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Abstract
The traditional machine learning paradigm of training a task-specific model on

one single task has led to state-of-the-art performance in many fields (e.g. computer

vision and natural language processing). To enable wider applicability of machine

learning models, transfer learning aims to adapt knowledge learned from source

task(s) to improve performance in other target task(s). However, existing transfer

learning paradigm is still understudied, such that we have limited knowledge of

its potential limitations, underlying mechanism and solutions for more intelligent

transfer. In particular, when transferring knowledge from a less related source, it

may inversely hurt the target performance, a phenomenon known as negative trans-

fer. Nonetheless, the cause of negative transfer is ill-defined, and it is not clear how

negative transfer affect models’ generalization and sample-efficiency.

In this thesis, with the goal of thoroughly characterizing and addressing neg-

ative transfer in machine learning models, we carefully study negative transfer in

popular vision and NLP setups, glean insights on its causes, and propose solutions

that lead to improved generalization and sample-efficiency. This thesis consists of

three parts. The first part conducts systematic analysis of negative transfer in state-

of-the-art transfer learning models. We formally characterize its conditions in both

domain adaptation and multilingual NLP models, and demonstrate the task conflict

as a key factor of negative transfer. In the second part, we propose various alignment

methods to enhance the generalization of transferable models by resolving the afore-

mentioned task conflicts with better-aligned representations and gradients. Finally,

in the third part, we explore sample-efficient transfer learning algorithms that miti-

gate negative transfer using less training and/or alignment data. The contributions of

this thesis include new insights on addressing negative transfer in transfer learning

and a series of practical methods and algorithms that improve model generalization

and efficiency.
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Chapter 1

Introduction

Over the past decade, the development of deep neural networks (DNN) has largely pushed the

performance of machine learning models on a wide range of tasks in both computer vision (CV)

and natural language processing (NLP). With modern training systems using efficient accel-

erators such as graphics processing unit (GPU) and tensor processing unit (TPU), large-scale

neural networks with billions of (Huang et al., 2019c; Radford et al., 2019) or even trillions of

(Fedus et al., 2021) parameters obtain state-of-the-art performance on important tasks such as

image classification (Pham et al., 2020) and machine translation (Lepikhin et al., 2020). How-

ever, DNNs often require a large amount of labeled data to train well-generalized models where

the training data and testing data are assumed to be drawn from the same underlying distribu-

tion. In many cases, collecting large volumes of within-task labeled training data is expensive or

even strictly prohibitive. Therefore, transfer learning (Pan and Yang, 2010; Weiss et al., 2016)

has been developed to enable exploiting training data, supervised or unsupervised, from related

task(s) to improve generalization in the target task(s). This paradigm of knowledge transfer has

been shown success empirically on various kinds of tasks including core CV tasks such as image

classification (Long et al., 2017; Tan and Le, 2019), object detection (He et al., 2017), and seg-

mentation (Chen et al., 2017), and core NLP tasks such as natural language understanding (NLU)

(Devlin et al., 2018; Liu et al., 2019; Yang et al., 2019) and cross-lingual transfer (Arivazhagan

et al., 2019; Conneau et al., 2020; Lample and Conneau, 2019).

Despite the significant development and the exceptionally diverse range of applications, the

success of transfer learning is not always guaranteed and its limitation is not well-understood.

As a notable example, negative transfer has been observed empirically (Rosenstein et al., 2005)

such that transferring from less related source tasks may hinder performance in the target tasks

instead of improving. This poses several challenges towards more generalizable and efficient
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transfer learning as follows:

(1) The causes and underlying factors of negative transfer is unknown. While the notion

of negative transfer has been well recognized within the transfer learning community (Pan and

Yang, 2010; Weiss et al., 2016) and it has been observed empirically in different tasks ranging

from simple binary classification problems (Rosenstein et al., 2005) to large-scale neural multi-

lingual natural language understanding tasks (Arivazhagan et al., 2019), the root of such degen-

erative phenomena remains unclear. There is no clear formal definition for negative transfer nor

systematic analysis of its conditions. For instance, we do not know whether negative transfer is

model-dependent, or if it is determined by task relatedness only. Without such a thorough under-

standing of negative transfer, it is therefore particularly challenging to design methodologies to

detect or prevent it, especially under settings where source-target divergence can be large.

(2) The generalization of transferable models is susceptible to negative transfer. The

existence of negative transfer directly threatens the generalization of any transfer learning model.

This is particularly true for NLP where pretrained models have become ubiquitous. For example,

when a model is pretrained using corpus from a specific domain (such as wikipedia), it may not

be applicable for other domains due to negative transfer (Raffel et al., 2019). On the other hand, a

multilingual model can be trained on many languages at the same time, and negative interference

among languages may also hinder its generalization (Arivazhagan et al., 2019). Thus, how to

resolve negative transfer to extend applicabilities of existing NLP models has become an urgent

issue.

(3) Negative transfer raises data requirements for efficient knowledge transfer. We hu-

man beings accumulate knowledge throughout our lifetime, and utilize most related past experi-

ence to efficiently learn new knowledge from only a few examples. However, existing transfer

learning models are more likely to suffer from negative transfer when using few training exam-

ples (Pan and Yang, 2010), and therefore they require a large amount of training data, either

from source or target distribution, to achieve reasonable performance. This would further in-

crease the resources required to store extra training data and retrain transfer models to adapt to

new domains, adding non-trivial cost and hinders transfer models’ deployment in industry or

other realistic setups where new tasks/domains continuously emerge.

1.1 Thesis Statement

The goal of this thesis is to thoroughly characterize and alleviate negative transfer in machine

learning models. In particular, we aim to understand negative transfer’s pre-conditions, inves-
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tigate methods to mitigate it, and study the benefits of addressing it. To this end, we carefully

study negative transfer in popular vision and NLP setups, glean insights on its causes, and pro-

pose solutions that lead to improved generalization and sample efficiency of transfer learning

methods. In the first part, we conduct systematic analysis of negative transfer in state-of-the-art

transfer learning models that (1) formally characterizes its conditions in both domain adaptation

and multilingual NLP models and (2) demonstrates the task conflict as a key factor of negative

transfer. In the second part, we present two methods to enhance the generalization of transfer-

able models by resolving the aforementioned task conflicts with better-aligned representations

and gradients. In the third part, we further show that mitigating data discrepancy among differ-

ent tasks can also largely improve the sample efficiency of transfer learning methods, effectively

reducing the requirement of human supervision.

1.2 Thesis Overview

This thesis is a collection of diverse case studies centered around the effect of negative transfer

and the above three related challenges. The goal is to thoroughly investigate task conflicts in

transfer learning models that could lead to negative transfer and resolve them to achieve more

generalizable and sample-efficient knowledge transfer. There are three major parts, each corre-

sponding to one problem mentioned above, detailed as follows:

Part I Measuring and Characterizing Conflicts in Transfer Learning In this part, we reex-

amine negative transfer for neural models in popular CV and NLP setups. Despite its popularity,

there is no formal definition for negative transfer nor consistent metric to measure it thereby mak-

ing it hard to compare transfer algorithms and detect negative transfer. We first revisit negative

transfer in standard domain adaptation benchmarks and utilize its theoretical properties to define

a negative transfer gap (NTG) as a practically measurable metric (chapter 3). The definition fur-

ther reveals task conflict as the root of negative transfer and two other underlying factors, which

are confirmed with empirical results. Next in (chapter 4), we extend our analysis beyond syn-

thetic settings to real-world multilingual models where hundreds of languages are trained jointly

in a single model. We specifically test four hypotheses of causes for negative transfer, and find

gradient conflicts and task-specific parameters to be the main factors. In both cases, we report

empirical evidence that resolving such conflicts may mitigate negative transfer.
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Part II Enhancing Transfer Generalization by Addressing Task Conflicts From the previ-

ous part, we have learned that negative transfer exists in current transfer learning models and

affects their generalization when transferred to new tasks/domains. The main cause of negative

transfer is the inter-task conflict occurring during the training process or post-hoc adaptation.

In this part, we are therefore particularly interested in addressing task conflicts through explicit

alignment of source-target distributions. Specifically, we propose two different types of align-

ment for multilingual transfer models. In (chapter 5), we start with aligning representations of

different languages after they are learned, both contextualized and non-contextualized. We com-

pare two popular representation alignment paradigms and further propose a unified framework to

combine them in a systematic way. Next we explore alignment during the optimization process

(chapter 6) in a multilingual neural machine translation (NMT) model. We find that gradient

similarity measured along the optimization trajectory is an important signal for the overall model

performance. And thus we propose a scalable method to align gradients, named Gradient Vac-

cine (GRADVAC), which encourages more geometrically aligned parameter updates for close

tasks. These proposed methods mitigate task conflicts and thus improve models’ generalization

in target tasks.

Part III Improving Transfer Efficiency with Less Supervision With recent advances of

large-scale pre-trained models, efficiently adapting and reusing them for other tasks has be-

come crucial for the practical application of these models. In this part, we show that alleviating

data discrepancy and negative transfer can improve the sample efficiency of transferable models.

We start with an empirical analysis of negative transfer in lifelong learning settings using pre-

trained language models (chapter 7), and observe that the model requires much more examples

to adapt robustly to new tasks when negative transfer occurs. Consequently, we propose a meta-

learning method that explicitly learns to conduct local adaption robustly and effectively improve

its sample efficiency such that it can outperform prior methods using 100 times less training

data. Next in (chapter 8), we present a simple visual language model framework (SimVLM) for

vision-language pretraining. Unlike prior methods, SimVLM only uses weakly aligned image-

text data and enables zero-shot learning in visual understanding tasks, relieving the reliance on

human annotation. This improves the sample efficiency for both pretraining and finetuning in

vision-language transfer. Finally, we show that it is possible to attain strong transfer perfor-

mance without utilizing any labeled data in (chapter 9). Specifically, we propose unsupervised

data generation (UDG) using giant language models pretrained on a large scale, which enables

zero-label language learning on a wide range of natural language understanding tasks and obtains
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the first super-human performance on the SuperGLUE benchmark (Wang et al., 2019a).
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Chapter 2

Background and Literature Review

From a broad perspective, machine learning aims to train a generalizable model that outputs

a label y for a given input x (the x, y pair can be in an arbitrary form, such as an image and a

corresponding object class label) by utilizing a set of training data in the form of (x, y) pairs. The

goal is being able to generalize to unseen test examples in a wide variety of settings. While the

traditional machine learning training paradigm assumes both training and testing data come from

the same underlying distribution, we often want to utilize training data from a related but different

distribution when it is hard to directly collect training examples from the testing distribution. For

example, if we do not have enough labeled images captured by professional photographers and

we still want to train a model for image classification for this domain, we can utilize online

pictures to improve the model quality. This is the key motivation for transfer learning and in this

chapter, we formalize this setting for the rest of this thesis.

2.1 Terminology and Definitions

In machine learning, the typical setup is to train a model to approximate a function (defined

through the form of model parameters) for a specific task. A task, in its simplest form, is com-

posed of two measurable spaces X and Y and their joint underlying distribution P (X ,Y). Here,

X represents the input space and Y represents the label space. Then, a finite set of training ex-

amples {(xi, yi)}ni=1 are sampled/collected based on the joint distribution P (X ,Y), and we train

the model/hypothesis h(·) to minimize the expected risk as:

RP (h) := Ex,y∼P [`(h(x), y)] , (2.1)

7



where ` is some loss function defined for this task. In practice, since directly minimizing the

expected risk is prohibited, we usually minimize the empirical risk instead as:

R̃P (h) :=
1

n

n∑
i=1

`(h(xi), yi). (2.2)

Transfer Learning. The above training protocol does not work well when the training size n is

small in a complex task. Transfer learning then aims to improve the model’s generalization in this

target task by utilizing training data from other task(s). Formally, let PS(X ,Y) and PT (X ,Y)

denote the the joint distribution in the source and the target domain. Without loss of generality,

given a labeled source set S = {(xis, yis)}ns
i=1 sampled from the source joint PS(X ,Y) and a

target set T = (Tl, Tu) where Tl = {(xjl , y
j
l )}

nl
j=1 is a labeled target set drawn from the target

joint PT (X ,Y), and Tu = {xku}nu
k=1 is an unlabeled target set from the target marginal PT (X ),

transfer learning aims at designing an algorithmA, which takes both the source and target domain

data S, T as input, and outputs a hypothesis (model) h = A(S, T ), to minimize the expected

risk as

RPT
(h) := Ex,y∼PT

[`(h(x), y)] . (2.3)

To make the setting meaningful, it is often assumed that ns � nl. This definition of transfer

learning can be easily adapted to different settings to include multiple sources/targets such as

domain adaptation and multilingual models. It can also be extended to related settings such as

few-shot learning and lifelong learning.

Negative Transfer. Although the goal of transfer learning is to improve target task perfor-

mance through knowledge transfer from source tasks, the success of such paradigm is not always

guaranteed. In particular, since we typically have limited amount of labeled data in the target

task, it becomes hard to accurately approximate the expected risk in Eq. (2.3). Consequently,

it is challenging to guarantee performance when transferring to the target, hurting the model’s

generalization. On the other hand, this also raises the issue of sample-efficiency, as it often

requires more training samples to mitigate negative transfer. As we will see later in this thesis,

a key factor of these two problems is negative transfer, which is closely related to task conflict

and transfer efficiency. The notion of negative transfer lacks a rigorous definition. A widely

accepted description of negative transfer (Pan and Yang, 2010; Weiss et al., 2016) is stated as

“transferring knowledge from the source can have a negative impact on target learner”. More

broadly, this can be interpreted as utilizing training data from a different distribution is less ef-

fective, compared to the standard machine learning training protocol such as the one in Eq. (2.2).
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We will redefine this term formally in chapter 3 and provide in-depth analysis. In addition, we

will also study negative transfer in transfer paradigm with multiple sources/targets, which we

refer to as negative interference.

2.2 Background

2.2.1 Transfer Learning

Transfer learning Pan and Yang (2010); Yang et al. (2013) aims to transfer knowledge learned in

the source domain to assist learning in the target domain. There are many forms of knowledge

transfer, such as parameter transfer (Ganin et al., 2016) or regularization transfer (Huang et al.,

2007). Pioneer work of transfer learning study the simple setting of transferring from a single

source domain to a single target domain, where the input/output spaces are also assumed to be

the same (a.k.a. homogeneous domain adaptation). Early methods (Caruana, 1997) exploit con-

ventional statistical techniques such as weighting source domain instances (Huang et al., 2007)

and mapping domain features to be similar between the source and the target (Pan et al., 2011;

Uguroglu and Carbonell, 2011). Compared to these earlier approaches, deep transfer networks

achieve better results in discovering domain invariant factors (Yosinski et al., 2014). Some deep

learning methods (Long et al., 2015; Sun and Saenko, 2016) transfer via distribution (mis)match

measurements such as Maximum Mean Discrepancy (MMD) (Huang et al., 2007). More recent

work(Cao et al., 2018a; Ganin et al., 2016; Sankaranarayanan et al., 2018; Tzeng et al., 2015)

exploit generative adversarial networks (GANs) (Goodfellow et al., 2014) and add a subnetwork

as a domain discriminator, obtaining strong results on computer vision tasks (Sankaranarayanan

et al., 2018). More recently for natural language processing tasks, language model pre-training

has become a successful transfer learning approach to effectively reduce the requirement for

task-specific labeled data (Brown et al., 2020; Devlin et al., 2018; Liu et al., 2019; Radford et al.,

2019; Raffel et al., 2019; Yang et al., 2019). Via training on unsupervised large-scale text corpus,

bi-directional language models such as BERT and XLNet are able to learn contextualized text

representations that can then be fine-tuned on downstream tasks with small training data sizes,

which have pushed the state of the art on a variety of natural language understanding bench-

marks. These results raise increasing interest in transfer learning, which has been extended to

challenging problem settings such as multilingual NLP, meta learning and lifelong learning.

Multilingual NLP attempts to enable knowledge transfer among languages and build multi-

lingual systems that can process many languages at the same time. Early methods try to capture
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the cross-lingual mapping of word embeddings with cross-lingual supervision, including bilin-

gual dictionaries (Artetxe et al., 2016; Duong et al., 2016; Faruqui and Dyer, 2014; Gouws and

Søgaard, 2015; Joulin et al., 2018; Mikolov et al., 2013a; Xing et al., 2015), sentence-aligned

corpora (Gouws et al., 2015; Hermann and Blunsom, 2014; Kočiskỳ et al., 2014) and document-

aligned corpora (Søgaard et al., 2015; Vulić and Moens, 2016). More recently, multilingual

models train multiple languages jointly (Aharoni et al., 2019; Arivazhagan et al., 2019; Conneau

et al., 2020; Devlin et al., 2018; Firat et al., 2016; Johnson et al., 2017; Lample and Conneau,

2019). Follow-up work study the cross-lingual ability of these models and what contributes to

it (Artetxe et al., 2019b; Karthikeyan et al., 2020; Kudugunta et al., 2019; Pires et al., 2019;

Wu and Dredze, 2019; Wu et al., 2020), the limitation of such training paradigm (Arivazhagan

et al., 2019; Wang et al., 2020c), and how to further improve it by utilizing post-hoc alignment

(Cao et al., 2020; Wang et al., 2020d), data balancing (Jean et al., 2019; Wang et al., 2020b), or

calibrated training signal (Huang et al., 2019a; Mulcaire et al., 2019).

Meta learning studies the problem of transferring knowledge from known tasks to facilitate

learning in the unseen tasks, a.k.a. learning to learn. In (Finn et al., 2017), it is defined as to train

a model on a variety of learning tasks, such that it can solve new learning tasks using only a

small number of training samples. A popular setting is few-shot learning that aims to learn how

to perform fast adaptation on new tasks by utilizing past experience (Finn et al., 2017; Flennerhag

et al., 2019; Gu et al., 2018). More broadly, meta-level learning can be also applied to learn

how to perform data selection on unseen tasks (Wang et al., 2020b) or choose hyperparameters

(Baydin et al., 2018). This form of transferring combines well with existing transfer learning

approach (Pham et al., 2020).

Lifelong learning transfers knowledge continuously in a model’s lifetime. The model is

required to quickly adapt to new environments and acquire new skills by leveraging past experi-

ences, while retaining old skills and continuously accumulating knowledge (Parisi et al., 2019).

There is a surge of research interest in the lifelong learning by applying regularization or ex-

panding model sizes (Chaudhry et al., 2019; Kirkpatrick et al., 2017; Lopez-Paz and Ranzato,

2017; Rusu et al., 2016; Sprechmann et al., 2018; Yoon et al., 2018; Zenke et al., 2017). One

successful approach to achieving lifelong learning has been augmenting the learning model with

an episodic memory module (Sprechmann et al., 2018). The underlying idea is to first store

previously seen training examples in memory, and later use them to perform experience replay

(Rolnick et al., 2019) or to derive optimization constraints (Chaudhry et al., 2019; Lopez-Paz and

Ranzato, 2017) while training on new tasks. The key is to prevent catastrophic forgetting when

trained on new tasks (Yogatama et al., 2019), such that the model may forget learned knowledge
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on old ones.

2.2.2 Negative Transfer

Negative transfer occurs when transferring knowledge from source tasks hurts the performance

in the target tasks instead of assisting. It is hypothesized that the cause of this negative impact

is the difference between the two underlying distributions. Early work that noted negative trans-

fer (Rosenstein et al., 2005) was targeted at simple classifiers such as hierarchical Naive Bayes.

They observe degenerative performance in the target domain when transfer learning is applied.

Later, similar negative effects have also been observed in various settings including multi-source

transfer learning (Duan et al., 2012), imbalanced distributions (Ge et al., 2014) and partial trans-

fer learning (Cao et al., 2018a). While the importance of detecting and avoiding negative transfer

has raised increasing attention (Weiss et al., 2016), the literature lacks in-depth analysis. Besides,

similar effects of negative transfer are observed in other settings such as multilingual models and

lifelong learning.

Multilingual models are multi-task in nature and thus interference among tasks may exist.

This is particularly true since language input spaces are heterogeneous, with different vocab-

ularies, morphosyntactic rules, and different pragmatics across cultures. Prior work have dis-

covered that multilingual models are not equally beneficial for all languages. Conneau et al.

(2020) demonstrated that including more languages in a single model can improve performance

for low-resource languages but hurt performance for high-resource languages. Similarly, recent

work (Aharoni et al., 2019; Arivazhagan et al., 2019; Johnson et al., 2017; Tan et al., 2019) in

multilingual neural machine translation (NMT) also observed performance degradation on high-

resource language pairs. This phenomenon is known as negative interference (Ruder, 2017),

where training multiple tasks jointly hinders the performance on individual tasks.

In lifelong learning, similar negative impact among tasks has also been reported as catas-

trophic forgetting (McCloskey and Cohen, 1989). This is the case when learning new tasks hurts

the performance in the old ones. On the other hand, negative transfer also occurs when trans-

ferring from the old tasks hurts performance in the new ones. These can be seen as negative

transfer in two directions, backward and forward respectively. However, human beings suffer

less from these due to the complementary learning systems (CLS) theory (McClelland et al.,

1995). It states that humans rely on episodic memory to store past experiences and conduct ex-

perience rehearsal, and have two learning phases that iteratively learn new knowledge efficiently

but remember old ones robustly for a longer period of time. Therefore, it is expected that by
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addressing negative transfer, we can also train machine learning models that are able to conduct

transfer learning efficiently and robustly.
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Part I

Measuring and Characterizing Conflicts in
Transfer Learning
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Chapter 3

Negative Transfer in Domain Adaptation

In this chapter and the next chapter, we present the first part of the thesis to study negative trans-

fer in transfer learning. We aim to systematically investigate its definition and underlying factors,

which will serve as important building blocks for later chapters. This chapter first study nega-

tive transfer in domain adaptation, a popular setup for traditional transfer learning. Despite its

pervasiveness, negative transfer is usually described in an informal manner, lacking rigorous def-

inition, careful analysis, or systematic treatment. In this chapter, we propose a formal definition

of negative transfer and analyze three important aspects thereof. Stemming from this analysis,

a novel technique is proposed to circumvent negative transfer by filtering out unrelated source

data. Based on adversarial networks, the technique is highly generic and can be applied to a wide

range of transfer learning algorithms. The proposed approach is evaluated on six state-of-the-art

deep transfer methods via experiments on four benchmark datasets with varying levels of diffi-

culty. Empirically, the proposed method consistently improves the performance of all baseline

methods and largely avoids negative transfer, even when the source data is degenerate.

3.1 Introduction

The development of deep neural networks (DNNs) has improved the state-of-the-art performance

on a wide range of machine learning problems and applications. However, DNNs often require

a large amount of labeled data to train well-generalized models and as more classical methods,

DNNs rely on the assumption that training data and test data are drawn from the same underlying

distribution. In some cases, collecting large volumes of labeled training data is expensive or even

prohibitive. Transfer learning (Pan and Yang, 2010) addresses this challenge of data scarcity by

utilizing previously-labeled data from one or more source tasks. The hope is that this source
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domain is related to the target domain and thus transferring knowledge from the source can

improve the performance within the target domain. This powerful paradigm has been studied

under various settings (Weiss et al., 2016) and has been proven effective in a wide range of

applications (Long et al., 2015; Moon and Carbonell, 2017; Zamir et al., 2018).

However, the success of transfer learning is not always guaranteed. If the source and target

domains are not sufficiently similar, transferring from such weakly related source may hinder

the performance in the target, a phenomenon known as negative transfer. The notion of negative

transfer has been well recognized within the transfer learning community (Pan and Yang, 2010;

Weiss et al., 2016). An early paper (Rosenstein et al., 2005) has conducted empirical study on

a simple binary classification problem to demonstrate the existence of negative transfer. Some

more recent work (Cao et al., 2018a; Duan et al., 2012; Ge et al., 2014) has also observed sim-

ilar negative impact while performing transfer learning on more complex tasks under different

settings.

Despite these empirical observations, little research work has been published to analyze or

predict negative transfer, and the following questions still remain open: First, while the notion

being quite intuitive, it is not clear how negative transfer should be defined exactly. For example,

how should we measure it at test time? What type of baseline should we compare with? Second,

it is also unknown what factors cause negative transfer, and how to exploit them to determine

that negative transfer may occur. Although the divergence between the source and target domain

is certainly crucial, we do not know how large it must be for negative transfer to occur, nor if it

is the only factor. Third and most importantly, given limited or no labeled target data, how to

detect and/or avoid negative transfer.

In this chapter, we take a step towards addressing these questions. We first derive a formal

definition of negative transfer that is general and tractable in practice. Here tractable means

we can explicitly measure its effect given the testing data. This definition further reveals three

underlying factors of negative transfer that give us insights on when it could occur. Motivated

by these theoretical observations, we develop a novel and highly generic technique based on

adversarial networks to combat negative transfer. In our approach, a discriminator estimating

both marginal and joint distributions is used as a gate to filter potentially harmful source data

by reducing the bias between source and target risks, which corresponds to the idea of impor-

tance reweighting (Cortes et al., 2010; Yu and Szepesvári, 2012). Our experiments involving

eight transfer learning methods and four benchmark datasets reveal the three factors of negative

transfer. In addition, we apply our method to six state-of-the-art deep methods and compare their

performance, demonstrating that our approach substantially improves the performance of all base
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methods under potential negative transfer conditions by largely avoiding negative transfer.

3.2 Rethink Negative Transfer

Notation. We will use PS(X, Y ) and PT (X, Y ), respectively, to denote the the joint distribu-

tion in the source and the target domain, where X is the input random variable and Y the output.

Following the convention, we assume having access to labeled source set S = {(xis, yis)}ns
i=1

sampled from the source joint PS(X, Y ), a labeled target set Tl = {(xjl , y
j
l )}

nl
j=1 drawn from the

target joint PT (X, Y ), and an unlabeled target set Tu = {xku}nu
k=1 from the target marginal PT (X).

For convenience, we define T = (Tl, Tu). Notice that we focus on domain adaptation setup in

this chapter, and assume the label spaces are the same between the source and the target domain.

This allows us to study negative transfer in details and we leave more complex transfer learning

settings for future work.

Transfer Learning. Under the notation, transfer learning aims at designing an algorithm A,

which takes both the source and target domain data S, T as input, and outputs a better hypothesis

(model) h = A(S, T ), compared to only using the target-domain data. For model comparison,

we will adapt the standard expected risk, which is defined as

RPT
(h) := Ex,y∼PT

[`(h(x), y)] , (3.1)

with ` being the specific task loss. To make the setting meaningful, it is often assumed that

ns � nl.

Negative Transfer. The notion of negative transfer lacks a rigorous definition. A widely ac-

cepted description of negative transfer (Pan and Yang, 2010; Weiss et al., 2016) is stated as

“transferring knowledge from the source can have a negative impact on the target learner”.

While intuitive, this description conceals many critical factors underlying negative transfer, among

which we stress the following three points:

1. Negative transfer should be defined w.r.t. the transfer learning algorithm. Specifically, the

informal description above does not specify what the negative impact is compared with. For

example, it will be misleading to only compare with the best possible algorithm only using

the target data, i.e., defining negative transfer as

RPT
(A(S, T )) > min

A′
RPT

(A′(∅, T )), (3.2)
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because the increase in risk may not come from using the source-domain data, but the dif-

ference in algorithms. Therefore, to study negative transfer, one should focus on a specific

algorithm at a time and compare its performance with and without the source-domain data.

Hence, we define the negative transfer condition (NTC) for any algorithm A as

RPT
(A(S, T )) > RPT

(A(∅, T )). (3.3)

For convenience, we also define the negative transfer gap (NTG) as a quantifiable measure of

negative transfer:

NTG(A, S, T ) = RPT
(A(S, T ))−RPT

(A(∅, T )), (3.4)

and we say that negative transfer occurs if the negative transfer gap is positive and vice versa.

2. Divergence between the joint distributions is the root to negative transfer. As negative transfer

is algorithm specific, it is natural to ask the question that whether there exists a transfer learn-

ing algorithm that can always improve the expected risk compared to its target-domain only

baseline. It turns out this depends on the divergence between PS(X, Y ) and PT (X, Y ) (Gong

et al., 2016). As an extreme example, assume PS(X) = PT (X) and PS(Y | x) is uniform for

any x. In the case, there is no meaningful knowledge in PS(X, Y ) at all. Hence, exploiting

S ∼ PS(X, Y ) will almost surely harm the estimation of PT (Y | X), unless PT (Y | X) is

uniform.

In practice, we usually deal with the case where there exists some “systematic similarity”

between PS(X, Y ) and PT (X, Y ). Then, an ideal transfer learning algorithm would figure

out and take advantage of the similar part, leading to improved performance. However, if an

algorithm fails to discard the divergent part and instead relies on it, one can expect negative

transfer to happen. Thus, regardless of the algorithm choice, the distribution shift is the actual

root to negative transfer.

3. Negative transfer largely depends on the size of the labeled target data. While the previous

discussion focuses on the distribution level, an overlooked factor of negative transfer is the

size of the labeled target data, which has a mixed effect.

On one hand, for the same algorithm and distribution divergence, NTC depends on how well

the algorithm can do using target data alone, i.e. the RHS of Eq.(3.3). In zero-shot transfer

learning1 (Ganin and Lempitsky, 2015; Pei et al., 2018) where there is no labeled target data

(nl = 0), only using unlabeled target data would result in a weak random model and thus
1It is often referred to as unsupervised domain adaptation in the literature.
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NTC is unlikely to be satisfied. When labeled target data is available (Moon and Carbonell,

2017; Rosenstein et al., 2005; Tzeng et al., 2015), a better target-only baseline can be obtained

using semi-supervised learning methods and so negative transfer is relatively more likely to

occur. At the other end of the spectrum, if there is an abundance of labeled target data, then

transferring from an even slightly different source domain could hurt the generalization. Thus,

this shows that negative transfer is relative.

On the other hand, the amount of labeled target data has a direct effect on the feasibility

and reliability of discovering shared regularity between the joint distributions. As discussed

above, the key component of a transfer learning algorithm is to discover the similarity between

the source joint PS(X, Y ) and the target joint PT (X, Y ). When labeled target data is not

available (nl = 0), one has to resort to the similarity between the marginals PS(X) and

PT (X), which though has a theoretical limitation on generalization bound (Ben-David et al.,

2007). In contrast, if one has a considerable number of samples (xl, yl) ∼ PT (X, Y ) and

(xs, ys) ∼ PS(X, Y ), the problem would be manageable. Therefore, an ideal transfer learning

algorithm may be able to utilize labeled target data to mitigate the negative impact of unrelated

source information.

While the discussion above are based on the underlying setting of domain adaptation, we be-

lieve some ideas are also shared across the other settings such as covariate shift and concept shift.

For example, the analysis on the divergence of joint distributions is generic and is applicable for

those settings as well. Other ideas are also worth exploring in future research. With these points

in mind, we next turn to the problem of how to avoid negative transfer in a systematic way.

3.3 Proposed Method

As discussed in Section 3.2, the key to improving transfer is to discover and exploit shared

underlying structures between PS(X, Y ) and PT (X, Y ). In practice, there are many possible

regularities one may take advantage of. To motivate our proposed method, we first review an

important line of work and show how the observation in Section 3.2 helps us to identify the

limitation.

3.3.1 Domain Adversarial Network

As a notable example, a recent line of work (Ganin and Lempitsky, 2015; Long et al., 2015;

Tzeng et al., 2017) has successfully utilized a domain-invariant feature space assumption to
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achieve knowledge transfer. Specifically, it is assumed that there exists a feature space that is

both shared by both source and target domains and discriminative enough for predicting the

output. By learning a feature extractor F that can map both the source and target input to the

same feature space, classifier learned on the source data can transfer to the target domain.

To find such a feature extractor, a representative solution is the Domain Adversarial Neural

Network (DANN) (Ganin et al., 2016), which exploits a generative adversarial network (GAN)

framework to train the feature extractor F such that the feature distributions P (F (XS)) and

P (F (XT )) cannot be distinguished by the discriminator D. Based on the shared feature space,

a simple classifier C is trained on both source and target data. Formally, the objective can be

written as:

argmin
F,C

argmax
D
LCLF(F,C)− µLADV(F,D), (3.5)

LCLF(F,C) =Exl,yl∼TL [`CLF(C(F (xl)), yl)]

+Exs,ys∼S [`CLF(C(F (xs)), ys)] , (3.6)

LADV(F,D) =Exu∼PT (X) [logD(F (xu))]

+Exs∼PS(X) [log(1−D(F (xs)))] . (3.7)

Intuitively, LCLF is the supervised classification loss on both the target and source labeled data,

LADV is the standard GAN loss treating F (xu) and F (xs) as the true and fake features respec-

tively, and µ is a hyper-parameter balancing the two terms. For more details and theoretical

analysis, we refer readers to the original work (Ganin and Lempitsky, 2015).

Now, notice that the DANN objective implicitly makes the following assumption: For any

xs ∈ Xs, there exists a xt ∈ Xt such that

PS(Y |xs) = PT (Y |xt) = P (Y |F (xs)) = P (Y |F (xt)).

In other words, it is assumed that every single source sample can provide meaningful knowledge

for transfer learning. However, as we have discussed in Section 3.2, some source samples may

not be able to provide any knowledge at all. Consider the case where there is a source input

xs ∈ Xs such that PS(Y | xs) 6= PT (Y | xt) for any xt. Since P (F (Xs)) = P (F (Xt))

as a result of the GAN objective, there exists a x′ ∈ Xt such that F (x′) = F (xs) and hence

P (Y | F (x′)) = P (Y | F (xs)). Then, if P (Y | F (xs)) is trained on the source data to match

PS(Y | xs), it follows

P (Y |F (x′)) = P (Y |F (xs)) = P (Y |xs) 6= P (Y |x′).
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Figure 3.1: The architecture of proposed discriminator gate, where f is the extracted feature

layer, ŷ and `CLF are predicted class label and its loss, d̂ is the predicted domain label, Lgate
CLF is

the classification loss, Laug
ADV is the adversarial learning loss; GRL stands for Gradient Reversal

Layer and � is the Hadamard product.

As a result, relying on such “unrelated” source samples can hurt the performance, leading to

negative transfer. Motivated by this limitation, we next present a simple yet effective method to

deal with harmful source samples in a systematic way.

3.3.2 Discriminator Gate

The limitation of DANN comes from the unnecessary assumption that all source samples are

equally useful. To eliminate the weakness, a natural idea is to reweight each source sample

in some proper manner. To derive an appropriate weight, notice that the standard supervised

learning objective can be rewritten as

LSUP = Ex,y∼PT (X,Y ) [`CLF(C(F (x)), y)]

= Ex,y∼PS(X,Y )

[
PT (x, y)

PS(x, y)
`CLF(C(F (x)), y)

] (3.8)

where the density ratio PT (x,y)
PS(x,y)

naturally acts as an importance weight (Cortes et al., 2010; Yu

and Szepesvári, 2012) for the source data. Hence, the problem reduces to the classic problem of
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density ratio estimation.

Here, we exploit a GAN discriminator to perform the density ratio estimation (Uehara et al.,

2016). Specifically, the discriminator takes both x and the paired y as input, and tries to classify

whether the pair is from the source domain (fake) or the target domain (true). At any point, the

optimal discriminator is given by D(x, y) = PT (x,y)
PT (x,y)+PS(x,y)

, which implies

PT (x, y)

PS(x, y)
=

D(x, y)

1−D(x, y)
.

In our implementation, to save model parameters, we reuse the feature extractor to obtain the

features of x and instantiate D(x, y) as D(F (x), y). With the weight ratio, we modify the classi-

fication objective (3.6) in DANN as

Lgate
CLF(C,F ) = Exl,yl∼TL [`CLF(C(F (xl)), yl)]

+λExs,ys∼S [ω(xs, ys)`CLF(C(F (xs)), ys)] ,

ω(xs, ys) = SG
(

D(xs, ys)

1−D(xs, ys)

) (3.9)

where SG(·) denotes stop gradient and λ is another hyper-parameter introduce to scale the density

ratio. As the density ratio acts like a gating function, we will refer to mechanism as discriminator

gate.

On the other hand, we also augment the adversarial learning objective (3.7) by incorporating

terms for matching the joint distributions:

Laug
ADV(F,D) = Exu∼PT (X) [logD(F (xu),nil)]

+ Exs∼PS(X) [log(1−D(F (xs),nil))]

+ Exl,yl∼TL [logD(F (xl), yl)]

+ Exs,ys∼S [log(1−D(F (xs), ys))] ,

(3.10)

where nil denotes a dummy label which does not provide any label information and it is in-

cluded to enable the discriminator D being used as both a marginal discriminator and a joint

discriminator. As a benefit, the joint discriminator can utilize unlabeled target data since labeled

data could be scarce. Similarly, under this objective, the feature network F will receive gradient

from both the marginal discriminator and the joint discriminator. Theoretically speaking, the

joint matching objective subsumes the the marginal matching objective, as matched joint distri-

bution implied matched marginals. However, in practice, the labeled target data TL is usually

limited, making the joint matching objective itself insufficient. This particular design choice
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echos our discussion about how the size of labeled target data can influence our algorithm design

in Section 3.2.

Combining the gated classification objective (3.9) and the augmented adversarial learning

objective (3.10), we arrive at our proposed approach to transfer learning

argmin
F,C

argmax
D

Lgate
CLF(F,C)− µLaug

ADV(F,D). (3.11)

The overall architecture is illustrated in Figure 3.1. Finally, although the presentation of the

proposed method is based on DANN, our method is highly general and can be applied directly to

other adversarial transfer learning methods. In fact, we can even extend non-adversarial methods

to achieve similar goals. In our experiments, we adapt six deep methods (Cao et al., 2018b;

Ganin and Lempitsky, 2015; Long et al., 2015; Sankaranarayanan et al., 2018; Sun and Saenko,

2016; Tzeng et al., 2017) of three different categories to demonstrate the effectiveness of our

method.

3.4 Experiments

We conduct extensive experiments on four benchmark datasets to (1) analyze negative transfer

and its three underlying aspects, and (2) evaluate our proposed discriminator gate on six state-

of-the-art methods.

3.4.1 Datasets

We use four standard datasets with different levels of difficulties: (1) small domain shift: Digits

dataset, (2) moderate domain shift: Office-31 dataset, and (3) large domain shift: Office-Home

and VisDA datasets.

Digits contains three standard digit classification datasets: MNIST, USPS, SVHN. Each

dataset contains large amount of images belonging to 10 classes (0-9). This dataset is rela-

tively easy due to its simple data distribution and therefore we only consider a harder case:

SVHN→MNIST. Specifically, SVHN (Netzer et al., 2011) contains 73K images cropped from

house numbers in Google Street View images while MNIST (LeCun et al., 1998) consists of 70K

handwritten digits captured under constrained conditions.

Office-31 (Saenko et al., 2010) is the most widely used dataset for visual transfer learning. It

contains 4,652 images of 31 categories from three domains: Amazon(A) which contains images

from amazon.com, Webcam(W) and DSLR(D) which consist of images taken by web camera
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and SLR camera. We evaluate all methods across three tasks: W→D, A→D, and D→A. We

select these three settings because the other three possible cases yield similar results.

Office-Home (Venkateswara et al., 2017) is a more challenging dataset that consists of about

15,500 images of 65 categories that crawled through several search engines and online image

directories. In particular, it contains four domains: Artistic images(Ar), Clip Art(Cl), Product

images(Pr) and Real-World images(Rw). We want to test on more interesting and practical

transfer learning tasks involving adaptation from synthetic to real-world and thus we consider

three transfer tasks: Ar→Rw, Cl→Rw, and Pr→Rw. In addition, we choose to use the first

25 categories in alphabetic order to make our results more comparable to previous studies (Cao

et al., 2018b).

VisDA (Peng et al., 2017) is another challenging synthetic to real dataset. We use the training

set as the synthetic source and the testing set as the real-world target (Synthetic→Real). Specifi-

cally, the training set contains 152K synthetic images generated by rendering 3D models and the

testing set contains 72K real images from crops of Youtube Bounding Box dataset (Real et al.,

2017), both contain 12 categories.

3.4.2 Experimental Setup

To better study negative transfer effect and evaluate our approach, we need to control the three

factors discussed in Section 3.2, namely algorithm factor, divergence factor and target factor. In

our experiments, we adopt the following mechanism to control each of them.

Divergence factor: Since existing benchmark datasets usually contain domains that are sim-

ilar to each other, we need to alter their distributions to better observe negative transfer effect.

In our experiments, we introduce two perturbation rates εx and εy to respectively control the

marginal divergence and the conditional divergence between two domains. Specifically, for each

source domain data we independently draw a Bernoulli variable of probability εx, and if it re-

turns one, we add a series of random noises to the input image such as random rotation, random

salt&pepper noise, random flipping, etc (examples shown Figure 3.2). According to studies in

(Azulay and Weiss, 2018; Szegedy et al., 2014), such perturbation is enough to cause misclassi-

fication for neural networks and therefore is sufficient for our purpose. In addition, we draw a

second independent Bernoulli variable of probability εy and assign a randomly picked label if it

returns one.

Target factor: Similar to previous works, we use all labeled source data for training. For the

target data, we first split 50% as training set and the rest 50% for testing. In addition, we use all
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(a) Original (b) Perturbed

Figure 3.2: Example images before & after perturbation

of target training data as unlabeled target data and use L% percent of them as labeled target data.

A systematic study of source data can be found in (Wang and Carbonell, 2018).

Algorithm factor: To provide a more comprehensive study of negative transfer, we eval-

uate the performance of eight transfer learning methods of five categories: TCA (Pan et al.,

2011), KMM (Huang et al., 2007), DAN (Long et al., 2015), DCORAL (Sun and Saenko,

2016), DANN a.k.a RevGrad (Ganin and Lempitsky, 2015), ADDA (Tzeng et al., 2015), PADA
(Cao et al., 2018b), GTA (Sankaranarayanan et al., 2018). Specifically, (1) TCA is a conven-

tional method based on MMD-regularized PCA, (2) KMM is a conventional sample reweighting

method, (3) DAN and DCORAL are non-adversarial deep methods which use a distribution mea-

surement as an extra loss, (4) DANN, ADDA and PADA use adversarial learning and directly

train a discriminator, (5) GTA is a GAN based method that includes a generator to generate ac-

tual images in additional to the discriminator. We mainly follow the default settings and training

procedures for model selection as explained in their respective papers. However, for fair com-

parison, we use the same feature extractor and classifier architecture for all deep methods. In

particular, we use a modified LeNet as detailed in (Sankaranarayanan et al., 2018) for the Dig-

its dataset. For other datasets, we fine-tune from the ResNet-50 (He et al., 2016) pretrained on

ImageNet with an added 256-dimension bottleneck layer between the res5c and fc layers. To

compare the performance of our proposed approach, we adapt a gated version for each of the

six deep methods (e.g DANNgate is the gated DANN). Specifically, we extend DANN, ADDA

and PADA straightforwardly as described in Section 4.2. For GTA, we extend the discriminator

to take in class labels and output domain label predictions as gates. For DAN and DCORAL,

we add an extra discriminator network to be used as gates but the general network is not trained

adversarially. For hyper-parameters, we set λ = 1 and µ progressively increased from 0 to 1 in

all our experiments. For each transfer task, we compare the average classification accuracy over
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W→D A→D

ε =0.0 ε =0.3 ε =0.7 ε =0.9 Avg ε =0.0 ε =0.3 ε =0.7 ε =0.9 Avg L%

DANN 99.1±0.8 83.2±1.4 47.2±2.7 32.2±3.5 65.4 76.2±1.5 40.9±1.1 21.3±2.7 12.9±3.7 37.8

0%

NTG1 -96.5 -80.3 -44.1 -28.3 -62.3 -73.7 -37.3 -17.2 -9.7 -34.5

DANNgate 98.9±0.6 83.3±2.1 48.4±2.5 32.1±3.1 65.7 76.0±1.2 41.0±1.6 21.5±3.1 13.2±2.4 37.9

NTG2 -96.3 -80.4 -45.3 -28.2 -62.6 -73.5 -37.4 -17.4 -10.0 -34.6

∆ ↓0.2 ↑0.1 ↑1.2 ↓0.1 ↑0.3 ↓0.2 ↑0.1 ↑0.2 ↑0.3 ↑0.1

DANN 99.5±0.4 86.8±2.8 73.1±3.3 48.8±4.3 77.0 78.6±2.7 54.8±3.1 49.6±2.1 32.3±2.6 53.8

10%

NTG1 -48.7 -37.8 -23.6 1.6 -27.1 -28.4 -4.4 1.2 18.4 -3.3

DANNgate 99.2±0.3 85.4±2.6 79.4±2.9 50.4±3.2 78.6 85.1±1.7 60.2±2.1 58.3±2.0 49.1±2.5 63.2

NTG2 -48.4 -36.4 -29.9 0.0 -28.7 -34.9 -9.8 -7.5 1.6 -12.7

∆ ↓0.3 ↓1.4 ↑6.3 ↑1.6 ↑1.6 ↑6.5 ↑5.4 ↑8.7 ↑16.8 ↑9.4

DANN 99.6±0.2 89.7±1.6 78.4±2.5 70.5±4.3 84.6 80.2±2.0 73.3±2.2 70.2±3.3 51.3±4.3 68.8

30%

NTG1 -18.5 -10.3 1.8 8.2 -4.7 -1.5 6.5 8.9 28.4 10.6

DANNgate 100.0±0.1 90.4±1.8 82.0±1.8 79.9±3.8 88.1 89.0±1.5 82.6±1.0 81.3±2.1 80.6±1.8 83.4

NTG2 -18.9 -11.0 -1.8 -1.2 -8.2 -10.3 -2.8 -2.2 -0.9 -4.1

∆ ↑0.4 ↑0.7 ↑3.6 ↑9.4 ↑2.6 ↑8.8 ↑9.3 ↑11.1 ↑29.3 ↑14.6

DANN 100.0±0.0 92.2±1.7 85.8±2.3 78.2±4.8 89.1 84.5±1.9 77.6±3.8 70.6±4.9 65.4±6.3 74.5

50%

NTG1 -11.7 -3.2 3.8 10.4 -0.2 4.6 12.1 18.8 23.2 14.7

DANNgate 100.0±0.0 93.3±1.7 91.2±1.5 89.5±3.4 92.5 93.2±1.3 91.4±1.2 90.2±2.0 89.8±1.9 91.2

NTG2 -11.7 -4.3 -1.6 -0.9 -4.6 -4.1 -1.7 -0.8 -1.2 -2.0

∆ →0.0 ↑1.1 ↑5.4 ↑11.3 ↑4.5 ↑8.7 ↑13.8 ↑19.6 ↑24.4 ↑16.7

Table 3.1: Classification accuracy (%) of DANN and DANNgate on tasks W→D and A→D. Perturbation rates

are set equal, i.e. ε = εx = εy . NTG1 and NTG2 are negative transfer gaps for DANN and DANNgate. ∆ is the

performance gain of DANNgate compared to DANN.

five random repeats. To test whether negative transfer occurs, we measure the negative trans-

fer gap (NTG) as the gap between the accuracy of target-only baseline and that of the original

method. For instance, for DANN, the target-only baseline is DANNT which treats labeled target

data as “source" data and uses unlabeled data as usual. A positive NTG indicates the occurrence

of negative transfer and vice versa.

3.4.3 Study of Negative Transfer

To reveal the three dependent factors, we study the effect of negative transfer under different

methods with varying perturbation rates (εx, εy) and target labeled data (L%).

Divergence factor. The performance of DANN under different settings of ε and L% on two

tasks of Office-31 are shown in Table 3.1. We observe an increasing negative transfer gap as

we increase the perturbation rate in all cases. In some cases such as L% = 10%, we can even

observe a change in the sign of NTG. For a more fine-grained study, we investigate a wider
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spectrum of distribution divergence by gradually increasing ε from 0.0 to 1.0 in Figure 3.3(a).

Although DANN is better than DANNT when ε is small, its performance degrades quickly as ε

increases and drops below DANNT , indicating the occurrence of negative transfer. On the other

hand, by fixing εy = 0 and using two domains W and D that are known to be particularly similar,

we study negative transfer under the assumption of covariate shift in Table 3.3, and observe that

negative transfer does not occur even with high εx and descent L%. These experimental results

confirms that the distribution divergence is an important factor of negative transfer.

Target factor. Fixing a specific ε, we observe that the negative transfer gap increases as L%

increases in Table 3.1. In the extreme case of unsupervised adaptation (L% = 0%), NTG stays

negative even if two domains are far apart (ε = 0.9). In Figure 3.3(b), we fix ε = 0.2 and plot

the performance curve as L% increases. We can see that while both DANN and DANNT perform

better with more labeled target data, DANN is affected by the divergence factor and outperformed

by DANNT when L% becomes larger. This observation shows that negative transfer is relative

and it depends on target labeled data.

Algorithm factor. In Table 3.2, we compare the results of all methods under a more prac-

tically interesting scenario of moderately different distributions and limited amount of labeled

target data. We observe that some methods are more vulnerable to negative transfer then the

other even using the same training data. For conventional methods, instance-reweighting method

KMM achieves smaller NTG compared to feature selection method TCA, possibly because

KMM can assign small weights to source instances with dissimilar input features. For deep

methods, we find GTA to be the most robust method against negative transfer since it takes both

label information and random noises as inputs to the generator network. More interestingly, we

observe that methods based on distribution measurement such as MMD (e.g. DAN) achieve

smaller NTG than methods based on adversarial networks (e.g. DANN), even though the later

tends to perform better when distributions are similar. This is consistent with findings in previous

works (Cao et al., 2018a) and one possible explanation is that adversarial network’s better capa-

bility of matching source and target domains leads to more severe negative transfer. Similarly,

ADDA has better matching power by using two separate feature extractors, but it results in larger

NTG compared to DANN.

3.4.4 Evaluation of Discriminator Gate

We compare our gated models with their respective state-of-the-art methods on the benchmarks

in Table 3.2. Even using limited amount of labeled target data, our proposed method consistently

27



(a) L% fixed at 20% (b) ε fixed at 0.2

Figure 3.3: Incremental performance on task Pr→Rw. ResS and ResT are ResNet-50 baselines

trained using only source data and only target data. Perturbation rates are set equal, i.e. ε = εx =

εy.

improves the performance for all deep methods on all tasks. More importantly, our method can

largely eliminate the negative impact of less related source data and avoid negative transfer (e.g.

DANNgate achieves negative average NTG while DANN gets positive NTG). Specifically, our

method achieves larger accuracy gains on harder tasks such as synthetic to real-world tasks in

Office-Home and VisDA. This is mainly because source domains in these tasks tend to contain

more unrelated samples. This finding is also consistent with results in Table 3.1 and Figure 3.3(a)

where we can observe larger performance gains as perturbation rates increase. In the extreme

case where the source domain is degenerate (ε = 1.0 in Figure 3.3(a)), the gated model achieves

comparable results to those of DANNT . On the other hand, the results of DANN and DANNgate
are similar when source domain is closely related to the target (ε = 0.0 on task W→D in Table

3.1). This indicates that the discriminator gate can control the trade-off between maximal trans-

fer and alleviating negative impact.

Ablation Study. We report the results of ablation study in Table 3.4 and analyze the effects

of several components in our method subject to different settings of transfer tasks. First, both

DANNgate-only and DANNlabel-only perform better than DANN but worse than DANNgate,

showing that the discriminator gate and estimating joint distributions can both improve perfor-

mance but their combination yields full performance benefit. Second, DANNjoint obtains higher

accuracy results than DANNmarginal and DANNnone since matching joint distributions is the

key to avoid negative transfer when both marginal and conditional distributions shift. How-

ever, while DANNjoint achieves comparable results as DANNgate when L% = 30%, it performs
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Digits Office-31 Office-Home VisDA

Method SVHN→MNIST W→D A→D D→A Ar→Rw Cl→Rw Pr→Rw Synthetic→Real Avg

TCA 58.7(18.2) 54.2(-4.2) 11.4(20.5) 13.1(18.4) - - - - 34.4(13.2)

KMM 70.9(6.0) 58.7(-8.5) 18.5(13.4) 17.7(13.8) - - - - 41.5(6.2)

DAN 78.5(-4.4) 76.3(-19.5) 55.0(-1.3) 39.2(4.9) 43.2(3.8) 30.2(5.8) 47.2(4.0) 28.4(7.2) 49.8(0.1)

DANgate 82.2(-8.1) 78.7(-21.9) 60.4(-6.7) 43.9(0.2) 46.8(0.2) 38.0(-2.0) 50.4(0.8) 36.2(-0.6) 54.6(-4.7)

∆DAN ↑3.7 ↑2.4 ↑5.4 ↑4.7 ↑3.6 ↑7.8 ↑3.2 ↑7.8 ↑4.8

DCORAL 75.2(-1.2) 75.7(-18.9) 53.8(-0.4) 37.4(5.0) 44.0(3.7) 32.4(4.1) 48.0(2.2) 30.5(5.7) 49.6(0.0)

DCORALgate 81.0(-7.0) 78.2(-21.4) 59.0(-5.6) 43.2(-0.8) 48.5(-0.8) 40.0(-3.5) 51.6(-1.4) 35.8(0.4) 54.7(-5.1)

∆DCORAL ↑5.8 ↑2.5 ↑5.2 ↑5.8 ↑4.5 ↑7.6 ↑3.6 ↑5.3 ↑5.1

DANN 68.3(7.7) 75.0(-19.2) 51.0(2.3) 38.2(5.6) 42.8(4.2) 28.5(7.7) 42.0(10.0) 29.9(6.0) 47.0(3.0)

DANNgate 78.1(-2.1) 80.2(-24.4) 61.8(-8.5) 48.3(-4.5) 51.2(-4.2) 43.8(-7.6) 55.2(-3.2) 40.5(-4.6) 57.4(-7.4)

∆DANN ↑9.8 ↑5.2 ↑10.8 ↑10.1 ↑9.4 ↑14.7 ↑13.2 ↑10.6 ↑10.4

ADDA 63.2(12.2) 74.5(-18.1) 49.9(2.2) 38.3(5.1) 41.4(6.0) 25.2(13.5) 43.2(7.2) 28.0(7.3) 45.5(4.4)

ADDAgate 79.4(-4.0) 82.9(-26.5) 64.2(-12.1) 47.7(-4.3) 52.2(-4.8) 48.0(-9.3) 58.2(-7.8) 43.0(-7.7) 59.5(-9.6)

∆ADDA ↑16.2 ↑8.4 ↑14.3 ↑9.4 ↑10.8 ↑22.8 ↑15.0 ↑15.0 ↑14.0

PADA 69.7(6.5) 75.5(-19.0) 50.2(1.9) 38.7(5.1) 43.2(3.8) 30.1(5.5) 43.4(6.6) 32.2(5.5) 47.9(2.0)

PADAgate 81.8(-5.6) 81.6(-25.1) 62.1(-10.0) 44.8(-1.0) 52.8(-5.8) 45.2(-9.6) 54.5(-4.5) 41.4(-5.7) 58.0(-8.1)

∆PADA ↑12.1 ↑5.9 ↑11.9 ↑6.1 ↑9.6 ↑15.1 ↑11.1 ↑11.2 ↑10.1

GTA 81.2(-6.8) 78.9(-20.5) 58.4(-7.2) 42.2(2.8) 48.2(1.0) 33.1(5.1) 50.2(-0.1) 31.2(4.2) 52.9(-2.7)

GTAgate 83.3(-8.9) 85.8(-27.4) 66.7(-15.5) 48.5(-3.5) 55.0(-5.8) 44.9(-6.7) 58.0(-7.7) 43.8(-8.4) 60.8(-10.6)

∆GTA ↑2.1 ↑6.9 ↑8.3 ↑6.3 ↑6.8 ↑11.8 ↑7.8 ↑12.6 ↑7.9

∆Avg ↑8.3 ↑5.2 ↑8.1 ↑7.1 ↑7.5 ↑13.3 ↑8.9 ↑10.4

Table 3.2: Classification accuracy (%) of state-of-the-art methods on four benchmark datasets

with negative transfer gap shown in brackets. Perturbation rates are fixed at εx = εy = 0.7.

Target labeled ratio is set at L% = 10% and we further enforce each task to use at most 3 labeled

target samples per class.

worse than DANNgate when L% = 10%. This shows that utilizing unlabeled target data to match

marginal distributions can be beneficial when labeled target data is scarce. Lastly, it is inspiring

to see DANNgate outperforms DANNoracle when perturbation rate is high. This is because less

unperturbed source data are used for DANNoracle but DANNgate can utilize perturbed source

data that contain related information. This further shows the effectiveness of our approach.

Feature Visualization. We visualize the t-SNE embeddings (Donahue et al., 2014) of the

bottleneck representations in Figure 3.4. The first column shows that, when perturbation rate is

high, DANN cannot align the two domains well and it fails to discriminate both source and target

classes as different classes are mixed together. The second column illustrates the discriminator

gate can improve the alignment by assigning less weights to unrelated source data. For instance,

we can see some source data from different classes mixed in the yellow cluster at the center right
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Method εx=0.7 L%=10% εx=1.0 L%=30%

DAN 81.2(-29.3) 85.8(-6.2)

DANN 83.0(-30.8) 86.1(-6.5)

GTA 85.5(-33.5) 88.1(-8.0)

Table 3.3: Classification accuracy (%) under the Covariate Shift assumption on task W→D. εy is

fixed at 0. Negative transfer gap is shown in brackets.

Setting (ε,L%)

Method 0.7, 30% 0.7, 10% 0.3, 30% 0.3, 10% Avg

DANN 70.4 49.4 72.5 54.3 61.7

DANNT 79.5 50.7 80.3 50.1 65.2

DANNoracle 81.6 58.5 89.1 85.4 78.7
DANNgate-only 76.3 53.8 78.0 55.7 66.0

DANNlabel-only 74.4 52.5 77.5 55.0 64.9

DANNjoint 82.3 57.6 83.1 59.4 70.6

DANNmarginal 80.6 56.5 81.5 58.6 69.3

DANNnone 79.6 52.4 79.7 57.5 67.3

DANNgate 82.5 58.7 82.7 60.7 71.2

Table 3.4: Ablation Study on task A→D. DANNgate-only applies only the discriminator gate

while DANNlabel-only only uses label information without the gate. DANNjoint is a variant

of DANNgate where the feature network only matches the joint distribution (last two lines of

Eq.3.10), DANNmarginal only matches the marginal distribution, and DANNnone matches none

of them. DANNoracle excludes perturbed source data via human oracle.
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(a) DANN (b) DANNgate (c) DANNgate (source data with

large weights)

(d) DANN (e) DANNgate (f) DANNgate (source data with

large weights)

Figure 3.4: Visualization on A→W, with ε = 0.7, L% = 30%. The t-SNE visualization. First

row shows domain info with red for source samples (yellow for weights > 0.4) and blue for

target samples. Second row shows corresponding class info.

but they get assigned smaller weights. The third column shows the embeddings after we remove

source data with small discriminator weights (< 0.4). We can observe that target data are much

better clustered compared to that of DANN. These in-depth results demonstrate the efficacy of

discriminator gate method.

Statistics of Instance Weights. We illustrate the discriminator output ( PT (xis,y
i
s)

PT (xis,y
i
s)+PS(xis,y

i
s)

) for

each source data in Figure 3.5(b). We can observe that DANN fails to discriminate unrelated

source data as all weights concentrate around 0.5 in the middle. On the other hand, DANNgate
assigns smaller weights to a large portion of source data (since perturbation rate is high) and thus

filters out unrelated information. Figure 3.5(a) further shows that DANN assign similar average

weights for perturbed and unperturbed source data while DANNgate outputs much smaller values

for perturbed data but higher ones for unperturbed data.
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(a) Left: DANN Right:DANNgate (b) Source Sample Weights

Figure 3.5: Left shows the histogram of discriminator weights for source samples. Right shows

average weights for perturbed and unperturbed samples.

3.5 Negative Transfer Definition

In this section we further discuss how the negative transfer condition (NTC) in Eq.(3.3) is de-

rived.

The intuitive definition given earlier in Section 3.2 does not lead to a rigorous definition.

There are two key questions that are not clear: (1) Should negative transfer be defined to be

algorithm-specific? (2) What is the negative impact being compared with?

First, if negative transfer is completely algorithm-agnostic, then its definition would be inde-

pendent to which transfer learning algorithm is being used. Mathematically, this may yield the

following:

min
A
RPT

(A(S, T )) > min
A′

RPT
(A′(∅, T )). (3.12)

However, it is easy to see that this condition is never satisfied. To show this, given source data S
and target data T , consider an algorithm A1 that minimizes the expected risk on the RHS:

A1 ∈ argmin
A′

RPT
(A′(∅, T )).

Then we can always construct a new algorithm A′1 such that A′1(S, T ) = A1(∅, T ), i.e. A′1

always ignores the source data. As a result, we must have:

min
A
RPT

(A(S, T )) ≤ RPT
(A′1(S, T ))

= RPT
(A1(∅, T ))

= min
A′

RPT
(A′(∅, T ))

(3.13)
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Therefore, the condition defined in Eq.(3.12) is never true and we conclude that negative transfer

must be algorithm-specific. This answers the first question.

Given the answer, the condition in Eq.(3.12) could be modified to consider only a specific

transfer algorithm A, i.e.,

RPT
(A(S, T )) > min

A′
RPT

(A′(∅, T )). (3.14)

However, there are still two problems with this definitions:

(a) This condition cannot be measured in practice since we cannot evaluate the RHS even at

test time;

(b) An algorithm that does not utilize any source at all still satisfies the condition, which is

counterintuitive. For instance, consider a degenerated algorithm A2 such that A2(S, T ) =

A2(∅, T ) and RPT
(A2(∅, T )) > minA′ RPT

(A′(S, T )). This algorithm does not perform

any meaningful transfer from the source, but negative transfer occurs in this case according

to Eq. (3.14) since:

RPT
(A2(S, T )) = RPT

(A2(∅, T )) > min
A′

RPT
(A′(∅, T )).

Therefore, it is misleading to only compare with the best possible algorithm and we propose the

following definition:

Definition 1 (Negative Transfer). Given a source dataset S, a target dataset T and a transfer

learning algorithm A, the negative transfer condition (NTC) is defined as:

RPT
(A(S, T )) > RPT

(A(∅, T )) ≥ min
A′

RPT
(A′(∅, T )), (3.15)

which is exactly Eq.(3.3) since the “≥" constraint on the right hand side is true for any A. This

definition of NTC resolves the two questions mentioned above. Furthermore, it is consistent with

the intuitive definition and is also tractable at test time.

3.6 Related Work

Transfer learning (Pan and Yang, 2010; Yang et al., 2013) uses knowledge learned in the source

domain to assist training in the target domain. Early methods exploit conventional statistical tech-

niques such as instance weighting (Huang et al., 2007) and feature mapping (Pan et al., 2011;

Uguroglu and Carbonell, 2011). Compared to these earlier approaches, deep transfer networks
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achieve better results in discovering domain invariant factors (Yosinski et al., 2014). Some deep

methods (Long et al., 2015; Sun and Saenko, 2016) transfer via distribution (mis)match mea-

surements such as Maximum Mean Discrepancy (MMD) (Huang et al., 2007). More recent

work(Cao et al., 2018a; Ganin et al., 2016; Sankaranarayanan et al., 2018; Tzeng et al., 2015)

exploit generative adversarial networks (GANs) (Goodfellow et al., 2014) and add a subnetwork

as a domain discriminator. These methods achieve state-of-the-art on computer vision tasks

(Sankaranarayanan et al., 2018) and some natural language processing tasks (Moon and Car-

bonell, 2017). However, none of these techniques are specifically designed to tackle the problem

of negative transfer.

Negative transfer Early work that noted negative transfer (Rosenstein et al., 2005) was tar-

geted at simple classifiers such as hierarchical Naive Bayes. Later, similar negative effects have

also been observed in various settings including multi-source transfer learning (Duan et al.,

2012), imbalanced distributions (Ge et al., 2014) and partial transfer learning (Cao et al., 2018a).

While the importance of detecting and avoiding negative transfer has raised increasing attention

(Weiss et al., 2016), the literature lacks in-depth analysis.

3.7 Summary

In this chapter, we analyze the problem of negative transfer in domain adaptation and propose a

novel discriminator gate technique to avoid it. We show that negative transfer directly relates to

specific algorithms, domain divergence and target data. Experiments demonstrate these factors

and the efficacy of our method. Our method consistently improves the performance of base

methods and largely avoids negative transfer. However, we focus on feature matching methods

in this chapter and our results may not generalize to other transfer learning methods, which we

are looking forward to study in a future work. Understanding negative transfer in more complex

transfer tasks and settings is an important direction, which we study in the next chapter.
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Chapter 4

Negative Interference in Multilingual
Unsupervised Representation Learning

In the previous chapter, we have analyzed negative transfer in domain adaptation with one single

source and target. This chapter explores a more complex setting of transferring among multiple

tasks where each task is a language. Modern multilingual models are trained on concatenated

text from multiple languages in hopes of conferring benefits to each (positive transfer), with

the most pronounced benefits accruing to low-resource languages. However, recent work has

shown that this approach can degrade performance on high-resource languages, a form of nega-

tive transfer among multiple tasks known as negative interference. In this chapter, we present the

first systematic study of negative interference. We show that, contrary to previous belief, nega-

tive interference also impacts low-resource languages. While parameters are maximally shared

to learn language-universal structures, we demonstrate that language-specific parameters do ex-

ist in multilingual models and they are a potential cause of negative interference. Motivated by

these observations, we also present a meta-learning algorithm that obtains better cross-lingual

transferability and alleviates negative interference, by adding language-specific layers as meta-

parameters and training them in a manner that explicitly improves shared layers’ generalization

on all languages. Overall, our results show that negative interference is more common than

previously known, suggesting new directions for improving multilingual representations.

4.1 Introduction

Advances in pretraining language models (Devlin et al., 2018; Liu et al., 2019; Yang et al.,

2019) as general-purpose representations have pushed the state of the art on a variety of natu-
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ral language tasks. However, not all languages enjoy large public datasets for pretraining and/or

downstream tasks. Multilingual language models such as mBERT (Devlin et al., 2018) and XLM

(Lample and Conneau, 2019) have been proven effective for cross-lingual transfer learning by

pretraining a single shared Transformer model (Vaswani et al., 2017) jointly on multiple lan-

guages. The goals of multilingual modeling are not limited to improving language modeling in

low-resource languages (Lample and Conneau, 2019), but also include zero-shot cross-lingual

transfer on downstream tasks—it has been shown that multilingual models can generalize to tar-

get languages even when labeled training data is only available in the source language (typically

English) on a wide range of tasks (Hu et al., 2020; Pires et al., 2019; Wu and Dredze, 2019).

However, multilingual models are not equally beneficial for all languages. Conneau et al.

(2020) demonstrated that including more languages in a single model can improve performance

for low-resource languages but hurt performance for high-resource languages, while Neubig and

Hu (2018) found more source language pairs can hurt transfer into low-resource languages. Sim-

ilarly, recent work (Aharoni et al., 2019; Arivazhagan et al., 2019; Johnson et al., 2017; Tan

et al., 2019) in multilingual neural machine translation (NMT) also observed performance degra-

dation on high-resource language pairs. In multi-task learning (Ruder, 2017), this phenomenon is

known as negative interference or negative transfer (Wang et al., 2019b), where training multiple

tasks jointly hinders the performance on individual tasks.

Despite these empirical observations, little prior work analyzed or showed how to mitigate

negative interference in multilingual language models. Particularly, it is natural to ask: (1) Can

negative interference occur for low-resource languages also? (2) What factors play an important

role in causing it? (3) Can we mitigate negative interference to improve the model’s cross-lingual

transferability?

In this chapter, we take a step towards addressing these questions. We pretrain a set of

monolingual and bilingual models and evaluate them on a range of downstream tasks to analyze

negative interference. We seek to individually characterize the underlying factors of negative

interference through a set of ablation studies and glean insights on its causes. Specifically, we

examine if training corpus size and language similarity affect negative interference, and also

measure gradient and parameter similarities between languages.

Our results show that negative interference can occur in both high-resource and low-resource

languages. In particular, we observe that neither subsampling the training corpus nor adding

typologically similar languages substantially impacts negative interference. On the other hand,

we show that gradient conflicts and language-specific parameters do exist in multilingual models,

suggesting that languages are fighting for model capacity, which potentially causes negative
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interference. We further test whether explicitly assigning language-specific modules to each

language can alleviate negative interference, and find that the resulting model performs better

within each individual language but worse on zero-shot cross-lingual tasks.

Motivated by these observations, we further propose to meta-learn these language-specific

parameters to explicitly improve generalization of shared parameters on all languages. Empiri-

cally, our method improves not only within-language performance on monolingual tasks but also

cross-lingual transferability on zero-shot transfer benchmarks. To the best of our knowledge,

this is the first effort to systematically study and remedy negative interference in multilingual

language models.

4.2 Motivation

Multilingual transfer learning aims at utilizing knowledge transfer across languages to boost per-

formance on low-resource languages. State-of-the-art multilingual language models are trained

on multiple languages jointly to enable cross-lingual transfer through parameter sharing. How-

ever, languages are heterogeneous, with different vocabularies, morphosyntactic rules, and dif-

ferent pragmatics across cultures. It is therefore natural to ask, is knowledge transfer beneficial

for all languages in a multilingual model? To analyze the effect of knowledge transfer from other

languages on a specific language lg, we can compare multilingual models with the monolingual

model trained on lg. For example, in Figure 4.1, we compare the performance on a named entity

recognition (NER) task of monolingually-trained models vs. bilingual models (trained on lg and

English, details shown later) vs. state-of-the-art XLM(Conneau et al., 2020). We can see that

monolingual models outperform multilingual models on four out of six languages (See Section

4.3.3 for details). This shows that language conflicts may induce negative impacts on certain lan-

guages, which we refer to as negative interference. Here, we investigate the causes of negative

interference (Section 4.3.3) and methods to overcome it (Section 4.4).
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Figure 4.1: Comparing monolingual vs multilingual models on NER. Lower performance of

multilingual models is likely an indicator of negative interference.

4.3 Investigating the Sources of Negative Interference in Mul-

tilingual Models

4.3.1 Methodology

To study negative interference, we compare multilingual models with monolingual baselines.

Without loss of generality, we focus on analyzing bilingual models to minimize confounding

factors. For two languages lg1 and lg2, we pretrain a single bilingual model and two monolingual

models. We then assess their performance on downstream tasks using two different settings. To

examine negative interference, we evaluate both monolingual and multilingual models using the

within-language monolingual setting, such that the pretrained model is finetuned and tested on

the same language. For instance, if the monolingual model of lg1 outperforms the bilingual model

on lg1, we know that lg2 induces negative impact on lg1 in the bilingual model. Besides, since

multilingual models are trained to enable cross-lingual transfer, we also report their performance

on the zero-shot cross-lingual transfer setting, where the model is only finetuned on the source

language, say lg1, and tested on the target language lg2.

We hypothesize that the following factors play important roles in causing negative interfer-

ence and study each individually:

Training Corpus Size While prior work mostly report negative interference for high-resource

languages (Arivazhagan et al., 2019; Conneau et al., 2020), we hypothesize that it can also occur
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for languages with fewer resources. We study the impact of training data size per language on

negative interference. We subsample a high-resource language, say lg1, to create a “low-resource

version”. We then retrain the monolingual and bilingual models and compare with the results of

their high-source counterparts. Particularly, we test if reducing lg1’s training size also reduces

negative interference on lg2.

Language Similarity Language similarity has been shown important for effective transfer

in multilingual models. Wu et al. (2020) shows that bilingual models trained on more similar

language pairs result in better zero-shot transfer performance. We thus expect it to play a critical

role in negative interference as well. For a specific language lg1, we pair it with languages that

are closely and distantly related. We then compare these bilingual models’ performance on lg1 to

investigate if more similar languages cause less severe interference. In addition, we further add

a third language lg3 that is similar to lg1 and train a trilingual model on lg1-lg2-lg3. We compare

the trilingual model with the bilingual model to examine if adding lg3 can mitigate negative

interference on lg1.

Gradient Conflict Recent work (Yu et al., 2020) shows that gradient conflict between dis-

similar tasks, defined as negative cosine similarity between gradients, is predictive of negative

interference in multi-task learning. Therefore, we study whether gradient conflicts exist between

languages in multilingual models. In particular, we sample one batch for each language in the

model and compute the corresponding gradients’ cosine similarity for every 10 steps during pre-

training.

Parameter Sharing State-of-the-art multilingual models aim to share as many parameters

as possible in the hope of learning a language-universal model for all languages (Wu et al.,

2020). While prior studies measure the latent embedding similarity between languages, we in-

stead examine model parameters directly. The idea is to test whether model parameters are

language-universal1 or language-specific. To achieve this, we prune multilingual models for

each language using relaxed L0 norm regularization (Louizos et al., 2017), and compare param-

eter similarities between languages. Formally, for a model f(·;θ) parameterized by θ = {θi}ni=1

where each θi represents an individual parameter or a group of parameters, the method introduces

a set of binary masks z, drawn from some distribution q(z|π) parametrized by π, and learns a

1Ideally, we would like to call a parameter shared among many languages to be universal. Here, we only focus

on two languages and we use the same term for consistency.

39



en ar fr ru hi sw te

corpus size 44.6 8.7 16.2 13.1 0.5 0.2 0.3

NER X X X X X X X

POS X X X X X X

QA X X X X X

XNLI X X X X X X

Table 4.1: Language training corpra statitstics and downstream tasks availability. Corpus size

measured in millions of sentences.

sparse model f(·;θ � z) by optimizing:

min
π

Eq(z|π)

[
1

N

N∑
i=1

L(f(xi; θ̃), yi) + λ‖θ̃‖0

]
s.t. θ̃ = θ � z,

(4.1)

where � is the Hadamard (elementwise) product, L(·) is some task loss and λ is a hyper-

parameter. We follow the work of (Louizos et al., 2017) and use the Hard Concrete distribu-

tion for the binary mask z, such that the above objective is fully differentiable. Then, for each

bilingual model, we freeze its pretrained parameter weights and learn binary masks z for each

language independently. As a result, we obtain two independent sets of mask parameters π

which can be used to determine parameter importance. Intuitively, for each parameter group, it

is language-universal if both languages consider it important (positive π values). On the other

hand, if one language assigns a positive value while the other assigns a negative, it shows that the

parameter group is language-specific. We compare them across languages and layers to analyze

parameter similarity in multilingual models.

4.3.2 Experimental Setup

We focus on standard multilingual masked language modeling (MLM) used in mBERT and

XLM. We first pretrain models and then evaluate their performance on four NLP benchmarks.

For pretraining, we mainly follow the setup and implementation of XLM(Lample and Con-

neau, 2019) 2. We focus on monolingual and bilingual models for a more controllable compar-

ison, which we refer to as Mono and JointPair respectively. In particular, we always include

2We only focus on pretraining on monolingual corpus while XLM uses resources beyond that. For our study

purpose, we utilize its settings on monolingual data only.
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English (En) in bilingual models to compare on zero-shot transfer settings with prior work. Be-

sides, we consider three high-resource languages {Arabic (Ar), French (Fr), Russian (Ru)} and

three low-resource languages {Hindi (Hi), Swahili (Sw), Telugu (Te)} (see Table 4.1 for their

statistics). We chose these six languages based their data availability in downstream tasks. We

use Wikipedia as training data with statistics shown in Table 4.1. For each model, we use BPE

(Sennrich et al., 2016) to learn 32k subword vocabulary shared between languages. For multi-

lingual models, we sample language proportionally to Pi = ( Li∑
j Lj

)
1
T , where Li is the size of

the training corpus for i-th language pair and T is the temperature. Each model is a standard

Transformer (Vaswani et al., 2017) with 8 layers, 12 heads, 512 embedding size and 2048 hid-

den dimension for the feedforward layer. Notice that we specifically consider a smaller model

capacity to be comparable with existing models with larger capacity but also include much more

(over 100) languages. We use the Adam optimizer (Kingma and Ba, 2014) and exploit the same

learning rate schedule as Lample and Conneau (2019). We train each model with 4 NVIDIA

V100 GPUs with 32GB of memory. Using mixed precision, we fit a batch of 128 for each GPU

and the total batch size is 512. Each epoch contains 10k steps and we train for 50 epochs.

For evaluation, we consider four downstream tasks: named entity recognition (NER), part-of-

speech tagging (POS), question answering (QA), and natural language inference (NLI). Notice

that XNLI only has training data in available in English so we only evaluate zero-shot cross-

lingual performance on it. Following (Hu et al., 2020), we finetune the model for 10 epochs

for NER and POS, 2 epochs for QA and 200 epochs for XNLI. For NER, POS and QA, we

search the following hyperparameters: batch size {16, 32}; learning rate {2e-5, 3e-5, 5e-5}.

We use English dev set for zero-shot cross-lingual setting and the target language dev set for

within-language monolingual setting. For XNLI, we search for: batch size {4, 8}; encoder

learning rate {1e-6, 5e-6, 2e-5}; classifier learning rate {5e-6, 2e-5, 5e-5}. For models with

language-specific components, we test freezing these components or finetuning them together.

We discover that finetuning the whole network always yields better results. For all experiments,

we save checkpoints after each epoch.

NER We use the WikiAnn (Pan et al., 2017) dataset, which is a sequence labelling task built

automatically from Wikipedia. A linear layer with softmax classifier is added on top of pretrained

models to predict the label for each word based on its first subword. We report the F1 score.

POS Similar to NER, POS is also a sequence labelling task but with a focus on synthetic

knowledge. In particular, we use the Universal Dependencies treebanks (Nivre et al., 2018).

Task-specific layers are the same and we report F1, as in NER.

QA We choose to use the TyDiQA-GoldP dataset (Clark et al., 2020) that covers typologically
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Model
NER (F1) POS (F1)

ar fr ru hi sw te avg ar fr ru hi te avg

Within-language Monolingual

Mono 89.2 88.0 87.8 89.1 85.1 82.1 86.9 92.7 76.2 96.7 97.0 94.5 91.4

JointPair 86.9 86.5 84.2 88.3 86.1 76.2 84.7 89.2 75.8 93.2 95.2 88.7 88.4

+ ffn 88.2 88.4 86.6 88.9 85.4 81.2 86.5 92.4 76.1 95.6 96.1 92.4 90.5

+ attn 87.3 86.8 84.1 88.5 84.9 77.4 84.8 91.8 75.4 94.4 95.3 90.9 89.6

+ adpt 87.8 86.8 84.5 87.7 86.3 77.0 85.0 91.7 75.6 94.0 95.2 91.5 89.6

+ share adpt 86.8 86.7 84.3 88.6 86.1 76.0 84.8 89.3 76.4 93.5 95.2 88.2 88.5

+ meta adpt 88.9 88.3 85.1 88.4 86.5 79.5 86.1 92.4 75.9 95.1 95.8 92.2 90.3

XLM 89.4 87.5 85.5 88.5 86.3 80.5 86.3 94.5 72.9 96.6 97.1 92.2 90.7

Zero-shot Cross-lingual

JointPair 38.1 77.5 57.5 61.4 64.8 45.2 57.4 58.5 44.2 80.1 58.9 72.8 62.9

+ ffn 8.9 35.2 5.8 10.5 9.7 12.5 13.8 5.4 8.1 4.5 3.3 7.7 5.8

+ attn 15.4 39.4 10.2 9.9 13.4 11.6 16.7 6.2 4.5 7.5 4.8 6.9 6.0

+ adpt 37.2 75.5 59.2 61.0 64.4 44.7 57.0 57.0 43.5 81.6 58.2 73.5 62.8

+ share adpt 38.5 77.8 58.4 62.0 65.4 44.5 57.8 58.7 43.8 82.5 59.7 71.8 63.3

+ meta adpt 44.4 78.5 62.4 66.0 67.3 50.1 61.5 63.5 44.6 84.9 62.7 78.5 66.8

XLM 44.8 78.3 63.6 65.8 68.4 49.3 61.7 62.8 42.4 86.3 65.7 76.9 66.8

Table 4.2: NER and POS results. We observe negative interference when monolingual models

outperform multilingual models. Besides, adding language-specific layers (e.g. ffn) mitigates

interference but sacrifices transferability.

diverse languages. Similar to popular QA datasets such as SQuAD (Rajpurkar et al., 2018), this is

a span prediction task where task-specific linear classifiers are used to predict start/end positions

of the answer. Standard metrics of F1 and Exact Match (EM) are reported.

NLI XNLI (Conneau et al., 2018b) is probably the most popular cross-lingual benchmark.

Notice that the original dataset only contains training data for English. Consequently, we only

evaluate this task on the zero-shot transfer setting while we consider both settings for the rest of

other tasks.
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Model ar ru sw te avg

Within-language Monolingual

Mono 74.2/62.5 63.1/49.2 52.5/37.4 58.2/41.0 62.0/47.5

JointPair 71.3/58.1 58.2/43.1 52.8/39.0 52.2/36.4 58.6/44.2

+ ffn 73.4/61.2 61.2/45.8 51.4/34.3 57.5/40.5 60.9/45.5

+ attn 72.8/61.0 60.8/45.4 51.2/34.0 52.8/36.8 59.4/44.3

+ adpt 71.5/58.7 59.4/44.8 52.1/38.7 55.5/38.9 59.6/45.3

+ share adpt 71.0/57.8 58.5/43.2 52.8/39.0 53.9/37.2 59.1/44.3

+ meta adpt 73.0/61.4 61.8/46.7 54.5/40.0 56.2/39.5 61.4/36.4

XLM 74.3/63.2 62.5/48.7 58.7/40.4 55.4/38.3 62.7/47.7

Zero-shot Cross-lingual

JointPair 54.1/39.5 43.2/27.5 41.5/22.2 21.5/14.7 40.1/26.0

+ ffn 2.2/1.5 0.0/0.0 4.4/3.7 0.0/0.0 1.7/1.3

+ attn 3.7/2.0 2.1/1.2 0.7/1.0 0.0/0.0 1.6/1.1

+ adpt 53.4/39.1 44.7/27.9 41.2/21.8 20.4/13.8 39.9/25.7

+ share adpt 54.3/39.6 44.8/27.8 42.2/22.9 22.7/15.6 41.0/26.5

+ meta adpt 57.5/40.8 45.8/28.8 43.0/24.2 23.1/17.7 42.4/27.9

XLM 59.4/41.2 47.3/29.8 42.3/22.0 16.3/7.2 41.3/25.1

Table 4.3: TyDiQA-GoldP results (F1/EM).

4.3.3 Results and Analysis

In Table 4.2 and 4.3, we report our results on NER, POS and QA together with XLM-100,

which is trained on 100 languages and contains 827M parameters. In particular, we observe that

monolingual models outperform bilingual models for all languages except Swahili on all three

tasks. In fact, monolingual models even perform better than XLM on four out of six languages

including hi and te, despite that XLM is much larger in model sizes and trained with much

more resources. This shows that negative interference can occur on low-resource languages as

well. While the negative impact is expected to be more prominent on high-resource languages,

we demonstrate that it may occur for languages with resources fewer than commonly believed.

The existence of negative interference confirms that state-of-the-art multilingual models cannot
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((a)) hi ((b)) sw

Figure 4.2: Validation perplexity during pretraining.

generalize equally well on all languages, and there is still a gap compared to monolingual models

on certain languages.

We next turn to dissect negative interference by studying the four factors described in Section

4.3.1.

Training Corpus Size By comparing the validation perplexity on Swahili and Telugu in

Figure 4.2, we find that while both monolingual models outperform bilingual models in the

first few epochs, the Swahili model’s perplexity starts to increase and is eventually surpassed

by the bilingual model in later epochs. This matches the intuition that monolingual models

may overfit when training data size is small. To verify this, we subsample French and Russian

to 100k sentences to create a “low-resource version" of them (denoted as frl/rul). As shown

in Table 4.4, while the performance for both models drop compared to their “high-resource"

counterparts, bilingual models indeed outperform monolingual models for frl/rul, in contrast for

fr/ru. This suggests that multilingual models can stimulate positive transfer for low-resource

languages when monolingual models overfit. On the other hand, when we compare bilingual

models on English, models trained using different sizes of fr/ru data obtain similar performance,

indicating that the training size of the source language has little impact on negative interference

on the target language (English in this case). While more training data usually implies larger

vocabulary and more diverse linguistic phenomena, negative interference seems to arise from

more fundamental conflicts contained in even small training corpus.

Language Similarity As illustrated by Table 4.4, the in-language performance on English

drops as the paired language becomes more distantly related (French vs Russian). This verifies

that transferring from more distant languages results in more severe negative interference.

It is therefore natural to ask if adding more similar languages can mitigate negative inter-

ference, especially for low-resource languages. We then train two trilingual models, adding

Marathi to English-Hindi, and Kannada to English-Telugu. Compared to their bilingual counter-
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Model
NER (F1) POS (F1) QA (F1/EM)

fr frl ru rul fr frl ru rul ru rul

Within-language Performance on fr/ru

Mono 88.0 81.7 87.8 82.4 76.2 68.5 96.7 88.7 63.1/49.2 47.2/29.5

JointPair 86.5 83.2 84.2 82.7 75.8 71.4 93.2 89.5 58.2/43.1 49.5/30.4

Within-language Performance on en

JointPair 78.6 78.4 75.8 75.9 94.5 94.5 92.7 92.3 61.7/49.8 62.1/50.2

Table 4.4: Evaluating effects of training corpus sizes on negative interference.

parts (Table 4.5), trilingual models obtain similar within-language performance, which indicates

that adding similar languages cannot mitigate negative interference among existing languages

in the model. However, they do improve zero-shot cross-lingual performance. One possible

explanation is that even similar languages can fight for language-specific capacity but they may

nevertheless benefit the generalization of the shared knowledge. Notice that prior work (Lin

et al., 2019b) has found language similarity to be crucial for better transfer, we emphasize that

our results are conditioned on unsupervised representation learning in multilingual models and

should be verified for broader multilingual learning settings in future.

Gradient Conflict In Figure 4.3, we plot the gradient cosine similarity between Arabic-

English and French-English in their corresponding bilingual models over the first 25 epochs.

We also plot the similarity within English, measured using two independently sampled batches3.

Specifically, gradients between two different languages are indeed less similar than those within

the same language. The gap is more evident in the early few epochs, where we observe negative

gradient similarities for Ar-En and Fr-En while those for En-En are positive. In addition, gradi-

ents in Ar-En are less similar than those in Fr-En, indicating that distant language pair can cause

more severe gradient conflicts. These results confirm that gradient conflict exists in multilingual

models and is correlated to per language performance, suggesting it may introduce optimization

challenge that results in negative interference.

Parameter Sharing The existence of gradient conflicts may imply that languages are fighting

for capacity. Thus, we next study how language-universal these multilingual parameters are. Fig-

ure 4.4(a) shows the cosine similarity of mask parameters π across different layers. We observe

that within-language similarity (En-En) is near perfect, which validates the pruning method’s

robustness. The trend shows that model parameters are better shared in the bottom layers than

3Notice that we use gradient accumulation to sample an effectively larger batch of 4096 sentences to calculate

the gradient similarity.
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Figure 4.3: Gradients similarity throughout training. “En-En” refers to gradients of two English

batches within the Ar-En model, while “Ar-En” and “Fr-En” refer to gradients of two batches,

one from each language, within Ar-En and Fr-En models respectively.

Model
NER (F1) POS (F1)

hi te hi te

Within-language Monolingual

JointPair 88.3 76.2 95.2 88.7

JointTri 87.8 76.4 95.3 88.7

Zero-shot Cross-lingual

JointPair 61.4 45.2 58.9 72.8

JointTri 63.5 47.6 59.5 74.4

Table 4.5: Comparing trilingual models with bilingual models. This shows the effect of adding

a third similar language to bilingual models.

the upper ones. Besides, it also demonstrates that parameters in multi-head attention layers ob-

tain higher similarities than those in feedforward layers, suggesting that the attention mechanism

might be more language-universal. We additionally inspect π parameters with the highest abso-

lute values and plot those values for Ar (Figure 4.4(b)), together with their En counterparts. A

more negative value indicates that the parameter is more likely to be pruned for that language and

vice versa. Interestingly, while many parameters with positive values (on the right) are language-

universal as both languages assign very positive values, parameters with negative values (on the

left) are mostly language-specific for Ar as En assigns positive values. We observe similar pat-

terns for other languages as well. These results demonstrate that language-specific parameters

do exist in multilingual models.

Having language-specific capacity in shared parameters is sub-optimal. It is less transfer-

able and thus can hinder cross-lingual performance. Moreover, it may also take over capacity
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((a)) ((b)) ((c))

Figure 4.4: Left: Parameter similarity across layers. Middle: Normalized pruning variables of

highest absolute values for Ar in Ar-En model. 10 parameter groups with most negative values

are shown on the left and 10 with most positive values are shown on the right. Right: Average

MLM training loss after the warm-up stage.

budgets for other languages and degrade their within-language performance, i.e., causing neg-

ative interference. A natural next question is whether explicitly adding language-specific ca-

pacity into multilingual models can alleviate negative interference. We thus train variants of

bilingual models that contain language-specific components for each language. Particularly, we

consider adding language-specific feedforward layers, attention layers, and residual adapter lay-

ers (Houlsby et al., 2019; Rebuffi et al., 2017), denoted as ffn, attn and adpt respectively. For

each type of component, we create two separate copies in each Transformer layer, one desig-

nated for each language, while the rest of the network remains unchanged. As shown in Table

4.2 and 4.3, adding language-specific capacity does mitigate negative interference and improve

monolingual performance. We also find that language-specific feedforward layers obtain larger

performance gains compared to attention layers, consistent with our prior analysis. However,

these gains come at a cost of cross-lingual transferability, such that their zero-shot performance

drops tremendously. Our results suggest a tension between addressing interference versus im-

proving transferability. In the next section, we investigate how to address negative interference in

a manner that can improve performance on both within-language tasks and cross-lingual bench-

marks.
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Algorithm 1 Training XLM with Meta Language-specific Layers
1: Input: Training data

2: Output: The converged model {θ∗,φ∗}

3: Initialize model parameters {θ(0),φ(0)}

4: while not converged do
5: Sample language i

6: Update language-specific parameters as:

φ
(t+1)
i ← GradientUpdate(φ

(t)
i ,∇φ

(t)
i

1
L

∑L
j=1 L

j
val(θ

(t)
i − β∇θ(t)Litrain(θ

(t), φ
(t)
i ), φ

(t)
j ))

7: Update shared parameters as:

θ(t+1) ← GradientUpdate(θ(t),∇θ(t)Ltrain(θ
(t),φ(t+1)))

8: end while=0

4.4 Mitigating Negative Interference via Meta Learning

4.4.1 Proposed Method

In the previous section, we demonstrated that while explicitly adding language-specific com-

ponents can alleviate negative interference, it can also hinder cross-lingual transferability. We

notice that a critical shortcoming of language-specific capacity is that they are agnostic of the

rest of other languages, since by design they are trained on the designated language only. They

are thus more likely to overfit and can induce optimization challenges for shared capacity as well.

Inspired by recent work in meta learning (Flennerhag et al., 2019) that utilizes meta parameters

to improve gradient geometry of the base network, we propose a novel meta-learning formulation

of multilingual models that exploits language-specific parameters to improve the generalization

of shared parameters.

For a model with some predefined language-specific parameters φ = {φi}Li=1, where φi is

designated for the i-th language, and shared parameters θ, our solution is to treat φ as meta

parameters and θ as base parameters. Ideally, we want φ to store non-transferable language-

specific knowledge to resolve conflicts and improve generalization of θ in all languages (a.k.a.

mitigate negative interference and improve cross-lingual transferability). Therefore, we train φ

based on the following principle: if θ follows the gradients on training data for a given φ, the

resulting θ should obtain a good validation performance on all languages. This implies a bilevel
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optimization problem (Colson et al., 2007) formally written as:

min
φ

1

L

L∑
i=1

Lival(θ
∗, φi)

s.t. θ∗ = arg min
θ

1

L

L∑
i=1

Litrain(θ, φi),

(4.2)

where Lival and Litrain denote the training and the validation MLM loss for the i-th language.

Since directly solving this problem can be prohibitive due to the expensive inner optimization,

we approximate θ∗ by adapting the current θ(t) using a single gradient step, similar to techniques

used in prior meta-learning methods (Finn et al., 2017). This results in a two-phase iterative

training process shown in Algorithm 1.

To be specific, at each training step t on the i-th language during pretraining, we first adapt a

gradient step on θ to obtain a new θ′ and update φi based on the θ′’s validation MLM loss:

φ
(t+1)
i = φ

(t)
i − α∇φ

(t)
i

1

L

L∑
j=1

Ljval(θ
′, φ

(t)
j )

θ′ = θ(t) − β∇θ(t)Litrain(θ
(t), φ

(t)
i ),

(4.3)

where α and β are learning rates. Notice that θ′ is a function of φ(t)
i and thus this optimization

requires computing the gradient of gradient. Particularly, by applying chain rule to the gradient

of φ(t)
i , we can observe that it contains a higher-order term:

[
∇2

φ
(t)
i ,θ(t)

Litrain(θ
(t), φ

(t)
i )
]
·

[
∇θ′

1

L

L∑
j=1

Ljval(θ
′, φ

(t)
j )

]
(4.4)

This is important, since it shows that φi can obtain information from other languages through

higher-order gradients. In other words, language-specific parameters are not agnostic of other

languages anymore without violating the language-specific requirement. This is because, in

Eq. 4.3, while ∇θ(t) is based on the i-th language only, the validation loss is computed for all

languages. Finally, in the second phase, we update θ based on the new φ(t+1):

θ(t+1) = θ(t) − β∇θ(t)Ltrain(θ
(t),φ(t+1)) (4.5)

4.4.2 Evaluation

While our method is generic, we evaluate it applied on bilingual models with adapter networks.

Adapters have been effectively utilized in multilingual models (Bapna et al., 2019), and we
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choose them for practical consideration of limiting per-language capacity. Unlike prior works

that finetune adapters for adaptation, we train them jointly with shared parameters during pre-

training. We follow Houlsby et al. (2019) and insert language-specific adapters after attention

and feedforward layers. We leave a more thorough investigation of how to better pick language-

specific structures for future work. For downstream task evaluation, we finetune all layers. Notice

that computing the gradient of gradient in Eq. 4.3 doubles the memory requirement. In practice,

we utilize the finite difference approximation as follows.

Let zi be the output of the i-th layer of dimension d. The residual adapter network (Bapna

et al., 2019; Houlsby et al., 2019; Rebuffi et al., 2017) is a bottleneck layer that first projects zi
to an inner layer with dimension b:

hi = g(W z
i zi) (4.6)

where W z
i ∈ Rd×b and g is some activation function such as relu. It is then projected back to the

original input dimension d with a residual connection:

oi = W h
i hi + zi (4.7)

where W h
i ∈ Rb×d. In our experiments, we fix b = 1

4
d. For a bilingual model of lg1 and

lg2, we inject two langauge-specific adapters after each attention and feedforward layer, one for

each language. For example, if the input text is in lg1, the network will be routed to adapters

designated for lg1. The rest of the network and training protocol remain unchanged.

The injected adapter layers mimic the warp layers interleaved between base network layers

in Flennerhag et al. (2019). Warp layers are meta parameters that aim to improve the perfor-

mance of the base network. They precondition base network gradients to obtain better gradient

geometry. In our experiments, we treat language-specific adapters as meta parameters to im-

prove generalization of the shared network. The adapters are updated according to Eq 4.3, which

doubles the memory requirement. In particular, the high-order term in Eq 4.4 requires comput-

ing the gradient of gradient. In practice, we approximate this term using the finite difference

approximation as:
∇
φ
(t)
i
Litrain(θ

+, φ
(t)
i )−∇

φ
(t)
i
Litrain(θ

−, φ
(t)
i )

2ε
(4.8)

where θ± = θ(t) ± ε∇θ′ 1
L

∑L
j=1 L

j
val(θ

′, φ
(t)
j ) and ε is a small scalar. We use the same value for

learning rates α and β in Eq 4.3, to be consistent with standard learning rate schedule used in

XLM (Lample and Conneau, 2019).

By evaluating their performance on the zero-shot transfer settings (Table 4.2, 4.3 and 4.6),

we observe that our method, denoted as meta adpt, consistently improves the performance over
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Model ar fr ru hi sw avg

JointPair 67.1 73.5 69.2 61.5 62.3 66.7

+ ffn 42.5 51.4 40.7 36.2 34.8 41.1

+ attn 48.5 50.7 41.2 33.3 35.1 41.8

+ adpt 67.8 73.7 69.5 62.2 59.7 66.6

+ share adpt 67.9 73.4 70.0 61.8 62.2 67.1

+ meta adpt 68.5 74.8 70.2 64.5 61.5 67.9

XLM 68.2 75.2 72.3 65.4 58.1 67.8

Table 4.6: XNLI results (Accuracy).

JointPair baselines, while ordinary adapters (adpt) perform worse than JointPair. This shows

that, the proposed method can effectively utilize the added language-specific adapters to im-

prove generalization of shared parameters across languages. At the same time, our method also

mitigates negative interference and outperforms JointPair on within-language performance, clos-

ing the gap with monolingual models. In particular, it performs better than ordinary adapters in

both settings. We hypothesize that this is because it alleviates language conflicts during training

and thus converges more robustly. For example, we plot training loss in the early stage in Figure

4.4(c), which shows that ordinary adapters converge slower than JointPair due to overfitting of

language-specific adapters while meta adapters converge much faster. For ablation studies, we

also report results for JointPair trained with adapters shared between two languages, denoted

as share adpt. Unlike language-specific adapters that can hinder transferability, shared adapters

improve both within-language and cross-lingual performance with the extra capacity. However,

meta adapters still obtain better performance. These results show that mitigating negative inter-

ference can improve multilingual representations.

4.5 Related Work

Unsupervised multilingual language models such as mBERT (Devlin et al., 2018) and XLM

(Conneau et al., 2020; Lample and Conneau, 2019) work surprisingly well on many NLP tasks

without parallel training signals (Pires et al., 2019; Wu and Dredze, 2019). A line of follow-up

work (Artetxe et al., 2019b; Karthikeyan et al., 2020; Wu et al., 2020) study what contributes to

the cross-lingual ability of these models. They show that vocabulary overlap is not required for
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multilingual models, and suggest that abstractions shared across languages emerge automatically

during pretraining. Another line of research investigate how to further improve these shared

knowledge, such as applying post-hoc alignment (Cao et al., 2020; Wang et al., 2020d) and

utilizing better calibrated training signal (Huang et al., 2019a; Mulcaire et al., 2019). While

prior work emphasize how to share to improve transferability, we study multilingual models

from a different perspective of how to unshare to resolve language conflicts.

Our work is also related to transfer learning (Pan and Yang, 2010) and multi-task learning

(Ruder, 2017). In particular, prior work have observed (Rosenstein et al., 2005) and studied

(Wang et al., 2019b) negative transfer, such that transferring knowledge from source tasks can

degrade the performance in the target task. Others show it is important to remedy negative

transfer in multi-source settings (Ge et al., 2014; Wang and Carbonell, 2018). In this chapter,

we study negative transfer in multilingual models, where languages contain heavily unbalanced

training data and exhibit complex inter-task relatedness.

In addition, our work is related to methods that measure the similarity between cross-lingual

representations. For example, existing methods utilize statistical metrics to examine cross-

lingual embeddings such as singular vector canonical correlation analysis (Kudugunta et al.,

2019; Raghu et al., 2017), eigenvector similarity (Søgaard et al., 2018), and centered kernel

alignment (Kornblith et al., 2019; Wu et al., 2020). While these methods focus on testing latent

representations, we directly compare similarity of neural network structures through network

pruning. Finally, our work is related to meta learning, which sets a meta task to learn model

initialization for fast adaptation (Finn et al., 2017; Flennerhag et al., 2019; Gu et al., 2018), data

selection (Wang et al., 2020b), and hyperparameters (Baydin et al., 2018). In our case, the meta

task is to mitigate negative interference.

4.6 Summary

In this chapter, we present the first systematic study of negative interference in multilingual

models and shed light on its causes. We further propose a method and show it can improve

cross-lingual transferability by mitigating negative interference. While prior efforts focus on im-

proving sharing and cross-lingual alignment, we provide new insights and a different perspective

on unsharing and resolving language conflicts. This concludes the first part of this thesis on

understanding negative transfer. In the next part, we turn to improve model generalization by

addressing task conflicts and mitigating negative transfer.
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Part II

Enhancing Transfer Generalization by
Addressing Task Conflicts
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Chapter 5

Representation Alignment

The previous part of this thesis dissects negative transfer and demonstrates task conflict to be

the root of it. As a result, this part tries to resolve task conflict by explicitly aligning tasks

through representation and gradient, with the goal of improving the model’s generalization. In

this chapter, we first align representation learned for each individual language thereby leading to

improved cross-lingual transferability. Learning multilingual representations of text has proven a

successful method for many cross-lingual transfer learning tasks. There are two main paradigms

for learning such representations: (1) alignment, which maps different independently trained

monolingual representations into a shared space, and (2) joint training, which directly learns

unified multilingual representations using monolingual and cross-lingual objectives jointly. We

first conduct direct comparisons of representations learned using both of these methods across

diverse cross-lingual tasks. Our empirical results reveal a set of pros and cons for both meth-

ods, and show that the relative performance of alignment versus joint training is task-dependent.

Stemming from this analysis, we propose a simple and novel framework that combines these

two previously mutually-exclusive approaches. Extensive experiments demonstrate that our pro-

posed framework alleviates limitations of both approaches, and outperforms existing methods on

the MUSE bilingual lexicon induction (BLI) benchmark. We further show that this framework

can generalize to contextualized representations such as Multilingual BERT, and produces strong

results on the CoNLL cross-lingual NER benchmark.

5.1 Introduction

Continuous word representations (Bojanowski et al., 2017; Mikolov et al., 2013a; Pennington

et al., 2014) have become ubiquitous across a wide range of NLP tasks. In particular, meth-

55



ods for cross-lingual word embeddings (CLWE) have proven a powerful tool for cross-lingual

transfer for downstream tasks, such as text classification (Klementiev et al., 2012), dependency

parsing (Ahmad et al., 2019), named entity recognition (NER) (Chen et al., 2019; Xie et al.,

2018), natural language inference (Conneau et al., 2018b), language modeling (Adams et al.,

2017), and machine translation (MT) (Artetxe et al., 2018b; Lample et al., 2018a,b; Zou et al.,

2013). The goal of these CLWE methods is to learn embeddings in a shared vector space for two

or more languages. There are two main paradigms for learning CLWE: cross-lingual alignment

and joint training.

The most successful approach has been the cross-lingual embedding alignment method (Mikolov

et al., 2013b), which relies on the assumption that monolingually-trained continuous word em-

bedding spaces share similar structures across different languages. The underlying idea is to first

independently train embeddings in different languages using monolingual corpora alone, and

then learn a mapping to align them to a shared vector space. Such a mapping can be trained in

a supervised fashion using parallel resources such as bilingual lexicons (Jawanpuria et al., 2019;

Joulin et al., 2018; Smith et al., 2017; Xing et al., 2015), or even in an unsupervised ( “super-

vision” refers to that provided by a parallel corpus or bilingual dictionaries). manner based on

distribution matching (Artetxe et al., 2018a; Conneau et al., 2018a; Zhang et al., 2017b; Zhou

et al., 2019). Recently, it has been shown that alignment methods can also be effectively applied

to contextualized word representations (Aldarmaki and Diab, 2019; Schuster et al., 2019).

Another successful line of research for CLWE considers joint training methods, which op-

timize a monolingual objective predicting the context of a word in a monolingual corpus along

with either a hard or soft cross-lingual constraint. Similar to alignment methods, some early

works rely on bilingual dictionaries (Ammar et al., 2016; Duong et al., 2016) or parallel corpora

(Gouws et al., 2015; Luong et al., 2015) for direct supervision. More recently, a seemingly naive

unsupervised joint training approach has received growing attention due to its simplicity and ef-

fectiveness. In particular, Lample et al. (2018b) reports that simply training embeddings on con-

catenated monolingual corpora of two related languages using a shared vocabulary without any

cross-lingual resources is able to produce higher accuracy than the more sophisticated alignment

methods on unsupervised MT tasks. Besides, for contextualized representations, unsupervised

multilingual language model pretraining using a shared vocabulary has produced state-of-the-art

results on multiple benchmarks.

Despite a large amount of research on both alignment and joint training, previous work has

neither performed a systematic comparison between the two, analyzed their pros and cons, nor

elucidated when we may prefer one method over the other. Particularly, it’s natural to ask: (1)
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Does the phenomenon reported in Lample et al. (2018b) extend to other cross-lingual tasks? (2)

Can we employ alignment methods to further improve unsupervised joint training? (3) If so,

how would such a framework compare to supervised joint training methods that exploit equiv-

alent resources, i.e., bilingual dictionaries? (4) And lastly, can this framework generalize to

contextualized representations?

In this chapter, we attempt to address these questions. Specifically, we first evaluate and

compare alignment versus joint training methods across three diverse tasks: BLI, cross-lingual

NER, and unsupervised MT. We seek to characterize the conditions under which one approach

outperforms the other, and glean insight on the reasons behind these differences. Based on our

analysis, we further propose a simple, novel, and highly generic framework that uses unsuper-

vised joint training as initialization and alignment as a refinement to combine both paradigms.

Our experiments demonstrate that our framework improves over both alignment and joint train-

ing baselines, and outperforms existing methods on the MUSE BLI benchmark. Moreover, we

show that our framework can generalize to contextualized representations such as Multilingual

BERT, producing state-of-the-art results on the CoNLL cross-lingual NER benchmark. To the

best of our knowledge, this is the first framework that combines previously mutually-exclusive

alignment and joint training methods.

5.2 Background: Cross-lingual Representations

Notation. We assume we have two different languages {L1, L2} and access to their correspond-

ing training corpora. We use VLi
= {wjLi

}nLi
j=1 to denote the vocabulary set of the ith language

where each wjLi
represents a unique token, such as a word or subword. The goal is to learn a set

of embeddings E = {xj}mj=1, with xj ∈ Rd, in a shared vector space, where each token wjLi
is

mapped to a vector in E. Ideally, these vectorial representations should have similar values for

tokens with similar meanings or syntactic properties, so they can better facilitate cross-lingual

transfer.

5.2.1 Alignment Methods

Given the notation, alignment methods consist of the following steps:

Step 1: Train an embedding set E0 = EL1 ∪ EL2 , where each subset ELi
= {xjLi

}nLi
j=1 is trained

independently using the ith language corpus and contains an embedding xjLi
for each token wjLi

.

Step 2: Obtain a seed dictionary D = {(wiL1
, wjL2

)}Kk=1, either provided or learnt unsupervised.
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Step 3: Learn a projection matrix W ∈ Rd×d based on D, resulting in a final embedding set

EA = (W · EL1) ∪ EL2 in a shared vector space.

To find the optimal projection matrix W , Mikolov et al. (2013b) proposed to solve the fol-

lowing optimization problem:

min
W∈Rd×d

‖WXL1 −XL2‖F (5.1)

where XL1 and XL2 are matrices of size d × K containing embeddings of the words in D.

Xing et al. (2015) later showed further improvement could be achieved by restricting W to an

orthogonal matrix, which turns the Eq.(5.1) into the Procrustes problem with the following closed

form solution:

W ∗ = UV T , (5.2)

with UΣV T = SVD(XL2X
T
L1

) (5.3)

where W ∗ denotes the optimal solution and SVD(·) stands for the singular value decomposition.

As surveyed in Section 5.5, different methods (Artetxe et al., 2018a; Conneau et al., 2018a;

Joulin et al., 2018; Smith et al., 2017) differ in the way how they obtain the dictionary D and

how they solve for W in step 3. However, most of them still involve solving the Eq.(5.2) as a

crucial step.

5.2.2 Joint Training Methods

Joint training methods in general have the following objective:

LJ = L1 + L2 +R(L1, L2) (5.4)

where L1 and L2 are monolingual objectives and R(L1, L2) is a cross-lingual regulariza-

tion term. For example, Klementiev et al. (2012) use language modeling objectives for L1 and

L2. The term R(L1, L2) encourages alignment of representations of words that are translations.

Training an embedding set EJ = EL1 ∪ EL2 is usually done by directly optimizing LJ .

While supervised joint training requires access to parallel resources, recent studies (Artetxe

and Schwenk, 2019; Devlin et al., 2018; Lample and Conneau, 2019; Lample et al., 2018b)

have suggested that unsupervised joint training without such resources is also effective. Specif-

ically, they show that the cross-lingual regularization term R(L1, L2) does not require direct

cross-lingual supervision to achieve highly competitive results. This is because the shared words

between L1 and L2 can serve implicitly as anchors by sharing their embeddings to ensure that

representations of different languages lie in a shared space. Using our notation, the unsupervised
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joint training approach takes the following steps:

Step 1: Construct a joint vocabulary VJ = VL1 ∪ VL2 that is shared across two languages.

Step 2: Concatenate the two training corpora and learn an embedding set EJ corresponding to

VJ .

The joint vocabulary is composed of three disjoint sets: V 1
J , V

2
J , V

s
J , where V s

J = VL1 ∩VL2 is

the shared vocabulary set and V i
J is the set of tokens that appear in the ith language only. Note that

a key difference of existing supervised joint training methods is that embeddings corresponding

to V s
J are not shared between EL1 and EL2 , meaning that they are disjoint, as in alignment

methods.

5.2.3 Discussion

While alignment methods have had great success, there are still some critical downsides, among

which we stress the following points:

1. While recent studies in unsupervised joint training have suggested the potential benefits

of word sharing, alignment methods rely on two disjoint sets of embeddings. Along with

some possible loss of information due to no sharing, one consequence is that finetuning

the aligned embeddings on downstream tasks may be sub-optimal due to the lack of cross-

lingual constraints at the finetuning stage, whereas shared words can fulfill this role in

jointly trained models.

2. A key assumption of alignment methods is the isomorphism of monolingual embedding

spaces. However, some recent papers have challenged this assumption, showing that it

does not hold for many language pairs (Patra et al., 2019; Søgaard et al., 2018). Also

notably, Ormazabal et al. (2019) suggests that this limitation results from the fact that the

two sets of monolingual embeddings are independently trained.

On the other hand, the unsupervised joint training method is much simpler and doesn’t share

these disadvantages with the alignment methods, but there are also some key limitations:

1. It assumes that all shared words across two languages serve implicitly as anchors and

thus need not be aligned to other words. Nonetheless, this assumption is not always true,

leading to misalignment. For example, the English word “the” will most likely also appear

in the training corpus of Spanish, but preferably it should be paired with Spanish words

such as “el” and “la” instead of itself. We refer to this problem as oversharing.

2. It does not utilize any explicit form of seed dictionary as in alignment methods, resulting

in potentially less accurate alignments, especially for words that are not shared.
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Figure 5.1: PCA visualization of English and Spanish embeddings learned by unsupervised joint

training as in Lample et al. (2018b). As shown by plots (a) and (b), most words are shared in the

initial embedding space but not well-aligned, hence the oversharing problem. Plots (b) and (c)

shows that the vocabulary reallocation step effectively mitigates oversharing while the alignment

refinement step further improves the poorly aligned embeddings by projecting them into a close

neighborhood.

Lastly, while the supervised joint training approach does not have the same issues of unsu-

pervised joint training, it shares limitation 1 of the alignment methods.

We empirically compare both joint training and alignment approaches in Section 5.4 and shed

light on some of these pros and cons for both paradigms (See Section 5.4.3).

5.3 Proposed Framework

Motivated by the pros and cons of both paradigms, we propose a unified framework that first

uses unsupervised joint training as a coarse initialization and then applies alignment methods for

refinement, as demonstrated in Figure 9.1. Specifically, we first build a single set of embeddings

with a shared vocabulary through unsupervised joint training, so as to alleviate the limitations of

alignment methods. Next, we use a vocabulary reallocation technique to mitigate oversharing,

before finally resorting back to alignment methods to further improve the embeddings’ quality.

Lastly, we show that this framework can generalize to contextualized representations.

5.3.1 Unifying Alignment with Joint Training

Our proposed framework mainly involves three components and we discuss each of them as

follows.
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Joint Initialization. We use unsupervised joint training (Lample et al., 2018b) to train the

initial CLWE. As described in Section 5.2.2, we first obtain a joint vocabulary VJ and train its

corresponding set of embeddings EJ on the concatenated corpora of two languages. This allows

us to obtain a single set of embeddings that maximizes sharing across two languages. To train

embeddings, we used fastText1 (Bojanowski et al., 2017) in all our experiments for both word

and subword tokens.

Vocabulary Reallocation. As discussed in Section 5.2.3, a key issue of unsupervised joint

training is oversharing, which prohibits further refinement as shown in Figure 9.1. To alleviate

this drawback, we attempt to “unshare” some of the overshared words, so their embeddings

can be better aligned in the next step. Particularly, we perform a vocabulary reallocation step

such that words appearing mostly exclusively in the ith language are reallocated from the shared

vocabulary V s
J to V i

J , whereas words that appear similarly frequent in both languages stay still in

V s
J . Formally, for each token w in the shared vocabulary V s

J , we use the ratio of counts within

each language to determine whether it belongs to the shared vocabulary:

r =
TL2

TL1

· CL1(w)

CL2(w)
, (5.5)

where CLi
(w) is the count of w in the training corpus of the ith language and TLi

=
∑

w CLi
(w)

is the total number of tokens. The token w is allocated to the shared vocabulary if

1− γ
γ
≤ r ≤ γ

1− γ
, (5.6)

where γ is a hyper-parameter. Otherwise, we put w into either V 1
J or V 2

J , where it appears

mostly frequent. The above process generates three new disjoint vocabulary sets V 1′
J , V

2′
J , V

s′
J

and their corresponding embeddings E1′
J , E

2′
J , E

s′
J that are used thereafter. Note that, V ′J = VJ

and E ′J = EJ .

Alignment Refinement. The unsupervised joint training method does not explicitly utilize any

dictionary or form of alignment. Thus, the resulting embedding set is coarse and ill-aligned in

the shared vector space, as demonstrated in Figure 9.1. As a final refinement step, we utilize

any off-the-shelf alignment method to refine alignments across the non-sharing embedding sets,

i.e. mapping E1′
J to E2′

J and leaving Es′
J untouched. This step could be conducted by either the

supervised or unsupervised alignment method and we compare both in our experiments.

1https://github.com/facebookresearch/fastText
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5.3.2 Extension to Contextualized Representations

As our framework is highly generic and applicable to any alignment and unsupervised joint train-

ing methods, it can naturally generalize to contextualized word representations by aligning the

fixed outputs of a multilingual encoder such as multilingual BERT (M-BERT) (Devlin et al.,

2018). While our vocab reallocation technique is no longer necessary as contextualized repre-

sentations are dependent on context and thus dynamic, we can still apply alignment refinement

on extracted contextualized features for further improvement. For instance, as proposed by Al-

darmaki and Diab (2019), one method to perform alignment on contextualized representations is

to first use word alignment pairs extracted from parallel corpora as a dictionary, learn an align-

ment matrix W based on it, and apply W back to the extracted representations. To obtain W ,

we can solve Eq.( 5.1) as described in Section 5.2.1, where the embedding matrices XL1 and

XL2 now contain contextualized representations of aligned word pairs. Note that this method is

applicable to fixed representations but not finetuning.

5.4 Experiments

We evaluate the proposed approach and compare with alignment and joint training methods on

three NLP benchmarks. This evaluation aims to: (1) systematically compare alignment vs. joint

training paradigms and reveal their pros and cons discussed in Section 5.2.3, (2) show that the

proposed framework can effectively alleviate limitations of both alignment and joint training,

and (3) demonstrate the effectiveness of the proposed framework in both non-contextualized and

contextualized settings.

5.4.1 Evaluation Tasks

Bilingual Lexicon Induction (BLI) This task has been the de facto evaluation task for CLWE

methods. It considers the problem of retrieving the target language translations of source lan-

gauge words. We use bilingual dictionaries complied by Conneau et al. (2018a) and test on

six diverse language pairs, including Chinese and Russian, which use a different writing script

than English. Each test set consists of 1500 queries and we report precision at 1 scores (P@1),

following standard evaluation practices (Conneau et al., 2018a; Glavas et al., 2019).

Name Entity Recognition (NER) We also evaluate our proposed framework on cross-lingual

NER, a sequence labeling task, where we assign a label to each token in a sequence. We evaluate
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both non-contextualized and contextualized word representations on the CoNLL 2002 and 2003

benchmarks (Tjong Kim Sang, 2002; Tjong Kim Sang and De Meulder, 2003), which contain

4 European languages. To measure the quality of CLWE, we perform zero-shot cross-lingual

classification, where we train a model on English and directly apply it to each of the other 3

languages.

Unsupervised Machine Translation (UMT) Lastly, we test our approach using the unsuper-

vised MT task, on which the initialization of CLWE plays a crucial role (Lample et al., 2018b).

Note that our purpose here is to directly compare with similar studies in Lample et al. (2018b),

and thus we follow their settings and consider two language pairs, English-French and English-

German, and evaluate on the widely used WMT’14 en-fr and WMT’16 en-de benchmarks.

5.4.2 Experimental Setup

For the BLI task, we compare our framework to recent state-of-the-art methods. We obtain

numbers from the corresponding papers or Zhou et al. (2019), and use the official tools for MUSE

(Conneau et al., 2018a), GeoMM (Jawanpuria et al., 2019) and RCSLS (Joulin et al., 2018) to

obtain missing results. We consider the method of Duong et al. (2016) for supervised joint

training based on bilingual dictionaries, which is comparable to supervised alignment methods

in terms of resources used. For unsupervised joint training, we train uncased joint fastText word

vectors of dimension 300 on concatenated Wikipedia corpora of each language pair with default

parameters. The hyper-parameter γ is selected from {0.7, 0.8, 0.9, 0.95} on validation sets.

For the alignment refinement step in our proposed framework, we use RCSLS and GeoMM
to compare with supervised methods, and MUSE for unsupervised methods. In addition, we

include an additional baseline of joint training, denoted as Joint - Replace, which is identical

to unsupervised joint training except that it utilizes a seed dictionary to randomly replace words

with their translations in the training corpus. Following standard practices, we consider the top

200k most frequent words and use the cross-domain similarity local scaling (CSLS) (Conneau

et al., 2018a) as the retrieval criteria. Note that a concurrent work (Artetxe et al., 2019a) proposed

a new retrieval method based on MT systems and produced state-of-the-art results. Although

their method is applicable to our framework, it has a high computational cost.

For the NER task: (1) For non-contextualized representations, we train embeddings the same

way as in the BLI task and use a vanilla Bi-LSTM-CRF model (Lample et al., 2016). For all

alignment steps, we apply the supervised Procrustes method using dictionaries from the MUSE

library for simplicity. (2) For contextualized representations, we use M-BERT, an unsupervised
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en-es es-en en-fr fr-en en-de de-en en-it it-en en-ru ru-en en-zh zh-en avg

Alignment Methods

(1) MUSE 81.7 83.3 82.3 82.1 74.0 72.0 77.7 78.2 44.0 59.1 32.5 31.4 66.5

(2) VECMAP 82.3 84.7 82.3 83.6 75.1 74.3 - - 49.2 65.6 0.0 0.0 -

(3) DeMa-BWE 82.8 84.9 83.1 83.5 77.2 74.4 - - 49.2 65.7 42.5 37.9 -

(4) Procrustes 81.4 82.9 81.1 82.4 73.5 72.4 77.5 77.9 51.7 63.7 42.7 36.7 68.7

(5) GeoMM 81.4 85.5 82.1 84.1 74.7 76.7 77.9 80.9 51.3 67.6 49.1 45.3 71.4

(6) RCSLS 84.1 86.3 83.3 84.1 79.1 76.3 78.5 79.8 57.9 67.2 45.9 46.4 72.4

(7) RCSLS + IN 83.9 - 83.9 - 78.1 - 79.1 - 57.9 - 48.6 - -

Joint Traing Methods

(8) Unsupervised Joint 33.4 36.6 42.2 47.4 39.5 41.4 36.8 38.8 4.0 3.5 17.9 10.2 29.3

(9) Supervised Joint 79.7 79.8 78.1 76.7 67.5 68.9 74.4 74.1 41.8 51.8 46.7 43.3 65.2

(10) Joint - Replace 48.2 47.7 49.4 52.1 46.5 46.9 43.8 45.8 20.3 36.6 32.7 34.1 42.0

Joint Align Framework

(11) Joint_Align (w/o AR) 55.9 62.8 61.8 67.0 49.1 54.6 50.2 51.4 8.7 8.2 19.4 18.2 42.3

(12) Joint_Align + MUSE 81.4 84.2 82.8 83.6 74.2 72.2 77.5 81.5 45.0 58.3 36.1 35.3 67.7

(13) Joint_Align + RCSLS (w/o VR) 34.2 37.0 41.2 46.8 34.0 35.6 35.3 35.1 7.7 5.2 20.2 15.7 29.0

(14) Joint_Align + GeoMM 82.6 85.7 82.5 84.2 75.5 77.2 78.2 81.4 52.4 67.7 50.4 46.5 72.0

(15) Joint_Align + RCSLS 84.7 87.9 83.5 85.6 79.6 78.0 80.6 84.0 59.8 67.8 54.3 48.7 74.5

Table 5.1: Precision@1 for the BLI task on the MUSE dataset. Within each category, un-

supervised methods are listed at the top while supervised methods are at the bottom. The best

result for unsupervised methods is underlined while bold signifies the overall best. “IN” refers

to iterative normalization proposed in Zhang et al. (2019), “AR” refers to alignment refinement

and “VR” refers to vocabulary reallocation.

joint training model, as our base model and apply our proposed framework on it by first aligning

its extracted features and then feeding them to a task-specific model (M-BERT Feature + Align).

Specifically, we use the sum of the last 4 M-BERT layers’ outputs as the extracted features.

To obtain the alignment matrices, one for each layer, we use 30k parallel sentences from the

Europarl corpus for each language pair and follow the procedure of Section 5.3.2. We feed the

extracted features as inputs to a task-specific model with 2 Bi-LSTM layers and a CRF layer:

• Alignment As described in Section 5.3.2, we apply word alignment methods, such as

fastalign (Dyer et al., 2013), on parallel data to extract word-aligned pairs for learning the

alignment matrix. As M-BERT is based on subword tokens, we use the average of the

representations of all subword tokens that correspond to a word as the representation for

that word. For instance, assume that an English word “Resumption” is aligned to a German

word “Wiederaufnahme”, and they are tokenized by M-BERT as “Res”, “##sumption”, and

“Wie”, “##dera”, “##uf”, “##nahme”, respectively. Then the representation for “Resump-

tion” is the average of the representations of subword tokens “Res” and “##sumption”, and

the same goes for “Wiederaufnahme”.
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en-es es-en en-fr fr-en en-de de-en en-it it-en en-ru ru-en en-zh zh-en avg

Unsupervised

(1) MUSE 77.1 82.5 76.4 78.0 67.4 67.8 72.5 77.5 42.7 50.2 28.7 29.1 62.5

(2) Unsupervised Joint 3.7 10.2 5.1 10.7 8.5 10.5 7.8 8.1 0.4 2.7 2.5 6.4 6.4

(3) Joint_Align + MUSE 77.5 83.0 77.0 79.5 66.7 68.0 70.9 78.0 43.5 55.1 32.3 32.7 63.7

Supervised

(4) RCSLS 78.0 83.9 76.0 78.6 68.2 68.4 71.8 78.2 50.7 56.9 51.0 41.7 67.0

(5) Supervised Joint 76.8 80.8 73.4 76.1 60.1 61.7 69.7 76.2 41.0 51.8 52.3 43.3 63.6

(6) Joint_Align + RCSLS 82.1 84.6 78.1 80.4 68.4 70.4 73.7 79.0 59.0 66.8 51.4 45.7 70.0

Table 5.2: Precision@1 for the BLI task on the MUSE dataset with test pairs of same surface
form removed. The best result for unsupervised methods is underlined while bold signifies the

overall best.

• Hyperparameters For the task-specific NER model, we use a 2-layer Bi-LSTM with a

hidden size of 768 followed by a CRF layer. We apply a dropout rate of 0.5 on the input

and the output of the Bi-LSTM, and use Adam with default parameters and a learning rate

of 0.0001 for optimization. We train the model for 40 epochs with a batch size of 10, and

evaluate the model per 150 steps. For prediction, we feed the outputs of the Bi-LSTM that

correspond to the first subword tokens of each word to the CRF model. This is identical to

finetuning BERT on the NER task, except that in our case the outputs that correspond to

the first subword token are fed into a CRF, rather than a linear layer as done in BERT.

We compare our framework to both finetuning (M-BERT Finetune), which has been studied by

previous papers, and feature extraction (M-BERT Feature). Lastly, we also compare against

XLM, a supervised joint training model.

For the UMT task, we use the exact same data, architecture and parameters released by Lam-

ple et al. (2018b). We simply use different embeddings trained with the same data as inputs to

the model.

5.4.3 Results and Analysis

Alignment vs. Joint Training

We compare alignment methods with joint training on all three downstream tasks. As shown in

Table 5.1 and Table 5.3, we find alignment methods significantly outperform the joint training

approach by a large margin in all language pairs for both BLI and NER. However, the unsuper-

vised joint training method is superior than its alignment counterpart on the unsupervised MT

task as demonstrated in 5.2(c). While these results demonstrate that their relative performance is
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task-dependent, we conduct further analysis to reveal three limitations as discussed in Sec 5.2.3.

First, their poor performance on BLI and NER tasks shows that unsupervised joint training

fails to generate high-quality alignments due to the lack of a fine-grained seed dictionary as

discussed in its limitation 2. To evaluate accuracy on words that are not shared, we further remove

test pairs of the same surface form (e.g. (hate, hate) as a test pair for en-de) of the BLI task and

report their results in Table 5.2. We find unsupervised joint training (row 2) to achieve extremely

low scores which shows that emebddings of non-shared parts are poorly aligned, consistent with

the PCA visualization shown in Figure 9.1.

Moreover, we delve into the relative performance of the two paradigms on the MT task by

plotting their test BLEU scores of the first 20 epochs in Figure 5.2(a) and 5.2(b). We observe

that the alignment method actually obtains higher BLEU scores in the first few epochs, but gets

surpassed by joint training in later epochs. This shows the importance of parameter sharing as

discussed in limitation 1 of alignment methods: shared words can be used as a cross-lingual

constraint for unsupervised joint training during fine-tuning but this constraint cannot easily be

used in alignment methods. The lack of sharing is also a limitation for the supervised joint

training method, which performs poorly on the MT task even with supervision as shown in

Figure 5.2(c).

Lastly, we demonstrate that oversharing can be sub-optimal for unsupervised joint training

as discussed in its limitation 2. Specifically, we conduct ablation studies for our framework in

Table 5.1. Applying alignment refinement on unsupervised joint training without any vocabulary

reallocation does not improve its performance (row 13). On the other hand, simple vocabulary

reallocation alone boosts the performance by quite a margin (row 11). This shows some words

are shared erroneously across languages in unsupervised joint training, thereby hindering its

performance. In addition, while utilizing a seed dictionary (row 10) improves the performance

of unsupervised joint training, it still suffers from the oversharing problem and performs worse

compared to supervised joint training (row 9).

Evaluation of Proposed Framework

As shown in Table 5.1, Table 5.3, and Figure 5.2, our proposed framework substantially improves

over the alignment and joint training baselines on all three tasks. In particular, it outperforms

existing methods on all language pairs for the BLI task (using the CSLS as retrieval metric)

and achieves state-of-the-art results on 2 out of 3 language pairs for the NER task. Besides, we

show that it alleviates limitations of alignment and joint training methods shown in the previous
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es nl de avg

Non-contextualized

Unsupervised Joint 50.28 42.77 21.49 38.18

Supervised Joint 63.16 63.60 36.24 54.33

Joint - Replace 65.28 68.44 51.59 61.77

Align 69.00 71.33 52.17 64.17

Joint_Align 70.46 72.10 56.47 66.34

Xie et al.‡ 71.67 70.90 57.43 66.67

Chen et al.‡ 73.50 72.40 56.00 67.30

Contextualized

XLM Finetune ∗ 63.18 - 67.55 -

M-BERT Finetune 73.59 77.36 69.74 73.56

M-BERT Finetune 74.96 77.57 69.56 74.03

M-BERT Finetune 75.00 77.50 68.60 73.70

M-BERT Finetune + Adv 74.30 77.60 71.90 74.60

M-BERT Feature 74.23 78.65 67.63 73.50

M-BERT Feature + Align 75.77 79.03 70.54 75.11

Table 5.3: F1 score for the cross-lingual NER task. “Adv” refers to adversarial training. ‡

denotes results that are not directly comparable due to different resources and architectures used.
∗ denotes supervised XLM model trained with MLM and TLM objectives. Its Dutch (nl) result is

blank because the model is not pretrained on it. Bold signifies state-of-the-art results. We report

the average of 5 runs.

section.

First, the proposed framework largely improves the poor alignment of unsupervised joint

training, especially for non-sharing parts. As shown in Table 5.1, the proposed Joint_Align

framework achieves comparable results to prior methods in the unsupervised case (row 12) and

it outperforms previous state-of-the-art methods in the supervised setting (row 15). Specifically,

our proposed framework can generate well-aligned embeddings after alignment refinement is

applied to the initially ill-aligned embeddings, as demonstrated in Figure 9.1. This is further

verified by results in Table 5.2, where our proposed framework largely improves accuracy on

words not shared between two languages over the unsupervised joint training baseline (row 3

and 6 vs row 2).

Besides, our ablation study in Table 5.1 further shows the effectiveness of the proposed vo-

cabulary reallocation technique, which alleviates the issue of oversharing. Particularly, we ob-

serve no improvement compared to unsupervised joint training baseline (row 8) when an align-

ment refinement step is used without vocabulary reallocation (row 13), while a vocabulary re-

allocation step alone significantly improves the performance (row 11). This is consistent with
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(a) fr-en (b) en-de (c)

Figure 5.2: (a)(b): Results on MT of Align, Joint and our framework for the first 20 training
epochs. Results after 20 epochs have similar patterns. (c): BLEU scores for the MT task.
Results evaluated on the WMT’14 English-French and WMT’16 German-English. All training

settings are the same for each language pair except the embedding initialization. Note that we

are not trying to outperform state-of-the-art methods (Song et al., 2019) but rather to observe

improvements afforded by embedding initialization. †Results reported by (Lample et al., 2018b).

Our results are obtained using the official code released by the author. ‡Duong et al. (2016) is a

supervised method that we include for analysis purpose only and is not directly comparable to

other results in this table.

Figure 9.1 and shows that oversharing is a bottleneck for applying alignment methods to joint

training. It also suggests detecting what to share is crucial to achieve better cross-lingual transfer.

Lastly, while supervised joint training shares the limitation 1 of alignment methods and per-

forms poorly when finetuned, our proposed framework exploits the same idea of vocabulary

sharing used in unsupervised joint training. In the MT tasks, our framework obtains a maximum

gain of 2.97 BLEU over baselines we ran and consistently performs better than results reported in

(Lample et al., 2018b). In addition, Figure 5.2 shows that Joint_Align not only converges faster in

earlier training epochs but also consistently outperforms the two baselines thereafter. These em-

pirical findings demonstrate the effectiveness of our proposed methods in the non-contextualized

case.

Contextualized Word Representations

As can be seen in Table 5.3, when using our framework (M-BERT Feature + Align), we achieve

state-of-the-art results on cross-lingual NER on 2 out of 3 languages and the overall average. This

shows that our framework can effectively generalize to contextualized representations. Specifi-

cally, our framework improves over both the M-BERT feature extraction and finetuning baselines
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on all three language pairs. However, when compared to non-contextualized results, the gain of

using alignment refinement on top of unsupervised joint training is much smaller. This suggests

that, as the contextualized unsupervised joint training model performs very well already even

without any supervision, it is harder to achieve large improvements. While alignment refinement

relies on word alignment, a process that is noisy itself, a better alignment approach may be war-

ranted. Lastly, the reason why a supervised joint training model, XLM, performs worse than

its unsupervised counterpart, M-BERT, is likely that XLM uses an uncased vocabulary, where

casing information is important for NER tasks.

5.5 Related Work

Word embeddings (Mikolov et al., 2013a; Ruder et al., 2019) are a key ingredient to achiev-

ing success in monolingual NLP tasks. However, directly using word embeddings independently

trained for each language may cause negative transfer (Wang et al., 2019b) in cross-lingual trans-

fer tasks. In order to capture the cross-lingual mapping, a rich body of existing work relying on

cross-lingual supervision, including bilingual dictionaries (Artetxe et al., 2016; Duong et al.,

2016; Faruqui and Dyer, 2014; Gouws and Søgaard, 2015; Joulin et al., 2018; Mikolov et al.,

2013a; Xing et al., 2015), sentence-aligned corpora (Gouws et al., 2015; Hermann and Blun-

som, 2014; Kočiskỳ et al., 2014) and document-aligned corpora (Søgaard et al., 2015; Vulić and

Moens, 2016).

Besides, unsupervised alignment methods aim to eliminate the requirement for cross-lingual

supervision. Early work of Cao et al. (2016) matches the mean and the standard deviation of

two embedding spaces after alignment. Barone (2016); Conneau et al. (2018a); Zhang et al.

(2017a,b) adapted a generative adversarial network (GAN) (Goodfellow et al., 2014) to make the

distributions of two word embedding spaces indistinguishable. Follow-up works improve upon

GAN-based training for better stability and robustness by introducing Sinkhorn distance (Xu

et al., 2018), by stochastic self-training (Artetxe et al., 2018a), or by introducing latent variables

(Dou et al., 2018).

While alignment methods utilize embeddings trained independently on different languages,

joint training methods train word embeddings at the same time. Klementiev et al. (2012) train a

bilingual dictionary-based regularization term jointly with monolingual language model objec-

tives while Kočiskỳ et al. (2014) defines the cross-lingual regularization with the parallel corpus.

Another branch of methods (Ammar et al., 2016; Duong et al., 2016; Gouws and Søgaard, 2015;

Xiao and Guo, 2014) build a pseudo-bilingual corpus by randomly replacing words in mono-
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lingual corpus with their translations and use monolingual word embedding algorithms to in-

duce bilingual representations. The unsupervised joint method by Lample and Conneau (2019)

simply exploit words that share the same surface form as bilingual “supervision” and directly

train a shared set of embedding with joint vocabulary. Recently, unsupervised joint training of

contextualized word embeddings through the form of multilingual language model pretraining

using shared subword vocabularies has produced state-of-the-art results on various benchmarks

(Artetxe and Schwenk, 2019; Devlin et al., 2018; Lample and Conneau, 2019; Pires et al., 2019;

Wu and Dredze, 2019).

A concurrent work by Ormazabal et al. (2019) also compares alignment and joint method in

the bilingual lexicon induction task. Different from their setup which only tests on supervised

settings, we conduct analysis across various tasks and experiment with both supervised and un-

supervised conditions. While (Ormazabal et al., 2019) suggests that the combination of the

alignment and joint model could potentially advance the state-of-art of both worlds, we propose

such a framework and empirically verify its effectiveness on various tasks and settings.

5.6 Summary

In this chapter, we systematically compare the alignment and joint training methods for CLWE.

We point out that the nature of each category of methods leads to certain strengths and limitations.

The empirical experiments on extensive benchmark datasets and various NLP tasks verified our

analysis. To further improve the state-of-art of CLWE, we propose a simple hybrid framework

that combines the strength from both worlds and achieves significantly better performance in

the BLI, MT and NER tasks. Our work opens a promising new direction that combines two

previously exclusive lines of research. The method proposed in this chapter is post-hoc and

improves cross-lingual generalization; in the next chapter, we study how to encourage better

alignment during the optimization process.
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Chapter 6

Gradient Alignment

This chapter presents aligning gradients among tasks. Unlike previous chapter which align tasks

after the training procedure, the method proposed in this chapter align gradients adaptively dur-

ing the optimization process. Massively multilingual models subsuming tens or even hundreds of

languages pose great challenges to multi-task optimization. While it is a common practice to ap-

ply a language-agnostic procedure optimizing a joint multilingual task objective, how to properly

characterize and take advantage of its underlying problem structure for improving optimization

efficiency remains under-explored. In this chapter, we attempt to peek into the black-box of

multilingual optimization through the lens of loss function geometry. We find that gradient sim-

ilarity measured along the optimization trajectory is an important signal, which correlates well

with not only language proximity but also the overall model performance. Thus, we propose

two simple algorithms to encourage more geometrically aligned parameter updates for close

tasks, namely Gradient Vaccine and Meta Smoothing. Empirically, our method obtains signif-

icant model performance gains on multilingual machine translation and XTREME benchmark

tasks for multilingual language models. Our work reveals the importance of properly measuring

and utilizing language proximity in multilingual optimization, and has broader implications for

multi-task learning beyond multilingual modeling.

6.1 Introduction

Modern multilingual methods, such as multilingual language models (Conneau et al., 2020; De-

vlin et al., 2018; Lample and Conneau, 2019) and multilingual neural machine translation (NMT)

(Aharoni et al., 2019; Arivazhagan et al., 2019; Firat et al., 2016; Johnson et al., 2017), have

been showing success in processing tens or hundreds of languages simultaneously in a single
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large model. These models are appealing for two reasons: (1) Efficiency: training and deploy-

ing a single multilingual model requires much less resources than maintaining one model for

each language considered, (2) Positive cross-lingual transfer: by transferring knowledge from

high-resource languages (HRL), multilingual models are able to improve performance on low-

resource languages (LRL) on a wide variety of tasks (Hu et al., 2020; Pires et al., 2019; Siddhant

et al., 2020; Wu and Dredze, 2019).

Despite their efficacy, how to properly analyze or improve the optimization procedure of

multilingual models remains under-explored. In particular, multilingual models are multi-task

learning (MTL) (Ruder, 2017) in nature but existing literature often train them in a monolithic

manner, naively using a single language-agnostic objective on the concatenated corpus of many

languages. While this approach ignores task relatedness and might induce negative interference

(Wang et al., 2020c), its optimization process also remains a black-box, muffling the interaction

among different languages during training and the cross-lingual transferring mechanism.

In this chapter, we attempt to open the multilingual optimization black-box via the analysis

of loss geometry. Specifically, we aim to answer the following questions: (1) Do typologically

similar languages enjoy more similar loss geometries in the optimization process of multilingual

models? (2) If so, in the joint training procedure, do more similar gradient trajectories imply less

interference between tasks, hence leading to better model quality? (3) Lastly, can we deliberately

encourage more geometrically aligned parameter updates to improve multi-task optimization,

especially in real-world massively multilingual models that contain heavily noisy and unbalanced

training data?

Towards this end, we perform a comprehensive study on massively multilingual neural ma-

chine translation tasks, where each language pair is considered as a separate task. We first study

the correlation between language and loss geometry similarities, characterized by gradient sim-

ilarity along the optimization trajectory. We investigate how they evolve throughout the whole

training process, and glean insights on how they correlate with cross-lingual transfer and joint

performance. In particular, our experiments reveal that gradient similarities across tasks cor-

relate strongly with both language proximities and model performance, and thus we observe

that typologically close languages share similar gradients that would further lead to well-aligned

multilingual structure (Wu et al., 2020) and successful cross-lingual transfer. Based on these

findings, we identify a major limitation of a popular multi-task learning method (Yu et al., 2020)

applied in multilingual models and propose a preemptive method, Gradient Vaccine, that lever-

ages task relatedness to set gradient similarity objectives and adaptively align task gradients to

achieve such objectives. Empirically, our approach obtains significant performance gain over the
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Figure 6.1: Per language pair data distribution of the dataset used to train our multilingual model.

The yaxis depicts the number of training examples available per language pair on a logarithmic

scale.

standard monolithic optimization strategy and popular multi-task baselines on large-scale multi-

lingual NMT models and multilingual language models. To the best of our knowledge, we are the

first to systematically study and improve loss geometries in multilingual optimization at scale.

6.2 Investigating Multi-task Optimization in Massively Mul-

tilingual Models

While prior work have studied the effect of data (Arivazhagan et al., 2019; Wang et al., 2020b),

architecture (Blackwood et al., 2018; Escolano et al., 2020; Sachan and Neubig, 2018; Vázquez

et al., 2019) and scale (Huang et al., 2019c; Lepikhin et al., 2020) on multilingual models, their

optimization dynamics are not well understood. We hereby perform a series of control experi-

ments on massively multilingual NMT models to investigate how gradients interact in multilin-

gual settings and what are their impacts on model performance, as existing work hypothesizes

that gradient conflicts, defined as negative cosine similarity between gradients, can be detrimen-

tal for multi-task learning (Yu et al., 2020) and cause negative transfer (Wang et al., 2019b).

6.2.1 Experimental Setup

For training multilingual machine translation models, we mainly follow the setup in Arivazha-

gan et al. (2019). In particular, we jointly train multiple translation language pairs in a single

sequence-to-sequence (seq2seq) model (Sutskever et al., 2014). We use the Transformer-Big
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Language Id Language Family Data Size Language Id Language Family Data Size

French fr Western European High Finnish fi Uralic High

Spanish es Western European High Hindi hi Indo-Iranian Medium

German de Western European High Marathi mr Indo-Iranian Ex-Low

Polish pl West Slavic High Gujarati gu Indo-Iranian Low

Czech cs West Slavic High Nepali ne Indo-Iranian Ex-Low

Macedonian mk South Slavic Low Kazakh kk Turkic Low

Bulgarian bg South Slavic Medium Kyrgyz ky Turkic Ex-Low

Ukrainian uk East Slavic Medium Swahili sw Benue-Congo Low

Belarusian be East Slavic Low Zulu zu Benue-Congo Ex-Low

Russian ru East Slavic High Xhosa xh Benue-Congo Ex-Low

Latvian lv Baltic Medium Indonesian id Malayo-Polynesian High

Lithuanian lt Baltic Medium Malay ms Malayo-Polynesian Medium

Estonian et Uralic Medium

Table 6.1: Details of all languages considered in our dataset. Notice that since German (Ger-

manic) is particularly similar to French and Spanish (Romance), we consider a larger language

branch for them named “Western European”. “Ex-Low” indicates extremely low-resource lan-

guages in our dataset. We use BCP-47 language codes as labels (Phillips and Davis, 2006).

(Vaswani et al., 2017) architecture containing 375M parameters described in (Chen et al., 2018a),

where all parameters are shared across language pairs. We use an effective batch sizes of 500k

tokens, and utilize data parallelism to train all models over 64 TPUv3 chips. Sentences are en-

coded using a shared source-target Sentence Piece Model (Kudo and Richardson, 2018) with 64k

tokens, and a <2xx> token is prepended to the source sentence to indicate the target language

(Johnson et al., 2017).

To train each model, we use a single Adam optimizer (Kingma and Ba, 2014) with default

decay hyper-parameters. We warm up linearly for 30K steps to a learning rate of 1e-3, which

is then decayed with the inverse square root of the number of training steps after warm-up. At

each training step, we sample from all language pairs according to a temperature based sampling

strategy as in prior work (Arivazhagan et al., 2019; Lample and Conneau, 2019). That is, at

each training step, we sample each sentence from all language pairs to train proportionally to

Pi = ( Li∑
j Lj

)
1
T , where Li is the size of the training corpus for language pair i and T is the

temperature. We set T=5 for most of our experiments.

1Western European includes Romance and Germanic.
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Figure 6.2: Cosine similarities of encoder gradients between xx-en language pairs averaged

across all training steps. Darker cell indicates pair-wise gradients are more similar. Best viewed

in color.1

To study real-world multi-task optimization on a massive scale, we use an in-house training

corpus (Arivazhagan et al., 2019) generated by crawling and extracting parallel sentences from

the web (Uszkoreit et al., 2010), which contains more than 25 billion sentence pairs for 102

languages to and from English. We select 25 languages (50 language pairs pivoted on English),

containing over 8 billion sentence pairs, from 10 diverse language families and 4 different lev-

els of data sizes. We then train two models on two directions separately, namely Any→En and

En→Any. Furthermore, to minimize the confounding factors of inconsistent sentence seman-

tics across language pairs, we create a multi-way aligned evaluation set of 3k sentences for all

languages2. Then, for each checkpoint at an interval of 1000 training steps, we measure pair-

wise cosine similarities of the model’s gradients on this dataset between all language pairs. We

examine gradient similarities at various granularities, from specific layers to the entire model.

We pick languages that belong to different language families (typologically diverse) and with

various levels of training data sizes. Specifically, we consider the following languages and their

details are listed in 6.1: French (fr), Spanish (es), German (de), Polish (pl), Czech (cs), Macedo-

nian (mk), Bulgarian (bg), Ukrainian (uk), Belarusian (be), Russian (ru), Latvian (lv), Lithuanian

(lt), Estonian (et), Finnish (fi), Hindi (hi), Marathi (mr), Gujarati (gu), Nepali (ne), Kazakh (kk),

2In other words, 3k semantically identical sentences are given in 25 languages.
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(a) (b)

Figure 6.3: Comparing gradient similarity versus model performance. (a): Similarity of model

gradients between xx-en (left) and en-xx (right) language pairs in a single Any→Any model. (b):
BLEU scores on en-fr of a set of trilingual models versus their gradient similarities. Each model

is trained on en-fr and another en-xx language pair.

Kyrgyz (ky), Swahili (sw), Zulu (zu), Xhosa (xh), Indonesian (id), Malay (ms).

Our corpus has languages belonging to a wide variety of scripts and linguistic families. The

selected 25 languages belong to 10 different language families (e.g. Turkic versus Uralic) or

branches within language family (e.g. East Slavic versus West Slavic), as indicated in Table

6.1. Families are groups of languages believed to share a common ancestor, and therefore tend

to have similar vocabulary and grammatical constructs. We therefore utilize membership of

language family to define language proximity.

In addition, our language pairs have different levels of training data, ranging from 105 to

109 sentence pairs. This is shown in Figure 6.1. We therefore have four levels of data sizes

(number of languages in parenthesis): High (7), Medium (8), Low (5), and Extremely Low

(5). In particular, we consider tasks with more than 108 to be high-resource, 107 − 108 to be

medium-resource, and rest to be low-resource (with those below 5 million sentence pairs to be

extremely low-resource). Therefore, our dataset is both heavily unbalanced and noisy, as it is

crawled from the web, and thus introduces optimization challenges from a multi-task training

perspective. These characteristics of our dataset make the problem that we study as realistic as

possible.
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(a) (b) (c)

Figure 6.4: Evaluating gradient similarity across model architecture and training steps. (a):
Difference between gradient similarities in the encoder and decoder. Positive value (darker)

indicates the encoder has more similar gradient similarities. (b): Gradient similarities across

layers. (c): Gradient similarities of different components and tasks across training steps.

6.2.2 Observations

We make the following three main observations. Our findings are consistent across different

model architectures and settings.

1. Gradient similarities reflect language proximities. We first examine if close tasks enjoy

similar loss geometries and vice versa. Here, we use language proximity (defined according

to their memberships in a linguistic language family) to control task similarity, and utilize

gradient similarity to measure loss geometry. In Figure 6.2, we use a symmetric heatmap to

visualize pair-wise gradient similarities, averaged across all checkpoints at different training

steps. Specifically, we observe strong clustering by membership closeness in the linguis-

tic family, along the diagonal of the gradient similarity matrix. In addition, all European

languages form a large cluster in the upper-left corner, with an even smaller fine-grained

cluster of Slavic languages inside. Furthermore, we also observe similarities for Western Eu-

ropean languages gradually decrease in West Slavic→South Slavic→East Slavic, illustrating

the gradual continuum of language proximity.

2. Gradient similarities correlate positively with model quality. As gradient similarities cor-

relate well with task proximities, it is natural to ask whether higher gradient similarities lead

to better multi-task performance. In Figure 6.3(a), we train a joint model of all language

pairs in both En→Any and Any→En directions, and compare gradient similarities between

these two. While prior work has shown that En→Any is harder and less amenable for positive
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Figure 6.5: Cosine similarities of decoder gradients between en-xx language pairs averaged

across all training steps. Darker cell indicates pair-wise gradients are more similar.

transfer (Arivazhagan et al., 2019), we find that gradients of tasks in En→Any are indeed less

similar than those in Any→En. On the other hand, while larger batch sizes often improve

model quality, we observe that models trained with smaller batches have less similar loss ge-

ometries. These all indicate that gradient interference poses a great challenge to the learning

procedure.

To further verify this, we pair En→Fr with different language pairs (e.g. En→Es or En→Hi),

and train a set of models with exactly two language pairs3. We then evaluate their performance

on the En→Fr test set, and compare their BLEU scores versus gradient similarities between

paired two tasks. As shown in Figure 6.3(b), gradient similarities correlate positively with

model performance, again demonstrating that dissimilar gradients introduce interference and

undermine model quality.

3. Gradient similarities evolve across layers and training steps. While the previous discus-

sion focuses on the gradient similarity of the whole model averaged over all checkpoints, we

now study it across different layers and training steps. Figure 6.4(c) shows the evolution of

the gradient similarities throughout the training. Interestingly, we observe diverse patterns for

different gradient subsets. For instance, gradients between En→Fr and En→Hi gradually be-

come less similar (from positive to negative) in layer 1 of the decoder but more similar (from

3To remove confounding factors, we fix the same sampling strategy for all these models.
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Figure 6.6: Cosine similarities of decoder gradients between en-xx language pairs averaged

across all training steps. Darker cell indicates pair-wise gradients are more similar. Model trained

with smaller batch sizes.

negative to positive) in the encoder of the same layer. On the other hand, gradient similarities

between En→Fr and En→Es are always higher than those between En→Fr and En→Hi in

the same layer, consistent with prior observation that gradients reflect language similarities.

In addition, we evaluate the difference between gradient similarities in the multilingual en-

coder and decoder in Figure 6.4(a). We find that the gradients are more similar in the decoder

(positive values) for the Any→En direction but less similar (negative values) for the En→Any

direction. This is in line with our intuition that gradients should be more consistent when

the decoder only needs to handle one single language. Moreover, we visualize how gradient

similarities evolve across layers in Figure 6.4(b). We notice that similarity between gradi-

ents increase/decrease as we move up from bottom to top layers for the Any→En/En→Any

direction, and hypothesize that this is due to the difference in label space (English-only to-

kens versus tokens from many languages). These results demonstrate that the dynamics of

gradients evolve over model layers and training time.

Furthermore, in Figure 6.2 we show visualization on models trained using Any→En language

pairs. Here, we also examine models trained in the other direction, En→Any. As shown in

Figure 6.5, we have similar observations made in Section 6.2 such that gradient similarities

cluster strongly by language proximities. However, the en-xx model has smaller scales in cosine
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Figure 6.7: Counts of active PCGrad (left) and GradVac (right) during the training process.

similarities and more negative values. For example, Nepali shares mostly conflicting gradients

with other languages, except for those belonging to the same language family. This is in line

with our above discussion that gradient interference may be a source of optimization challenge,

such that the en-xx model is harder to train than the xx-en model. Moreover, while our previous

models are trained using a large batch size for better performance (as observed in prior work

(Arivazhagan et al., 2019)), we also evaluate gradients in a model trained with smaller batches

(125k tokens) in Figure 6.6. Compared to model trained with larger batch sizes, this model

enjoy similar patterns but with smaller gradient cosine similarity values, indicating that gradients

are less similar. This presents an additional potential explanation of why larger batch sizes can

be more effective for training large models: they may better reflect the correct loss geometries

such that gradients are less conflicting in nature. For our case, this means larger batches better

reflect language proximities hence gradients of better quality. Finally, these results also reveal

that gradient similarities are mostly dependent on task relatedness, as even sentence pairs with

identical semantic meanings can have negative cosine similarities due to language differences.

Our analysis highlights the important role of loss geometries in multilingual models. With

these points in mind, we next turn to the problem of how to improve multi-task optimization in

multilingual models in a systematic way.

6.3 Proposed Method

Following our observations that inter-task loss geometries correlate well with language similar-

ities and model quality, a natural question to ask next is how we can take advantage of such

gradient dynamics and design optimization procedures superior to the standard monolithic prac-

tice. Since we train large-scale models on real-world dataset consisting of billions of words, of

which tasks are highly unbalanced and exhibit complex interactions, we propose an effective ap-
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Algorithm 2 GradVac Update Rule

1: Require: EMA decay β, Model ComponentsM = {θk}, Tasks for GradVac G = {Ti}
2: Initialize model parameters

3: Initialize EMA variables φ̂(0)
ijk = 0,∀i, j, k

4: Initialize time step t = 0

5: while not converged do
6: Sample minibatch of tasks B = {Ti}
7: for θk ∈M do
8: Compute gradients gik ← ∇θkLTi ,∀Ti ∈ B
9: Set g′ik ← gik

10: for Ti ∈ G ∩ B do
11: for Tj ∈ B \ Ti in random order do
12: Compute φ(t)

ijk ←
g′ik·gjk

‖g′ik‖‖gjk‖

13: if φ(t)
ijk < φ̂

(t)
ijk then

14: Set g′ik = g′ik +
‖g′ik‖(φ̂

(t)
ijk

√
1−(φ

(t)
ijk)2−φ(t)ijk

√
1−(φ̂

(t)
ijk)2)

‖gjk‖
√

1−(φ̂
(t)
ijk)2

· gjk
15: end if
16: Update φ̂(t+1)

ijk = (1− β)φ̂
(t)
ijk + βφ

(t)
ijk

17: end for
18: end for
19: Update θk with gradient

∑
g′ik

20: end for
21: Update t← t+ 1

22: end while=0

(a) (b)

Figure 6.8: Comparing PCGrad (left) with GradVac (right) in two cases. (a): For negative sim-

ilarity, both methods are effective but GradVac can utilize adaptive objectives between different

tasks. (b): For positive similarity, only GradVac is active while PCGrad stays “idle".
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proach that not only exploits inter-task structures but also is applicable to unbalanced tasks and

noisy data. To motivate our method, we first review a state-of-the-art multi-task learning method

and show how the observation in Section 6.2 helps us to identify its limitation.

6.3.1 Gradient Surgery

An existing line of work (Chen et al., 2018b; Sener and Koltun, 2018; Yu et al., 2020) has

successfully utilized gradient-based techniques to improve multi-task models. Notably, Yu et al.

(2020) hypothesizes that negative cosine similarities between gradients are detrimental for multi-

task optimization and proposes a method to directly project conflicting gradients (PCGrad), also

known as the Gradient Surgery. As illustrated in the left side of Figure 6.8(a), the idea is to first

detect gradient conflicts and then perform a “surgery” to deconflict them if needed. Specifically,

for gradients gi and gj of the i-th and j-th task respectively at a specific training step, PCGrad

(1) computes their cosine similarity to determine if they are conflicting, and (2) if the value is

negative, projects gi onto the normal plane of gj as:

g′i = gi −
gi · gj
‖gj‖2

gj. (6.1)

The altered gradient g′i replaces the original gi and this whole process is repeated across all tasks

in a random order. For more details and theoretical analysis, we refer readers to the original

work.

Now, we can also interpret PCGrad from a different perspective: notice that the gradient

cosine similarity will always be zero after the projection, effectively setting a target lower bound.

In other words, PCGrad aims to align gradients to match a certain gradient similarity level,

and implicitly makes the assumption that any two tasks must have the same gradient similarity

objective of zero. However, as we shown in Section 6.2, different language proximities would

result in diverse gradient similarities. In fact, many language pairs in our model share positive

cosine similarities such that the pre-condition for PCGrad would never be satisfied. This is shown

in the left of Figure 6.8(b), where PCGrad is not effective for positive gradient similarities and

thus it is very sparse during training in the left of Figure 6.7. Motivated by this limitation, we

next present our proposed method.

6.3.2 Gradient Vaccine

The limitation of PCGrad comes from the unnecessary assumption that all tasks must enjoy

similar gradient interactions, ignoring complex inter-task relationships. To relax this assumption,

82



a natural idea is to set adaptive gradient similarity objectives in some proper manner. An example

is shown in the right of Figure 6.8(b), where two tasks have a positive gradient similarity of

cos(θ) = φij . While PCGrad ignores such non-negative cases, the current value of φij may still

be detrimentally low for more similar tasks such as French versus Spanish. Thus, suppose we

have some similarity goal of cos(θ′) = φTij > φij (e.g. the “normal” cosine similarity between

these two tasks), we alter both the magnitude and direction of gi such that the resulting gradients

match such gradient similarity objective. In particular, we replace gi with a vector that satisfies

such condition in the vector space spanned by gi and gj , i.e. a1 · gi + a2 · gj . Since there are

infinite numbers of valid combinations of a1 and a2, for simplicity, we fix a1 = 1 and by applying

Law of Sines in the plane of gi and gj , we solve for the value of a2 and derive the new gradient

for the i-th task as:

g′i = gi +
‖gi‖(φTij

√
1− φ2

ij − φij
√

1− (φTij)
2)

‖gj‖
√

1− (φTij)
2

· gj. (6.2)

This formulation allows us to use arbitrary gradient similarity objective φTij in [−1, 1]. The re-

maining question is how to set such objective properly. In the above analysis, we have seen that

gradient interactions change drastically across tasks, layers and training steps. To incorporate

these three factors, we exploit an exponential moving average (EMA) variable for tasks i, j and

parameter group k (e.g. the k-th layer) as:

φ̂
(t)
ijk = (1− β)φ̂

(t−1)
ijk + βφ

(t)
ijk, (6.3)

where φ(t)
ijk is the computed gradient similarity at training step t, β is a hyper-parameter, and

φ̂
(0)
ijk = 0. The full method is outlined in Algorithm 2. Notice that gradient surgery is a special

case of our proposed method such that φTij = 0. As shown in the right of Figure 6.8(a) and

6.8(b), our method alters gradients more preemptively under both positive and negative cases,

taking more proactive measurements in updating the gradients (Figure 6.7). We therefore refer

to it as Gradient Vaccine (GradVac).

6.4 Experiments

We compare multi-task optimization methods with the monolithic approach in multilingual set-

tings, and examine the effectiveness of our proposed method on multilingual NMT and multilin-

gual language models.
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en-fr en-cs en-hi en-tr avg

GradVac w. HRL_only 39.07 21.51 14.92 19.63 23.78

GradVac w. LRL_only 39.27 21.67 14.88 19.73 23.89

GradVac w. all_task 38.85 21.47 14.48 19.75 23.64

Table 6.2: Comparing which tasks to be included for GradVac. Parameter granularity fixed at

all_layer while β=1e-2.

en-fr en-cs en-hi en-tr avg

GradVac w. whole_model 38.76 21.32 14.22 18.89 23.30

GradVac w. enc_dec 39.05 21.73 14.54 19.33 23.66

GradVac w. all_layer 39.27 21.67 14.88 19.73 23.89

GradVac w. all_matrix 38.95 21.56 14.57 19.01 23.52

Table 6.3: Comparing parameter granularity for GradVac. GradVac tasks fixed at LRL_only

while β=1e-2.

en-fr en-cs en-hi en-tr avg

GradVac w. β=1e-1 38.72 20.74 14.52 19.25 23.31

GradVac w. β=1e-2 39.27 21.67 14.88 19.73 23.89

GradVac w. β=1e-3 38.85 20.96 14.85 19.68 23.59

Table 6.4: Comparing EMA decay rate β for GradVac. Parameter granularity fixed at all_layer

and GradVac tasks fixed at LRL_only.

6.4.1 General Setup

We choose three popular scalable gradient-based multi-task optimization methods as our baselnes:

GradNorm (Chen et al., 2018b), MGDA (Sener and Koltun, 2018), and PCGrad (Yu et al.,

2020). For fair comparison, language-specifc gradients are computed for samples in each batch.

The sampling temperature is also fixed at T=5 unless otherwise stated. For the baselines, we

mainly follow the default settings and training procedures for hype-parameter selection as ex-

plained in their respective papers. For our method, to study how sensitive GradVac is to the

distribution of tasks, we additionally examine a variant that allows us to control which lan-
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guages are considered for GradVac. Specifically, we search the following hyper-parameters on

small-scale WMT dataset and transfer to our large-scale dataset: tasks considered for Grad-

Vac {HRL_only, LRL_only, all_task}, parameter granularity {whole_model, enc_dec, all_layer,

all_matrix}, EMA decay rate β {1e-1, 1e-2, 1e-3}.

First, we examine the effect of what tasks to include for GradVac, i.e. G in Algorithm 2. We

consider three options: (1) HRL_only: only perform GradVac on high-resource languages, (2)

LRL_only: only perform GradVac on low-resource languages, (3) all_task: perform GradVac on

all languages. Results are shown in Table 6.2. We find that only conducting GradVac on a subset

of languages obtain better performance while it is the best to conduct GradVac on low-resource

language only. This is probably because the effective batch sizes of low-resource languages are

usually smaller due to the sampling strategy.

Next, we compare the effect of parameter granularity on model quality. This corresponds to

setting different model components for GradVac (M in Algorithm 2). We consider four pos-

sibilities, from coarse to fine-grained: (1) whole_model: only perform GradVac once on the

entire model, (2) enc_dec: perform separately for encoder and decoder, (3) all_layer: perform

individually for each layer in encoder and decoder, (4) all_matrix: perform for each parameter

matrix in the model. As shown in Table 6.3, we find that choosing proper parameter granularity

is important, as neither too coarse nor too fine-grained perform the best.

Finally, we study how sensitive our method is on the hyper-parameter β, i.e. the EMA decay

rate. Results in Table 6.4 illustrate that setting an effective “window” of 100 training steps work

best for our problem setups. This is expected, as setting a larger β value corresponds to conduct

GradVac more aggressively, and vice versa. In general, wWe find {LRL_only, all_layer, 1e-2}

to work generally well and use these in the following experiments.

6.4.2 Results and Analysis

WMT Machine Translation. We first conduct comprehensive analysis of our method and other

baselines on a small-scale WMT task. We consider two high-resource languages (WMT14 en-fr,

WMT19 en-cs) and two low-resource languages (WMT14 en-hi, WMT18 en-tr), and train two

models for both to and from English. Results are shown in Table 6.5.

First, we observe that while the naive multilingual baseline outperforms bilingual models on

low-resource languages, it performs worse on high-resource languages due to negative interfer-

ence (Wang et al., 2020c) and constrained capacity (Arivazhagan et al., 2019). Existing baselines

fail to address this problem properly, as they obtain marginal or even no improvement (row 3, 4
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and 5). In particular, we look closer at the optimization process for methods that utilize gradient

signals to reweight tasks, i.e. GradNorm and MGDA, and find that their computed weights are

less meaningful and noisy. For example, MGDA assigns larger weight for en-fr in the en-xx

model, that results in worse performance on other languages. This is mainly because these meth-

ods are designed under the assumption that all tasks have balanced data. Our results show that

simply reweighting task weights without considering the loss geometry has limited efficacy.

By contrast, our method significantly outperforms all baselines. Compared to the naive joint

training approach, the proposed method improves over not only the average BLEU score but

also the individual performance on all tasks. We notice that the performance gain on En→Any

is larger compared to Any→En. This is in line with our prior observation that gradients are less

similar and more conflicting in En→Any directions.

We next conduct extensive ablation studies for deeper analysis: (1) GradVac applied to all

layers vs. whole model (row 8 vs. 9): the all_layer variant outperforms whole_model, showing

that setting fine-grained parameter objectives is important. (2) Constant objective vs. EMA (row

7 vs. 9): we also examine a variant of GradVac optimized using a constant gradient objective for

all tasks (e.g. φTij = 0.5,∀i, j) and observe performance drop compared to using EMA variables.

This highlights the importance of setting task-aware objectives through task relatedness. (3)

GradVac vs. PCGrad (row 8-9 vs. 5-6): the two GradVac variants outperform their PCGrad

counterparts, validating the effectiveness of setting preemptive gradient similarity objectives.

Massively Multilingual Machine Translation. We then scale up our experiments and trans-

fer the best setting found on WMT to the same massive dataset used in Section 6.2. We visualize

model performance in Figure 6.9 and average BLEU scores are shown in Table 6.6. We addition-

ally compare with models trained with uniform language pairs sampling strategy (T=1) and find

that our method outperforms both multilingual models. Most notably, while uniform sampling

favor high-resource language pairs more than low-resource ones, GradVac is able to improve

both consistently across all tasks. We observe larger performance gain on high-resource lan-

guages, illustrating that addressing gradient conflicts can mitigate negative interference on these

head language pairs. On the other hand, our model still performs worse on resourceful languages

compared to bilingual baselines, most likely limited by model capacity.

XTREME Benchmark. We additionally apply our method to multilingual language models

and evaluate on the XTREME benchmark (Hu et al., 2020). We choose tasks where training data

are available for all languages, and finetune a pretrained multilingual BERT model (mBERT)

(Devlin et al., 2018) on these languages jointly. While other work mostly focus on zero-shot

cross-lingual transfer (finetune on English training data and then evaluate on the target language
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En→Any Any→En

en-fr en-cs en-hi en-tr avg fr-en cs-en hi-en tr-en avg

Monolithic Training

(1) Bilingual Model 41.80 24.76 5.77 9.77 20.53 36.38 29.17 8.68 13.87 22.03

(2) Multilingual Model 37.24 20.22 13.69 18.77 22.48 34.29 27.66 18.48 22.01 25.61

Multi-task Training

(3) GradNorm 37.02 18.78 11.57 15.44 20.70 34.58 27.85 18.03 22.37 25.71

(4) MGDA 38.22 17.54 12.02 13.69 20.37 35.05 26.87 18.28 22.41 25.65

(5) PCGrad 37.72 20.88 13.77 18.23 22.65 34.37 27.82 18.78 22.20 25.79

(6) PCGrad w. all_layer 38.01 21.04 13.95 18.46 22.87 34.57 27.84 18.84 22.48 25.93

Our Approach

(7) GradVac w. fixed_obj 38.41 21.12 13.75 18.68 22.99 34.55 27.97 18.72 22.14 25.85

(8) GradVac w. whole_model 38.76 21.32 14.22 18.89 23.30 34.84 28.01 18.85 22.24 25.99

(9) GradVac w. all_layer 39.27 21.67 14.88 19.73 23.89 35.28 28.42 19.07 22.58 26.34

Table 6.5: BLEU scores on the WMT dataset. The best result for multilingual model is bolded
while underline signifies the overall best.

test data), we use a different setup of multi-task learning such that we finetune multiple languages

jointly and evaluate on all languages. Notice that our goal is not to compare with state-of-the-art

results on this benchmark but rather to examine the effectiveness of our proposed method on

pre-trained multilingual language models. We therefore only consider tasks that contain training

data for all languages: named entity recognition (NER) and part-of-speech tagging (POS).

The NER task is from the WikiAnn (Pan et al., 2017) dataset, which is built automatically

from Wikipedia. A linear layer with softmax classifier is added on top of pretrained models to

predict the label for each word based on its first subword. We report the F1 score. Similar to NER,

POS is also a sequence labeling task but with a focus on synthetic knowledge. In particular, the

dataset we used is from the Universal Dependencies treebanks (Nivre et al., 2018). Task-specific

layers are the same as in NER and we report F1. We select 12 languages for each task randomly.

We use the multilingual BERT (Devlin et al., 2018) as our base model, which is a Transformer

model pretrained on the Wikipedias of 104 languages using masked language modelling (MLM).

It contains 12 layers and 178M parameters. Following (Hu et al., 2020), we finetune the model

for 10 epochs for NER and POS, and search the following hyperparameters: batch size {16, 32};

learning rate {2e-5, 3e-5, 5e-5}.

As shown in Table 6.7 and 6.8, our method consistently outperforms naive joint finetuning

and other multi-task baselines. This demonstrates the practicality of our approach for general
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Any→En High Med Low All

T=1 28.56 28.51 19.57 24.95

T=5 28.16 28.42 24.32 26.71

GradVac 28.99 28.94 24.58 27.21

En→Any High Med Low All

T=1 22.62 21.53 12.41 18.18

T=5 22.04 21.43 13.07 18.25

GradVac 24.20 21.83 13.30 19.08

Table 6.6: Average BLEU scores of 25 language pairs on our massively multilingual dataset.

(a) X-En (b) En-X

Figure 6.9: Comparing multilingual models with bilingual baselines on our dataset. Language

pairs are listed in the order of training data sizes (high-resource languages on the left).

de en es hi jv kk mr my sw te tl yo avg

mBERT 83.2 77.9 87.5 82.2 77.6 87.6 82.0 75.8 87.7 78.9 83.8 90.7 82.9

+ GradNorm 83.5 77.4 87.2 82.7 78.4 87.9 81.2 73.4 85.2 78.7 83.6 91.5 82.6

+ MGDA 82.1 74.2 85.6 81.5 77.8 87.8 81.9 74.3 86.5 78.2 87.5 91.7 82.4

+ PCGrad 83.7 78.6 88.2 81.8 79.6 87.6 81.8 74.2 85.9 78.5 85.6 92.2 83.1

+ GradVac 83.9 79.4 88.2 81.8 80.5 87.4 82.1 73.9 87.8 79.3 87.8 93.0 83.8

Table 6.7: F1 on the NER tasks of the XTREME benchmark.

multilingual tasks.
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ar bg de en es fr hi hu mr ta te vi avg

mBERT 84.2 94.7 92.7 91.0 93.8 93.3 88.0 91.9 83.3 80.3 90.4 79.2 88.6

+ GradNorm 83.5 94.7 92.3 91.0 93.6 93.2 88.2 91.4 83.0 80.5 90.6 79.1 88.4

+ MGDA 84.4 94.5 92.3 90.4 93.5 92.7 88.1 92.3 83.4 80.5 90.2 78.7 88.4

+ PCGrad 83.7 94.8 92.6 91.5 94.2 92.8 88.5 91.7 83.7 80.5 90.8 79.4 88.7

+ GradVac 84.1 95.0 93.6 91.7 94.4 93.9 88.5 92.4 83.5 79.8 90.9 79.5 88.9

Table 6.8: F1 on the POS tasks of the XTREME benchmark.

6.5 Related Work

Multilingual models train multiple languages jointly (Aharoni et al., 2019; Arivazhagan et al.,

2019; Conneau et al., 2020; Devlin et al., 2018; Firat et al., 2016; Johnson et al., 2017; Lample

and Conneau, 2019). Follow-up work study the cross-lingual ability of these models and what

contributes to it (Artetxe et al., 2019b; Karthikeyan et al., 2020; Kudugunta et al., 2019; Pires

et al., 2019; Wu and Dredze, 2019; Wu et al., 2020), the limitation of such training paradigm

(Arivazhagan et al., 2019; Wang et al., 2020c), and how to further improve it by utilizing post-hoc

alignment (Cao et al., 2020; Wang et al., 2020d), data balancing (Jean et al., 2019; Wang et al.,

2020b), or calibrated training signal (Huang et al., 2019a; Mulcaire et al., 2019). In contrast to

these studies, we directly investigate language interactions across training progress using loss

geometry and propose a language-aware method to improve the optimization procedure.

On the other hand, multilingual models can be treated as multi-task learning methods (Ruder,

2017; Zamir et al., 2018). Prior work have studied the optimization challenges of multi-task train-

ing (Hessel et al., 2019; Schaul et al., 2019), while others suggest to improve training quality

through learning task relatedness (Zhang and Yeung, 2012), routing task-specifc paths (Rosen-

baum et al., 2019; Rusu et al., 2016), altering gradients directly (Chen et al., 2018b; Du et al.,

2018; Kendall et al., 2018; Yu et al., 2020), or searching pareto solutions (Lin et al., 2019a;

Sener and Koltun, 2018). However, while these methods are often evaluated on balanced task

distributions, multilingual datasets are often unbalanced and noisy. As prior work have shown

training with unbalanced tasks can be prone to negative interference (Ge et al., 2014; Wang and

Carbonell, 2018), we study how to mitigate it in large models trained with highly unbalanced

and massive-scale datasets.
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6.6 Summary

In this chapter, we systematically study loss geometry through the lens of gradient similarity for

multilingual modeling, and propose a novel approach named GradVac for improvement based

on our findings. Leveraging the linguistic proximity structure of multilingual tasks, we validate

the assumption that more similar loss geometries improve multi-task optimization while gradient

conflicts can hurt model performance, and demonstrate the effectiveness of more geometrically

consistent updates aligned with task closeness. We analyze the behavior of the proposed ap-

proach on massive multilingual tasks with superior performance. This concludes the second part

of this thesis on task alignment, which improves model generalization. In the final part of this

thesis, we focus on transfer sample efficiency such that we aim to utilize less human supervision

in target tasks.
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Part III

Improving Transfer Efficiency with Less
Supervision
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Chapter 7

Efficient Meta-Lifelong Learning

In the previous part, we have shown that alleviating negative transfer can improve the model’s

transfer performance, enhancing the model’s generalization. In this final part, we study whether

mitigating data discrepancy can also improve sample-efficiency of the transfer learning algo-

rithm, such to transfer knowledge efficiently using less alignment data and/or labeled data in

the target domain. We first investigate this in the setup of lifelong learning. State-of-the-art

lifelong language learning methods store past examples in episodic memory and replay them

at both training and inference time. However, as we show later in our experiments, there are

three significant impediments: (1) needing unrealistically large memory module to achieve good

performance, (2) suffering from negative transfer, (3) requiring multiple local adaptation steps

for each test example that significantly slows down the inference speed. We identify three com-

mon principles of lifelong learning methods and propose an efficient meta-lifelong framework

that combines them in a synergistic fashion. To achieve sample efficiency, our method trains

the model in a manner that it learns a better initialization for local adaptation. Extensive exper-

iments on text classification and question answering benchmarks demonstrate the effectiveness

of our framework by achieving state-of-the-art performance using merely 1% memory size and

narrowing the gap with multi-task learning. We further show that our method alleviates both

catastrophic forgetting and negative transfer at the same time.

7.1 Introduction

Humans learn throughout their lifetime, quickly adapting to new environments and acquiring

new skills by leveraging past experiences, while retaining old skills and continuously accumulat-

ing knowledge. However, state-of-the-art machine learning models rely on the data distribution
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being stationary and struggle in learning diverse tasks in such a lifelong learning setting (Parisi

et al., 2019) (see section 7.2 for a formal definition). In particular, they fail to either effectively

reuse previously acquired knowledge to help learn new tasks, or they forget prior skills when

learning new ones - these two phenomena are known as negative transfer (Wang et al., 2019b)

and catastrophic forgetting (McCloskey and Cohen, 1989), respectively. These downsides limit

applications of existing models to real-world environments that dynamically evolve.

Due to its potential practical applications, there is a surge of research interest in the lifelong

learning, especially in the vision domain (Chaudhry et al., 2019; Kirkpatrick et al., 2017; Lopez-

Paz and Ranzato, 2017; Rusu et al., 2016; Sprechmann et al., 2018; Yoon et al., 2018; Zenke

et al., 2017). However, its application to language learning has been relatively less studied. While

progress in large-scale unsupervised pretraining (Devlin et al., 2018; Liu et al., 2019; Radford

et al., 2019; Raffel et al., 2019; Yang et al., 2019) has recently driven significant advances in

the field of natural language processing (NLP), these models require large amounts of in-domain

training data and are prone to catastrophic forgetting when trained on new tasks (Yogatama et al.,

2019), hindering their deployment in industry or other realistic setups where new tasks/domains

continuously emerge.

One successful approach to achieving lifelong learning has been augmenting the learning

model with an episodic memory module (Sprechmann et al., 2018). The underlying idea is to

first store previously seen training examples in memory, and later use them to perform experi-

ence replay (Rolnick et al., 2019) or to derive optimization constraints (Chaudhry et al., 2019;

Lopez-Paz and Ranzato, 2017) while training on new tasks. Recently, d’Autume et al. (2019)

propose to use such a memory module for sparse experience replay and local adaptation in the

language domain, achieving state-of-the-art results for lifelong learning on text classification and

question answering tasks. Despite its success, the method has three critical downsides, which we

demonstrate later in our experiments:

• It requires an unrealistically large memory module, i.e. storing all training examples, in

order to achieve optimal performance.

• While the model can mitigate catastrophic forgetting, its local adaptation step is prone to

negative transfer such that it performs worse on the most recent task than the naive baseline

without any lifelong learning regularization.

• Its inference speed is extremely slow due to a non-trivial amount of local adaptation steps

required for each test example.

In this chapter, we address these limitations and tackle the problem of efficient lifelong lan-
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guage learning. That is, we focus on storing limited training examples in memory. Our contri-

butions are three-fold: First, we identify three common principles underlying lifelong learning

methods. We seek to characterize them in language learning and glean insights on overlooked

downsides of the existing method. Second, stemming from this analysis, we propose a meta-

lifelong framework that unifies these three principles. Our approach is a direct extension of

d’Autume et al. (2019) and it explicitly meta-learns the model as a better initialization for local

adaptation. Finally, we conduct extensive experiments to demonstrate that our proposed ap-

proach can use the identified three principles to achieve efficient lifelong language learning. We

find that our framework outperforms prior methods while using 100 times less memory storage.

Moreover, we demonstrate that our method can effectively alleviate catastrophic forgetting and

negative transfer, closing the performance gap with the multi-task learning upper bound. It can

also potentially obtain 22 times faster inference speed.

7.2 Background: Principles of Lifelong Language Learning

Following prior work (d’Autume et al., 2019), we consider the lifelong learning setting where

a model needs to learn multiple tasks in a sequential order via a stream of training examples

without a task descriptor, i.e. the model does not know which task an example comes from during

both training and testing. This setup is ubiquitous in practice, as environments consistently

evolve without sending an explicit signal.

Formally, during training, the model makes a single pass over the training example stream

consisting of N tasks in an ordered sequence, Dtrain = {Dtrain1 , · · · ,DtrainN }, where Dtraint =

{(xit, yit)}nt
i=1 is drawn from the task-specific distribution Pt(X ,Y) of the t-th task. Overall, the

goal is to learn a predictor fθ : X → Y such as a neural network, parameterized by θ ∈ RP , to

minimize the average expected risk of all N tasks:

R(fθ) :=
1

N

N∑
t=1

Ex,y∼Pt [`(fθ(x), y)] , (7.1)

with ` being the specific task loss. Notice that while the average risk is most commonly eval-

uated after the model has seen all tasks, we can also evaluate a specific task at different stages

to demonstrate the model’s training behavior, and evaluate its robustness against catastrophic

forgetting and negative transfer.

While different methods have been developed to optimize Eq.(7.1), we abstract away from

their specific assumptions and instead focus on identifying common principles, among which we
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stress the following three points that are most relevant to language learning:

Generic Representation. Stemming from transfer learning (Ganin and Lempitsky, 2015;

Weiss et al., 2016), a key idea of transferring knowledge across diverse tasks is to learn a generic

representation (such as a neural network encoder) that is able to encode useful information for

all tasks. For instance, regularization based lifelong learning methods (Chaudhry et al., 2019;

Kirkpatrick et al., 2017; Schwarz et al., 2018; Zenke et al., 2017) add an extra constraint to

prevent the model parameter θ from drastically deviating when training on new tasks, thereby

learning a generic model for old tasks as well. In the language domain, as language models

have proven success to generate highly generic representation for many language understanding

tasks (Raffel et al., 2019; Yogatama et al., 2019), both d’Autume et al. (2019) and Sun et al.

(2020) propose utilizing a pretrained language model (Devlin et al., 2018; Radford et al., 2019)

to initialize parameters, and further training the model on Dtrain.

Experience Rehearsal. Motivated by the complementary learning systems (CLS) theory

(McClelland et al., 1995) that humans rely on episodic memory to store past experiences and

conduct experience rehearsal, we can also retrain lifelong learning models on previously seen

tasks to reduce forgetting. While prior methods use memory to define optimization constraints

(Chaudhry et al., 2019; Lopez-Paz and Ranzato, 2017; Sodhani et al., 2020), recent work use

either stored examples (Sprechmann et al., 2018) or generated synthetic data (Shin et al., 2017;

Sun et al., 2020) to perform experience replay. Further, d’Autume et al. (2019) shows that a

sparse 1% rate of replaying to learning new examples is sufficient for lifelong language learning.

Task-specific Finetuning. In multi-task learning, injecting task-specific parameters and

finetuning on individual tasks have proven effective for different language understanding tasks

(Houlsby et al., 2019) or even diverse languages (Bapna et al., 2019). Prior work (Rusu et al.,

2016; Yoon et al., 2018) exploit this idea to expand model parameters for new tasks in lifelong

learning setting. However, all these methods require a task descriptor in order to know when to

add new parameters. When no such signal exists, local adaptation (Sprechmann et al., 2018) uses

K stored nearest neighbors of each test example to perform extra finetuning at inference time.

Recent work (d’Autume et al., 2019; Khandelwal et al., 2020) demonstrate that the sentence

embeddings produced by pretrained models can be used to effectively measure query similarity

and that local adaptation can improve performance on text classification, question answering and

language modelling.
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7.3 Proposed Framework

With these principles in mind, we next turn to the problem of how to achieve efficient lifelong

learning. To motivate our proposed framework, we first review the state-of-the-art method, im-

proved MbPA (d’Autume et al., 2019), and show how these principles help us to identify the

limitation.

7.3.1 Model-based Parameter Adaptation

As a notable example, a recent line of work (d’Autume et al., 2019; Khandelwal et al., 2020;

Sprechmann et al., 2018) have successfully utilized an episodic memory module as a crucial

building block for general linguistic reasoning. Specfically, the improved Model-based Param-

eter Adaptation (MbPA++) (d’Autume et al., 2019) consists of three main components: (i) a

predictor network fθ, (ii) a key network gφ, and (iii) a memory moduleM. The end goal is to

train fθ to generalize well across all tasks as in Eq.(7.1).

To learn a generic representation, MbPA++ utilizes any state-of-the-art text encoder, such as

BERT, to initialize both predictor network fθ and key network gφ. At each time step, the model

receives a training example (xit, y
i
t) ∈ Dtrain and updates parameter θ by optimizing the task

loss:

LTASK(θ;xit, y
i
t) = `(fθ(x

i
t), y

i
t), (7.2)

To determine if the training example should be added to the memory module M, a Bernoulli

random variable is drawn with pre-set probability, which is used to control the memory size.

For experience rehearsal, a subset S ofM is randomly selected, based on a set ratio of replay

examples to learning new examples (i.e. revisit nre examples for every ntr training examples).

To avoid catastrophic forgetting, the model then updates the following replay loss to adapt θ

towards seen tasks:

LREP(θ;S) =
1

nre

∑
x,y∈S

`(fθ(x), y), (7.3)

At inference time, the key network gφ, which is fixed during training, is used to encode

example inputs as keys to obtain the K nearest neighbour contextNxi
of the i-th testing example

xi. L local adaptation gradient updates are then performed to achieve task-specific finetuning for
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the following objective:

LLA(θ̃i; θ,Nxi
) =

1

K

∑
x,y∈Nxi

`(fθ̃i(x), y)

+ λl‖θ̃i − θ‖2
2 (7.4)

where λl is a hyperparameter. The predictor network fθ̃i is then used to output the final prediction

for the i-th testing example.

Despite its effectiveness, the performance gain of MbPA++ comes at a cost of large memory

storage and slow inference speed. The root of this inefficiency is the non-synergistic nature

of the method - the three principles are performed independently without close interaction. In

particular: (i) the generic representation learned is not optimized for local adaptation and thus

more steps are required for robust performance, (ii) the memory module is selected randomly

and lacks a systematic selection method to effectively reduce its size, (iii) local adaptation only

utilizes a few neighbours for each testing example so it is prone to overfit and negative transfer

when memory size is small.

7.3.2 Synergistic Meta-lifelong Framework

We notice that there is a discrepancy between training and testing in MbPA++. Specifically, the

generic representation is trained on the task loss in Eq.(7.2) directly while it makes prediction

after the local adaptation at test time. Therefore, the model always overfits to the latest task it has

seen, and it never learns how to incorporate experience rehearsal efficiently. According to the

CLS theory (McClelland et al., 1995), however, human learning systems are complementary in

nature - we learn structured knowledge in a manner that allows us to adapt to episodic information

fast. Thus, to resolve the training-testing discrepancy of MbPA++, we change the training goal of

generic representation from how to perform better on the current task to how to adapt to episodic

memory efficiently.

In particular, we propose an extension of MbPA++ that exploits a meta learning paradigm to

interleave the three key principles: (i) to resolve the training-testing gap, our framework learns a

generic representation that is tailored for local adaptation, (ii) to enable robust local adaptation,

the memory module uses a diversity-based selection criteria to reduce memory size, (iii) to ac-

commodate small memory, the framework utilizes a coarse local adaptation to alleviate negative

transfer. The full framework is outlined in Algorithm 3 and below we detail how each principle

is instantiated in a systematic way.
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Algorithm 3 Meta-MbPA
1: Procedure Train
2: Input: training data Dtrain

3: Output: parameters θ, memoryM
4: Initialize θ with some pretrained model

5: for (xit, y
i
t) ∈ Dtrain do

6: [Generic Representation] Perform a gradient update on θ to minimize Eq.(7.5)

7: if training step mod ntr = 0 then
8: Sample nre examples fromM
9: [Experience Rehearsal] Perform a gradient update on θ to minimize Eq.(7.6)

10: end if
11: Compute p(xit) according to Eq.(7.7)

12: if Bernoulli(p(xit)) = 1 then
13: Update memoryM←M∪ (xit, y

i
t)

14: end if
15: end for
16: Procedure Test
17: Input: test examples x

18: Output: predictions ŷ

19: for l = 1, ..., L do
20: Sample K examples fromM
21: [Task-specific Finetuning] Perform a gradient update on θ to minimize Eq.(7.4)

22: end for
23: Output prediction ŷi = fθ(xi) =0

Generic Representation. We incorporate local adaptation into training generic represen-

tation. In particular, we exploit the idea of meta learning by formulating local adaptation as

the base task and representation learning as the meta task. That is, the generic representation

is trained such that it should perform well after the local adaptation (a.k.a. learning to adapt).

Thus, for each training example (xit, y
i
t) ∈ Dtrain, we formulate the task loss in Eq.(7.2) into a

meta-task loss as:

Lmeta
TASK(θ;xit, y

i
t) = `(fθ̃

xi
t

(xit), y
i
t)

s.t. θ̃xi
t

= θ − α∇θLLA(θ;Nxi
t
)

(7.5)
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where α is the current learning rate. Notice the differentiation requires computing the gradi-

ent of gradient, which can be implemented by modern automatic differentiation frameworks.

Intuitively, we first approximate local adaptation using gradient step(s), and then optimize the

adapted network.

Experience Rehearsal. With similar rationale to the meta-task loss, we reformulate the

memory replay loss in Eq.(7.3) into a meta-replay loss:

Lmeta
REP (θ;S) =

1

nre

∑
x,y∈S

`(fθ̃x(x), y)

s.t. θ̃x = θ − α∇θLLA(θ;Nx)

(7.6)

with the objective to stimulate efficient local adaptation for all tasks.

We use the same replay ratio as in MbPA++ to keep the meta replay sparse. In addition, we

propose a diversity-based selection criterion to determine if a training example (xit, y
i
t) ∈ Dtrain

should be added to the memory module. Here, we exploit the key network gφ to estimate diversity

via the minimum distance of xit to existing memory as:

log(p(xit)) ∝ −
min
x,y∈M

‖gφ(xit)− gφ(x)‖2
2

β
, (7.7)

where p(xit) is the probability of the example being selected and β is a scaling parameter. The

intuition is to select examples that are less similar to existing memory thereby covering diverse

part of data distribution. As shown later, the proposed method outperforms the uncertainty-based

selection rule (Ramalho and Garnelo, 2019), which picks examples based on certainty level of

the predictor network fθ. This is because local adaptation is prone to negative transfer when the

memoryM misrepresents the true data distribution.

Task-specific Finetuning. With small memory, local adaptation for each testing example is

prone to negative transfer. This is because less related memory samples are more likely to be

included in Nxi
and the model can easily overfit. Thus, we consider local adaptation with more

coarse granularity. For example, we can cluster testing examples and conduct local adaptation

for each cluster independently. In our experiments, we find that it is sufficient to take this to the

extreme such that we consider all test examples as a single cluster. Consequently, we consider

the whole memory as neighbours and we randomly sample from it to be comparable with the

original local adaptation formulation (i.e. same batch sizes and gradient steps). As shown in the

next section, it has two benefits: (1) it is more robust to negative transfer, (2) it is faster when we

evaluate testing examples as a group.
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Order Enc-Dec Online A-GEM† Replay MbPA++† MbPA++ Meta-MbPA MTL MTL LAMOL0.2
TASK

‡

EWC (Our Impl.) (1%) (1%)

Text Classification

i. 35.5 43.8 70.7 63.4 70.8 75.3 77.9 - - 76.7

ii. 44.8 49.8 65.9 73.0 70.9 74.6 76.7 - - 77.2

iii. 42.4 59.5 67.5 65.8 70.2 75.6 77.3 - - 76.1

iv. 28.6 52.0 63.6 74.0 70.7 75.5 77.6 - - 76.1

Average 37.8 51.3 66.9 69.1 70.6 75.3 77.3 78.9 50.4 76.5

Question Answering

i. 60.9 58.0 56.1 62.3 62.0 63.3 64.8 - - -

ii. 57.3 57.2 58.4 61.3 62.4 63.5 65.3 - - -

iii. 47.0 49.5 52.4 58.3 61.4 61.6 64.4 - - -

iv. 61.0 58.7 57.9 62.9 62.4 62.4 65.0 - - -

Average 56.6 55.9 56.2 61.2 62.1 62.7 64.9 68.6 44.1 -

Table 7.1: Accuracy and F1 scores for text classification and question answering, respec-
tively. Methods that use the defined lifelong learning setup in Section 7.2 are listed on the left.

Where applicable, all methods use rM = 100% memory size unless denoted otherwise. The

best result for lifelong learning methods is made bold. † Results obtained from (d’Autume et al.,

2019). ‡ LAMOL (Sun et al., 2020) is not directly comparable due to their different problem

setup where task descriptors are available.

7.4 Experiments

7.4.1 Evaluation Dataset

To evaluate the proposed framework, we conduct experiments on text classification and question

answering tasks. Following prior work, we consider each dataset as a separate task and the

model needs to sequentially learn several tasks of the same category (e.g. all text classification

tasks). As pointed out in (McCann et al., 2018), many NLP tasks can be formulated as question

answering and thus our setup is general.

Text classification We use five datasets from (Zhang et al., 2015) spanning four text clas-

sification tasks: (1) news classification (AGNews), (2) sentiment analysis (Yelp, Amazon), (3)

Wikipedia article classification (DBPedia) and (4) questions and answers categorization (Yahoo).

To compare our framework with (d’Autume et al., 2019), we follow the same data processing

procedure as described by them to produce balanced datasets. In total, we have 33 classes,
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rM = 1% rM = 10%

Model / Task class. QA class. QA

MbPA++ 73.1 61.9 73.5 62.6

Meta-MbPA 77.3 64.9 78.0 65.5

MTL 50.4 44.1 70.5 56.2

Table 7.2: Performance of models using different sizes of memory.

Replay MbPA++ Meta-MbPA

Text Classification

Random 69.2 73.1 76.8

Diversity 69.1 73.0 77.3

Uncertainty 65.4 41.2 62.7

Forgettable 62.7 50.5 61.8

Question Answering

Random 61.2 61.9 63.8

Diversity 61.5 62.2 64.9

Uncertainty 56.1 50.4 54.2

Forgettable 59.7 52.1 57.5

Table 7.3: Performance of models using different memory selection criteria. “Uncertainty”

utilizes model’s confidence level (Ramalho and Garnelo, 2019). “Forgettable” picks examples

according to forgetting events (Toneva et al., 2019). We tune hyperparameters that result in

rM = 1% memory size for all methods.

575, 000 training examples and 38, 000 test examples from all datasets.

Question Answering Following (d’Autume et al., 2019), we use three question answering

datasets: SQuAD v1.1(Rajpurkar et al., 2016), TriviaQA (Joshi et al., 2017) and QuAC (Choi

et al., 2018). TriviaQA has two sections, Web and Wikipedia, which we consider as separate

datasets. We process the datasets to follow the same setup as (d’Autume et al., 2019). Our

processed datasets includes 60, 000-90, 000 training and 7, 000-10, 000 validation examples per

task.
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7.4.2 Experimental Setup

We consider the prominent baselines corresponding to each one of the three principles as intro-

duced in Section 7.2. We first consider a standard encoder-decoder model (Enc-Dec) which does

not utilize any lifelong learning regularization. In the spirit of learning generic representation

using parameter regularization, we compare our framework with Online EWC (Schwarz et al.,

2018) and A-GEM (Chaudhry et al., 2019). For experience rehearsal, we implement Replay, a

model that uses stored examples for sparse experience replay only. Finally, we compare with

the state-of-the-art MbPA++ (d’Autume et al., 2019) which combines experience rehearsal with

task-specific finetuning.

Implementation Details We utilize the pre-trained BERTBASE (Wolf et al., 2019) for initial-

izing the encoder network. BERTBASE has 12 Transformer layers, 12 self-attention heads, and

768 hidden dimensions (110M parameters). Similar to (d’Autume et al., 2019), we use a separate

pre-trained BERTBASE for key network and freeze it to prevent from drifting while training on

a non-stationary data distribution. For text classification, we use encoded representation of the

special beginning-of-document symbol [CLS]as our key. For question answering, we use the

question part of the input to get the encoded representation. For both tasks, we store the input

example as its associated memory value. Further, we use Faiss (Johnson et al., 2019) for efficient

nearest neighbor search in the memory, based upon the key network.

We mainly set hyper-parameters as mentioned in (d’Autume et al., 2019). We use Adam

(Kingma and Ba, 2014) as our optimizer, set dropout (Srivastava et al., 2014) to 0.1 and the

base learning rate to 3e−5. For text classification, we use a training batch of size 32 and set the

maximum total input sequence length after tokenization to 128. For question answering, we use

a training batch of size 8, set the maximum total input sequence length after tokenization to 384

and to deal with longer documents we set document stride to 128. We also set the maximum

question length to 64.

For Online EWC (Schwarz et al., 2018), we set the regularization strength λ = 5000 and

forgetting coefficient γ = 0.95. For all models with memory module (Replay, MbPA++, Meta-

MbPA), we replay 100 examples for every 10, 000 new examples, i.e., ntr = 10, 000 and nre =

100. As mentioned in (d’Autume et al., 2019), for MbPA++, we set the number of neighbors

K = 32, the number of local adaptation steps L = 30 and λl = 0.001. We tune the local

adaptation learning rate α for MbPA++ in our re-implementation (MbPA++ Our Impl.) and

report the improved numbers as well as their reported numbers in Table 7.1, 7.7, and 7.8. For

text classification, we set α = 5e−5 and for question answering we set α = 1e−5.
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Figure 7.1: Proportions of source of neighbours used in local adaptation for each task when
different memory selection rule is used, e.g. 10% of neighbours retrieved for Yelp belong
to Amazon. Numbers in each row sum to 1. Classification figures are at the top while QA at the

bottom (Task ordering i.)

For our framework, Meta-MbPA, unless stated otherwise, we set the number of neighbors

K = 32 and control the memory size through a write rate rM = 1%. We use L = 30 local

adaptation steps and perform local adaptation for whole testing set. That is, we randomly draw

K = 32 examples from the memory and perform a local adaptation step. Through this, the

computational cost is equivalent to MbPA++ but we only need to perform the whole process once

while MbPA++ requires conducting local adaptation independently for each testing example. We

set α = 1e−5 (in Eq. (7.5), (7.6)), β = 10 (in Eq. (7.7)) and λl = 0.001 (in Eq. (7.4)). All of

the experiments are performed using PyTorch (Paszke et al., 2017), which allows for automatic

differentiation through the gradient update as required for optimizing the meta-task loss Eq. (7.5)

and meta-replay loss Eq. (7.6).

7.4.3 Results

We use four different orderings of task sequences as in (d’Autume et al., 2019) and evaluate the

model at the end of all tasks. Following prior work, we report the macro-averaged accuracy for

classification and F1 score for question answering. Table 7.1 provides a summary of our main

results. Notice that results on the right are not comparable due to different setups.
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Uncertainty Forgettable

Model / Task class. QA class. QA

Meta-MbPA 62.7 54.2 61.8 57.5

w/o LA 65.8 55.8 67.9 59.2

MbPA++ 41.2 50.4 50.5 52.1

w/o LA 65.4 56.1 68.4 59.2

Table 7.4: Performance of models using the uncertainty-based memory selection methods
(correspond to Table 7.3). “LA” refers to local adaptation.
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Figure 7.2: Catastrophic Forgetting of the first dataset as training progresses.

We first compare our framework (Meta-MbPA) with all baselines. Even using only 1% of to-

tal training examples as memory, the proposed framework still outperforms existing methods on

both text classification and question answering. Specifically, while regularization-based methods

(A-GEM and Online EWC) perform better than the standard Enc-Dec model, their performance

vary depending on the task ordering and thus are not robust. On the other hand, methods that

involve local adaptation (MbPA++ and ours) perform consistently better for all orderings. In

particular, our framework improves over MbPA++ while using 100 times less memory, demon-

strating the effectiveness of the proposed approach.

We then compare lifelong learning methods to the multitask model MTL, which serves as

an upper bound of achievable performance. As shown in Table 7.1, there is still a non-trivial

gap between MbPA++ and MTL, albeit MbPA++ stores all training examples as memory. Our

framework narrows the gap while using smaller memory.
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Enc-Dec Replay MbPA++ Meta-MbPA

class. 82.1 81.8 78.6 82.1

QA 72.6 72.7 70.7 72.1

Table 7.5: Average performance on the last task across all four task orderings.

7.4.4 Analysis

Memory Capacity. In Table 7.1, MbPA++ uses 100% memory while our framework only uses

1% memory. To test memory efficiency, we present results for models using equivalent memory

resources in Table 7.2. The results demonstrate that the performance of MbPA++ degrades sig-

nificantly as the memory size decreases. Consequently, the performance gap between MbPA++

and Meta-MbPA enlarges when they both use equal amount of stored examples, compared to

results in Table 7.1. It is then natural to ask if using memory alone is sufficient to obtain good

performance. We thus compare with MTL trained on subsampled training data, which is equiva-

lent to only performing local adaptation without training the generic representation. Notice that

this variant of MTL is not an upper bound as it uses less resources. Our method significantly out-

performs it, showing that the meta generic representation in our method is also crucial to achieve

good performance. These results validate that the proposed framework can utilize the memory

module more effectively than existing methods.

We then study the source of improvement of our method. In particular, we show that the

prior method is prone to negative transfer. To see this, we first conduct a case study of memory

selection rule.

Memory Selection Rule. We consider two popular paradigms in active learning (Donmez

et al., 2007), namely the diversity-based method that picks the most representative examples

and the uncertainty-based method that picks the most unsure examples. In particular, we com-

pare four selection criteria belonging to these two categories: random selection, our proposed

diversity-based method in Eq.(7.7), and two uncertainty-based methods (Ramalho and Garnelo,

2019; Toneva et al., 2019). Notice that random selection is considered as a diversity-based

method since it picks examples that represent the true data distribution. As shown in Table

7.3, we observe that the choice of memory selection criteria clearly impacts performance. While

the proposed diversity method slightly outperforms random selection, the two uncertain-based

methods perform worse than the random baseline, consistent with similar findings reported in

d’Autume et al. (2019).
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We seek an explanation for this phenomenon and visualize the heat maps in Figure 7.1 to

show which tasks each testing example’s retrieved neighbours come from during the local adap-

tation phase. Ideally, the model should always use neighbours from the same task and the heat

map should be diagonal. We observe that, compared to diversity-based methods, more examples

from other tasks are used as nearest neighbours when models use uncertainty-based methods.

This is because the selected uncertain examples are usually less representative in the true distri-

bution and could be outliers. Thus, the resulting memory does not have good coverage of the data

distribution and no similar examples exist for certain test examples. Consequently, less related

examples from other tasks are used for the local adaptation, which causes negative transfer. This

is verified in Table 7.4, where models without local adaptation outperform their locally adapted

counterparts. More importantly, Meta-MbPA obtains much smaller performance gaps, indicating

that it is more robust to negative transfer. We further verify this in the following section.

Trade-off between Catastrophic Forgetting and Negative Transfer. We first verify the

models’ robustness to catastrophic forgetting. As shown in Table 7.7 and 7.8, the standard

Enc-Dec model performs poorly on previously trained tasks, indicating the occurrence of catas-

trophic forgetting. While all baselines can alleviate the forgetting to some degree, our frame-

work achieves the best performance on previously learned tasks. We also evaluate the model’s

performance on the first task as it continues to learn more tasks. Figure 7.2 illustrates how each

model retains its previously acquired knowledge as it learns new knowledge. We observe that

our framework is consistently better than the baselines at mitigating forgetting.

In addition, as prior work have shown transferring from diversely related sources can hurt

performance in the target (Ge et al., 2014; Wang and Carbonell, 2018), we study if transferring

from multiple tasks learned in the past can induce negative transfer, which is often overlooked

in existing studies on lifelong learning. Table 7.5 shows the averaged results on the last task in

each task ordering. Surprisingly, compared to the Enc-Dec baseline, MbPA++ actually performs

worse on the last task despite its improved macro-averaged performance (Table 7.1). This sug-

gests that while it is robust to catastrophic forgetting, MbPA++ fails to utilize prior knowledge to

benefit later tasks and thus is prone to negative transfer. Apart from some practical bottlenecks

such as limited model capacity, local adaptation is a critical factor of negative transfer as Replay

outperforms MbPA++ in Table 7.5. Intuitively, this shows that since Replay already performs

well on the last task, further using local adaption can overfit and hurt the performance. On the

other hand, the proposed method is trained to learn a more robust initialization for adaptation

and uses a coarse adaptation that is less prone to negative transfer. Therefore, it outperforms

MbPA++ and closes the gap with Enc-Dec on the last task, consistent with results in Table 7.4.
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rM = 1% rM = 50%

Model / Task class. QA class. QA

Meta-MbPA 77.3 64.9 78.2 66.1

w/o Meta 73.1 58.5 74.0 59.6

w/o MS 76.8 63.8 78.1 66.1

w/o LA 75.9 62.0 75.8 62.1

Table 7.6: Ablation Study on different memory size. “Meta” refers to the proposed meta

optimization in Eq.(7.5) and (7.6).“MS” denotes memory selection based on Eq.(7.7). “LA”

refers to local adaptation.

All of these experiments illustrate that there is a trade-off between catastrophic forgetting and

negative transfer, such that more adaptations are desired for earlier tasks while less is better for

later tasks. While prior studies focus on catastrophic forgetting only, we are the first to show the

importance of balancing the trade-off to avoid both negative effects.

Ablation Study. We report the results of ablation study in Table 8.7 and analyze the effects

of the three components in our framework subject to different memory sizes. First, we observe

that the model without the meta learning optimization performs the worst, which shows the im-

portance of learning a generic representation tailored for local adaptation. More importantly,

Meta-MbPA achieves worse performance without any local adaptation step. This demonstrates

that learning the generic representation alone is not sufficient enough, and that the meta learning

mechanism and local adaptation are complementary, which mimic the complementary human

learning systems in the CLS theory. Finally, while the diversity-based memory selection rule

contributes to the performance gain when we use a small memory module, it becomes less ef-

fective as the memory size increases. This is expected since the memory distribution can well

represent the true data distribution with a larger capacity, and thus it demonstrates that the pro-

posed methods mostly contribute to robustly reducing the memory sizes for better efficiency.

Overall, these results validate the effectiveness of each component and highlight the importance

of complementary lifelong learning systems. To the best of our knowledge, this is the first work

to formulate the slow learning of structured knowledge as meta task and the fast learning from

episodic memory as base task.

Inference Speed. The ordinary local adaptation requires customized gradient updates for

each testing example and thus it is notoriously slow. Using 1 Nvidia Tesla V100 GPU and 128
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GB of RAM, it takes 66.6 hours and 89.3 hours to evaluate on text classification and question

answering, respectively. On the other hand, we use coarse local adaptation in our method which

uses the same updates for all testing examples. Consequently, it takes 2.9 hours and 4.2 hours

for our method to finish the evaluation process, achieving a maximum 22 times speedup. Notice

that in a pure online learning setup, our method will obtain similar inference speed as MbPA++.

In addition, we hypothesize that using a different granularity (e.g. clustering testing examples)

is beneficial for tasks that are more conflicting in nature, as it can balance the trade-off between

overfitting to nearest neighbours of small memory and performing more sample-specific adapta-

tion for each test example. We leave this exploration for future work.

7.5 Summary

In this chapter, we identify three principles underlying different lifelong language learning meth-

ods and show how to unify them in a meta-lifelong framework. Our experiments demonstrate the

effectiveness of the proposed framework and we report new state-of-the-art results while using

100 times less memory space. Our analysis also shows that negative transfer is an overlooked

factor that could cause sub-optimal performance, and we show that alleviating it can significantly

boost efficiency. The method proposed in this chapter reduces the requirement of training exam-

ples in lifelong learning, in the last two chapters of this thesis we explore the limit of transfer

learning through zero-shot learning, where no training data is utilized in the target task.
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Order Dataset Enc-Dec Online A-GEM† Replay MbPA++† MbPA++ MbPA++ Meta-MbPA

EWC (Our Impl.) (rM = 1%) (rM = 1%)

i

1 2.0 29.7 42.5 49.2 45.7 59.2 54.2 62.1

2 4.3 0.1 89.8 50.1 91.6 94.0 91.0 93.7

3 95.8 97.5 96.0 98.7 96.3 98.5 98.5 99.1

4 1.3 18.5 56.8 45.2 54.6 57.7 56.7 60.7

5 74.2 73.2 68.2 74.0 65.6 67.2 66.7 73.8

Average 35.5 43.8 70.7 63.4 70.8 75.3 73.4 77.9

ii

1 62.2 89.9 80.1 98.7 95.8 98.5 98.0 99.0

2 0.0 0.1 50.3 54.6 63.1 69.7 61.7 70.2

3 39.4 40.3 91.3 89.3 92.2 95.0 93.0 92.5

4 61.3 60.0 57.3 61.5 55.7 55.2 55.2 60.1

5 61.2 58.5 50.6 61.1 47.7 54.7 52.7 61.5

Average 44.8 49.8 65.9 73.0 70.9 74.6 72.1 76.7

iii

1 11.4 52.5 41.1 54.8 44.3 59.2 53.7 59.6

2 2.1 14.9 55.0 31.9 62.7 67.7 60.2 70.2

3 12.8 40.3 54.6 52.0 54.4 58.2 60.7 63.8

4 92.5 98.0 93.3 97.4 96.2 98.5 98.0 98.9

5 93.3 91.8 93.6 93.1 93.4 94.5 92.5 94.1

Average 42.4 59.5 67.5 65.8 70.2 75.6 73.0 77.3

iv

1 0.0 31.9 90.8 80.3 91.8 94.0 91.0 93.1

2 8.3 33.3 44.9 59.3 44.9 57.2 54.2 60.8

3 3.6 22.2 60.2 59.6 55.7 59.7 61.2 61.6

4 31.8 73.5 65.4 71.9 65.3 68.7 63.7 73.6

5 99.1 98.9 56.9 99.1 95.8 98.0 98.5 99.1

Average 28.6 52.0 63.6 74.0 70.7 75.5 73.7 77.6

Table 7.7: Dataset specific accuracy for text classification tasks for different dataset orders
and models. † Results obtained from (d’Autume et al., 2019). Where applicable, we use rM =

100% unless denoted otherwise.
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Order Dataset Enc-Dec Online A-GEM† Replay MbPA++† MbPA++ MbPA++ Meta-MbPA

EWC (Our Impl.) (rM = 1%) (rM = 1%)

i

1 40.5 42.9 36.7 44.1 47.2 44.3 42.6 49.9

2 60.1 57.4 51.8 60.7 57.7 62.9 60.0 63.1

3 58.2 53.8 53.4 58.7 58.9 61.2 58.8 61.5

4 85.0 77.7 82.5 85.5 84.3 84.7 86.8 84.7

Average 60.9 58.0 56.1 62.3 62.0 63.3 62.0 64.8

ii

1 66.8 78.8 64.2 73.1 72.6 80.4 81.8 80.4

2 64.2 59.5 62.5 64.2 63.4 65.3 60.7 61.5

3 31.4 28.6 43.4 41.0 50.5 42.0 41.6 52.1

4 66.7 61.9 63.5 66.8 63.0 66.1 64.3 67.0

Average 57.3 57.2 58.4 61.3 62.4 63.5 62.1 65.3

iii

1 41.6 57.2 47.6 58.7 56.0 62.0 59.4 65.7

2 38.8 51.9 47.0 54.2 56.8 53.4 57.3 59.2

3 54.4 63.1 57.4 67.7 78.0 81.8 83.9 80.7

4 53.1 25.5 57.4 52.7 54.9 49.0 46.9 52.1

Average 47.0 49.5 52.4 58.3 61.4 61.6 61.8 64.4

iv

1 58.1 60.5 54.8 59.4 59.0 58.9 60.8 61.3

2 39.8 36.3 38.8 45.0 48.7 43.5 39.2 50.4

3 60.5 60.4 53.4 61.6 58.1 64.2 61.3 63.7

4 85.6 77.3 84.7 85.6 83.6 82.8 85.3 84.5

Average 61.0 58.7 57.9 62.9 62.4 62.4 61.6 65.0

Table 7.8: Dataset specific F1 scores for question answering tasks for different dataset or-
ders and models. † Results obtained from (d’Autume et al., 2019). Where applicable, we use

rM = 100% unless denoted otherwise.
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Dataset Single Model MTL (1%) MTL (10%) MTL (100 %)

Text Classification

AGNews 93.6 83.1 88.7 94.0

Amazon 61.8 38.6 54.2 63.5

DBPedia 99.2 78.1 91.4 99.3

Yahoo 74.9 15.8 65.6 75.3

Yelp 61.9 36.4 52.8 62.6

Average 78.28 50.4 70.5 78.9

Question Answering

QuAC 54.0 20.9 30.9 53.5

SQuAD 87.8 60.5 75.2 88.1

Trivia Web 65.8 49.2 62.2 67.7

Trivia Wikipedia 62.9 45.9 56.5 64.9

Average 67.6 44.1 56.2 68.6

Table 7.9: Single model and Multi-Task Learning (MTL) results for text classification and
question answering tasks. MTL (X%) denotes X% of the training examples are used per

dataset to train MTL models.
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First Dataset Enc-Dec Online Replay MbPA++ Meta-MbPA

Dataset EWC (Our Impl.) (rM = 1%)

Text Classification

AGNews

0 (Initial) 0.2 0.2 0.2 0.2 0.2

1 (AGNews) 94.2 94.1 94.0 93.5 94.3

2 (Yelp) 45.9 78.2 92.4 94.5 94.1

3 (Amazon) 30.2 62.5 87.9 93.0 93.5

4 (Yahoo) 0.0 9.2 74.4 92.0 93.1

5 (DBPedia) 0.0 31.9 80.3 93.0 93.1

Yelp

0 (Initial) 0.2 0.2 0.2 0.2 0.2

1 (Yelp) 62.5 62.0 62.5 57.7 62.5

2 (Yahoo) 4.3 32.3 58.1 56.7 61.0

3 (Amazon) 60.4 61.7 60.1 55.7 61.2

4 (DBPedia) 48.6 61.4 60.3 58.2 61.4

5 (AGNews) 11.4 52.4 54.8 57.7 59.6

Question Answering

QuAC

0 (Initial) 14.1 14.1 14.1 14.1 14.1

1 (QuAC) 51.8 51.8 51.3 50.8 51.8

2 (TrWeb) 28.7 37.8 40.4 41.3 51.6

3 (TrWik) 27.0 35.3 38.8 39.8 50.9

4 (SQuAD) 40.5 42.9 43.7 44.0 49.9

SQuAD

0 (Initial) 7.5 7.5 7.5 7.5 7.5

1 (SQuAD) 87.2 87.2 86.6 88.6 86.8

2 (TrWik) 65.1 79.8 69.6 78.4 85.5

3 (QuAC) 48.5 70.0 54.4 76.2 79.0

4 (TrWeb) 66.8 78.8 69.4 81.5 80.4

Table 7.10: Performance of the first dataset as training progresses for text classification and
question answering tasks over different dataset orders and models. Where applicable, we

use rM = 100% unless denoted otherwise. “0 (Initial)" denotes model before training on any

dataset.
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Chapter 8

Weakly Supervised Multimodal Transfer
Learning

In the previous part of this thesis, we have explored utilizing explicit alignments to enable knowl-

edge transfer across languages. In this chapter, we are interested to investigate a more complex

trasfer learning setting of two less similar domains. Specifically, we study how to mitigate neg-

ative transfer between two different modalities: vision and language. In addition, we also study

whether it is possible to reduce the requirement of human labeled alignment data in the setting of

multimodal learning. In particular, Vision-Language Pretraining (VLP) has achieved impressive

performance on many multimodal downstream tasks with recent progress in joint modeling of

visual and textual representations. However, the requirement for expensive annotations including

clean image captions and regional labels limits the scalability of existing approaches, and com-

plicates the pretraining procedure with the introduction of multiple dataset-specific objectives. In

this chapter, we relax these constraints and present a minimalist pretraining framework, named

Simple Visual Language Model (SimVLM). Unlike prior work, SimVLM reduces the training

complexity by exploiting large-scale weak supervision, and is trained end-to-end with a single

prefix language modeling objective. Without utilizing extra data or task-specific customization,

the resulting model significantly outperforms previous pretraining methods and achieves new

state-of-the-art results on a wide range of discriminative and generative vision-language bench-

marks, including VQA (+3.74% vqa-score), NLVR2 (+1.17% accuracy), SNLI-VE (+1.37% ac-

curacy) and image captioning tasks (+10.1% average CIDEr score). Furthermore, we demon-

strate that SimVLM acquires strong generalization and transfer ability, enabling zero-shot be-

havior including open-ended visual question answering and cross-modality transfer. These re-

sults show it is possible to train a modality-agnostic language model that not only requires less
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alignment data but also enables zero-shot transfer in downstream tasks.

8.1 Introduction

Self-supervised textual representation learning (Brown et al., 2020; Devlin et al., 2018; Liu et al.,

2019; Radford et al., 2018, 2019; Raffel et al., 2019; Yang et al., 2019) based on Transformers

(Vaswani et al., 2017) has pushed the state of the art on a wide range of natural language process-

ing (NLP) tasks (Rajpurkar et al., 2016; Sarlin et al., 2020; Wang et al., 2018). One successful

approach is to first pretrain the model (e.g. BERT) on large-scale unlabled text corpora using

masked language modeling (MLM) objective (Devlin et al., 2018), followed by finetuning on

downstream tasks. While this pretraining-finetuning paradigm has been widely adopted, recent

work on autoregressive language models (LM) (Brown et al., 2020; Radford et al., 2019) such

as GPT-3 has shown strong performance without finetuning by utilizing few-shot prompts (Liu

et al., 2021), suggesting the text guided zero-shot generalization is a promising alternative.

Motivated by the success of textual representation pretraining, various efforts have been made

to build the multi-modal (visual and textual) counterpart. A line of work (Chen et al., 2020; Li

et al., 2019, 2020; Lu et al., 2019; Su et al., 2020; Tan and Bansal, 2019; Zhang et al., 2021)

has explored vision-language pretraining (VLP) that learns a joint representation of both modal-

ities to be finetuned on vision-language (VL) benchmarks, such as visual question answering

(VQA) (Goyal et al., 2017). In order to capture the alignment between images and text, previous

methods have extensively exploited two types of human-labeled datasets from multiple sources,

which typically consist of the following steps. Firstly, object detection datasets are used to train

a supervised object detector (OD) which allows further extracting region-of-interest (ROI) fea-

tures from images. Next, datasets with aligned image-text pairs are used for MLM pretraining of

a fusion model that usually takes as input the concatenation of the extracted ROI features and the

paired text. In addition, due to the limited scale of human annotated data, various task-specific

auxiliary losses have been introduced in order to improve performance. These design choices

complicate the pretraining protocol of VLP, creating a bottleneck for further quality improve-

ment. What is more, such pretraining-finetuning based approaches usually lack the zero-shot

capability, just like their language counterparts. In comparison, another line of work (Jia et al.,

2021; Radford et al., 2021; Ramesh et al., 2021) utilizes weakly labeled/aligned data crawled

from the web to perform pretraining, achieving good performance and certain zero-shot learning

capability on image classification and image-text retrieval. Nonetheless, these methods mainly

focus on specific tasks of consideration and thus may not serve as a generic pretraining-finetuning
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representation for VL benchmarks.

In light of these disadvantages of the existing techniques, we are interested in building a VLP

model that: (1) can be seamlessly plugged into the pretraining-finetuning paradigm and achieve

competitive performance on standard VL benchmarks; (2) does not require a complicated pre-

training protocol as in previous methods; and (3) has the potential towards text guided zero-shot

generalization in cross-modal settings. To this end, we propose SimVLM, standing for Simple

Visual Language Model, which significantly simplifies VLP by solely exploiting language mod-

eling objectives on weakly aligned image-text pairs (Jia et al., 2021). In a nutshell, SimVLM

consists of the following components:

• Objective. It is trained end-to-end from scratch with a single objective of Prefix Language

Modeling (Raffel et al., 2019), which can not only naturally perform text generation as

GPT-3, but also process contextual information in a bidirectional manner as BERT does.

• Architecture. The framework employs ViT/CoAtNet (Dai et al., 2021; Dosovitskiy et al.,

2021) and directly takes raw images as inputs. These models can also fit the large-scale

data and are readily compatible with the PrefixLM objective.

• Data. These setups relieve the requirement for object detection and allow the model to

utilize the large-scale weakly labeled dataset, which has better potential towards zero-shot

generalization.

Not only is SimVLM simpler, requiring neither object detection pretraining nor auxiliary

losses, but it also obtains better performance than previous work. Empirically, SimVLM con-

sistently outperforms existing VLP models and achieves new state-of-the-art results on 6 VL

benchmarks without additional data nor task-specific customization. Besides, it acquires stronger

generalization in visual-language understanding that empowers zero-shot image captioning and

open-ended VQA. In particular, SimVLM learns unified multimodal representation that enables

zero-shot cross-modality transfer, where the model is finetuned on text-only data and directly

evaluated on image-and-text test examples without further training. This chapter indicates that

it is possible to attain strong vision-language understanding by a simple pretraining framework

with weak supervision only, and builds a step towards text guided zero-shot VL generalization.

Notice that our proposed framework is not the PrefixLM objective alone, but a recipe that com-

bines objective, architecture and data together to obtain strong cross-modality generalization.
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Figure 8.1: Generated examples of SimVLM of various applications: (a) zero-shot image cap-

tioning (b) zero-shot cross-modality transfer on German image captioning (c) generative VQA

(d) zero-shot visual text completion (e) zero-shot open-ended VQA.
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8.2 Related Work

Recent years have seen a rapid progress made in vision-language pretraining (Han et al., 2021;

Khan et al., 2021; Uppal et al., 2020). While a variety of approaches have been proposed, a large

portion of them require object detection for image region feature regression or tagging as part of

the pre-training objectives, for example LXMERT (Tan and Bansal, 2019), VLBERT (Su et al.,

2020), VisualBERT (Li et al., 2019), UNITER (Chen et al., 2020), Villa (Gan et al., 2020), Oscar

(Li et al., 2020), ERNIE-ViL (Yu et al., 2021), UNIMO (Li et al., 2021), VinVL (Zhang et al.,

2021), VIVO (Hu et al., 2021) VL-T5 (Cho et al., 2021) etc. These methods rely on a strong

object detection model like Fast(er) R-CNN (Ren et al., 2015), which is often trained on human

annotated data sets like Visual Genome (Krishna et al., 2016). Using such labeled training data

as a prerequisite increases the cost of building the training pipeline, and makes the approach less

scalable. Some recent efforts have also explored VLP without object detection module (Huang

et al., 2021; Kim et al., 2021; Xu et al., 2021), but they only use clean pretraining data with small

scales and thus their zero-shot capability is limited.

On the other hand, multiple cross-modality loss functions have been proposed as part of the

training objectives, for example image-text matching (Lu et al., 2019; Tan and Bansal, 2019; Xu

et al., 2021), masked region classification/feature regression (Chen et al., 2020; Tan and Bansal,

2019), object attribute prediction (Xu et al., 2021), contrastive loss (Li et al., 2021, 2020), word-

region alignment (Chen et al., 2020) word-patch alignment (Kim et al., 2021). They are often

mixed with other objectives including image caption generation and masked language modeling

to form compound pre-training losses. This creates the challenge of balancing among different

losses and datasets, and thus complicates the optimization procedure.

Our work by contrast, follows a minimalist approach that takes raw image inputs and makes

use of only the language modeling loss, without resorting to auxiliary models like faster R-CNN

for image region detection. Motivated by recent works (Jia et al., 2021; Radford et al., 2021;

Ramesh et al., 2021) that illustrate zero-shot learning in certain image-text tasks, we train our

model using large-scale weakly labeled data only. As we will detail in follow-up sections, such a

simple setup is sufficiently effective and reaches state-of-the-art results on multiple downstream

tasks.
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8.3 Proposed Framework

8.3.1 Background

The bidirectional Masked Language Modeling (MLM) has been one of the most popular self-

supervised training objectives for textual representation learning. As demonstrated by BERT

(Devlin et al., 2018), it is based on the idea of denoising autoencoder such that the model is

trained to recover the corrupted tokens in a document. Specifically, given a text sequence x,

a subset of tokens xm are randomly sampled and a corrupted sequence x\m is constructed by

replacing tokens in xm with a special [MASK] token. The training objective is to reconstruct xm
from the context x\m by minimizing the negative log-likelihood:

LMLM(θ) = −Ex∼D
[
logPθ(xm|x\m)

]
, (8.1)

where θ is the trainable parameters of the model and D is the pretraining data. This approach

learns contextualized representations that can be further finetuned for downstream tasks. The

MLM-style pretraining has been widely adopted in previous VLP models, whereby the input

is an image-text pair and the model needs to predict masked tokens by leveraging image ROI

features.

Alternatively, the unidirectional Language Modeling (LM) trains the model to directly max-

imize the likelihood of the sequence x under the forward autoregressive factorization:

LLM(θ) = −Ex∼D [logPθ(x)] = −Ex∼D

[
T∑
t=1

logPθ(xt|x<t)

]
. (8.2)

Compared with MLM, the LM pretraining has also been shown to be highly effective for multiple

NLP tasks (Radford et al., 2018). More importantly, it facilitates the model with strong gener-

ation capability that enables text induced zero-shot generalization without finetuning (Brown

et al., 2020). While MLM has become the de facto approach in VLP models reviewed above, the

generative LM has been understudied.

8.3.2 Proposed Objective: Prefix Language Modeling

Motivated by the zero-shot capability introduced by pre-training with LM loss, we propose to

pretrain vision-language representation using the Prefix Language Modeling (PrefixLM). Pre-

fixLM differs from the standard LM such that it enables bi-directional attention on the prefix
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Figure 8.2: Illustration of the SimVLM model. This shows an example of training with PrefixLM

of an image-text pair. For text-only corpora, it is straightforward to remove the image patches

and utilize textual tokens only.

sequence (e.g. x<Tp in Eq. (8.3)), and only conducts autoregressive factorization on the remain-

ing tokens (e.g. x≥Tp in Eq. (8.3)). During pretraining, a prefix sequence of tokens of (a randomly

selected) length Tp is truncated from input sequence and the training objective becomes:

LPrefixLM(θ) = −Ex∼D
[
logPθ(x≥Tp |x<Tp)

]
= −Ex∼D

 T∑
t=Tp

Pθ(xt|x[Tp,t], x<Tp)

 . (8.3)

Intuitively, images can be considered as prefix for their textual descriptions as they often appear

before text in a web document. Therefore, for a given image-text pair, we prepend image feature

sequence of length Ti to the text sequence, and enforce the model to sample a prefix of length

Tp ≥ Ti to calculate LM loss on text data only (an example is shown in Figure 8.2). Compared to

prior MLM style VLP methods, our PrefixLM model under the sequence-to-sequence framework

not only enjoys the bidirectional contextualized representation as in MLM, but also can perform

text generation similar to LM.
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8.3.3 Architecture

We adopt Transformer as the backbone of our model due to its success for both language and

vision tasks (Devlin et al., 2018; Dosovitskiy et al., 2021). Differently from standard LM, Pre-

fixLM enables bidirectional attention within the prefix sequence, and thus it is applicable for

both decoder-only and encoder-decoder sequence-to-sequence language models. In our prelimi-

nary experiments, we found that the inductive bias introduced by encoder-decoder model which

decouples encoding from generation is conducive to the improvement of downstream task.

An overview of our model architecture is depicted in Figure 8.2. For the visual modality,

inspired by ViT (Dosovitskiy et al., 2021) and CoAtNet (Dai et al., 2021), our model receives the

raw image x ∈ RH×W×C and maps it into flattened 1D sequence of patches xp ∈ RTi×D as input

for the transformer, where D is the fixed hidden size of the transformer layers and Ti = HW
P 2 is

the length of the image tokens for a given patch size P . Following (Dai et al., 2021), we use a

convolution (Conv) stage consist of the first three blocks of ResNet (He et al., 2016) to extract

contextualized patches, which we find advantageous over the naive linear projection (equivalent

to 1×1 Conv layer) used in ViT, consistent with the observation from (Xiao et al., 2021). For the

textual modality, we follow the standard practice to tokenize the input sentence into sub-word

tokens (Kudo and Richardson, 2018), and the embeddings are learned for a fixed vocabulary.

To retain positional information, we add two trainable 1D positional embeddings for image and

text inputs separately, and we additionally add 2D relative attention for the image patches within

transformer layers. Notice that we do not add extra modality type embeddings for which we

found no improvement in our experiment. We study the effects of various components of the

model in Section 8.4.4.

8.3.4 Datasets

Since our approach does not rely on an object detection module and only operates with raw image

patch inputs. we pretrain all model parameters from scratch using large-scale noisy image-text

data, which has better potential for zero-shot generalization. Specifically, we use the image and

alt-text pairs introduced in (Jia et al., 2021), which are crawled from the web with minimal post-

processing. On the other hand, our formulation of PrefixLM is modality-agnostic and thus we

can additionally include text-only corpora to compensate for noisy text supervision in the alt-text

data. As shown later in our experiments, this unified PrefixLM formulation reduces the modality

discrepancy and improves the model quality.
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Compared to prior VLP methods consisting of two pretraining stages and multiple auxiliary

objectives, our model only requires one-pass pretraining using a single language modeling loss

in an end-to-end manner, hence the name Simple Visual Language Model (SimVLM).

8.4 Experiments

We conduct systematic experiments on a diversified set of visual-linguistic benchmarks, includ-

ing visual question answering, image captioning, visual reasoning, visual entailment, and mul-

timodal translation. We not only examine our model as a general-purpose VL representation

learning in the pretraining-finetuning paradigm, but also study its zero-shot generalization to-

wards open-ended VL understanding.

8.4.1 Setup

Pretraining

Our models are implemented with the Lingvo framework (Shen et al., 2019). We follow the setup

in ViT (Dosovitskiy et al., 2021) to explore 3 variants of SimVLM, namely “Base”, “Large”, and

“Huge”. For the Transorformer, each variant follows the same setting as its corresponding ViT

variant. For the Conv stage, we use the first three blocks (excluding the Conv stem) of ResNet-

101 and ResNet-152 (He et al., 2016) for our Base and Large models respectively, and a larger

variant of ResNet-152 with more channels for Huge. During pretraining, we utilize the 224×224

resolution with a fixed patch size of 16×16, resulting in a patch sequence of length 14×14 as

visual tokens. For the textual input, we use a vocabulary size of 32,000 and a max sequence

length of 256 in both the encoder and decoder. We also share parameters between the embedding

and the decoder softmax output layer (Press and Wolf, 2016).

We pretrain on large-scale web datasets for both image-text and text-only inputs. For joint

vision and language data, we exploit the training set of ALIGN (Jia et al., 2021), which contains

about 1.8B noisy image-text pairs. Notice that we do not use any extra data preprocessing or

filtering, except simple random resized cropping. For the text-only copora, we use the Colossal

Clean Crawled Corpus (C4) dataset presented in (Raffel et al., 2019) and followed their prepro-

cessing steps. The dataset contains about 800GB of web crawled documents.

All model are pretrained for about 1M steps from scratch. We optimize with the AdamW

optimizer (Loshchilov and Hutter, 2017) with β1 = 0.9, β2 = 0.999 and weight decay of 0.01.
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We warm up the learning rate for the first 2% of updates to a peak value of 5×10−4, and then lin-

early decay it afterwards. We mix the two pretraining datasets within each batch, which contains

4,096 image-text pairs and 512 text-only documents, sharded across 512 TPU v3 chips (Jouppi

et al., 2017).

Finetuning

After pretraining, our model is finetuned on 5 types of downstream tasks with minimal overhead:

Visual question answering: This task requires the model to answer questions about input

images, and has been the most widely used VL benchmark. Following prior work, we use the

VQA v2 (Goyal et al., 2017) and formulate the task as a classification problem over 3,129 most

frequent answers in the training set. The raw image and the corresponding question are used as

inputs to the encoder and the decoder respectively, and a task-specific linear classifier is trained

to predict answer based on activation corresponding to the last question token from the decoder.

We use a resolution of 480×480 for the image and all positional parameters are adapted using

linear interpolation.

Visual entailment: The SNLI-VE (Xie et al., 2019a) dataset is adapted from SNLI (Bowman

et al., 2015), which is originally designed to predict the relation between a premise sentence and

a hypothesis sentence as either entailment, neutral or contradiction, a task known as natural

language inference (NLI). For the VL variant, the premise is based on the content of an image

rather than textual descriptions. We finetune SimVLM similarly to VQA, such that the image

and the sentence are fed to encoder and decoder separately, and the classifier is trained to predict

the three relations.

Visual reasoning: The NLVR2 (Suhr et al., 2018) dataset tests the model’s ability of jointly

reasoning over the language and multiple images by asking whether a textual description is true

based on a pair of two images. Following (Zhang et al., 2021), we create two input pairs, each

consisting of one image and the textual description, and generate output embeddings for both

using the same setup above. The two embeddings are then concatenated for final prediction.

Image captioning: The captioning task requires a model to generate natural language de-

scriptions of input images. We consider two datasets CoCo (Chen et al., 2015) and NoCaps

(Agrawal et al., 2019), both finetuned using the CoCo training data. For SimVLM, it is straight-

forward to first encode the image in the encoder and then generate captions using the decoder.

Note that in contrast to prior work that apply task-specific tricks such as CIDEr optimization

(Rennie et al., 2017), our model is trained with naive cross-entropy loss only.
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VQA NLVR2 SNLI-VE CoCo Caption NoCaps Multi30k

test-dev test-std dev test-P dev test B@4 M C S C S En-De

LXMERT 72.42 72.54 74.90 74.50 - - - - - - - - -

VL-T5 - 70.30 74.6 73.6 - - - - 116.5 - - - 45.5

UNITER 73.82 74.02 79.12 79.98 79.39 79.38 - - - - - - -

OSCAR 73.61 73.82 79.12 80.37 - - 41.7 30.6 140.0 24.5 80.9 11.3 -

Villa 74.69 74.87 79.76 81.47 80.18 80.02 - - - - - - -

SOHO 73.25 73.47 76.37 77.32 85.00 84.95 - - - - - - -

UNIMO 75.06 75.27 - - 81.11 80.63 39.6 - 127.7 - - - -

VinVL 76.56 76.60 82.67 83.98 - - 41.0 31.1 140.9 25.2 92.5 13.1 -

SimVLMbase 77.87 78.14 81.72 81.77 84.20 84.15 39.0 32.9 134.8 24.0 94.8 13.1 46.6

SimVLMlarge 79.32 79.56 84.13 84.84 85.68 85.62 40.3 33.4 142.6 24.7 108.5 14.2 47.5

SimVLMhuge 80.03 80.34 84.53 85.15 86.21 86.32 40.6 33.7 143.3 25.4 110.3 14.5 47.6

Table 8.1: Single model results for vision-language pretraining methods on popular VL banch-

marks. We report vqa-score for VQA, accuracy for NLVR2 and SNLI-VE, BLEU@4 for

Multi30k and various metrics for image captioning (B@4: BLEU@4, M: METEOR, C: CIDEr,

S: SPICE).

Multimodal translation: The goal of multimodal translation is to translate image descrip-

tions in source language to target language, for which image inputs can be taken advantage of

as grounding signal. We train and evaluate on the Multi30k (Elliott et al., 2016) dataset. We

utilize the PrefixLM described in previous sections such that the source sentence, together with

the image inputs, are fed to the encoder, which will be translated to the target language by the

decoder.

8.4.2 Comparison with existing approaches

To examine the quality of vision-language pretraining, we first compare SimVLM on the popular

multi-modal tasks described in Sec. 8.4.1 with state-of-the-art (SOTA) VLP methods including

LXMERT (Tan and Bansal, 2019), VL-T5 (Cho et al., 2021), UNITER (Chen et al., 2020),

OSCAR (Li et al., 2020), Villa (Gan et al., 2020), SOHO (Huang et al., 2021), UNIMO (Li et al.,

2021), and VinVL (Zhang et al., 2021).

As can be seen in Table 8.1, SimVLM outperforms all existing models and achieves new

SOTA results on all tasks considered, often by a significant margin. This demonstrates our gen-

erative pretraining approach is very effective and that simple framework with weak supervision
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is sufficient to learn high-quality multi-modal representations.

For the discriminative tasks, the SimVLMbase already outperforms all prior methods while

using less capacity, and the SimVLMhuge obtains almost 4 points absolute score improvement

compared to the previous SOTA (VinVL), pushing the single model performance above 80% on

VQA for the first time. In addition, SimVLM also consistently outperforms prior methods on

NLVR2 and SNLI-VE, illustrating its capability of processing more complex visual-linguistic

reasoning. For the generation tasks including image captioning and image translation, SimVLM

also shows large improvements using naive finetuning techniques. Our model outperforms on 3

out of 4 metrics on the public “Karpathy” 5k test split of CoCo captioning as well as the NoCaps

benchmark than prior methods trained with more complex reinforcement learning approach of

CIDEr optimization (Rennie et al., 2017). Finally, SimVLM is also effective for image translation

of Multi30k from English to German. These experiments demonstrate that our model can be

seamlessly plugged into the pretraining-finetuning paradigm with superior performance, utilizing

minimalist pretraining and finetuning procedures.

8.4.3 Zero-Shot Generalization

A crucial benefit of generative modeling and scaling with weak supervision is the potential of

zero-shot generalization. Models (Brown et al., 2020; Jia et al., 2021; Radford et al., 2021)

have been shown capable of performing few-shot or zero-shot transfer from pretrained models to

downstream datasets, even across language boundaries (Lample and Conneau, 2019). In this sec-

tion, we examine the generalization of SimVLM and showcase three applications less explored

in prior VLP work.

Zero-shot Image Captioning

The pretraining procedure of SimVLM can be interpreted as a noisy image captioning objec-

tive on real-world web corpus. Thus, it is natural to ask how well this caption ability gener-

alizes to other datasets in a zero-shot manner. To this end, we take the pretrained SimVLM

model and directly decode on image captioning benchmarks without further finetuning on their

clean human-labeled data. We follow the same hyperparameter settings of image resolution and

beam search in the fully supervised setup. Besides, we also found that using a prefix prompt

“A picture of” improves the quality of decoded captions, similar to the finding in (Radford

et al., 2021).

As shown in Table 8.2, the zero-shot performance of SimVLM is competitive with fully
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Pre. Sup.
CoCo Caption NoCaps

B@4 M C S In Near Out Overall

BUTDa†

4

36.3 27.7 120.1 21.4 - - - -

AoANetb† 39.5 29.3 129.3 23.2 - - - -

M2 Transformerc† 39.1 29.2 131.2 22.6 81.2 - 69.4 75.0

SimVLMbase

4

27.1 26.8 96.3 20.1 83.2 84.1 82.5 83.5

SimVLMlarge 29.3 27.5 101.4 21.5 97.6 96.5 96.3 96.6

SimVLMhuge 29.7 27.8 102.3 22.1 101.2 100.4 102.3 101.4

OSCAR†

4 4

41.7 30.6 140.0 24.5 85.4 84.0 80.3 83.4

VinVL† 41.0 31.1 140.9 25.2 103.7 95.6 83.8 94.3

SimVLMhuge 40.6 33.7 143.3 25.4 113.7 110.9 115.2 112.2

Table 8.2: Image captioning results on CoCo Karpath-test split and NoCaps validation split (zero-

shot and finetuned). “Pre.” indicates the model is pretrained and “Sup.” means the model is fine-

tuned on task-specific supervision. For NoCaps, {In, Near, Out} refer to in-domain, near-domain

and out-of-domain respectively. † indicates Cider optimization. Model references: aAnderson

et al. (2018) bHuang et al. (2019b) cCornia et al. (2020).

supervised baselines on CoCo, and it also demonstrates strong generalization on the concept-

rich NoCaps benchmark by achieving better scores than pretrained models.

Figure 8.1 (a) illustrates sample captions generated by our model. SimVLM is able to not

only capture real-world concepts but also provide a detailed description of the visual input. For

example, the decoded samples are able to explain complex scenes with multiple objects (e.g.

“people”, “table with drinks”, “dark restaurant”). Besides, the model also shows understanding

of fine-grained abstraction such as specific car brand and model (e.g. “Aston Martin”, “Van-

tage”). SimVLM even performs robustly on challenging images that could be tricky for human,

such as abstract or dark pictures. These all illustrate that our model learns a wide range of

real-world concepts that generalize well in a zero-shot manner.

Zero-shot cross-modality Transfer

Existing pretraining methods have been shown to be successful in transferring knowledge across

heterogeneous data spaces. For example, multilingual language models (Devlin et al., 2018;
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Lample and Conneau, 2019) enable zero-shot cross-lingual transfer such that the model is only

finetuned using training data from a source language (typically English) and evaluated on the

target language without further training. Inspired by this setup, we explore a novel zero-shot

cross-modality transfer paradigm of utilizing VLP models, and evaluate how well our model

generalizes across modalities. Since text training data are usually cheaper to obtain compared to

visual data, we finetune SimVLM on text-only downstream data and then directly evaluate the

zero-shot transfer on joint VL tasks.

Specifically, We utilize SNLI-VE and Multi30k to examine the zero-shot transfer perfor-

mance. For SNLI-VE, we finetune on three text-only NLI datasets such that the premise sentence

is used as the encoder’s input while the hypothesis is fed to the decoder, and a similar classifier

head is trained on the embedding of the last token in the decoder. At inference, the finetuned

model is evaluated by taking the premise image as the encoder input and the corresponding hy-

pothesis sentence to the decoder. As shown in Table 8.3, SimVLM performs competitively with

fully supervised baselines including UNITER under the zero-shot setting. As a sanity check,

we also mask out the image feature and predict using the hypothesis only (denoted as “Image

Masked” in Table8.3, which is the average number given by all three versions of SimVLM).

This results in performance close to random guess therefore demonstrating the effectiveness of

SimVLM’s cross-modality transfer capability.

In addition, SimVLM is also capable of domain adaption by transferring from the MNLI

dataset to SNLI-VE, whereby data comes not only from a different modality but also another

domain. We also find it possible to transfer across different languages and modalities using

SimVLM. Specifically, we utilize the German image captioning task from WMT 2016 of Multi30k

for evaluation, where our model is finetuned on English-German text-only translation data fol-

lowed by decoding with image-only input in the encoder. Table 8.3 shows that SimVLM is

capable of transferring knowledge across modalities and languages in generative tasks, achiev-

ing comparable performance to supervised baselines (decoded examples shown in Figure 8.1

(b)). These results suggest zero-shot cross-modality transfer emerges with the scaling of weakly

labeled data.

Open-ended VQA

On the VQA benchmark, the best performing models to date formulate the problem as a dis-

criminative task of multi-label classification over a predefined 3,129 answer candidates, often

consisting of short factual terms. In real-world applications, however, it is hard to define a closed
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SNLI-VE Multi30k

SNLI-VE (T) SNLI MNLI Image Masked B@4 M

Fully Supervised Baseline

EVE-Image 71.56 / 71.16 - -

UNITER 78.59 / 78.28 - -

SOHO 85.00 / 84.95 - -

LIUMa - 23.8 35.1

GroundedTransa - 15.8 31.2

Zero-Shot Cross-Modality Transfer

SimVLMbase 71.35 / 71.02 72.65 / 72.24 64.37 / 63.98

34.31 / 34.62

15.0 24.8

SimVLMlarge 72.85 / 72.44 73.62 / 73.23 66.97 / 66.31 17.7 30.1

SimVLMhuge 73.56 / 73.08 74.24 / 73.86 67.45 / 66.97 18.2 32.6

Table 8.3: Zero-shot cross-modality transfer results on SNLI-VE and Multi30k. For SNLI-VE,

the zero-shot model is finetuned on three source datasets: text-only SNLI-VE (Xie et al., 2019a),

SNLI (Bowman et al., 2015), and MNLI (Williams et al., 2017). Model reference: a(Specia et al.,

2016).

set of candidate answers that covering all possible scenarios, making the true open-ended VQA a

challenging setup. Generative models such as SimVLM provide an alternative solution towards

this challenge by generating free-form textual answers without being constrained to predefined

answers. To this end, we finetune SimVLM using the PrefixLM loss described above where we

treat the concatenation of the image and the question as the prefix, and train the model to generate

answers.

We then compare the generative approach with classification methods in Table 8.4. Firstly,

we follow Cho et al. (2021) and evaluate model performance on questions with rare answers

in the Karpathy-test split. Here, out-of-domain questions are defined as those with best-scoring

answer not included in the 3,129 candidates. Results show that SimVLM outperforms both dis-

criminative and generative baselines on all splits. More importantly, the generative SimVLM

significantly improves on the out-of-domain split by over 17 points, demonstrating its strong

generalization. However, this setup mainly focuses on rare answers and it remains unclear how

well the model generalizes to common unseen answers. We therefore proceed to investigate a

more challenging setup where we randomly select 2,085 (about two-thirds of 3,129) in-domain
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Dev
Karpathy-test Partial Train

In-domain Out-domain Overall In-domain Out-domain Overall

Discriminative

UNITER - 74.4 10.0 70.5 - - -

VL-T5 - 70.2 7.1 66.4 - - -

VL-BART - 69.4 7.0 65.7 - - -

SimVLMbase 73.8 79.0 16.7 75.3 78.4 10.3 70.5

SimVLMlarge 76.0 80.4 17.3 76.7 79.5 11.0 71.8

SimVLMhuge 76.5 81.0 17.5 77.2 80.2 11.1 72.2

Generative

VL-T5 - 71.4 13.1 67.9 - - -

VL-BART - 72.1 13.2 68.6 - - -

SimVLMbase 73.2 78.3 25.8 75.2 77.1 27.1 71.3

SimVLMlarge 75.2 79.5 29.6 76.5 78.7 28.4 72.5

SimVLMhuge 75.5 79.9 30.3 77.0 79.1 28.8 73.0

Table 8.4: Comparison of discriminative and generative VQA methods. “Dev” refers to standard

vqa-score on the VQA validation split. “Karpathy-test” is the setup used in (Cho et al., 2021) for

evaluation on the Karpath split with rare answers. “Partial Train” refers to train the model only

on partial training data which contain subset of all candidate answers.

answers and partition both train and validation sets into two splits based on whether their best-

scoring answers are included in the selected set or not. We then only finetune SimVLM on the

in-domain split of the train set and evaluate on the entire validation set. The “Partial Train”

column in Table 8.4 shows that the generative SimVLM is also competent in this setup by scor-

ing reasonably well on over 1,000 unseen answers. Overall, we found the generative SimVLM

performs competitively with its discriminative counterpart in the standard setup, and works gen-

erally better in the out-of-domain case.

Note that we use the exact matching between generated answers and human labels for score

calculation in the above experiment, however it is possible that the model generates appropriate

answers in different formats or synonyms. Therefore, in addition to the quantitative study above,

we show qualitative generation results in Figure 8.1 (c). It can be observed that SimVLM is able

to generate answers not included in the 3,129 candidate set (e.g. “surgeon” and “wood carving”),
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CoLA SST-2 RTE MRPC QQP MNLI QNLI WNLI

BERT 54.6 92.5 62.5 81.9/87.6 90.6/87.4 84.2 91.0 48.8

VisualBERT 38.6 89.4 56.6 71.9/82.1 89.4/86.0 81.6 87.0 53.1

UNITER 37.4 89.7 55.6 69.3/80.3 89.2/85.7 80.9 86.0 55.4

VL-BERT 38.7 89.8 55.7 70.6/81.8 89.0/85.4 81.2 86.3 53.1

VilBERT 36.1 90.4 53.7 69.0/79.4 88.6/85.0 79.9 83.8 55.4

LXMERT 39.0 90.2 57.2 69.8/80.4 75.3/75.3 80.4 84.2 46.0

SimVLMbase 46.7 90.9 63.9 75.2/84.4 90.4/87.2 83.4 88.6 58.1

Table 8.5: Text-only task performance on the GLUE benchmark (Dev set). Results for BERT and

other VLP methods are obtained from (Iki and Aizawa, 2021). The overall best result is bolded
while underline signifies the best VLP model.

demonstrating that SimVLM can transfer knowledge from the pretraining corpus to VQA. It is

thus natural to ask whether SimVLM can perform zero-shot VQA without finetuning at all. In our

experiments, we found that SimVLM is able to “answer” by completing prompting sentences, as

shown in Figure 8.1 (d). Nonetheless, we also observed that the model falls short in generating

meaningful answers to the real questions. We hypothesize that this is due to the low quality of the

pretraining data in which most textual descriptions are short and noisy. To verify our assumption,

we continue the pretraining process on the cleaner WIT dataset (Srinivasan et al., 2021) for 50k

steps. Examples in Figure 8.1 (e) show that open-ended VQA ability emerges in SimVLM such

that it can generate related responses after finetuning on the knowledge-rich wikipedia dataset.

Our experiments show promising signs towards zero-shot open-ended VQA and illustrate the

potential of generative modeling as future research direction.

8.4.4 Analysis

Single-Modality Tasks

Since SimVLM performs well on joint vision-language benchmarks, it is natural to ask how well

the learned representations perform on tasks of single modality. We hope to gain deeper insights

into the model behavior by examining its performance on these benchmarks, but it is not our

intention to achieve state-of-the-art on single-modality tasks.
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Method Acc@1

SimCLRv2 79.8

DINO 80.1

CLIP 85.4

ALIGN 85.5
SimVLMbase 80.6

SimVLMlarge 82.3

SimVLMhuge 83.6

Table 8.6: Linear evaluation on ImageNet classification, compared to state-of-the-art representa-

tion learning methods.

In Table 8.5, we compare SimVLM with existing VLP models on the GLUE benchmark

(Wang et al., 2018), where we mainly follow the text processing procedure in (Raffel et al.,

2019) and train our model to classify the fully formatted input without token type embeddings.

SimVLM performs better than existing VLP methods and competitively with BERT, indicating

that it has good language understanding ability. Additionally, we also compute the top-1 accuracy

on ImageNet following the linear evaluation protocol in Table 8.6. Note that our model is not

pretrained with a discriminative task such as the contrastive loss, hence we use an average pooling

of encoder outputs as image features. Results verify that our model has also learned high-quality

image representation. In summary, these experiments show that SimVLM is able to capture

modality-specific information effectively, laying a solid foundation for stronger visual-linguistic

understanding with weak supervision.

Ablation study

To study the contributions from each model component, we conduct ablation study on SimVLMsmall

models with an embedding dimension of 512 and 8 layers, with different setups. We make com-

parisons on VQA and zero-shot image captioning tasks in Table 8.7. First, we compare encoder-

decoder models with decoder-only models of comparable model size. We find that although

decoder-only model performs competitively on generative tasks, it performs significantly worse

on discriminative tasks such as VQA. This suggest the inductive bias of separating bidirectional

encoding from unidirectional decoding is beneficial for joint VL representation learning. Next,

we study the effectiveness of pretraining objectives by changing the training loss for the text-only
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Method VQA Zero-Shot Caption

No Pretraining 49.70 -

Decoder-only 65.23 18.0 / 67.9

w/ LM 64.48 17.7 / 63.4

SimVLMsmall 67.43 18.2 / 68.3

w/o Image2Text 49.23 -

w/o Text2Text 65.25 15.4 / 64.2

w/o conv stage 63.11 17.2 / 62.6

w/ span corruption 66.23 17.4 / 66.2

w/ 2 conv blks 65.57 17.6 / 65.3

w/ 4 conv blks 66.55 17.9 / 67.8

Table 8.7: Ablation study on VQA and image captioning. We compare SimVLM with its

decoder-only counterpart and random initialization. “w/ LM” and “w/ span corruption” denote

replacing the proposed PrefixLM loss with a different pretraining objective. “Image2Text” and

“Text2Text” refer to the noisy image-text data and the text-only data used for pretraining. Fi-

nally, we also experiment with various convolution stage (“conv stage”) architecture using either

the first 2 blocks (“2 conv blks”) or the first 4 blocks (“4 conv blks”) of ResNet.

data. Results show that the PrefixLM objective outperforms both span corruption (Raffel et al.,

2019) and naive LM, illustrating the importance of using a unified objective formulation for both

image-text and text-only data. Moreover, we ablate the contribution of the two types of datasets

by comparing models trained using either of them or neither. While weakly supervised image-

text data are required for bridging the gap between visual and textual representations, text-only

corpora also improves the model quality, especially on generative tasks. This is probably because

textual signals are extremely noisy in the former and thus the model relies on the text-only data

to learn better language understanding. Finally, we study the effect of the convolution stage and

find it critical for VL performance. Following (Dai et al., 2021), we experiment with using either

the first 2/3/4 ResNet Conv blocks, and empirically observe that the 3 conv block setup works

best. This indicates that image and text have different levels of representation granularity and

thus utilizing contextualized patches is beneficial.
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8.5 Summary

In this chapter, we present a simple yet effective framework of vision-language pretraining. Un-

like prior works using object proposal systems and auxiliary losses, our model processes whole

image as patches and is trained end-to-end with a single prefix language modeling objective. The

proposed model mitigates negative transfer between image and text such that it outperforms prior

methods on within-modality tasks. More importantly, on various vision-language benchmarks,

the proposed approach not only obtains state-of-the-art performance, but also exhibits intrigu-

ing zero-shot behaviors in visual-and-textual understanding. However, we notice that models

compared in this chapter are pretrained on different datasets with various scales. Since some

datasets are not publicly available due to data sensitivity, it is hard to conduct fair comparison to

well examine the algorithmic improvements of these methods, including ours. Similar to many

prior work in this domain, our proposed method is a combination of training objective, model

architecture and pretraining dataset, rather than algorithmic design alone. Nonetheless, as shown

in our ablation studies, different algorithmic design choices can have significant impacts on the

model quality, and thus we call for more careful and fair comparison in this aspect for future

work. This shows that it is possible to reduce the requirement of human labeled alignment data

to enable knowledge transfer across modality boundaries. At the same time, this chapter also

builds a step towards zero-shot learning in VLP. In the final chapter, we further push our study

of utilizing less human supervision to the extreme, and investigate the setting where no human

label is used at all.
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Chapter 9

Zero-Label Language Learning

In the previous chapter, we show that it is possible to mitigate data discrepancy across modalities

with proper data/model scaling and obtain improved sample efficiency. In this final chapter of

the thesis, we further scale the pretrained textual language model and find that scaling deep

models can alleviate negative transfer in natural language tasks such that the model is capable

of generalizing to a wide range of NLP tasks without finetuning. Specifically, we show that

it is possible to achieve zero-label learning in NLP, whereby no human-annotated data is used

anywhere during training and models are trained purely on synthetic data. At the core of our

framework is a novel approach for better leveraging the powerful pretrained language models.

Specifically, inspired by the recent success of few-shot inference on GPT-3 (Brown et al., 2020),

we present a training data creation procedure named Unsupervised Data Generation (UDG),

which leverages few-shot prompts to synthesize high-quality training data without real human

annotations. Our method enables zero-label learning as we train task-specific models solely

on the synthetic data, yet we achieve better or comparable results from strong baseline models

trained on human-labeled data. Furthermore, when mixed with labeled data, our approach serves

as a highly effective data augmentation procedure, achieving new state-of-the-art results on the

SuperGLUE benchmark1. These results show giant language models can obtain some degree of

universal language understanding capability, such that it can enable highly efficient knowledge

transfer to downstream tasks.

1Notably, our method is also the first to surpass human performance as of Dec 20, 2020.
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Model Setting SuperGLUE Avg.

Human 89.8

Previous SOTA
Supervised

89.3

T5+UDG 90.4

GPT3 Few-Shot 71.8

UDG Unsupervised 78.1

Table 9.1: SuperGLUE summary.

9.1 Introduction

It is well-known that deep learning models are data-hungry. In natural language processing,

language model pre-training has become a successful transfer learning approach to effectively

reduce the requirement for task-specific labeled data (Brown et al., 2020; Devlin et al., 2018;

Liu et al., 2019; Radford et al., 2019; Raffel et al., 2019; Yang et al., 2019). Via training on

unsupervised large-scale text corpus, bi-directional language models such as BERT and XLNet

are able to learn contextualized text representations that can then be fine-tuned on downstream

tasks with small training data sizes, which have pushed the state of the art on a variety of natural

language understanding benchmarks.

More recently, gigantic language models (GLM) such as GPT3 (Brown et al., 2020) have

been shown to be effective few-shot learners. As unsupervised training corpus and model size

scaling up, the model is able to generate answers for an unseen NLP task with few-shot inference,

based on a manually crafted input prompt consist of a task description and a few examples.

Despite no fine-tuning is involved, the language model performs competitively against fine-tuned

baselines on a wide range of tasks, whose success suggests a new paradigm of transfer learning

in NLP. Yet the gaps between few-shot inference and state-of-the-art fine-tuned methods are still

large on many tasks (for example 17.5 below prior state-of-the-art on SuperGLUE as shown

in Table 9.1), urging for exploration of applications of giant language models beyond few-shot

inference.

Inspired by the few-shot capability of GPT3, we shift our focus towards utilizing GLMs for

example creation instead of direct inference, and find that language models are also excellent

few-shot generators. Similar to the few-shot inference paradigm, we query the model with a

prompt with a few examples and a description of the desired label, and the model generates

examples aligned with the label while resembling the given samples. Interestingly, we find no
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Figure 9.1: Illustration of the framework.

supervision is required for high-quality data creation and thus we only need to use unlabeled

examples in our prompts. The dataset created by the model can then used to fine-tune any off-

the-shelf model. This approach can therefore be treated as a zero-label learning procedure, in

which no human label is required throughout the whole process. It differs from the unsupervised

learning procedure in that the downstream models still need to be trained with synthetic data,

however the training example creation requires no human labor.

Following this procedure, we are able to establish a system trained using unsupervised train-

ing data only, and thus we refer to it as Unsupervised Data Generation (UDG). Experiments

show that our unsupervised system performs competitively with strong supervised baselines and

achieves new state-of-the-art few-shot learning results on text classification and the SuperGLUE

language understanding benchmarks. The synthesized data can further be used for data aug-

mentation purpose. When combined with existing labeled data we are able to achieve the first

super-human SuperGLUE scores. These results suggest that few-shot training data creation is a

promising alternative to few-shot inference with powerful language models.

9.2 Related Work

Data augmentation has traditionally been a popular technique for NLP model quality improve-

ment, especially in low-resource regimes (Wei and Zou, 2019; Yu et al., 2018) While traditionally

simple heuristics like token-level modification has been applied to diversify training samples,

more recently generative data augmentation has gained popularity due to the progress made in
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language modeling (Anaby-Tavor et al., 2019; Juuti et al., 2020; Kumar et al., 2021; Lee et al.,

2021; Papanikolaou and Pierleoni, 2020). However, they often require labeled examples to fine-

tune generative models and heavy postprocessing for data cleaning. On the other hand, our

method generates data in a fully unsupervised manner without finetuning the language model,

showcasing a new zero-label learning paradigm.

Perhaps most related to our work is (Schick and Schütze, 2021), in which they also used a

large language model (GPT2-XL) to generate training samples, conditioned on task descriptions.

However the instruction template they devised is quite restrictive (generating sentence pairs with

similar or dissimilar meanings) , only allowing the model to perform semantic similarity tasks.

Our proposal by contrast, is much more flexible and capable of generating meaningful examples

for a wide range of tasks, following a unified prompting format.

Our approach is also closely related to knowledge retrieval from large language models.

These models are known to be good at memorizing facts from training data and capable of

performing as open knowledge bases (Carlini et al., 2021; Petroni et al., 2019; Roberts et al.,

2020; Wang et al., 2020a). The high quality of training examples created by our approach is

to a large part guaranteed by the model’s strong knowledge retrieval ability, which reduces the

chance of erratic hallucinations irrelevant to the provided labels.

9.3 Method

9.3.1 Background: Few-shot Inference

Given a set of labeled data L = {(xi, yi)}ni=1 for a specific downstream task, the most common

approach in recent years has been fine-tuning that updates the weights of a pre-trained model

according to L (Devlin et al., 2018; Raffel et al., 2019; Yang et al., 2019). While obtaining

state-of-the-art performance on a wide range of tasks, fine-tuning requires extra update steps and

non-trivial amounts of labeled data in the target task. On the other hand, few-shot inference is a

more resource-efficient paradigm exhibited in the latest gigantic language models such as GPT3

(Brown et al., 2020; Radford et al., 2019). The idea is to utilize the language model to infer

the correct label based on the task description and a few sample input-label pairs. In particular,

the input to the model M is a handcrafted ordered prompt consisted of a task description T , a

small set of K examples Lfew = {(xi, yi)}Ki=1 ⊆ L, and the query example xq, and the model is
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expected to infer the correct label yq as the most probable next text sequence to the input prompt:

yq = argmax
y

PM(y|[T,Lfew, xq]). (9.1)

Since taking the argmax is intractable, yq is usually obtained through greedy decoding or beam

search. Using much less task-specific data and no gradient update, few-shot inference can obtain

performance comparable to fine-tuning methods (e.g. GPT3 performs similarly to fine-tuned

BERT on SuperGLUE in Table 9.5). In its extreme format, giant language models can also

perform one-shot (K=1) or even zero-shot (K=0) inference.

9.3.2 Unsupervised Data Generation

Despite these interesting findings, few-shot inference using giant language models still under-

performs state-of-the-art fine-tuned models on many tasks. In Table 9.5, for instance, T5 largely

outperforms GPT3 (89.3 vs 71.8) despite being much smaller in model sizes (11B vs 175B).

One potential limitation is that a language model is never explicitly trained to directly conduct

inference. Instead, it is trained as a text generator on unsupervised web corpus where inputs

(X) and labels (Y ) happen to coexist. Consequently, the few-shot inference method finds the

proper prompt that ‘forces’ the model to generate next text sequence Xnext which happens to be

the label Y. However, this could be suboptimal since the labels often emerge prior to the inputs

in real-world web documents. For example, in sentiment classification of IMDb movie reviews

(Maas et al., 2011), the actual review contexts appear after their corresponding rating scores.

Therefore, few-shot inference can force the language model to generate on text distributions that

are inconsistent with its training data.

To this end, we propose to utilize language models to perform few-shot generation. Instead

of generating and predicting the label Y, we let the model to generate the input X instead, de-

coupling generation from prediction. We aim to formulate the input prompts that are more likely

to naturally exist in the training corpus. Specifically, the model is queried to generate xg corre-

sponding to a pseudo label ŷg with a prompt consisted of a small set of K unlabeled examples

U = {xi}Ki=1 and a description of the desired label:

xg ∼ PM(x|[T,U ,Des(ŷg)]), (9.2)

where Des(·) is a task-specific transformation function that maps a label class to natural language

descriptions, as illustrated in Figure 9.1. Different from few-shot inference, our method only

requires unsupervised few-shot examples, a zero-label learning setting. In addition, we use top-k
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IMDb Yelp-2 Yelp-5 Amazon-2 Amazon-5 DBpedia Avg.

XLNet
Supervised

96.80 98.63 72.95 97.89 68.33 99.40 89.00

BERTLARGE 95.49 98.11 70.68 97.37 65.83 99.36 87.81

UDA
Few-Shot

95.80 97.95 67.92 96.50 62.88 98.91 86.66

Few-shot Inf. 90.38 88.79 48.75 92.63 44.21 82.46 74.54

UDG
Unsupervised

95.95 98.22 69.05 97.02 64.54 96.47 86.88

+ NLA 96.29 98.38 69.31 97.24 64.88 99.21 87.55

Table 9.2: Comparison of methods on text classification datasets (Accuracy). Results for

XLNet are obtained from (Yang et al., 2019) while results for BERTLARGE and UDA are from

(Xie et al., 2019b). The best result for semi-supervised/few-shot setup is bolded while underline

signifies the overall best.

sampling instead of search-based decoding to sample text from the language model. This allows

us to generate a synthetic labeled dataset Lsyn = {(xig, ŷig)}ns
i=1 with controllable size ns. We then

train task-specific models utilizing this synthetic dataset, either as standalone training data or

additional auxiliary data. Unlike existing synthetic data generation systems, our method requires

no fine-tuning step of the generative model and uses unsupervised data only, and therefore we

refer to it as Unsupervised Data Generation to emphasize its resource efficiency. We also hope to

emphasize that it is not our intention to leverage the language model to perform generative tasks,

but just to take advantage of it to synthesize “labeled” examples for downstream model training.

9.4 Experiments

9.4.1 Unsupervised Text Classification

To examine the effectiveness of the proposed method as well as analyze its properties, we first

apply the proposed UDG method on standard text classification tasks.

Experimental Setups. We use six popular text classification benchmark datasets (Maas et al.,

2011; Zhang et al., 2015), including IMDb, Yelp-2, Yelp-5, Amazon-2 and Amazon-5 sentiment

classification and DBPedia topic classification. We mainly follow the experimental settings in

Xie et al. (2019b) and use the corresponding unlabeled data for each task. We apply similar

preprocessing steps to clean noisy web texts and truncate the input to 512 subword tokens. For

each prompt, we sample K = 32 unlabeled examples from the unlabeled data and fit as many
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None 0.9→0.8 0.9→0.7 0.9→0.6 0.9→0.5

95.95 96.03 96.08 96.17 96.29

Table 9.3: Comparison of different annealing thresholds on IMBd classification. We observe

performance improves as we filter more aggresively.

examples as allowed by the length of the language model’s context window. This process is

then repeated nc = ns

# Class times for each label class, where we set nc = 10K for sentiment

classification tasks and 1000 for topic classification. We then utilize the language model to

generate one example for each prompt, resulting in a synthetic labeled dataset of size ns. We use

an in-house language model, which is a variant of Meena (Adiwardana et al., 2020) trained with

larger data. We exploit top-k sampling with K=40 and temperature=1.0, and only apply basic

post-processing to filter generated examples that are too short/long.

Once we obtain the generated synthetic dataset Lsyn, it can be utilized as labeled training data

for any task-specific training framework. Here, we choose the state-of-the-art semi-supervised

learning framework Unsupervised Data Augmentation (UDA) (Xie et al., 2019b) as the back-

bone. We use BERTLarge as our base model and follow the training protocol as described in the

UDA paper to tune our hyper-parameters. In our experiment, we find some generated examples

are noisy adn thus we additionally implement a Noisy Label Annealing (NLA) technique to fil-

ter these examples during the training process. Noisiness is a common issue for synthetic data

generation. To mitigate this issue, prior work utilize extensive filtering methods to select clean

generated examples. While one key benefit of our method being high-quality synthetic data with

minimal filtering, we do find some regularization during finetuning to be helpful for better per-

formance, especially on tasks sensitive to noises. In particular, we obverse that the generated

examples of the language model may be misaligned with the desired label class. Thus, we intro-

duce a new training technique called Noisy Label Annealing (NLA), which gradually filter out

noisy training signals as training progresses. Intuitively, we remove a specific training example

if our model disagrees with its label with high confidence. Mathematically, at training step t, a

given example (xig, ŷ
i
g) is considered noisy and removed, if (1) the model’s predicted probability

P (y|xig) is higher than a threshold µt, and (2) the prediction yi = argmaxy P (y|xig) differs from

the synthetic label yi 6= ŷig. We set the initial threshold µ0 to 0.9 and gradually anneal it to 1
K

where K is the number of classes. Intuitively, the model is less accurate at the early stage of

the finetuning process and thus we demand a very high confidence level to filter noises, whereas
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K=0 K=1 K=4 K=32

IMDb Acc. 64.21 91.34 95.86 96.29

Yelp-2 Acc. 67.34 90.27 98.22 98.38

Amz-5 Acc. 47.35 58.79 62.14 64.88

Table 9.4: Ablation of number of examples in each prompt.

we can safely decrease the “bar” as the model gets better trained. We explore different final

annealing values in Table 9.3 and find a more aggressive strategy works often better.

For text classifications, we mainly follow the experimental setups in (Xie et al., 2019b). We

truncate the input to 512 subwords using BERT’s vocabulary, keeping the last tokens. For the

finetuning process, we search the learning rate in {1e-5, 2e-5, 5e-5} and batch size in {32, 64,

128}. We also tune the number of epochs based on the size of generated data, ranging from 5 to

30. As with (Xie et al., 2019b), we also fine-tune the BERT model on in-domain unsupervised

data prior to the final training stage. For UDA hyperparameters, we tune the batch size and

weight for both unsupervised and generated data, as well as different strategies of Training Signal

Annealing (TSA). Notice that TSA is orthogonal to our NLA technique and thus we can apply

them at the same time. Experiments are conducted on 32 v3 TPUs.

Results. We compare models of trained using fully supervised, semi-supervised/few-shot and

unsupervised settings in Table 9.2. We first compare few-shot inference using our giant language

model with fine-tuned methods. Despite requiring no additional training costs, the few-shot in-

ference paradigm performs significantly worse than supervised or even semi-supervised UDA,

which utilizes similar amounts of labeled data. The gap is more evident on multi-way classi-

fication tasks such as Yelp-5 or DBpedia, where the model is required to predict complex la-

bels beyond simple answers such as ‘True/False’. In contrast, the proposed few-shot generation

paradigm obtains strong performance while using less supervision. When combined with NLA,

our UDG framework consistently outperforms UDA and few-shot inference on all six tasks,

achieving new state-of-the-art few-shot learning results. Besides, without using any label, our

method outperforms fully supervised BERTLARGE on IMDb and Yelp-2 and is also competitive

on other tasks. Since both UDA and our method rely on BERTLARGE, we expect using XLNet

may further boost our unsupervised performance, which we choose to leave for future work.

Analysis. We first examine the effect of data noisiness on model performance. As is the case for

other data augmentation methods, few-shot generation using giant language models can produce
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Figure 9.2: Ablation of number of examples generated per label class.

examples that are inaccurate to the desired labels. To reduce the negative impact of these noisy

labels, we utilize a simple NLA technique to filter out examples when the task-specific models

disagree with the synthetic labels with high confidence levels. As shown in Table 9.2, NLA

robustly improves UDG performance on all tasks, especially ones that are sensitive to noise such

as DBpedia.

A crucial difference distinguishing our work from existing data generation methods is that we

directly query the pretrained language model without any fine-tuning nor supervision. To achieve

this, the model needs to not only infer correct knowledge corresponding to the input pseudo label

but also generate text with similar styles of the sample unsupervised examples. Thus, we compare

the results when the language model uses different amounts of in-context examples in Table 9.4.

The model fails to generate high-quality data when no sample is given, indicating the importance

of few-shot generation. On the other hand, including more unsupervised examples does improve

the quality of synthetic dataset which leads to better performance.

Finally, we evaluate the impact of the synthetic data sizes in Figure 9.2. Despite there is

a diminishing return trend, we find the final performance to continuously improve with more

generated data, showing that the language model can generate diverse examples. In addition,

one key benefit of our method is that we can sample as much data as needed with no additional

cost or supervision. This is particularly useful for tasks from low-resource domains with limited

unsupervised data available.
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BoolQ CB COPA MultiRC ReCoRD RTE WiC WSC Avg.

Human 89.0 95.8/98.9 100.0 81.8/51.9 91.7/91.3 93.6 80.0 100.0 89.8

BERT++a

Sup.

79.0 84.8/90.4 73.8 70.0/24.1 72.0/71.3 71.7 69.6 64.4 71.5

RoBERTab 87.1 90.5/95.2 90.6 84.4/52.5 90.6/90.0 88.2 69.9 89.0 84.6

T5c 91.2 93.9/96.8 94.8 88.1/63.3 94.1/93.4 92.5 76.9 93.8 89.3

DeBERTad 90.4 94.9/97.2 96.8 88.2/63.7 94.5/94.1 93.2 76.4 95.9 89.9

T5 + UDG 91.4 95.8/97.6 98.0 88.3/63.0 94.2/93.5 93.0 77.9 96.6 90.4
GPT3e

Few-Shot

76.4 52.0/75.6 92.0 75.4/30.5 91.1/90.2 69.0 49.4 80.1 71.8

iPETf 81.2 79.9/88.8 90.8 74.1/31.7 85.9/85.4 70.8 49.3 88.4 75.4

ADAPETg 80.0 82.3/92.0 85.4 76.2/35.7 86.1/85.5 75.0 53.5 85.6 76.0

UDG Unsup. 81.0 86.2/92.4 80.4 81.1/47.1 82.8/81.8 80.7 67.5 79.5 78.1

Table 9.5: Comparison of single-model methods on SuperGLUE test scores. Results obtained

from the official SuperGLUE leaderboard2. The best result for semi-supervised/few-shot setup

is underlined while bold signifies the overall best. Model references: aDevlin et al. (2018) bLiu

et al. (2019) cRaffel et al. (2019) dDevlin et al. (2018) eBrown et al. (2020) fSchick and Schütze

(2020) gTam et al. (2021)

9.4.2 Unsupervised Language Understanding

To evaluate the proposed framework in a more challenging and comprehensive setting, we extend

it to perform on complex language understanding tasks.

Experimental Setups. We use the SuperGLUE benchmark (Wang et al., 2019a) for general-

purpose language understanding in English, which consists of 8 natural language understanding

tasks. Tasks cover textual entailment (CB and RTE), question answering (BoolQ, MultiRC and

ReCoRD), common sense reasoning (COPA), word sense disambiguation (WiC), and corefer-

ence resolution (WSC). We mainly follow the same generation protocol as described in the pre-

vious sections, with some minor changes in prompt templates and data post-processing steps for

specific tasks (Please see Section 9.5 for list of all prompts and generated examples). As before,

we use K=32 unlabeled examples and generate using the same language model. For each task,

we use all original labeled data as unsupervised examples for training data creation.

For the downstream model, we use T5 (Raffel et al., 2019) for fine-tuning on the created

data. Different from the released T5 checkpoints that are pretrained on multi-task data, we

pretrain our own models on unsupervised Colossal Clean Crawled Corpus (C4) data only and

thus the combined framework remains unsupervised. For fair comparison with existing models,
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we pretrain and then fine-tune a T5-Large model using the created data set. The model is trained

using the T5 framework with a batch size of 2,048 during the pretraining stage, each containing

512 max tokens. Following T5, we use Adafactor optimizer with a learning rate of 1e-3 and the

same learning rate schedule. The task ratio is also incorporated similarly to T5. The model is

trained for 1 million steps on 256 TPU v3 chips, roughly using 10 days. Following Raffel et al.

(2019), we use a fine-tuning batch size of 8 with 512 sequence length. The model is further

finetuned for 200k steps and we utilize the dev scores to pick the best checkpoint for submission

to the test server for final evaluation.

Results. We compare models trained under different settings in Table 9.5. The GPT3 model

(Brown et al., 2020) using the few-shot inference method outperform BERT++ with less super-

vision and no fine-tuning. However, despite containing much more model parameters, it performs

worse than other fine-tuned fully supervised models and few-shot methods. On the other hand,

our unsupervised framework using few-shot generation outperforms all few-shot learning sys-

tems without using any label, and thus it achieves new state-of-the-art results on this benchmark

for methods that exploit little-to-no supervision. In particular, our performance gains largely

come from natural language entailment tasks (CB and RTE) as well as word sense disambigua-

tion, where GPT3 performs similarly to random guessing. This indicates that language models

do contain language knowledge that few-shot inference fails to leverage. On the other hand, our

method is extremely simple to use, requiring no further finetuning for data generation or task-

specifc tricks, as the case for (Schick and Schütze, 2020). This demonstrates the effectiveness

and simplicity of the proposed UDG framework, and also shows that it is possible to obtain com-

petitive performance on the challenging SuperGLUE benchmarks without any human label, a

new paradigm that has broader implication for future research in NLP.

9.4.3 UDG as Data Augmentation

In previous sections we only use the created examples as pseudo supervision to explore the limits

of transfer learning using language models. Nonetheless, the synthetic data can be also treated

as augmented data and combined with existing labeled data.

Experimental Setups. We follow the similar procedure in the previous experiment to gener-

ate synthetic data, as the downstream tasks remain the same. However, since we are working

with the fully supervised learning setting here, we can optionally include human labels in the

input prompts for the language model. For example, instead of ’Sample sentence’, we can use

2https://super.gluebenchmark.com/leaderboard
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’Positive/Negative sentence’ instead. We found including actual labels to be helpful in our ex-

periments.

To finetune the model on both original supervised data and the generated data, we directly

mix both dataset and then conduct finetuning once. To achieve this, we first choose to generate

samples much larger than the size of the corresponding ground truth data, and then mix the

two with a specific ratio (e.g. mix every original example with 2 generated examples). We

experiment with different mixing ratios, and choose the best ratio using their dev scores. The

finetuning parameters are kept the same as before for all ratios and tasks.

Results. We fine-tune the public T5-XXL checkpoint using both labeled data and generated data,

in the form of mixture of data. As shown in Table 9.5, our method combines well with existing

labeled data and brings substantial improvements. This is particularly the case for tasks with

small data sizes such as COPA and WSC. Moreover, the combined model outperforms not only

prior methods but also the human baselines for the first time on this important NLP benchmark,

setting a new milestone for natural language understanding with machine learning models.

9.5 Prompts & Generated Examples

Here in this section, we present the prompts we used to generate synthetic data for each task

considered.

9.5.1 Text Classification

IMDb

Input Prompt:

Sample Movie Review: This is the most saccharine romance I ever sat

through. The perfect film for an idle housewife in kerchief, housedress,

and ostrich-trimmed high-heeled mules to watch in the afternoon,

lying on the couch eating bonbons. In fact, bonbons play a prominent

role in the movie. The only reason I was able to watch to the end,

is that I finally was able to gaze at Keanu Reeves’ dreamy face in

almost every scene. In most of his films, he moves too fast to get

a good look. The only rapid action in this show is Giancarlo Giannini

waving his hands with Latin emotionality - more Italian than Mexican,
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really.

Negative Movie Review:

Generated Output:

This remake of the 1966 French film by François Truffaut and Claude

Chabrol is just plain awful. The only positive I can say about the

film is that the casting was just about perfect. Otherwise, the movie

has no redeeming qualities whatsoever. The plot is a mess and is

filled with numerous inconsistencies and continuity flaws throughout.

It is as if the director just made it up on the spot and made it

up bad!

Yelp-2

Input Prompt:

Sample Business Review: I had the most delicious burger ever! I also

ordered the truffle fries, which were amazing! The sauce they served

with the fries was also very good! Definitely come here!! There was

great service and wonderful food!

Positive Business Review:

Generated Output:

We had our wedding at The Grand in October of 2011. The Grand and

their staff are absolutely wonderful to work with. We had over 100

people at the wedding and the room was packed for the reception.

We had a great time and the service, food, and atmosphere were fantastic.

I can not say enough good things about working with and having our

wedding at The Grand. We highly recommend The Grand for your wedding

or special event.

Yelp-5

Input Prompt:

Yelp Review
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Content: I waited FOR 35 MINUTES tonight just for 2 brisket meals

to go. They weren’t even hot when I arrived home and I live less

than 1 minute away. It was still a fine meal, saved by the amazing

cornbread!! But, I have no intention of going back any time soon.

Yelp Review

Rating: 3/5

Content:

Generated Output:

I came here to eat after the ridiculous long lines died down a bit.

I must say, I don’t get the hype about this place and felt a bit

disappointed. I suggested coming here with a group of friends. I

was pretty excited to eat here and found that nothing impressed me

and the price tag could not be justified. Nothing stood out for me

that would make me want to come here again. I think the highlight

of my meal was the ginseng chicken soup. All other items, I’ve had

better at other buffets. I didn’t think their selection was that

impressive.

Amazon-2

Input Prompt:

Sample Product Review

Title: Nice to have

Content: My dog loves this bed. I don’t like to have my dog sleep

on the floor. I know I spoiled my dog. I put a huge pillow on top

of this bed to give her the extra comfort. My dog loves sleeping

on something soft. Now I have a happy dog that sleeps comfortably

every night. Money well spend.

Negative Product Review

Title:

Generated Output:
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Not worth it

Content: I am so very disappointed. I bought this for my granddaughter

for Christmas. I have a few concerns, but first and foremost, the

box that the doll comes in says that it must be assembled by an adult.

The instructions are very confusing. My mom and I put it together

for her Christmas Eve. Then we realized that the doll has a small

hole in the back of the head that is on the end of the seam. I don’t

know where the hole came from, but since she is a collectible, I

can’t return it.

Amazon-5

Input Prompt:

Product Review

Title: Good Book

Content: Good book, easy to read, with a lot of suggestions about

where read the exposure. Also if the book is more than 150 pages,

there are a lot of big photos, everyone with a comment; instead of

this I would have prefereed more photos with comment also if they

would have been smaller. So, I read this book in too little time.

My rate for this book is 3.5.

Product Review

Rating: 3/5

Title:

Generated Output:

An ok game

Content: This game is good, but I wouldn’t buy this game unless you

are a star wars fan. The game has lots of levels and it takes quite

a while to beat. If you don’t know anything about star wars, you

would be lost on the story. There are lots of good things and bad

things about this game.
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DBpedia

Input Prompt:

Wikipedia Article

Title: University of Georgia School of Law

Article: The University of Georgia School of Law (also referred

to as Georgia Law) is a graduate school of the University of Georgia.

Wikipedia Article

Category: Educational Institution

Title:

Generated Output:

Vanung University

Article: Vanung University (VNU) is a private university in Zhongli

City Taoyuan County Taiwan. It is the first private university in

Taiwan to be accredited by AACSB.

9.5.2 SuperGLUE

BoolQ

Input Prompt:

Article: Russian Blue -- Russian Blues are plush short-haired, shimmering

pale blue-gray cats with emerald green eyes. Guard hairs are distinctly

silver-tipped giving the cat a silvery sheen or lustrous appearance.

They have been used on a limited basis to create other breeds such

as the Havana Brown or alter existing breeds such as the Nebelung.

They are being used in Italy as a way to make Oriental Shorthairs

healthier and more robust called RUS4OSH in FIFe.

Sample statement based on the article: do all russian blue cats have

green eyes.

Article: Okinawa Churaumi Aquarium -- The Okinawa Churaumi Aquarium
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(Okinawa Churaumi Suizokukan) is located within the Ocean Expo Park

in Okinawa, Japan. It welcomed its 20 millionth visitor on 30 March

2010 and is a member of the Japanese Association of Zoos and Aquariums

(JAZA). It was the largest aquarium in the world until it was surpassed

by the Georgia Aquarium in 2005. The aquarium has the theme of ‘‘Encounter

the Okinawan Sea’’.

False statement based on the article:

Generated Output:

is okinawa churaumi aquarium the largest aquarium in the world.

CB

Input Prompt:

Input: Jim waited. He waited a long time, and when the young doctor

finally came out, it was almost dark. Jim could nonetheless tell

by his anxious face that something was wrong.

Output: Something was wrong.

Input: She swallowed hard, unsure if she had the nerve to go ahead.

The memory of the pain in Tara’s eyes last night decided her. Did

he really expect her to believe that Tara was only the housekeeper?

Output: Contradicting this,

Generated Output:

Tara was only a temporary housekeeper.

COPA

Input Prompt:

Input: My body cast a shadow over the grass.

Output: The sun was rising.

Input: My computer screen went blank.

Connection: Because

Output:
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Generated Output:

The power went out.

MultiRC

Input Prompt:

Article: On a day it celebrated 50 years of giving free legal advice,

Southern Arizona Legal Aid announced it has received two grants totaling

more than 7 million ...

Question: Who will the Web site benefit?

Answer: Help bridge the "digital divide" that keeps the poor from

using the Internet as a resource

Article: While this process moved along, diplomacy continued its

rounds. Direct pressure on the Taliban had proved unsuccessful ...

Question:

Generated Output:

Which country did President Bill Clinton visit on March 25, 2000?

Correct Answer: Pakistan

ReCoRD

Input Prompt:

Article: The harrowing stories of women and children locked up for

so-called ’moral crimes’ in Afghanistan’s notorious female prison

have been revealed after cameras were allowed inside. Mariam has

been in Badam Bagh prison for three months after she shot a man who

just raped her at gunpoint and then turned the weapon on herself

- but she has yet to been charged. Nuria has eight months left to

serve of her sentence for trying to divorce her husband. She gave

birth in prison to her son and they share a cell together. Scroll

down for video Nuria was jailed for trying to divorce her husband.

Her son is one of 62 children living at Badam Bagh prison.
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Keyword: Badam Bagh prison ### Relevant Fact: The women and children

are jailed in Badam Bagh prison.

Article: China’s space agency today distributed fresh new pictures

of the Moon’s surface from its lunar lander and rover. The Jade Rabbit

rover can be seen trundling across the pockmarked surface of Earth’s

satellite in pictures released today by the Chinese Academy of Sciences.

The successful soft-landing of the Chang’e 3 lander in December made

China the third country to complete a lunar rover mission after the

United States and Russia. Chasing the horizon: The sky over the Moon

appears inky black in this picture showing the Jade Rabbit rover

trundling across the lunar surface taken from the Chang’e 3 lander

and released today by Chinese scientists.

Keyword: China ### Relevant Fact:

Generated Output:

Knock off or not, there’s no denying the ambition of the China’s

Moon mission, which on December 14 achieved the first lunar soft

landing in nearly four decades and aims at a manned mission by 2025.

RTE

Input Prompt:

Input: No Weapons of Mass Destruction Found in Iraq Yet.

Output: Weapons of Mass Destruction Found in Iraq.

Input: CBS newsman Harry Reasoner is returning to his Iowa hometown

to get married Saturday.

Output: In other words,

Generated Output:

Harry Reasoner is getting married.

WiC

Input Prompt:
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Word: meet

Example: The company agrees to meet the cost of any repairs.

Word: skin

Definition 1:

Generated Output:

the outer covering of the body of a vertebrate animal.

Example: The skin of a snake.

WSC

Input Prompt:

Noun: Sam ### Pronoun: he ### Sample Sentence: Sam took French classes

from Adam , because he was eager to speak it fluently.

Noun: Ann ### Pronoun: She ### Sentence where She refers to Ann:

Generated Output:

It seems that Ann has had a run of bad luck. She never wins at cards.

9.6 Summary

In this chapter, we propose a “zero-label” training procedure and show that language models

are also few-shot example creators in that they can be used to generate high-quality synthetic

data in a fully unsupervised manner. Through this, we demonstrate that universal knowledge

transfer across various natural language understanding tasks emerge with the scaling of textual

language models, such that it is possible to obtain strong results without any human annotated

label. This concludes the final part of the thesis, which shows that mitigating data discrepancy

leads to improves sample efficiency in transfer learning.
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Chapter 10

Conclusion

This thesis explores the problem of task conflicts in the form of negative transfer in transferable

machine learning models. We conduct an in-depth analysis on this issue and glean insights on its

causes. Each part is centered around the goal of understanding and mitigating negative transfer.

In the first part, we find negative transfer to be model-dependent while task conflict is the root of

it. The second and third parts then turn to study methods to address the aforementioned problem,

where each chapter is a case study on a specific setup of transfer learning. Overall, we propose

novel methods to address negative transfer and show improvements on both model generalization

and sample efficiency. In the following sections, we summarize our main contributions and future

directions.

10.1 Summary of Contributions

This thesis facilitates transfer learning research on characterizing and mitigating negative trans-

fer, with the goal to improve model performance and efficiency. In the following we summarize

the contributions of this thesis.

Defining and understanding negative transfer. While the term negative transfer has existed

for a long time in the literature, little prior work has carefully studied it. It is crucial to define and

characterize negative transfer in order to further understand its factors and design algorithms to

mitigate it. To this end, we conduct analysis under two popular transfer learning settings (domain

adaptation and multilingual language modeling) and make the following contributions:

• We present the first formal definition of negative transfer that is general and tractable in

practice. This definition further introduces a metric negative transfer gap, that can be used

to measure and observe negative transfer for future research.
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• The negative transfer definition further reveals three key underlying factors of negative

transfer that are verified through empirical observations. Our analysis shows task conflict

is the root to negative transfer.

• We propose the first method that utilizes the discriminator as gate for sample estimation

and we show this can effectively mitigate negative transfer in domain adaptation.

• We conduct the first systematic analysis of negative transfer in multilingual models and

demonstrate gradient conflict and parameter sharing as a key cause of negative transfer.

Our results also illustrate negative transfer can occur to low-resource tasks as well under

certain setups.

• We propose a new formulation of meta-learning shared parameters in multilingual lan-

guage models through a bi-level optimization. The method enables knowledge transfer in

language-specific parameters through second-order gradients, and is able to mitigate inter-

ference among languages, improving both with-in language performance and cross-lingual

transfer.

Addressing task conflict to improve model generalization. Following analysis of negative

transfer, task conflict has been shown the root of it. Hence, we explore utilizing explicit align-

ment methods to mitigate negative transfer in multilingual models, where we made the following

contributions:

• We present the first thorough comparison of two popular paradigms of cross-lingual em-

bedding training methods, joint training and alignment, and glean insights on their pros

and cons.

• We introduce a unified framework that enjoys the benefits of joint training and alignment.

The simple framework obtains state-of-the-art results on the word translation benchmark,

and could also be extended to contextualized embedding models to further boost their

performance.

• We conduct the first study of multilingual optimization process in multilingual machine

translation systems and show that gradient similarities closely resemble language proxim-

ities.

• We develop the first optimization method designed for multilingual training, namely Gra-

dient Vaccine, that encourages better aligned gradient updates adaptively. This method

is scalable and we verify its efficiency in a large-scale machine translation system. It is

also generic for other multi-task learning settings and has potential beyond multilingual
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settings.

• We also investigate using meta learning to learn how to smooth the output space for multi-

lingual machine translation systems. This method shows improvement over joint training

baselines and improves gradient alignments as well.

Achieving efficient transfer learning with less supervision. Transfer learning aims to improve

model performance in low-resource settings, and therefore it is our interest to study how to

improve better sample efficiency. At a high level, we observe that alleviating data discrepancy

and negative transfer enables more efficient transfer such that model requires fewer training

examples to obtain strong performance. In some cases, it can also enable few-shot or even zero-

shot learning. We made the following contributions in this direction:

• We conduct the first study to compare the trade-off between negative transfer and catas-

trophic forgetting in the lifelong learning setup, and further show that their tension limits

the efficiency of existing methods.

• We propose a synergistic meta-lifelong framework that trains finetuning-aware lifelong

learning models. This framework resolves the training-testing discrepancy of existing life-

long learning methods and mitigates negative transfer by jointly optimizing the model for

local adaptation for all tasks. Consequently, it largely improves sample efficiency of life-

long learning by outperforming prior methods using 100 times less training data stored in

memory.

• We develop a novel vision-language pretraining framework named simple visual language

model (SimVLM). The model is significantly simplified compared to prior methods by

utilizing a single pretraining objective and does not utilize any human labeled pretraining

data.

• We show that SimVLM obtains state-of-the-art results on six vision-language benchmarks,

and hence even a simple pretraining method with less supervision can enable effective

knowledge transfer.

• We explore new zero-shot capabilities of vision-language model using SimVLM, including

zero-shot cross-modality transfer and zero-shot open-ended visual question answering.

• We present a novel unsupervised data generation (UDG) method to generate data from

giant language models without human label nor further finetuning. This immediately en-

ables zero-label language learning, where no human label is utilized in the whole training

process. Our method obtains strong zero-shot performance on SuperGLUE, outperforming
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strong few-shot learning baselines such as GPT3 as well as fully supervised BERT model.

• We show that UDG combines well with labeled data, achieving the first super-human per-

formance on SuperGLUE.

Our contributions cover different aspects of machine learning including methodological im-

provements as well as data-driven approaches. At a high level, training a (deep) machine learning

model for prediction can involve three major components: data, underlying model architecture,

and training algorithm. Here, methodological innovations refer to new architecture designs (e.g.

transformer (Vaswani et al., 2017)) and better training objectives (e.g. BERT (Devlin et al.,

2018)), while the source of improvement of data-driven approaches mainly comes from cleaner

and larger datasets (e.g. ALIGN (Jia et al., 2021), T5 (Raffel et al., 2019)).

In this thesis, each part/chapter can focus on tackling one or more aspects of these compo-

nents. In the first part, we study the cause and characteristics of negative transfer conditioned on

fixed model architectures and datasets. Here, through controlled experiments, we demonstrate

that negative transfer is algorithm-specific. Following this analysis, in the second part, we design

new alignment-based algorithms to mitigate negative transfer and improve model quality. These

parts study transferring knowledge to low-resource settings such as low-resource languages and

unsupervised target domains, and therefore focus on methodological innovations. On the other

hand, we investigate data-driven approaches in the last part of this thesis for transfer learning

settings with abundance of data, such as building connections between two modalities (despite

each of them contains plenty of training data) and continuously learning new tasks throughout

the lifetime. Here, our focus switches to how to better utilize large amount of unsupervised

data that are cheap to collect to enable effective transfer to downstream tasks where supervised

data are expensive. Consequently, the contributions of this thesis contain both algorithmic and

data-driven methods.

While we have different focuses in each part of this thesis, the training components men-

tioned above are not independent and are often combined to achieve best results. For instance,

we also investigate language-specific architectures to assist algorithmic improvements in chapter

4 while SimVLM is a framework that contributes to all three aspects of data, pretraining objec-

tive and model architecture. Therefore, algorithm design is important not only for low-resource

transfer learning, but also for data-driven approaches. In light of recent work on the potential

of model/data scaling (Ghorbani et al., 2021; Kaplan et al., 2020), it is crucial to study how to

combine algorithmic improvements with these large-scale models. Some key challenges include

training efficiency and stability: for example, the meta-learning methods explored in this thesis
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require significant computing power and careful hyperparameter tuning, making it hard to adapt

to large-scale training. Designing efficient approximation for these algorithms can be a fruitful

direction for scaling up transfer learning models. On the other hand, it is becoming increas-

ingly challenging to conduct fair comparison among models to demonstrate the superiority of a

specific training aspect such as training objective. This is particularly the case when different re-

search institutes have different levels of computational power. Thus, it is also important to build

public benchmarks with standard and accessible evaluation protocol for the research community

to understand algorithmic innovations in a better way.

10.2 Future Work

This thesis focuses on understanding and addressing negative transfer for better generalization

and sample efficiency. While we have made significant progress, the observations and conclu-

sions made in this thesis are conditioned on specific and often synthetic settings, and therefore

there are many interesting directions and unsolved problems remain to be explored, among which

we list a few key directions below.

Negative transfer in other settings and algorithm components: In this thesis, we have stud-

ied negative transfer in widely-used transfer learning settings such as domain adaptation and

multilingual NLP. Many real-world setups such as heterogeneous multi-task learning and the

pretraining-finetuning paradigm are yet to be explored. It will be interesting to study whether

negative transfer occurs in those settings, and to understand its characteristics. For example,

while the pretraining-finetuning paradigm works well in NLP, it is less effective in the vision do-

main. And thus it is interesting to study whether negative transfer is present in vision pretraining

under certain circumstances, and whether it is possible to mitigate it to facilitate better transfer

to downstream tasks. In addition, throughout the thesis we mainly focus on negative transfer

caused by data discrepancy and conduct analysis conditioned on the specific task settings and al-

gorithms, despite that negative transfer depends on algorithms and problem settings. Therefore,

more thoroughly studying negative transfer induced by other factors should be a fruitful future

direction. As a concrete next step, a potential effort is to understand the algorithm factor of

negative transfer, such as data preprocessing, data sampling, optimizer choices and architecture

designs.

More intelligently mitigating negative transfer: In previous chapters, we have explored several

methods to encourage better alignments among tasks to mitigate data discrepancy and improve

model transferability. However, our methods are built on top of assumptions and human heuris-
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tics (e.g. utilizing training corpus sizes to decide vocabulary sharing and sampling strategies).

While we have empirically verified their effectiveness in our experimental settings, task-specific

adaptation is likely required on challenging real-world problems where new tasks constantly

emerge. Therefore, one important direction for future work is to develop more intelligent and

automatic methods to address negative transfer, such that they can adaptively fit new transfer

environments. Here, we outline a few proposed directions:

• Multilingual Vocabulary Sharing: In Chapter (chapter 5) we have shown representation

alignment to work well and mitigating multilingual data discrepancy. We highlight the

problem of vocabulary over-sharing and under-sharing, but only rely on heuristic to decide

what to share. It is therefore worth exploring how to share multilingual vocabulary auto-

matically. One possibility is to utilize the AutoML approach to develop a search space and

search for optimal sharing strategies.

• Meta-level Objective: We proposed several meta learning based approach in this thesis.

Typically, a meta level objective is defined over a set of validation data. Nonetheless, the

effects of changing meta objectives and validation sets are not clear and require further

investigation. For instance, future work should verify whether it is possible to control the

behavior of meta learning by adapting these meta-level settings, and if so, explore how to

set these objectives automatically and efficiently.

• Gradient Alignment Objective: We have explored gradient alignment methods in this the-

sis and found setting adaptive gradient similarity objective to be useful. However, we

only experimented with a few human-designed methods such as setting objectives based

on language family proximity and utilizing exponential moving average variables. These

methods introduce additional hyper-parameters and are hard to tune. Therefore, we believe

one key missing component of this line of research is to design better alignment objectives

of gradients among tasks to address negative transfer more effectively.

• Fine-grained Control of Gradient Alignment: We propose the method of GradVac in chap-

ter (chapter 6). For gradients of two tasks, the method yields a linear combination to

improve their alignment. A more generic approach would be to learn a mapping function

that map arbitrary input gradients in the gradient space to a single final gradient in the same

space. This should be explored in future work.

Improving sample efficiency through zero-shot/few-shot learning: In the final part of this

thesis, we have explored zero-shot and few-shot learning in both NLP and multimodal settings,

showing new patterns of utilizing pretrained models. In particular, we show that it is possible to
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obtain strong performance without using any human label. However, the performance of zero-

shot learning still does not compete directly with fully supervised methods, and the applicability

of existing methods is also limited. Therefore, it is crucial to continually improve transfer learn-

ing sample efficiency, and we outline a few potential directions below:

• Scope of few-shot learning: In the last two chapters we have explored various types of few-

shot learning in natural language understanding and vision-language understanding tasks,

using both the inference model and generation model paradigms. However, these meth-

ods of few-shot learning may not generalize to other real-world tasks such as answering

scientific questions and generating driving instructions 1. How to enable few-shot transfer

learning to these open-domain tasks is a challenging next step.

• Robustness of few-shot learning: We proposed unsupervised data generation (UDG) using

giant language models in this thesis, where we provide few unlabeled examples in the

prompt to query the model. However, the effect of these samples is not well understood.

In particular, we have observed large variance when changing the template of the prompt as

well as using different sampling strategies for the input examples. Therefore, it is important

to improve the robustness of this few-shot learning paradigm. One potential solution is

meta learning, such that to train an additional component to automatically decide what

template/examples to use for unseen tasks.

• Dedicated pretraining procedure: In this thesis, we have focused on improving the transfer

efficiency by designing algorithms to better utilize pretrained language models. On the

other hand, the zero-shot/few-shot learning capabilities emerge by scaling language models

without dedicated pretraining objectives. It is therefore interesting to study whether it is

possible to design curated pretraining procedure to improve the zero-shot capability of

language models. For example, we can design task template to automatically create pseudo

tasks from unsupervised corpus and combine them with unsupervised training objectives

in pretraining.

• Multimodal few-shot learning: Finally, in the last part we have explored training language

models to bridge the gap between image and text, and the resulting model have shown

certain degree of zero-shot generalization. For future work, one direction is to include ad-

ditional modality options such as acoustic or video representations. More importantly,

another direction is to enable few-shot learning capability similar to GPT3, such that

the model can generate predictions without task-specific finetuning, based on input task

1See more examples at: https://github.com/google/BIG-bench.
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prompts consist of examples in the form of multiple modalities.
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Ivan Vulić and Marie-Francine Moens. Bilingual distributed word representations from

document-aligned comparable data. Journal of Artificial Intelligence Research, 55:953–994,

2016. 2.2.1, 5.5

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bow-

man. Glue: A multi-task benchmark and analysis platform for natural language understanding.

arXiv preprint arXiv:1804.07461, 2018. 8.1, 8.4.4

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Amanpreet Singh, Julian Michael, Felix Hill,

Omer Levy, and Samuel R Bowman. Superglue: A stickier benchmark for general-purpose

language understanding systems. In Proceedings of NeurIPS 2019, 2019a. 1.2, 9.4.2

Chenguang Wang, Xiao Liu, and Dawn Song. Language models are open knowledge graphs,

2020a. 9.2

Xinyi Wang, Yulia Tsvetkov, and Graham Neubig. Balancing training for multilingual neural

machine translation. arXiv preprint arXiv:2004.06748, 2020b. 2.2.1, 4.5, 6.2, 6.5

Zirui Wang and Jaime Carbonell. Towards more reliable transfer learning. In Joint European

Conference on Machine Learning and Knowledge Discovery in Databases, pages 794–810,

2018. 3.4.2, 4.5, 6.5, 7.4.4

185



Zirui Wang, Zihang Dai, Barnabás Póczos, and Jaime Carbonell. Characterizing and avoiding

negative transfer. In Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 11293–11302, 2019b. 4.1, 4.5, 5.5, 6.2, 7.1

Zirui Wang, Zachary C Lipton, and Yulia Tsvetkov. On negative interference in multilingual

models: Findings and a meta-learning treatment. In EMNLP, 2020c. 2.2.1, 6.1, 6.4.2, 6.5

Zirui Wang, Jiateng Xie, Ruochen Xu, Yiming Yang, Graham Neubig, and Jaime Carbonell.

Cross-lingual alignment vs joint training: A comparative study and a simple unified frame-

work. In International Conference on Learning Representations, 2020d. 2.2.1, 4.5, 6.5

Jason W. Wei and Kai Zou. EDA: easy data augmentation techniques for boosting performance

on text classification tasks. In Kentaro Inui, Jing Jiang, Vincent Ng, and Xiaojun Wan, editors,

EMNLP-IJCNLP, 2019. 9.2

Karl Weiss, Taghi M Khoshgoftaar, and DingDing Wang. A survey of transfer learning. Journal

of Big Data, 3(1):9, 2016. 1, 2.1, 2.2.2, 3.1, 3.2, 3.6, 7.2

Adina Williams, Nikita Nangia, and Samuel R Bowman. A broad-coverage challenge corpus for

sentence understanding through inference. arXiv preprint arXiv:1704.05426, 2017. 8.3

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony

Moi, Pierric Cistac, Tim Rault, R’emi Louf, Morgan Funtowicz, and Jamie Brew. Hug-

gingface’s transformers: State-of-the-art natural language processing. ArXiv, abs/1910.03771,

2019. 7.4.2

Shijie Wu and Mark Dredze. Beto, bentz, becas: The surprising cross-lingual effectiveness

of BERT. In Proceedings of the 2019 Conference on Empirical Methods in Natural Lan-

guage Processing and the 9th International Joint Conference on Natural Language Process-

ing (EMNLP-IJCNLP), pages 833–844, Hong Kong, China, November 2019. Association for

Computational Linguistics. 2.2.1, 4.1, 4.5, 5.5, 6.1, 6.5

Shijie Wu, Alexis Conneau, Haoran Li, Luke Zettlemoyer, and Veselin Stoyanov. Emerging

cross-lingual structure in pretrained language models. In Annual Conference of the Association

for Computational Linguistics (ACL), July 2020. 2.2.1, 4.3.1, 4.5, 6.1, 6.5

Min Xiao and Yuhong Guo. Distributed word representation learning for cross-lingual depen-

dency parsing. In Proceedings of the Eighteenth Conference on Computational Natural Lan-

guage Learning, pages 119–129, 2014. 5.5

Tete Xiao, Mannat Singh, Eric Mintun, Trevor Darrell, Piotr Dollár, and Ross Girshick. Early

186



convolutions help transformers see better, 2021. 8.3.3

Jiateng Xie, Zhilin Yang, Graham Neubig, Noah A Smith, and Jaime Carbonell. Neural cross-

lingual named entity recognition with minimal resources. In Proceedings of the 2018 Confer-

ence on Empirical Methods in Natural Language Processing, pages 369–379, 2018. 5.1

Ning Xie, Farley Lai, Derek Doran, and Asim Kadav. Visual entailment: A novel task for fine-

grained image understanding. arXiv preprint arXiv:1901.06706, 2019a. 8.4.1, 8.3

Qizhe Xie, Zihang Dai, Eduard Hovy, Minh-Thang Luong, and Quoc V Le. Unsupervised data

augmentation for consistency training. arXiv preprint arXiv:1904.12848, 2019b. 9.2, 9.4.1,

9.4.1

Chao Xing, Dong Wang, Chao Liu, and Yiye Lin. Normalized word embedding and orthogo-

nal transform for bilingual word translation. In Proceedings of the 2015 Conference of the

North American Chapter of the Association for Computational Linguistics: Human Language

Technologies, pages 1006–1011, Denver, Colorado, May–June 2015. Association for Compu-

tational Linguistics. 2.2.1, 5.1, 5.2.1, 5.5

Haiyang Xu, Ming Yan, Chenliang Li, Bin Bi, Songfang Huang, Wenming Xiao, and Fei Huang.

E2E-VLP: End-to-end vision-language pre-training enhanced by visual learning. In Proceed-

ings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th

International Joint Conference on Natural Language Processing (Volume 1: Long Papers),

pages 503–513, Online, August 2021. Association for Computational Linguistics. 8.2

Ruochen Xu, Yiming Yang, Naoki Otani, and Yuexin Wu. Unsupervised cross-lingual transfer

of word embedding spaces. In Proceedings of the 2018 Conference on Empirical Methods in

Natural Language Processing, pages 2465–2474, 2018. 5.5

Liu Yang, Steve Hanneke, and Jaime Carbonell. A theory of transfer learning with applications

to active learning. Machine learning, 90(2):161–189, 2013. 2.2.1, 3.6

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, and Quoc V

Le. Xlnet: Generalized autoregressive pretraining for language understanding. arXiv preprint

arXiv:1906.08237, 2019. 1, 2.2.1, 4.1, 7.1, 8.1, 9.1, 9.3.1, 9.2

Dani Yogatama, Cyprien de Masson d’Autume, Jerome Connor, Tomas Kocisky, Mike

Chrzanowski, Lingpeng Kong, Angeliki Lazaridou, Wang Ling, Lei Yu, Chris Dyer, et al.

Learning and evaluating general linguistic intelligence. arXiv preprint arXiv:1901.11373,

2019. 2.2.1, 7.1, 7.2

187



Jaehong Yoon, Eunho Yang, Jeongtae Lee, and Sung Ju Hwang. Lifelong learning with dynam-

ically expandable networks. In International Conference on Learning Representations, 2018.

2.2.1, 7.1, 7.2

Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How transferable are features in

deep neural networks? In Advances in neural information processing systems, pages 3320–

3328, 2014. 2.2.1, 3.6

Adams Wei Yu, David Dohan, Minh-Thang Luong, Rui Zhao, Kai Chen, Mohammad Norouzi,

and Quoc V. Le. Qanet: Combining local convolution with global self-attention for reading

comprehension. In ICLR, 2018. 9.2

Fei Yu, Jiji Tang, Weichong Yin, Yu Sun, Hao Tian, Hua Wu, and Haifeng Wang. Ernie-vil:

Knowledge enhanced vision-language representations through scene graphs. In Proceedings

of the AAAI Conference on Artificial Intelligence, volume 35, pages 3208–3216, 2021. 8.2

Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine, Karol Hausman, and Chelsea Finn.

Gradient surgery for multi-task learning. arXiv preprint arXiv:2001.06782, 2020. 4.3.1, 6.1,

6.2, 6.3.1, 6.4.1, 6.5

Yao-Liang Yu and Csaba Szepesvári. Analysis of kernel mean matching under covariate shift.

In Proceedings of the 29th International Conference on Machine Learning, pages 1147–1154,

2012. 3.1, 3.3.2

Amir R Zamir, Alexander Sax, William Shen, Leonidas Guibas, Jitendra Malik, and Silvio

Savarese. Taskonomy: Disentangling task transfer learning. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, pages 3712–3722, 2018. 3.1, 6.5

Friedemann Zenke, Ben Poole, and Surya Ganguli. Continual learning through synaptic intelli-

gence. In Proceedings of the 34th International Conference on Machine Learning-Volume 70,

pages 3987–3995. JMLR. org, 2017. 2.2.1, 7.1, 7.2

Meng Zhang, Yang Liu, Huanbo Luan, and Maosong Sun. Earth mover’s distance minimization

for unsupervised bilingual lexicon induction. In Proceedings of EMNLP 2017, pages 1934–

1945, 2017a. 5.5

Mozhi Zhang, Keyulu Xu, Ken-ichi Kawarabayashi, Stefanie Jegelka, and Jordan Boyd-Graber.

Are girls neko or sh\= ojo? cross-lingual alignment of non-isomorphic embeddings with

iterative normalization. In Proceedings of the 57th Annual Meeting of the Association for

Computational Linguistics, page 3180–3189, 2019. 5.1

188



Pengchuan Zhang, Xiujun Li, Xiaowei Hu, Jianwei Yang, Lei Zhang, Lijuan Wang, Yejin Choi,

and Jianfeng Gao. Vinvl: Revisiting visual representations in vision-language models. In Pro-

ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),

pages 5579–5588, June 2021. 8.1, 8.2, 8.4.1, 8.4.2

Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level convolutional networks for text

classification. In Advances in neural information processing systems, pages 649–657, 2015.

7.4.1, 9.4.1

Yizhe Zhang, Zhe Gan, Kai Fan, Zhi Chen, Ricardo Henao, Dinghan Shen, and Lawrence Carin.

Adversarial feature matching for text generation. In ICML, 2017b. 5.1, 5.5

Yu Zhang and Dit-Yan Yeung. A convex formulation for learning task relationships in multi-task

learning. arXiv preprint arXiv:1203.3536, 2012. 6.5

Chunting Zhou, Xuezhe Ma, Di Wang, and Graham Neubig. Density matching for bilingual

word embedding. In Proceedings of the 2019 Conference of the North American Chapter

of the Association for Computational Linguistics: Human Language Technologies, Volume 1

(Long and Short Papers), pages 1588–1598, 2019. 5.1, 5.4.2

Will Y. Zou, Richard Socher, Daniel Cer, and Christopher D. Manning. Bilingual word em-

beddings for phrase-based machine translation. In Proceedings of the 2013 Conference on

Empirical Methods in Natural Language Processing, pages 1393–1398, Seattle, Washington,

USA, October 2013. Association for Computational Linguistics. 5.1

189


	1 Introduction
	1.1 Thesis Statement
	1.2 Thesis Overview

	2 Background and Literature Review
	2.1 Terminology and Definitions
	2.2 Background

	I Measuring and Characterizing Conflicts in Transfer Learning
	3 Negative Transfer in Domain Adaptation
	3.1 Introduction
	3.2 Rethink Negative Transfer
	3.3 Proposed Method
	3.4 Experiments
	3.5 Negative Transfer Definition
	3.6 Related Work
	3.7 Summary

	4 Negative Interference in Multilingual Unsupervised Representation Learning
	4.1 Introduction
	4.2 Motivation
	4.3 Investigating the Sources of Negative Interference in Multilingual Models
	4.4 Mitigating Negative Interference via Meta Learning
	4.5 Related Work
	4.6 Summary


	II Enhancing Transfer Generalization by Addressing Task Conflicts
	5 Representation Alignment
	5.1 Introduction
	5.2 Background: Cross-lingual Representations
	5.3 Proposed Framework
	5.4 Experiments
	5.5 Related Work
	5.6 Summary

	6 Gradient Alignment
	6.1 Introduction
	6.2 Investigating Multi-task Optimization in Massively Multilingual Models
	6.3 Proposed Method
	6.4 Experiments
	6.5 Related Work
	6.6 Summary


	III Improving Transfer Efficiency with Less Supervision
	7 Efficient Meta-Lifelong Learning
	7.1 Introduction
	7.2 Background: Principles of Lifelong Language Learning
	7.3 Proposed Framework
	7.4 Experiments
	7.5 Summary

	8 Weakly Supervised Multimodal Transfer Learning
	8.1 Introduction
	8.2 Related Work
	8.3 Proposed Framework
	8.4 Experiments
	8.5 Summary

	9 Zero-Label Language Learning
	9.1 Introduction
	9.2 Related Work
	9.3 Method
	9.4 Experiments
	9.5 Prompts & Generated Examples
	9.6 Summary

	10 Conclusion
	10.1 Summary of Contributions
	10.2 Future Work

	Bibliography


