hi�� ��i� hi�� ��i � hi��� �
�
�i� and

hi�� ��i � hi��� �
�
�i� then hi

�
�� �

�
�i��hi

�
�� �

�
�i�

� typing consistency if hi� �i � hj� ��i� then #i��� � #j��
��� where

#���� � t�

� path projection � �i �
� i� hi� �i � hi� ��i�

� inequation projection � ��i�
� i� hi� �i��hi� ��i�

De
nition ���� Subsumption on shared products� vL� is de�ned such that
ht� A�� � � � � An��� ��i vL ht�� A�

�� � � � � A
�
n��

�� ���i i� t v t�� � � ��� �� � ����
and� for all � � i � n� Ai v A�

i�

Because of typing consistency� pairwise join�incompatible value restrictions�
such as those of index will only allow � to be the union of the �i from
individual dimensions� and likewise for ��� which means we can throw them
away subsumption will never depend on them	 This is why we get a true
product in the case of index	

Theorem ���� Given a signature� hT�v�Feat�Appropi� and a type t � T �
with n appropriate features� ff�� � � � � fng � ffjApprop�f� t��g� there exists
an order�isomorphism between T �t� and the smallest shared product of
fA�Approp�f�� t��� � � � � A�Approp�fn� t��g with respect to t�

���� PRODUCT ISOMORPHISMS ��

Proof� Let A � hPA�#A��A� ��Ai � T �t� correspond to the member of the
shared product� ht� A�� � � � � An��� ��i for which� for all � � i � n�

� PA is the smallest set such that PA � f�g � f�P� � � � �fnPn� where
fiPi � ffi�j� � Pig�

� #A��� � t� and #A�fi�� � #i����

� �A is the smallest relation on PA such that fi� �A fj�
� i� hi� �i �

hj� ��i� � �A fi� i� h�� �i � hi� �i �and symmetrically� and � �A �� and

� ��A is the smallest relation on PA such that fi� ��Afj�
� i� hi� �i��hj� ��i�

and ���Afi� i� h�� �i��hi� �i �and symmetrically�	

That this is an isomorphism follows from total well�typing and the trivial
isomorphism between �nite mappings and �nite products	

Shared products explicitly factor the information in a feature structure
into ��� a �nite product of information from its feature values� and ��� a set
of equations and inequations between them	 In the case of signatures with
recursive types� the order isomorphisms given by shared products establish a
set of recursive equations that embed a shared product containing T �t� into
T �t� itself	
While the trivial isomorphism between �nite mappings and �nite products

may indeed seem trivial� it is probably worth stopping to look at a few of
its rami�cations� in light of how often it has been forgotten or neglected in
applications of typed feature logic to the encoding of related structures	

����� Multi�dimensional inheritance

ProFIT �Erbach� ����� ����� ������ a logic programming language for typed
feature structures� introduced a restricted form of multiple inheritance in or�
der to guarantee the existence of Prolog term encodings of its feature struc�
tures	 Speci�cally� it allowed for two kinds of type subsumption declarations
in its signatures�

Super � �Sub�� Sub�� � � � � Subn��

Super � �Sub���� � � � � Sub��n�� � � � � � �Subm��� � � � � Subm�nm��

The �rst implicitly declares Sub�� � � � � Subn to be mutually exclusive� i	e	� no
multiple inheritance	 The second declares multi�dimensional inheritance� es�
sentially restricting multiple inheritance to the full products of types from

��� CHAPTER �� FINITENESS AND APPROPRIATE VALUES

di�erent dimensions	 It is a restriction in general because all possible com�
binations of dimensions must be attainable	 For example� we could declare
the subhierarchy rooted at index in Figure �	� with�

index � �pers� � �num� � �gend��

pers � ��� �� ���

num � �s� p��

gend � �m� f� n��

The maximally speci�c types� index 	sgmasc� index 	plmasc etc	� are repre�
sented by the product of their pers� num and gend values	
Multi�dimensional inheritance uses �nite products� but as seen earlier�

multiple appropriate features implicitly use �nite products as well	 Multi�
dimensional inheritance is not only a restriction of general multiple inheri�
tance� but it provides nothing that the use of extra features could not already
provide in the absence of all multiple inheritance	 In particular� it is triv�
ially equivalent to the use of one feature for each dimension with no path
equations or inequations between them	
As will be seen in Chapter �� parametric types e�ectively provide the same

sort of product� but with the additional ability to introduce or remove extra
dimensions at subtypes� and to link appropriateness conditions to dimensions
through the use of type variables	

����� Systemic networks

Systemic networks �Kress� ����� are a means of stating constraints over the
allowable combinations of a �nite set of properties �usually called features�
but di�erent from the use of that term here�	 They are used rather often in
computational linguistics� whose connection to inheritance�based reasoning
with feature structures has been explored in a series of papers by Kasper
������ ����� �����	 The formulation presented here is adapted from Carpenter
and Pollard ������� Carpenter ������ and Henschel ������	

De
nition ��	� Given a set of properties� prop� the set of entry expres�
sions of prop� E�prop�� is the smallest set such that�

� prop � E�prop��

� e� � e� � E�prop�� for all e�� e� � E�prop�� and

���� PRODUCT ISOMORPHISMS ���

� e� � e� � E�prop�� for all e�� e� � E�prop��

De
nition ���� Given a set of properties� prop� a system is a pair s �
he�s�� out�s�i� where e�s� � E�prop� is the entry condition of s and is in
disjunctive normal form� and out�s� � prop is the set of output properties
of s�

De
nition ���� Given a set of systems� S and a set of properties� prop�
the immediate dependency relation of S� Dep � prop � prop� is de�ned
such that Dep�p� q� i� there is an s � S such that p appears in e�s� and
q � out�s��
The dependency relation of S� Dep�� is the re�exive and transitive closure
of Dep�

De
nition ���� A systemic network is a triple h�p� prop� Si� where prop is
a �nite set of properties� �p � prop is the distinguished start property� and
S is a �nite set of systems such that�

� the output sets of S are a partition of propnf�pg�

� the dependency relation of S� Dep�� is anti�symmetric� and

� for all p � prop� Dep���p� p��

Systemic networks are interpreted as sets of constraints on subsets of
prop	 An allowable subset is called a selection expression�

De
nition ����� Given a systemic network SN � h�p� prop� Si� a selection
expression of SN is a subset � � prop such that�

� �p � ��

� if fp�� � � � � png � �� with n �� then for every system s � S such
that p� � � � � � pn is a disjunct of e�s�� there is exactly one property�
p� � out�s� such that p� � �� and

� if p� � � and there exists an s for which p� � out�s�� then there exists a
disjunct of e�s�� p� � � � � � pn� such that fp�� � � � � png � ��

Systemic networks are conventionally drawn as shown in Figure �	�� a
systemic network for describing unmarked SP�O� sentences with active voice
from the NIGEL grammar �Mann and Matthiessen� ����� �and cited by

��� CHAPTER �� FINITENESS AND APPROPRIATE VALUES

rank�

������������������������������������

clauses �

�������������
�������������

�

������
imperative

indicative

�

����������

material
mental
relational

�
��

��������
e�ective

��
�� agent�subject

middle

verbal

nominal�groups �

�����������
�����������

�

��������
individual

class�

������
lexical�thing�

���� eachevery
substitution

�

������
nominative
genitive
oblique

Figure �	�� An example of a systemic network	

���� PRODUCT ISOMORPHISMS ���

Henschel �������	 The drawing convention relies on the use of four con�
nectives� the choice connective ���� the conjunctive choice connective ����
the conjunctive precondition connective� ���� and the disjunctive precondi�
tion connective� ���	 The choice connective indicates a system with more
than one output property	 Systems with a single output property� such as
agent�subject� are indicated by the property itself	 The network shown in
Figure �	� has a total of nine systems� with root being the distinguished
start property and the entry condition to the system with output properties
clauses and nominal�groups	 The conjunctive choice connective indicates
that a property is used in the entry condition to more than one system�
such as clauses in the example� which is the entry condition to both the
imperative
indicative system and the material etc	 system	 Conjunctive
and disjunctive precondition connectives are used to express the conjunctions
and disjunctions� respectively� of complex entry conditions	 The entry con�
dition to the agent�subject system is imperative � indicative� and� to
the effective
middle system is material � mental � relational	
Carpenter ������ pp	 ��%��� presents a BCPO construction for repre�

senting valid partial information states in systemic networks� i	e	� subsets of
properties that subsume at least one selection expression� without the dis�
junctive precondition connective� i	e	� disjunctive entry conditions	 Henschel
������ extends the construction to all systemic networks	 She observes that
the construction requires �n types for an n�property systemic network in the
worst case� and that the worst case is caused by the conjunctive choice con�
nective	 Neither considers the use of features in their constructions� for some
reason only BCPOs of types	
In fact� systemic networks do have polynomially bounded encodings in

the logic of typed feature structures� although� to the author�s knowledge�
not in the fragment presented in this work	 The meet semi�lattice completion
of Figure �	� is the encoding for Figure �	�� for example	

De
nition ����� Given a feature structure F with node set Q on a signature
with types T � the types of F are #�F � � f� � T j�q � Q�� vT ��q�g�

The encoding reduces the question� �Is � � prop a subset of a selec�
tion expression� to the question� �Is there a totally well�typed feature
structure F of type �p such that � � #�F �� and� if yes� the question� �Is
that � a selection expression� to �Is the F corresponding to � maximal
in hT T F �vT T Fi� It relies crucially on the use of non�maximally�speci�c
extensional types� indicated in Figure �	� with boxes around them	 While a

��� CHAPTER �� FINITENESS AND APPROPRIATE VALUES

c �
s
�
�s
�

v
e
� �
�s

e
� �

v
in
d
�

�s
in
d
�

m
a
te
ri
a
l
m
e
n
ta
l
re
la
ti
o
n
a
l
v

e
� �
�s

e
� �

v
e
rb
a
l
v

e
� �
�s

e
� �

m
id
d
le
e
v

e
� �
s

e
� �

�
e
ct
iv
e
in
v

in
d
�

s
in
d
�

d
ic
a
ti
v
e
im
p
v

in
d
�

�s
in
d
�

e
ra
ti
v
e
c s
�
s
�

s
�
s
�

la
u
se
s
n
o
m
in
a
l�
g
s
�
s
�

s
�
s
	

ro
u
p
s
�se

� �

se
� �

�si
n
d
�

si
n
d
�

s �

s �

s �

ra
n
k

se
� �
�

si
n
d
�

�

d
�
s
�
�s
�

s �
� v
e
� �
�s

e
� �
�

v
in
d
�

�s
in
d
�

�

n
o
m

g
e
n

o
b
li
q
u
e

e
a
ch

e
v
e
ry

a
g
e
n
t�
su
b
j

c s
	
s
�

la
ss

in
d
iv
id
u
a
l

le
s

s
�

x
�t
h
in
g

su
b
st

s 	

s �

s �

s �

s �

�

F
ig
u
re
�	
��
A
n
at
tr
ib
u
te
d
ty
p
e
si
gn
at
u
re
�a
ft
er
M
S
L
co
m
p
le
ti
on
�
th
at
en
co
d
es
th
e
sy
st
em
ic
n
et
w
or
k
in
F
ig
u
re
�	
�	

���� FINITENESS ���

formalization of extensional type inference and� thus� of this encoding is out
of the scope of the present discussion� it should at least be noted that conjunc�
tive choice connectives� i	e	� the use of properties in more than one system�s
entry condition� are encoded by introducing multiple features �corresponding
to systems� at the types that correspond to those multiply used properties	
The product implicitly encoded in multiple appropriate features combined
with the non�maximally�speci�c value restrictions that permit those feature
values to vary independently over system output sets allows for a polyno�
mially bounded presentation of any systemic network as an attributed type
signature	� clauses and nominal�groups� for example� introduce two fea�
tures each because they are used in the entry conditions to two systems each	

��� Finiteness

So far� we have seen two kinds of �niteness� �niteness of type hierarchies
themselves� i	e	� a �nite number of types� and �niteness of feature structures�
i	e	� a �nite number of nodes	 In this section� we shall also consider the �nite�
ness of T T A and the �niteness of �lters� A�t� � T T A� i	e	� a �nite number
of totally well�typed abstract feature structures of an individual type	 As it
happens� none of these notions of �niteness are the same	 In particular� a
�nite signature �a signature with a �nite type hierarchy� can still admit �nite
descriptions with in�nite most general satis�ers and
or an in�nite number
of totally well�typed abstract feature structures in its T T A	
The purpose of this section is to characterize the other two kinds of

�The extensional types are necessary in order to handle another potential source of
combinatorial explosion that emerges once conjunctive choice connectives are dispensed
with� namely the use of complex disjuncts� i�e�� conjunctions of three or more properties�
in entry conditions� Using a properties�as�types encoding� representing the conjunction of
three properties as the join of their types must be unfolded into a distributive sublattice�
or else any pair of properties is su�cient to entail the join� That unfolding increases
the number of types exponentially as a function of the number of conjuncts� Extensional
types can be used essentially to synchronize the values at di�erent paths in the same
feature structure� Each one represents a vote cast by another property as to whether
a complex conjunction is satis�ed� If and only if all of the votes are �yes�� e�g�� se�

�

and sind
�

in Figure 	��� then a maximal extension of s�� must be c�� which introduces
the output system for that conjunction� Extensional types thus perform an �end run�
around appropriateness� which cannot otherwise enforce path equations� path inequations
�among join�compatible types or type constraints on paths more than one feature long
� restrictions that in this domain are admittedly rather arbitrary�

��� CHAPTER �� FINITENESS AND APPROPRIATE VALUES

�niteness within �nite signatures� i	e	� signatures with �nite type hierarchies	
Finiteness is of obvious computational interest	 It also is related to our abil�
ity to transform �nite signatures into other equivalent �nite signatures	 The
properties that allow us to �unfold one or more features into a signature
with more but still �nitely many types are the same properties that ensure
the �niteness of T T A or at least of some �lter�shaped piece of it	 In fact�
we can think of T T A itself as a signature with no appropriate features� as a
result of Corollary �	�	 The question is how to spot whether or not T T A is
�nite simply by looking at the signature	

����� Cyclic Types and Finite Most General Satis�ers

To begin where Carpenter ������ left o�� in�nite most general satis�ers can
be characterized as follows�

De
nition ����� Given a signature� S � hT�v�Feat�Appropi� the appro�
priateness graph of S� A�S�� is a labelled directed graph hT� fht�� t�� fij
Approp�f� t��� and Approp�f� t�� � t�gi� whose vertices are the types of S
and whose edges map from types to value restrictions of their appropriate
features�

De
nition ����� Given a signature� S � hT�v�Feat�Appropi� and a type�
t� t is a cyclic type i� there exists a non�empty path from t to t in A�S��
The features on this path are cyclic features�

Carpenter ������ pp	 ��%��� referred to such paths as �appropriateness
loops� and to its edges minus the labels as the �substructure requirement
relation	

De
nition ����� Given a signature� S � hT�v�Feat�Appropi� and a type�
t� t is �nitely satis�able i� there is no t� � T such that there is a path from
t to t� in A�S� and t� is cyclic�

Proposition ���� If t is not �nitely satis�able and t v t�� then t� is not
�nitely satis�able�

Proof� This follows from the fact that Approp is upward closed	

Proposition ���� For any �nite description� � � NonDisjDesc� over a �nite
signature� S� such that M � TWT �MGSat������ M is �nite i� for all t �
#�M�� t is �nitely satis�able�

���� FINITENESS ���

Note that #�M� is always �nite because the signature is �nite	 Compu�
tation with in�nite most general satis�ers is actually not an impossibility�
because they always have �nite presentations at the very least� the de�
scriptions themselves although this direction will not be pursued further
in this study	
A direct consequence of this is that cyclic types themselves do not have

�nite most general satis�ers	 What is much more interesting is that� al�
though their most general satis�ers are not �nite� they do have �nite satis�
�ers� namely cyclic feature structures with �nitely many nodes	 For example�
the cyclic type a in Figure �	� has the following �nite satis�er��

� a
f �

	

If we were studying in�nite signatures� this would not necessarily be the case	

����� Recursive Types and Finite Filters

We can easily generalize our de�nitions of appropriateness graph and cyclic
types in order to characterize �nite �lters of feature structures of a given
type	 The intuition is that� if we assume a �nite number of types� the only
way in which a �nite feature structure� F � can subsume in�nitely many fea�
ture structures is if at least one type is assigned to in�nitely many nodes in
those structures	 Speci�cally� it must be the case that for some substruc�
ture of F � G� of type t� the substructure corresponding to G in one of the
feature structures F subsumes has a proper substructure which is a subtype
of t again	 Because feature structure subsumption is ultimately induced by
type subsumption� we must look at type subsumption and appropriateness
together to understand how this could happen	

De
nition ����� Given a signature� S � hT�v�Feat�Appropi� assuming
that there is no feature called s� the subtype�appropriateness graph of S�
SA�S�� is a labelled directed graph hT� fht�� t�� fi j Approp�f� t��� and
Approp�f� t�� � t�g � fht�� t�� sijt� v t�gi� whose vertices are the types of S
and whose edges consist of the edges of A�S� plus edges with label s that map
from types to their subtypes�
Given t � T � let SA�t� be the subgraph of SA�S� consisting of all and only
those nodes� t�� for which there is a path from t to t� in SA�S�� Also� let �
be the labelled path accessibility relation in SA�S��

��� CHAPTER �� FINITENESS AND APPROPRIATE VALUES

De
nition ���	� Given a signature� S � hT�v�Feat�Appropi� and a type�
t� t is a recursive type i� there is a path from t to t in SA�S��
Such paths contain at least one feature label� f� because v is� by de�nition�
anti�symmetric� Such features are called recursive features�

Proposition ���� If t is cyclic then t is recursive�

We can now characterize the conditions on a �nite �lter of feature struc�
tures of a given type in terms of properties of that type derived from solely
from its signature�

De
nition ����� Type� t� is �nite i� jA�t�j is �nite�

De
nition ����� Type� t� is provably �nite i��

� every subtype of t is provably �nite�

� for every feature� f� such that Approp�f� t��� Approp�f� t� is provably
�nite� and

� t is not recursive�

Theorem ���� If S is �nite and t is not provably �nite� then t is not �nite�

Proof� By induction on the length� �� of the shortest path in SA�S� from
t to a recursive type	 t has such a path� because� if not� then there are
no recursive types in SA�t�� thus SA�t� is acyclic� and by Lemma �	�� t is
provably �nite after all	
If � � �� then t itself is recursive� and by Lemma �	�� t is not �nite	 For

� � �� t must not be recursive� so because it is not provably �nite� there
is some subtype or value restriction� i	e	� a successor of t in SA�S�� that is
not provably �nite	 One of these is the successor� t�� on the shortest path
from t to a recursive type otherwise� by Lemma �	�� SA�t�� is acyclic�
and so there is no recursive type accessible from t�� which is a contradiction	
Furthermore� the shortest length from t� to a recursive type must be �� ��
so by induction� t� is not �nite	
Either t� is a subtype of t� or t� is a value restriction of t	 If t� is a

subtype� then by de�nition� A�t�� � A�t�� and therefore t is not �nite	 If t�

is a value restriction� then by Theorem �	�� T �t� � A�t� is order�isomorphic
to a smallest shared product with respect to t� one of whose dimensions is
A�t��� and thus t is not �nite	

���� FINITENESS ���

Theorem ���� If S is �nite and t is provably �nite� then t is �nite�

Proof� By induction on the length� �� of the longest path in SA�S� from t to
a maximally speci�c type with no appropriate features	 There is such a path
because� by Lemma �	�� SA�t� is acyclic and there are �nitely many types
in S	
If � � �� then t itself is maximally speci�c and has no appropriate fea�

tures� and is thus trivially �nite	 For � � �� all of t�s successors in SA�S�
are provably �nite and each has a longest path strictly less than that of t�
so by induction� all of them are �nite	 A�t� � T �t� �

S
t�vtA�t

��	 Each of
the A�t�� are �nite� and there are �nitely many t� since S is �nite	 T �t� is
�nite because by Theorem �	�� it is order�isomorphic to a shared product of
fA�Approp�f�� t��� � � � � A�Approp�fn� t��g with respect to t� each of which is
�nite	 So t is �nite	

Lemma ���� If t is recursive� then t is not �nite�

Proof� Choose a cycle of length n from t to itself in SA�S�� t
x�� t�

x��

� � � tn��
xn� t� where the xi are either the distinguished label� s� or features�

fi � Feat	 Let j� � � � jk be the indices for which xji is a feature	 k �
because v is anti�symmetric	 Let � � Desc �� Desc be de�ned such that
���� � fj� � fj� � � � � � fjk � �	 Now de�ne the in�nite sequence of totally well�
typed abstract feature structures� Ci � Abs�TWT �MGSat�t � x � �i�x�����
where x � Var � i �	 For all i �� Ci � A�t�� and all of them are
distinct	

Lemma ���� If S is �nite� then t is provably �nite i� SA�t� is acyclic�

Proof� To prove the forward direction� it su�ces to show that if t is provably
�nite� then SA�t� has no recursive types	 This can be proven by induction on
the length� �� of the shortest path from t� which� by de�nition of SA�t�� all
of its nodes have	 The base case follows from the third condition of provable
�niteness	 The reverse direction is proven by induction on the length of the
longest path to a maximally speci�c type with no appropriate features� which
each node has because SA�t� is acyclic and �nite	

Notice that recursive types prevent us from using a simple inductive ar�
gument and require us to introduce the third condition into the de�nition
�De�nition �	��� of provable �niteness	 Otherwise� even in a simple signature
like Figure �	�� in which a is a recursive type� it would be consistent to say

��� CHAPTER �� FINITENESS AND APPROPRIATE VALUES

a
f��

�

Figure �	�� A simple signature with a recursive type	

that both a and � were provably �nite or that neither a nor � were provably
�nite	

Corollary ���� If S is �nite� t is �nite and t v t�� then t� is �nite�

Corollary ���� If S is �nite� t is �nite and there exists an f such that
Approp�f� t�� and Approp�f� t� � t�� then t� is �nite�

Corollary ���� If S is �nite� then T T AS is �nite i� S has no recursive
types�

Proof� T T AS � A��� and the previous two corollaries	

When T T AS is �nite� we can �unfold every feature in the signature�
leaving only types one for each totally well�typed abstract feature struc�
ture	 The reader may note that potential re�entrancies among feature struc�
tures do not play a direct role in this characterization	 Conventional wisdom�
among both logicians and grammar developers� has been that the ability of
features to share their values extensionally by means of re�entrancies is what
fundamentally de�nes their expressive power relative to typing with inclu�
sional polymorphism	 This is not true	 Features are only a more expressive
device when they are used to create recursive types� in the sense de�ned here	
Of course� recursive types always allow for cyclic re�entrancies� but it is the
quality of being recursive that characterizes the di�erence	 Even in a logic
that prohibited cyclic feature structures� features that create recursive types
still could not be unfolded	

��� Properties of Finite Signatures

One can also say more precisely which di�erent kinds of �niteness hold of
T T AS	 Recall from Chapter � that a �nite type hierarchy corresponds to
one that is well�founded� Noetherian and �nitely branching	 Looking at
in�nite signatures� we can lose these properties independently� because the
type hierarchy itself can be in�nite and may discard any one or more of them

���� PROPERTIES OF FINITE SIGNATURES ���

independently	 Finite signatures� however� are more predictable� again based
on the interaction of their appropriateness and subtyping relations	 A few
more de�nitions will be convenient here	

De
nition ����� Given a signature� S � hT�v�Feat �Appropi� and a type�
t� t is a properly recursive type i� there is a path from t to t in SA�S� whose
�rst edge is labelled with a feature� i�e�� corresponds to appropriateness� not
subtyping�

Proposition ���� If t is recursive� then there is a t� such that t v t� and t�

is properly recursive�

Proof� The cycle that witnesses a recursive type� t� can be rotated along its
initial s�edges to the �rst feature�labelled edge emanating from some sub�
type� t�	 Every cycle must have one feature�labelled edge because v is anti�
symmetric	 If there are no initial s�edges� then t � t� and t is properly
recursive	

De
nition ����� A path in SA�S� is an s�path if it consists only of edges
labelled with s�

De
nition ����� Given a path in SA�S�� a
�
� b

s�
� c

f
� d

��
� e� b

s�
� c is a

deletable s�path i� there is also a path� a
�
� b

f
� c�

s�
� d

��
� e �where c� � d

if c�
s�
� d is of length zero��

The intuition behind deletable s�paths is that they are the ones that
are unnecessary as a result of the upward closure and right monotonicity of
Approp� if Approp�f� b� � c� and b v c� then d � Approp�f� c�� and c� v d	

De
nition ����� Given a signature� S � hT�v�Feat �Appropi� and a type�
t� t is acyclically recursive i� there is a cycle in SA�S� containing t in which
there is at least one s�path that is not deletable�

Deletable s�paths are a way of isolating feature�labelled edges that in�
troduce properly more restrictive value restrictions on a type relative to its
supertypes	 This is necessary because appropriateness is upward closed	
Note that acyclically recursive is not the same as recursive and not cyclic	

A type can be simultaneously cyclic and acyclically recursive� although be�
cause of di�erent cycles	 Figure �	� outlines the classi�cation of types given
in this section	

��� CHAPTER �� FINITENESS AND APPROPRIATE VALUES

Cyclic� t
�feature�labelled edges�

t

Recursive� t
�s� and feature�labelled edges�

t

Acyclically t
s�
� t

Recursive� �non�deletable�

Properly
Recursive� t

f
� t

t� ��nite�

Finite� �not recursive� t t� ��nite�

�ti �� t�
			

tn ��nite�

Figure �	�� An outline of the classi�cation of types	

Theorem ���� T T AS is well�founded i� S has no recursive types�

Proof� Cyclic feature structures stand at the top of in�nite descending chains
of approximate cyclic feature structures	 Acyclic feature structures are well�
founded� as proven by Wintner and Francez ������	

Theorem ���� T T AS has only �nite feature structures i� S has no recur�
sive types�

Proof� Below the in�nite descending chain of cyclic approximations stands a
limit point which has in�nitely many nodes	

Theorem ��	� T T AS is �nitely super�branching i� S has no recursive types�

Proof� Every cyclic feature structure has an in�nite supersumption branching
factor	 As an example� consider the simple signature in Figure �	�	 Let
Ci � Abs�TWT �MGSat�a � x � �f��ix���� for all i �	 By the de�nition of
subsumption� Ci vT T AS

Cj i� i j j	 Now consider the set P � fCpj p primeg	
None of the abstract feature structures in P are comparable� and all of them
immediately subsume C�	 Because there are in�nitely many primes� C� has
an in�nite supersumption branching factor	

���� PROPERTIES OF FINITE SIGNATURES ���

d g
h�c

c
f�g

b
g�b

f
h�a

a
f�e

e

�

Figure �	�� An example �nite signature for demonstrating the failure of
properties given in Section �	�	

Theorem ���� T T AS is Noetherian i� S has no acyclically recursive types�

Proof� If a recursive type is acyclically recursive� then beneath its cyclic
feature structures are in�nite ascending chains of acyclic approximations to
their limits	

Theorem ���� T T AS is �nitely branching i� for every cycle� �� in SA�S��
there is no properly recursive type� t� traversed by � such that t has an out�
degree greater than 	�

Proof� In�nite feature structures have in�nitely many nodes labelled with a
properly recursive type	 To have an in�nite �subsumption� branching factor�
there must be an in�nite number of ways of adding only one piece of informa�
tion to a feature structure	 This is attainable on in�nite feature structures
i� it is possible to re�ne the types of in�nitely many nodes �if a prohibited
extra emanating edge is labelled with s� or it is possible to add structural in�
formation� i	e	� path equations or inequations� between in�nitely many pairs
of nodes �if a prohibited extra emanating edge is labelled with a feature�	

Note that the de�nition of inequations used in this work� borrowed from
Carpenter ������ p	 ����� allows an inequation to be either added or not added
between two nodes that have no extension in which they can be identical
for instance� if their types are incompatible	 If instead the notion of fully
inequated feature structure �Carpenter� ����� p	 ���� were used� we would
also need to check for the existence of such an extension in case of a feature�
labelled edge	
An example of these properties is shown in Figure �	��� relative to the

signature in Figure �	�� whose subtype�appropriateness graph is shown in
Figure �	��	 In this signature� all of the types except � are recursive	 Of

��� CHAPTER �� FINITENESS AND APPROPRIATE VALUES

b

a

e f g

�

c

d

f

s

f

s

h

s s

h

f
f

s

s

s

g

Figure �	��� The subtype�appropriateness graph of Figure �	�	

those� all but e are properly recursive	 The types b� c and g are cyclic	 b is

also acyclically recursive� because of the path b
f
� e

s
� f

h
� a

s
� b	 There

is a path c
s
� d

f
� g

h
� c� but its s�path is deletable �because of the edge�

c
f
� g�� so c is not acyclically recursive	 a is acyclically recursive� because

the path a
s
� b

f
� e

s
� f

h
� a has one deletable s�path �a

s
� b� but also one

non�deletable s�path �e
s
� f�	 d� e� and f are also acyclically recursive	

The fact that b is cyclic means that every totally well�typed acyclic fea�
ture structure of type b has in�nitely many nodes	 In Figure �	��� the values
of g are not shown for this reason they consist of in�nitely many copies of
the b�typed feature structures that contain them	 The fact that b is recursive
means that A�b� contains an in�nite descending chain of cyclic feature struc�
tures shown at the top of the �gure	 They also have in�nite supersumption
branching factors� as proven above	 The fact that b is properly recursive and
has an out�degree of � in Figure �	�� means that the limit of this chain� shown
in the middle of Figure �	��� has an in�nite subsumption branching factor�
in which substructures terminating in two of in�nitely many g�terminated
paths are re�entrant �or inequated�	 Because b is also acyclically recursive�
it has an in�nite ascending chain rooted at its most general satis�er� shown

���� PROPERTIES OF FINITE SIGNATURES ���

�
���

� b

f

�
f
h �

	
g � � �

�
���

�

�
����������

� b

f

�
�����
f

h

�
���
b

f

�
f
h �

	
g � � �

�
���

�
�����

g � � �

�
����������

�

�
�������������

b

f

�
��������

f

h

�
������

b

f

�
��
f

h

�
b
� � �

����
g � � �

�
������

�
��������

g � � �

�
�������������

�
�������

b

f

�
���
f

h

�
�bf e
g � � �

�
�
�
���

g � � �

�
�������

�
�bf e
g � � �

�
�

� � �

� � �

Figure �	��� Part of T T A for the signature in Figure �	�	

��� CHAPTER �� FINITENESS AND APPROPRIATE VALUES

at the bottom of Figure �	��� approaching the same limit	

��� Signature Unfolding

Armed with a knowledge of how features genuinely provide extra expressive
power over simple type hierarchies and� when they do not� of the �lters of
types that the totally well�typed abstract feature structures they induce are
equivalent to� one might suspect that it is possible to convert �nite signa�
tures into �nite signatures that are logically equivalent but that have better
computational properties	
The most important of these properties� of course� is the speed with

which one can unify two totally well�typed feature structures induced by the
signature in question	 Whereas the uni�cation of two types� or of two fea�
ture structures with no features� can usually be performed by indexing those
types in a hash table� the uni�cation of feature structures that have features
typically involves an additional set of dereferencing operations which obtain
matching feature values for recursive uni�cation calls	 In the case of Fig�
ure �	�� for example� the uni�cation of two feature structures of type index
would probably involve three recursive uni�cation calls to unify their per�
son� number and gender values� respectively	 This arises from the choice
of a data structure that closely mirrors the structure of the feature structure
itself� of course	 In Prolog� for example� those dereferencing operations are
realized as pointer�chasing on the heap in order to locate the subterms that
represent feature values	 It is conceivable that� by converting the signature
in Figure �	� to the one in Figure �	�� those dereferencing operations could
be avoided at a very small cost to the e�ciency of the hash function that
must cope with the increased number of types	
In practice� when that transformation is possible� it does result in more

e�cient uni�cation	 Converting just the index values to a purely type�based
representation in an HPSG grammar� for example� typically results in an
improvement in parsing times of between ��' and ��'� increasing with the
size of the input� due to the large number of index �uni�cation calls as a
percentage of total uni�cation calls	 The problem is that� in practice� such a
transformation is almost never possible	
The �rst factor that can block such a transformation is recursive types	

As shown in Lemma �	�� recursive types are never �nite and therefore could
only be unfolded into a feature�free signature that had in�nitely many types	

���� SIGNATURE UNFOLDING ���

One can� of course� choose an arbitrary bound and only partially unfold�
using a feature everywhere else	 In the case of lists� for example� one could
unfold so that zero�length� one�length and two�length lists have their own
feature�free types but lists of greater lengths still use features	 This corre�
sponds to traveling a bounded number of times around the cycle in SA�S�
that witnesses that a type is recursive	 This may still improve e�ciency if�
for example� most lists are of length two or less	 In any case� the feature
cannot be completely eliminated without altering the logical properties of
the signature	 In fact� provable �niteness �De�nition �	��� tells us that the
presence of a recursive type can render a great many other types in�nite� i	e	�
with in�nite A�t� �lters� and therefore non�unfoldable	
The second factor that can block unfolding is the sharing of variables	

It was proven in Section �	�	� that re�entrancies by themselves do not re�
sult in extra expressive power	 This is one realization of shared variables�
in which the sharing actually exists within the feature logic� and indeed�
re�entrancies pose no problem to unfolding	 Most practical applications of
feature description languages� however� use variables to share information
in an extra�logical fashion as well	 Logic programming languages based on
typed feature structures� for example� have relations with feature�structure
arguments that could be shared	 The relation itself� and thus sharing be�
tween arguments �as opposed to within an argument� which corresponds to a
re�entrancy� exists outside the logic	 Parsing rules also typically share struc�
ture between mother categories and their daughter categories	 These are also
extra�logical �as opposed to sharing within the description of a single cate�
gory� which also corresponds to a re�entrancy�	 It is� of course� possible to
add extra types and features to a signature in order to bring relations� pars�
ing rules� etc	 within the scope of the logic again� e	g	� to regard instances of
relational goals as feature structures of the corresponding relational type in
which arguments are feature values	 The cost in e�ciency of casting them
into the feature logic� however� is typically greater than the gain in e�ciency
of unfolding features	 In the case of logic programming again� casting rela�
tions into the feature logic would force one to meta�interpret them in a Prolog
implementation� rather than compile them directly into Prolog predicates	
A third factor is the interaction between re�entrancies and recursive types	

The type� index� for example� has a �nite �lter� A�index�� taken in isolation
and all of its features can be unfolded	 If the same signature also has a
recursive type for lists of any element� however� as in Figure �	�� then there
will be lists of multiple index �valued structures� any pair of which can share

��� CHAPTER �� FINITENESS AND APPROPRIATE VALUES

�

in
d
ex
p
e
r
s
o
n
�p
er
so
n

n
u
m
b
e
r
�n
u
m
b
er

g
e
n
d
e
r
�g
en
d
er

p
er
so
n

�
rs
t

se
co
n
d

th
ir
d

n
u
m
b
er

si
n
gu
la
r

p
lu
ra
l

ge
n
d
er

m
as
c

fe
m

n
eu
t

em
p
ty
li
st

n
on
em
p
ty
li
st
h
e
a
d
��

t
a
il
�l
is
t

li
st

F
ig
u
re
�	
��
�
T
h
e
si
gn
at
u
re
in
F
ig
u
re
�	
�
p
lu
s
a
re
cu
rs
iv
e
ty
p
e
fo
r
li
st
s	

���� SIGNATURE UNFOLDING ���

f�a g�b f�b g�a

a b a b

� �

Figure �	��� Two equivalent minimal signatures for which no apparent nor�
malization criterion is forthcoming	

f�a g�a
a

� �

Figure �	��� Two equivalent minimal signatures with �nite T T A	

only its person or number or gender values	 This means that index can
only be unfolded if list is unfolded� but since list is recursive� it cannot be�
at least not entirely	 Note that index itself is still �nite in this signature	
The presence of a recursive type that refers to index in a remote corner of
the same signature is enough to spoil the unfolding of index	
There are reasons other than e�ciency to unfold a signature	 Perhaps the

most compelling is to use unfolding as a means of converting signatures to a
normal form to simply a proof theory over signatures� for example	 Type�
free signatures such as T T A itself are one possible normal form� although
they are not always �nite	 They are also a strong normal form in the sense
that if two signatures are equivalent� then they will have the same unique
equivalent type�free signature	 Strong normal forms in general can be used
to prove that two signatures are equivalent	 Finding a strong normal form for
signatures that is guaranteed to be �nite is more di�cult	 The two signatures
in Figure �	�� are equivalent and minimal �in the sense that no signature with
fewer types is equivalent�� for example� but it is di�cult to see a criterion
for preferring one over the other	 Even when T T A is �nite� as with the two
equivalent and minimal signatures in Figure �	��� no obvious alternative to
preferring signatures with no features presents itself	
In the absence of a clear e�ciency advantage for the unfolding transfor�

mation or a clear goal to which to transform� unfolding will not be pursued
further here	 The discovery of a sensible �nite normal form for signatures is

��� CHAPTER �� FINITENESS AND APPROPRIATE VALUES

a topic for future research	

��� Summary

This chapter used the notions developed in the last chapter to examine �nite
signatures more closely	 In particular� the ability of features with appropri�
ateness to create recursive types is what makes �nite signatures with features
potentially more expressive than �nite signatures without them	 Feature�
based encodings are also potentially more compact	 Along the way� two other
approaches to knowledge representation were considered� multi�dimensional
inheritance and systemic networks� and they fall rather neatly within the
range of polynomially encodable sets of information states by this logic� which
is possible due to the compact products that feature�based encodings provide	
The presence of recursive features as well as the use of variables with

extra�logical scope� however� typically precludes the unfolding of the fea�
tures in a signature into a signature with more types as a practical device to
improve the e�ciency of deductive or parsing strategies over typed feature
logic	 Another problem that arises is the discovery of a suitably strong nor�
mal form that is guaranteed to remain �nite yet restrictive enough to be of
assistance in proving the equivalence of a pair of signatures	 This remains a
topic of future research	

Chapter �

Parametric Types

As mentioned in Chapter �� there have been a number of changes over time
in the way in which feature structures and their types have been used in
computational linguistics	 Perhaps one of the more radical� but still very in�
tuitive changes was the introduction of parametric types to classify lists and
sets of linguistic objects	 The reader may consider� for example� Figure �	��
a fragment of the type signature proposed in Head�driven Phrase Structure
Grammar �HPSG� Pollard and Sag� ������ a feature�structure�based linguis�
tic theory	 The idea of treating list as a parametric type in HPSG was �rst

�
��

A
A
�
�

aaa ��
list�X�sign

word phrase elist nelist�X�
HEAD�
TAIL�list�X�

X

	 	 	

Figure �	�� A fragment of the HPSG type signature	

broached in a footnote by Pollard ������� and later adopted by Pollard and
Sag ������ with the restriction �again in a footnote� that parametricity could
only extend �one level deep� i	e	� that a parameter itself must be a type other
than a list or set	 That restriction has� of course� been violated many times
over and in a few di�erent ways by linguists working with parametrically
typed lists since that time	
There has been some use of parametric types in computational linguistics

independently of this� perhaps most proli�cally by Klein ������ to represent
hierarchical structure in phonology	 Certainly� the treatment of lists as para�

���

��� CHAPTER �� PARAMETRIC TYPES

metric types is not new or unreasonable� even in the absence of the proposed
depth restriction	 What makes this particular change radical is that no fea�
ture logic has ever been proposed that incorporates parametric types in a
general enough way to support their manner of use in HPSG� and� in con�
trast to the historical oscillation between feature�based and subtype�based
information encodings� parametric types in HPSG have been used without
exception only for lists and sets� as if either something might go terribly
wrong if their use were extended to other types� or else linguists should feel
ashamed for resorting to them where not absolutely necessary	 At the same
time� there has been an almost universal consensus among HPSG linguists
that parametric types as they are currently employed are just �macro de�
scriptions for lists and sets a consensus that is re�ected in their liberal
application within the con�nes of lists and sets	 What is it about lists and
sets that makes them absolutely necessary on the one hand� and still no
better than a macro�
This chapter uses the algebraic perspective developed for signatures so

far to present an incorporation of parametric types into the typed attribute�
value logic of Carpenter ������� thus providing a natural extension to the
type system for programming languages based on that logic� such as the At�
tribute Logic Engine �ALE� Carpenter and Penn� �����	 This enquiry has
yielded a more �exible interpretation of parametric types with several speci�c
properties necessary to conform to their current usage by linguists and imple�
mentors who work with feature�based formalisms	 Again� it will be assumed
that total well�typing is the interpretation of choice for the appropriateness
conditions found in parametrically typed signatures	
Parametric polymorphism has been combined with inclusional polymor�

phism before to provide natural type systems for Prolog �Dietrich and Hagl�
������ HiLog �Yardeni et al	� ������ and constraint resolution languages
�Smolka� �����	 Previous approaches� however� have required that every pa�
rameter of a subtype should be a parameter of all of its supertypes� and
vice versa� thus� it would not be possible to encode Figure �	� because
� v list�X�� and if � were parametric� then all other types would be	 The
present one eliminates this restriction �Section �	�� by requiring the exis�
tence of a non�parametric most general type �which Carpenter�s ������ logic
requires anyway�� which is then used during type�checking and inferencing
to interpret new parameters	
The only previous attempt at an account of parametric types as they

are employed in HPSG has been in King and Goetz� ����� which consisted

���

merely of the informal suggestion that parametric types stand for unordered
sets of non�parametric types� such that� in Figure �	� for example� list�word�
is not subsumed by list�sign�� which clearly runs against intuition	 All other
previous approaches to parametric polymorphism deal only with �xed�arity
terms� and none but one uses a feature logic� with the one� CUF �Dorna�
������ being an implementation of a logic without parametric types that
permits parametric lists with HPSG�s depth restriction as a special �hard�
wired case	 The present approach �Section �	�� provides a generalization
of appropriateness that allows for a proper interpretation of subsumption�
unrestricted parametricity and incremental feature introduction	
The belief that parametric types are macros is erroneous� as is the belief

that their use naturally extends to parameters drawn from a general de�
scription language� e	g	� list�local � cat � head � verb�	 This possibly arose
from a confusion between type descriptions� which are part of the description
language� and types� which are part of the type system	 Even so� parametric
types have a very wide range of potential application to computational lin�
guistics and knowledge representation in general� just as normal types and
features do� and there is no reason why they cannot be used as proli�cally
once they are understood	 To use an earlier example� person� number� and
gender could all be parameters of a parametric type� index� rather than val�
ues of features appropriate to index	 In fact� parametrically typed encodings
yield more compact speci�cations than simply typed encodings because they
can encode products of information in their parameters� like features	 Unlike
features� however� they can lend their parameters to appropriateness restric�
tions� thus re�ning the feature structures induced by the signature to a closer
approximation of what is actually required in the grammar itself	
It is possible� however� to regard parametric type signatures as a short�

hand for non�parametric signatures	 The interpretation of parametric type
hierarchies is introduced in Section �	� by way of establishing equivalent�
in�nite non�parametric counterparts	 Section �	� considers whether there
are any �nite counterparts� i	e	� whether in actual practice �nite paramet�
ric signatures are only as expressive as �nite non�parametric ones� and gives
a quali�ed �yes	 These questions are formalized and answered relative to
the de�nitions of signature equivalence and signature subsumption de�ned
in Chapter �	
In spite of this quali�cation� there is an easy way to compute with para�

metric types directly in an implementation� as described in Section �	�	 The
two most common previous approaches have been to use the most general

��� CHAPTER �� PARAMETRIC TYPES

instance of a parametric type� e	g	� nelist���� without its appropriateness� or
manually to �unfold a parametric type into a non�parametric sub�hierarchy
that su�ces for a �xed grammar� e	g	 Figure �	�	 The former does not su�ce

HH
HH
��

��
��

��
�
��

hhhh
hhhh

hhh

XXX
XXX

XX

����
�����

XXX
XXX

��
���

hhhh
hhhh

hhhelist

list synsem

nelist synsem nelist phonnelist quants

list
	 	 	

list quants nelistlist phon

Figure �	�� A manually unfolded sub�hierarchy	

even for �xed grammars because it simply disables type checking on feature
values	 The latter is error�prone� a nuisance� and subject to change with the
grammar	 As it happens� there is an automatic way to perform this unfold�
ing� which turns out to be a very useful tool for the extraction of a minimal
subsignature for a small �xed grammar even when parametric types are not
used	

��� Parametric Type Hierarchies

Parametric types are not types	 They are functions that provide access or
a means of reference to a set of types �their image� by means of argument
types� or �parameters �their domain�	 Figure �	� has only unary functions�
but in general� parametric types can be n�ary functions that map n�tuples of
types to a type	 Parametric type will be used in this chapter to refer to such
a function� written as the name of the function� followed by the appropriate
number of type variables� variables that range over some set of types� in
parentheses� e	g	 list�X�	 Type will refer to both simple types� such as �
or elist � and ground instances of parametric types� i	e	� types in the image
of a parametric type function� written as the name of the function followed
by the appropriate number of actual type parameters in parentheses� such
as list���� set�word� or list�set����	 The letters t� u� and v will be used to
indicate types� capital letters� to indicate type variables� capitalized words�
to indicate feature names� p� q� and r� as names of parametric types� and g�
to indicate ground instances of parametric types� where the arguments do
not need to be expressed	
This means that hierarchies that use parametric types are not �type

hierarchies� since they express a relationship between functions that map

���� INDUCED TYPE HIERARCHIES ���

types to types �we can regard simple types as nullary parametric types�	 For
simplicity� it will be assumed here that parametric type hierarchies are �nite	

De
nition ���� A parametric �type� hierarchy is a �nite BCPO� hP�vP i�
plus an arity function� arity � P �� Nat � f�g� and a partial argument
assignment function� aP � P � P � Nat� Nat � f�g� in which�

� P consists of �simple and� parametric types� i�e�� no ground instances
of parametric types� and includes the most general type� �� which is
simple� i�e�� arity��� � ��

� For p� q � P � aP �p� q� i�� written aqp�i�� is de�ned i� p vP q and � �
i � arity�p��

� � � aqp�i� � arity�q�� when it exists� and

� if aqp�i� �� � and a
q
p�i� � aqp�j�� then i � j�

As with �simple� type hierarchies� bounded completeness allows us to
talk about uni�cation� because we have a unique most�general uni�er for ev�
ery uni�able pair of types	 The argument assignment function encodes the
identi�cation of parameters between a parametric type and its parametric
subtype	 The number� n� refers to the nth parameter of a parametric type�
with � referring to a parameter that has been dropped	 In practice� this is
normally expressed by the names given to type variables	 In the parametric
type hierarchy of Figure �	�� list and nelist share the same variable� X� be�
cause anelistlist ��� � �	 If a

nelist
list ��� � �� then nelist would use a di�erent variable

name	 As a more complicated example� in Figure �	�� adb��� � �� a
d
b��� � ��

�� �HH

�������
�������
�������
�����

�����
��

d�X�Y�Z�

b�X�Z� c�W�Y� e

Figure �	�� A subtype that inherits type variables from more than one su�
pertype	

adc��� � �� a
d
c��� � �� and a� and ae are unde�ned ��� for any pair in P�Nat	

��� Induced Type Hierarchies

The relationship expressed between two functions by vP � informally� is one
between their image sets under their domains� while each image set inter�

��� CHAPTER �� PARAMETRIC TYPES

nally preserves the subsumption ordering of its domain	 One could explicitly
restrict these domains with parametric restrictions� with a function parallel
to Approp� which speci�es value restrictions on feature values	 Here� it is
assumed that these domains are always the set of all types in the signature	
This is the most expressive case of parametric types� and the worst case to
deal with computationally	
It is� thus� possible to think of a parametric type hierarchy as �inducing

a non�parametric type hierarchy� populated with the ground instances of its
parametric types� that obeys both of these relationships	

De
nition ���� Given parametric type hierarchy� hP�vP � arity � ai� the in�
duced �type� hierarchy� hI�P ��vIi� is de�ned such that�

� I�P � �
S

n�� In� where the sequence fIngn�� is de�ned such that�

� I� � fp j p � P� arity�p� � �g�

� In�� � In � fp�t�� � � � � tarity�p�� j p � P� ti � In� � � i � arity�p�g�
and

� p�t�� � � � � tarity�p�� vI q�u�� � � � � uarity�q�� i� p vP q� and� for all
��i�arity�p�� either aqp�i� � � or ti vI uaqp�i��

Note that I�P � contains all of the simple types of P � including �� which is
also the least type in I�P �	 In the case where g� and g� are simple� g� vI g�
i� g� vP g�	
Figure �	� shows a fragment of the type hierarchy induced by Figure �	�	

If list and nelist had not shared the same type variable �anelistlist ��� � ��� then it

��hhh
�

��XX

��
���

�
��

			

hhhlist�sign�

nelist�phrase�
	 	 	

	 	 	

nelist�list����
list�nelist����

list�list����

list���

list�word�

nelist�word�

list�phrase�

nelist�sign�
nelist���

Figure �	�� Fragment induced by Figure �	�	

would have induced the type hierarchy in Figure �	�	 In the hierarchy induced
by Figure �	�� for example� b�e� e� subsumes types d�e� Y� e�� for any type Y�
for example d�e� c�e� e�� e�� or d�e� b��� e�� e�� but not d�c��� e�� e� e�� since
e�vIc��� e�	 Also� for any types� W� X� and Z� c�W� e� subsumes d�X� e� Z�	

���� INDUCED TYPE HIERARCHIES ���

		
	

		
	

HH ��

�������
������
�������
������

�

 XXX
X
�����������������������

PP�����������
����������

���
���

list�sign�
list�phrase�

nelist�sign�

list���

list�list����

nelist�list����
nelist���

nelist�word�

list�word�

nelist�phrase�

Figure �	�� The would�be induced hierarchy of Figure �	� if anelistlist ��� were �	

The present approach permits parametric types in the type signature�
but only ground instances in a grammar relative to that signature	 If one
must refer to �some list or �every list within a grammar� for instance� one
may use list���� while still retaining groundedness	 An alternative to this
approach would be to attempt to cope with type variable parameters directly
within descriptions	 From a processing perspective� this is problematic when
closing such descriptions under total well�typing� as observed by Carpenter
������	 The most general satis�er of the description� list�X���head � head �
Y � tail � head � Y �� for example� is an in�nite feature structure of the
ground instance� nelist�nelist�� � ��� because X must be bound to nelist�X�	

We can distinguish such types with the following useful classi�cation of
types in I�P ��

De
nition ���� Given a parametric hierarchy� hP�vP � arity � ai� the para�
metric depth of a type� g � p�t�� � � � � tn� � I�P �� ��g�� is de�ned such that�

��g� �

� if n � ��
� " max��i�n ��ti� if n � ��

So� for example� ��list�list�list������ � �	

The construction of I�P � thus excludes ground instances with in�nite
parametric depths	 That exclusion� from the perspective of algebraic hygiene�
is a rather arbitrary one� but its motivation is the present author�s inability
to make denotational sense of such types	 The e�ect of this prejudice� in any
case� is that I�P � is not necessarily bounded complete� even when intuition
tells us that it provides a proper algebraic interpretation of P 	 The hierarchy
in Figure �	�� for example� has the in�nite set f�� a���� a�a����� � � �g with up�
per bounds fb� a�b�� a�a�b��� � � �g� whose limit� and thus putative least upper

��� CHAPTER �� PARAMETRIC TYPES

b

a�X�

�

Figure �	�� A parametric type hierarchy for which I�P � is not a BCPO	

r�X�

s�X� q

p�X� a b

�

Figure �	�� A parametric type hierarchy for which I�P � is not a partial order	

bound must be the excluded limit type� a�a�� � ���	 This arises in Figure �	�
where a � list and b � elist 	�

There are� in fact� some parametric type hierarchies� P � as de�ned above�
for which hI�P ��vIi is not even a partial order	 Figure �	� is one such
example	 We should take the use of the variable X in this case to mean that
asp��� � �� a

r
s��� � �� and a

r
p��� � �	 a

q
p��� � �� however� and thus p�a� vI q

and q vI�P � r�b�� but p�a��vI�P �r�b�	 The problem is that di�erent paths from
p to r disagree on what to do with the parameter	
We can generalize the usual notion of coherence from programming lan�

guages� so that a subtype can add� and in certain cases drop� parameters
with respect to a supertype without this disagreement�

De
nition ���� hP�vP � arity � aP i is semi�coherent i�� for all p� q � P such
that p vP q� all � � i � arity�p�� � � j � arity�q��

� app�i� � i�

� either aqp�i� � � or for every chain� p � p� vP p� vP � � � vP pn � q�
aqp�i� � apnpn��

�apn��
pn��
�� � � ap�p��i� � � ���� and

� If p tP q�� then for all i and j for which there is a k � such that
aptP qp �i� � aptP qq �j� � k� the set� frjp tP q vP r and �arp�i� � � or

�The reader may also note that same problem would have arisen with abstract feature
structures if� as in most of the presentation of Carpenter �����
� in�nite feature structures
had been excluded� Without those limit points� T T AS would often not be bounded
complete either�

���� INDUCED TYPE HIERARCHIES ���

arq�j� � ��g is empty or has a least element �with respect to vP ��

Proposition ���� If hP�vP � arity � aP i is semi�coherent� then hI�P ��vIi is
a partial order�

Proof� Transitivity can be proven by induction on the greatest parametric
depth� k� of three types� g� � p�t�� � � � � tn�� g� � q�u�� � � � � um�� and g� �
r�v�� � � � � vl� in I�P � such that g� vI g� and g� vI g�	 It must then be that
p vP q and q vP r	 If k � �� then p�q� and r are simple� and transitivity
follows from the transitivity of vP 	 If k � �� then we also know that� for
all � � i � n� either aqp�i� � � or ti vI uaqp�i�	 In the former case� if
arp�i� �� �� then the chain p vP q vP r would violate semi�coherence� so
arp�i� � �	 In the latter case� if a

r
q�a

q
p�i�� � �� then by the same reasoning�

arp�i� � �	 Otherwise� we have that ti vI uaqp�i� vI varq�aqp�i�� � varp�i�� and thus�
by induction� ti vI varp�i�	 This applies to all � � i � n� so g� v g�	
Re�exivity and anti�symmetry follow from a similar inductive proof	

For the sake of generality� we can relax the requirement of bounded com�
pleteness to meet�semi�latticehood for now	 Section �	� will present a fur�
ther re�nement of parametric type hierarchies for independent reasons that
restores bounded completeness	 Section �	� will consider the use of �nite sub�
sets of I�P � for practical purposes� and bounded completeness is equivalent
to meet�semi�latticehood on all �nite partially ordered sets	 As it happens�
semi�coherence is also enough to ensure that I�P � is a meet semi�lattice	

Proposition ���� If hP�vP � arity � aP i is semi�coherent� then hI�P ��vIi is a
meet semi�lattice� In particular� given g� � p�t�� � � � � tn�� g� � q�u�� � � � � um� �
I�P �� g� tI g�� i��

� p tP q�� and

� there exists an s wP p tP q such that for all i� j and all k � �� if
aptqp �i� � aptqq �j� � k� then ti tI uj� or a

s
p�i� � � or a

s
q�j� � ��

and when it exists� g� tI g� � r�v�� � � � � vl�� where r is the least such s as
described above� and for all � � h � l�

vh �

�����
�����

ti tI uj if there exist i and j such that
arp�i� � h and arq�j� � h

ti if such an i� but no such j
uj if such a j� but no such i
� if no such i or j�

��� CHAPTER �� PARAMETRIC TYPES

Proof� ���� By contraposition using induction on the greater parametric
depth� k� of types g� � p�t�� � � � � tn� and g� � q�u�� � � � � um� in I�P �	
If k � � and ptP q�� then by the bounded completeness of P � fg�� g�gu �

fp� qgu �
	 Otherwise� if k � �� then g� tI g� � �ptP q����� � � � ��arity�ptq���
which is the least instance of p tP q	
Suppose k � �	 If p tP q�� then again� fg�� g�g

u �
	 Otherwise� suppose
that for all s wP p tP q� there exist i� j and a k � � such that aptqp �i� �
aptqq �j� � k and ti tI uj� and asp�i� �� � and a

s
q�j� �� �	 Now consider some

g� � s�v�� � � � � vl� such that g� vI g�	 So p vP s	 Either q vP s or not	 If
not� then g� �vIg� and g� �� fg�� g�g

u	 If so� then p tP q vP s	 Consider the
i� j and k of s as speci�ed above	 ti tI uj�� so by induction� fti� ujgu �
	
Since g� vI g� and a

s
p�i� �� �� ti vI vasp�i�� so uj �vIvasp�i�	 p vP ptP q vP s and

q vP p tP q vP s are chains� so by semi�coherence� asp�i� � asptq�a
ptq
p �i�� �

asptq�a
ptq
q �j�� � asq�j�	 So uj �vIvasq�j� and since a

s
q�j� �� �� g� �vIg�	 Thus� in

either case� fg�� g�gu �
	
���� It is su�cient to show that when such an s exists� there is a least

such s� r	 Given that claim� the choice of v�� � � � � vl above is clearly the unique
least choice of parameters	
Given some not necessarily least s� consider all triples hi� j� ki for which

aptqp �i� � aptqq �j� � k � �� ti tI uj�� and either a
s
p�i� � � or a

s
q�j� � �	 If

there are no such hi� j� ki� then ti t uj� whenever a
ptq
p �i� � aptqq �j� � k � �

and so r � p tP q	 Otherwise� for each such triple� let�

Rhi�j�ki � fr j p tP q vP r� �arp�i� � � or a
r
q�j� � ��g�

Clearly� for all such triples� s � Rhi�j�ki� so by semi�coherence� all Rhi�j�ki have
least elements� rhi�j�ki	 Furthermore� s � frhi�j�kiguhi�j�ki� so by the bounded

completeness of P � there exists an r �
F
hi�j�ki rhi�j�ki	 There are chains� p vP

p tP q vP rhi�j�ki vP r and q vP p tP q vP rhi�j�ki vP r� so if a
rhi�j�ki
p �i� � ��

then by semi�coherence� arp�i� � �� and likewise for q	 Thus r satis�es the
same conditions as s� and by its construction� is clearly least	

In the induced hierarchy of Figure �	�� for example� b�e��� tI b��� e� �
b�e� e�� b�e� e�tI c��� � d�e��� e�� and b�e� e� and b�c���� e� are not uni�able�
as e and c��� are not uni�able	 The �rst two conditions of semi�coherence
ensure that aP � taken as a relation between pairs of pairs of types and nat�
ural numbers� is an order induced by the order� vP � where it is not� taken
as a function� zero	 The third ensures that joins are preserved even when

���� APPROPRIATENESS ���

a parameter is dropped �aP � ��	 Note that joins in an induced hierarchy
do not always correspond to joins in a parametric hierarchy	 In those places
where aP � �� types can unify without a corresponding uni�cation in their
parameters	 Such is the case in Figure �	�� where every instance of list�X� ul�
timately subsumes nelist���	 One may also note that semi�coherent induced
hierarchies can have not only deep in�nity� i	e	� non�Noetherianity� where
there exist in�nitely long subsumption chains� but broad in�nity� where cer�
tain types can have in�nite supertype �but never subtype� branching factors�
as in the case of nelist��� or� in Figure �	�� elist	

��� Appropriateness

So far� we have formally considered only parametric type hierarchies� with no
appropriateness	 Appropriateness constitutes an integral part of a parametric
type signature�s expressive power� because the scope of its type variables can
extend to include it	

De
nition ���� The restriction of I�P � to p � P � Ip�P �� is de�ned such
that Ip�P � � fp�t�� � � � � tarity�p�� � I�P � j ti � I�P �� � � i � arity�p�g�

De
nition ��	� Given a parametric type� p� for all i � �� the ith parametric
projection is a partial function� �i � I�P � �� I�P � such that for any g �
p�t�� � � � � tarity�p��� with arity�p� i� �i�g� � ti�

De
nition ���� A function f � I�P � �� I�P � is parametrically determined
i� it is�

� a constant function�

� a parametric projection function� or

� a function for which there exist a p � P and functions f�� � � � � farity�p��
such that for all g � I�P �� f�g� � p�f��g�� � � � � farity�p��g��� and
f�� � � � � farity�p� are parametrically determined�

De
nition ���� A parametric �type� signature is a semi�coherent parametric
type hierarchy� hP�vP � arity � aP i� along with a �nite set of features� FeatP �
and a partial �parametric� appropriateness speci�cation� AppropP � FeatP �
P �� �I�P � �� I�P ��� such that�

��� CHAPTER �� PARAMETRIC TYPES

	� �Parametric Determination� If AppropP �f� p��� then AppropP �f� p� is
a parametrically determined total function from Ip�P � to I�P ��

� �Feature Introduction� For every feature f � FeatP � there is a most
general parametric type Intro�f� � P such that AppropP �f� Intro�f����
and

�� �Parametric Upward Closure � Parametric Right Monotonicity� For
any p� q � P � any f � FeatP � any g� � Ip�P �� and any g� � Iq�P �� if
AppropP �f� p�� and p vP q� then�

� AppropP �f� q��� and

� if g� vI g�� then AppropP �f� p��g�� vI AppropP �f� q��g���

AppropP maps a feature and the parametric type for which it is ap�
propriate to a function that de�nes value restrictions on the image of that
parametric type	 The last two conditions are extensions of Carpenter�s ������
conditions on appropriateness �De�nition �	��� this dissertation�	 The �rst
says that appropriateness conditions on one parametric type are binding on
all of the types in its image� and on none of the types in the image of any
other parametric type	 All three kinds of parametrically determined func�
tions are realized in practice for AppropP �f� p�	 In HPSG� for example� one
�nds�

� a constant function� at the feature� subcat� which is introduced by a
simple type� cat� whose value restriction is list�synsem� �not shown in
Figure �	��	

� a projection function� in Figure �	�� at the type� nelist�X�� for which
the feature hd�s value restriction is simply the parameter� X	

� a parametrically decomposable function� again at the type nelist�X��
for which the feature� tl� has the value restriction� list�X�	

The ability to re�ect parameters in value restrictions is what conveys the
impression that ground instances of lists or other parametric types are more
deeply related to their parameter types than just in name	
The use of parameters in appropriateness restrictions is also what prevents

us from treating instances of parametric types in descriptions as instantia�
tions of macro descriptions	 These putative �macros would be� in many
cases� equivalent only to in�nite descriptions without such macros� and thus

���� SUBSUMPTION WITH PARAMETRIC SIGNATURES ���

would extend the power of the description language beyond the limits of
HPSG�s own logic and model theory	 Lists in HPSG would be one such case�
moreover� as they place typing requirements on every element of lists of un�
bounded length	 Ground instances of parametric types are also routinely
used in appropriate value restrictions� whose extension to arbitrary descrip�
tions would substantially extend the power of appropriateness as well	 This
alternative will not be pursued further here	
A parametric signature induces a type hierarchy as de�ned above� along

with the appropriateness conditions on its ground instances	

De
nition ���� The induced appropriateness function� AppropI�P � � FeatP�
I�P � �� I�P �� is a partial function de�ned such that� for every feature� f �
FeatP � every ground instance� g � p�t�� � � � � tarity�p�� � I�P �� AppropI�P ��f� g��
i� AppropP �f� p��� and when de�ned� AppropI�P ��f� g� � AppropP �f� p��g��

Proposition ���� If hP�vP � arity � aP i is a parametric type signature� then
AppropI�P � is an appropriateness speci�cation�

��� Subsumption with Parametric Signatures

Now that parametric type signatures have been formalized� one can ask
whether parametric types really add something to the expressive power of
typed attribute�value logic	 As seen in Chapter �� there are at least two ways
in which to present that question�

Question ���� For every �semi�coherent� parametric signature� P � is there
a non�parametric signature� N � such that P �S N�

If� for every parametric signature P � there is an order�isomorphism be�
tween the totally well�typed abstract feature structures induced by P �by
way of I�P �� and those of some non�parametric signature N � then para�
metric signatures add no expressive power at all their feature structures
are just those of some non�parametric signatures painted a di�erent color	
This is still an open question	 There is� however� a weaker but still relevant
question�

Question ���� For every parametric type signature� P � is there a non�para�
metric type signature� N � such that P vS N�

��� CHAPTER �� PARAMETRIC TYPES

If for every parametric P � there is a join�preserving encoding that embeds
the totally well�typed abstract feature structures of P into those of N � then
it is possible to embed problems �speci�cally� uni�cations� that we wish to
solve from P intoN � solve them� and then map the answers back to P 	 In this
reading� programmers or linguists who want to think about their programs
with P must accept no non�parametric imitations because N may not have
exactly the same structure of information states� but an implementor of a
interpreter for a language based on feature logic� for example� could secretly
perform all of the work for those programs in N � and no one would ever
notice	
Under this reading� many parametrically typed encodings add no extra

expressive power	 This class of signatures also has the very fortunate property
of ensuring the bounded completeness of their induced signatures	

De
nition ����� A parametric type hierarchy� hP�vP � arity � aP i is persis�
tent i� aP never attains zero�

Proposition ���� If hP�vP � arity� aP i is persistent� then hI�P ��vIi is a
BCPO�

Proof� In light of Proposition �	�� it su�ces to show that if any set S � I�P �
is bounded� then S is �nite	 Given S� with bound b� since P is persistent� the
parametric depth of every type in S is bounded by ��b�	 Since P is �nite�
there are �nitely many types of any bounded parametric depth in I�P �� so
S is �nite	

Along with Proposition �	�� this means that hI�P ��vI� AppropI�P �i is a sig�
nature	

Theorem ���� For any persistent parametric signature� P � there is a �nite
non�parametric signature� N � such that P vS N �

The proof is given in the appendix to this chapter	 As a �rst approximation�
one might guess that such an N could be found by using extra features to
encode parameters	 That guess is essentially correct	
If elist in Figure �	� retained the parameter of list�X�� then HPSG�s type

hierarchy �without sets� would be persistent	 This is not an unreasonable
change to make	 The encoding� however� requires the use of junk slots �A�!t�
Ka�ci� ����� Carpenter� ������ attributes with no empirical signi�cance whose
values serve as workspace to store intermediate results	

���� FINITENESS ���

There are at least some non�persistent P � including the portion of HPSG�s
type hierarchy explicitly introduced by Pollard and Sag ������ �without sets��
that subsume a �nite non�parametric N � but the embeddings are far more
complicated	 It can be proven� for example� that for any such P � some of
its acyclic feature structures must be encoded by cyclic feature structures in
N � and the encoding cannot be injective on the equivalence classes induced
by the types of P � i	e	� the feature structures of some type in N must en�
code the feature structures of more than one type from P 	 While parametric
types may not be formally necessary for the grammar presented by Pollard
and Sag ������ in the absolute sense� their use in that grammar does roughly
correspond to cases for which the alternative would be quite unappealing	 Of
course� parametric types are not the only extension that would ameliorate
the formulation of an adequate signature	 The addition of relational expres�
sions� functional uncertainty� or more powerful appropriateness restrictions
can completely change the picture	

��� Finiteness

It would be ideal if� for the purposes of feature�based natural language pro�
cessing� one could simply forget the encodings� unfold any parametric type
signature into its induced signature at compile�time and then proceed as
usual	 This is not possible for systems that precompute all of their type op�
erations� as the induced signature of any parametric signature with at least
one non�simple parametric type contains in�nitely many types	� On the
other hand� at least some precompilation of type information has proven to
be an empirical necessity for e�cient processing	 Even with respect to earlier
untyped versions of feature logic� sensible implementations will use de facto
feature cooccurrence constraints to achieve much of the same e�ect	 Given
that one will only see �nitely many ground instances of parametric types
in any �xed theory� however� it is su�cient to perform some precompila�
tion speci�c to those instances� which will involve some amount of unfolding	
What is needed is a way of determining� given a signature and a grammar�
what part of the induced hierarchy could be needed at run�time� so that type
operations can be compiled only on that part	
One way to identify this part is to consider only those types whose para�

metric depth is bounded by some constant	 The problem with this method

�With parametric restrictions �p� ���� this is not necessarily the case�

��� CHAPTER �� PARAMETRIC TYPES

is that a depth�bounded set of types may not be closed under uni�cation in
I�P �� tI�P �	
Another way to identify this part is to identify some set of ground in�

stances �a generator set� that are important for computation� and explicitly
close that set under tI�P ��

De
nition ����� The sub�algebra generated by G� I�G� � I�P �� is the
smallest subset of I�P � such that�

� G � I�G�� and

� if g� � I�G�� g� � I�G�� and g� tI�P � g��� then g� tI�P � g� � I�G��

To prove that I�G� is �nite� we need the following variation on parametric
depth�

De
nition ����� Given a parametric hierarchy� hP�vP � arity � ai� the fringed
parametric depth of g � p�t�� � � � � tn� � I�P �� ��g�� is de�ned such that�

��g� �

�
�
�� if g � ��
� if g �� �� n � ��
� " max��i�n ��ti� if n � �

For any k � �� a set� G � I�P �� is k�fringed i� for all g � G� ��g� � k�

Proposition ���� If G is �nite� then there is a �nite k � such that G is
k�fringed�

Proposition ��	� If G is k�fringed� then I�G� is k�fringed�

Proof� By induction on k	 The crucial case is the base case� in which the join
of two simple types is either simple or an instance of a non�simple parametric
type with every parameter equal to �� which therefore does not change the
fringed depth	

Proposition ���� If G is k�fringed� then G is �nite�

Theorem ���� If G� is �nite� then I�G� is �nite�

Proof� By Proposition �	�� there is a k � such that G is k�fringed	 By
Proposition �	�� I�G� is k�fringed	 By Proposition �	�� I�G� is �nite	

���� APPENDIX� PROOF OF THEOREM ��� ���

jI�G�j is exponential in jGj in the worst case� but if the maximum paramet�
ric depth of G can be bounded �thus bounding jGj�� then it is polynomial in
jP j� although still exponential in the maximum arity of P � In practice� the
maximum parametric depth should be quite low�� as should the maximum
arity	 A standard closure algorithm� such as the meet semi�lattice completion
algorithm given in Section �	�	�� can be used	 One could also perform the
closure lazily during processing to avoid a potentially exponential delay at
compile�time	 All of the work� however� can be performed at compile�time	
One can easily construct a generator set� simply collect all ground instances
of types attested in the grammar� or collect them and add all of the simple
types� or add the simple types along with some extra set of types distin�
guished by the user at compile�time	 The partial unfoldings like Figure �	�
are essentially manual computations of I�G�	
The bene�t of this approach is that� by de�nition� I�G� is always closed

under uni�cation of consistent types in I�P �	 In fact� I�G� is the least set of
types that is adequate for uni�cation�based processing with a grammar based
on G	 So far� features have not been considered� however	 In practice� one
needs to close not only under uni�cation but also under AppropI�P � so that a
type will always appear in a sub�algebra along with the types that the feature
values of its most general satis�er must take	 The easiest way to ensure this is
to require� for all p � P � f � Feat � and g � Ip�P �� that ��AppropP �f� p��g�� �
��g� whenever AppropP �f� p��	 Then closure under appropriateness is also
guaranteed not to increase the fringed depth of the original set� and thus
remain �nite	 Other restrictions could be found	 Clearly� this method of sub�
signature extraction can be used even in the absence of parametric types� and
is a useful� general tool for large�scale grammar design and signature re�use	

��� Appendix	 Proof of Theorem ���

A very straightforward proof exists for a class of parametric signatures that
are very well�behaved in their parameters�

De
nition ����� A parametric signature� P � is parametrically join�preserving�
i� for all p� q � P such that r � p t q is de�ned� for all f � Feat such that

�With lists� so far as the present author is aware� the potential demand has only reached
� � � �Manning and Sag� ����
 in the HPSG literature to date� and � � � overall �Manning�
����
�

��� CHAPTER �� PARAMETRIC TYPES

pq�p�q�� p�q�� pr�p�r�� p�r�� qr�q�r�� q�r��

p�p�� p�� q�q�� q�� r�r�� r��

�

Figure �	�� A parametric type hierarchy for which a straightforward mapping
of parameters to features fails	

Approp�f� r��� for all g� � Ip�P � and g� � Iq�P � such that g� � g� tI g���
and for all � � k � arity�r��

�k�Approp�f� r��g���

�

�����
�����

�i�Approp�f� p��g��� if there exist i� j such that arp�i� � arq�j� � k�
t �j�Approp�f� q��g���
�i�Approp�f� p��g��� if there exists such an i but no such j�
�j�Approp�f� q��g��� if there exists such a j but no such i�
� if there exist no such i or j

Note that in the �rst case� an upper bound must exist by the de�nition
of appropriateness speci�cations� so the least upper bound must exist by
Proposition �	�	
In the case of signatures induced by parametrically join�preserving para�

metric signatures� parameters can be replaced in an equivalent non�parametric
signature by extra features	 Even then� how these features are allocated is
not entirely trivial	 Figure �	� shows an example of a parametric type hierar�
chy for which we cannot simply assign one feature to every parameter	 In this
hierarchy� apqp ��� � �� and a

pq
q ��� � �� so p� and q� would need to map to the

same feature� and likewise for q� and r� because of qr� thus� p� and r� must
map to the same feature	 On the other hand� aprp ��� � �� but a

pr
r ��� � � and

instead aprr ��� � �� so p� and r� should not map to the same feature	 This can
be solved for persistent parametric signatures by allocating one feature for
every parameter position of every maximally speci�c type	 By persistence�
all parameters of a type must eventually be re�ected in one parameter of each
of that type�s maximal extensions	 That means� however� that parameters
must potentially be mapped to multiple features in the encoding	

Lemma ���� If P is persistent and parametrically join�preserving� then there
is a �nite non�parametric signature� N � such that P vS N �

���� APPENDIX� PROOF OF THEOREM ��� ���

Proof� De�ne FeatN � FeatP � fXm
k j m � P� maximally speci�c� � � k �

arity�m�g� �N � P � and v
N � vP 	 For all f � FeatP and p � �N � let
Approp
N�f� p�� i� AppropP �f� p��� and when it exists�

Approp
N�f� p� �
uPfq j there exists g � Ip�P � such that AppropP �f� p��g� � Iq�P �g

For all Xm
k � FeatNnFeatP and p � �N � let Approp
N�X

m
k � p� � � if p vP m�

and there exists an � � i � arity�p� such that amp �i� � k� and be unde�
�ned elsewhere	 Let N be the meet�semi�lattice completion of the signature
completion of �N 	
We can de�ne an order�embedding� f � T T AI�P � �� T T AN such that

F � h&F �#F ��F � ��F i is mapped to f�F � � h&f�F ��#f�F ���f�F �� ��f�F �i
where #f�F � is de�ned inductively on parametric depth such that�

#f�F ���� �

�����
�����

p if � � &F �#F ��� � Ip�P �
#G��G� if � � ��Xm

k �G� �
� � &F �#F ��

�� � p�t�� � � � � tarity�p���
p vN m� amp �i� � k� f�Abs�TWT �MGSat�ti���� �
h&G�#G��G� ��Gi� and �G � &G

unde�ned otherwise

&f�F � � f� j #f�F ��g and �f�F � and ��f�F � are the smallest relations such
that �F � �f�F �� ��F � ��f�F �� and f�F� is an abstract feature structure	
The only di�erence between P and N is the placement of parameters	

We must unify f�F��(��X
m�

k�
with f�F��(��X

m�

k�
i� m� � m�� k� � k�� and

we must unify F�(�� with F�(�� and for p and q such that #F����� � Ip�P �
and #F����� � Iq�P �� p vP m� and q vP m	 By persistence� for all
� � k � arity�m�� there are i and j such that amp �i� � amq �j� � k	 Also�
m � fp� qgu� so p tP q�� and p tP q vP m� and thus by semi�coherence�
there is an h � � such that aptP qp �i� � aptP qq �j� � h and amptP q�h� � k	 So
for all � � k � arity�m�� #f�F�����X

m
k � tN #f�F�����X

m
k �� i� #F����� tI�P �

#F������ and since the substructures of any �X
m
k are most general satis�ers�

TWT �f�F��tT T AI�N�
f�F���� i� TWT �F�tT T AI�P �

F���	 Since P is paramet�
rically join�preserving� TWT �f�F�� tT T AI�N�

f�F��� � TWT �f�F� tT T AI�P �

F���� when it exists	

Not all parametric signatures are parametrically join�preserving	 Fig�
ure �	� shows a simple counter�example	 If P is not parametrically join�
preserving� then I�P � is not join preserving� but not vice versa� since it is

��� CHAPTER �� PARAMETRIC TYPES

f
f�b�t�

e d c�X� t

a
f�b�s�

b�X� s

�

Figure �	�� An example of a parametric signature that is not parametrically
join�preserving	

possible to violate join preservation with only simply�typed value restric�
tions� for example� or even with non�simple value restrictions provided that
the parameters themselves are assigned in a parametrically join�preserving
way	 If the value restriction at f had been c�s�� for example� the parametric
signature would be parametrically join�preserving but its induced signature
would not be join preserving	 Parametric join preservation only constrains
the parameters themselves	
It remains to be shown that all persistent parametric signatures are

signature�equivalent to a persistent� parametrically join�preserving signature	
The notions of equivalence and subsumption among signatures de�ned here
are extensional in that they pay no attention to syntactic properties of a sig�
nature de�nition itself �such as parametric join preservation�� but only to the
partial order of totally well�typed abstract feature structures that it induces	
Even though a parametric signature is not parametrically join�preserving� it
is thus still possible to prove such an equivalence by showing that a para�
metrically join�preserving one could have induced the same thing	
The proof of Theorem �	� relies on a method for transforming paramet�

ric signatures into equivalent ones that have potentially di�erent syntactic
properties	

De
nition ����� Given a persistent parametric signature� P � and i �� the
ith extension of P � Ei� is de�ned such that�

� E� � P �

� Ei�� � fe
hp������parity�e�i j e � Ei� pj � Ei� all � � j � arity�e�g�

� arity�ehp������parity�e�i� �
Parity�e�

j� arity�pj��

���� APPENDIX� PROOF OF THEOREM ��� ���

� ehp������parity�e�i vEi��
�eh
p������
parity��e�i i� e vEi

�e and for all � � i � arity�e��
pi vEi

�pa�ee�i�� and

� for all � � i � arity�ehp������parity�e�i�� a
e
h�p�������parity��e�i

e
hp������parity�e�i

�i� � a

pa�ee�b�i��
pb�i� �c�i�� "Pa�ee�b�i����

j� arity��pj�� where

� b�i� is that k for which
Pk��

j� arity�pj� � i �
Pk

j� arity�pj�� and

� c�i� � i�
Pb�i���

j� arity�pj��

Notice that all of the Ei contain the simple types of P 	

De
nition ����� Given a persistent parametric signature� P � and its �rst
extension� E�� the canonical type embedding of P into E� is the function�
)� � P �� E�� de�ned such that�

�e�t�� � � � � tarity�e��

�

�
�

e if arity�e� � ��
ehp������parity�e�i�)gh���i� � � � �)gh��arity�p��i� where for all � � i � arity�e��
)gh���i� � � � �)gharity�e��arity�parity�e��i� ti � pi�ghi��i� � � � � ghi�arity�pi��

Proposition ����)� is an order�isomorphism�

De
nition ���	� The ith extended signature of P is de�ned over the ith

extension of P � with appropriateness de�ned such that�

� AppropE�
� AppropP �

� AppropEi��
�f� ehp������parity�e�i�� i� AppropEi

�f� e��� and

� when it exists� AppropEi��
�f� ehp������parity�e�i� �)� � AppropEi

�f� e� �)����

Henceforth� Ei will be used to refer to the extended signature over Ei	
Extended parametric signatures are technically not parametric signatures�
because their appropriateness speci�cations may not be parametrically deter�
mined� but they clearly induce valid appropriateness speci�cations in I�P �	
Since the proof of Lemma �	� constructs the appropriateness speci�cation
for N directly from the appropriateness speci�cation of I�P �� and the con�
struction of further extensions from this de�nition does the same� this is an
acceptable departure	 The property of parametric determination is only used
below in Lemma �	�	

��� CHAPTER �� PARAMETRIC TYPES

cf

ce bf cd cc�X� ct

f
f�bt

be ca bd bc�X� cb�X� bt cs

e d ba bb�X� bs t

a
f�bs

b� s

�

Figure �	��� The �rst extended signature of Figure �	�	

Proposition ���� For all i � �� Ei �S P �

In order to see an extension at work� Figure �	�� shows the �rst extended
signature of Figure �	�	 It is parametrically join�preserving� but not join�
preserving	 This extended signature is also a valid parametric signature�
but in general that may not be so� as explained above	 Note that this same
method cannot be used to convert non�statically�typable signatures into stat�
ically typable ones	
This technique will now be applied to parametric signatures in a way that

depends on whether or not they satisfy another syntactic property�

De
nition ����� A persistent parametric signature� P � is parametrically
separated i��

� for every simple type� s � P � and every non�simple type� p � P � s vP p�
and

� its non�simple parametric types are totally ordered�

Parametrically separated signatures all look like the schematic hierarchy
shown in Figure �	��� where S is the set of all simple types of P � and k� �
� � � � kn	 It is easy to see that if there are any join�reducible types� they
must reduce to simple types� and thus� if parametric join preservation is
not satis�ed� it is not satis�ed by values of AppropP �f� s� that are constant
functions	

���� APPENDIX� PROOF OF THEOREM ��� ���

pn�X�� � � � � Xkn�

			

p��X�� � � � � Xk��

S

�

� � �

� � �

Figure �	��� A schematic illustration of a parametrically separated paramet�
ric type hierarchy	

Lemma ���� If P is parametrically separated� then there exists an i � �
such that Ei is parametrically join�preserving�

Proof� Consider�

i � max
s � P� simple�

f � Feat

��AppropP �f� s���

The ith extension� of P converts the value restrictions of potentially non�
compliant simple types to simple types� and thus Ei is trivially parametrically
join�preserving	

Another syntactic class can be distinguished as being trivially paramet�
rically join�preserving�

De
nition ����� A persistent parametric �or extended� signature� P � is
parametrically transparent i� for all p� q � P such that p vP q� all g� �
Ip�P �� g� � Iq�P � and all f � Feat such that AppropP �f� p��� if for all � � i �
arity�p�� �i�g�� � �aqp�i��g��� then for all � � i � arity��p�� ti � ua�q�p�i�� where

AppropI�f� g�� � �p�t�� � � � � tarity�
p��� and AppropI�f� g�� � �q�u�� � � � � uarity�
q���

�Actually� dlog�ie is a su�cient number of extensions since every extension reduces
the parametric depth of an instance in I�P by half�

��� CHAPTER �� PARAMETRIC TYPES

Parametrically transparent signatures do not change the parameters of
value restrictions at all over subsumption chains and therefore�

Proposition ����� Every parametrically transparent signature is paramet�
rically join�preserving�

The following lemma then proves the theorem� since the k it provides can
also be used to extend P to a parametrically transparent signature	

Lemma ���� If P is persistent but not parametrically separated� then for all
p� q � P such that p vP q� and for all f � Feat such that AppropP �f� p��� if
there exist i�� � � � � ik� k �� such that �ik � � � � � �i� � AppropP �f� p� � �i��
then �ik � � � � � �i� � AppropP �f� q� � �i��

Proof� If P is not parametrically separated� then there are non�simple para�
metric types� but either there is no greatest type that is non�simple �and� by
persistence� no greatest simple type�� or there is� called r� but there is also
a non�simple type p� t p� that is join�reducible to non�simple types� p� and
p�� i	e	� the non�simple parametric types of P are not totally ordered	
In the former case� suppose there are maximal non�simple types r� and r�

and that the consequent of the lemma is false	 Now consider �ik � � � � � �i� �
AppropP �f� q� with that choice	 It is not �i� � by assumption� but it must be
parametrically determined� by de�nition� so its entire range belongs to I
q�P �
for some �q	 If �q is not r� or r� then since �ik � � � ���i� �AppropP �f� p� � �i� � a
choice of an instance in either Ir��P � or Ir��P � as the i

th
� parameter presents

a contradiction� since right monotonicity would be violated	 Similarly� if
�q � r�� then a choice of an instance in Ir��P �� or vice versa� presents the
same contradiction	
In the latter case� the only way the same contradiction can be avoided

is if �q � r� as every type subsumes r	 By persistence� however� �ik � � � � �
�i� � AppropP �f� q� must be a function that depends on the i

th
� parameter	

The choice of an instance in Ip��P � whose subparameter that subsumption�
wise corresponds to the occurrence of the ith� parameter in �ik � � � � � �i� �
AppropP �f� q� is an instance of Ip��P � thus provides the same contradiction�
since neither p� nor p� subsumes the other	

Figures �	�� and �	�� show simple examples of each of these cases	 How
a parameter is re�ected locally through value restrictions in subsumption
chains is tightly constrained by the global shape of the type hierarchy as a
result of the fact that every ground instance of every type can occur as any
parameter	

���� APPENDIX� PROOF OF THEOREM ��� ���

r��X� r��X�

q�X�
f� r��X�

p�X�
f� X

�

Figure �	��� A would�be parametric signature with no greatest type that does
not satisfy right monotonicity� p�r����� v q�r������ but r�����vr��r�����	

r�X�

�p� t p���X�

p��X� p��X�

q�X�
f� r�X�

p�X�
f�X

�

Figure �	��� A would�be parametric signature whose parametric types are
not totally ordered that does not satisfy right monotonicity� p�p��p������ v
q�p��p������� but p��p������vr�p��p������ because p�����vp��p�����	

��� CHAPTER �� PARAMETRIC TYPES

��
 Summary

This chapter presented an account of parametric types that is general enough
to capture their use in current linguistic theory	 That account is made pos�
sible by essentially algebraic means� through formalizing the intuitive cor�
respondence that must exist between parametric type signatures and the
non�parametric signature of ground instances of parametric types	 The struc�
tural conditions under which parametric types do in fact induce a well�formed
BCPO were also given� which is another novel contribution	 Linguists and
implementors previously had no formal guidance as to how the sharing of
parameters between a type and its subtypes or value restrictions should be
regulated	
It was also proven that� in contrast to features� parametric type signatures

do not provide any extra expressive power from a formal standpoint than
non�parametric signatures	 That question could be posed formally using
signature subsumption as de�ned in Chapter �	 Parametric signatures are
nevertheless a very natural and convenient means of expression	 In spite of
the fact that their induced equivalents are usually in�nite� it was also shown
that �nite induced subsignatures can be induced in order to compute with
them directly	

Chapter �

Arity and Prolog Terms

We have already seen how join�preserving encodings� realized as signature
subsumption and equivalence� can be used to relate di�erent attributed type
signatures to each other� to encode other kinds of signatures such as systemic
networks� and to understand the relative expressive potential of attributed
type signatures extended with parametric types	 In this chapter� they will
be used to show that the �nite� inequation�free� totally well�typed feature
structures of any �nite signature with no cyclic types and a join�preserving
appropriateness speci�cation can be embedded into the semi�lattice of Pro�
log terms	 When the target domain is �rst�order terms or Prolog terms� this
embedding problem is called term encoding	 As usual� we need to be con�
cerned with join�preserving term encodings those that preserve uni�cation
and uni�cation failure	 Prolog term encoding a particularly useful embed�
ding� given the interest in logic programming among those who work with
typed feature structures in the context of natural language processing	 The
practical application of this will be discussed at greater length in Chapter �	

Ignoring for the moment the di�erence between named and positional ref�
erence to subterms� typed feature structures can be regarded as a re�nement
of Prolog terms in two ways	 The �rst is that type signatures possess sub�
sumption chains of any length	 In Figure �	�� for example� the chain from �
to noun is three types long �not counting � itself�	 Once a Prolog variable�
which corresponds to a feature structure of type �� is bound to a particular
term� the principal functor of that term cannot be changed� and two terms
of di�erent principal functors cannot be uni�ed	

The second is that� when the type of a feature structure promotes to
a subtype� it may acquire more features	 In Figure �	�� this is the case

���

��� CHAPTER �� ARITY AND PROLOG TERMS

subst

adj

minusplus

bool

nom

case

acc

head

noun
CASE: case

PRD: bool
MOD: bool

Figure �	�� A sample tree�encodable type signature	

�

a�� b�� � � � a��
arg�a	� � �

b��
arg�b	� � �

� � �

Figure �	�� A �type signature for Prolog terms	

when a feature structure of type subst promotes to type noun� since noun
introduces the new feature case	 Of course� with total well�typing� the
arity of every feature structure of a particular type is �xed to a constant�
namely the number of features appropriate to that type� but the arity can still
change when the type promotes	 In contrast� a Prolog term of a particular
arity cannot later acquire a di�erent arity� or unify with a Prolog term of a
di�erent arity	 In this view� Prolog terms can be thought of as being de�ned
over a very �at signature with in�nitely many maximally speci�c types� as
shown in Figure �	�	

Subtyping and arity incrementation are the two main di�erences between
totally well�typed feature structures and Prolog terms	 In addition� Prolog is
only a weakly typed language� so there is no way to check �well�typedness
after a uni�cation is performed	 As a result� only those signatures that
do not require run�time coercion to a well�typed structure can have join�
preserving Prolog�term encodings	 These are the statically typable signa�
tures� which were shown in Proposition �	�� to correspond to signatures with
join�preserving appropriateness speci�cations� as de�ned in De�nition �	��	
It will be assumed here that appropriateness is join�preserving� feature struc�
tures are �nite� and that there are no cyclic types� which guarantees that
most general satis�ers will not fall outside the �niteness restriction	 It may
be possible to �nd join�preserving term encodings of certain cyclic types or of

���� SUBTYPING ���

certain in�nite feature structures over arbitrary signatures� e	g	� those that
depart from the most general satis�er of their type on �nitely many nodes� by
using some �lazy encoding that explicitly expresses only a �nite part of an
in�nite feature structure	 It is also quite easy to extend the results presented
here to feature structures with inequations in enhanced implementations of
Prolog that support inequations� such as SICStus Prolog� so inequations will
be ignored here as well	
The problem of encoding a typed feature structure is most easily ap�

proached by splitting it into two problems� a join�preserving encoding of
type information that allows for subtypes� and a join�preserving encoding
of feature values that allows for arity incrementation	 The next two sec�
tions consider those problems� respectively	 The key insight is proven in
Lemma �	�� in which it is shown that the de�nition of statically typable sig�
natures given by Carpenter ������ actually entails the existence of an essential
extra property that makes the encoding possible	
The third section then adapts this encoding to be robust in the face of

extra�logical variable bindings these are what obstructed our potential
use of signature transformations in Chapter � as well	 No such robustness
is possible given the classical view of join�preserving embeddings� but the
generalized de�nition presented in Chapter � is the key to realizing that they
actually exist	 The fourth section then considers subsumption preservation
as a special case of join preservation	

��� Subtyping

In this section� we consider �nite type signatures without features just ��
nite type hierarchies	 �Prolog encoding is taken here to mean one in which
the only operation necessary for feature structure uni�cation after creating
the encoding is Prolog uni�cation of the corresponding terms	 That excludes
other �Prolog representations� such as the representation of feature struc�
tures in ALE� a logic programming language based on the logic of typed
feature structures� which requires a dereferencing operation and table look�
up at run�time �Carpenter and Penn� ������ as well as the representation
given by Gerdemann �����b�� which because of its slightly di�erent inter�
pretation of appropriateness conditions� requires the maintenance of extra
constraints on the side in the worst case	 The actual construction of any
Prolog encoding can be performed at compile�time	

��� CHAPTER �� ARITY AND PROLOG TERMS

index

m sn p

npnsfsms

f

fpmp

numgend

Figure �	�� A type hierarchy with full�product multiple inheritance	

	���� Tree Encodings

The �rst work to consider Prolog encodings of arbitrary meet semi�lattices
was presented by Mellish ������� although no general encoding algorithm
was presented	 Mellish ������ was also the �rst to characterize the general
encoding problem formally� as was presented in Chapter � as the �classical
de�nition �De�nition �	� of join�preserving encoding	 Previous work� dating
back to that of Dahl ������ ������ concerned a restricted subset of semi�
lattices that admit a Prolog tree encoding� i	e	� an encoding by terms in which
no variable is used more than once	 These and other logical�term�encoding
approaches are systematically presented in Fall� ����	

Tree encodings represent a type with a term that� using subterms� rep�
resents the path�s� taken to reach that type from �	 In Figure �	�� the
representation of head would be head� 	� that of subst� head�subst� 		�
and that of noun� head�subst�noun			 The noun subterm does not require
a variable argument because noun is maximally speci�c	

Because the logic of typed feature structures is intensional� an extra vari�
able argument is necessary to distinguish feature values that are variants
from feature values that are extensionally identical when representing fea�
ture structures rather than just types	 So� for feature structures with no
features� the representation of one of type head would be head�
 	� that
of one of type subst� head�subst� 	
 	� and that of one of type noun�
head�subst�noun	
 		 We can� for the rest of this section� ignore these
extra arguments and focus on representing types	

To represent multiple inheritance� the tree�based encoding uses multiple
argument positions to represent the di�erent paths that lead to a single type	
In Figure �	�� any pair of gend and num subtypes can intersect	 So index�s
term contains two argument positions� one for gend and one for num	 The

���� SUBTYPING ���

lax¢ral lax¢ering central¢ering

centeringcentrallax

Figure �	�� A type hierarchy with no tree encoding	

f(0,0)

f(_,1)f(X,X)

f(0,1) f(1,1)

f(0,_)

Figure �	�� A �at�term encoding of Figure �	�	

representations of gend� s and ms are index�gend� 	
 	� index�
num�s		

and index�gend�m	
num�s		� respectively	

Tree�based encoding does not work for arbitrary �nite meet semi�lattices�
as proven by Mellish ������ �����	 Figure �	�� for example� represents a sim�
ple classi�cation of vowels� taken from Hudson ������ �and cited by Mellish
�������	 There are vowels that have any pair of the three properties� lax�
central and centering� but there are no vowels that have all three at once	
This has no tree encoding because separate argument positions for lax� cen�
tral and centering would entail the consistency of lax with central�centering�
for example	

	���� Flat�Term Encodings

Mellish ������ ����� proved �non�constructively� that while not all �nite meet
semi�lattices admit tree encodings� they do all admit �at�term encodings�
encodings that use terms whose substructures are all reachable from the
root by a path of length at most �	 While this encoding can instantiate
arguments only to constants� it can also use individual variables in more
than one argument position	 A �at�term encoding of Figure �	� is given in
Figure �	�	

Mellish ������ showed that what is now known as Colmerauer�s method
can be used to encode systemic networks using �at terms of arity n " ��
where n is the number of possible property assignments allowed for by the

��� CHAPTER �� ARITY AND PROLOG TERMS

f��������������� f��������������� f���������������

f���X�X�X� ����� f�����X�X�Y�Y��� f�������X�X� ���

�

Figure �	�� A Colmerauer�method encoding of Figure �	�	

network	 The �rst argument is always �� the last argument is always �� and
every assignment is represented by a pair of arguments in between	 Every
description that excludes an assignment numbered i is represented by a term
whose ith and i"�st arguments are bound to a common term	 If there are �
possible assignments� then we use a term of arity � as follows �Mellish� ������

� � � � �
j j j j j

f��

 X
 X
 �	 �excludes assignment ��
f��
 �

 X
 X
 �	 �excludes � and ��
f��
 X
 X
 X
 �
 �	 �excludes �� �� and ��

Fall ������ p	 ��� observed that Colmerauer�s method applied to subsump�
tion rather than assignments provides a uni�cation�preserving encoding of
arbitrary �nite ordered sets� thus establishing a constructive method for �at�
term encodings	 A pair of arguments in an encoding is bound i� the type
corresponding to the pair is not a subtype of the type being encoded	 Fig�
ure �	� shows a Colmerauer�method encoding of the signature in Figure �	�
with the following assignment of types to pairs of positions�

lax ctrl ctrg lax$ lax$ ctrl$
ctrl ctrg ctrg

j j j j j j
f��

 �	

��� Arity Incrementation

As a �rst approximation to the encoding of typed feature structures over a
�nite signature� we can assume that we are given Colmerauer�style encodings
of all of the types in the signature	 We can then use this in an extra argument
position of a term that also has one argument position for every feature in
the signature� to be �lled with the term encoding of its value	 Cyclic feature
structures correspond to circular Prolog terms	

���� ARITY INCREMENTATION ���

c
f�a

a b

�

Figure �	�� A signature that introduces a feature at a join�reducible type	

c��� �� �� ��

c��� X�X� �� c��� �� � ��

�

Figure �	�� A Colmerauer encoding of the signature in Figure �	�	

The problem with this approximation is that it does not always lead to a
join�preserving encoding because features can be introduced at join�reducible
types	 Figure �	� depicts a signature for which this is the case	 A Colmerauer
encoding of it is shown in Figure �	�	 We can add one argument position to
the term encoding of c for the value of the feature f� but then we need to
make the encodings of a and b the same arity so that they unify	 The detail
that the approximation does not provide is what value to use in that extra
position with types for which f is not appropriate	 If we use a singleton
variable� i	e	� a variable that occurs exactly once in its term� as shown in
Figure �	�� then the encoding of a feature structure of type a uni�ed with
the encoding of a feature structure of type b yields an encoding whose f
argument position does not contain a term encoding of the value restriction
of f at c	 On the other hand� we could use a term encoding of the most
general satis�er of Approp�f� Intro�f��� with the understanding that the type
information in the encoding will tell us when to interpret it as a real value
or just to ignore it	 But in Figure �	�� that value restriction is a� one of the
supertypes of c� and thus the term encoding of the most general satis�er of a

f�c��� �� �� ��� �

f�c��� X�X� ��� � f�c��� �� � ��� �

�

Figure �	�� An approximate encoding of Figure �	� using a singleton variable
for inappropriate feature positions	

��� CHAPTER �� ARITY AND PROLOG TERMS

would be an in�nite non�circular term� since its third argument would be the
term encoding of a distinct alphabetic variant of the same feature structure	
To handle recursive signatures such as these� we must adopt a conven�

tion that allows an additional argument position for a feature to contain a
variable� but only in certain cases	 The type information in the encoding
will tell us whether that variable should be interpreted as a non�existent or
introduced value	 One admissible convention is given below�

De
nition 	��� Given a �statically typable etc�� signature� S � hT�v�Feat�
Appropi� and a Colmerauer encoding of T of arity jT j " �� the classical
term encoding of the totally well�typed feature structures of S is an injective
function� �� � S �� �S� where �S is a partially ordered set of Prolog terms of
arity jFeat j " �� Given F � hQ� �q� �� ��
i � T T FS with type ���q� � t � T �
and Q �nite� its encoding is �F � f�c�C�� � � � � CjT j���� �F�� � � � � �FjFeat j� � � �S�
where c�C�� � � � � CjT j��� is the Colmerauer encoding of t� and�

�Fi �

�������
�������

a singleton variable if Approp�fi� t��
a singleton variable if F�fi � hQi� �qi� �i� �i��ii �

MGSat�Approp�fi� Intro�fi���
and 	q � Q�	g � Feat ����g� q� �
�qi�� �g � fi�$�q � �q��

F�fi otherwise

This says that we can use a variable as a place�holder for some feature value�
provided that it is the most general feature structure that can be a value
of that feature� and it does not participate in a re�entrancy	 This exploits
the fact that appropriateness cannot require re�entrancies to exist� an
introduced feature value is never re�entrant	
In practice� of course� one can remove the extra c wrapper on Colmerauer�s

encoding to leave the structure of the term as �at as possible� and simply
use a variable by itself to represent feature structures of type �	

Proposition 	��� �� is a classical join�preserving encoding of T T FS�

Proof� By de�nition� �� is injective� which is possible because the last argu�
ment is always a singleton variable� posited to ensure the intensionality of
the terms in the encoding� as described above	 Because Colmerauer�s en�
coding is zero�preserving and join�preserving� substructures are encoded in

�in the absence of extensional types�

���� ARITY INCREMENTATION ���

subterm positions� re�entrancies are encoded as shared subterms in Prolog
terms �thinking of them� too� as graphs�� and the uni�cation of singleton
variables in unused term positions always succeeds� the only special cases
that need to be considered for zero�preservation and join�preservation are
arity incrementation� i	e	� when a feature is introduced at a join� and the
uni�cation of the distinguished singleton variables with other values	

To consider the latter case �rst� the most general satis�er of a feature�s
value restriction at its introducer must subsume any other value that that
feature can take in a well�typed feature structure� by upward closure and
right monotonicity	 So we should always get a non�variable term encoding
back when we unify it with a singleton variable encoding in that position�
which is exactly what happens	

Feature introduction also never fails this is a result of the fact that
Fill �De�nition �	��� is a total function	 It also never fails in the encoding
 singleton variables unify with anything	 The only question is whether the
right value is introduced when the type of a term changes so as to change
the interpretation of the introduced feature�s position	 From the original
de�nition of join preservation �De�nition �	���� it is not quite clear that
this would be the case� because of the �unrestricted clause	 Lemma �	�
establishes that this actually is true	

Lemma 	��� If Approp is join�preserving� s t t�� and for some f � Feat�
Approp�f� s�� and Approp�f� t��� then either Approp�f� stt�� or Approp�f� st
t� � Approp�f� Intro�f���

Proof� Suppose Approp�f� st t��	 Then Intro�f� v s t t	 Approp�f� s�� and
Approp�f� t��� so Intro�f� �v s and Intro�f� �v t	 So there are three cases to
consider�

Intro�f� � s t t� then the result trivially holds	

s v Intro�f� but t �v Intro�f� �or by symmetry� the opposite�� then we
have the situation in Figure �	��	 It must be that Intro�f� t t � s t t� so by
join preservation� the lemma holds	

s �v Intro�f� and t �v Intro�f�� s v s t t and Intro�f� v s t t� so s and
Intro�f� are consistent	 By bounded completeness� s t Intro�f�� and s t
Intro�f� v s t t	 By upward closure� Approp�f� Intro�f� t s�� and by join
preservation� Approp�f� Intro�f� t s� � Approp�f� Intro�f��	 Furthermore�
�Intro�f� t s� t t � s t t� thus by join preservation� the lemma holds	

��� CHAPTER �� ARITY AND PROLOG TERMS

s t t

Intro�f�

s t

Figure �	��� The second case in the proof of Lemma �	�	

This lemma is a very signi�cant result it says that we can always pre�
dict what an introduced feature�s value restriction will be in a join�preserving
signature	 This means that join preservation not only characterizes static ty�
pability� but also �xed�arity�term encodability in the logic of typed feature
structures	 We can� thus� restate join preservation as follows�

De
nition 	��� An appropriateness speci�cation is said to preserve joins
i�� for all features f � Feat� for all types s� t such that s t t��

Approp�f� s t t� �

�������
�������

Approp�f� s� t Approp�f� t� if Approp�f� s�� and
Approp�f� t��

Approp�f� s� if only Approp�f� s��
Approp�f� t� if only Approp�f� t��

unde�ned� or
Approp�f� Intro�f��

otherwise

No matter which case pertains� appropriateness is never completely unre�
stricted if it is join�preserving	
The encoding and lemma make critical use of bounded completeness and

unique feature introduction	 Actually� the encoding also works if we gen�
eralize our de�nition of signatures to allow for multiple introducing types�
provided that all of them agree on what the value restriction for a multiply
introduced feature should be	 Would�be signatures that multiply introduce
a feature at join�reducible elements �thus requiring some kind of variable en�
coding�� disagree on the value restriction� and still remain statically typable
are rather di�cult to come by� but they do exist� and for them� this encoding
does not work	 Figure �	�� shows one such example	 In this signature� the
uni�cation�

�
s
f d

	
t

�
t
f b

	
�

���� GENERALIZED TERM ENCODING ���

s t t
f�c

s
f�a

t
f�b

d c

a b

�

Figure �	��� A statically typable would�be signature that multiply introduces
f at join�reducible elements with di�erent value restrictions	

does not exist� but the uni�cation of their term encodings must succeed
because the t�typed structure�s f value must be encoded as a variable	 To
the best of the author�s knowledge� there is no term encoding that can handle
this generalization	

��� Generalized Term Encoding

A classical term encoding of typed feature structures exists� subject to the
restrictions outlined at the beginning of this chapter� but in practice� it is
not good for much	 Programming languages that make reference to a feature
structure� F � typically need to bind variables to various substructures of F �
and then pass those variables outside the scope of F where they can be used
to instantiate the value of another feature structure�s feature� or as arguments
to some function call or procedural goal	 This extra�logical view of relational
extensions of constraint languages has been rather commonplace in logic
programming ever since it was proposed by H�ohfeld and Smolka ������	 If a
subterm in an encoding is a singleton variable� we can properly understand
what that variable encodes by looking at its context� i	e	� the term�s type
etc	� but outside the scope of that term� we have no way of knowing which
type�s most general satis�er it is supposed to encode	
A generalized term encoding provides an elegant solution to this problem

without a loss of encoding ability in the form of additional� more verbose
term encodings for certain feature structures	 When a variable is bound to
a substructure that is potentially a �lazy singleton variable� it can be in�
stantiated to the most general satis�er that it represents and passed out of
context	 The encoding of the original feature structure still remains legit�

��� CHAPTER �� ARITY AND PROLOG TERMS

imate� because the encoding sets are closed under the binding of singleton
variables	

De
nition 	��� Given a signature� S � hT�v�Feat �Appropi� and a Colmer�
auer encoding of T of arity jT j " �� the term encoding of the totally well�
typed feature structures of S is a function�)� � S �� Pow�)S�� where)S
is a partially ordered set of Prolog terms of arity jFeat j " �� Given F �
hQ� �q� �� ��
i � T T FS with type ���q� � t � T � and Q �nite� its encoding is a
set of terms� each of the form)F � f�c�C�� � � � � CjT j����)F�� � � � �)FjFeat j� � �)S�
where c�C�� � � � � CjT j��� is the Colmerauer encoding of t� and�

)Fi �

�������
�������

a singleton variable if Approp�fi� t��
a singleton variable�
or Gi

if F�fi � hQi� �qi� �i� �i��ii �
MGSat�Approp�fi� Intro�fi���
and 	q � Q�	g � Feat����g� q� �
�qi�� �g � fi�$�q � �q��

Gi otherwise

where� for each �qi� Gi is a unique term selected from�F�fi�

Proposition 	���)� is a join�preserving encoding of T T FS�

Proof� Totality and disjointness are obvious	 For those positions where a
singleton variable is chosen� zero preservation and join preservation follow by
the same reasoning as in the classical case	 The classical encoding� in fact�
is one member of the generalized encoding set for every feature structure	
For those positions where an instantiated encoding of the most general sat�
is�er is chosen� zero preservation and join preservation again follow from the
straightforward correspondence between Prolog term structure and feature
structure graph structure and the fact that Colmerauer�s encoding �which�
by itself� is still classical� is zero�preserving and join�preserving	

��� Subsumption Preservation

Whenever an encoding is join preserving� it is subsumption� or order preserv�
ing because F t G � G i� F v G	 But we might also expect to be able to
test for subsumption in an encoding domain using a primitive subsumption
test for that domain without having to perform a more expensive test uni��
cation	 This does not hold in general� and� in particular� it does not hold for

���� SUBSUMPTION PRESERVATION ���

either the classical or generalized Prolog encodings of typed feature struc�
tures presented in the last two sections	 The reason is that singleton variable
placeholders in G might actually represent substructures that are more spe�
ci�c than an instantiated term that encodes a corresponding substructure in
F � which is consistent with F v G� but inconsistent with �F v �G	

In the case of the classical encoding� we have no recourse to repair this
problem only one term corresponds to a given feature structure� and
primitive subsumption testing using that term does not work	 In the case
of the generalized encoding� we can coerce a naughty term to another one
that encodes the same feature structure but has �lled in its value�encoding
singleton variables	�

De
nition 	��� Given a signature� S� let Exp �)S ��)S be the function
that� for every F � T T FS� maps every encoding in)F to the unique term in
)F that has no value�encoding singleton variables�

Proposition 	��� Suppose the primitive for subsumption testing among Pro�
log terms is called subsumes� Then for every F�G � T T FS�)f �)F � and
)g �)G� F v G i�)f subsumes Exp�)g��

A schematic overview of the generalized term encoding can be seen in
Figure �	��	 Every set of terms that encode a particular feature structure
has a least element� in which singleton variables are always opted for as
introduced feature values	 This is the same element as the classical encoding	
It also has a greatest element� namely the result of Exp� which eliminates the
variable encodings of introduced feature values	 Whenever we bind a variable
to a substructure� we push its encoding up within the same set to some other
encoding	 As a result� at any given point in time during a computation� we
do not exactly know which encoding we are using to represent a given feature
structure	 Furthermore� when two feature structures are uni�ed successfully�
we do not know exactly what the result will be either� but we do know that it
falls inside the set corresponding to the correct answer because there is always
a term there with variable encodings for the values of any newly introduced
features	

�The extra singleton variable for preserving intensionality� of course� remains a singleton
variable�

��� CHAPTER �� ARITY AND PROLOG TERMS

Exp�F tG�

�F tG

Introduced feature has
variable encoding

F tG

Exp�F � Exp�G�

)F
variable
binding

)G

�F �G

Figure �	��� A pictorial overview of the generalized encoding	

���� SUMMARY ���

��� Summary

This chapter showed that two kinds of join�preserving embeddings� one clas�
sical and one generalized� exist from any statically typable signature into
the lattice of Prolog terms	 The generalized embedding has the ability to
withstand the necessary extra inferencing in order to use variables with an
extra�logical binding scope for the purposes of logic programming� for exam�
ple	 The crucial step in proving their existence is Lemma �	�� which shows
that the assumption of unique feature introduction allows us to strengthen
the characterization of static typability given by Carpenter ������	 As shown
in Chapter �� this assumption can easily be restored when it is not assumed
by the designer	 It was also shown that subsumption preservation can be
reduced to subsumption at the Prolog level using an extra closure operator�
Exp� that can apply directly to encoding terms	

��� CHAPTER �� ARITY AND PROLOG TERMS

Chapter �

The Semi�Ring Structure of

Signature Speci	cations

Before proceeding further� it will be useful to take a di�erent look at at�
tributed type signatures� this time focussing on how the relations and func�
tions that constitute signatures can be viewed as the closure of speci�ca�
tions of signatures	 This knowledge has already been implicitly used in the
way that signatures have been depicted as graphs whose links correspond
to instances of immediate subsumption� annotated with feature introduc�
tion and value restriction information only where it cannot be inferred from
upward closure and
or right monotonicity	 Fundamentally� what separates
these speci�cations from the signatures themselves is a collection of transitive
closure operations� plus various safeguards to ensure that the speci�cations
are well�formed	 Subsumption� appropriateness� transitive closure� and these
safeguards can all be thought of in terms of matrices and matrix arithmetic	

The reduction of such closures to e�cient operations over matrices has
a wider application as well	 For any programming language that aspires to
support e�cient object inheritance or an inclusionally polymorphic type sys�
tem� two very common and important operations are type inference and the
computation of least upper bounds	 These can occur both during compila�
tion to ensure the static typability of a program� or at run�time in the form of
uni�cation	 Very broadly speaking� given a partially ordered set of elements�
three ways have been proposed to compute encodings of those elements in
order to conduct uni�cation e�ciently� table lookup� term encodings� and
bit�vector encodings	 Term encodings attempt to reduce uni�cation in the
object domain into uni�cation in some other domain� such as uni�cation of

���

��� CHAPTER 	� SIGNATURE SPECIFICATIONS

Prolog terms �Mellish� ����� ������ or of sparse encodings of �rst�order terms
�Fall� �����	 Bit�vector encodings typically attempt to reduce uni�cation to
one or more bit�wise operations� such as AND or OR	

Inheritance among feature structures
terms is derived both from their
structural properties� particularly the consistency of their shared substruc�
tures with type information� and from explicit declarations of subsumption
relationships that exist among types in the type system	 In practice� both
of these are only indirectly de�ned	 In the case of structural properties� this
is achieved through appropriateness conditions� which locally enforce struc�
tural well�formedness conditions between subterms of di�erent types	 In
particular� they specify which types of subterms can bear certain attributes�
and what types the values of those attributes can be	 The closure of those
local constraints over the type system constitutes overall structural well�
formedness	

In the case of types� the explicit declarations are made by way of declaring
only an immediate subsumption relation over the set of types� whose tran�
sitive closure constitutes the type subsumption relation	 All three methods
of e�cient uni�cation thus involve computing closures at compile�time over
both named and structural relations to �nd the implied algebraic structure
underlying typed feature structures
terms	 This chapter provides a uniform
way of looking at these closures� particularly as they apply to programming
over the logic of typed feature structures	 In particular� all of the compilation
required for signatures relative to structural and named well�formedness con�
straints in the logic of Carpenter ������ can be reduced to matrix arithmetic	

The next section reviews the reduction of compiling uni�cation to the
transitive closure of Boolean matrices	 Section �	� discusses the mathemat�
ical structure that must exist among the elements of these matrices for the
proposed method to work� argues that the closed Boolean semi�ring is the
proper one� and discusses some of the practical consequences of this choice	
Section �	� shows how to construct a closed semi�ring that supports matrix
multiplication from any �nite meet semi�lattice �De�nition �	��	 Section �	�
then reduces all of the compilation steps necessary for e�cient processing
relative to an attributed type signature to matrix operations based on this
construction	

In this chapter� only �nite signatures will be considered	

	��� SUBSUMPTION MATRICES AND TRANSITIVE CLOSURE ���

da

cb

e

Figure �	�� An example type hierarchy	

�� Subsumption Matrices and Transitive

Closure

The use of Boolean matrix multiplication to compute transitive closures of
graphs extends as far back as Prosser� ����� and was improved on by War�
shall�s famous transitive closure algorithm �Warshall� �����	
The application of re�exive�transitive closure to lattice representation

theory extends back to the seminal paper by A�!t�Ka�ci et al	 ������� who
proposed the baseline bit�vector encoding of partially ordered types by which
all others are now measured� namely one that uses n bits per code� where n
is the number of types in the partial order	

De
nition ���� Given a �nite partially ordered set� hP�vi� and a total or�
dering of P �s elements� p�� p�� � � � � pjP j� the subsumption matrix� S� of P is
a jP j � jP j Boolean matrix� where Si�j � � i� pi v pj�

The crucial observation of A�!t�Ka�ci et al	 ������ was that we can use the
ith row of S to encode the type pi� with uni�cation corresponding to bit�wise
AND	 An example partial order of types is given in Figure �	�	 Here� � is
the most general type� and more speci�c subtypes are situated above their
more general supertypes	 Its subsumption matrix is given in Figure �	�	 The
AND of the rows for a and d yields the row for e� for example	
We can build a base subsumption matrix� H� in the same way� by using

the base� or immediate� subsumption relation rather than true subsumption	
In practice� this is what is speci�ed in type hierarchy declarations� with
re�exive and transitive closure being implicit	 The question then becomes
how to obtain S from H	 The base subsumption matrix for Figure �	� is
given in Figure �	�	
Two re�nements are given in the same paper to produce more compact

encodings	 One allocates bits only for maximal types and unary branch�

��� CHAPTER 	� SIGNATURE SPECIFICATIONS

� a b c d e
� � � � � � �
a � � � � � �
b � � � � � �
c � � � � � �
d � � � � � �
e � � � � � �

Figure �	�� The subsumption matrix of Figure �	�	

� a b c d e
� � � � � � �
a � � � � � �
b � � � � � �
c � � � � � �
d � � � � � �
e � � � � � �

Figure �	�� The base subsumption matrix of Figure �	�	

ing types	 The other allocates separate group codes for subsets that are
�modular in the way that base subsumption connects them to the rest of
the network� which reduces the overall size of codes� although it makes the
actual uni�cation operation more complicated than bit�wise AND	 Ganguly
et al	 ������ provide another good encoding that places the burden of extra
bits on types that inherit from multiple supertypes� to achieve a compara�
ble improvement without the modularity restriction	 These and others are
summarized by Fall ������	 In every case� however� these re�nements are
simply allocating bits more sparingly along the way to deriving a re�exively�
transitively closed matrix like S from H	

For the naive encoding� one way to achieve that derivation is a re�exive�
transitive closure� by directly �lling in the diagonal of H with ��s �re�ex�
ive� and multiplying the result by itself until it reaches the �xed point� S
�transitive�	 This �xed point is obviously reached after no more than jP j
iterations	 By re�using the results of previous multiplications� one can attain
it in dlog jP je iterations	 The �rst re�nement presented by A�!t�Ka�ci et al	
������ also uses matrix multiplication at one step to compute the re�exive�
transitive closure of the symmetric closure of H	 A�!t�Ka�ci et al	 ������ claim

	��� RINGS
 QUASI�RINGS AND SEMI�RINGS ���

that those matrix multiplication steps should be conducted in the Boolean
ring of jP j � jP j bit�matrices� and that they can be performed using an e��
cient sub�cubic algorithm such as Strassen�s algorithm �Strassen� �����	 The
correctness of this claim is considered below	

�� Rings� Quasi�Rings and Semi�Rings

There are actually two closely related Boolean algebras with two opera�
tions each �roughly speaking� candidates for ring�hood�	 They are BXOR

� hf�� �g� XOR�AND� �� �i� where corresponds to XOR� and BOR �
hf�� �g� OR�AND� �� �i� where corresponds to OR	 In order to see how
these di�er in practice� we need to de�ne some basic structures�

De
nition ���� A monoid is a structure hP� �� ei such that�

� P is a set closed under ��

� � is an associative binary operator on P � and

� e � P is an identity for ��

De
nition ���� A quasi�ring is a structure hP� �!� ��� ��i� such that�

� hP� � ��i is a monoid�

� hP�!� ��i is a monoid�

� �� is an annihilator of !� a! �� � �� for all a � P �

� is commutative� and

� ! distributes over � a! �b c� � �a! b� �a! c� and �b c�! a �
�b! a� �c! a�� for all a� b� c � P �

De
nition ���� A ring is a quasi�ring with an additive inverse� i�e�� for all
a � P � there exists b � P such that a b � b a � ���

If P is a quasi�ring� then multiplication of matrices is well�de�ned and has
certain nice properties� such as associativity and the existence of an identity
�in fact� it is also a quasi�ring�	

��� CHAPTER 	� SIGNATURE SPECIFICATIONS

De
nition ���� Given a quasi�ring� Q �hP� �!� ��� ��i� an m�n matrix� A�
over Q� and an n� p matrix� B� over Q� then A �B �matrix multiplication�
is the m� p matrix� C� over Q such that�

ci�j �
nM

k�

ai�k ! bk�j�

BXOR and BOR are both Boolean quasi�rings	
BXOR is also a Boolean ring� but BOR is not	 BOR is a closed Boolean

semi�ring� however� which� among other properties� means that OR is idem�
potent� i	e	� that � � � �	 This is vital for ensuring that matrix multiplica�
tion can compute a transitive closure� since transitively closed subsumption
should not be �turned o� by immediate subsumption chains on more than
one subtyping branch	 As a result� we need idempotence in the underlying
Boolean quasi�ring	 XOR is not idempotent� so the Boolean ring is not the
correct structure to use	
In addition� Strassen�s algorithm can only compute matrix multiplication

over true rings not over all quasi�rings or closed semi�rings because it
requires the existence of an additive inverse� so Strassen�s algorithm will not
work with BOR	
We could embed matrices over the Boolean quasi�ring� BOR� into a proper

ring� and �nd some way of restoring the result in the original structure	
Such an embedding can be found in the integers� for example� as shown in
Figure �	�	 This would allow us to use Strassen�s algorithm	 Presumably�

Z �� Z
� � �

n
� �� ��
x �� � o�w�

BOR BOR

Figure �	�� An embedding of BOR into Z for ring multiplication	

this is what systems that purport to use either the naive encoding or its �rst
re�nement in A�!t�Ka�ci et al	� ���� have actually been doing	
Even then� Strassen�s algorithm belongs to a class of sub�cubic matrix

multiplication algorithms that are only well�suited to multiplying very large�
very dense matrices	 While subsumption matrices can be very large� they
are never very dense	 Because they encode a partial order �or some approx�
imation of its transitive closure�� for every non�diagonal �� corresponding to

	��� RINGS
 QUASI�RINGS AND SEMI�RINGS ���

p v q� for p �� q� there is a non�diagonal �� corresponding to q �v p	 As a
result� no more than �jP j� " jP j��� positions are non�zero	 So even if we use
the above embedding to rescue Boolean ring�hood� Strassen�s algorithm is
still the wrong algorithm for the job	 Either Warshall�s classical algorithm
should be used�� or specialized sparse matrix multiplication algorithms could
be applied� most of which only require an underlying quasi�ring	
Warshall�s algorithm and Floyd�s extension of it to the all�pairs�shortest�

path problem are both instances of a general dynamic programming algo�
rithm on closed semi�rings �Aho et al	� �����	 A�!t�Ka�ci et al	 ������ also
present a non�standard algorithm for transitive closure by way of introduc�
ing their �rst re�nement that �apparently unwittingly� uses BOR rather than
the Boolean ring	 To the present author�s knowledge� the fastest known
general multiplication algorithm for matrices over quasi�rings is still O�n��	
By contrast� nearly every algorithm in the class of sub�cubic algorithms to

which Strassen�s algorithm belongs requires an underlying ring	 The only ex�
ception of which the present author is aware is Shamir�s randomized Boolean
matrix multiplication algorithm �Cormen et al	� ������ which can conduct
multiplications for matrices over BOR using matrices over BXOR with a prob�
ability of at least � � ��nk for any constant k � � in O�nlg�lgn� time	 The
price� of course� is the small chance of error	 The fastest known �sure��re
multiplication algorithm for matrices over proper rings is O�n����	� �Copper�
smith and Winograd� �����	
On the other hand� the rows and columns of H and S can be sorted so

that they are upper�triangular sparse matrices	 In particular� it can be shown
�Aho et al	� ����� that within any closed semi�ring� the transitive closure of
an upper�triangular matrix is�

�
A B
� C

��

�

�
A� A�BC�

� C�

�

for any square sub�matrix� A	 Using the right�hand side to compute the
transitive closure cuts the number of required arithmetic operations as a
function of the dimension of A� although it has the same asymptotic com�
plexity	 First�order calculus shows that this cut attains a maximum of ��'�
i	e	� the computation takes ��' of the time required by the left�hand side�

�Warshall �����
 claims his algorithm increases �slightly faster� than quadratically� but
it is known to be tightly bounded at cubic� Although there is no discussion of the choice
of algebra� it also uses BOR�

��� CHAPTER 	� SIGNATURE SPECIFICATIONS

when the dimension of A is half of that of the overall matrix	 A compatible
sparse matrix representation may further reduce that number	
A preliminary evaluation� shown in Table �	�� suggests that these ob�

servations can improve compilation times on large signatures by a factor of
��� or more over naive transitive closure algorithms and by up to a fac�
tor of ���� over closure by optimized matrix multiplication algorithms such
as Strassen�s algorithm	 The table shows results on two type hierarchies�
one with ��� types from the �naive HPSG grammar distributed with the
ALE system� and one with ���� from the LinGO project at Stanford Uni�
versity �LinGO� �����	 All measurements are in seconds� and were made on

HPSG����� LinGO������
Strassen ��	�� sec	 huge
Strassen��� �	�� �����	��
Strassen��� �	�� ����	��
Naive�Z �	�� ����	��
Naive�BOR �	�� ����	��

Warshall �	�� ����	��

Naive�Z* �	�� ����	��
Naive�BOR* �	�� ���	��

Sparse�Z ��	�� �	��
Sparse�BOR ��	�� �	��
Sparse�BOR* ��� ���

Table �	�� Preliminary comparison of transitive closure algorithms on two
type hierarchies	

a dual�����MHz Pentium II with � GB of RAM running Redhat Linux �	�	
Strassen��� �Strassen���� is the version of Strassen�s algorithm that switches
to the naive multiplication algorithm on matrices of dimension �� ���� or
less� which is how Strassen�s algorithm is used in practice	 All variations of
Strassen�s algorithm are from GEMMW� the level � BLAS library routine
that implements the Winograd variant of Strassen�s algorithm in Fortran
�Douglas et al	� �����	 Warshall is a standard Prolog library routine for
Warshall�s algorithm	 All other programs were written in C by the present
author	 The algorithms marked with asterisks use the upper�triangular de�
composition for closed semi�rings mentioned above� and as can be seen� the
only non�sparse algorithms that surpass the Prolog routine are those that use

	��� AN EXTENSIBLE QUASI�RING CONSTRUCTION ���

the decomposition	 The algorithm in the last entry has yet to be devised	
While its details are an open research problem� judging from the other im�
provements using the upper�triangular decomposition� it should be possible
to stay fairly close to the ��' reduction to achieve a performance of around
two seconds on the LinGO type hierarchy	
The �rst re�nement for computing �compact bit�vector codes in A�!t�

Ka�ci et al	� ���� is e�ectively a sparse� or at least sparser� matrix encoding
of S suitable for the component�wise multiplication �AND� of its rows	 In
particular� The observation of A�!t�Ka�ci et al	 ������ in their �rst re�nement
can be restated as� every column corresponding to a meet�reducible type�
t � u u v� where u �� t and v �� t� can be reconstructed by component�
wise multiplying the columns corresponding to u and v	 Given rows i and
j� si�t ! sj�t is thus �si�u ! si�v� ! �sj�u ! sj�v�	 If the underlying quasi�ring is
commutative� as is the case for BOR� this equals �si�u ! sj�u� ! �si�v ! sj�v��
the product of the columns for u and v in the result	 So an encoding that
must preserve only component�wise multiplication of rows of S can dispense
with the columns corresponding to meet�reducible types altogether	 What
remain are the meet�irreducible types� which are exactly the maximal types
and unary�branching types in the partial orders that A�!t�Ka�ci et al	 ������
consider	

�� An Extensible Quasi�Ring Construction

Now that we know that we need a quasi�ring with idempotence� we can
consider which kinds of quasi�rings would be most convenient	 The Boolean
quasi�ring� BOR� su�ces for processing with simple type hierarchies� but since
we are interested in totally well�typed feature structures� appropriateness
conditions should also be taken into account	 Only the correlates of the
naive encoding of A�!t�Ka�ci et al	 ������ will be explicitly considered here
similar improvements for compactness and speed can be made on these as
well	

Our type hierarchies are �for now� �nite� meet semi�lattices	 Requir�
ing type hierarchies to be �nite meet semi�lattices e�ectively eliminates a
potential source of disjunction inherent to uni�cation in general partial or�
ders	 Bit�vector encodings capture disjunctions of types for free �as the OR
of the disjuncts�� but in more restricted feature logics such as ours� those
disjunctions may make it di�cult to articulate appropriateness conditions�

��� CHAPTER 	� SIGNATURE SPECIFICATIONS

and practically speaking� delay their enforcement� which exists to prune ill�
formed structures	 The reason for this is that individual disjuncts may have
di�erent types and therefore di�erent appropriateness conditions di�erent
appropriate features� for example	 Instead of simply disjoining the types� the
appropriateness conditions common to all of the disjuncts should be factored
out� e�ectively creating a new meet in the type hierarchy� in a manner similar
to that discussed in Chapter �� section �	�	�	
We can think of � and � inBOR as constituting a very small type hierarchy�

as shown in Figure �	�	 If � corresponds to �� and �� to �� then uni�cation

Figure �	�� The Boolean type hierarchy	

in this hierarchy corresponds to Boolean OR	 We can also write this as in
Figure �	�� in which the trivial type hierarchy� consisting of just �� has been

Figure �	�� The trivial type hierarchy lifted to produce the Boolean hierarchy	

bottom�lifted to add a new bottom� �	 In fact� we can do this to any type
hierarchy	 Because bottom�lifting preserves meet�semi�latticehood� we can
trivially extend t to any P �f�g where P is a �nite meet semi�lattice	 Now�
we need something to correspond to AND�

a t b �

� if a � � or b � �
a t b otherwise

De
nition ��	� Let hP�vi be a �nite type hierarchy� Then Q�P � � hP �
f�g�t�t����i� is the quasi�ring induced by P �

Notice that we can de�ne this for all P � not just the trivial type hier�
archy� because in all type hierarchies in Carpenter� ����� t� and therefore
its extension to P � f�g and to t� are total functions� and there is a least
element	 As can easily be veri�ed�

	��� TYPE AND APPROPRIATENESS RESTRICTIONS ���

da

cb

e

Figure �	�� The quasi�ring constructed from Figure �	�	

Proposition ���� For all �nite type hierarchies P with a greatest element�
Q�P � is a quasi�ring�

The existence of a greatest element ensures that t and t are closed in
P�f�g	 Without loss of generality� we can assume that the greatest element�
�� does not explicitly appear in P � and that it does not occur anywhere else
in the signature� e	g	� in appropriateness conditions	 � can be smashed onto
any such P � and is typically implemented as type uni�cation failure in the
original signature	 Figure �	� shows the type hierarchy in Figure �	� ��lifted
and ��smashed to form its quasi�ring	
The bene�t of using Q�P � is that it allows us to generalize to other

computations on signatures that require matrices with types in them rather
than just �s and �s	 The subsumption matrix of P can still be constructed
using � and � in place of � and �� respectively	 The next section presents a
way of looking at all of the other closure operations and sanity checks that
must hold of valid subsumption and appropriateness speci�cations in terms
of matrices and vectors over this quasi�ring construction	

�� Compiling Type and Appropriateness

Restrictions

���� Subtyping Cycles

The �rst two checks we need to make still use only � and �� i	e	� the former
� and �	 Uni�cation �t� over all of Q�P � is not necessarily well�de�ned until

��� CHAPTER 	� SIGNATURE SPECIFICATIONS

we can guarantee that P is a meet semi�lattice	
We �rst need a way of checking that a subsumption speci�cation we are

given is legitimate	 We can assume that we are given a candidate type hier�
archy in the form of its base subsumption matrix� H	 We then re�exively and
transitively close H as described above� to obtain its subsumption matrix�
S	 The �rst check we need to make is that P is a partial order� by checking
for anti�symmetry	

Proposition ���� P is not a partial order i� there exist � � i� j � jP j� i �� j
such that Si�j � Sj�i � � �the � element��

An easier way to check this is to carry out the construction of S by
embedding H as a matrix �H in Z� as in Figure �	�� and building its transitive
closure� �S	 The embedding method described above can still be used because
H and S still contain only � and �	

Proposition ���� P is not a partial order i� for any � � i � jP j� �Si�i � ��

Proof� A diagonal entry of greater than � indicates that that entry could
have been set to � without an explicit re�exive closure by transitively closing
over a pre�order with a symmetry	

Once we have S� it is easy to express which types are consistent�

De
nition ���� The join matrix of P is J � S � ST � where ST is the trans�
pose of S�

Proposition ���� ti and tj are consistent i� Ji�j � ��

Note that J is always symmetric� i	e	� Ji�j � Jj�i for all i�j	

���� Meet Semi�latticehood

We can check for meet�semi�latticehood by exploiting the alternative de�ni�
tion of meet semi�lattices in the �nite case and using the rows of S as codes
of types in P � in the manner of A�!t�Ka�ci et al	 �������

Proposition ���� Let �t be the component�wise application of t to two vec�
tors of elements from Q�P �� A partial order P is a �nite meet semi�lattice i�
for all � � i� j � jP j� if Ji�j � � then there exists a �unique� � � join�i� j� �
jP j such that Si�tSj � Sjoin�i�j��

	��� TYPE AND APPROPRIATENESS RESTRICTIONS ���

If two types are consistent� then their codes intersect to produce the code
of another type	 If P is not a �nite meet semi�lattice� then the uni�cation
of some codes will be the disjunction of two or more other codes� which will
not be found as a single row in S	
Along the way to verifying this� we can build the uni�cation table for P �

De
nition ���� The uni�cation table of P � U � is the join matrix of P � with
each � replaced by �� and each � replaced by tjoin�i�j��

Proposition ��	� For all � � i� j � jP j� Ui�j � ti t tj�

That Sk in Proposition �	� corresponds to the uni�cation of Si and Sj
follows from the correctness of the method of A�!t�Ka�ci et al	 ������� proven
in their paper	

���� Feature Introduction

The de�nition of appropriateness is repeated here for convenience�

De
nition ���� Given a type hierarchy� hT�vi� and a �nite set of features�
Feat� an appropriateness speci�cation is a partial function� Approp � Feat �
T �� T such that� for every f � Feat�

� �Feature Introduction� there is a type Intro�f� � T such that�

� Approp�f� Intro�f���� and

� for every t � T � if Approp�f� t��� then Intro�f� v t� and

� �Upward Closure � Right Monotonicity� if Approp�f� s�� and
s v t� then Approp�f� t�� and Approp�f� s� v Approp�f� t��

As mentioned above� we only expect signature speci�cations to specify ap�
propriateness only by declaring ��� where a feature is introduced� along with
its value restriction and ��� where a feature�s value restriction cannot be
inferred to be the least type that satis�es Upward Closure and
or Right
Monotonicity given its value restriction on supertypes	 Figure �	�� for exam�
ple� is Figure �	� with appropriateness declarations added	 f is appropriate
to a� for example� with value restriction� �	 Because f is appropriate to a�
it is also appropriate to b� c and e� although b re�nes the value restriction
to c	 b has two appropriate features because it also introduces g	 e has two
appropriate features by Upward Closure because h was introduced at d	

��� CHAPTER 	� SIGNATURE SPECIFICATIONS

d

c

e

a F: H: b

b

G:
F: c

Figure �	�� An example type signature	

F G H
� � � �
a � � �
b c � �
c � � �
d � � b
e � � �

Figure �	�� The value declaration matrix of Figure �	�	

In order to enforce this view of appropriateness conditions on P � we can
build a matrix over Q�P � for these declarations�

De
nition ����� Given a �nite set of types� P � a set of features� F � and
a set of appropriateness declarations D � F � P � P � where D is a partial
function� the value declaration matrix for D over F and P is a jP j � jF j
matrix� V � over Q�P �� in which Vi�j � u� if there exists a u � P such that
�fj� ti� u� � D� and Vi�j � � if there is no such u�

The uniqueness of u� when it exists� is guaranteed by the fact that D
is a partial function	 The value declaration matrix for Figure �	� is shown
in Figure �	�	 The entry for type d� feature h is b because h is declared as
appropriate to d with its value restricted to b	
Notice that � is being used here as a place�holder for pairs of type� t and

feature� f� for which f is not appropriate to t	 We use � rather than � so
that feature introduction �with a value restriction of � or greater� still re�
spects Right Monotonicity	 This trick has applications outside type signature
compilation to any task that requires a uniform view of type�feature pairs
or accessible feature paths while still respecting appropriateness conditions
with respect to uni�cation� since all features are e�ectively appropriate to all
types� albeit sometimes with � as the value	

	��� TYPE AND APPROPRIATENESS RESTRICTIONS ���

F G H
� � � �
a � � �
b c � �
c � � �
d � � b
e � � b

Figure �	��� The value restriction matrix of Figure �	�	

De
nition ����� The value restriction matrix of P is R � ST � V �

Pre�multiplying V by the transpose of S closes the appropriateness dec�
larations under subsumption	 Vi�j is thus something other than � i� feature
j is appropriate to type i	 The value restriction matrix of Figure �	� is shown
in Figure �	��	 Notice that the entry for type e� feature h is also b because
e inherits h from d	 Using the value restriction matrix� we can then express
the condition on unique feature introduction�

De
nition ����� � � P � f�g � f���g is the characteristic function for
P � such that�

��t� �

� if t � P �
� if t � �

Proposition ���� R satis�es the feature introduction restriction i� for all
i� there exists an intro�i�� such that ���RT

i � � Sintro�i��

� projects the elements of Q�P � back onto the trivial quasi�ring� accord�
ing to whether they belong to P 	 Feature introduction is satis�ed i�� after
component�wise projection� every column of R is the same as some row of S	
Rows of S encode types as the upward closed sets that they subsume	 The
columns of R have non�� values for the types to which a feature� f� is ap�
propriate� and we know that that set is upward�closed� having left�multiplied
by ST 	 If that set is one of the rows of S� then that row corresponds to a
minimal type� which is Intro�f�	
Along the way� we can also �nd those introducing types�

De
nition ����� The introduction matrix� I� of P is a jP j � jF j matrix in
which�

Ij�i �

Vj�i if j � intro�i��
� elsewhere

��� CHAPTER 	� SIGNATURE SPECIFICATIONS

F G H
� � � �
a � � �
b � � �
c � � �
d � � b
e � � �

Figure �	��� The introduction matrix of Figure �	�	

b

a

c

d

F: h

f gF:

F: f g

Figure �	��� A type signature with consistent value restrictions	

The introduction matrix for Figure �	� is given in Figure �	��	 The entry
for type b� feature f is � because� although b places a non�inferrable value
restriction on f� it does not introduce f	

���� Value Restriction Consistency

Because of Right Monotonicity� join�reducible types can not only multiply
inherit features� but also inherit value restrictions on the same feature from
two or more di�erent branches� and these must be consistent	 Figure �	��
shows an example of this	 Right Monotonicity from b and c requires f to
be appropriate to d with a value of both f and g	 In Figure �	��� this is
consistent the value of f at d must be of type h	 Without h� it would
not be consistent	 We can use value restriction matrices to express this
consistency check as well	

Proposition ���� The value restrictions of P are consistent i� there is no
i�j for which Ri�j � ��

� corresponds to inconsistency in the original signature	
The value declaration matrix for Figure �	�� is given in Figure �	��	 The

value restriction matrix of Figure �	�� is given in Figure �	��	 Without h�
the entry for d would have been �	

	��� TYPE AND APPROPRIATENESS RESTRICTIONS ���

F
� �
a �
b f
c g
d �
f �
g �
h �

Figure �	��� The value declaration matrix of Figure �	��	

F
� �
a �
b f
c g
d h
f �
g �
h �

Figure �	��� The value restriction matrix of Figure �	��	

��� CHAPTER 	� SIGNATURE SPECIFICATIONS

� a b c d f g h
� � � � � � � � �
a � � � � � � � �
b � � � � � � � �
c � � � � � � � �
d � � � � � � � �
f � � � � � � � �
g � � � � � � � �
h � � � � � � � �

Figure �	��� The convolution of Figure �	��	

���� Appropriateness Cycles

As seen in Chapter �� it is also often useful to require that all types have
a �nite most general satis�er� a �nite least informative feature structure of
that type that respects appropriateness conditions	 This means that appro�
priateness conditions may not conspire so as to require a feature structure of
type t to have a proper substructure of type either t or a subtype of t	This
kind of appropriateness cycle can very naturally be articulated using R	

De
nition ����� The convolution matrix� C� of R is a jP j � jP j matrix
over Q�P � such that Ci�j � � if there exists a k such that Ri�k � tj� and
Ci�j � � otherwise�

Proposition ���� P has an appropriateness cycle i� there exists an i such
that C�

i�i � �� where C
� is the �non�re�exive� transitive closure of C�

Ci�j � � means that type tj is accessible as a substructure by some
feature from structures of type ti	 By transitively closing C� we extend
that accessibility to �nite paths of features� and so can detect whether ti
is accessible from ti	 Because we convoluted C from R� which was upward
closed by left�multiplication with ST � we detect accessibility to subtypes of
ti as well	 The convolution of Figure �	�� is given in Figure �	�� �� and �
are used for readability�	 The entry for row b� column f is �� because f is
accessible from b along the feature f	 In this case� the transitive closure of
C is the same as C itself� because all types that occur as value restrictions
of features are atomic� i	e	� they have no features of their own	
In practice� this transitive closure can also be computed directly from R�

without explicitly constructing C	

	��� SUMMARY ���

���	 Join Preservation Condition

It can also be useful to check whether the join preservation condition is
observed	 This guarantees that a signature is statically typable� and� as seen
in Chapter �� can guarantee the existence of certain term encodings	
The �revised� de�nition of join preservation is repeated here	

De
nition ����� An appropriateness speci�cation is said to preserve joins
i�� for all features f � Feat� for all types s� t such that s t t��

Approp�f� s t t� �

�������
�������

Approp�f� s� t Approp�f� t� if Approp�f� s�� and
Approp�f� t��

Approp�f� s� if only Approp�f� s��
Approp�f� t� if only Approp�f� t��

unde�ned� or
Approp�f� Intro�f��

otherwise

Proposition ����� hP�v� F� Ai satis�es the join preservation condition i�
for all i� j for which Ji�j � �� and Ui�j � tk� Ri�tRj�t�ST I�k � Rk�

Viewed in terms of R� join preservation is a linear dependence condition
among consistent types recall that in Q�P �� t corresponds to the additive
operator	 In a join�preserving signature� joins cannot add new information to
the system� apart from introducing new features with the value restrictions
of their introducer	

�� Summary

This chapter presented a new closed�semi�ring construction over which all
type and feature restrictions inherent to signature speci�cations can be com�
puted and enforced	 Along the way� the mathematical foundations of closure
computations based on matrix multiplication have been clari�ed� as have the
consequences of those foundations on the choice of algorithms for e�ciently
computing those closures	 The induced closed�semi�ring construction also
has applicability for handling computations in feature logics for which it is
not the case that all features necessarily occur on all types� as it provides
a uniform set of feature paths up to any �nitely bounded length� that can
be used for transparent classi�cation or for indexing feature structures with
appropriateness� for example	

��� CHAPTER 	� SIGNATURE SPECIFICATIONS

The new construction can also serve as the basis for e�ciently precom�
piling type signature information	 What is needed now is the development
of e�cient sparse matrix multiplication methods that are particularly well�
suited to speci�cations of partial orders or upward closed relations on partial
orders� particularly one that allows for the e�cient upper�triangular decom�
position of matrices given in Section �	� for the case of computing subsump�
tion matrices	

Chapter

Practical Prolog Term

Encoding of Typed Feature

Structures

In Chapter �� it was observed that total well�typing plus unique feature in�
troduction allows us to encode typed feature structures as Prolog terms	 The
encoding given there was just a proof of existence� and certainly could not
be construed as a practical way of computing with typed feature structures
because of the potentially large term sizes� i	e	� arities� involved	 Both the
classical and generalized term encodings called for arities on the order of the
number of types plus the number of features	
Appropriateness also allows us to encode typed feature structures as Pro�

log terms more e�ciently	 As described in Chapter �� arity incrementation
and subtyping are the two major di�erences between typed feature structures
and Prolog terms	 They are also the two major sources of complexity when
encoding typed feature structures as Prolog terms	 This chapter presents
a collection of methods to address both sources by reducing the former to
a graph coloring problem� and by presenting for the latter what is� to the
author�s knowledge� the �rst method for �nding an optimal �at �rst�order�
term encoding of any �nite meet semi�lattice of types� and an approximate
solution that can be derived in cubic time in the number of types from a
transitively closed adjacency representation of the semi�lattice	 These are
presented in Sections �	� and �	�� respectively	 An empirical comparison of
these to previous work as well as other encodings that are available using
the extra functionality provided by the library�atts	 library of SICStus

���

��� CHAPTER �� PRACTICAL PROLOG TERM ENCODING

Prolog is also presented	
On a practical level� the value of Prolog term encoding stems from the

value of using Prolog itself	 Most systems based on typed feature structures
rely on a few standard means of search in order to solve problems in natural
language processing some subset of Prolog�like SLD resolution� parsing
and content�driven generation	 All of these have been extensively investi�
gated within Prolog� and� in the case of SLD resolution� current commercial
implementations of Prolog have bene�ted from a sixteen year history of op�
timizations to Warren Abstract Machine �WAM� compilers �A�!t�Ka�ci� ������
the standard for Prolog compilation	 There have been a few very WAM�like
abstract machines proposed directly for typed feature structures� e	g	� by
Wintner ������� Wintner and Francez ������ and Carpenter and Qu �������
implemented as described by Makino et al	 ������	 These inevitably rely on a
recapitulation of that history for their own optimization	 With the arguable
exception of the term uni�cation operation itself� any additional innovations
made in the course of their development are probably better applied to �Pro�
log� WAM optimization� given the nearly identical requirements of the two
communities and research programs	 Adhering to an implementation based
on Prolog term encodings also provides immediate access to the extended
functionality that commercial Prologs provide� including constraint solving
and constraint logic programming	 These are in great demand in all areas
of knowledge representation� including computational linguistics	 If it could
be achieved and achieved e�ciently enough� clearly a Prolog�term�encoding�
based implementation would be preferable� simply from the perspective of
rapid development and e�cient reuse of previous research	
The empirical results presented in this chapter suggest that the widely

presumed futility of this endeavor is not at all beyond question	 Relative
to the small number of realistic� large�scale grammars currently available
to the author� a Prolog�term�encoding�based implementation of a logic pro�
gramming language over typed feature structures has performed remarkably
well in comparison not only to the previous generation of non�term�encoding�
based Prolog meta�interpreters but even to the fastest of the current imple�
mentations based on customized abstract machines for feature structures	 It
stands to reason� of course� that customized abstract machines must be ca�
pable of better performance in the limit� given a su�ciently large supply of
political� �nancial and human resources	 With such application�oriented re�
search� however� the question really is not how much better it is� but whether
it was already good enough� and whether what remains to be achieved con�

���� SUBTYPING ���

stitutes a relevant research problem	 The admittedly contentious tenet of
the discussion in Section �	� is that the theoretically interesting problem of
�nding e�cient heuristics for near�optimal �at term encodings and better
non��at term encodings overall is more worthwhile at this stage	
The approach to arity incrementation presented here� however� would be

equally useful to custom�abstract�machine�based approaches� and the present
approach to subtyping essentially brings Prolog�based implementations in
line with the bit�vector encodings for type uni�cation used in many abstract
machines stemming from the in�uential paper �A�!t�Ka�ci et al	� ����� on that
subject	

��� Subtyping

To date� only two other systems have attempted to use Prolog encodings
of typed feature structures	 The algorithm used in both produces tree�
encodings� as discussed in Section �	�	�� and was actually designed �Mellish�
����� as a general encoding algorithm for systemic networks	 All systemic
networks are tree�encodable because the �multiple inheritance that they
e�ectively provide is always a full product of two or more sub�networks	
ProFIT �Erbach� ����� ����� ����� �rst adapted this encoding to a very re�
stricted subset of �nite type hierarchies expressed in a more traditional ISA�
link form	 The ALEP system �Simpkins and Groenendijk� ����� essentially
carried over the same encoding for its typed�feature�structure�like records
from ProFIT	
Mellish�s ������ encoding exploits the restricted inheritance provided by

systemic networks to tree�encode them� and therefore cannot handle all ��
nite BCPOs	 ProFIT dealt with this limitation simply by restricting its
multiple inheritance to exclude all of the counter�examples	 The result is
multi�dimensional inheritance� which was introduced in Section �	�	�	 Mel�
lish�s encoding works for all type hierarchies de�ned by multi�dimensional
inheritance	
The development of �at�term encodings pursued here attempts to im�

prove on tree encodings in terms of both coverage and speed	 With regard
to coverage� it has already been observed that �at�term encodings can han�
dle arbitrary �nite BCPOs �Section �	�	��	 With regard to speed� there is
also some reason to suspect that �at�term encodings might be superior to
tree�term encodings	 Flat�term encodings� of course� are �at� i	e	� their sub�

��� CHAPTER �� PRACTICAL PROLOG TERM ENCODING

structures are all reachable from the root by a path of length at most �	
Because �rst�order terms are of �xed arities� uni�cation of a variable with
a �at term can be compiled into a primitive recursive loop that compilers
can statically unwind	 Uni�cation of nested compound terms� however� typ�
ically involves some amount of pointer chasing on the heap before the actual
addresses can be passed to the uni�er	
Thus� with all other things being equal� �broader beats deeper� i	e	� two

�at terms with n arguments can be uni�ed more quickly than two terms of
arity one� with subterms nested n levels deep	 All other things are not equal�
of course	 In particular� tree encodings allow for smaller encodings of more
general types� i	e	� types that are closer to the root of the �tree	 A tree
encoding of a �nite type hierarchy has terms whose depths are bounded by
the maximum length of any subtype chain in the hierarchy� although with
�limited� multiple or multi�dimensional inheritance� more than one path of
that depth may be created� and in the case of true multiple inheritance
�in the cases where the encoding works�� some duplication of structure may
be necessary at the ends of the paths	 Flat�term encodings do not require
redundant structure� but� in the best case� have arities equal to the length
of the maximum subtype chain in the hierarchy multiple inheritance can
force it to be wider	 As a result� in cases where both are applicable� it is a
strictly empirical question as to whether the speed�up from �atness outweighs
the fact that very general types in a tree encoding have smaller term sizes	
Colmerauer�s method� introduced in Section �	�	�� is a �at�term encoding	

In the context of its original usage� namely systemic networks� the number
of possible assignments of properties is� in the worst case� exponential in the
number of properties in the systemic network� as is thus the arity	 As a
result� this method is not practical for encoding systemic networks it can
yield terms with exponentially large arities	
Fall ������ p	 ��� observed that Colmerauer�s method could be used for

uni�cation�preserving encodings of arbitrary �nite ordered sets� but mistak�
enly assumed that the method yielded exponential�sized terms for that task
as well	 It is exponential for systemic networks because systemic networks
can� in some cases� provide exponentially compact encodings of possible as�
signments	 For the case of an enumerated set of assignments� the method
yields linear�sized terms	 Colmerauer� in fact� had originally used his method
for computing arbitrary set intersections	 ProFIT used this encoding in the
same spirit for �nite domains� essentially distinguished �at �nite type hier�
archies with no appropriate features� but not for its type hierarchies	 We

���� SUBTYPING ���

subst

adj

minusplus

bool

nom

case

acc

head

noun
CASE: case

PRD: bool
MOD: bool

Figure �	�� A sample tree�encodable type signature	

lax¢ral lax¢ering central¢ering

centeringcentrallax

Figure �	�� A type hierarchy with no tree encoding	

now consider a method that makes optimal use of Colmerauer�s method with
meet semi�lattices� a sub�case of ordered sets	

����� Modules

The �rst observation we can make is that meet semi�lattices can be decom�
posed into modules� pieces whose types can never unify�

De
nition ���� Given a �nite type hierarchy� hP�vi� the set of modules of
hP�vi is the �nest partition of Pnf�g� M�� � � �Mm� such that�

	� each Mi is upward�closed �w�r�t subsumption�� and

� if ti and tj are uni�able� then they belong to the same module

Figure �	�� for example� has three modules� one each rooted at case� bool� and
head	 In general� a module might not have a unique least type	 Figure �	� has
one module� for example	 Modularizing in this fashion can be performed as
the �rst step to any encoding strategy� because the modules can be encoded
separately	 The de�nition of module above can be generalized in order to
develop hybrid tree�based
 �at�term�based encodings as well� although this
will not be considered further here	

��� CHAPTER �� PRACTICAL PROLOG TERM ENCODING

����� Method � Colmerauer�s method for meet semi�
lattices

Without loss of generality� we can now consider only �nite type hierarchies
that have one module with no least type	 As in a tree encoding� � can be
represented by a Prolog variable� and if there is a least type in a module� then
it can be represented by a term with a unique variable in every argument�
i	e	� the most general term of that functor and arity	

Proposition ���� The meet irreducible types of a �nite type hierarchy are
precisely the maximally speci�c types and the types with one immediate sub�
type�

Proposition ���� Every �nite type hierarchy has a �at�term encoding with
an arity equal to the number of meet irreducible types plus 	�

Proof� Use Colmerauer�s method on the set of meet irreducible types	� Every
type in the meet semi�lattice can be represented by the set of meet irreducible
types that it subsumes	 Maximally speci�c types only unify with themselves	
All other types can then be characterized by the maximally speci�c types that
they subsume except the types with one immediate subtype� which would be
characterized by the same maximally speci�c subtypes as that immediate
subtype	 Those types are meet irreducible as well� however� and so are
distinguished by their own occurrence in the representation	

One of the algorithms in A�!t�Ka�ci et al	� ���� achieves essentially the
same encoding� but for bit vectors	 Finding the set of meet irreducible types
takes at most cubic time the time it takes to test all u and v for meets
given a transitively closed adjacency representation of subsumption	
This method yields an optimal encoding in the sense that no encoding

that uses Colmerauer�s method can result in terms with a smaller arity than
the number of meet irreducible types plus � �Fall� �����	 Arity is the relevant
measure since extra argument constants in the encoding come comparatively
cheaply� and multiple occurrences of individual variables do not make uni�
�cation slower	 In general� however� this method does not yield an optimal
�at�term encoding overall	 Figure �	� shows a binary tree module� which has
no join reducible types	 No binary trees have types with only one immediate

�The reader may also recall the discussion at the end of Section ��� in this context� An
appeal is made there to the same reasoning� but in the context of bit�vector encodings�

���� SUBTYPING ���

b

a

d g

c

a(c,g)a(b,d)

a(b,_) a(c,_)

a(_,_)

a(b,e) a(c,f)e f

Figure �	�� A binary tree and its optimal �at�term encoding	

subtype� so the number of meet irreducible elements is the number of max�
imally speci�c types� or half the total number of types	 It can be proven�
however� that the �at�term encoding of smallest arity for a binary tree� in
fact for any module without join reducible types� is equal to the length of
its longest subtype chain� which for binary trees� is equal to the logarithm of
the total number of types	 That encoding is shown in Figure �	�	
What is the smallest arity required for arbitrary meet semi�lattices�

����� Method � Parametrized Search for an Optimal

Encoding

A �at�term encoding is constructed from a choice of functor for the term
�which is irrelevant� provided every module has one unique functor�� a choice
of arity of the term� and a choice of constants to instantiate some of the
arguments of the term	
The set of �rst�order terms can be characterized as a meet semi�lattice

in its own right� called the lattice of Generalized Atomic Formulae �GAF �
Reynolds� �����	 We only need the sublattice of �at terms� GAF�� and for a
given module� only those �at terms of the same principal functor �which can
remain implicit� and arity� a� with argument constants� � through some k�
GAF a

��k	 This is �nite	 Subsumption in this sublattice should be familiar to
anyone who has used Prolog in GAF �

���� for example f� � � is the most gen�
eral term� f� � �� vGAF f��� �� and f��� ��� f��� � vGAF f��� �� and f��� ���
and the term with the same variable in both positions� f�X�X�� subsumes
terms with the same constant in those positions� i	e	� f��� �� and f��� ��	�

The fact that every �nite meet semi�lattice has a Colmerauer�style encod�
ing means that our choice of arity in a �at�term encoding never needs to be
greater than the number of meet irreducible types of a module plus �	 There
are other constraints on arity that can be proven as well�

�We will not consider terms f�X�Y with X �� Y � although Prologs with inequations
would allow us to use these in encodings as well�

��� CHAPTER �� PRACTICAL PROLOG TERM ENCODING

De
nition ���� Given �nite type hierarchy� hP�vi and type t � P � the
information level of t� �P �t�� is the length of the longest subtype chain from
� to t�

This is exactly the same function de�ned as path length earlier �De�ni�
tion �	��� where it was used to guide inductive proofs on well�founded type
hierarchies	 Here� more attention will be paid to its actual value relative to
other types in the same hierarchy	
We can implicitly order our types into a sequence ti� such that if i � j

then �P �ti� � �P �tj�� with � as t�	 This is equivalent to topologically sorting
the type hierarchy as a directed acyclic graph	 We can also extend � to
�at�term encodings� thinking of them as meet semi�lattices� GAF a

��k	

Proposition ���� Let �P be a �at�term encoding of P and �t be the term
corresponding to t � P in �P � Then�

	� For any t� �
P ��t� �P �t��

� If �t�t�t� � �t�� then �
P ��t�� � �
P ��t��"�
P ��t����
P ��t�u�t�� � �
P ��t��"�
P ��t���

�� For any t� its supertype branching factor ��t� � �� �P �
t� � ��

The arity of the terms in a module�s encoding must be constant� so ���
implies that that the arity of the term encoding must be at least as large
as the length of the longest subtype chain in P � since the type at the end
of that chain must be encoded by a term of at least that arity	 This lower
bound can always be attained if there are no join reducible types simply by
using a tree encoding	 ��� says that the ��value of the result of uni�cation
in a uni�cation�preserving encoding cannot exceed the sum of its operands�
��values since we are not requiring our encodings to be meet�preserving�
we might not know the value of �
P ��t� u �t��	 This means that a join reducible
type can� in general� force an encoding to have greater arity to allow for
higher ��values of its two supertypes so that there will be enough �room for
their join	 ��� essentially documents the same e�ect as a result of the bound
on the number of terms that can possibly subsume a Prolog term of a given
arity	 Not every Prolog term can attain that bound� however only those
that have the same constant in every position� e	g	� f��� �� � � � � ��	
The practical consequence of ��� is that in Figure �	�� as the parameter

d increases� the size of the encoding must increase linearly	 The practical
consequence of ��� is that in Figure �	�� as the parameter x increases� the

���� SUBTYPING ���

td

			

t�

t�

�

Figure �	�� A type hierarchy whose �at term encoding grows linearly with d	

t�

t� t� � � � tx

�

Figure �	�� A type hierarchy whose �at term encoding grows logarithmically
with x	

size of the encoding must increase logarithmically	
The choice of constants for instantiation of arguments is also bounded as

a function of arity�

Proposition ���� In a �nite type hierarchy� P � if there is a �at�term en�
coding of arity a� there is a �at�term encoding of arity a that uses no more
than a �max�P � constants� where max �P � is the number of maximally speci�c
types in P �

Proof� Because �at�term encodings preserve uni�cation� they also preserve
subsumption� so a constant used in any term is re�ected in the same argument
position of the encoding of some maximally speci�c type	 There are a �
max�P � such positions	 Of course� a Colmerauer�style encoding only uses
two constants� � and �	

The net result of these constraints is that there is a �nite space of pa�
rameters arity and number of constants through which we can search
for an optimal encoding� provided that we have a uniform representation of
encodings through which to search	 That representation can be achieved by
looking at the subsumption matrices of the algebras we are trying to en�
code� as seen in Chapter �� and relating it to the Prolog terms eligible to

��� CHAPTER �� PRACTICAL PROLOG TERM ENCODING

lax$ lax$ cl$
� lax cl cng cl cng cng

� � � � � � � �
lax � � � � � � �
cl � � � � � � �
cng � � � � � � �

lax$cl � � � � � � �
lax$cng � � � � � � �
cl$cng � � � � � � �

Figure �	�� The subsumption matrix for Figure �	�	

participate in our encodings	 A subsumption matrix uniquely characterizes
a �nite meet semi�lattice�s behavior with respect to uni�cation� since joins
are completely determined by subsumption	 In fact� as observed by A�!t�Ka�ci
et al	 ������� each ith row can be used as an encoding of the type ti� with
uni�cation corresponding to component�wise AND	 The subsumption matrix
of Figure �	� is shown in Figure �	�	

For a �xed a and k� GAF a
��k has a �xed subsumption matrix	 With this

view of �nite meet semi�lattices� �nding a �at�term encoding of one with
a subsumption matrix S amounts to �nding the right rows and columns
of a GAF lattice that will behave like S	 In the following� it is assumed
that both are top�smashed� to give a logical point of reference to failure�
as in Chapter �� and that the rows and columns of subsumption matrices
are topologically sorted �as is standard� so that the matrices will appear in
upper�triangular form��

Proposition ���� Every �at�term encoding of a �nite type hierarchy with
subsumption matrix� S� uniquely corresponds to a selection matrix� X� such
that�

	� X � GAF a
��k �X

T � S� for some arity� a� some maximum constant� k�
and

� XjSj�jGAFa
��kj
� ��

An optimal �at�term encoding is one with the least arity a for which such an
X exists�

���� SUBTYPING ���

The fact that we are using selection matrices matrices with exactly one
� in any row and no more than one � in any column� means that we satisfy the
injectivity condition of Mellish ������ �see Section �	�	�� this dissertation�	
The �rst condition given here means that it satis�es Mellish�s homomorphism
condition the terms corresponding to the rows and columns in GAF a

��k

preserve uni�cation because they have the same subsumption matrix	 The
second condition is necessary to ensure Mellish�s zero�preservation condition
 since � is last in the topological ordering� it means that �� or failure� in
one domain corresponds to failure in the other	 We want Prolog uni�cation
to fail when uni�cation in P fails	

We can thus reduce the search for an encoding to a search for a selec�
tion matrix over a �nite space of parameters� arity� ranging from � to the
number of meet irreducible types� and number of constants� ranging from �
to a � max�P �	 S is no ordinary matrix� furthermore	 If we break it into
submatrices Ai�j for rows of types with �P � i and columns of types with
�P � j� then for all i� j� Ai�i is an identity matrix� and Ai�j is a zero matrix
when i � j	 Due to the constraints mentioned above� we can consider the
problem� to a great extent� independently by information level when solving
for X	

The complexity of the general problem is still open� but it is quite likely
to be NP�complete	 Fall ������ pp	 ��%��� proved that �nding an optimal
join�incompatible partition� of an ordered set of elements is NP�complete	 He
observes that this can be used to construct a logical term encoding� in which
there are no shared variables and every term has a constant in exactly one
position	 Such an encoding is not guaranteed to be zero�preserving� however�
and because it is the kind of term encoding that is being restricted �rather
than� for example� the kind of ordered set�� it cannot straightforwardly be
extended to a complexity result for the general problem� even in the absence
of zero�preservation	 The encoding problem without shared variables also
bears a resemblance to the problem of �nding a minimal intersection graph
basis �Garey and Johnson� ����� p	 ���� Kou et al	� ������ in which bit vectors
of a certain arity are allocated to the nodes of a graph rather than vectors
�terms� of constants and variables	

�In the terminology of Fall �����
� it is the optimal meet�incompatible partition prob�
lem�

��� CHAPTER �� PRACTICAL PROLOG TERM ENCODING

��� Features

Once we add features� we need to accommodate their values in the encoding�
including possibly circular structures� which reduce straightforwardly to cir�
cular Prolog terms	 As mentioned in Chapter �� Prolog term uni�cation� by
de�nition� cannot handle non�statically typable signatures� so it only makes
sense to focus on signatures that satisfy the join preservation condition	 It
is� however� possible to implement the non�statically typable ones using the
functionality of an enhanced Prolog such as SICStus Prolog�s attributed vari�
ables library �Holzbaur� ����� ������ library�atts	� which allows for hooks
to uni�cation	 Attributed variables� in fact� look a great deal like untyped
feature structures with no appropriateness	 A few encodings based on that
correspondence in the statically typable case are evaluated below	
Tree�based encodings can add extra arguments at subterms where features

are introduced	 An example typed feature structure of type noun� from Fig�
ure �	�� might be encoded as head�subst�noun�case�nom		
plus
plus		�
where the two plus values are for the prd and mod features introduced by
head� and case�nom	� the encoding of the type nom� is for the value of case�
which is introduced by noun	 The logic of Carpenter ������ allows subtypes
to re�ne the value restrictions on features introduced by their supertypes�
and for feature introduction at joins	 ProFIT�s declaration language� multi�
dimensional inheritance� allows for neither of these� but a tree encoding is
compatible with them� in principle	
An alternative is to encode all of the feature values of a module as ex�

tra arguments at the top level of the subtype encoding	 This again appeals
to the wisdom� �broader beats deeper� particularly since feature values are
themselves encoded typed feature structures	 It has the additional advantage
that binding a variable to a feature value� another very common operation�
can in many cases be compiled out to a very e�cient arg�� call in Prolog
run�time code� where the tree�based encoding would require a more expen�
sive term traversal	 It also has the same empirical caveat as with subtype
encoding� that empirical domains that make reference to a large number of
typed feature structures with types more general than types that introduce
features may still perform better with the tree encoding� because they avoid
the extra unused feature positions	 Tree encodings of feature structures of
types subst or head in Figure �	� do not need to carry an argument position
for the value of case� for example	
How many extra argument positions do we need for features in a module�s

���� EVALUATION ���

encoding� The naive answer is the number of features introduced in that
module	 It is possible to do better�

De
nition ���� The feature graph� G�M� of module M � is an undirected
graph whose vertices correspond to the features introduced inM � and in which
there is an edge� �F�G�� i� F and G are appropriate to a common type in
M �

Proposition ��	� The least number of argument positions required for the
features ofM in a �at encoding is the least N for which G�M� is N�colorable�

The positions correspond to the colors	 This is related to using graph coloring
for register allocation in compiler design	 In Figure �	�� the features prd�
mod� and case form a graph that is at best ��colorable� because they are
all appropriate to the common type� noun	

��� Evaluation

The alternatives presented here have been evaluated on the task of tabulation�
based parsing with two English grammars over corpora that were automat�
ically generated with skeletal context�free grammars over the same lexicon	
Measurements were made on a dual�����MHz SPARC Ultra ��� with ���
MB of RAM running the Solaris �	� operating system	
Except where noted� all of the encodings were implemented as modi��

cations of the Attribute Logic Engine �ALE� Carpenter and Penn� �����	
ALE is a logic programming language based on the logic of typed feature
structures	 With the exception of using typed feature structure arguments
instead of �rst�order terms� its relational language is nearly identical to
Prolog	 It also has a built�in bottom�up chart parser� driven by extended
feature�structure�based phrase�structure rules� which was used in the bench�
marks as well	 Both the ALE compiler and run�time system themselves are
written in Prolog	 The ALE compiler generates Prolog code which is then
compiled further by a Prolog compiler	 The ALE compiler� including the
encoding algorithms� can thus be viewed as a preprocessing step much like
the one found in the standard Prolog term�expansion mechanism	 The ver�
sion of Prolog used in these experiments was the SICStus Prolog �	�	� native
code compiler	 ALE�s relations are extra�logical �with negation treated as
negation�by�failure as in Prolog� so a generalized term encoding must be

��� CHAPTER �� PRACTICAL PROLOG TERM ENCODING

used	 The most thorough� although rather biased survey of other program�
ming languages and parsing systems based on typed feature structures can
be found in Bolc et al	� ����	
The �rst comparison� on which Figure �	� is based� is a Head�driven

Phrase Structure grammar �HPSG� distributed with the ALE system� some�
times called �naive HPSG	 It is a very straightforward� unoptimized encod�
ing of the �rst �ve chapters of Pollard and Sag� ����� and a common bench�
mark for logic programming with typed feature structures	 It uses almost
every piece of functionality that ALE o�ers� and massively overgenerates
semantic representations because of Pollard�s and Sag�s ������ treatment of
quanti�er scope� making it very easy to �nd computationally intensive parses
in a test corpus	
The naive HPSG grammar has ��� types and �� features� which decom�

pose into a large number of small modules� each having at worst ��colorable
feature graphs	 All modules but two are free of join reducible types� which
means that they are optimally tree�encodable� but the two� lists and sets�
are heavily used within the grammar	 The corpus on which it was tested
consists of ������ sentences� of which ������ are grammatical� i	e	� parsing
succeeds	 The size of the substring tables for each sentence �a rough mea�
sure of complexity� ranges from �� to ����� edges	 Sentence lengths range
from � to �� words� and the sentences are presented in in ascending order
by parse time using the last �and thus fastest� encoding alternative shown	
For ease of presentation� all of the results have been smoothed by a moving
average with a window of ��� sentences	 The top alternative depicted is the
performance of a naive encoding of typed feature structures based on the
SICStus Prolog attributed variables library� where the type is represented as
the value of an extra feature de�ned on every structure	 The second uses
the same library but with one attribute for every �color of feature as de�
scribed above� rather than for every feature	 This takes advantage of the
high modularity of the grammar	 The third uses undocumented SICStus in�
ternal predicates to manipulate those attributes directly in order to exploit
the existence of appropriateness conditions	 The fourth is not a proper Pro�
log encoding it uses a Prolog data structure that must be dereferenced
before uni�cation	 This data structure is the one found in ALE �	�� the most
recent public release of the ALE system	 Both the third and the fourth use
the exact feature arity of every type for its representation� so no coloring is
needed	 For non�statically typable modules� these two are the best alterna�
tives available	 The advantage of the third is that it can be used together

���� EVALUATION ���

with Prolog�term�encoded static modules because of the availability of the
verify attributes�� uni�cation hook for attributed variables	
The last three are proper Prolog term encodings as elaborated upon here	

The �fth was obtained from ProFIT �	�� with its tree encoding method
the list and set modules are tree encodable	 ProFIT comes with a port of
the naive HPSG grammar that strips out polymorphic lists so that Prolog
lists can be used at the abstract�machine level	 As a result� it operates at a
signi�cant advantage	 The last two alternatives use an optimal tree encoding
on modules with no join reducible types	 These are so easy to detect and
the encoding is so quickly derived that no other choice makes sense	 The
sixth was obtained using the approximate method presented in Section �	�	�
on the two other modules� but without feature graph coloring	 The seventh
uses the optimal method presented in Section �	�	� with feature coloring	 The
sixth and seventh bound the performance of the four possible permutations
of encoding method with feature coloring� and� as can be seen� it makes
very little di�erence	 For this grammar� a simple� completely polynomial
approximation with Colmerauer�s method is worthwhile� and both are even
slightly faster than pure tree encoding with no polymorphic lists	
Memory consumption ranged from �� MB� by the optimal term encoding

method plus feature coloring� to ��� MB� by the alternative that makes direct
use of SICStus attributes	 SICStus Prolog occupies �	� MB itself� between
�	� MB and �	� MB once the respective versions of the feature structure
compilation and run�time parsing code have been compiled� between �	� MB
and �� MB after the HPSG grammar has been compiled� and approximately
�� MB after the corpus has been loaded	
The second grammar �Figure �	�� is a categorial grammar from Bell Lab�

oratories encoded in typed feature logic� designed to have similar coverage to
the naive HPSG grammar� while avoiding recursive types� having taken the
lessons of Chapter � to heart	 Its signature is also an example of one that is
not tree�encodable� which means that ProFIT could not be tested on it	 It has
a total of ��� types and �� features	 It has only �ve modules� however� with
the largest containing ��� of the types� including �� meet irreducible types�
but having an optimal encoding of arity � in fact� there is only one join re�
ducible type in it	 Another module has �� of the features� with a ��colorable
feature graph	 This grammar�s corpus consists of ������� sentences� of which
������ are grammatical� with sentence lengths ranging from � to �� words�
and substring table sizes ranging from �� to ����� edges	 The sentences are
again presented in ascending order by parse time with optimal encoding plus

��� CHAPTER �� PRACTICAL PROLOG TERM ENCODING

100

1000

10000

0 10000 20000 30000 40000 50000 60000

T
im

e

(m
se

c)

Sentence Number

(a)

(b)

(c)

(d)

(e)

(f)
(g)

(a) library(atts)
(b) lib(atts) + feat. coloring
(c) atts direct
(d) dereferencing
(e) tree encoding
(f) colmerauer
(g) optimal + feat. coloring

Figure �	�� Evaluation on the ALE HPSG grammar	

feature coloring	 A moving average was again used for smoothing� but with
a window of ���� sentences	 In this grammar� optimal type encoding is of
much greater signi�cance even the direct use of SICStus attributes and
the dereferencing method of ALE �	� are better than Colmerauer�s method
here	 Colmerauer�s method failed to allocate enough memory after ������
sentences� in fact� because the term encodings were too large	 Colmerauer�s
method plus feature coloring failed after ������ sentences� and optimal term
encoding �without feature coloring� failed after ������ sentences	

Memory consumption ranged from ��� MB by the direct use of SICStus
attributes to over ��� MB �the maximum amount that SICStus Prolog�s tag�
pointer indexing scheme can allocate� on those alternatives that failed to
complete the test suite	 The largest memory consumption by an alternative
to complete the test suite was ��� MB� by optimal encoding plus feature
coloring	 SICStus Prolog plus the feature structure compilation� run�time
parsing code and the compiled Bell Labs grammar occupies between �	� MB

���� EVALUATION ���

100

1000

10000

10000 20000 30000 40000 50000 60000 70000

T
im

e

 (

m
se

c)

Sentence Number

(a)

(b)

(f)

(h)
(c)
(d)

(i) (g)

(a) library(atts)
(b) lib(atts) + feat. coloring
(f) colmerauer
(h) colmerauer + feat. coloring
(c) atts direct
(d) dereferencing
(i) optimal
(g) optimal + feat. coloring

Figure �	�� Evaluation on the Bell Labs Categorial Grammar	

and �� MB� and after the corpus has been loaded� between �� MB and ��
MB	

Among large scale sentences that can be parsed both by the Bell Labs
grammar and naive HPSG� the Bell Labs grammar is approximately ���
times faster than naive HPSG on large�scale ����� or more edges� parses	
Combined with optimal term encoding� the improved static analysis nec�
essary for term encoding �which is included in all of the alternatives mea�
sured above�� and better indexing for parsing� its performance is slightly over
������� times faster than naive HPSG running on ALE �	�� the version of
ALE that served as the starting point for this study	

The question also arises how any Prolog term encoding might compare
with a logic programming language whose abstract machine was designed
speci�cally for typed feature structures	 The �rst abstract machine archi�
tecture proposed for an attribute�value logic was described in A�!t�Ka�ci and
Di Cosmo� ����� although the variant of attribute�value logic assumed there

��� CHAPTER �� PRACTICAL PROLOG TERM ENCODING

allowed for in�nite�branching terms	
Several such architectures have also been proposed for fragments of ALE�

beginning with that of Wintner and Francez ������� which did not support
disjunctive descriptions nor non�statically typable signatures� and whose im�
plementation� AMALIA �Wintner� ������ did not include Prolog�style SLD
resolution over relational predicates only bottom�up parsing	 Carpen�
ter and Qu ������ proposed one that does handle disjunctive descriptions
and non�statically typable signatures	 Its implementation� LiLFeS �Makino
et al	� ����� includes true SLD resolution� having combined it with a feature�
structure�based re�implementation of Aquarius Prolog based on the Berkeley
Abstract Machine �Van Roy� �����	 There is� in fact� a small cottage industry
of abstract machines for feature�structure�based natural language processing
now� largely due to the in�uence of these two original ones� abetted by care�
less� inaccurate benchmarking that exaggerated their improvement relative to
Prolog�based systems such as ALE and ProFIT	 That includes� for example�
ignoring that di�erent parsing algorithms and
or chart�indexing strategies
were used� using very small test corpora �often fewer than �� sentences� and
using test sentences of such very small complexities that the initialization
routines are more computationally signi�cant than the parsing routine itself	
Because the naive HPSG grammar makes heavy use of SLD resolution� it

cannot be tested on AMALIA	 The naive HPSG grammar has been ported to
LiLFeS� however� and a comparison between LiLFeS �	�� compact code and
the hybrid Colmerauer
optimal encoding from above in ALE on naive HPSG
is presented in Figure �	�	 There is also a LiLFeS native code compiler for
Pentium processors� which could not be tested at the time that these tests
were made	 Obtaining a large number of execution times in LiLFeS is not
quite as simple� so a smaller corpus was used� consisting of eleven classes
of approximately twenty parses each� distributed evenly across the range of
parsing complexities found in the larger corpus above	
For the purposes of the comparison� ALE�s parser was rewritten� so that it

is exactly like the one distributed with LiLFeS for its port of naive HPSG	 The
LiLFeS port is actually a port of the ProFIT port of the naive HPSG gram�
mar� so it too operates at an advantage because of the absence of polymorphic
lists	 At the closest separation� ALE running on SICStus compact code is �	�
times faster� with LiLFeS�s performance slowly degrading to slightly over ��
times slower	 The eleventh test class resulted in a memory allocation failure
on LiLFeS because the computer would not allocate over ��� MB of mem�
ory at run�time to the process	 In fact� when ProFIT uses the same parsing

���� EVALUATION ���

.1

1

10

2 4 6 8 10

T
im

e

 (

se
c)

Sentence Number

malloc
failureALE HPSG parse times

LiLFeS
ALE/SICStus compact

ALE/SICStus native

Figure �	�� Comparison of LiLFeS and the ALE Colmerauer
optimal encod�
ing on naive HPSG	

algorithm� even ProFIT is slightly faster than LiLFeS	

This test� of course� involves a number of di�erent components� parsing�
SLD resolution� tabulation of asserted predicates �the parsing algorithm was
again a bottom�up chart parser� as well as uni�cation	 For a more controlled
test of SLD resolution� LiLFeS was compared to ALE running on SICStus
Prolog on the naive reverse benchmark� in which a non�polymorphic list
�encoded as typed feature structures� of �� elements is reversed without an
accumulator ������ times	 This is a standard benchmark of speed on Prolog�
like systems	 Table �	� shows the results	 ALE running on compact code
operates slightly faster� with almost a factor of �� smaller memory usage	 If
lists are declared to be extensional� which allows ALE to use Prolog lists to
encode ALE list�typed feature structures in a manner similar to the internal
encoding used in LiLFeS� then ALE compact code is over �� times faster	

LiLFeS�s slower performance is mostly due to the fact that SICStus�s

��� CHAPTER �� PRACTICAL PROLOG TERM ENCODING

System Time LIPS� Image Size

LiLFeS compact ��	��s ������� ��M
ALE
SICStus compact ��	��s ������� �	�M
ALE
SICStus native ��	��s ������� �	�M

ALE
SICStus compact
 list cells �	��s ��������� �	�M
ALE
SICStus native
 list cells �	��s ���������� �	�M

Table �	�� Comparison of LiLFeS and ALE on the nrev��x��K benchmark	

memory management and predicate compilation are simply much better	
On the other hand� this is one of the main reasons for using a Prolog�based
implementation to begin with� avoiding redundant problem�solving and uti�
lizing the last sixteen years� worth of research on optimizing the Warren
Abstract Machine	 ALE�s only challenge was to �nd an encoding of typed
feature structures that allowed for maximal transparency and minimal term
size	 That challenge was met through a proper understanding of the algebraic
structure induced by attributed type signatures	

��� Summary

Two methods have been presented to encode statically typable type signa�
tures as �at Prolog terms� which provide an improvement in speed over other
general representation methods� including abstract�machine�based ones� and
a competitive performance with tree encoding� in addition to its more general
applicability	 A few of the results� such as the graph�coloring reduction and
the selection matrix reduction� are independently of theoretical interest	
What remains now is to �nd heuristic methods that� for linguistically

prevalent type signatures� can constrain the compile�time parametric search
for optimal �at�term type encodings� and hybrids of the encoding strategies
considered here that can provide the best performance to the empirically
realistic processing needs of the knowledge representation and computational
linguistics communities	

�logical inferences per second�

Chapter �

Conclusion

This dissertation presents formal de�nitions of signature subsumption and
equivalence that have several applications to understanding� extending� and
computing with the logic of typed feature structures	 In the process� a bet�
ter abstraction of join�preserving encodings was formulated that encompasses
the classical de�nition as a special case	 The di�erence between the two ab�
stractions was critical in �nding a Prolog term encoding of statically typable
attributed type signatures that is robust enough to be used with an extra�
logical relational extension �which is arguably required to be useful at all�	

The view of logic programming with typed feature structures that one
can assemble from the results presented here is that it is a task that can be
decomposed into essentially three areas that have already been well�studied�
logic programming with Prolog terms� �sparse� matrix multiplication� and
various graph�theoretic algorithms� such as the graph coloring reduction of
minimum feature position allocation	 That reduction has been shown to yield
a signi�cant improvement in both coverage and speed on the two grammars
it was tested with when compared to other Prolog and customized�abstract�
machine�based approaches	

The areas of immediate interest for future research in light of the results
presented here seem to be mostly practical	 One is the further development
of the view of encoding as a matrix multiplication problem	 The optimal
�at�term encoding problem still requires the discovery of a better class of
polynomial�time heuristic methods	 Matrices also lie at the heart of the view
of signature speci�cations presented in Chapter �� which also requires further
development� particularly of sparse algorithms that can exploit the proper
algebraic structure of closed semi�rings	

���

��� CHAPTER �� CONCLUSION

By far the most compelling open problem suggested by the work pre�
sented here is the use of statistical methods to optimize term encodings	
A practical encoding algorithm would weigh the importance of assigning a
more terse or �atter term to individual types by the likelihood that those
types will be encountered by a uni�cation algorithm in the course of its
use on typical input	 An optimal encoding� given these weights� may actu�
ally assign larger term encodings to some types than the method presented
here� but with an overall gain in e�ciency because those types are only
rarely encountered	 Preliminary empirical attempts date back to the work
of Sch�oter ������� who proposed to reorder the arguments of a Prolog term
encoding based on the likelihood that uni�cation of those arguments would
fail	 Speci�cally� the arguments should be re�ordered from left�to�right in de�
creasing order of the probability of failure� because this is the order in which
Prolog conventionally uni�es its arguments	 Those probabilities� however�
were estimated by a structural analysis of the signature� in which types with
more join�incompatible subtypes were assumed to be more likely to cause a
uni�cation failure than types with fewer	 Empirically� the probabilities can
deviate signi�cantly from that estimate to the extent of preferring the ex�
act opposite ordering	 A properly empirical estimation of these probabilities
was attempted in the context of a more general consideration of optimizing
don�t�care�non�determinism by Penn �����b�	 Of course� the structure of at�
tributed type signatures is now well�enough understood that it makes sense
to begin to apply statistical methods to the general encoding problem more
globally than by simply reordering arguments� as well as to other problems
such as indexing which can play a very important role in the e�ciency of
large�scale logic programming or parsing systems	
On the more theoretical side� the expressive power of parametric type

signatures have still not been adequately characterized with respect to non�
parametric signatures in terms of true signature equivalence� although the
more practical weak equivalence in the form of symmetric subsumption has
been addressed here	 A more �ne�grained analysis of the equivalences that
must certainly exist between bounded unfoldings of recursive features �whose
unfolding was simply written o� here as being in�nite and therefore impossi�
ble� is de�nitely in order	 In all likelihood� there is a more elegant category�
theoretic treatment of signature equivalence and subsumption that would
perhaps shed more light on parametric types as well as the other equivalences
treated here in a more classical fashion	 One can cite Moshier� ����a�b as an
initial step in this direction	

Bibliography

N	 Ach	 Determining tendencies� awareness	 In D	 Rapaport� editor� Organi�
zation and Pathology of Thought� pages ��%��	 Columbia University Press�
����	 English translation of chapter � of Ach ������	

N	K	 Ach	 �Uber die Willenst�atigkeit und das Denken	 Vandenhoeck $
Ruprecht� G�ottingen� ����	

A	V	 Aho� J	E	 Hopcroft� and J	D	 Ullman	 The Design and Analysis of
Computer Algorithms	 Addison�Wesley� ����	

H	 A�!t�Ka�ci	 A Lattice�theoretic Approach to Computation based on a Calcu�
lus of Partially Ordered Type Structures	 PhD thesis� University of Penn�
sylvania� ����	

H	 A�!t�Ka�ci	 Warren�s Abstract Machine� A Tutorial Reconstruction	 MIT
Press� ����	

H	 A�!t�Ka�ci� R	 Boyer� P	 Lincoln� and R	 Nasr	 E�cient implementation
of lattice operations	 ACM Transactions on Programming Languages and
Systems� ���������%���� ����	

H	 A�!t�Ka�ci and R	 Di Cosmo	 Compiling order�sorted feature term uni�ca�
tion	 Technical Report �� Digital Equipment Corporation Paris Research
Lab �DEC PRL�� ����	

K	 Bertet� M	 Morvan� and L	 Nourine	 Lazy completion of a partial order
to the smallest lattice	 In Proceedings of the International KRUSE Sympo�
sium� Knowledge Retrieval� Use and Storage for E�ciency� pages ��%���
����	

���

��� BIBLIOGRAPHY

L	 Bolc� K	 Czuba� A	 Kup�s�c� M	 Marciniak� A	 Mykowiecka� and
A	 Przepi�orkowski	 A survey of systems for implementing HPSG grammars	
Technical Report ���� Institute of Computer Science� Polish Academy of
Sciences� ����	

A	 Borgida� R	 J	 Brachman� D	 L	 McGuinness� and L	 A	 Resnick	 Classic�
A structural data model for objects	 In Proceedings of the 	��� ACM
SIGMOD International Conference on Management of Data� ����	

R	 J	 Brachman	 A Structural Paradigm for Representing Knowledge	 PhD
thesis� Harvard University� ����	

R	 J	 Brachman	 What IS�A is and isn�t� An analysis of taxonomic links in
semantic networks	 IEEE Computer� ���������%��� ����	

R	 J	 Brachman� R	 E	 Fikes� and H	 J	 Levesque	 KRYPTON� A func�
tional approach to knowledge representation	 IEEE Computer� �������
��%��� ����	

R	 J	 Brachman and J	 G	 Schmolze	 An overview of the KL�ONE knowledge
representation system	 Cognitive Science� ��������%���� ����	

J	 S	 Bruner� J	 J	 Goodnow� and G	 A	 Austin	 A Study of Thinking	 Wiley�
����	

B	 Carpenter	 The Logic of Typed Feature Structures	 Cambridge� ����	

B	 Carpenter	 An attribute�value logic for sets	 In Third ASL�LSA Confer�
ence on Logic and Language� Ohio State University� ����a	

B	 Carpenter	 Skeptical and credulous uni�cation with applications to lexical
templates and inheritance	 In T	 Briscoe� A	 Copestake� and V	 de Paiva�
editors� Default Reasoning and Lexical Organization	 Cambridge University
Press� ����b	

B	 Carpenter and P	J	 King	 The complexity of closed world reasoning in
constraint�based grammar theories	 In Fourth Meeting on the Mathematics
of Language� University of Pennsylvania� ����	

B	 Carpenter and G	 Penn	 Negation vs	 inequation and typing
for linguistic applications	 Available from Gerald Penn�s homepage�
http���wwwcscmuedu��gpenn� ����	

BIBLIOGRAPHY ���

B	 Carpenter and G	 Penn	 Compiling typed attribute�value logic grammars	
In H	 Bunt and M	 Tomita� editors� Recent Advances in Parsing Technolo�
gies� pages ���%���	 Kluwer� ����	

B	 Carpenter and C	 Pollard	 Inclusion� disjointness and choice� The logic of
linguistic classi�cation	 In Proceedings of the
�th Annual Meeting of the
Association for Computational Linguistics �ACL��	�� pages �%��� ����	

B	 Carpenter and Y	 Qu	 An abstract machine architecture for typed
attribute�value grammars	 In Proceedings of the �th International Work�
shop on Parsing Technology� ����	

N	 Chomsky and M	 Halle	 The Sound Pattern of English	 Harper $ Row�
����	

A	 Colmerauer	 Equations and inequations on �nite and in�nite trees	 In
Proceedings of the International Conference on Fifth Generation Computer
Systems� pages ��%��� ����	

A	 Colmerauer	 Theoretical model of Prolog II	 In M	 van Canegham and
D	 H	 Warren� editors� Logic Programming and its Application� pages �%��	
Ablex� Norwood� New Jersey� ����	

D	 Coppersmith and S	 Winograd	 Matrix multiplication via arithmetic pro�
gression	 Journal of Symbolic Computation� ��������%���� ����	 Special
Issue on Computational Algebraic Complexity	

T	 H	 Cormen� C	 E	 Leiserson� and R	 L	 Rivest	 Introduction to Algorithms	
MIT Press� ����	

V	 Dahl	 Un systeme deductif d�interrogation de banques de donnees en
espagnol	 Technical report� Groupe d�Intelligence Arti�cielle� Universit�e
d�Aix�Marseille II� ����	

V	 Dahl	 On database systems development through logic	 ACM Transactions
on Database Systems� ����� ����	

B	 A	 Davey and H	 A	 Priestley	 Introduction to Lattices and Order	 Cam�
bridge University Press� ����	

��� BIBLIOGRAPHY

R	 Dietrich and F	 Hagl	 A polymorphic type system with subtypes for
Prolog	 In Proceedings of the
nd European Symposium on Programming�
number ��� in LNCS� pages ��%��	 Springer� ����	

M	 Dorna	 Erweiterung der Constraint�Logiksprache CUF um ein Typsys�
tem	 Diplomarbeit� Universit�at Stuttgart� ����	

C	C Douglas� M	A	 Heroux� G	 Slishman� and R	 Smith	 Gemmw� A portable
level � blas winograd variant of strassen�s matrix�matrix multiply algo�
rithm	 Journal of Computational Physics� �����%��� ����	

G	 Erbach	 Multi�dimensional inheritance	 In Proceedings of KONVENS ��	
Springer� ����	

G	 Erbach	 ProFIT� Prolog with features� inheritance and templates	 In
Proceedings of EACL���� ����	

G	 Erbach	 Bottom�Up Earley Deduction for Preference�Driven Natural Lan�
guage Processing	 PhD thesis� Universit�at des Saarlandes� ����	

S	 E	 Fahlman	 A System for Representing and Using Real�world Knowledge	
PhD thesis� MIT� ����	

S	 E	 Fahlman	 NETL� A System for Representing and Using Real�World
Knowledge	 MIT Press� ����	

A	 Fall	 Reasoning with Taxonomies	 PhD thesis� Si�
mon Fraser University� ����	 Repaginated as a single�
spaced document with minor corrections� and available from
http��www�cs�sfu�ca�cs�people�GradStudents�fall�personal�
pub�thesis�ps	

D	D	 Ganguly� C	K	 Mohan� and S	 Ranka	 A space�and�time�e�cient coding
algorithm for lattice computations	 IEEE Transactions on Knowledge and
Data Engineering� ��������%���� ����	

M	 R	 Garey and D	 S	 Johnson	 Computers and Intractability� A Guide to
the Theory of NP�Completeness	 Freeman and Co	� ����	

G	 Gazdar� E	 Klein� G	K	 Pullum� and I	A	 Sag	 Generalized Phrase Struc�
ture Grammar	 Basil Blackwell� ����	

BIBLIOGRAPHY ���

D	 Gerdemann	 Open and closed world types in NLP	 In J	 Kilbury and
R	 Wiese� editors� Integrative Ans�atze in der Computerlinguistik� Proceed�
ings der �� Fachtagung der Sektion Computerlinguistik der DGfS� pages
��%��� ����a	

D	 Gerdemann	 Term encoding of typed feature structures	 In Proceedings
of the �th International Workshop on Parsing Technologies� pages ��%���
����b	

D	 Gerdemann and P	 J	 King	 The correct and e�cient implementation
of appropriateness speci�cations for typed feature structures	 In Proceed�
ings of the 	�th International Conference on Computational Linguistics
�COLING����� ����	

M	 Habib and L	 Nourine	 Bit�vector encoding for partially ordered sets	 In
V	 Bouchitt�e and M	 Morvan� editors� Orders� Algorithms� Applications�
International Workshop ORDAL ��� Proceedings� pages �%��	 Springer�
Verlag� ����	

P	 J	 Hayes	 The logic of frames	 In D	 Metzing� editor� Frame Conceptions
and Text Understanding� pages ��%��	 Walter de Gruyter and Co	� ����	

R	 Henschel	 Traversing the labyrinth of feature logics for a declarative
implementation of large scale systemic grammars	 In Proceedings of the
	��� Workshop on Computational Logic for Natural Language Processing
�CLNLP����� ����	

M	 H�ohfeld and G	 Smolka	 De�nite relations over constraint languages	
LILOG Report ��� IBM Deutschland� ����	

C	 Holzbaur	 Speci�cation of Constraint Based Inference Mechanism through
Extended Uni�cation	 PhD thesis� University of Vienna� ����	

C	 Holzbaur	 Metastructures vs	 attributed variables in the context of exten�
sible uni�cation	 In M	 Bruynooghe and M	 Wirsing� editors� Programming
Language Implementation and Logic Programming� number ��� in LNCS�
pages ���%���	 Springer Verlag� ����	

C	 I	 Hovland	 A communication analysis of concept learning	 Psychological
Review� ������%���� ����	

��� BIBLIOGRAPHY

R	 A	 Hudson	 Systemic generative grammar	 In M	 A	 K	 Halliday and
J	 R	 Martin� editors� Readings in Systemic Linguistics	 Batsford Aca�
demic� ����	

G	 Humphrey	 Thinking� An Introduction to its Experimental Psychology	
Methuen $ Co	� ����	

E	B	 Hunt	 Concept Learning� An Information Processing Problem	 Wiley
and Sons� ����	

M	 Johnson	 Attribute�Value Logic and the Theory of Grammar	 CSLI Pub�
lications� ����	

R	 Kaplan and J	 Bresnan	 Lexical�Functional Grammar� A formal system
for grammatical representation	 In J	 Bresnan� editor� The Mental Repre�
sentation of Grammatical Relations� pages ���%���	 MIT Press� ����	

R	 Kaplan and A	 Zaenen	 Long�distance dependencies� constituent structure
and functional uncertainty	 In M	 Baltin and A	S	 Kroch� editors� Alterna�
tive Conceptions of Phrase Structure� pages ��%��	 University of Chicago
Press� ����	

L	 Karttunen	 Features and values	 In Proceedings of the Tenth Interna�
tional Conference on Computational Linguistics �COLING����� pages ��%
��� ����	

R	T	 Kasper	 Systemic grammar and Functional Uni�cation Grammar	 In
J	 Benson and W	 Greaves� editors� Proceedings of the Twelfth Interna�
tional Systemics Workshop� ����	

R	T	 Kasper	 Feature Structures� A Logical Theory with Application to Lan�
guage Analysis	 PhD thesis� University of Michigan� ����a	

R	T	 Kasper	 A uni�cation method for disjunctive feature structures	 In Pro�
ceedings of the
�th Annual Meeting of the Association for Computational
Linguistics �ACL���� pages ���%���� ����b	

R	T	 Kasper	 An experimental parser for systemic grammars	 In Proceed�
ings of the Twelfth International Conference on Computational Linguistics
�COLING����� ����	

BIBLIOGRAPHY ���

R	T	 Kasper	 Uni�cation and classi�cation� An experiment in information�
based parsing	 In Proceedings of the First International Workshop on Pars�
ing Technologies �IWPT�� pages �%�� ����	

R	T	 Kasper and W	C	 Rounds	 A logical semantics for feature structures	
In Proceedings of the
�th Annual Meeting of the Association for Compu�
tational Linguistics �ACL����� pages ���%���� ����	

R	T	 Kasper and W	C	 Rounds	 The logic of uni�cation in grammar	 Lin�
guistics and Philosophy� ��������%��� ����	

M	 Kay	 Functional grammar	 In Proceedings of the �th Annual Meeting of
the Berkeley Linguistics Society� pages ���%���� ����	

M	 Kay	 Functional Uni�cation Grammar� A formalism for machine transla�
tion	 In Proceedings of the 	�th International Conference on Computational
Linguistics� pages ��%��� ����	

M	 Kay	 Uni�cation in grammar	 In V	 Dahl and P	 Saint�Dizier� editors�
Natural Language Understanding and Logic Programming� pages ���%���	
Elsevier Science Publishers� ����	

B	 Keller	 Feature Logics� In�nitary Descriptions and Grammar	 CSLI� ����	

P	J	 King	 A Logical Formalism for Head�driven Phrase Structure Grammar	
PhD thesis� University of Manchester� ����	

P	J	 King and T	 Goetz	 Eliminating the feature introduction condition by
modifying type inference	 Technical Report ��� Sonderforschungsbereich
��� �SFB ����� T�ubingen� ����	

E	 Klein	 Phonological data types	 In S	 Bird� editor� Declarative Perspec�
tives on Phonology� number � in Edinburgh Working Papers in Cognitive
Science� pages ���%���	 University of Edinburgh� ����	

J	T	 Kou� L	J	 Stockmeyer� and C	K	 Wong	 Covering edges by cliques with
regard to keyword con�icts and intersection graphs	 Communications of
the ACM� ���������%���� ����	

R	 Kowalski	 Predicate logic as a programming language	 In Proceedings
of the 	�� Congress of the International Federation for Information Pro�
cessing �IFIP�� pages ���%���� ����	

��� BIBLIOGRAPHY

G	 R	 Kress� editor	 Halliday� System and Function in Language	 Oxford�
����	

A	 Lascarides and A	 Copestake	 Default representation in constraint�based
frameworks	 Computational Linguistics� ��������%���� ����	

H	 J	 Levesque	 A Formal Treatment of Incomplete Knowledge Bases	 PhD
thesis� University of Toronto� ����a	

H	 J	 Levesque	 The interaction with incomplete knowledge bases� A formal
treatment	 In Proceedings of the Seventh International Joint Conference
on Arti�cial Intelligence �IJCAI��	�� ����b	

LinGO	 The LinGO grammar and lexicon	 Available on�line at
http��lingo�stanford�edu� ����	

R	 MacGregor	 Using a description classi�er to enhance deductive inference	
In Proceedings of the Seventh IEEE Conference on AI Applications� pages
���%���� ����	

R	 M	 MacGregor	 A deductive pattern matcher	 In Proceedings of AAAI����
pages ���%�� ����	

T	 Makino� K	 Torisawa� and J	 Tsuji	 LiLFeS practical uni�cation�
based programming system for typed feature structures	 In Proceedings
of the ��th Annual Meeting of the Association for Computational Linguis�
tics and the 	th International Conference on Computational Linguistics
�COLING�ACL����� volume �� pages ���%���� ����	

S	 Manandhar	 An attributive logic of set descriptions and set operations	
In Proceedings of the �
nd Annual Meeting of the Association for Compu�
tational Linguistics �ACL����� pages ���%���� ����	

W	C	 Mann and C	M	I	M	 Matthiessen	 NIGEL� A systemic grammar for text
generation	 Technical Report RR�������� Information Sciences Institute�
University of Southern California� ����	

C	 Manning	 Ergativity� Argument Structure and Grammatical Relations	
CSLI Publications� ����	

C	 Manning and I	 Sag	 Argument structure� valence� and binding	 Nordic
Journal of Linguistics� ������%���� ����	

BIBLIOGRAPHY ���

J	 McCarthy	 Recursive functions of symbolic expressions and their compu�
tation by machine	 Communications of the ACM� ����� ����	

C	 Mellish	 Implementing systemic classi�cation by uni�cation	 Computa�
tional Linguistics� ��������%��� ����	

C	 Mellish	 Graph�encodable description spaces	 Technical report� Univer�
sity of Edinburgh Department of Arti�cial Intelligence� ����	 DYANA
Deliverable R�	�B	

C	 Mellish	 Term�encodable description spaces	 In D	R	 Brough� editor� Logic
Programming� New Frontiers� pages ���%���	 Kluwer� ����	

M	 Minsky	 A framework for representing knowledge	 In P	H	 Winston�
editor� The Psychology of Computer Vision� pages ���%���	 McGraw�Hill�
����	

M	 A	 Moshier	 Featureless HPSG	 In P	 Blackburn and M	 de Rijke� editors�
Specifying Syntactic Structures	 CSLI Publications� ����a	

M	 A	 Moshier	 Is HPSG featureless or unprincipled� Linguistics and Phi�
losophy� ���������%���� ����b	

M	 A	 Moshier and C	 J	 Pollard	 The domain of set�valued feature structures	
Linguistics and Philosophy� ������%���� ����	

M	A	 Moshier	 Extensions to Uni�cation Grammar for the Description of
Programming Languages	 PhD thesis� University of Michigan� ����	

M	A	 Moshier and W	 C	 Rounds	 A logic for partially speci�ed data struc�
tures	 In Proceedings of the 	�th ACM Symposium on Principles of Pro�
gramming Languages� pages ���%���� ����	

A	 Newell and J	C	 Shaw	 Programming the logic theory machine	 In Pro�
ceedings of the 	�� Western Joint Computer Conference� ����	

A	 Newell� J	C	 Shaw� and H	A	 Simon	 Chess�playing programs and the
problem of complexity	 IBM Journal of Research and Development� ��
���%���� ����	

��� BIBLIOGRAPHY

A	 Newell and H	A	 Simon	 The logic theory machine� A complex infor�
mation processing system	 Institute of Radio Engineers Transactions on
Information Theory� IT��������%��� ����	

P	 F	 Patel�Schneider� L	 A	 Resnick� D	 L	 McGuinness� E	 Weixel�
baum� M	 K	 Abrahams� and A	 Borgida	 NeoClassic Reference Man�
ual� Version 	��� July ����	 Available from the NeoClassic Homepage�
http���wwwbell�labscom�project�classic�neohtml	

G	 Penn	 Parametric types for typed attribute�value logic	 Technical Report
D������� Deutsches Forschungszentrum f�ur K�unstliche Intelligenz �DFKI��
����	

G	 Penn	 Parametric types for typed attribute�value logic	 In Proceedings
of the 	th International Conference on Computational Linguistics and
the ��th Annual Meeting of the Association for Computational Linguistics
�COLING�ACL����� volume �� pages ����%����� ����	

G	 Penn	 An optimised Prolog encoding of typed feature structures	 Technical
Report ���� Sonderforschungsbereich ���� T�ubingen� ����a	

G	 Penn	 Optimising don�t�care non�determinism with statistical infor�
mation	 Technical Report ���� Sonderforschungsbereich ���� T�ubingen�
����b	

G	 Penn	 An optimized Prolog encoding of typed feature structures	 In
Proceedings of the 	�th International Conference on Logic Programming
�ICLP����� pages ���%���� ����c	

G	 Penn	 A quasi�ring construction for compiling attributed type signatures	
Technical Report ���� Sonderforschungsbereich ��� �SFB ����� T�ubingen�
����d	

G	 Penn	 A quasi�ring construction for compiling attributed type signatures	
In Proceedings of the �th Meeting on the Mathematics of Language �MOL�
��� pages ���%���� ����e	

G	 Penn and B	 Carpenter	 ALE for speech� A translation prototype	 In Pro�
ceedings of the �th Conference on Speech Communication and Technology
�EUROSPEECH����� volume �� pages ���%���� ����	

BIBLIOGRAPHY ���

F	C	N	 Pereira and S	M	 Shieber	 The semantics of grammar formalisms seen
as computer languages	 In Proceedings of the 	�th International Conference
on Computational Linguistics �COLING����� ����	

C	 Pollard and M	A	 Moshier	 Unifying partial descriptions of sets	 In P	 Han�
son� editor� Information� Language and Cognition� volume � of Vancouver
Studies in Cognitive Science	 University of British Columbia Press� ����	

C	 Pollard and I	 Sag	 Information�based Syntax and Semantics	 Number ��
in CSLI Lecture Notes	 CSLI Publications� ����	

C	 Pollard and I	 Sag	 Head�driven Phrase Structure Grammar	 Chicago�
����	

C	J	 Pollard	 Sorts in uni�cation�based grammar and what they mean	 In
M	 Pinkal and B	 Gregor� editors� Uni�cation in Natural Language Analy�
sis	 MIT Press� ����	

R	 T	 Prosser	 Applications of Boolean matrices to the analysis of �ow di�
agrams	 In Proceedings of the 	�th Eastern Joint Computer Conference�
pages ���%���� ����	

M	 R	 Quillian	 Semantic memory	 In M	 Minsky� editor� Semantic Informa�
tion Processing� pages ���%���	 MIT Press� ����	

B	 Raphael	 A computer program which �understands�	 In Proceedings of
AFIPS Joint Computer Conference� ����	

B	 Raphael	 SIR� Semantic information retrieval	 In M	 Minsky� editor�
Semantic Information Processing� pages ��%���	 MIT Press� ����	

J	C	 Reynolds	 Transformational systems and the algebraic structure of
atomic formulas	 In B	 Meltzer and D	 Michie� editors� Machine Intel�
ligence �	 Edinburgh� ����	

F	 Richter	 A Mathematical Formalism for Linguistic Theories with an Ap�
plication in Head�driven Phrase Structure Grammar and a Fragment of
German	 PhD thesis� Universit�at T�ubingen� in prep	

J	 A	 Robinson	 A machine�oriented logic based on the resolution principle	
Journal of the ACM� �����%��� ����	

��� BIBLIOGRAPHY

W	C	 Rounds and R	T	 Kasper	 A complete logical calculus for record struc�
tures representing linguistic information	 In Proceedings of the 	�th Annual
IEEE Symposium on Logic and Computer Science� pages ��%��� ����	

I	 A	 Sag	 English relative clause constructions	 Journal of Linguistics� ��
�������%���� ����	

A	 Sch�oter	 Term encoding of feature structures	 University of Edinburgh�
����	

L	 K	 Schubert	 Extending the expressive power of semantic networks	 Arti�
�cial Intelligence� ��������%���� ����	

N	K	 Simpkins and M	 Groenendijk	 Multiple inheritance	 Technical Report
ALEP��	�� Cray Systems� August ����	

G	 Smolka	 A feature logic with subsorts	 Technical Report LILOG Report
��� IBM Germany� Stuttgart� ����	

G	 Smolka	 Logic Programming over Polymorphically Order�Sorted Types	
PhD thesis� Universit�at Kaiserslautern� ����	

K	 Steinicke and G	 Penn	 Compiling feature�based constraints with complex
antecedents	 Technical Report ���� Sonderforschungsbereich ��� �SFB
����� T�ubingen� ����	

V	 Strassen	 Gaussian elimination is not optimal	 Numerische Mathematik�
���������%���� ����	

P	 Van Roy	 Can Logic Programming Execute as Fast as Imperative Program�
ming� PhD thesis� University of California� Berkeley� ����	

Stephen Warshall	 A theorem on Boolean matrices	 Journal of the ACM� �
������%��� January ����	

P	 H	 Winston	 Learning structural descriptions from examples	 In P	 H	 Win�
ston� editor� The Psychology of Computer Vision� pages ���%���	 McGraw�
Hill� ����	

S	 Wintner	 An Abstract Machine for Uni�cation Grammars with Applica�
tions to an HPSG Grammar for Hebrew	 PhD thesis� Technion� ����	

BIBLIOGRAPHY ���

S	 Wintner and N	 Francez	 Abstract machine for typed feature structures	
In Proceedings of the Conference on Natural Language Understanding and
Logic Programming� ����	

S	 Wintner and N	 Francez	 O��line parsability and the well�foundedness
of subsumption	 Journal of Logic� Language and Information� ������%���
����	

W	 A	 Woods	 Parallel algorithms for real time knowledge based systems	
Technical Report ����� Bolt Beranek and Newman �BBN�� ����	

W	 A	 Woods and J	 G	 Schmolze	 The KL�ONE family	 Technical Report
TR������� Aiken Computer Laboratory� Harvard University� ����	

E	 Yardeni� T	 Fr�uwirth� and E	 Shapiro	 Polymorphically typed logic pro�
grams	 In F	 Pfenning� editor� Types in Logic Programming� pages ��%��	
MIT Press� ����	

