
P R O N U N C I AT I O N M O D E L I N G F O R S Y N T H E S I S O F L O W
R E S O U R C E L A N G U A G E S

sunayana sitaram

CMU-LTI-15-017

Language Technologies Institute
School of Computer Science
Carnegie Mellon University

5000 Forbes Ave., Pittsburgh, PA 15213

www.lti.cs.cmu.edu

Thesis Committee:
Alan W Black, chair

Lori Levin
Florian Metze

Richard Sproat, Google, Inc.

©2015, Sunayana Sitaram





A B S T R A C T

Natural and intelligible Text to Speech (TTS) systems exist for a num-
ber of languages in the world today. However, there are many lan-
guages of the world, for which building TTS systems is still pro-
hibitive, due to the lack of linguistic resources and data. Some of
these languages are spoken by a large population of the world. Others
are primarily spoken languages, or languages with large non-literate
populations, which could benefit from speech-based systems.

One of the bottlenecks in creating TTS systems in new languages
is designing a frontend, which includes creating a phone set, lexicon
and letter to sound rules, which contribute to the pronunciation of
the system.

In this thesis, we use acoustics and cross-lingual models and tech-
niques using higher resource languages to improve the pronuncia-
tion of TTS systems in low resource languages. First, we present a
grapheme-based framework that can be used to build TTS systems
for most languages of the world that have a written form. Such sys-
tems either treat graphemes as phonemes or assign a single pronun-
ciation to each grapheme, which may not be completely accurate for
languages with ambiguities in their written forms.

We improve the pronunciation of grapheme-based voices implic-
itly by using better modeling techniques. We automatically discover
letter-to-sound rules such as schwa deletion using related higher re-
source languages. We also disambiguate homographs in lexicons in
dialects of Arabic to improve the pronunciation of TTS systems. We
show that phoneme-like features derived using Articulatory Features
may be useful for improving grapheme-based voices.

We present a preliminary framework addressing the problem of
synthesizing Code Mixed text found often in Social Media. Lastly,
we use acoustics and cross-lingual techniques to automatically derive
written forms for building TTS systems for languages without a stan-
dardized orthography.
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1
I N T R O D U C T I O N

Intelligible and natural sounding Text-to-Speech (TTS) systems exist
for a number of languages of the world today, and there are automatic
techniques to build good quality systems quickly for languages with
sufficient data and linguistic resources.

By using a few hours of well recorded speech data, corresponding
transcripts and a lexicon or grapheme-to-phoneme (g2p) rules, an un-
derstandable TTS system can be built using freely available software
resources. However, many languages of the world do not have such
data and lexical resources available. Some of these languages are the
ones where communication using speech may be extremely benefi-
cial, since in many cases these languages may primarily be spoken
languages or have a large non-literate user population.

One of the most straightforward ways to build a TTS system in a
language without many lexical resources is to build grapheme-based
systems [1] in which very few assumptions may be made about the
letter-to-sound rules in the language. In the past, there have also been
attempts to use unsupervised techniques to be able to build linguis-
tic resources automatically. For languages that have low resources, it
has been shown that we can train high level components like parsers,
POS taggers etc in an unsupervised manner using textual cues [2].
Most of these techniques assume that the orthography of the lan-
guage is unambiguous and that the speech transcript is available. All
of these techniques assume that the language has a standardized writ-
ten form.

In some languages of the word such as Arabic and Hebrew, missing
diacritics in the written form create ambiguity in pronunciation for
speech synthesizers, both during TTS system training or labeling time
and during synthesis. In higher resource dialects of such languages,
such as Modern Standard Arabic, diacritizers exist which solve this
problem to a certain extent by recovering the diacritics of a word au-
tomatically. However, in many of the lower resource dialects, such
systems do not exist. The problem of underspecified written forms
can be thought of as a general issue that happens to a certain extent
in all languages, such as missing stress markers in written English,
schwa deletion markers in Hindi, tone-markers in tonal languages
and homographs. When this happens very frequently in languages
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2 introduction

and is not dealt with by a TTS system, intelligibility may be affected.

Instead of looking for specific pronunciation nuances in languages,
it would be useful to use general features to improve the pronuncia-
tion of low resource or grapheme-based systems. In addition, instead
of going from a written representation to an approximate phonetic
form, it may be useful to use features that can be derived from the
acoustics in a bottom-up manner. Such features may require no re-
sources in the language itself other than acoustics, and can use mod-
els trained cross-lingually on higher resource languages.

Most Text to Speech systems assume that input text is in a sin-
gle language, which is the target language. However, this is not al-
ways true. Code Switching or Code Mixing occurs when multiple
languages are used in the same sentence. Code Switched or Code
Mixed text is found in Social Media used by bilingual or multilingual
societies. Synthesizing such text can be challenging due to multiple
factors, including the scripts used for writing it and non-standard
spellings.

Finally, many languages of the world do not have their own stan-
dardized written forms. Building speech systems, such as Speech to
Speech Translation and Spoken Dialog Systems may be extremely use-
ful in such languages. However, due to the absence of a writing sys-
tem, traditional approaches to building such systems may not work.
Coming up with a written form that is sufficiently discriminative to
be able to produce understandable synthesis, so that it can be used
internally in such a system, may be a useful goal.

This thesis aims to discover techniques to be able to build intelligi-
ble and natural sounding TTS systems for low-resource languages, by
modeling pronunciation in those languages without having to resort
to a lot of manually created resources.

1.1 thesis organization

The thesis is organized as follows. Chapter 2 introduces the problem
of grapheme-to-phoneme conversion in Text to Speech Systems and
also describes the resources needed to build a Text to Speech system
in a new language. In addition, we describe a universal grapheme-
based framework to build systems in new languages.

Chapter 3 describes techniques to improve upon the grapheme-
based baseline, by using better modeling techniques to make soft de-
cisions about pronunciation and by using cross-lingual models from
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very related languages to learn specific letter to sound rules.

Chapter 4 describes general techniques to improve grapheme-based
and low rescource voices using cross-lingual articulatory features in
a bottom-up manner.

Chapter 5 describes techniques to disambiguate homographs in lan-
guages with ambiguous written forms.

Chapter 6 describes how to synthesize text in code mixed languages
using a TTS database trained on one language.

Chapter 7 describes how to automatically derive a written form for
languages without a standardized written form in order to build TTS
systems.

Chapter 8 concludes with future directions.

1.2 thesis statement

The pronunciation of synthesized voices built for languages without
many lexical resources available can be improved by leveraging cross-
lingual models of related higher resource languages and the acoustics
of the TTS database.

1.3 thesis contributions

• A baseline for universal grapheme-based synthesis covering most
writing systems of the world, and techniques to improve grapheme-
based systems

• Techniques to disambiguate homographs in languages with am-
biguous written forms such as Arabic

• An analysis of cross-lingual articulatory features to improve
pronunciation of grapheme-based voices

• A framework to improve pronunciation for synthesizing code
mixed text

• Discovering written forms to synthesize from, for languages
with no standardized writing systems

• Speech Synthesis for a wide variety of languages from many
language families and having varied written forms, such as En-
glish, Indian languages, dialects of Arabic, European languages
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such as German and Russian, endangered languages such as In-
upiaq and Ojibwe and languages with no standardized written
form, such as Konkani.



2
G R A P H E M E - B A S E D S Y S T E M S

2.1 introduction

Text to Speech systems in use today are usually one of two main types:
Unit Selection and Statistical Parametric Synthesis. In Unit Selection
synthesis [3], actual pieces of speech are chosen from a unit database
and concatenated together to produce a target utterance. In Statistical
Parametric Synthesis [4], each unit of speech is modeled by a para-
metric representation, which is then predicted at synthesis time from
the target utterance.

Figure 1: TTS overview [5]

In both these types of systems, at synthesis time, text input is ana-
lyzed by expanding abbreviations, dealing with numbers etc. [6] and
converting the text into a sequence of tokens. A phrasing model in-
serts pauses in appropriate places in the utterance [7]. Then, the se-
quence of tokens is converted into a string of phonemes by consulting
a lexicon or letter-to-sound (LTS) rules. Then, the appropriate units or
parameters are chosen by the trained machine learning model based
on features of the phonemes, words and phrase such as position, con-
text, Part of Speech (POS). Lastly, units of speech are concatenated,
or generated from parameters by using inverse filters [8]. Figure 1

shows the text to speech pipeline for a Statistical Parametric Synthe-
sis system [5].

5



6 grapheme-based systems

In general, the front-end of the system, that includes the text pro-
cessing, lexical lookup or letter-to-sound module are the language
specific parts of a TTS system. In addition, other resources such as
Part of Speech (POS) taggers and parsers may be used as features in
spectral or prosody models. At a minimum, to build a TTS system in
a new language, the text processing, lexical lookup and LTS modules
are necessary.

Text processing is a critical step in synthesizing text, particularly
if the text is not being generated by the system itself, such as in a
dialog system, but is found on sources such as the World Wide Web.
Text processing has generally been dealt with using systems that clas-
sify text into a set of categories and expand text using rules specific
to that type, such as abbreviations, numbers and dates [9]. Such rules
usually need to be created for each language independently and may
require input from a native speaker. Other approaches have explored
the use of supervised and unsupervised techniques for text process-
ing in new domains[6]. The challenges posed by processing text in
new, low resource languages are beyond the scope of this thesis.

In this thesis, we focus on the lexical lookup and letter-to-sound
blocks of the system shown above, that can be thought of as the com-
ponents determining the pronunciation of words. However, pronunci-
ation goes beyond phoneme choice in most languages. We can break
up components of speech that relate to the way a word is pronounced
as follows:

• phoneme selection

• Duration, realized as phoneme length

• Power, realized as lexical stress and accents

• Intonation, realized as tones in languages such as Mandarin

A high-resource language such as US English may have a freely-
available lexicon such as CMUdict [10] that contains phoneme expan-
sions and stress markers for a large vocabulary in the language. In
addition, we can train letter-to-sound models from such a lexicon to
predict the pronunciation of unknown words. Such resources may not
be available in many languages.

2.2 tts evaluation techniques

Speech synthesis is evaluated both objectively and subjectively. In ob-
jective evaluations, synthetic speech is usually compared to reference
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speech, or features derived from synthetic speech are used to mea-
sure synthesis quality. In subjective evaluations, humans are asked
to listen to one or multiple systems, and rate or compare them on a
variety of metrics.

2.2.1 Objective evaluation metrics

There has been a lot of interest in coming up with better objective
measures for TTS quality, since subjective tests are expensive and
time consuming. The main challenge is to find objective measures
that correlate with subjective metrics, since the ultimate goal of TTS
systems is to sound understandable and intelligible to users. Also,
some objective measures need natural speech for the reference utter-
ance which can be an obstacle.

Perceptual Evaluation of Speech Quality (PESQ) [11] is a metric
that was originally developed for the evaluation of telecommunica-
tion and has been suggested as an objective metric for TTS. It creates
internal models of the target and reference speech and then calcu-
lates the difference between them. It has been shown to be correlated
with subjective Mean Opinion Score (MOS) tests, which are tests in
which subjects are asked to score systems based on a series of crite-
ria. Although it can deal with target and reference speech of different
lengths, it has been shown not to have a high correlation with MOS
measures for a small amount of data.

Moller and Falk [12] compared objective metrics based on features
such as low SNR (Signal to Noise Ratio), naturalness of the voice,
robotization etc. calculated from the synthesized signal automatically
similar to the PESQ framework. These metrics do not require refer-
ence natural speech and were found to have a reasonable correlation
with subjective measures.

In work by Chu et al. [13], an average concatenative cost function
calculated during unit selection is proposed as an objective measure
of naturalness of synthetic speech. This cost function is shown to be
highly correlated with a MOS of naturalness and does not require ref-
erence speech. The technique described may have large errors while
estimating MOS from the concatenative cost function. Hu and Loizou
[14] used linear combinations of objective measures to calculate sub-
jective evaluation scores.

Valentini et al [15] compared four objective measures Dau, Glimpse,
Speech Intelligibility Index (SII) and PESQ for correlation with per-
ceptual tests of intelligibility for the speech in noise condition. The
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Dau measure is based on the human auditory system and calculates
the correlation between models of the target and reference signals.
The Glimpse measure calculates the proportion of speech that has
more energy than noise. The Speech Intelligibility Index calculates
the weighted Signal to Noise Ratio to estimate intelligibility. The Dau
and Glimpse measures were found to be the best predictors of intelli-
gibility.

Recently, Ullman et al. [16] cast the problem of TTS objective evalu-
ation for intelligibility as an utterance verification problem, for which
there does not need to be any reference speech. This has been shown
to have a high correlation with subjective intelligibility judgments.

2.2.2 Mel Cepstral Distortion

The Mel Cepstral Distortion[17] is calculated as a Euclidean norm be-
tween two vectors - a vector representing the target (typically the syn-
thesized utterance) and the reference (typically natural speech). For
TTS, these vectors are typically 25 dimension Mel Frequency Cepstral
Coefficients (MFCC) at intervals of 5 ms, which are called frames.

This calculation assumes that the number of frames in the target
and reference waveforms is the same. This constraint is applied by
using the reference sentence as a template during re-synthesis, so
that the durations of all phones and pauses are preserved in the syn-
thesized utterance.

However, in case we change the durations or number of breaks,
as in [18] or add, remove or substitute phones in our synthesized
utterance when compared with the original, we cannot use the sim-
ple version of the MCD score any more. One alternative is to relabel
the original waveform with new labels for the new pronunciations -
however, we may want to compare two or more synthetic waveforms
with different pronunciations with a reference, in which case relabel-
ing the data is not the ideal solution. In such cases, we can use the
DTW metric.

Dynamic Time Warping (DTW) is a technique to time-align two
streams of data that are not time aligned. Xu [19] suggested the use
of DTW to calculate a distance metric between reference and target
utterance for TTS that may not be the same length and showed that
it was correlated with subjective measures of synthesis quality. How-
ever, the limitations of this technique are that it only provides an
utterance level score and depends on the alignment accuracy to cal-
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culate a reliable score.

Typically, the MCD is calculated on a frame-by-frame basis and
then averaged over the entire database, which is what we have used
to report the objective quality of our systems throughout this thesis.
One of the limitations of using MCD as an objective metric is that it
does not apply to Unit Selection systems, in which units of speech
are taken from the database and joined together.

2.2.3 Subjective evaluation

Popular subjective metrics for TTS include A/B, AXB and Mean Opin-
ion Score (MOS) tests which mainly test naturalness and user prefer-
ence. In A/B and AXB preference tests, subjects are asked to listen
to audio clips generated by two systems and asked to choose the clip
they prefer, with a no difference option, while controlling for the or-
der that the clips are systems are shown. These judgments are then
averaged across all the examples played. In transcription tests, listen-
ers may be asked to transcribe synthesized speech, and a Word Error
Rate like metric can be used to evaluate the intelligibility of the sys-
tem.

Tian et al. [20] describe techniques to evaluate a Mandarin TTS sys-
tem subjectively in a modular fashion. They divide the TTS pipeline
into text, prosody and acoustic components and carry out subjec-
tive evaluations at each stage by using the MOS metric. The text
component contains word segmentation, POS tagging and character-
to-syllable conversion which are all rated by a team of evaluators
based on reference values. For the prosody component, a delexical-
ized waveform is played and evaluators choose from a number of
options for the sentence that should correspond to it. The acoustic
processing module contains both the text and prosody aspects and
evaluators rate it on a scale, using MOS.

Hirst et al. [21] describe a subjective evaluation metric for evalu-
ating prosody in which subjects are asked to highlight parts of sen-
tences that they do not feel are satisfactory, and are asked to pay
attention to the way the sentence is spoken while making judgments.

Most subjective tests in TTS deal with evaluating synthetic speech
at a sentence level for intelligibility and naturalness. Although incor-
rect pronunciation affects intelligibility and naturalness, pronuncia-
tion differences between two systems may be subtle enough not to be
perceived very easily in such generic listening tests, as described in
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Chapter 4 in our listening tests for Iraqi and Modern Standard Arabic.

It is challenging to determine MCD or MOS thresholds to indicate
that a system is natural sounding and usable across databases, lan-
guages and synthesis techniques. Clark et al. [22] present an analysis
of multidimensional scaling of MOS for the Blizzard Challenge data,
which shows that the dimensions represent discontinuous joins and
’roboticity’.

2.3 language resources

According to Ethnologue [23] there are around 7000 living languages
in the world today. Most of these languages are only spoken lan-
guages and do not have standardized writing systems. Although
there has been a lot of work over the last few decades on building
speech and language resources and systems in many languages of
the world, usable systems only exist for the top few languages. Many
of the languages for which systems and resources do not exist are
ones with high population, such as Bengali, which has 200 million
speakers.

From the point of view of speech processing, specifically from
a TTS system perspective, we classify languages into three types:
high resource, medium resource and low resource. High resource
languages like English and Modern Standard Arabic may have high
quality Acoustic Models available, large clean speech databases of
recordings for TTS, POS taggers, dependency parsers, hand-created
lexicons and text processing front-ends. High quality, natural and un-
derstandable TTS systems may already exist for such languages.

Medium resource languages like Iraqi Arabic and Hindi may in-
clude lexicons with ambiguities, some grapheme-to-phoneme rules
and a small amount of data to train Acoustic Models. It may be possi-
ble to build understandable TTS systems in such languages, although
there may be issues with pronunciation and naturalness.

Low resource languages such as Bengali may have a large number
of speakers, but may not have clean or labeled data to train models.
In addition, in endangered languages such as Inupiaq, we may not
have access to native speakers who can provide information or test
systems for us.

Figure 2 highlights the resources that are typically used to build
a TTS system in a new language. As we can see, the back end of
the TTS system is mostly-language independent. Models for the spec-
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trum, duration and prosody are typically trained automatically using
data.

Figure 2: Resources used to build TTS systems

This thesis aims at improving synthesis quality of medium to low
resource languages while relying on minimal amounts of manually
created resources. Specifically, we focus on improving the pronun-
ciation of TTS systems built in such languages, which in turn may
influence the intelligibility and naturalness of these systems. To test
whether our techniques work, we perform some experiments on high
resource languages as well, however, we do provide results wherever
possible for actual low resource languages as well.

Grapheme-based systems can be used to build baseline TTS sys-
tems in languages that have standardized written forms, and are espe-
cially good for languages where the relationship between graphemes
(or letters) and phonemes follows well defined rules[1]. In the rest
of this chapter, we describe our framework for building grapheme-
based systems.

2.4 grapheme-based systems

2.4.1 Introduction

In very low-resource languages where there may no information about
phonemes in the language, we can make the simplifying assump-
tion that each grapheme is a phoneme. Black et al. [24] introduced
this technique to build systems for low-resource languages without
a phone set. While this technique requires no language specific re-
sources, we also lose out on information about knowing what the
phonemes mean, in the form of phonetic features.
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In the Festvox voice building tools [25], which we use as our voice
building framework for this thesis, phone sets are defined with pho-
netic features like vowel or consonant, consonant type, consonant
place, vowel length, aspiration etc. These features are used by Classi-
fication and Regression Trees to model the spectrum and prosody.

We refer to the technique of treating each grapheme as a phoneme
and ignoring the values of these phonetic features as the ’Raw Graphemes’
method.

Grapheme-based systems have been used to build speech recogniz-
ers by using graphemes as units instead of phonemes for English, Ger-
man and Spanish [26]. It was found that grapheme-based recognizers
performed better for languages that had a close grapheme-phoneme
relationship.

Another way of building grapheme-based voices is to exploit re-
sources that transliterate graphemes into known phonemes. The Uni-
code specification [27] provides a standardized digital representation
of scripts in most languages of the world. Qian et. al [28] have de-
veloped a toolkit that converts UTF-8 encoded text into a guessed
phonetic transcription in the WorldBet[29] or X-Sampa. It supports
about 40 different character code pages in the Unicode specification,
excluding Latin, which we added support for, and Chinese charac-
ters. UniTran is distributed with the Natural Language Toolkit[30]
for Python. We make use of this tool for grapheme-to-phoneme map-
pings and call it the ’UniTran’ method.

Intuitively, languages with consistent and one-to-one mappings be-
tween graphemes and phonemes should be easier to model using
grapheme-based methods. To test this hypothesis, we built grapheme-
based voices for twelve languages from disparate language families,
scripts, with varying amounts of resources available in the language
and varying database sizes.

In some cases when we had manually created resources available
(lexicons and letter to sound rules) , we also built ’knowledge-based’
voices.

We performed all the experiments in this thesis in the context of
the Festival[31] speech synthesis engine. Unless stated otherwise, we
built statistical parametric synthesis models using the CLUSTERGEN
[32] framework and the Festvox [25] suite of tools throughout this the-
sis.
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2.4.2 Data and Resources

Table 1 shows the amount of speech data in minutes that we used to
build synthetic voices for each of these languages. In the European
family of languages, we did experiments with English and German.
For English, we used the ARCTIC [33] recordings of the speaker SLT
and for German, we used a similar corpus that we recorded locally.
We built knowledge-based voices for English and German by using
the standard Festival front-end for them, which included lexicons and
Letter to Sound (LTS) rules for unknown words.

Hindi and Konkani Indian languages from the Indo-Aryan lan-
guage family, and Tamil is an Indian language from the Dravidian
family. To build our synthetic voices in Hindi and Tamil, we used
the IIIT-H Indic Databases [34]. For our Hindi and Tamil knowledge-
based voices, we used grapheme-to-phoneme (g2p) mappings for all
the characters and added post-lexical rules for nasalized vowels. For
Hindi, we added rules for terminal and medial schwa deletion. For
Tamil, we added rules for contextual voicing of consonants.

Konkani is the official language of the Indian state of Goa, and is
a minority language in a few other states. It has around 8 million
native speakers and uses scripts such as Latin, Kannada, Malayalam
and even Arabic. We used a corpus of Konkani from the CMU SPICE
project[35] that used the Latin script.

Iraqi Arabic, Dari and Pashto are languages that all use the Arabic
script in their written forms. The corpora we used for Iraqi, Dari and
Pashto were used for building synthesizers as part of the DARPA
TRANSTAC project. For Iraqi, we used a lexicon that had multiple
pronunciation variants for most words, since the diacritics that corre-
spond to short vowels are not written in the script. We used the first
variant of the word in the lexicon to build our knowledge based voice.

We collected our Russian and Thai speech corpora from the SPICE[35]
dataset. Inupiaq is a Inuit language spoken by about 2100 people in
northern and north western Alaska, and it uses the Latin+ script as
its orthography. Ojibwe is an indigenous language of the Algonquian
family and is native to Canada and the United States. It has about
56000 native speakers and uses the Latin script in its written form.
Our corpus for Inupiaq and Ojibwe was collected as part of the En-
dangered Languages project at Carnegie Mellon University.

As we can see in Table 1, the data for our languages varied from as
little as 5 minutes of recorded speech for languages like Konkani and
Inupiaq to over an hour of speech for English and Dari. In addition,
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Table 1: Data available for different languages

Language Duration (minutes) Script

English 66 Latin

Dari 63 Arabic

Hindi 56 Devanagari

Iraqi 61 Arabic

Pashto 56 Arabic

German 53 Latin

Tamil 41 Tamil

Thai 25 Thai

Ojibwe 12 Latin

Russian 6 Cyrillic

Konkani 5 Latin

Inupiaq 5 Latin

the quality of recordings was also not uniform across the databases,
with Russian being significantly worse than the other databases. We
did this in order to mimic real-world scenarios of data availability
for low-resource languages and to measure the gains our techniques
would provide across different data sizes.

2.4.3 Evaluation

In order to compare the different grapheme to phoneme conversion
strategies, we built full synthetic voices out of them. We held out
10% of the data during voice building. On this data, we compared
the synthetic speech with reference recorded speech by looking at
the Mean Mel Cepstral Distortion[36] (MCD) of the predicted cepstra.
Since this is a distance measure, a lower value suggests better syn-
thesis. Kominek [37] has suggested that MCD is linked to perceptual
improvement in the intelligibility of synthesis, and that an improve-
ment of about 0.08 is perceptually significant and an improvement of
0.12 is equivalent to doubling the data. The values in bold in the table
indicate the lowest MCD for that language.

We see that in most languages, using UniTran, which gives us an
approximate phonetic mapping and phonetic features, leads to an im-
provement in MCD. Dari and Pashto UniTran voices are worse than
raw graphemes, probably because UniTran provides a single map-
ping for the Arabic script, which may not be appropriate for these
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Table 2: MCD for languages built with raw graphemes, UniTran and knowledge
(when available)

Language Raw UniTran Knowledge Based

English 5.23 5.11 4.79

Dari 4.78 4.95

Hindi 5.10 5.05 4.94

Iraqi 4.77 4.72 4.63

Pashto 4.91 4.96

German 4.72 4.30 4.15

Tamil 5.10 5.04 4.90

Thai 4.82 4.98

Ojibwe 6.72 6.71

Russian 5.13 4.78

Konkani 5.99 5.87

Inupiaq 4.79 4.68

languages.

The advantage with the raw grapheme method is that it can be
used when we have absolutely no information about the phonetics
of a language - all we need is speech data and corresponding tran-
scripts in the orthography of the language. The disadvantage with
this method is that the models cannot use phonetic feature informa-
tion while clustering similar phones together, since we have no infor-
mation about what the phones actually are. Another disadvantage is
that multiple characters that may actually map to a single phoneme
in the language (like vowel markers and vowels) now map to dif-
ferent phonemes, which may lead to less data and context for each
phoneme.

We see that across all five languages for which we have knowledge-
based front ends, the voice with knowledge is much better than the
UniTran based voice. The difference is much larger (0.32) on English,
and relatively smaller (0.09) on Iraqi. This may be because English
has many ambiguities that simple LTS rules cannot capture, and the
amount of linguistic knowledge that went into the English voice was
much larger than that in the Iraqi voice.
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2.5 chapter summary

In this chapter, we situated our work in the general Speech Synthesis
pipeline and described the resources needed to build a TTS system
in a new language. We also introduced our baseline framework for
building grapheme-based voices for any language, which includes
the raw grapheme and UniTran based techniques. We built voices
using these techniques and compared them to voices built with man-
ually created resources, using an objective metric of TTS system qual-
ity.

Next, we will look at how to improve grapheme-based voices for
low-resource languages by using better modeling techniques and fea-
tures.
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I M P R O V I N G G R A P H E M E - B A S E D S Y S T E M S

In Chapter 2, we introduced a framework to build grapheme-based
voices for low resource languages either by treating each grapheme
as a phoneme or using UniTran, a resource that provides a map-
ping from Unicode characters to phonemes in the X-SAMPA phone-
set. The main difference between these two techniques is that in the
first method (raw graphemes), we do not have any information about
what the phonemes mean, in terms of phonetic features. In the Uni-
Tran technique, we map Unicode characters to a known set of phonemes.
Although the UniTran mapping does not cover all the scripts in the
world, it covers a majority of them, and we use it as our grapheme
baseline.

In this chapter, we explore two techniques to improve upon the
UniTran baseline. First, we explore how using a better modeling tech-
nique may improve voices in general, including grapheme-based voices.
We also present subjective and objective evaluation results comparing
grapheme and knowledge based voices, with the final goal of finding
out whether our best grapheme-based voices are usable.

Grapheme-based systems are limited when it comes to ambiguities
in Letter to Sound rules, due to their reliance on a single phonetic rep-
resentation for each letter. In the second part of this chapter, we use
acoustics and cross-lingual techniques to automatically derive letter-
to-sound rules to improve synthesis for Hindi.

3.1 using better modeling techniques

In our standard speech synthesizers, we use individual Classification
and Regression Trees (CART) to model the spectrum, pitch and du-
ration. These CART models take features extracted from the data,
at various granularities such as phonemes, syllables, words, phrases
and surrounding context to predict the spectrum, duration and funda-
mental frequency (f0) of the synthesized speech. Some of the features
include Part of Speech of the word, stress, position of the word in the
phrase, pause information etc. Typically, rich feature sets and a large
amount of training data lead to better models.

In low-resource scenarios, we typically do not have much data to
train these trees on, and we may not be able to extract certain fea-
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tures such as Part of Speech. Using Random Forests [38], which is
an ensemble learning technique that uses multiple CART trees may
provide advantages in such cases by splitting the data in different
ways and making better use of features. There are multiple configu-
rations possible with Random Forests - either we can randomly vary
the features used in each tree and build multiple trees, or we can
randomly choose the parameters to predict. Another variation is by
using random parts of the data to train models on. In the experiments
described ahead, we predict a random set of features using multiple
trees. The Random Forests build is now part of the standard Festvox
distribution for building models of the spectrum and duration [39]
and has been shown to improve knowledge based voices built with
multiple databases of various sizes in different languages.

Our motivation for exploring better modeling techniques was to see
how far we could get with an imperfect g2p mapping by using Ma-
chine Learning techniques that make soft decisions on choosing units
based on context, rather than modifying the pronunciation of voices
by replacing phonemes, which is a harder decision. This would be
especially useful if we have a lot of data to train models on, or have
good models to make use of small amounts of data.

3.1.1 Synthesis with Random Forests

For our Random Forests (RF) voices, we started with the UniTran
mapping for the grapheme to phoneme conversion. For these voices,
we build 20 decision trees to predict spectral features, where each tree
is randomly restricted to 70% of the standard prediction features.

Each tree individually will typically give worse results than a tree
built with all features, but the combination of multiple trees built with
different features will typically give a substantial improvement. Al-
though this technique is not specifically designed for grapheme based
voice builds, the combination of predictions from different trees al-
lows better use of features and avoids over splitting the data, which
we felt may be helpful in this low resource scenario.

We used the same databases as described in Chapter 2 to conduct
our experiments.

3.1.2 Objective Evaluation

We compare Mel Cepstral Distortion (MCD) for the UniTran and RF
voices shown in Table 2. We see that in every single case, we get a sig-
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nificant improvement in MCD. In case of Hindi, Iraqi, German and
Tamil we are able to perform better than the knowledge-based front
end without Random Forests. We expect that building a Random For-
est voice using the knowledge based front end would lead to even
better improvements, but for our low-resource scenario where such a
front end will not be available, this result is very encouraging.

Table 3: MCD for languages built with UniTran vs. Random Forests

Language UniTran Random Forests

English 5.11 4.91

Dari 4.95 4.80

Hindi 5.05 4.88

Iraqi 4.72 4.56

Pashto 4.96 4.80

German 4.30 4.10

Tamil 5.04 4.85

Thai 4.98 4.74

Ojibwe 6.71 6.19

Russian 4.78 4.64

Konkani 5.87 5.59

Inupiaq 4.68 4.56

3.1.3 Subjective Evaluation

So far, we saw improvements in objective metrics both while going
from raw graphemes to UniTran and from single CART trees to Ran-
dom Forests. We compared these conditions in subjective evaluations
for English, German, Russian, Hindi and Tamil. Our choice of lan-
guages was based on the availability of subjects for listening tests.

We used Testvox [40] to carry out all our subjective tests both lo-
cally and on Amazon Mechanical Turk. In order to ensure that native
speakers took the test, we translated the instructions to the respective
languages. Each participant listened to audio clips in random order
and was asked to pick the one they preferred, with the option of pick-
ing "no difference". Each participant listened to either 5 or 10 pairs of
clips, with most participants listening to 10 pairs.

Table 4 shows the results of the subjective listening comparison be-
tween raw graphemes and the UniTran-based systems. We can see
that in all five languages, subjects preferred the UniTran voices to the
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Raw Graphemes voices. In some languages, this difference was higher
while in languages like Hindi and Tamil where the UniTran method
does not provide a substantial gain over raw graphemes due to the
nature of the writing system, the difference wasn’t as high. The qual-
ity of the Russian speech data being lower probably made it harder
to differentiate between the two voices.

Table 4: Raw graphemes vs. UniTran preference

Language Participants Prefer RG Prefer UniTran No difference

English 13 22% 61% 17%

German 12 29% 54% 17%

Russian 11 32% 43% 25%

Hindi 12 38% 51% 11%

Tamil 12 28% 58% 14%

Table 5 shows the comparison between the UniTran-based systems
with and without and Random Forests. There was a preference for
the RF voices over the UniTran voices in all cases. Once again, the
Russian speech seemed harder to differentiate.

Table 5: UniTran vs. Random Forests preference

Language Participants Prefer UniTran Prefer RF No difference

English 12 31% 61% 8%

German 9 36% 51% 13%

Russian 12 29% 47% 24%

Hindi 12 31% 51% 18%

Tamil 12 37% 53% 10%

Since our main goal was to see how far we could get with our
best grapheme voices when compared to voices built with knowledge,
we carried out transcription tests in English, German and Hindi. We
asked 10 subjects to transcribe 10 sentences each in English, German
and Hindi for the Knowledge Based and Random Forests grapheme
conditions. Table 6 shows the percentage of words transcribed cor-
rectly for all the languages.

Here we see that for English, the UniTran+RF voice is still signifi-
cantly worse than the knowledge based one. This may be due to two
reasons - the knowledge that went into the English voice is substan-
tially more than the other languages and the nature of the English
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Table 6: Words transcribed correctly for Knowledge Based and RF grapheme sys-
tems

Language Knowledge Based Random Forests

English 87.14% 66.52%

German 90.85% 89.89%

Hindi 88.19% 86.34%

script makes a grapheme-based technique quite inappropriate for it.
However, we see that for both German and Hindi, the difference be-
tween the usability of the RF and knowledge based voices is very low,
and all the voices are almost at 90% transcription accuracy.

Although our best Hindi voice is reasonably understandable, there
are some Letter to Sound rules that the grapheme-based system does
not capture, such as schwa deletion, which may not affect intelligibil-
ity as much as it affects naturalness and the ability to sound like a
native speaker. In the next section, we explore how we can automati-
cally derive such rules to improve grapheme-based voices.

3.2 using acoustics to improve grapheme-based voices

3.2.1 Introduction

Many languages in the world have a fairly unambiguous relationship
between the letters and sounds. In such languages, it may not be nec-
essary to specify a lexicon containing all the words in a language. It
may be enough to specify a set of rules that maps letters to sounds,
and have a few additional rules for special cases.

Many major Indian languages have a fairly good relationship be-
tween letters and sounds, with a few exceptions. Indo-Aryan lan-
guages such as Hindi, Bengali, Gujarati etc. exhibit a phenomenon
known as schwa deletion, in which a final or medial schwa is deleted
from a word in certain cases. For example, in Hindi, the final schwa
( realized as the sound @) in the word kml pronounced ’kamal’ is
deleted. None of the consonants (k, m and l) have attached vowels,
and hence have inherent schwas, and the schwa on the last conso-
nant gets deleted. The word lgBg pronounced ’lagbhag’ has conso-
nants l g B g, from which medial as well as final schwas attached
to the consonant g (g) are deleted. If schwa deletion does not take
place, these words would erroneously be pronounced as ’kamala’ and
’lagabhaga’ respectively. In both these cases, the orthography does
not indicate where the schwas should be deleted. Similarly, there are
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voicing ambiguities in languages such as Tamil, which may follow a
complicated set of rules that may be language specific.

3.2.2 Schwa deletion in Indo-Aryan languages

There are well defined linguistic rules to predict when a schwa is
deleted and when it is not deleted. However, there are exceptions to
these rules that are reported as being around 11% of the vocabularly
[41]. With the addition of new words and foreign words, one would
expect this number to be higher. Also, Hindi and other Indian lan-
guages being low resource, there are no large lexicons available that
can be used to automatically train these rules from.

Previous work on schwa deletion includes approaches that take
into account morphology [41] to preserve schwas that may otherwise
be deleted. Other approaches have used syllable structure and stress
assignment to assign schwa deletion rules [42]. Choudhury et al. [43]
use ease of articulation, acoustic distinctiveness and ease of learning
to build a constrained optimization framework for schwa deletion.

As per our knowledge, there has not been much work done in the
area of automatically deriving schwa deletion rules by making use of
acoustics.

Schwa deletion for Hindi occurs in both word final and medial po-
sitions, while for languages like Bengali it occurs only in word final
positions. The schwa deletion rules currently implemented in Festvox
based on a simpler version of [41] are as follows:

• Delete the schwa at the end of a word

• Process input from right to left

• If a schwa is found in a VC_CV context, delete it

Taking the examples of kml (’kamal’) and lgBg (’lagbhag’) men-
tioned earlier, we now see how these rules apply. In case of kml, the
three consonants k, m and l all have inherent schwas, and the last
schwa is deleted according to the first rule. Since none of the other
schwas are in a VC_CV context, they remain. In case of lgBg, the
consonants l g B g also have inherent schwas, and once again the
final schwa gets deleted. However, the schwa attached to the second
g (’g’) is in a VC_CV context, and hence gets deleted. This rule gives
us the correct pronunciation in both these cases.
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The rules stated above have exceptions which are not implemented
in the current version of Festvox. So, there is scope for improving
the schwa deletion rules even with the hand-written rules that the
current Hindi system has, by making use of other information to au-
tomatically come up with these rules.

Our approach to this problem involves using the acoustics, or the
way the voice talent pronounced words in order to learn more about
the pronunciation of words, and try to generalize them into rules that
can be used for new contexts.

First, we wanted to see the impact schwa deletion has on the over-
all quality of the database. Our baseline system for Hindi used the
UniTran front end, which automatically assigned schwas to all con-
sonants that did not have a vowel following them. We also built a
system using the Indic front end, which had hand-written rules for
schwa deletion.

We found that the difference between the MCD of the two voices
was 0.05, which is not very significant - a difference of 0.08 is gen-
erally considered to be perceptually significant. In informal listening
tests, we found that the difference between these voices was easily
perceivable by native speakers. This indicates that MCD averaged
across the entire database may not be the most appropriate metric to
capture this phenomenon, considering that it occurs in around 40%
of the words in the Blizzard Hindi corpus.

3.2.3 Data and Resources

Our approach to automatically discovering the rules for schwa dele-
tion was to use cross-lingual models and acoustic information.

We set up the problem as follows: we considered Hindi to be our
low resource language with no data or resources available other than
the TTS audio, corresponding transcripts in Unicode and the Uni-
Tran mappings for the Hindi Unicode characters. The UniTran map-
pings assigned a schwa to every consonant character which meant
that our task was to delete schwas wherever appropriate. Our Hindi
data came from the 2014 Blizzard Challenge [44] and consisted of
around an hour of speech from a professional male speaker.

Since we treated Hindi as the language with low resources, we
built an acoustic model with data from other Indic languages. We
created a corpus of an hour each of Bengali, Telugu, Tamil, Telugu
and Rajasthani TTS data from the Blizzard Challenge and treated all
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these languages as higher resource languages. We used Sphinx [45]
for building an Indic Acoustic Model with this data.

In order to learn the rules from acoustics cross-lingually, we used
Assamese as our higher resource language. The Festvox Indic front
end uses word-final schwa deletion rules for Assamese. Our Assamese
TTS data came from the Blizzard Challenge data and consisted of an
hour of speech from a professional male speaker.

It may seem counter intuitive to treat Hindi as a lower resource lan-
guage than Assamese, but we set up the problem in this way so that
we could conduct subjective evaluations easily on the Hindi voice.

3.2.4 Experiments

We used the Festvox Indic front end to correctly delete schwas for
Assamese, which has word-final schwa deletion, and treated this as
the correct phonetic expansion. We also used the UniTran baseline on
Assamese which had spurious schwas, and used this as the wrong
phonetic expansion in the places where the schwa should have been
deleted. We force aligned the speech data using both these phonetic
transcripts using the Indic Acoustic Model we built earlier.

We used the Indic acoustic models to force align the Assamese data
using Sphinx. Since the phone set for all the languages was the same,
we created a lexicon using the pronunciations of the Assamese words
in the data. During force alignment, the Acoustic Model produces the
timestamps and an acoustic spectral match score for each phoneme.
Force alignment has been used to score pronunciations in pronuncia-
tion training systems, which we will discuss in detail in Chapter 5.

Next, we used Assamese data to build two classes for the CART
tree: a positive class with the correct schwa labels from the knowl-
edge based Indic front end, and a negative class with spurious schwas
from the UniTran baseline. We used the score that Sphinx assigns for
each phoneme during forced alignment, that we will refer to as the
Acoustic Score and its right and left contexts, and the duration of the
phoneme and context phonemes as features in our model.

The main idea was to look at these features in the synthesized
speech from the UniTran baseline for Hindi after force aligning it with
the Indic acoustic model, and predict if a schwa belonged to a nega-
tive or positive class, that is, whether it should be deleted or not. It
should be noted that Assamese only contains word-final schwa dele-
tion, but we hoped to capture word-medial schwa deletion in Hindi
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as well with this model.

After running the model, we got predictions about whether schwas
should be deleted or not, in the Hindi data. We manually labeled
400 words to calculate the precision of these predictions and found
that the precision was slightly better than chance. However, we found
that many words were labeled with the correct schwa deletion rules
more often than they were labeled wrong. So, we took the most fre-
quent label of a word and created a new lexicon for Hindi with it. We
used this lexicon while building the Hindi voice. Some examples of
correctly identified lexical entries with word final and medial schwa
deletion include unkF(’unki’ instead of ’unaki’), rjnFEt(’rajneeti’ in-
stead of ’rajaneeti’) and is (’is’ instead of ’isa’).

3.2.5 Evaluation

Since we had seen that MCD was not sensitive to schwa deletion, we
carried out a subjective evaluation comparing the voices we built for
Hindi.

We synthesized 10 sentences for Hindi and asked 10 native speak-
ers of Hindi to choose between the systems built with the UniTran
baseline and our predicted schwa deletion lexicon. We asked them to
pick the system they felt had better pronunciation, with the option to
pick "no difference". Table 7 shows the results of the subjective evalu-
ation.

Table 7: Subjective evaluation of schwa deletion

Prefer Baseline Prefer Predicted No difference

30% 59% 11%

We can see that there was a preference for the system with the pre-
dicted schwa deletion rules, when compared to the baseline. Here, we
used the UniTran mappings as the baseline, which does not delete the
schwa at all, but we could also have used a random baseline, which
randomly deletes schwas.

In this experiment, we only used an Acoustic Model phoneme-
level score and duration as features in our CART trees. We could use
other features, such as articulatory features and Inferred Phonemes
[46] that are also acoustically derived. Further improvements can be
made to this model by using a larger database size for training, better
Acoustic Models for force alignment and a richer set of linguistic fea-
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tures during prediction. In addition, such techniques can be applied
iteratively as explained in the following chapter to improve systems.

3.3 chapter summary

In this chapter, we explored techniques to see how far we could im-
prove grapheme-based voices that used Letter to Sound rules or map-
pings, in low-resource scenarios.

We showed that using Random Forests as a modeling technique
over single Classification and Regression Trees improves the UniTran
based voices and in most cases, is better than the knowledge based
voice modeled with single trees. Using better modeling techniques
like Random Forests may help in low resource scenarios to make
the best use of the available data. This shows how far we can go
by making soft decisions about the pronunciation of such systems,
without making changes to the phonemes in the LTS rules that we
already have, which may be useful in cases where we have a large
TTS database without any other resources in the target language and
very few resources in related languages. We saw that our grapheme-
based systems built with Random Forests were fairly intelligible in
transcription tasks, with the exception of English, which is very diffi-
cult to model using grapheme-based techniques.

To improve naturalness, we may want to go beyond soft decisions,
and start making changes to the Letter to Sound rules automatically.
In this direction, we described a technique with which we could auto-
matically come up with schwa deletion rules for Hindi using acous-
tics and cross-lingual data. The voice built with this technique had
better pronunciation than the UniTran baseline, without using addi-
tional resources from Hindi. Although features derived from force-
alignment have been used in the past to detect mispronunciation, this
part of the work uses them in a novel, cross-lingual way to detect
specific linguistic phenomena that are common between the two lan-
guages, but not identical. Other letter to sound rules can potentially
be discovered by using cross-lingual models of related languages by
using the technique described for discovering schwa deletion rules.

Many low-to-medium resource languages may have lexicons, but
the lexicons may not be appropriate for the particular dialect of the
language or may have ambiguities. In the next chapter, we describe
techniques to disambiguate pronunciations in lexicons with homo-
graphs.
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4.1 introduction

Text to Speech systems typically either make use of a lexicon to look
up the pronunciation of words or use letter-to-sound rules trained on
a lexicon or written by hand. So far, we looked at TTS systems that
used a g2p (grapheme to phoneme) lookup table or a set of hand
written rules.

Pronunciation lexicons that map words to strings of phoneme take
a lot of human effort to create, and are available for only a few lan-
guages of the world. For some languages, these lexicons may be am-
biguous or have incorrect entries and may not be enough to provide
a completely accurate pronunciation of a word. This can be problem-
atic for both speech recognition and synthesis.

In consonantal writing systems like Arabic and Hebrew, the diacrit-
ics that indicate short vowels are usually omitted. This creates ambi-
guity when it comes to pronunciation, which native speakers resolve
by looking at the context of the word. This also creates semantic am-
biguity if the word is looked at in isolation.

For example, words derived from the root "?lm" in Arabic can have
different pronunciations ’alima’, ’allama’,’ ilm’, ’alam’, that mean ’to
know’, ’to teach’, ’science’ and ’flag’ [47]. Without knowing the di-
acritics, it is not possible to disambiguate the pronunciation of this
word in isolation. Homographs in English like lives (verb, ’the cat
lives’) and lives (noun, ’nine lives’) share the same orthography but
have different pronunciations that can be disambiguated by Part of
Speech (POS).

This can be a challenge for TTS systems particularly in the case of
low resource languages for which tools like POS taggers may not be
available or be very accurate. Also, some of these variants may not be
predictable by context or POS but may need a deeper understanding
of the semantics of the utterance.

We describe a technique to use Acoustic Models to disambiguate
pronunciations by making use of the TTS database speaker’s pronun-
ciations of words. We build Text to Speech systems using the pronun-
ciations that the Acoustic Model selects iteratively until our objective

27
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measure of TTS system quality converges. At synthesis time, we pre-
dict the pronunciation of the word by looking at linguistic features
and context using only text.

In this setup, we assume that we have a lexicon for the language
and our task is to pick between pronunciation variants in the lexicon.
We describe a technique to disambiguate pronunciations in lexicons
of dialects of Arabic, which typically have multiple lexical entries for
most words due to the absence of diacritics.

4.2 related work

The problem of having to choose from multiple variants of a homo-
graph in certain languages also appears to some degree in all lan-
guages. Earlier work has considered how speaker (and style) lexical
choices affect synthesis using both acoustic models to label them[48]
[49] and statistical models at synthesis time to choose the right vari-
ant. It is targeted at very localized choices, such as vowel reduction.

This work has some similarity to the early work of Yarowsky [50]
on homograph disambiguation. However here we do not require any
human labeling of initial examples, but rely on the acoustic models
to find these variants in the data. But then, like Yarowsky, we predict
which distinct homographic instance to use as both training time (to
improve our models) and at test time when doing novel synthesis.

Davel et. al [51] describe techniques to bootstrap pronunciation dic-
tionaries for low-resource South African languages by using a human
in the loop. They describe algorithms to incorporate phonemic vari-
ants in the lexicon and automatically extract rules for grapheme-to-
phoneme conversion. However, they only make use of a previously
available or bootstrapped lexicon to generate and predict these vari-
ants, in isolation.

SALAAM [52] is a technique in which an existing high quality ASR
system is used to automatically generate pronunciations in a target
language through cross-lingual phonetic decoding. These pronunci-
ations are then used as the lexicon by the ASR system to decode
speech in the target language. The main application of this method is
to build an ASR system for the low resource target language, and the
pronunciations are created to maximize ASR discrimination between
them [53]. These pronunciations, however, may not be suitable for a
TTS system to synthesize from. Also, the SALAAM method has been
used for low vocabulary scenarios and needs multiple instances of
training data for each word which are not necessarily available in a
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TTS database.

Anumanchipalli et al. [54] improve the pronunciation of Out of
Vocabulary (OOV) words for ASR by creating a list of candidate pro-
nunciations of the word using its orthography and then using a single
acoustic realization to rerank the n-best list of pronunciations using
features such as the acoustic score, phone transition cost etc.

Prahallad et al. [55] use Hidden Markov Model (HMM) topolo-
gies that have insertions, deletions and substitutions for sub-phonetic
states to capture pronunciation variations for conversational TTS and
show differences in pronunciation between first and second mentions
of content words.

Hain [56] argued that adding multiple pronunciation variants in
the ASR lexicon was not necessary for modeling pronunciation vari-
ability. He described a method to utilize single pronunciation variants
for words in the lexicon and implicitly model pronunciation variabil-
ity which resulted in improvements in Word Error Rate for the Wall
Street Journal and Switchboard data. It is worth investigating if this
finding extends to other languages that do not have good lexicons or
letter-to-sound rules to begin with.

Although a low-resource language may not have its own ASR sys-
tem, in this work, we make an assumption that an Acoustic Model
exists in the language or in a language very close to it, or we assume
that the language has enough speech data and corresponding tran-
scripts that we may be able to build our own Acoustic Model using
them. We do not however assume that additional tools like POS tag-
gers and diacritizers exist in the language.

4.2.1 Data and Resources

In our experiments, we applied our techniques to three databases in
two languages - Modern Standard Arabic and Iraqi Arabic. Though
Modern Standard Arabic can be thought of as a high-resource lan-
guage, we treated it as a low-resource language to see how well our
techniques perform against the gold standard.

4.2.2 TTS databases

For Modern Standard Arabic (MSA), we used data from the SASSC
[57] corpus. The SASSC database contains single male speaker data
spoken with different styles such as normal, funny, sad, questions
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etc. We used 50 minutes of data from the ’normal’ speech part of the
database as our TTS data. The corresponding transcript was fully di-
acritized. Since most written Arabic is not diacritized, we ran a script
to remove the diacritics from the transcript for the rest of the experi-
ments.

We used data from BBN created for the BOLT project and Iraqi
Arabic TTS data from the TRANSTAC project [58] for the Iraqi Ara-
bic TTS systems. The BBN data had 62 minutes of speech from a
male speaker. The Transtac data had 74 minutes of speech from a
male speaker. In both cases, the corresponding transcripts did not
have any diacritics.

4.2.3 Acoustic Models

For building the MSA Acoustic Model, we used the rest of the normal
speech in the SASSC corpus, leaving out the utterances labeled tradi-
tional which were in Classical Arabic. This came to around 5 hours of
speech data. We removed the diacritics from the transcripts used for
training the Acoustic Model.

For building an Iraqi Arabic Acoustic Model, we used 2-way di-
alogs between native Iraqi Arabic speakers, interpreters and native
English speakers from the Transtac project. We extracted 20 hours of
Iraqi Arabic utterances spoken by native speakers from the dialogs us-
ing manually annotated timestamps and transcripts. The transcripts
did not contain any diacritics.

We used the CMU Sphinx speech recognition toolkit [45] to train
Acoustic Models and force-align speech, as described in Chapter 3.

4.2.4 Lexicons

For MSA, we did not have a standard lexicon. However, we had the
transcripts and labels for the audio data from the SASSC corpus. We
aligned the phoneme labels with the words in the transcript and cre-
ated a lexicon specific to our corpus. However, this alignment was not
completely accurate. In Arabic, the determiner ’al’ is often blended
with the end of the previous word to create fluid speech. This makes
determining the word boundaries difficult because the final vowel is
combined with the initial ’a’ of the ’al’, and the determiner sounds
like it is attached to the previous word instead of the correct word.
This creates many words with extra phonemes at the end, and defi-
nite words that do not have the phonemes for the determiner. This
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resulted in lexicon entries that are not entirely correct.

We used an Iraqi Arabic lexicon from LDC which contained words
with and without diacritics in Iraqi script, Buckwalter transliteration
[59] for each word, syllable boundaries and POS tags. We created a
phone set by mapping the Buckwalter characters to individual phonemes
with the appropriate phonetic features. The LDC lexicon contains
around 88k words, out of which 11k words have multiple pronun-
ciations, with some words having as many as eight different pro-
nunciation variants. We created a new lexicon using Iraqi Arabic sur-
face forms without diacritics, phonemes with syllable boundaries and
POS tags. We numbered the pronunciation variants in the lexicon as
word, word(2), word(3) etc.

4.2.5 Other resources

In order to better process the MSA data, we removed all diacritics and
normalized certain consonants that have many common variations.
To get part of speech tags for MSA, we used the Stanford Tagger
[60] with their standard Arabic model. For Iraqi we used CALIMA
[61], a morphological analysis tool for Arabic dialects developed at
Columbia University.

4.2.6 Learning Pronunciations from Acoustics

Our data consisted of transcripts without diacritics and correspond-
ing speech for building TTS and Acoustic Models. We also had a lex-
icon for Iraqi Arabic and a derived lexicon for MSA. However, each
of these lexicons had multiple lexical entries for the same word, since
all the diacritics had been removed and words with different short
vowels were now treated as being variants of the same base word.

Given a pronunciation dictionary with multiple pronunciations for
ambiguous words, audio recordings for TTS and the corresponding
transcript, our task was to choose the correct pronunciation from the
lexicon for the words in the transcript.

Figure 3 illustrates our approach to learning pronunciations from
audio. First, we use an Acoustic Model from our target language to
force align the original TTS transcript with the TTS audio. The Acous-
tic Model is trained on a large amount of data in the language, if
available. During the process of forced alignment, the model chooses
a pronunciation from the lexicon for a particular word based on the
best scoring phoneme string in the lattice. So at the end of force-



32 disambiguating homographs in lexicons

alignment we get a transcript that has different pronunciation vari-
ants compared to the original transcript.

Figure 3: Iterative process to choose better pronunciations

Next, we use the new transcript and the speech from our TTS
database to rebuild an Acoustic Model. This targeted Acoustic Model
is then used to force align the transcript used for training the data.
We repeat this process iteratively and at each stage build a CLUS-
TERGEN voice. We use the same held out set of sentences for all the
iterations to test the TTS system and measure the MCD, thus mea-
suring the improvement in labeling with each iteration. We stop the
iterations when the MCD no longer improves. At each stage, an alter-
native to building new targeted acoustic models is to do some kind of
model adaptation, particularly in cases when the TTS database size
is very small.

4.3 objective results

Table 8 shows the MCD of the baseline system and the best iteration.
An improvement of 0.08 in MCD is considered to be perceptually sig-
nificant and an improvement of 0.12 is equivalent to doubling the
training data [17]. In all three cases, we get a significant improvement
in MCD compared to the baseline.

In previous work, we have seen that repeating this process iter-
atively while building cross lingual phonetic TTS systems for lan-
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guages without a written form has given us gains, typically in the
third or fourth iterations [62]. In these experiments, we observed a
sharp decrease in MCD in Iteration 1 for all three TTS databases. In
case of the Iraqi BBN database, there was a slight improvement in the
MCD in Iteration 2.

Table 8: Baseline and best iteration MCD scores

Database Baseline Best Iteration

Iraqi BBN 4.67 4.21

Iraqi Transtac 4.88 4.35

MSA 6.64 6.34

The MSA database originally consisted of diacritized text, so we
built a voice using this text which we treated as the gold standard.
The MCD of the gold standard MSA voice was 6.44, which is higher
than the best iteration MCD. It is important to note however that the
lexicon created for MSA was not completely accurate even for the
gold standard voice due to the issues in processing it mentioned ear-
lier. However, this result shows that the iterative technique probably
managed to recover from some of those errors. Since diacritized text
was not available for the Iraqi databases, building a gold standard
voice for them was not possible.

4.4 predicting pronunciations from text

At synthesis time, we need to be able to predict pronunciations from
text. The Iraqi Arabic LDC lexicon contained Part of Speech tags for
all the words, which we used to build Classification and Regression
Trees (CART) to predict the pronunciation of a particular word, given
its POS and the POS of the previous two and next two words. We
used the Edinburgh Speech Tools [63] CART tree building program
to build and test our trees. We built individual CART trees for each
word and tested our trees on held-out data.

A survey of the incorrectly predicted words showed that most of
the failed disambiguations were due to homographs with different
pronunciations where contextual information is needed in order to
choose the correct one, and only using POS was not enough. No re-
liable dependency parsers exist for Iraqi Arabic, so we used lexical
features from the surrounding words to help with disambiguation.
We also used induced POS [64] for MSA, but since we had a small
amount of training data, we did not get reliable tags. We use the Iraqi
version of CALIMA for morphological analysis. The morphological
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analysis includes a stem for each word, and we use this to extract
prefixes, a stem, and suffixes for each word. The lexical feature vector
consists of the stem and affixes for the target word as well as the next
and previous word.

We found that the accuracy of the CART trees by performing 10-
fold cross validation for Iraqi Arabic was very high at 93%, while
for MSA it was much lower at 76%, which can be explained by the
problems with the accuracy of the lexicon mentioned earlier and less
training data for the trees. Using a larger amount of training data and
better features trained in an unsupervised manner from the text may
help in improving the prediction models.

4.4.1 Subjective evaluation

We saw that our iterative method resulted in better labeling for the
three databases and hence better MCD, which resulted in much better
quality that should be perceptually significant. However, we wanted
to test how good our predictions were and whether subtle variations
in pronunciation could be perceived by native listeners.

We used the Testvox [40] tool for creating AB preference tests with
a ’no difference’ option for all our subjective tests. In our first set of
listening tests, we conducted preference tests with four native Arabic
speakers outside our research group for Iraqi Arabic. Subjects were
asked to listen to two synthesized sentences from the test set that had
one word that our model predicted a different pronunciation for than
the default pronunciation in the lexicon. We found that there was a
slight preference for the utterances with our predictions compared to
the baseline. In many cases, the difference in pronunciation was sub-
tle and was not perceived in the listening test.

We thought it would be useful to have the subjects explicitly focus
on the word that was different in the two utterances so that we could
judge whether the pronunciations we predicted were different or not.
We conducted subjective tests for MSA, and synthesized sentences
similarly as we did for Iraqi. In the listening tests, we showed sub-
jects the transcript with the ambiguous word highlighted and asked
them to pick the synthesized utterance in which the word sounded
correct, or choose a third option if they could not tell a difference.
Table 9 shows the results of the listening test with 9 native Arabic
subjects, with each subject listening to 10 pairs of sentences.

Our results for MSA show a significant preference for the predicted
pronunciations compared to the baseline. The important point to note
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Table 9: Subjective evaluation of pronunciation choice prediction for MSA

Prefer Baseline Prefer Predicted No difference

4.44% 64.44% 31.11%

here is that the rest of the sentence except the highlighted word was
identical, and all sentences were synthesized with the same system
using our best training labels. This result is very encouraging as it
shows that the difference in pronunciation can be perceived and that
we are making the right predictions.

An obvious question at this stage is whether it is worthwhile trying
to improve the pronunciation of systems when listeners need to be
told to focus on a word to discern differences in pronunciation. Our
intuition is that pronunciation variations will be easier to perceive
and pronunciations will be expected to be more accurate as systems
improve.

4.5 chapter summary

In this chapter we described our technique to disambiguate pronunci-
ations in lexicons containing homographs and applied it to the prob-
lem of picking pronunciation variants from lexicons of dialects of
Arabic. We carried out experiments on two databases of Iraqi Ara-
bic and one database of Modern Standard Arabic and evaluated the
systems built using objective and subjective metrics of TTS system
quality.

Our techniques showed a significant improvement in objective mea-
sures of TTS quality for all three databases for dialects of Arabic. We
built a model to predict pronunciations at synthesis time from text
using POS, lexical and context features, and found significant pref-
erence for pronunciations selected by the model in subjective evalua-
tions for MSA.

Such techniques have been used in the past to disambiguate homo-
graphs in English but scaling them to languages like Arabic where
homographs occur very frequently can lead to large improvements in
TTS system quality. In addition, there is some evidence that perform-
ing multiple iterations and building targeted Acoustic Models may
create some improvements.

The problem of missing diacritics in languages written in the Ara-
bic script extends to languages like Urdu, Farsi, Hebrew etc. One can
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also imagine applying the same techniques to European languages
with missing accents in the transcript, or languages that contain many
homographs. We can also apply such techniques to pick between mul-
tiple pronunciation variants in noisy or automatically created lexi-
cons.
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I M P R O V I N G P R O N U N C I AT I O N U S I N G A C O U S T I C
F E AT U R E S

5.1 introduction

In earlier chapters, we introduced a baseline system for grapheme
to phoneme conversion in any language, and showed how we could
improve pronunciations with the help of acoustics and cross-lingual
techniques for specific ambiguities that existed due to the written
forms for some languages. In all these cases, we were already aware
of the pronunciation nuances in the languages ie. the ambiguity in
short vowels in Arabic because of the written form, and the schwa
deletion issue in Hindi.

However, for very low resource languages, we may not know any-
thing about the language and may not have access to a native speaker
with linguistic knowledge. We may not be able to search for specific
pronunciation issues and solve them. In such cases, it would be useful
to have a general technique that could improve the pronunciation of
low-resource grapheme-based systems. Further, it would be useful to
have a general technique to improve pronunciation that can be used
for higher resource languages as well.

For Hindi schwa deletion and Arabic homograph disambiguation,
we used an approximate or incorrect mapping from graphemes to
phonemes and then used acoustics and cross-lingual techniques to re-
fine these mappings by substituting phonemes. In this chapter, we ex-
plore using features derived entirely from the acoustics, in a bottom-
up manner.

Ideally, our features should be able to capture pronunciation vari-
ations that agree with linguistic theories. However, our aim is to im-
prove the intelligibility and naturalness of TTS system, so we will
continue to use measures of TTS system quality as our evaluation cri-
teria.

Since our focus is on improving pronunciation of low resource
languages, our technique should make use of minimal resources in
the target language - ideally only the TTS database and cross-lingual
resources from related higher resource languages. First, we identify
some potentially useful features that satisfy these conditions.

37
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5.2 acoustically-derived features

There has been work on using acoustically-derived features for im-
proving various Speech Processing and Language Technologies appli-
cations.

5.2.1 Duration in TTS

Kominek et al [65] suggest the use of phone durations to remove out-
liers to prune unit selection databases. Units with extreme durations
can be thought of as bad units and can be removed from the database.
In case of pronunciation, the mismatch between a predicted duration
and actual duration as detected by a labeling algorithm can suggest
that there is a case of phoneme insertion, deletion or substitution.
Consistent patterns for particular phonemes across the database may
suggest pronunciation errors that the system is making.

5.2.2 Computer Aided Language Learning

There has been considerable work in the field of Computer Aided
Language Learning (CALL) and Computer Aided Pronunciation Train-
ing (CAPT) on trying to identify pronunciation errors made by sec-
ond language (L2) learners and providing feedback on pronunciation.
Explicit pronunciation training has been treated as an important is-
sue because it has been shown that "pronunciation quality below a
certain level of proficiency places additional stress on the listener and
seriously degrades the ability of native speakers to understand what
is being said" [66].

The Fluency project, one of the earliest examples of a CALL sys-
tem that dealt with pronunciation training, initially contained a dura-
tion trainer module that scored the duration of phones of L2 learners
based on native speech [67]. Later, the Fluency system also pinpointed
specific phonetic errors made by non-native speakers of English, such
as IH as in ’bit’, S as in ’sit’, T as in ’tie’, V as in ’vine’ [68]. In addi-
tion to pinpointing pronunciation errors by making use of the CMU
Sphinx II Speech Recognition system, it also gave feedback to users
on how to correct those errors.

More recently, [69], [70], [71] describe using pairwise confusion
models to classify commonly made segmental errors. They use an en-
semble of Support Vector Machines (SVM) to classify mispronounced
phonemes and provide feedback about the general type of pronunci-
ation errors that a student makes at the end of the session, instead of
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pointing out every single pronunciation error, which may be demo-
tivating for the student. To provide this session-level feedback, only
those mispronounced phonemes are considered that have a error rate
significantly higher than that of native speech.

Several other studies on CAPT describe features such as duration,
confidence, posterior probabilities, log-likelihood produced by HMMs
[72] [73] combined with scores from Gaussian Mixture Models [74] to
score segmental pronunciations. [75] takes a different approach by
modeling sounds in the frequency space relative to the other sounds
in the language. [76] use syllable durations and F0 contours to study
differences in the generation of tones between native speakers of Man-
darin and German learners of Mandarin.

Peabody [66] describes an anchoring method to project MFCC fea-
ture vectors into a feature space that improves mispronunciation de-
tection for CAPT systems. A decision tree classifier is used with par-
allel native and non native models to score mispronunciations and
crowd-sourcing is used for obtaining phonetic labels.

We can view the problem of improving pronunciation in synthetic
speech as being similar in many ways to the problem of pronuncia-
tion errors made by second language learners. However, most of the
work in CAPT has focused on scoring and giving feedback on specific
pronunciation nuances, that may be specific to the L1 or L2 languages
or the L1-L2 pair.

5.2.3 Articulatory features

Articulatory Features (AFs), which are features that describe various
properties of phonemes such as place of articulation, vowel height,
voicing etc., have been used in a wide variety of applications. Artic-
ulatory features can have discrete or continuous values, but in most
cases they are represented by a vector of binary values that indicate
the presence of these features. These features are typically labeled at
a phoneme level, although in reality they are much more continuous
in nature.

Deng and Sun [77] describe an early feature-based Automatic Speech
Recognition (ASR) architecture that only makes use of articulatory
features and is evaluated on a phone recognition task. AFs have also
been used to improve ASR robustness in case of noise and reverbera-
tion, particularly in case of high noise conditions [78].
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Metze [79] describes a multi-stream setup for recognition of conver-
sational speech using Articulatory Features along with phone-based
recognizers, in which stream feature weights are learned discrimina-
tively. Articulatory features are more robust to speaking styles and
conversational speech, and integrating these features with conven-
tional recognizers improves performance.

Stuker et al. [80] [81] describe a technique to use multilingual and
cross-lingual articulatory features in an HMM-based ASR framework.
They show that by using multilingual AF detectors with learned weights,
they can outperform monolingual detectors in terms of ASR Word Er-
ror Rate.

Schultz and Waibel [82] use AF classifiers to improve the perfor-
mance of ASR for low resource conditions on the GlobalPhone cor-
pus [83] by using a global unit set that can be shared across lan-
guages. They used a small amount of adaptation data in the target
language for Large Vocabulary Continuous Speech Recognition in 10

languages.

Articulatory features have also been used for expressive speech
synthesis[84]. In this work, Articulatory Features have been extracted
for a variety of emotion and personality databases. Models are built
to predict the Articulatory Features from text, and they are mapped
to MCEPs which are then used for synthesis. The method of extract-
ing AFs is language and dialect independent, and hence can be used
cross lingually.

Articulatory features have been used recently in Text to Speech
in unwritten languages with some success. Muthukumar et. al [46]
have used Articulatory Features to come up with Inferred Phonemes
(IPs) for languages without a standardized orthography by training
a Neural Network on a corpus of labeled English speech. Phonemes
are inferred by clustering them so that they best predict the MCEPs
in synthesized speech. In this work, the authors experimented with
the number of inferred phonemes to find the number that produces
the smallest MCD and also came up with continuous phonetic fea-
tures for them. Adding the automatically derived phonetic features to
voices in place of traditional phonetic features got from a knowledge-
based front end improved voices.

Recently, we used Articulatory Features and Inferred Phonemes for
the task of minimal pair discrimination in the Zero Resource Speech
Challenge in Interspeech 2015 [85]. We used both the raw Articulatory
Features and the Articulatory Features of the inferred units as frame
based representations of speech. The evaluation metric was minimal
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pair ABX discrimination within and across speakers and we found
that the AFs performed well across-speakers, which may suggest that
they capture speaker-independent information.

Our task in this thesis is quite similar to this in that we want to
find a representative phoneme set for a language that has an under-
specified written form in most cases. However, unlike this work, we
do have a set of baseline phonemes that have a correspondence with
the real hidden phonemes that we are trying to discover, which we
should exploit. Since these AF-based phoneme like units have been
used successfully in the low resource scenario for speech synthesis,
we decided to explore using them to improve the pronunciation of
our systems. We now describe some experiments with our grapheme
based systems using the IP features.

5.2.4 Inferred Phonemes

First, we wanted to explore how much additional information these
acoustically-derived Inferred Phonemes (IPs) gave voices that already
had written forms. This is in contrast to [46], who did not use the
written form of the text, but assumed that the languages did not have
written forms and used cross-lingual phonetic transcripts. They used
the IPs as a derived written form to synthesize speech from. They also
assumed that there would be some other component that generates
this written form, such as a Statistical Machine Translation system in-
side a Speech to Speech Translation system. More details about this
framework can be found in Chapter 7.

Since we already had written forms for the grapheme voices (which
may not be ideal but are probably superior to ASR-derived tran-
scripts), we explored using the IPs as features within our system. The
motivation behind this was that the IPs, being completely acousti-
cally derived may be able to capture some pronunciation variation
information which can then be used to model pronunciation implic-
itly within our Machine Learning models.

To extract IPs, first, the speech from the TTS database was labeled
with Articulatory Features. The AF classifiers were trained on labeled
English TIMIT data [86] using a 3 Hidden Layer Neural Network.
This was the only language resource used to derive the IPs for all
the different experiments that we conducted. The disadvantage with
using only English to train AF classifiers is that articulatory features
present in other languages may not be detected by such classifiers.
Once the AFs were extracted for each utterance, they were clustered
into IPs based on their AFs and the number of IPs specified by the
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stop value of the tree. Instead of using cross-lingual phonetic tran-
scripts to fix the time stamps of the IPs as was done by [46], we used
the phonemes from the TTS front ends for each language.

This gave us an IP for each phoneme in our TTS database, which
we then used as features in our Classification and Regression Tree
(CART) to predict the spectrum. We also used the IPs of the previous
and next phones as features.

We conducted experiments on two databases - the Hindi Blizzard
database and the CMU Arctic RMS US English database. For each
of these, we used both our knowledge based front ends (the Indic
front end and US English front end respectively) and the UniTran
grapheme front ends. We also varied the number of IPs generated
for each voice by changing the stop value of the Classification and
Regression Tree. The exact number of IPs predicted for each database
with each of these stop values varied, but in general IP1, IP2 and IP3

had 40, 60 and more than 100 IPs. We extracted IPs for the entire
database, including the test set, which means that there was an IP
feature value for each phoneme in the test sentences as well.

Our hypothesis was that using IPs as features would lead to some
improvements in the voices. Table 10 lists the MCD of voices built
with these configurations, for a total of 12 voices.

Table 10: MCDs of voices using IPs as features

Database Front End IP1 IP2 IP3

RMS English Knowledge Based ip1 ip2 ip3

4.75 4.71 4.70 4.72

RMS English UniTran ip1 ip2 ip3

5.13 4.97 4.97 5.00

Blizzard Hindi Knowledge Based ip1 ip2 ip3

3.92 3.84 3.88 3.86

Blizzard Hindi UniTran ip1 ip2 ip3

4.18 3.92 3.91 3.93

First, we see that for the RMS knowledge based voice, the decrease
in MCD from the knowledge based voice to the IP voices was not sig-
nificant (a decrease of 0.08 is considered perceptually significant, and
0.12 is equivalent to doubling the database). However, for the English
UniTran voice, we see that there is a significant decrease in MCD for
all the IP-based voices, with no significant differences between them.
For the Hindi knowledge-based voice, we see a significant decrease
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in MCD in two of the three IP voices. For the Hindi UniTran voice,
we see a very large decrease in MCD, suggesting that the IPs provide
a lot of information in this case.

From these results it seems that the grapheme-based voices benefit
more from the IPs than the knowledge based ones. Also, the lower
resource language (Hindi) seems to benefit more than the higher re-
source language English.

It is important to note that in these experiments and the experi-
ments described in [46], the IPs were extracted from the audio across
the entire database, including the test set. This means that by pre-
dicting IPs perfectly for our test set, we could hope to achieve these
results. However, IPs are extracted from acoustics, which are not avail-
able at synthesis time. So, the IP features needed to be predicted from
text, using low level features like phonetic features, high level features
of the word and phrase and context.

We built CART models to predict IPs from text using our standard
text-based features. However, we found that in most cases, we did
not get very high accuracy in prediction, which led to an increase
in MCD making the gains provided by the IPs overall not signifi-
cant. However, the results above suggested that the IPs were captur-
ing some additional information from the acoustics that improved
all the voices significantly except the very high resource US English
knowledge-based voice, so it was worthwhile trying to analyze and
predict them better.

Muthukumar et al. [46] used the IP transcript like a phonetic tran-
script, and varied the number of IPs from 30-200 to match the number
of phonemes or allophones expected in a language. We decided to ex-
periment with a very small number of IPs to be able to analyze and
predict them better.

5.2.4.1 Using fewer IPs

We build voices for RMS and Hindi using the grapheme based front
ends with 12 and 21 IPs, respectively. Surprisingly, we found that
there was no significant difference between the MCD gains that we
got (without IP prediction) for both these voices with a lower number
of IPs. Table 11 shows the MCD of voices built using fewer IPs than
before, with and without IP prediction from text, compared to the
baseline with no IP features.

We see that even though we got significant gains even with using
fewer IPs in the no prediction case, we were only able to predict the
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Table 11: Using fewer IPs as features

Database Front End Baseline IPs with no prediction IPs with Prediction

RMS English UniTran 5.13 5.04 5.10

Hindi UniTran 4.18 3.96 4.07

Hindi IPs reliably enough to get a significant improvement in MCD.
However, this result also suggests that the IPs were capturing some
higher level information that could potentially be useful to predict.

We also built our Classification and Regression Trees with the step-
wise option, that greedily searches for the best feature at each stage of
the tree building process for IP prediction. While we did not get sig-
nificant gains in prediction, we found that the top features used by the
model were the name of the phoneme and left and right phonemes,
the duration of the current phoneme, consonant type and voicing.

Improvements can potentially be made in predicting IPs by using
better Machine Learning techniques, or an iterative framework simi-
lar to the ones we use for disambiguating homographs in Arabic.

5.2.4.2 Visualizing IPs

To visualize what kind of information IPs may be providing, Figure 4

shows the distribution of the 12 IP features for each phoneme in the
RMS US English database using the UniTran front end, with a darker
color indicating higher frequency. The y axis in the heat map shows
the phonemes from the SAMPA phone set and the x-axis shows the
IPs for each phoneme across the entire database.

We can see that certain phonemes, such as the short vowels ’A’,
’e’ and ’i’ seem to share some high-frequency IPs which indicates
that those particular IPs may be capturing vowel-specific informa-
tion. In some cases, certain phonemes like ’s’ and ’r’ have a single IP
with high frequency while others such as ’d’ seem to have multiple
IPs. We should keep in mind that these phonemes have come from
a grapheme-based front end, so these IPs may be able to point out
where splits should have occurred due to context in the g2p mapping
that did not occur due to a single g2p mapping from UniTran. Such
visualizations may be helpful in eliminating IPs that are not discrimi-
native or that are very low frequency for better prediction.
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Figure 4: IP distribution for RMS US English voice

5.3 chapter summary

In this chapter, we tried to improve the performance of low-resource
grapheme-based TTS systems by using acoustically-derived features.
We used Inferred Phonemes clustered using Articulatory Features ex-
tracted from TTS databases with the help of cross-lingual Articula-
tory Feature extractors. We presented a novel technique of improving
systems in a generalized manner by adding these features into the
standard set of features used for modeling the spectrum and showed
results on two databases in knowledge-based and grapheme settings.
By adding IPs as features, we got significant gains in MCD, partic-
ularly when compared to voices built with knowledge-based front
ends and for higher resource languages. This suggests that acous-
tically derived features may be useful for improving low resource
grapheme-based voices. Also, such features may be used for improv-
ing knowledge-based voices as well by using such features, particu-
larly if the lexicon being used is not completely suitable for the voice,
such as dialects of a language or speaker-specific pronunciation vari-
ations.

However, predicting IPs from text at synthesis time proved to be
a challenge. Even with a low number of IPs that seemed to cap-
ture higher level phonetic information, we were unable to predict IPs
from text reliably except in the case of the Hindi grapheme database.
We tried to visualize what these IPs may be capturing by looking at
the distribution of IPs and corresponding phonemes. Our bottom-up
approach of using features derived from acoustics was in contrast
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to previous chapters, where we went from a text representation to
phonemes.

One limitation of using a single language (in this case English)
to train AF classifiers is that the classifiers may not be able to cap-
ture AFs that occur in certain target languages. Using multiple or re-
lated languages for training may improve such models. The difficulty
of predicting IPs suggests that we need better techniques to jointly
model acoustics and text in order to be able to take advantage of the
information captured by such features. With better models, we may
be able to exploit cross-lingual and acoustic information for improv-
ing the pronunciation of languages that we do not know anything
about, automatically.



6
C O D E M I X I N G

6.1 introduction

In Chapter 3 and Chapter 4, we improved the pronunciation of TTS
systems for low resource languages by improving the Letter to Sound
rules, or disambiguating lexical entries. In both these cases, we as-
sumed that the orthography of the language was standardized and
that it was fairly suitable for the language at hand, even if it was bor-
rowed from a related language.

However, in many cases, a language is written using the script of
another language, even if it has its own standardized written form.
A common phenomenon that occurs in text in Social Media, Instant
Messaging and email in bilingual and multilingual societies is Code
Switching, in which users type multiple languages in the same script,
or sometimes retain the original script of the languages that are being
mixed in the sentence. This occurs very frequently in speech as well.

Code Switching is defined as switching between different languages
in speech or text, in which the grammatical forms of the languages
are preserved. Typically, one can identify one, or a few points in a
sentence where Code Switching occurs. Code mixing refers to the
mixing of phrases, words and morphemes of one language into an-
other language [87]. Lexical borrowing occurs when a word from one
language is borrowed and used in another language while following
the syntactic rules of the borrowing language.

Bali et al. [88] have given examples shown in Table 12 to illus-
trate the difference between Code Mixing and Code Switching. Code
Switching can be thought of as more of an an inter-sentential phe-
nomenon while Code Mixing can be thought of as an intra-sentential
phenomenon, although the techniques we describe later in this chap-
ter are agnostic to the difference between the two. The example in
Table 12 does not show intra-word Code Mixing, which is also ob-
served in some mixed languages.

In this thesis, we focus on pronunciation modeling, so we make a
simplifying assumption to treat all these as the same, even though
making these distinctions may affect pronunciation. Also from this
point onwards, we will use the term Code Mixing for Code Mixing,
Code Switching and borrowing to be consistent with recent relevant

47
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Table 12: Code Switching vs Code Mixing

Code Switching

I was going for a movie yesterday. raaste men mujhe Sudha mil gayi.

Gloss: [I was going for a movie yesterday.] way in I Sudha meet went.

Translation: I was going for a movie yesterday; I met Sudha on the way.

Code Mixing

Main kal movie dekhne jaa rahi thi and raaste me I met Sudha.

Gloss: I yesterday [movie] to-see go Continuous-marker was [and] way in [I met] Sudha.

Translation: I was going for a movie yesterday and on the way I met Sudha.

literature. Our task is to be able to synthesize speech that sounds as
natural and intelligible as possible, given such mixed text, with an
emphasis on figuring out the best pronunciation rules to apply to the
text.

From the point of view of language resources, Code Mixed lan-
guages can be considered to be low resource languages in general,
because not many resources (particularly lexical) typically exist for
such mixed languages. However, in many cases, one of the languages
being mixed may be high resource, which can be exploited.

6.2 relation to prior work

Code Switching and Mixing have been identified as challenges for
language technologies ranging from Information Retrieval to Auto-
matic Speech Recognition.

The Code Switching shared task at EMNLP 2014 [89] consisted
of data from 4 mixed languages (English-Spanish, Nepali-English,
Arabic-Arabic dialect, Mandarin-English) and the task was to iden-
tify for each word which language it belonged to, or whether it was
mixed, ambiguous or a named entity. Chittaranjan et al. [90] describe
a CRF based approach for word level Language Identification for this
task, in which they used various lexical and character-based features.

Recently, Code Mixing in text has been studied for languages of the
Indian subcontinent, which exhibit a lot of mixing with English and
other Indian languages owing to the large multilingual population
and the number of languages.

Vyas et al. [91] created a manually annotated corpus of code-mixed
social media posts in Hindi-English and used it for POS tagging. They
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analyzed this corpus and found that 40% of the Hindi words in the
corpus were written in Romanized script. They also found that 17% of
the data exhibited Code Mixing, Code Switching or both. They found
that transliteration and normalization were the main challenges while
dealing with such text.

Bali et al. [88] further analyzed this data to find that words fall into
categories of code mixing, borrowing and ambiguous, with many bor-
rowed words being written in English and many Hindi words being
misidentified as English due to spelling. They suggest that a deeper
analysis of morpho-syntactic rules and discourse as well as the socio-
linguistic context is necessary to be able to process such text correctly.

Gupta et al. [92] introduce the problem of mixed-script Information
Retrieval, in which queries written in mixed, native or (often) Roman
script need to be matched with documents in the native script. They
present an approach for modeling words across scripts using Deep
Learning so that they can be compared in a low dimensional abstract
space.

Another Code Switching corpus of interest is an Algerian Arabic-
French corpus that contains 7000 comments from an Algerian news
website [93]. The unique feature of this corpus is that it contains Alge-
rian Arabic text written in Romanized form (’Arabizi’), and Roman-
ized Algerian Arabic tends to use Romanizations based on French
orthography. This corpus has been manually annotated at a word-
level with ’Arabic’, ’French’ and ’Other’.

Code Switching has also been studied in the context of speech, par-
ticularly for Automatic Speech Recognition (ASR) and building mul-
tilingual TTS systems.

Modipa et al. [94] describe the implications of code-switching for
ASR in Sepedi, a South African language and English, the dominant
language of the region. They find that the frequency and continuum
of code switching makes it a very challenging task for traditional ASR
trained on only Sepedi.

Vu et al. [95] present the first ASR system for code-switched Mandarin-
English speech. They use the SEAME corpus [96], which is a 64

hour conversational speech corpus of speakers from Singapore and
Malaysia speaking Mandarin and English. They use Statistical Ma-
chine Translation based approaches to build code mixed Language
Models, and integrate a Language ID system into the decoding pro-
cess.
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Ahmeda et al. [97] describe an approach to ASR for code switched
English-Malay speech, in which they run parallel ASRs in both lan-
guages and then join and re-score lattices to recognize speech.

Bilingual TTS systems have been proposed by [98] for English-
Mandarin code switched TTS. They use speech databases in both lan-
guages from the same speaker and build a single TTS system that
shares phonetic space. Microsoft Mulan [99] is another bilingual sys-
tem for English-Mandarin that uses different front ends to process
text in different languages and then uses a single voice to synthesize
it. Both these systems synthesize speech using native scripts, that is,
each language is written using its own script.

A TTS system that is capable of reading out Social Media text or
informal messages needs to be able to handle multiple languages. A
Personal Digital Assistant also needs to be able to both recognize and
produce natural Code Mixed speech while interacting with users who
live in multilingual societies. To do this, the ASR, TTS and Machine
Translation components of the system need to address challenges
posed by code mixing. With this motivation, our task for this part
of the work was to improve the pronunciation of a TTS system that
has to read out Code Mixed text. As before, we assume that very few
resources exist in the target language, though the other language that
is mixed with the target language may be a higher resource language.

We divide the task of synthesizing such text into two main cate-
gories - synthesizing text which retains the script that the language
is in, resulting in mixed scripts, and synthesizing text that (usually)
uses the script of a single language, resulting in the use of a non-
standard script for the other language.

6.3 code mixing with mixed scripts

In some text, people preserve the original scripts that the languages
use while code mixing. In cases where the scripts that the languages
being mixed are different, we may be able to identify the language by
looking at the script, and then use the appropriate TTS voice or LTS
rules to synthesize it.

Ideally, we should get recordings from the same bilingual or mul-
tilingual speaker for all the languages that are being mixed and then
switch between databases while synthesizing the different languages.
However, getting such data and maintaining recording conditions
across all the TTS databases may be difficult. Also, it may be diffi-
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cult to anticipate which languages are being mixed in advance.

The Blizzard Challenge [100] is an annual community-wide evalu-
ation of TTS systems in which participants are given access to a com-
mon dataset to build synthetic voices from, which are then evaluated
on a number of subjective metrics. From 2013-2015, the Blizzard Chal-
lenge included tasks on building systems for Indian languages. Since
code mixing is very prevalent in many of the languages of the In-
dian subcontinent, the Blizzard Challenge added a multilingual task
in 2014, in which English words were mixed with various Indian lan-
guages.

All the English words were written using the Latin alphabet, while
the Indian languages were written in native script. The task was to
synthesize test sentences containing such mixed sentences - however,
the training synthesis databases contained no English in the record-
ings and corresponding prompts. There may have been some words
written in the native script that were not native, like proper names,
technical terms etc. in the data, but these were few in number.

Next, we describe our approach, the databases involved in these
experiments and results from the Blizzard challenge.

6.3.1 Techniques and Evaluation

Since we only had data in the Indian languages to train from, we
came up with a straightforward approach to deal with English words
in Indian language sentences. When we detected a word in the Latin
script, we used the US English text processing front end to process it,
which meant that all Non-Standard Words (abbreviations, numbers
etc.) that were covered by the (much higher resource) US English
front end were also available to us. Then, we used a mapping be-
tween the US English phone set and the Indic phone set, which was
common for all the lower resource Indian languages to convert the US
English phonemes to Indic phonemes. This was a simple one-to-one
mapping, which had its limitations, since some phonemes in English
do not exist in the Indian languages and vice versa. Also, we could
not incorporate contextual rules using this approach.

However, we found that even with this simple approach, our sys-
tem performed well in the Blizzard Challenge in 2014 and 2015. The
languages that were included in the 2014 version of the challenge
were Hindi, Gujarati, Assamese, Rajasthani, Tamil and Telugu and in
2015, Marathi, Bengali, Malayalam were included and Gujarati, As-
samese and Rajasthani were excluded. The evaluation metrics used
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were similarity to speaker and naturalness, evaluated by paid listen-
ers and volunteers.

Although in general we did not perform well on similarity to speaker
due to our choice of synthesis technique (Statistical Parametric Syn-
thesis as opposed to Unit Selection), our performance on naturalness
was good. In particular, we had the best systems for Gujarati, Telugu,
Tamil, Rajasthani and for the naturalness metric in 2014 and Hindi
in 2015. The naturalness metric is not ideal for testing pronunciation
quality of multilingual systems, since many other factors may also in-
fluence naturalness. However, it seemed like our approach was viable
and was not influencing the quality of the system negatively.

6.4 code mixing with the same script

In the previous section, we described a simple technique to deal with
mixed script synthesis by mapping phonemes from one language to
another. This is a one-time cost especially if one of the languages al-
ready has a high-resource text processing front end.

In many cases, when languages are mixed in text, the same script
is used for all the languages that are being mixed. This creates the ad-
ditional complexity of having to identify which language the words
belong to. In addition, people may not follow standardized ways of
writing the language that is using the "wrong" script. We decided to
extend the capabilities of our current system to also be able to deal
with same-script code mixing for some language pairs.

6.4.1 Data and Experiments

Our first task was to collect Code Mixed data, for which we crawled a
Hindi recipe website in which the recipes were all in native script (De-
vanagari). The recipe descriptions were all in Devanagari, with a few
words in English, such as titles, numbers etc. Interestingly, most of
the comments submitted by users were in code-mixed English-Hindi,
all written in Romanized script. We collected around 70k sentences
from this website to create a code-mixed corpus. Two example sen-
tences from the corpus are shown below with their translations.

Heavy Cream kya hai Ye kaha se milegi
Translation: What is heavy cream, where can it be found?

Dear nisha mujhe hamesha kaju barfi banane mein prob hoti h plzz mujhe
kaju katli ki easy receipe bataiye
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Translation: Dear Nisha I always have a problem making Kaju Barfi
please give me an easy recipe for Kaju Katli.

In the first sentence, there is one point at which the Code Switch-
ing occurs, and the sentence is well written with correct spellings
for the English words and reasonable transliterations of the Hindi
words. In the second sentence, we see multiple places in which En-
glish phrases and words are inserted ("Dear nisha", "prob" (problem),
"plzz" (please), "easy receipe"). We also see that there are contractions
and spelling errors. Some of the contractions ("h" for the word "hai")
were common across the database and may be hard to normalize au-
tomatically in isolation even by humans.

Our goal for this part of the work was to be able to synthesize
sentences from this corpus. We restricted our task to synthesizing Ro-
manized text using our Hindi TTS system. Although this is may seem
slightly artificial (synthesizing pure Romanized text using a Hindi
voice), we can imagine finding the reverse case, where we have to
use an English system to synthesize Romanized Hindi words that
appear in Social Media posts, messages and emails. Also, as in the
case of websites that have content in Devanagari but user submitted
comments in Romanized Hindi and English, this setting may be more
practical. We used the same Hindi database from the Blizzard Chal-
lenge data for all our experiments.

First, we wanted to see how much of a difference we could hope
to make by knowing the pronunciation of the Hindi words. This in-
volved both manually identifying the Hindi words in the Romanized
sentence and replacing it with its correct (normalized) Hindi spelling,
to be able to retrieve the correct LTS rules for it. This was, in a sense,
"ground truth", or the best we could hope to get with our system.

We manually annotated and normalized 9 sentences by replacing
the Hindi words with their Devanagari forms and synthesized them
using our standard Hindi TTS system. We also synthesized the sen-
tences using our current Indic front end without any normalization,
which meant that all the words went through the English front end as
described in the previous section. We asked 10 participants on Ama-
zon Mechanical Turk to pick the system that was easier to understand,
with a no difference option. Table 13 shows the results from this eval-
uation.

We expect that the Ground Truth system would be superior to the
weak baseline in this case, but from the results we see that the prefer-
ence for the Ground Truth was extremely high compared to the base-
line. This is quite a large gap keeping in mind that the only difference
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Table 13: Subjective Evaluation of All-English Baseline vs Ground Truth

Prefer Baseline Prefer Ground Truth No difference

18% 72% 10%

between the two systems was the pronunciation of a few Hindi words
in the sentence. This indicated that it would be interesting to see how
close we could get to the Ground Truth by automating this process.

Our approach was the following: given Romanized text, first iden-
tify the English words in the sentence. Then, normalize all the other
words to their standard spellings and try to recover the pronunciation
of the normalized words. The next few sections describe these steps
in more detail and the assumptions we made.

6.4.2 Language ID

First, we identified the English words in the English-Hindi mixed text.
Our motivation to identify English words and not Romanized Hindi
words first was that it is easier to find training data or resources to
identify English words automatically and also that people writing in
Romanized scripts were more likely to spell English words in a stan-
dardized way than Hindi words.

We took a naive approach to solving the Language Identification
problem: if a word in the sentence was present in CMUdict [10], then
we considered it to be an English word. Otherwise, we treated it as
a misspelling of an English word or a Romanized Hindi word. Some
words are ambiguous in isolation, and if they exist in the US English
lexicon, they currently get marked as English.

The Language Identification step can be improved by making use
of letter language models, taking into account context, using standard
LID models on trained corpora etc., as described in the related work.

6.4.3 Spelling Normalization

After filtering out the English words present in the US English lex-
icon from the sentence, we normalized the spellings of the rest of
the words. To do this, we used the Soundex algorithm [101]. The
Soundex algorithm encodes words such that spelling variants, which
may have very similar pronunciation, are collapsed into the same
code. Some characters such as those that represent vowels are ignored
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by Soundex.

Soundex only encodes consonants and ignores vowels. Each word
is given a Soundex code, which consists of a letter followed by three
digits. The letter is the first letter of the word and the digits encode
the rest of the consonants in the word. Consonants that are similar
share the same digit, for example, labial consonants (B, F, P, V) are
encoded as the digit ’1’. Soundex is used in many popular databases
and is also used to index individuals and look up family names in
the US census.

Taking the example of the words ’Smith’ and ’Smythe’, the Soundex
algorithm works the following way. The first letter is retained in the
code, and ’m’ is mapped to 5 in both cases. The next letter, ’i’ in
’Smith’ and ’y’ in ’Smythe’ are both ignored. The letter ’t’ is mapped
to ’3’. The character ’e’ is ignored in the case of ’Smythe’. In this way,
both words have the same Soundex code and can be considered to be
spelling variants according to this algorithm.

To normalize spellings in our data, we took the most frequent
words of the code mixed recipe corpus as seeds and ran Soundex
comparing each of these seeds to all the other words in the data. We
formed clusters of spelling variants from these seeds by adding a
word to the cluster if there was a Soundex match. Figure 5 shows a
cluster formed with the seed word "recipe". Then, we replaced the
low frequency members of these clusters found in the sentences we
wanted to synthesize with their seeds. In case a word belonged to
more than one cluster we chose the seed to replace it with randomly.

Figure 5: Spelling variants in the "recipe" cluster

In some cases (as in the case with the word "recipe") the seed words
were English words that were found in the US English lexicon. In such
cases, we treated these words as English words.

An extension of this could be to do a match phonetically, rather
than by looking at vowels and consonants particularly for languages
in which SoundEx implementations are not available. For this, we
could look up the UniTran [28] expansions of words and compute a
distance metric on SAMPA phoneme strings.
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6.4.4 Training the Romanized-Devanagari model

After recovering the normalized spelling of the word in Romanized
form, we then needed to recover its Hindi pronunciation. Instead
of directly trying to recover the pronunciation from the Romanized
form, we decided to reduce this problem into the problem described
in the previous section, that is, synthesizing text that has mixed scripts,
by transliterating Romanized Hindi into native Hindi script (Devana-
gari).

We explored transliteration standards and schemes that went from
Hindi to Romanized, however, many of these standards used special
marks such as diacritics to indicate vowel lengthening and most of
them did not reflect how people actually type Romanized Indian lan-
guages on the web.

We trained a model on manually transliterated data from the FIRE
dataset [102] that would give us a Devanagari word, given a Roman-
ized word. We used 1000 code mixed Hindi-English sentences and
extracted the words marked as Hindi, and the Devanagari forms of
these words. We found 1800 unique Romanized Hindi - Devanagari
pairs in the dataset. The Romanized Hindi in the FIRE dataset was
clean data with very few or no spelling variations for each word,
which meant that our previous step of normalizing spellings was crit-
ical.

To build a model from Romanized Hindi to English, we followed
the standard procedure to build Letter-to-Sound Rules in Festvox
[103]. Usually, the input to that is a string of characters and the output
is a string of phonemes, but in this case, both the input and output
were strings of characters.

We trained a Classification and Regression Tree for each grapheme
in our Romanized Hindi word list which uses three previous and next
grapheme contexts to predict Devanagari Hindi graphemes. Each Ro-
manized Hindi grapheme aligned to none, one or two Devanagari
graphemes.

6.4.5 Evaluation and Results

Once again, we carried out subjective evaluations on the Hindi TTS
database with only the front end being changed in each condition. In
each case, 10 listeners listened to 9 pairs of sentences.
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Table 14 shows the preference for our technique, which we call
Predicted, compared to the baseline where we treat all the words as
English words, as described before. We can see that there was a sig-
nificant preference for our method.

Table 14: Subjective Evaluation of All-English Baseline vs Predicted

Prefer Baseline Prefer Predicted No difference

16% 71% 13%

Next, we wanted to see how the Predicted system would compare
against a system where all the Romanized words were treated as
Hindi words. This is what would have happened if we had bypassed
the Language ID step. Table 15 shows that there was a preference for
the Predicted version, though it was not as significant as the prefer-
ence over the All-English baseline.

Table 15: Subjective Evaluation of All-Hindi vs Predicted

Prefer All-Hindi Prefer Predicted No difference

30.5% 54% 15.5%

Finally, we wanted to see how close our Predicted system could
get to the Ground Truth system. Table 16 shows that subjects had a
preference for the Ground Truth system over the Predicted system,
though the difference was not as high as the difference between the
All-English baseline and the Ground Truth system.

Table 16: Subjective Evaluation of Predicted vs Ground Truth

Prefer Predicted Prefer Ground Truth No difference

28% 57% 15%

We explored using the Algerian Arabic-English corpus [93] men-
tioned earlier for similar experiments, however, without hand labeled
examples of Algerian Arabic-English, training data was not available
to build a model for transliteration. One solution may be to use a
transliteration resource such as the Google Transliteration API to go
from Arabizi to Arabic, however, this may not be appropriate for the
Algerian Arabic dialect. Furthermore, the closest TTS voice available
to us in terms of language was in Modern Standard Arabic. Prelim-
inary experiments showed that all these factors made it difficult to
replicate the Hindi-English experiments for this data. However, given
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a reasonable amount of code mixed text and a mapping between the
letters and the phone sets of the mixed languages, it should be possi-
ble to replicate the experiments done for Romanized Hindi.

6.5 phoneme set mapping

The resources we used to make our Hindi TTS system capable of syn-
thesizing Romanized Hindi and English words were a Language Iden-
tification System (in this case a US English lexicon), a moderate num-
ber of pairs of Romanized Hindi and Devanagari words, Soundex
rules and a mapping between the US English and Hindi phoneme
sets. While this mapping is a one-time cost, it requires some knowl-
edge about the phonetics of both languages.

In addition, it may not always be possible to find good phonetic
mappings between languages because some phonemes in one lan-
guage may not exist in the other. In such cases, bilingual speakers may
map phonemes to the closest possible phoneme, or borrow phonemes.
9 shows the mapping between English phones from the phone set
used in our standard US English build and Hindi phonemes from the
Indic phone set, along with the phonetic features assigned to each
phoneme in both sets. In some cases, we did not map phonemes from
English to very low frequency phonemes in our Hindi corpus, but
chose to replace them with more frequent phonemes.

In all the experiments described above, we mapped phonemes from
English to Hindi manually. However, we wanted to automate the pro-
cess as much as possible. This step may not be necessary if we use a
common phone set for both languages, as we do in case of UniTran
and the Indic languages within Festvox.

6.5.1 Related Work

The approach described by Nerbonne et al. [104] uses Levenshtein
distance to measure the distance between words in different dialects
of Dutch, and uses this to group dialects together. A common set of
words are compared across all dialects, with the distance being com-
pared based on letters with different weights for insertions, substitu-
tions and deletions. [105] extend this work by using phonetic features
and a variety of distance metrics.

Sriram et al. [106] describe a technique for multilingual query pro-
cessing, in which words in the queries are converted into a language
independent ’common ground’ representation, after which a weighted
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phonetic distance measure is used to match and rank queries. Pho-
netic features include vowel rounding, frontness, height, length, voic-
ing, aspiration etc. which are the same features that are used in the
standard Festival phonetic feature set. The authors also suggest weights
that can be given to these phonetic features, since some of them may
be more important than others while calculating phonetic similarity.

Le et al. [107] used a top-down bottom-up knowledge based ap-
proach for calculating phoneme similarity. They use models of sim-
ilar phonemes cross lingually to create context dependent Acoustic
Models in new languages. They used IPA rules to create a hierar-
chical graph of phoneme similarity, which splits phonemes into cate-
gories like Consonant-Vowel, Close-Back Vowels, Close-Front, Close-
Back vowels etc. Acoustic Models were built with multiple languages
and used for recognizing Vietnamese speech with a small amount of
adaptation data.

Melnar et al. [108] describe an approach to measuring phoneme dis-
tance cross lingually by representing phonemes as a feature matrix,
with feature weights based on lexical frequency. In addition to tradi-
tionally used phonetic features, they also include corrolary features
that represent allophonic realizations of the phones. This approach
was shown to perform well on cross-lingual ASR tasks.

Pucher et al. [109] describe phonetic similarity measures for ASR
grammar optimization in which they compare minimum edit dis-
tance based measures, perceptually motivated measures and HMM-
distance based measures and correlate them to word confusion in the
ASR.

6.5.2 Experiments

We implemented a simple weighted distance based metric to map
English and Hindi phonemes in our system based on [106]. We con-
ducted subjective tests comparing our manually mapped phonemes
to the automatically mapped phoenemes. However, we found that
in subjective tests, listeners had a very significant preference for the
manually mapped phonemes. This may be due to the fact that the
manually assigned phonetic features may not be completely correct,
and many phonetic features ended up getting the same weight in
[106].

Ideally, we should be able to automatically set these weights or
learn this mapping from data. Recent work in creating vector repre-
sentations of acoustics [110] could be a promising direction for creat-
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ing such mappings automatically.

6.6 chapter summary

This chapter presents preliminary work towards solving the problem
of synthesizing code mixed text. With the advent of smart phones
and digital assistants in multilingual societies, we believe that this
will be a very relevant problem to address in the future for speech
processing. We provided a framework to synthesize code mixed text
that came from Social Media in and presented experiments on Ro-
manized Hindi-English using a corpus that we crawled from the web.
Some of the ideas presented in this chapter, such as spelling normal-
ization can also be used while synthesizing single-language text from
Social Media.

We conducted subjective listening tests to compare speech synthe-
sized with our framework to baselines that treated all the words in
the sentence as English words or Hindi words, and showed that there
is a preference for speech synthesized with our technique. We also
compared our technique to gold standard manually labeled and tran-
scribed sentences with subjective tests and showed that there is still a
gap between the two, which can be addressed with better Language
Identification, spelling normalization and cross-lingual pronunciation
rules. In all cases, we used minimal resources to extend the capability
of our current system to make it capable of synthesizing code mixed
text. In addition, better cross-lingual phonetic mapping techniques
that make use of acoustics may eliminate the need to map phonemes
manually. We did not explicitly address Code Mixing that takes place
at the morpheme level in our technique, and this would be an inter-
esting future direction.
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T E X T T O S P E E C H W I T H O U T T E X T

7.1 introduction

So far, we looked at various techniques to improve pronunciation of
TTS systems in low resource languages. We made the assumption that
the languages have a standardized orthography, and either treated
graphemes as phonemes, used lexicons or used Letter to Sound rules
to find pronunciations. In case of code mixing, where non-standard
spellings may be used, we introduced a framework in which the
spelling of a word can be normalized in order to improve chances
of it being pronounced correctly, once the language it belongs to has
been identified.

Many of the languages of the world are not written, but are only
spoken. Many languages do not have their own written form, but use
the writing system of another language which may or may not be
related to them. For many spoken languages of the world, finding
large corpora or linguistic resources is difficult. Yet, some of these
languages have many native speakers around the world and it would
be very interesting to deploy speech technologies in them.

This part of the thesis deals with building TTS systems for lan-
guages that are purely spoken languages: they do not have a stan-
dardized writing system. These languages could be mainstream lan-
guages such as Konkani (a western Indian language with over 8 mil-
lion speakers), or dialects of a major language that are phonetically
quite distinct from the closest major language.

Building a TTS system usually requires training data consisting of
a speech corpus with corresponding transcripts. However, for these
languages that aren’t written down in a standard manner, one may
be able to only find speech corpora. This chapter focuses on building
speech synthesis systems when our training data does not contain
text.

The techniques described here can also be applied to languages
where transcripts are not available for the corresponding speech data,
even if the language does have a standardized written form. These
techniques can be used when creating transcripts manually or hav-
ing an Automatic Speech Recognizer in the language create the tran-
scripts is not feasible. Another scenario in which these techniques can
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be used is when the written form of a language is not suitable for a
spoken version of the language and an automatically created writing
system is desired.

The obvious question that arises while trying to build speech pro-
cessing systems and specifically TTS systems for languages without
an orthography is whether there is any application that such a system
could be used for. If there is no text at training time, there would be
no text at synthesis time either. However, consider the case of having
a TTS system that does not use text but uses some other representa-
tion to synthesize from.

Such a system could be part of a dialog or Speech-to-Speech trans-
lation system. Let us imagine that we have a system that translates
spoken Hindi, a higher resource language with a written form to
Konkani speech, with Konkani not having a standardized writing sys-
tem. We can imagine using some intermediate representation that can
act as a text form that the machine translation system can produce.

Going back to the block diagram introduced in Chapter 2, we see
in Figure 6 additional missing resources, which are the transcript at
training and synthesis time. In addition, we can assume that for such
languages, there may not be other lexical resources available.

Figure 6: Missing resources for TTS without text

Our goal in this part of the work was to derive a written form
that is sufficient to synthesize from, given only speech data in the tar-
get language. We relied on acoustics and cross-lingual techniques to
come up with written forms and produce understandable synthesis.
We built TTS systems for several languages that ranged from high to
very low resource languages, with some languages not having their
own standardized written form.
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7.2 basic cross-lingual approach

In order to derive units that could be used as part of a written form,
our approach uses Automatic Speech Recognition to decode speech
in the TTS databases in the target languages without an orthography.
However, since the language does not have an orthography and is
probably a low resource language, we cannot assume that an ASR
system exists in the language. So, we use an ASR system built for
another language, and we perform phonetic decoding, rather than
word-level decoding. Ideally, we use an ASR system in a language
that is related to the target language. Figure 7 shows a block diagram
of the components and flow of our approach.

Figure 7: Cross-lingual Phonetic Decoding

First, we decode the audio in the target language with a phonetic
decoder using an acoustic model and language model from another
language. Then, we build a synthetic voice using the transcript ob-
tained from the phonetic decoder. This transcript contains phonemes
in a language that we know about, so we can use phonetic features
and other phonetic information while building the voice. Once we
build the voice, we evaluate it using the Mel-Cepstral Distance (MCD)
mentioned in earlier chapters, which is an objective metric of TTS sys-
tem quality.

It is easy to see that the quality of the transcript obtained by one
pass of decoding using the cross-lingual decoder may not be ideal.
So, using the transcripts obtained from decoding and the TTS speech
corpus, we iteratively build new targeted acoustic models and use
them to decode the speech again. We use the phonetic transcripts to
build synthetic voices and evaluate them objectively at each stage of



64 text to speech without text

the iteration. Once the MCD stops improving, we stop the iterations.
This process is shown in Figure 8.

Figure 8: Iterative process to choose better pronunciations

7.3 relation to prior work

Speech to speech translation typically involves a cascade of three
models: an Automatic Speech recognition System (ASR) in the source
language, a Statistical Machine Translation system (SMT), and a Text
to Speech (TTS) System in the target language. Generally, these three
models are developed independently of each other. Recent work such
as [111], [112], [113], [114] has looked into deeper integration of this
pipeline, but the general assumption here is that the target language
has an orthography.

If the target language of speech to speech translation does not have
a written form, it has been proposed that one be defined, though
training people to use it consistently is in itself very hard and prone
to inconsistencies e.g. Iraqi Arabic transcription techniques in the
TRANSTAC Speech to Speech Translation Project [115]. Our proposal
is to use a phonetic-like representation of the target speech, derived
acoustically as the orthography to use. Stuker et al. [116] have inves-
tigated such an approach.

Bacchiani et al. [117] describe a technique to derive segmental units
based on acoustics for ASR, and then map them to phonemes in a lex-
icon. They use Dynamic Programming to derive segmental units as-
suming that these units follow the polynomial trajectory model. The
motivation behind this work is to find segmental units that can cap-
ture word transitions that may be more suitable for conversational
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speech recognition.

ASR for unwritten languages has been studied very recently [118].
In this work, pronunciations for "words" in the target unwritten lan-
guage are generated automatically by using cross-lingual phonetic
decoding, and using a SMT model to translate words from a resource
rich language into inferred words in the target language. Using mul-
tiple source languages improves performance of the ASR. In [119],
grapheme-based ASR systems are used for decoding speech, and
SMT is used for phrase-based translation between clustered graphemes
and the n-best list output of the ASR. This is then used to automat-
ically construct a lexicon that can be used for ASR for low resource
languages without lexicons.

Changes have been proposed to SMT modeling methods [120] to
specifically deal with phoneme strings in the target language. In or-
der to induce the automatic phonetic writing form, we use an ASR
system in a foreign language and adapt the acoustic model to match
the target speech corpus. Speech synthesis voices are typically built
from less data compared to speech recognition systems.

Although we can adapt our models instead of rebuilding targeted
models at each iteration, Acoustic Model adaptation with limited
resources can be challenging [121]. Zavaliagkos et al. [122] have re-
cently proposed a rapid acoustic model adaptation technique using
cross-lingual bootstrapping that showed improvements in the ASR of
under-resourced languages. Our model adaptation technique is some-
what similar to that method, but we optimize the adaptation towards
better speech synthesis, and have only acoustic data in the target lan-
guage.

Although such representations may be difficult for a native speaker
to write, an SMT system can help bridge the gap from a source lan-
guage to the target phonetic representation of the language. The tech-
nique described by Elsner et al. [123] models pronunciation variabil-
ity based on articulatory features and is very suited for our purpose,
since the ASR transcript could be noisy.

7.4 data and resources

7.4.1 TTS databases

We used TTS databases from eight languages, various scripts and di-
verse language families for this research. Our audio data ranged from
almost two hours of speech to less than six minutes, as shown in Ta-
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ble 17.

Table 17: Languages, Sizes and Scripts for TTS without Text

Language Script Size (minutes)

English Latin 111

Dari Arabic 52

Iraqi Arabic 62

Pashto Arabic 39

Thai Thai 25

Ojibwe Latin+ 12

Inupiaq Latin+ 5.5

Konkani Various 5.5

Our English data was from the Blizzard Challenge [100] 2013 audio
book task, recorded by a professional voice recording artist.

Dari is a dialect of Persian that is used in Afghanistan as an official
language and also spoken in parts of Iran and Tajikistan. It has over
18 million native speakers. Pashto is a also an official language of
Afghanistan and has over 40 million speakers. The Dari and Pashto
corpora are from the DARPA TRANSTAC project. Iraqi Arabic is a di-
alect of Arabic spoken in Iraq and has about 15 million speakers. The
Iraqi Arabic corpora were provided by BBN as part of the DARPA
BOLT project.

The Thai language is spoken by over 20 million people and is the
official language of Thailand. We used the Thai speech corpora from
the SPICE [35] dataset.

Inupiaq is an Inuit language spoken by about 2100 people in north-
ern and northwestern Alaska. Ojibwe is spoken in Canada and the
United States and has around 56000 native speakers. Both Inupiaq
and Ojibwe use the Latin script in their written forms. Our data for
Inupiaq and Ojibwe came from a corpus collected as part of the En-
dangered Languages project at Carnegie Mellon University.

Konkani is an official language of India and is used primarily in
Goa and Karnataka. It has over 8 million native speakers. Konkani
does not have its own script, and native Konkani speakers use De-
vanagari, Latin, Kannada, Malayalam and even Arabic scripts to write
it. We used a corpus of Konkani from the CMU SPICE project [35].
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7.4.2 Decoder and ASR resources

We used the CMU Sphinx [45] speech recognition toolkit in allphone
mode as our phonetic decoder and to train new acoustic models. The
allphone mode allows us to get a phonetic decoding of the speech
even if we use context dependent models.

Our phonetic decoder used trigram phonetic language models built
from German and Marathi data. For the German language model, we
used the Europarl [124] corpus and for the Marathi language model,
we used a corpus created by collecting news stories from a Marathi
news website, Esakal. We used a single acoustic model, the Wall Street
Journal (WSJ) English acoustic model provided with CMU Sphinx.

For the experiments described here, we used the English WSJ Acous-
tic Model for decoding all languages, although we have experimented
with using other Acoustic Models in previous work [62]. Using the
WSJ acoustic model for decoding English speech is not fair, but we
used it to keep the Acoustic Model consistent in all our experiments.

Ideally for phonetic decoding, an acoustic model and phoneme lan-
guage model from a closely related language should be used. To sim-
ulate this in our experiments, we used Marathi and German phonetic
language models, as listed in 18. In some cases, we tried to use Lan-
guage Models that were related to the target language in terms of
language family (for example, Marathi for Konkani and German for
English) while in other cases the choice was arbitrary.

Table 18: Language Models used during decoding

Language Phonetic LM

English German

Dari Marathi

Iraqi German

Pashto Marathi

Thai Marathi

Ojibwe German

Inupiaq German

Konkani Marathi
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7.4.3 Voice building

We used the Festvox voice building tools to build CLUSTERGEN
[125] voices for the Festival [126] speech synthesizer. Our method
can be used with any waveform synthesis technique, since the writ-
ten form only influences the front end of the system. We used the
TestVox [40] tool to run listening tests online.

7.5 objective results

After decoding speech in the target language using the appropriate
acoustic and language models, we iteratively trained new acoustic
models using the decoded transcript as the text and the original au-
dio as the speech. At each stage of the iterative process, we calculated
the Mel Cepstral Distortion (MCD) of the voice built using the de-
coded transcript from that iteration. We will now look at the MCD of
voices built using these transcripts for various languages.

Figure 9: MCD across iterations for > 1 hour speech

Figure 9 shows the MCD for voices built for English, Dari and Iraqi
Arabic. English has about two hours of speech while Dari and Iraqi
Arabic have about one hour of speech. We see that there is a big drop
in MCD value from the first iteration to the second, in which the tar-
geted acoustic model is built. In the case of English, iteration 7 has
the lowest MCD, after which it rises slightly. For Iraqi Arabic and
Dari, the MCD continues to fall until the last iteration.

Figure 10 shows the MCD graph for Pashto and Thai, both of which
have around 30 minutes of speech. We see that the MCD for Pashto in
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Figure 10: MCD across iterations for 30 minutes speech

the first three iterations falls rapidly and then does not change much,
while for Thai, there is a big drop after the first iteration, which is
consistent with the results for English, Dari and Iraqi Arabic. There
is a large rise in MCD at iteration 7 for Thai, but it falls again in the
next iteration. We can see that even with half an hour of speech, our
iterative method produces better transcripts than the base decoding
with the WSJ acoustic model.

Figure 11: MCD across iterations for < 15 minutes speech

Figure 11 shows results for Ojibwe, which has 12 minutes of speech
and Inupiaq and Konkani, both of which have around five minutes of
speech. We see that for Ojibwe, the MCD rises slightly after the first
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iteration and then falls after the fifth iteration, with the difference in
the MCD between the base and best iteration being 1.43. This shows
that even with just 12 minutes of speech, the iterative method is able
to come up with a better transcript than just the base decoding. How-
ever, for both Inupiaq and Konkani, we see that the MCD rises after
the first iteration. This is probably because the amount of speech is
too small to build reasonable targeted acoustic models.

Overall, we see that with a moderate amount of speech data, the it-
erative targeted acoustic models produce better phoneme transcripts
than just using base decoding from a cross-lingual phonetic decoder,
shown here on a variety of languages.

Throughout the iterations, we kept the language model used by
the ASR consistent. One extension of this approach is to adapt the
language model at each iteration. However, preliminary experiments
on interpolating the original language model at each iteration with
the new transcript did not yield improvements in MCD. Another ex-
tension of this approach is to do Acoustic Model adaptation, instead
of rebuilding new targeted Acoustic Models at each iteration.

7.6 inducing higher level units

So far, we have discussed the bootstrapping method which produces
phoneme transcripts of the audio, which may be noisy. When we
build TTS systems using these transcripts with the framework de-
scribed above, the system treats each phoneme as a word.

Text to Speech systems typically benefit from using syllable and
word level information. Some lexicons contain syllable and stress
information, which can be used as features while building models.
Knowing where the words are in a sentence can help with phrasing,
prosody and duration. Many languages that have a standardized writ-
ten form indicate words through the use of spaces between words, al-
though sometimes what a word is may be poorly defined, especially
when it comes to spoken language.

In order to test how much of a difference it makes to know where
the words are, we synthesized voices in English and German using
1. Oracle Phones and 2. Oracle Words. In the Oracle Phones case,
we used the actual phonemes that the knowledge-based front ends
gave us, but without any word boundary information. In the Oracle
Words case, we used the knowledge-based front ends as we typically
do, when we build TTS systems for languages with written forms. So,
the only difference was the presence of word boundary information
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in the Oracle Words voices. Table 19 shows the MCD of voices built
with these configurations.

Table 19: MCD of Oracle Voices

Language Front end MCD

English Oracle Phones 2.46

English Oracle Words 2.15

German Oracle Phones 2.12

German Oracle Words 1.75

We can see that the Oracle Words voices are significantly better in
both cases. Our task was now to find word boundary information for
languages without a written form, for which we had decoded pho-
netic transcripts.

We took two approaches to this problem: first, we tried to group
phonemes in the phonetic transcripts together into higher level units.
Second, we tried to induce higher level units from acoustics.

7.6.1 Higher-level units from transcript

We performed experiments on inducing higher level units for two lan-
guages - English and Dari.

First, we grouped the phonemes from the best phonetic transcript
(according to MCD) for English and Dari into syllable-like units. To
obtain syllables, we use heuristic rules based on the maximum on-
set algorithm [127] built into the Festival speech synthesizer to join
phonemes in the transcripts into syllables. The maximum onset algo-
rithm assigns consonants to the syllable onset rather than the syllable
coda. We treated the syllables as words and added appropriate en-
tries in the lexicon.

Next, we induced word-like units by using cross-lingual informa-
tion. We trained a Conditional Random Field (CRF) model on Ger-
man word boundaries and phonemes. Our task was to predict word
boundaries given a string of phonemes.

We created training data for the CRF by extracting phonemes and
word boundaries from the German Europarl data. We used CRF++
[128] to train a German model that could group phoneme sequences
into word-like units and ran the model on the best English and Dari
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transcripts. We discarded words that were rare (< 300 in frequency)
and used the rest of the hypothesized words in our transcripts. We
added appropriate lexical entries for these words and built voices for
English and Dari.

The following example taken from the English voice show the orig-
inal transcript, transcript obtained by cross-lingual decoding and the
higher level units obtained by inducing syllable-like units.

Original transcript: Black Beauty the autobiography of a horse
Cross-lingual phones: JH M B L EH K D IY D IY K P V IY AH L OW
B AY EH L B AH R F IY AH B AH HH AO S D
Syllables: JHMBLEHK DIYD IYK PVIY AHL OWB AY EHLB AHRF
IY AHB AHHH AOSD

Table 20 shows the result of syllable and word induction. We see
that both for English and Dari, grouping phonemes into syllables de-
creases the MCD of the new voice. Surprisingly, this difference is very
large in the case of Dari. The voice built for English using CRF word
induction has a slightly lower MCD than the syllable method. How-
ever, this method does not seem to make much of a difference in the
case of Dari. This could be because we used a German word model,
and German word rules are quite different from Dari.

Table 20: MCD of Syllable and Word Voices

Language Best Iteration Syllables Words

English 5.32 5.26 5.25

Dari 4.78 4.16 4.76

7.6.2 Higher-level units from acoustics

So far, we used syllabification rules and cross-lingual word boundary
detection techniques to group the ASR-derived phonemes into higher
level units. Even though the notion of a syllable is fairly consistent
across many languages, some languages do not have formal notions
of words, have rich morphology and are agglutinative. So, we used
a technique to derive higher level units by using information from
acoustics.

To do so, we automatically induced units known as accent groups,
which have been used recently for prosody modeling in speech syn-
thesizers [129].
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An accent group is defined as being a group of syllables with one
pitch accent. Accent groups are similar to the notion of metrical feet,
without having an explicit definition of how to group syllables, other
than the constraint that each accent group contains only one syllable.
The technique for deriving these units from speech is completely data
driven. The complete description of accent groups and training strat-
egy is provided in [129].

Accent Groups are derived by analyzing the pitch contour in tan-
dem with the syllable sequence and approximate it with a synthetic
contour described as a sequence of TILT shapes [130] over parses of
syllable groups. The optimal parse on the syllables is one that mini-
mizes the reconstruction error of the target pitch contour.

A stochastic context free grammar is trained on such parses of ac-
cent groups, so as to allow prediction of accent groups for unseen
sequences of syllables. In order to uniquely identify syllables, we tag
each syllable with the vowel name, the onset and coda categories as
described in [130]. These categories are only a few in number and
yet are language independent, allowing us to use this approach for
arbitrary new languages here.

Given such parses derived acoustically from the pitch contours on
all of training data, a grammar is trained to predict parses of unseen
sequences of tagged syllables. This is further improved with decision
trees about the positional information of each syllable, so as to reli-
ably estimate for each syllable boundary, if there is a accent group
boundary, or not.

Figure 12: Accent Groups

Figure 12 shows accent groups derived automatically from parses
of tagged syllables.
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7.7 subjective evaluation

From our objective results mentioned earlier, we saw that the voices
built using syllables were better than the voice built on the best iter-
ation using phonemes. Word induction seemed to help in the case of
English, but not Dari.

To test this subjectively, we conducted listening tests comparing
the voice having the lowest MCD and the voice with syllable units
for both English and Dari to see if grouping phonemes together into
syllables was perceptually better. Table 21 lists the results from tests
on English and Dari. In both cases, we see that participants preferred
the voice with syllabified transcripts significantly more than the best
iteration.

Table 21: Subjective Preference for Syllable Induction

Language Participants Prefer Best Iteration Prefer Syllable Can’t say

English 7 4% 68% 28%

Dari 5 6% 72% 22%

Next, we carried out subjective tests in English, in which we com-
pared the voice built with Accent Groups to the baseline best itera-
tion, syllable and CRF word induction voices. Table 22 shows results
for the listening tests in which 10 subjects listened to 10 pairs of sen-
tences in each condition.

Table 22: Subjective Preference for Accent Groups vs Other Voices

Voice A Voice B Prefer A Prefer B Can’t say

Best Iteration Accent Group 12% 78% 10%

Syllable Accent Group 47% 43% 10%

CRF words Accent Group 22% 70% 8%

The results indicate that significant gains can be obtained by induc-
tion of the speech-derived accent group units, as opposed to word
derivations through CRFs over phoneme transcriptions. While it is
encouraging that the Accent Group voices perform comparably, syl-
lable voices remain the most reliable units that can be induced in the
current setting. This is perhaps due to the unavailability of sufficient
data, or features that effectively capture the contextual information in
building voices using higher levels of phonology.
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7.8 inferred phonemes for tts without text

Recent work that has built on this general framework for building
TTS systems without a standardized orthography has used Inferred
Phonemes derived from Articulatory Features [46], described earlier
in Chapter 5. Articulatory Feature classifiers are trained cross lin-
gually on a labeled database using a three hidden-layer network and
are then used to label a database without transcripts. The Articulatory
Features are then clustered into units known as Inferred Phonemes.
The best phoneme transcript from the iterative technique described
earlier is used to infer phoneme boundaries, so the Inferred Phonemes
are similar to ASR-derived phones in duration. The Articulatory Fea-
tures averaged over each Inferred Phoneme is used in place of tra-
ditional phonetic features that would be used with known phones.
Adding the average AF information was found to improve the MCD
of voices built for Hindi and Dari.

One of the decisions that needs to be made is the number of IPs
to derive during clustering, which can be controlled by changing the
stop value of the Classification and Regression Tree. In experiments
conducted on Hindi, Dari and Iraqi, having 140-180 IPs yields the
best MCD scores.

Recently, we have also used Articulatory Features, Inferred Phonemes
and Cross-lingual phonetic decoding for the task of minimal pair dis-
crimination in the Zero Resource Speech Challenge in Interspeech
2015 [85]. The evaluation metric was minimal pair ABX discrimina-
tion witin and across speakers, and we took the approach of inducing
a discriminative set of units that would be optimized for synthesis,
with promising results.

7.9 chapter summary

In this chapter, we addressed the challenge of building a Text to
Speech system for a language without a standardized orthography.
While in the previous chapters we had access to an orthography
which we could normalize or use directly to look up pronunciations,
in this case, we derived an orthography by using acoustics from the
TTS database.

We applied an iterative cross-lingual decoding technique and de-
rived a phonetic written form for eight languages from various lan-
guage families. We saw that with as little as half an hour of speech,
we could get improvements in objective measures of TTS system qual-
ity with voices built with these transcripts over the baseline decoded
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transcripts.

We also used techniques to group phonemes in these transcripts
into higher units, which led to higher quality voices, both objectively
and subjectively. In addition, we described a method to use acoustic
information to identify accent groups to create higher level phono-
logical units. Our results indicate that inducing such units leads to
a large improvement in both objective metrics and subjective prefer-
ence.

Although the quality of the systems built using this technique is
not as high as voices built with transcripts, the results are promising.
Such systems may be usable in limited domains, for found data and
in languages with very few resources. Currently, this work is being ex-
tended to build Speech Translation systems for unwritten languages
[131] for the hospital domain, to help refugees who speak languages
that do not typically have a written form. The techniques described in
this chapter can also be applied to found data, or speech in a written
language for which transcripts are not available.



8
C O N C L U S I O N A N D F U T U R E D I R E C T I O N S

In this thesis, we presented several techniques to improve the in-
telligibility and naturalness of Speech Synthesizers built for low re-
source languages. We focused on improving the pronunciation, specif-
ically the grapheme to phoneme mapping or lexical lookup part of
Speech Synthesizers for such languages. Our basic hypothesis was
that the pronunciation of systems for low resource languages can be
improved by exploiting models built cross-lingually, and also utiliz-
ing the acoustics of the TTS database.

Throughout the thesis, we used standard TTS evaluation techniques
to evaluate our voices objectively and subjectively. We conducted ex-
periments on various languages of the world from different language
families and having different types of writing systems.

First, we presented a grapheme-based baseline to build synthesiz-
ers for most languages of the world that have a written forms, by
using a resource that maps Unicode characters to phonemes from
a known phone set. This improves upon raw grapheme based tech-
niques in which we treat all graphemes as phonemes and know noth-
ing about the phonemes and their features.

Next, we compared our grapheme-based voices built with better
modeling techniques to knowledge-based voiced built with standard
techniques to see if we could implicitly model pronunciation with
these models. We found that by using better modeling techniques,
we could reach the performance of voices built with knowledge-based
front ends, including large lexicons and hand-written letter to sound
rules, for some languages.

In order to discover specific letter-to-sound rules that may be slightly
different in related languages, we proposed a technique to cross-lingually
discover schwa deletion rules in Hindi, by using Assamese as a higher
resource language.

Some languages may have lexicons with ambiguities that are not
easy to resolve without external resources, which may not be avail-
able in the low resource setting. We presented a technique to disam-
biguate homographs in dialects of Arabic by making use of acoustics.

77



78 conclusion and future directions

We presented some results and analysis of using Inferred Phonemes
derived using cross-lingual Articulatory Features to improve grapheme-
based voices. There is some evidence that such features capture infor-
mation from the acoustics that can significantly improve the quality
of voices. However, the Inferred Phonemes are difficult to predict us-
ing only text.

A common phenomenon seen in social media and instant messag-
ing in bilingual and multilingual communities is code switching or
code mixing. Speech Processing systems need to be able to deal with
such mixed language both during recognition and synthesis. In many
cases, the script used to write the language being mixed is not ap-
propriate for the language. In addition, social media text contains
non-standard spellings and contractions. We presented a preliminary
framework to synthesize code mixed text in Romanized Hindi and
English using our standard Hindi voice.

Lastly, we described a technique to automatically discover a writ-
ten form using cross-lingual phonetic decoding for languages with-
out a standardized writing system. We built voices for a variety of
languages using our discovered written form and improved them by
inducing higher level units using both the transcription and acous-
tics. Speech Synthesizers built using this technique can potentially
be used as part of applications such as Spoken Dialog Systems and
Speech Translation systems for languages that do not have their own
written form, or databases that do not have a transcription available.

In this thesis, we presented several techniques that improve the
pronunciation, or grapheme-to-phoneme mapping of systems, or in
the case of TTS without text, find a phonetic transcript that we can
synthesize from. In most cases, we found improvements in subjective
and objective metrics. However, it can be argued that not all the im-
provements we saw were due to the pronunciation or the phonemes
themselves. In a sense, our techniques provided better input to down-
stream Machine Learning algorithms (such as labeling, predicting the
spectrum, duration), that then improved the system overall.

8.1 future work

Recently, there has been a lot of interesting in vector-representations
of words based on semantics [132]. These vector representations have
been used for various applications including Statistical Machine Trans-
lation. This idea has been applied to phonemes as well, in which
acoustics are used to generate embeddings of phonemes [110] and
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acoustics based context embeddings [133].

Recently, we have conducted preliminary experiments on adding
vector representations of phonemes derived from lexicons as features
available to our Machine Learning models for modeling the spectrum.
Adding these automatically derived features to our system that has
no knowledge of the phonetic features of phonemes seems to yield
similar objective scores as a voice built with knowledge of phonetic
features. This could be very useful in the raw grapheme scenario,
where we do not have any phonetic feature information. We are also
exploring how such vectors can be used cross-lingually in languages
that have similar phoneme sets. Currently, these vectors are derived
from lexicons and do not take into account any acoustic information.
Future work in this direction includes integrating acoustics into such
representations and using them as features in our models.

In this thesis, we used Crowdsourcing for carrying our subjective
listening tests on Amazon Mechanical Turk. The crowd can poten-
tially be used to pinpoint and correct specific pronunciation errors
that the TTS system is making, particularly in cases when native
speakers of the language are not easily accessible in person.

Text normalization is an important challenge when building a front
end for a new language, which we did not address in this thesis. It
may be possible to exploit cross-lingual resources from related lan-
guages to automatically build text normalization rules for low re-
source languages. Since speakers of some of these languages may
be available as crowd workers, some of these rules or exceptions may
potentially be crowd sourced.

In this thesis, we focused on grapheme-to-phoneme conversion and
lexical lookup for pronunciation modeling. However, there are many
other factors that influence pronunciation, such as lexical stress in
languages like English and tones in tonal languages. Some of the
techniques we have described can potentially be applied to such di-
mensions of pronunciation as well, if they can be reliably extracted
from acoustics.

We provided a simple framework for dealing with code mixed text
in this thesis. Future work includes discovering better techniques to
do Language ID from the point of view of getting a better pronunci-
ation of the word. Recent work on lexical borrowing has shown that
it is possible to identify donor words in a resource rich language to
obtain translations of Out of Vocabulary words in low resource bor-
rower languages, which leads to an improvement in Machine Trans-
lation [134]. Identifying such donor words may be useful in figuring
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out the pronunciation of unknown words in code mixed languages.

A decision may need to be made about the degree of foreignness
of the pronunciation of a word depending on the application and
audience, which is an interesting research direction. This could be of
particular relevance for conversational agents and Spoken Dialog Sys-
tems deployed in multilingual societies, both for Speech Recognition
and Synthesis.

In this thesis, we assumed that most of the text we encountered
was well written, if at all written, except in the case of Code Mixed
text, where we tried dealing with non-standard spellings. A Speech
Synthesizer capable of dealing with Social Media text such as Twitter
would need better techniques to normalize words with misspellings
and contractions.

Finally, in this thesis, we used listening tests and standard objec-
tive metrics to evaluate the pronunciation of our systems, although
we found that in a few cases we had to ask people to listen to spe-
cific words during subjective listening tests. We also found that the
objective metric we used, the Mel Cepstral Distortion, was not always
sensitive to phenomena such as schwa deletion. Finding better objec-
tive and subjective metrics for evaluating pronunciation and speech
synthesis in general is an important future direction.
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A P P E N D I X A

9.1 us english-hindi phone mappings

English phone Hindi phone

aa A:

ae e

ah A

ao o

aw aU

ax A

axr A

ay aI

b b

ch c

d dr

dh dB

eh e

er E 9r

ey ay

f ph

g g

hh hv

ih i

iy i:

jh J

k k

l l

m m

n nB

nx nB

ng nB
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English phone Hindi phone

ow o

oy o j

p p

r 9r

s s

sh s

t tr

th tBh

uh u

uw u:

v v

w v

y j

z s

zh sh
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