A Probabilistic Framework for Multi-Task Learning

Jian Zhang
August 16, 2006

CMU-LTI-06-006

Language Technologies Institute
School of Computer Science
Carnegie Mellon University

5000 Forbes Ave., Pittsburgh, PA 15213
www.lti.cs.cmu.edu

Thesis Committee:

Yiming Yang, Chair
Jaime Carbonell
Zoubin Ghahramani
Larry Wasserman
Tong Zhang, Yahoo! Research

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy
In Language Technologies

@ 2006, Jian Zhang

A Probabilistic Framework for Multi-Task
Learning

jian.zhang@cs.cmu.edu

Aug 16, 2006

Abstract

An important problem in statistical machine learning is how to effectively
model the predictions of multiple related tasks, which is known as multi-
task learning. Different from single-task learning where tasks are learned
separately, multi-task learning aims to jointly model those tasks. The main
benefit of multi-task learning is that it can more effectively use training
resources from all tasks and achieve better generalization performance when
tasks are related. To be more specific, successfully addressing multi-task
learning can not only allay the data paucity problem given many tasks,
but also generalize to future tasks by transferring knowledge learned from
existing tasks. Multiple tasks naturally exist in many applications, such as
text classification, email anti-spam filtering, image classification, etc.

We present a novel probabilistic framework for multi-task learning where
task relatedness is modeled using a shared structure through latent variables.
Within such a framework, we study a series of important multi-task learning
scenarios and propose suitable models accordingly, and show that the flexi-
bility of the framework is achieved by allowing different assumptions about
latent variables and the shared structure. In particular, we present sparsity
models which are parsimonious and suitable for high-dimensional tasks; we
propose the Iy o[, regularization method which is suitable for joint feature
selection; we propose to use mixture models as the solution of the clusters
of tasks scenario; we also extend our framework to unsupervised learning
and show its connection to existing topic models. Furthermore, model se-
lection techniques for multi-task learning are investigated since they play
important roles in choosing the best joint model and generalizing to future
tasks. Experiments are conducted to support our methods using both simu-
lated datasets and real datasets from text classification, anti-spam filtering,
handwritten letter recognition and collaborative filtering.

Acknowledgments

My first thanks go to my committee memebers, not just for their insightful
comments on my thesis. Yiming Yang brought me into the research field
of information retrieval and machine learning and gave me the freedom to
choose this thesis topic. I worked with Jaime Carbonell right after I came
to CMU and learned a lot from his analytical skills and insightful ways of
looking at problems. Zoubin Ghahramani is a great teacher and collaborator.
I have enjoyed a lot from his Bayesian way of thinking problems and wish
I would work with him for more than just a couple of days every year. My
non-Bayesian statistical thinking is largely influenced by Larry Wasserman
and Tong Zhang. I have benefited a lot from both talking to Larry and
taking his wonderful classes. Tong answered my every emails and his words
greatly improved my understanding of machine learning.

I spent five years (2001-2006) at Carnegie Mellon University. During that
period I received tremendous help from faculties, staffs, students and friends,
who made my life much easier and enjoyable: Tom Ault, Paul Bennett, Jamie
Callan, Yi Chang, Kevyn Collins-Thompson, Lie Gu, Benjamin Han, Chun
Jin, Rong Jin, Brian Junker, Bryan Kisiel, Leonid Kontorovich, Abhimanyu
Lad, Guy Lebanon, Fan Li, Lucian Vlad Lita, Han Liu, Yan Liu, Jie Lu,
Paul Oglivie, Jiazhi Ou, Katharina Probst, Yanjun Qi, Rahda Rao, Kathryn
Roeder, Monica Rogati, Mark Shervish, Luo Si, Adele Weitz, Eric Xing,
Rong Yan, Jun Yang, Shinjae Yoo, Stacey Young, Rong Zhang, Yi Zhang,
Ying Zhang, Jerry Zhu.

Finally, I would like to thank my parents for their early education as well as
support during my time at Carnegie Mellon. Last but not least I want to
thank my wife, for being patient with me many years. Without her love and
support I would not be where I am now, not even close.

i

Notation

SYMBOL

MEANING

italic letters: x,y,z; f,g9,h
bold letters: x,y,z

capital BOLD letters: X,Y,Z

Greeks: 1,0, a,03,0, A
(X,Y) and (x,y)

T E2ER

Bernoulli(u)
Multinomial(n; 61, ...,0F)
Normal(m, V)
Laplace(m, v)

InvGamma(vy, v3)
DP(”) GO)

GP(f,K)

x,y, z : scalars; f,g,h : functions
vectors (column vectors by default)
matrices

model parameters
XTX and xTy

number of tasks

number of data instances

number of features/predictors
number of hidden sources (latent vari-
ables)

Bernoulli distribution with mean g
Multinomial distribution with param-
eter n and proportional parameters
01,...,0F

Gaussian distribution with mean m
and covariance V

Laplace distribution with mean m and
variance v

Inverse Gamma distribution

Dirichlet process with precision v and
base distribution Gy

Gaussian processes with mean func-
tion f(.) and covariance function

K(.,.)

Expectation of random variable x
Variance-covariance matrix of random
variable x

Covariance between random variables

X and Y

iii

Contents

1 Introduction
1.1 Why Multi-Task Learning?
1.2 Roadmap

2 Background and Literature Review
2.1 Backgroundo
2.1.1 Modeling using Linear Regression
2.1.2 Modeling using Logistic Regression
2.1.3 Modeling using Factor Analysis
2.1.4 Modeling using Independent Component Analysis . . .
2.1.5 Some Extensions
2.1.6 Algorithms for Point Estimation
2.1.7 Algorithms for Bayesian Inference.
2.2 Literature Review Lo oL
2.2.1 Basic Concepts oo
2.2.2 Artificial Neural Networks
2.2.3 Shrinkage Methods
2.24 Regularized Learning Methods
2.2.5 Hierarchical Bayesian Models
226 OtherlIssues.

v

e

© oo oo o ot ot W,

CONTENTS

3 Probabilistic Models for MTL

3.1 A Unified Probabilistic Framework with Latent Variables. . .
3.2 MTL Scenarios and Associated Probabilistic Models
3.2.1 Independent Tasks
3.22 Noisy tasks oo
323 Clustersof tasks
3.2.4 Tasks sharing a linear subspace
3.2.5 Tasks with sparse representation
3.2.6 Tasks sharing a single component
3.2.7 Tasks sharing common relevant dimensions
3.2.8 Duplicated tasks
3.29 Evolving tasks o000

3.3 Summary ...

Learning and Inference Algorithms

4.1 Empirical Bayes Approach
4.1.1 M-step
412 E-stepo
4.1.3 Variational Method for Bayesian Logistic Regression
4.1.4 Variational Method for High Dimensional Task

4.2 Point Estimationo 000000

4.3 Summary

Sparsity Models for MTL

5.1 Sparsity Models oo

5.2 Algorithms

5.3 Experiments o
5.3.1 Multi-label Text Classification
5.3.2 Anti-Spam Filtering

5.4 Summary ...

23
23
27
27
27
28
28
29
31
32
32
34
35

37
38
39
42
46
49
ol
02

CONTENTS

6 Joint Feature Selection

6.1
6.2
6.3

6.4

6.5

Introduction
Outline of Feature Selection for STL
Joint Feature Selection for MTL
6.3.1 [olyx Regularization
6.3.2 Relaxation to l; o[, Regularization
6.3.3 Numerical Algorithm
Experiments
6.4.1 Results on Feature Selection
6.4.2 Results on Handwritten Digits Recognition

Summary

7 Mixture Models

7.1

7.2

7.3

Single-Cluster Models
7.1.1 Bayesian Linear Model
7.1.2 Gaussian Process oo
Mixture Models
7.2.1 Mixture of Bayesian Linear Models
7.2.2 Mixture of Gaussian Processes
Experiments
7.3.1 Synthetic Dataset

7.3.2 Preference Prediction

8 Model Selection in MTL

8.1
8.2

8.3
8.4

Introduction
Cross-Validation
8.2.1 Cross-validation for STL
8.2.2 Cross-validation for MTL
Experiments 0o

Summary ...

vi

65
65
66
69
72
72
73
74
74
84
85

86
86
86
88
89
89
93
94
94
97

CONTENTS vii

9 Unsupervised Multi-Task Learning 119
9.1 Extending the Framework from Supervised to Unsupervised . 119
9.2 Multi-Task Learning and Unsupervised Clustering 121
9.3 Unsupervised Learning of Novelty Detection 124

9.3.1 A Probabilistic Model for Online Document Clustering 125
9.3.2 Learning Model Parameters 128
9.3.3 Experiments. L. 131
9.4 Summary 134

10 Summary and Discussions 135

Chapter 1

Introduction

1.1 Why Multi-Task Learning?

An important problem in statistical machine learning is how to general-
ize among multiple related prediction tasks. This problem has been called
“Multi-Task Learning” |Caruana, 1997|, “Learning to Learn” and “Iransfer
Learning” [Thrun and Pratt, 1998], and sometimes “Predictions of Multivari-
ate Responses” |[Breiman and Friedman, 1997| in the machine learning and
statistics literature. Multi-task learning has many potential applications,
and in the following we give several important examples which can be recast
as multi-task learning problems:

o Multi-label Text Classification: Text classification is one fundamental
problem in information retrieval, whose objective is to automatically
classify documents into pre-defined categories. Multi-label text classi-
fication refers to the situation where a document is assigned to a subset
of K possible categories, and many of the existing text collections are
multi-labeled by nature. Most studies in text classification decompose
this problem into K binary classification problems and solve them in-
dependently. However, since it is often the case that categories are
related to each other (in terms of both semantics and statistical cor-
relations), it would be beneficial to treat this problem as a multi-task
learning problem. Furthermore, the existence of multiple taxonomies
also leads to multi-task learning problems where each task is a binary
classification problem with respect to some category in one of the tax-
onomies.

CHAPTER 1. INTRODUCTION 2

o Anti-spam Filtering: Email anti-spam filtering has been an important
research topic as people get more and more disturbing spams in their
daily emails. Typically this problem is treated as a binary classification
problem [Brutlag and Meek, 2000, Zhang, 2002] to distinguish spams
from non-spams. In a more realistic situation, the system will serve
many users for anti-spam filtering. This provides a good opportunity
for multi-task learning, where we could treat the anti-spam filtering
for a particular user as one task and borrow information among users.
Viewing in this way has the advantage that both user-specific and
user-independent preferences are effectively captured in the model.

o Multi-user Prediction Problems: Essentially many prediction problems
involved with multiple users can be treated as multi-task learning prob-
lems, such as adaptive filtering [Roberson and Hull, 2001, Zhang, 2004,
Yang et al., 2005] w.r.t. multiple users, collaborative filtering |Breese
et al., 1998] with auxiliary information about movies, etc. Similar to
the case of anti-spam filtering, prediction functions for each user are
often closely related to each other and thus joint inference can capture
such dependencies and work more effectively with all training resources.

e Predicting Many Stocks: Consider the problem where we would like to
predict the future stock prices of several companies in one industry or
several related industries. Often predictions of individual company’s
stock price are made using models trained with each company’s previ-
ous stock data. However, due to their possible competitive or cooper-
ative relations and cross-industry effects, those prediction tasks could
be very related. Consequently, this problem can be more effectively
solved as a multi-task learning problem.

Multi-task learning simply generalizes single-task learning to a higher level
and as a result, it is able to capture the dependencies among tasks. Com-
pared to single-task learning, multi-task learning has the following benefits:
(1) It can provide better generalization performance especially when the
amount of training data is limited; (2) It can provide meta-level knowledge
(which is not available in single-task learning) which is useful to generalize
to future tasks; (3) It can provide a joint, succinct representation of all task
structures. Multi-task learning is particularly applicable in the following
situations:

e In many existing datasets instances are naturally associated with mul-
tiple responses (e.g., multi-labeled document collections) and thus it is

CHAPTER 1. INTRODUCTION 3

beneficial to use available resource and borrow information from other
related tasks.

e From the data annotation viewpoint it is more convenient to get re-
sponses of multiple related tasks simultaneously if possible (e.g., as-
signing documents or web pages to multiple categories after reading)
as opposed to obtain them in separate steps.

e There are situations (one such example is anti-spam filtering) where
for some of the tasks it is more difficult to get training resource than
others, and multi-task learning can be especially beneficial for those
tasks with limited training data.

Many approaches have been proposed in the machine learning literature on
how to effectively learn multiple tasks, such as [Baxter, 1996, 1997, Breiman
and Friedman, 1997, Caruana, 1997, Minka and Picard, 1997, Baxter, 2000,
Heskes, 2000, Ando and Zhang, 2004, Evgeniou et al., 2005, Teh et al., 2005,
Yu et al., 2005, Zhang et al., 2005]. Generally speaking, existing approaches
share the basic assumption that tasks are related to each other. Based on
how task relatedness is handled we summarize existing methods into several
categories, such as artificial neural networks, hierarchical Bayesian models,
regularization methods, etc. Details can be found in Chapter 2. The reason
why multi-task learning works can be seen from several aspects. Given the
assumption is that the outcomes in multiple tasks are related, it would be
beneficial to borrow information from other tasks as opposed to learning each
task independently (e.g., single-task learning). The simplest example is that,
if task parameters - which index their corresponding prediction functions -
are partly shared, then from a statistical estimation viewpoint we could
obtain a more reliable estimation by using all training resources together
and better generalization performance can be achieved.

This thesis is aimed at developing models for multi-task learning problems.
By presenting a unified probabilistic framework, we gain insights in task
relatedness and can systematically explore important multi-task scenarios,
which are key components in order to successfully address multi-task learn-
ing. The resulting multi-task learning models can provide better generaliza-
tion performance than conventional single-task learning methods when tasks
are related, and efficient algorithms are achievable through (approximate)
inference and opitmization techniques.

CHAPTER 1. INTRODUCTION 4

1.2 Roadmap

In this thesis we present a novel probabilistic framework for multi-task learn-
ing. Unlike previous approaches, our framework is flexible and can support
models for a series of multi-task learning scenarios, and task dependencies are
captured by using a shared structure through latent variables. The flexibil-
ity comes from the statistical assumptions on latent variables and structural
assumptions on the shared components, and the concept of task relatedness
can now be better explained by the underlying statistical assumption. Mo-
tivated from this exploration, we develop suitable models for several task
scenarios that have not been studied before, as well as investigate model
selection techniques. The rest of the thesis is organized as follows:

Chapter 2 first provides a brief introduction to statistical models and al-
gorithms which are the building blocks for the rest of the thesis, and then
reviews the literature on multi-task learning.

Chapter 3 presents the unified probabilistic framework for multi-task learn-
ing, and analyzes a series of important task scenarios with associated models.

Chapter 4 presents learning and inference algorithms for the generic models
supported by the framework.

Chapter 5 presents two types of sparsity models for multi-task learning, and
demonstrates their effectiveness on multi-label text classification and email
anti-spam filtering.

Chapter 6 presents the [ol, regularization for joint feature selection in multi-
task learning. We show that it is a generalization of lasso-style algorithms
under the multi-task learning setting, and our results support the theoretical
claims.

Chapter 7 proposes to use mixture model for the “cluster of tasks” scenario.
We present efficient EM algorithm for the inference, and apply it to the
collaborative filtering problem.

Chapter 8 investigates the model selection problem in multi-task learning
using cross-validation techniques.

Chapter 9 extends our framework to unsupervised multi-task learning. We
show its connection to existing unsupervised topic models, and apply it to
the novelty detection problem.

Chapter 10 summarizes the thesis work.

Chapter 2

Background and Literature
Review

This thesis relates to a broad set of current statistical techniques. To make
sure our terminology is clearly defined, we first give a brief introduction to
the related statistical models, which our proposed framework is based upon,
including regression, classification and dimensionality reduction techniques.
Then we briefly outline some background knowledge on general algorithms
for learning and inference. The second part of this chapter presents a liter-
ature review for multi-task learning research.

2.1 Background

2.1.1 Modeling using Linear Regression

Linear regression is the simplest but probably the most important model for
regression problems. The linear regression model [Wasserman, 2005 assumes
that

yi = 0'x;+e
e; ~ Normal(0,0?) (2.1)
or equivalently
y; ~ Normal(87x;,0?) (2.2)

5

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 6

where x; € RF*! is the i-th input data vector, & € RF*! is the model
parameter vector, ¢ = 1,2,..., N is the data index, and here we assume
that variances of random noises ¢;’s are isotropic. Given a training dataset
D ={(x1,y1),---,(Xn,yn)} , the Maximum Likelihood Estimation (MLE)
of 0 is equivalent to the least square estimation due to the Gaussian noise
assumption:

N
6 = arg min {Z:(yZ - OTxi)z} (2.3)

0 i=1
which has the analytical solution 0 = (XTX)~1XTy by using the succinct
matrix/vector notation X = (x1,...,xy)7 € RY*Fandy = (y1,...,yn)T €

RNXl

Note that the above optimization problem in equation (2.3) may not have a
unique solution if the matrix X7 X is singular. By adding a regularization
term (@) we are guaranteed to get a more stable solution:

N
6 = arg min {Z:(yZ —07x)? +)\Q(O)} (2.4)

0 i=1
where A > 0 is known as the regularization coefficient which trades off be-
tween empirical loss and model complexity. Note that when Q(8) = ||0]3

or [|@]|1 the above model is known as ridge regression or lasso regression
respectively. Ridge regression has a L9 regularization while lasso has a Ly
regularization, and they can both be interpreted as Maximum A Posterior
(MAP) estimators of a Bayesian model by assuming a Gaussian or Laplace
prior over 8 respectively. Finally, it is well understood that L regularization
tends to give a sparse solution where most of the elements of 8 are zero val-
ues; while Ly regularization shrinks all coefficients to zero smoothly |[Hastie
et al., 2001].

2.1.2 Modeling using Logistic Regression

Classification problems need to be handled differently from regression due to
its binary output y as well as the 0/1 or cross entropy loss which is rather dif-
ferent from the squared loss used by default in regression. Logistic regression
can be thought as a discriminative classifier (as opposed to generative clas-
sifiers like Naive Bayes [McCallum and Nigam, 1998|, see also discussions on
those two kinds of classifiers in [Rubinstein and Hastie, 1997, Ng and Jordan,
2002|), and it is often preferred to generative classifiers by following Vapnik’s

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 7

philosophy [Vapnik, 1998, 1999| that “When solving a given problem one

should avoid solving a more general problem as an intermediate step”.

Using probabilistic modeling language, the logistic regression model can be
formulated as

yi o~ Bernoulli(,u(eTXz'))
ut) = / p(z)dz 29

—00

where y; is generated from a Bernoulli distribution with mean u(87x;) and

its value is either 0 or 1, and p(z) is the probability density function (pdf) of

the standard logistic distribution p(z) = %g In this case, equation

(2.5) can be simplified as

yi o~ Bernoulli(,u(eTXz'))
p(t) = (1+exp(—t)™" (26)

Note also that by plugging in different random variable Z with its pdf
p(z) we are able to get several popular probabilistic classifiers. As an ex-
ample, when p(z) is the pdf of standard Gaussian distribution the above
model becomes the so-called probit regression. Given a training set D =
{(x1,¥1)s- -, (Xn,yn)}, the MLE solution of logistic regression can be de-
rived using equation (2.6):

6 = e g {ﬁ (1 + exp(—67Tx)>yi (1 ixifp—(‘i’;ili)>l_yi}

= arg max {— Z y; log (1 + exp(—eTxi)) — Z(l —y;)log (1 + exp(OTxi))}

0 i—1 i=1

=201 re min {Z log (1 + exp(—(2y; — 1)0Txi))}
0 i=1

If we re-define y; = —1 instead of y; = 0 for negative class label, then the
MLE solution of logistic regression can be represented as the solution of the
following optimization problem:

N
6 = arg min {Z log(1 + exp(—yiBTxi))} (2.8)
0 i=1

Similar to linear regression we can also formulate Ly or Lo regularized logistic
regression, and they can both be interpreted as MAP estimators as well.

(2.7)

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 8

2.1.3 Modeling using Factor Analysis

Factor Analysis (FA) is a technique originated from social science [Spear-
man, 1904, Gorsuch, 1983] which is used to discover underlying factors from
associated data. The intrinsic assumption in FA is that the hidden factors
are distributed as Gaussian

y = As+pute
s ~ Normal(0,I) (2.9)
e ~ Normal(0, V)

where we have the observed variable y € RF*! hidden source s € RF>*! and
mixing matrix A € RF*H_ Often p is set to the zero vector by centering the
observed variable y since we have Ely] = AE[s]4+p = p. So the data vector y
can be thought as a weighted combination of factors (columns of A) where the
weights are randomly generated from standard multivariate Gaussian, plus
some random Gaussian noise. By integrating out the hidden sources s we
get y again a multivariate Gaussian y ~ Normal(u, ¥+ AAT). Alternatively,
FA can also be viewed as a way to represent the covariance matrix V]y| with
two components: a low rank matrix AAT and ¥ which is often assumed
to be diagonal and correspond to the contribution of common factors and
individual factors [Gorsuch, 1983], respectively. Also note that probabilistic
Principal Component Analysis (PCA) can be treated as a special case of FA
|Tipping and Bishop, 1999|.

2.1.4 Modeling using Independent Component Analysis

Independent Component Analysis (ICA) |Bell and Sejnowski, 1995, Giro-
lami, 2000, Roberts and Everson, 2001| assumes the observed data y is gen-
erated by the following model

y = As+pu+e
s ~ p(.|®) (2.10)
e ~ Normal(0, V)

from which we can see that ICA can be thought as generalization of FA by
the fact that hidden source s is no longer restricted to be Gaussian. This
generalization has significant consequences, which serves as the basis of ICA
applications in signal processing [Roberts and Everson, 2001|. Briefly speak-
ing, non-Gaussian hidden source s makes it possible to identify independent

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 9

components instead of just modeling the correlation among elements of s as
in the Gaussian case.

One closely related technique of ICA is called Projection Pursuit (PP) [Kruskal,
1969, Friedman and Tukey, 1974, Huber, 1985|, which seeks one projection
at a time such that the extracted signal is as non-Gaussian as possible. This
contrasts with ICA, which typically extracts H signals simultaneously from
the observed mixtures. One practical advantage of PP over ICA is that the
extraction process is incremental and can be stopped as needed; on the other
hand, the parallel way of extract hidden sources makes ICA more robust than
PP.

2.1.5 Some Extensions

Both linear regression and logistic regression can be seen as special cases
of the Generalized Linear Models (GLM) |[McCullagh and Nelder, 1989],
which can be expressed as y ~ P(g(87x)) with g(07x) as the mean. Simply
speaking, GLM generalizes linear regression in two ways: (1) allowing the
response variable y to follow a distribution in the exponential family instead
of just Gaussian; (2) introducing a link function g(u) other than the identity
function. Typical choices of the distribution P(.) are normal, Bernoulli,
Poisson and gamma, and details can be found in [McCullagh and Nelder,
1989] or [Dobson, 2001].

Linear models can be extended to the “nonlinear” case by first applying
a feature mapping function ¢ : x — ¢(x), and this can also be achieved
by using the so-called “kernel trick” K(x;,x;) = (#(x;),¢(x;))» in the
Reproducing Kernel Hilbert Space. For example, Gaussian Process (GP)
for regression |Williams, 1998] and classification |[Gibbs and MacKay| can be
thought as kernelized linear regression and logistic regression, respectively.
This particular view has both conceptual and computational advantages.
Conceptually, a prior over the parameters (e.g., regression coefficients) can
often be treated as special cases of GP with properly chosen mean function
and covariance function. Computationally we can directly compute a kernel
function without the explicit computation of the mapping ¢(x) which can
be high or even infinite dimensional.

Many of the regression and classification methods can be reformulated as
optimization problems, where we are trying to minimize some loss func-
tion. Viewing in this angle also has certain advantages. For example, this
particular view can also be thought as the M-estimators |[van der Vaart,

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 10

2000] in statistics which is a generalization of MLE estimators [Lehmann
and Casella, 1998|. Popular loss functions for regression include squared er-
ror loss, e-insensitive loss, absolute error loss, huber loss, etc. Popular loss
functions for classification include exponential loss, logistic loss, hinge loss,
asymmetric squared error loss and asymmetric huber loss, etc.

It is also possible to extend the basic FA and ICA models mentioned above.
Note that both FA and ICA disregard any temporal or structural informa-
tion in modeling the hidden sources, and as a result they are unable to
capture the temporal relationship among s if any, for example. This limita-
tion comes from the fact that we assume hidden sources s;’s are IID from
some underlying distribution, which in fact is not necessary and its relax-
ation can be very helpful in some situations. In Chapter 3 we will present
one model which is able to incorporate temporal information in the context
of multi-task learning. Other possible extensions of ICA include non-linear
ICA, which generalizes the linear relation As into a non-linear relation A(s).

2.1.6 Algorithms for Point Estimation

Point estimation is used everywhere in estimating parameters of non-Bayesian
models as well as hyper-parameters in the empirical Bayes approach, which
are all treated as fixed but unknown quantities (as opposed to be considered
as random variables). Let us consider the MLE as an example, which is the
most frequently used point estimation method. Given a training set D, the
likelihood can be written in general as p(D|©), and the objective of MLE is
to find the parameter © by maximizing the likelihood (or equivalently, the
log-likelihood):

0 = argm@axp(D\@) (2.11)

which might accompany constraints like the non-negativity of some compo-
nents of ©. This is essentially a numerical optimization problem, and in
many cases it can be converted into a convex optimization problem [Boyd
and Vandenberghe, 2004] which is easy to solve for even large-scale sys-
tems. Algorithms for solving convex optimization problems are mature, and
popular ones are gradient descent, conjugate gradient, Newton method and
quasi-Newton method, etc [Nocedal and Wright, 1999, Luenberger, 2003,
Boyd and Vandenberghe, 2004].

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 11

2.1.7 Algorithms for Bayesian Inference

We start with directed graphical models as they are great tools to represent
and visualize hierarchical Bayesian models [Jordan, 2002|. Given a graphical
model G = (V, &) with V = {X7, Xo,..., Xy} composed of N random vari-
ables and & expressing the set of conditional dependence! among those vari-
ables, we are interested in the inference of p(H|E) where both H and E are
subsets of V, correspond to unobserved nodes (hidden) and observed nodes
(evidence). The computation of p(H|E) can be difficult because of either a
complicated graph structure or the existence of non-exponential link function
among variables. Generally speaking, inference algorithms can be classified
as either deterministic approximation algorithms or non-deterministic ones
(e.g., sampling methods). Note that inference in Bayesian classification or
regression is just a special case of the above general inference, in which the
parameter 6 is a random variable we want to do inference on. For classifi-
cation tasks, future predictions are computed by integrating out the 6 over
its posterior distribution, e.g. p(y[x) = [p(0|D)p(y|d,x)dh, and confidence
intervals can also be computed in a straightforward way. However, the likeli-
hood function of classification is not within the exponential family and thus
approximation is needed in the computation.

Variational Methods As an approach to function approximation, vari-
ational methods [Jaakkola and Jordan, 1997, Ghahramani and Beal, 2000,
Jordan, 2002, Beal, 2003] convert the inference problem into an optimization
problem by the application of appropriate inequalities. The approximation is
usually done by optimizing some variational parameters so that the distance
to the true quantity is minimized. It is deterministic and usually efficient,
and desirable lower /upper bounds can often be obtained. Mean Field method
[Saul et al., 1996] is one of the commonly used variational methods which
constrains the candidate distribution to be factorized into individual compo-
nents, and generalized Mean Field [Winn, 2003, Xing et al., 2003| allows the
factorization into clusters of variables instead of singletons. A disadvantage
of variational methods is that they may yield suboptimal solutions due to
overly greedy assumptions.

!Formally speaking it only specifies the set of conditional independent relations. Two
random variables can be independent even if the graphical model indicates their depen-
dence.

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 12

Laplace Method Laplace method |[Kass and Raftery, 1993] is one of the
oldest methods used in physics and statistics to approximate posterior dis-
tributions. It is a very simple method which approximates the posterior
distribution with a scaled Gaussian distribution that matches the true pos-
terior through its mode, first and second derivatives at the mode, where the
second derivative Hessian matrix is the covariance of the target Gaussian
distribution. The disadvantage of Laplace method lies in the fact that it
only considers up to second order derivative within a local range near the
mode, which may not be good enough in some situations.

Belief Propagation Belief Propagation (BP) [Pearl, 1998] was first intro-
duced for exact computation of inference in Bayesian networks, and later it
is extended to loopy BP [Murphy et al., 1999] and generalized BP [Yedidia
et al., 2002] for more complicated graphical models. For directed acyclic
graphical models, BP is defined as a message passing protocol that converges
after two operations: “collecting evidence” and “distributing evidence”, which
are implemented by a set of sum and product operations [Jordan, 2002]. BP
is a fairly good method in general, and can be thought as a special case of
the following Expectation Propagation method.

Expectation Propagation Expectation Propagation (EP) [Minka, 2001|
is another approximate Bayesian inference algorithm which can be thought
as an improvement over the Assumed Density Filtering (ADF). ADF tries
to approximate the posterior distribution using a distribution within the ex-
ponential family F by minimizing the KL-divergence KL(p(x)||¢(x)), where
p(z) is the true distribution and ¢(z) is the approximate one. It turns out
that for ¢(z) € F, the exponential family, the minimization of KL-divergence
is equivalent to the established moment matching method used in statistics
to find approximations to distributions [Satterthwaite, 1946]. ADF does the
moment matching in a sequential order, while EP performs iterative ap-
proximation using three steps: deletion, projection and updating. EP is a
generalization of BP since it allows the use of exponential functions as an
approximation to non-exponential messages. The advantage of EP is that
moment matching is sensible in many aspects, but the disadvantage is that
it does not guarantee convergence in general.

Sampling Methods As opposed to the above deterministic approximate
Bayesian inference algorithms, sampling methods [Neal, 1993, Robert and

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 13

Casella, 2005] are non-deterministic approximate algorithms for Bayesian in-
ference. The development of high-speed computers in the last decade makes
sampling methods very popular for Bayesian methods. Furthermore, Markov
Chain Monte Carlo techniques further push the popularity of Bayesian mod-
eling, and there even exists a generic software package BUGS implementing
Gibbs sampling. The advantages of sampling methods include its theoret-
ical limiting properties and its relatively easy implementation; disadvan-
tages include the difficulty in choosing convergence criteria (e.g., mixing and
burn-in time, multiple chains), as well as slow convergence especially for
high-dimensional problems.

2.2 Literature Review

Next we review some of the literature with respect to multi-task learning.
Our review is by no means exhaustive on such a burgeoning area of research.
The hope is to give readers a global picture of what are the problems that
have already been explored and what are left, as well as the relative strengths
and possible connections of the methods.

2.2.1 Basic Concepts

Multi-task learning is the problem which tries to estimate models for K tasks
in a joint manner. Traditional learning, on the other hand, only considers
one task at a time and solves them separately. Multi-task learning can be
better understood by answering the following questions:

o What is task relatedness?

Although most methods in multi-task learning assume some related-
ness among tasks, the definition of relatedness varies. For example,
model parameters may be partly shared among tasks, models may be
transformation related or probabilistically related. Implicitly or ex-
plicitly, mathematically or procedurely, task relatedness must be spec-
ified under certain representation in order to play its role in multi-task
learning. The main difference among existing methods lie in their as-
sumptions and formulation of task relatedness, pretty much like the
parametric form assumption in parametric models.

o Why would multi-task learning methods work?
There is more than one way to explain why multi-task learning methods

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 14

would work. From the statistical estimation viewpoint, if some of the
task parameters are shared, then they can be better estimated (e.g.
with a smaller variance) given a lot of tasks. From the hierarchical
Bayesian viewpoint, multi-task learning is essentially trying to learn
a good prior (a.k.a. inductive bias in some context) over all tasks to
capture task dependencies, which is often not applicable in single-task
learning. In other context, it can be thought as trying to learn a set
of features that are informative for all tasks.

o When would multi-task learning be advantages?
Relatively speaking, multi-task learning methods will work better un-
der the following conditions:

1. When each task has limited amount of training resources;
2. When the number of tasks is large;

3. When the assumption about task relatedness is close to the truth.

However, good multi-task learning methods should be robust in the
sense that when some of the above conditions are violated the perfor-
mance will not severely degrade.

o When would multi-task learning fail?

If tasks are not related to each other at all, then it suffices to learn
them separately (see also the answer to the previous question). If the
assumption of task relatedness is inaccurate, then multi-task learning
could even hurt performance by introducing undesirable biases. Note
that even if the assumption is correct, multi-task learning might give
slightly worse results than single-task learning for some individual task.
This is not unexpected as all the arguments hold probabilistically and
the overall performance should still be boosted when evaluating over
all the tasks.

o [s MTL computationally more expensive than STL?
On one hand, multi-task learning algorithms are often more compli-
cated than the corresponding single-task learning algorithms because
they often use the latter as components and need to do joint inference
over all tasks parameters. Consequently, it can be more expensive to
solve them due to the joint inference/coupling among task parame-
ters. However, the computation should still be in the same order of
magnitude as each iteration call to single-task learning modules does
not require a full-blown solution. On the other hand, there are also

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 15

cases where multi-task learning can be computationally cheaper. For
example, if we are able to select a joint subset of relevant features over
given tasks then the cost to learn a future task is greatly reduced in
the newly learned representation.

e What form of data is required for multi-task learning?

In order to model the information sharing, task parameters need to
share the same metric space (or at least partly, through transformation,
etc). As a result, it often requires the input data space for each task
to be the same, i.e. X*) = x (k=1,2,...,K). If the training data of
those tasks are not in the same metric space, certain transformations
are need in the pre-processing steps. How to transform data from
multiple tasks into a unified representation is usually guided by human
at the current stage.

Next, we describe the main approaches to multi-task learning in four cat-
egories: artificial neural networks, shrinkage methods, regularized learning
methods and hierarchical Bayesian models, respectively. Our goal is to
present a global preface to the reader, with the aspects which we see as
being most fundamental for multi-task learning. Of course, we do not in-
tend to cover every method in the literature, and our classification is not
necessarily perfect in the sense that some boundaries may be blurred.

2.2.2 Artificial Neural Networks

Artificial neural networks are originally motivated from brain studies |Rosen-
blatt, 1959] and the simple perceptron is still one of the most widely used
algorithms in machine learning. Generally speaking, neural networks con-
sist of three types of units: input units, hidden units and output units. The
set of input units take information about the example to be propagated
through the network. By propagation, we mean that the information from
the input will be passed through the network and reach the output units.
Hidden units take input as the weighted sum of outputs from input units.
Often that the number of hidden units is smaller than the number of input
units. A weighted sum of outputs from the hidden units is then taken as
the input to the output units. The training of a neural network is often
achieved through the back-propagation algorithm [Rumelhart et al., 1986].
Neural networks are very powerful mathematical tools for machine learning,
and they are known to be universal approximators in the sense that they

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 16

task 1 ! task 2 task K-1 task K

hidden layer

inputs variables

Figure 2.1: Multi-Task Learning using Neural Networks

are flexible enough to approximate any continuous function up to any given
precision |Ivakhnenko, 1971].

Early work on multi-task learning [Thrun, 1996] [Caruana, 1997] [Silver and
Mercer, 2001] uses neural network as the learning machine. Figure 2.1 shows
a typical setting of multi-task learning with a two-layer neural network. Each
hidden unit can be thought as a function of input variables and the shared
components among tasks. The links in the first layer define the mappings
from input variables to the shared components and the second layer links
correspond to mappings from the shared components to tasks. Both levels
of the mapping are jointly learned for all the tasks through back-propagation.

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 17

2.2.3 Shrinkage Methods

Shrinkage is an approach to obtain estimators that have smaller risks. Stein
[1955] first showed that for the many normal means problem (e.g. given
X; ~ Normal(y;,0%), estimate p;’s, i = 1,2,...,m), the maximum likelihood
estimator fi; = X;,7 = 1,2,...,m is not admissible? with respect to the total
square error risk when m > 2. In other words, there exist other estimators
which are uniformly better, such as the James-Stein estimator [James and
Stein, 1961].

The basic idea of shrinkage methods is to trade bias for variance so that
the overall risk is reduced compared to the original unbiased estimator. One
of the simplest forms of shrinkage methods is to do proportional shrinkage,
which defines a new estimator i = bt with 0 < b < 1. To get a flavor of why
this can help to reduce the risk, notice that in our example

bias(r) = (1—=0b)u
var(fi) = b*var(fi) (2.12)

From equation (2.12) it is obviously that there always exists some 0 < b < 1
such that risk = bias® + var is reduced, although the optimal amount of
shrinkage depends on factors such as sample size. Shrinkage methods have
broad applications and are related to regularization methods, as well as
hierarchical Bayesian models.

Shrinkage methods have been applied to multi-task learning setting by Breiman
and Friedman [1997], where they developed the Curds & Whey method for
multivariate responses linear regression. The C&W procedure is a form
of multivariate shrinkage. Its basic idea is to first transform the response
variables into the canonical coordinate system, then conduct a proportional
shrinkage estimation in this new coordinate system, and finally it transforms
back into the original coordinate system. The optimal shrinkage in the trans-
formed coordinate system can be determine by cross-validation techniques.
According to the authors, the power of C&W method is to shrink in the right
coordinate system and it can be viewed as a multivariate generalization of
proportional shrinkage based on cross-validation. From the stand point of
multi-task learning, the transformation into the new coordinate system is a
key step which leverages information among multiple tasks.

2An estimator is said to be admissible with respect to a loss function for a class of
distributions if there is no other estimator which has less than or equal to its loss for all
distributions in the class, with the strict inequality holding for at least one distribution.

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 18

Shrinkage methods are intuitively simple and very effective methods for re-
gression tasks. Furthermore, due to the fact that they are motivated by re-
ducing the risk, they can achieve very good performance. However, shrinkage
methods are often post-processing methods and it is not straightforward to
generalize them to new tasks (compared to generative models, for example).
Furthermore, the exact amount of shrinkage depends on the form of the risk
function.

2.2.4 Regularized Learning Methods

In standard setting of supervised learning, we aim to find a function mapping
f which maps an input vector x € X to an output y €). Usually we are
given a training set D = {(x1,41), (X2,%2), - - -, (Xpn, yn)} which are identically
and independently sampled from an unknown probability distribution P:
(xi,yi) ~ P. The objective is to find the best mapping function f € H in
the sense that the expected loss (with respect to P) is minimized:

A~

f=argminEpL(f(X),Y). (2.13)
fer

The most popular method is the empirical risk minimization [Vapnik, 1998|
approach which replaces the unknown distribution P with the observed em-
pirical distribution:

~

/= argmianL(f(xi),yi) (2.14)

fer i

However, empirical risk minimization is prone to overfitting. Regularization
techniques [Tikhonov, 1963| were proposed to avoid overfitting in empirical
risk minimization. They often have the form

o 1

f=argmin =" L(f(x:),y:) + AQ(f) (2.15)

fen nN

where Q(f) measures the model complexity or roughness of the prediction
function f. Regularized learning methods have been widely and success-
fully used in statistics and machine learning including ridge regression, lasso
regression, regularized logistic regression, SVM, etc., where the major differ-
ences lie in the choice of loss function L(.,.) and penalty function Q(.).

Regularized learning methods have recently been applied for multi-task learn-
ing problems in |Evgeniou and Pontil, 2004| and |Evgeniou et al., 2005]. In

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 19

their work, multi-task learning is achieved by using a joint regularization:

K Ng
01,...0x = argmin {ZZL(%@’“), (01, %)) + 2061, .. ,eK)} (2.16)
017~~~70K k=1 =1

where L(.,.) is taken to be the hinge loss and Q(01,...,60k) is taken to be
a particular form

0,

02
Q(61,0,,...,0x) = (01,6],...,6%)D : (2.17)

Ok
in [Evgeniou et al., 2005]. The method proposed in [Evgeniou and Pontil,
2004] is similar to our “nosiy tasks” scenario under some specific settings, such

as assuming both p and ey, following a multivariate Gaussian and performing
point esitmation to obtain f& and é.

Ando and Zhang [2004] proposed a structure learning framework for multi-
task learning. In their method, the predictive function for the k-th task is
assumed to be

P = (w4 e"vi x)
(wh x) + (v Ox) (2.18)

where the parameter © can be thought as the shared structure for a set of
tasks. When learning those parameters, regularization is put on w*)’s and
v(F)’s Alternatively, ©x can be thought as a set of good features that are
learned from many tasks. This method is similar to one special case of our
framework, if we assume the latent variables s;’s are multivariate Gaussian
distributed and perform point estimations over s;’s.

2.2.5 Hierarchical Bayesian Models

Hierarchical Bayesian models [Box and Tiao, 1973, Bernardo and Smith,
1993, Gelman et al., 2003] are natural ways to model parameters that are
related by the structure of the problem. In particular, the hierarchical struc-
ture can provide a flexible yet compact representation of the structure in the
data, and thus produce models that can both fit the data well and generalize
well on unseen, future data. As a result, we argue that hierarchical Bayesian

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 20

models are natural choices for representing the relatedness among tasks and
modeling the task dependencies.

Baxter [1996] discussed the usage of hierarchical Bayesian models for study-
ing multi-task learning problems. Parameters that are shared among tasks
are treated as hyper-parameters at a higher level as opposed to the task-
specific model parameters. Analysis are given from a Bayesian/information
theoretical viewpoint.

Heskes [2000] presented a model for multi-task learning by assuming that
response variables of each task follow a normal distribution. The mean of
the normal distribution is learned using a two-layer neural network, and the
variance is composed of a task specific component and a task independent
component. Empirical Bayes method is used to learn the model hyper-
parameters.

Teh et al [2005] proposed a semi-parametric model for multi-task learning.
Their model uses Gaussian processes as the non-parametric components, and
the predictive function of each task is a linear transformation of a set of basis
Gaussian processes.

In [Yu et al., 2005 Gaussian processes is applied to learn multiple tasks.
In particular, the predictive function of each task is assumed to be f*) ~
GP(m, K) where m(.) and K(.,.) are the mean function and covariance func-
tion of the Gaussian process, defined as:

E[f(x)] = m(x)
C(f(xi), f(x5)) = K(xi,x;)) (2.19)

Models proposed in this thesis can be generally seen as belonging to this cat-
egory. Unlike previous work, we present a unified probabilistic framework
and establish the connection between task relatedness and the underlying
statistical assumptions. This also allows us to systematically explore impor-
tant multi-task learning scenarios which are natural components of multi-
task learning research. For example, our mixture model in Chapter 7 is a
generalization of the work in [Yu et al., 2005].

2.2.6 Other Issues
2.2.6.1 Theoretical Analysis on Error Bounds

In standard supervised learning, generalization error bounds (a.k.a. large
deviation bounds in statistics) can be obtained through the concept of VC

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 21

dimension (which measures the size of the hypothesis space). Naively speak-
ing, good generalization (at certain accuracy e with probability at least 1—0)
can be obtained as the number of examples is greater than a quantity that
is a function of €, § and VC dimension (for quantitative results see [Vapnik,
1998|, |Blumer et al., 1989] and |Ehrenfeucht et al., 1988|).

Early work on theoretical analysis of multi-task learning has been established
in [Baxter, 1997, 2000]. Compared to the result of standard supervised
learning, the basic statement is that, under mild conditions, the number
of examples required of each task for good generalization will decrease as
the number of tasks increases (and again the actual number depends on the
accuracy and capacity of the hypothesis space). This result clearly justifies
the benefit of “borrow information” from a theoretical viewpoint. In [Ben-
David and Schuller, 2003] and [Ando and Zhang, 2004] the authors also
develop specific generalization error bounds for multi-task learning under
their formulation.

2.2.6.2 Parametric vs. Non-parametric Methods

Conventional statistical methods can be classified as parametric or non-
parametric methods based on whether we restrict f(x) to be of a partic-
3. There is also a intermediate category called semi-
parametric methods, and examples include models which have both paramet-
ric and non-parametric components. Generally speaking, parametric models
are much more efficient when the assumption is correct, while nonparametric
methods are free from model misspecification errors at the cost of a much

ular functional form

slower convergence rate.

In multi-task learning we often have (in terms of hierarchical Bayesian model)
B~ PLlO), k=1,2,...,K. (2.20)

We are not only required to model each predictive function f, f@ . but
also facing the problem of how to model the distribution P(f|©). Here the
model P(f|0©) itself could be parametric, non-parametric, or semi-parametric.
Our framework can be thought as having a flavor of semiparametric where
the task sharing part As plays a parametric role and the task specific part
ey, works as a non-parametric component which allows f, f@ . fK) to
be flexible enough as K goes to infinity.

#As stated in [Wasserman, 2006], it is difficult to give a precise definition for “non-
parametric”. It means making as few assumptions as possible and can be understood as
infinite-dimensional parametric in most cases.

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 22

2.2.6.3 Online vs. Retrospective Learning

The phases “learning to learn” |[Thrun and Pratt, 1998] and “transfer learn-
ing” [Silver and Mercer, 2001] often refer to the situation that, given the fact
we have learned K tasks, will the learning of the (K + 1)-th task be easier?
We can see that the emphasis is slightly different from the standard multi-
task learning setting, i.e. after learning K tasks simultaneously, we want
to do a better job with new tasks. Thus, the difference between multi-task
learning and transfer learning is analogous to the difference between online
learning and retrospective learning in conventional supervised learning.

Some of the multi-task learning methods cannot be directly applied to the
transfer learning setting, due to the fact that they are post-processing and/or
retrospective methods, such as the C&W method. On the other hand, for
hierarchical Bayesian models it is straightforward to extend to the transfer
learning setting as we have a generative model for f, f@ . fE) and
learning a new task is easier given a better description of P(f).

Chapter 3

Probabilistic Models for MTL

In this chapter we present a unified probabilistic framework for multi-task
learning, which is based on the assumption that tasks are related by sharing
common structure through latent variables. The framework allows flexible
modeling of both the common structure as well as statistical distributions
of latent variables. Furthermore, we show that a series of important multi-
task learning scenarios can be supported within the framework and present
suitable models for them.

3.1 A Unified Probabilistic Framework with Latent
Variables

Let us assume that we have K related tasks, and suppose we use 61,...,0
to represent the model parameters of K tasks (for example, to index their
prediction functions f(x;0})) where 8, € RF*! is the parameter vector of
the k-th individual task. If we assume the existence of some latent variables
which relate those 6;’s, then we can represent those model parameters @;’s
using a general latent variable model |Everitt, 1984]

p(6) = / £1(612) fol2)dz (3.1)

where p(0) is the density of @ and z stands for the underlying latent variable
vector. It is clearly impossible to infer fi(.) and f2(.) uniquely from p(.) just
based on this definition; further assumptions are needed to achieve such a
goal.

23

CHAPTER 3. PROBABILISTIC MODELS FOR MTL 24

Let us return to the multi-task learning setting, and consider the following
generative framework of 8;’s:

0, = Asp+u+eg
S1y.--3,SK p(Sl,...,SK’@) (32)
e ~ Normal(0, V)

where s, € R7>*! and p(.|®) is assumed to be the hidden source model with
® denoting its general distribution parameter; A € RF*H is a linear trans-
formation matrix on s;’s; pu € RF*! can be thought as the mean of the
parameter vectors of multiple tasks, and the “noise” vector e, € RF*1
usually assumed to be multivariate Gaussian with diagonal covariance ma-
trix U = diag(¢11,...,%rr) or even ¥ = ¢?I. In other words, we assume
that the entries of e; are independent from each other. Note that in general
we can use any member of the exponential families to model p(ey), however
in most applications the ey is taken to be a multivariate Gaussian distri-
bution for convenience. The prior p(si,...,sx|®) is usually assumed to be

p(s1,. .., sx|®) = [TE, p(sk|®).

Furthermore, we can also assume the parameters A and ¥ to be random
variables by putting prior distributions over them to model particularly in-
teresting structures, which we will discuss in detail in later chapters:

18

A~ p(AlA)
v o~ p(eT) (3.3)

The above framework in equation (3.2) is clearly a special case of equation
(3.1) by decomposing

K
£O1 000 = [osr,.oil®) [pOulsiydsn odsi (3.0)
k=1

where p(0g|sip) = Normal(Asy + p, V). This framework can be thought as
a generative process of how the 0;’s are generated from a low dimensional
space as we often have H < F', by an unknown linear transformation plus
some random noise.

Even though the above framework is more specified than the general la-
tent variable model in equation (3.1), it is still flexible enough to incorpo-
rate many models by specifying the distribution assumptions of s;’s and/or
putting certain structural constraints on A and ¥. Furthermore, the linear

CHAPTER 3. PROBABILISTIC MODELS FOR MTL 25

transformation Asy is robust and can capture the first order dependency,
and it can be generalized to non-linear mapping function ¢(sg; A) to enrich
the framework. Note that the model specified in 3.1 is not identifiable due
the the coupling between A and si. However, this can be solved trivially by
either putting a constraint on the variance of p(si) or the scale of A.

One major difference between our framework in equation (3.2) and the gen-
eral latent variable model [Everitt, 1984] lies in the fact that 0’s are not
observed but need to be inferred from observed data (i.e. latent variables).
For example, in multi-task classification problems 6}, is the parameter vec-
tor of the k-th classification task, assuming we use some linear classifier
f®)(x) = (01,x) = OLx. The default probabilistic model we will use for
classification is the logistic regression model introduced in Chapter 2:

y® ~ Bernoulli(u(67x))

uit) = / mf(z)dzzm (3.5)

where Bernoulli(i) denotes the Bernoulli distribution with mean p and f(2)
is the probability density function of standard logistic distribution.

The overall graphical model by combining equation (3.2) and (3.5) for the
above learning framework is shown in Figure 3.1. In Figure 3.1 the observed
variables are D = DU, . .UD®) where D) = {(xgk),ygk)), ce (x,({f}, yr(l]fc))},
the set of unknown random variables are Z = {(01,s1),...,(0k,sk)}, and
the set of parameters are Q = {®, A, u, ¥}. It is worth mentioning that in
Figure 3.1 all tasks do not need to share the same set of input instances
(although that is the case for some of our experiments). The only require-
ment is that the input space for those tasks are the same, i.e. X = .. =

X (K) & X.

Finally, it is interesting to point out that our model in equation (3.2) has
a dual viewpoint. That is, if we construct éf €]RKX} by taking the f-
th corresponding coordinate of 01,...,0k, then those 01,...,0F can also
be interpreted as a latent variable model where the meaning of the mixing
matrix A and hidden sources s would be different and rather interesting.
However, the associated difficulty is that given the model parameters 2,
those éf’s cannot be separately estimated since they will involve all the
tasks.

CHAPTER 3. PROBABILISTIC MODELS FOR MTL

26

Figure 3.1: Graphical Model for Multi-task Learning

CHAPTER 3. PROBABILISTIC MODELS FOR MTL 27

3.2 MTL Scenarios and Associated Probabilistic Mod-
els

For multi-task learning, it is important to identify different scenarios® —

how tasks are related to each other and use appropriate assumptions for
each scenario explicitly. Here we analyze a series of important and interest-
ing multi-task learning scenarios, and demonstrate how to use the generic
framework presented above as a basis for the specific probabilistic models
to leverage their dependencies in those multi-task learning scenarios. To be
more specific we will show that the generality and flexibility mainly come
from how to model the underlying sources si’s, as well as whether special
restrictions are put on the parameters A, ¥, etc.

3.2.1 Independent Tasks

Our joint learning framework is clearly a generalization of single-task learn-
ing. By setting the parameters A = Opyx gy and p = Opy1 we totally ignore
the connections among @1, ...,0k in the learning framework and have:

0. = e, ~ Normal(0,) (3.6)

As a result it simply degenerates to learning K individual tasks separately.
For example, if the classification model is logistic regression, then by doing
a point estimation on 6 we will get the standard Maximum A Posterior
(MAP) estimation, and similarly we will get a Bayesian logistic regression
model by inferring the posterior distribution of 8y given the observed data.

This simple degeneralization is illuminating to show different roles of Asy
and e, played in modeling 0 in equation (3.2). Asy is supposed to capture
the shared information among tasks which does not need to be exclusive or
perfect; e contributes to the remaining part that is task specific. In this
viewpoint multi-task learning is a full-spectrum while single-task learning is
just one end point!

3.2.2 Noisy tasks

Suppose our K tasks are all some noisy representations or versions of a
single underlying task @g € RF*!. Then the generic framework simplifies

!By “scenario” we mean how tasks are related to each other. Formally it can be thought
as the choice of parametric form in parametric density estimation.

CHAPTER 3. PROBABILISTIC MODELS FOR MTL 28

with A = Opx and u = 0y. That is, one may think of the application as
to use different equipments to measure the same physical quantity of some
object, the differences among those equipments can be modeled as noise, and
the underlying model can be thought as the theoretically correct model. In
other words we have

0 = 1+ e, ~ Normal(p,) (3.7)

where the covariance W of e, reflects our prior knowledge about how noisy
those tasks are with respect to the centroid.

3.2.3 Clusters of tasks

This scenario can be thought as a generalization of the “noisy tasks” case,
with the prior knowledge telling us that tasks should be grouped into certain
number of clusters. One can simply use our framework in equation (3.2) to
subsume this as a special case by specifying

sy~ Multinomial(1; p1,p2,...,pH) (3.8)

where Multinomial(1; p1, ..., pg) stands for the Multinomial distribution with
parameter n = 1 and proportional parameters p1,...,py satisfying pp > 0

and Zthl pp = 1.

So s will take the form [0,...,0,1,0,...,0] where only one element is 1 and
the rest are 0’s. This means that each @y randomly picks up one and only
one column of the matrix A. As a result, the generated 0y will be clustered
around the individual column vectors of A, A ;’s. This model resembles a
Gaussian mixture model over the task space. In Chapter 7 we focus on this
model and compare it to the simplified scenario “noisy tasks”.

3.2.4 Tasks sharing a linear subspace

In this scenario tasks are assumed to be generated from a linear subspace
for which we would think of each column of A as a basis and sj stores
the corresponding coordinates. In other words, the K tasks are sharing a
common linear subspace. By assuming the hidden sources

sk ~ Normal(0,TI) (3.9)

to be standard multivariate Gaussian distribution, this generative model for
0;.’s becomes the standard factor analysis model. In other words, those K

CHAPTER 3. PROBABILISTIC MODELS FOR MTL 29

tasks share a linear subspace whose basis are the columns of the mixing
matrix A, since we have 0, = Zthl sp.p\p, where Ay, is the h-th column of
A and s, is the h-th element of sj.

More generally, we would assume the hidden source s; to come from a prod-
uct of generalized Gaussian distributions [Hyvarinen et al., 2001], whose
probability density function is defined as

Av
= — —A|z|” 3.10
PE) = gy P (M) (3.10)
where v denotes the shape parameter and A relates to the variance, and I'(.)
is the Gamma function defined as

[ee]
e = [rletar o), (3.11)
0

When v = 2 this reduces to standard Gaussian distribution and v = 1 it
reduces to Laplace distribution. Furthermore, it is known that v > 2 will
lead to sub-Gaussian distributions and v < 2 will lead to super-Gaussian
distributions?. Figure 3.2 shows several plots of members in this distribution
family.

3.2.5 Tasks with sparse representation

Sparsity has become one of the most important concepts in modern learning
theory, and many algorithms are successful at least partially due to this prop-
erty, including winnow, lasso, SVM, wavelet, etc. Sparsity usually means that
only a small number of components of the solution are non-zero. In terms
of distribution, sparsity could be generally explained as that the majority of
the mass is distributed around zero.

Sparsity is a nice property since theoretically it is often related to the gen-
eralization capability if the assumption is close to truth (e.g. the relevant
dimension is small), and practically it is often associated with computational
advantages especially for high-dimension problems. Here we are interested
in several types of sparsities:

2Formally, super-Gaussian (leptokurtic) are distributions which have positive kurtosis
while sub-Gaussian (platykurtic) are distributions which have negative kurtosis. For a

zero-mean random variable X, kurtosis is defined as K (X) = E[X*] — 3(E[X?])2.

CHAPTER 3. PROBABILISTIC MODELS FOR MTL 30

0.7
— - v=0.5
— v=1
0.6+ — v=2
— - v=4
05
0.4
0.3
0.2
0.1
o]
-10 -8

Figure 3.2: Generalized Gaussian Distributions

e The first sparsity can be specified by putting a super Gaussian dis-
tribution (e.g., Laplace distribution) over the hidden source s, which
essentially means that we assume that the target prediction functions
of those K tasks are sparse linear combinations of basis prediction
functions. The generative model corresponds to this scenario can be

written as:
0, = As,+eg
H
S~ HLapIace(O, 1) (3.12)
h=1

er ~ Normal(0,¥)

Moreover, this model is of particular interest if we have an over-complete
basis [Lewicki and Sejnowski, 2000] (e.g., A has a relatively large col-
umn basis), since in that situation sparsity could be crucial to a key

property to have a reliable estimation.

e Alternatively, we could assume the matrix A is sparse by itself. This
assumption will lead to a natural sparse solution since 0}’s are linear
combinations of columns of A and thus will also be sparse. This could

CHAPTER 3. PROBABILISTIC MODELS FOR MTL 31

be achieved, for example, if we put a Laplace prior over each column
of A in addition to the above model assumptions:

F
Ajp~ H Laplace(0,1) (3.13)
f=1

As a result, a point estimation of A could lead to a natural sparse
matrix.

In Chapter 6 we will show how to conduct joint feature selection for multi-
task learning, which can be thought as another type of sparsity.

3.2.6 Tasks sharing a single component

There are situations when we have multiple tasks sharing a single component.
Although this is very similar to “noisy tasks” and can be thought as a special
case of treating the shared component as one column of A (or as p), here we
emphasize the point that different priors can be put on both the task-specific
component and the task-independent component. Consider the following
generative model with £k =1,..., K:

0, = Bo+ By
F
By ~ Normal(0,Vy) or HLapIace(O,yo) (3.14)
f=1
F
B, ~ Normal(0,V) or HLapIace(O,uo)
f=1
The shared component 3, among 61,...,0x has the same contribution to
them, while 8y,..., 8 can be thought as task specific preferences. One

major difference with the model in equation (3.2) is that we also put a
prior over the shared component 3,. By using the product of Laplace as
the prior distribution of B, and B3, we are able to achieve two types of
sparse solutions. Having a sparse solution over 3y means that we would like
the shared component to be significantly supported by evidence from data
if exists; while having a sparse solution over B; have the effect that each
individual task is assumed to only deviate from the shared community (all
K tasks) when it is necessary.

CHAPTER 3. PROBABILISTIC MODELS FOR MTL 32

3.2.7 Tasks sharing common relevant dimensions

Another interesting scenario is that we have the K tasks sharing a similar
set of features (which is only small subset of the original set of features),
although the contributions of those features to the K prediction tasks can be
quite different (e.g., some of them can be positive contribution while others
being negative contribution). This scenario can be thought as a variant of
“sharing a linear subspace”, while the linear subspace is aligned with the
original feature space. We would have the following generative model to
capture the scenario:

0. ~ Normal(0,diag(c))
ay ~ InvGamma(v,,vg) (3.15)

where o = (a,...,ar)T € RF*! is a non-negative vector which specifies
the variance of each dimension of 0 and its each dimension follows a prior
distribution such as Inverse-Gamma distribution (or any other sensible dis-
tribution over R™):

7
['(va)
By sharing the same « among all K tasks, we are able to reflect the as-
sumption that those K tasks tend to share the same relevant dimensions,

although positive/negative effects on each dimension could vary depending
on the data likelihood.

InvGamma(z | vo,v3) = PR exp(—V—ﬁ) (3.16)
z

Equivalently, this model can be represented as a special case of the framework
in equation (3.2) as follows:
G)k = €L
er ~ Normal(0,¥) (3.17)
Usr ~ InvGamma(v,,vp)
where ¥ = diag(¥11,...,Urpr). That is,) equals e; whose covariance
matrix ¥ is assumed to be diagonal and random. Figure 3.3 shows the

graphical model for this scenario. In Chapter 6 we will discuss how to do joint
feature selection for multi-task learning and its connection to this scenario.

3.2.8 Duplicated tasks

In reality it may happen that we need to solve exactly the same task which
we have already solved previously, although there is no indicator telling us

CHAPTER 3. PROBABILISTIC MODELS FOR MTL 33

Figure 3.3: Graphical Model for Tasks Sharing Relevant Dimensions

which task it is unless we infer from the training data. Formally, we want
to consider the situation where it is likely that we have 6 identical to one
of the previous models {61,05,...,0xk_1}. In other words, we assume that
the probability that we will meet previously solved tasks again in the future
is positive and bounded away from zero (as opposed to the probability that
a continuous variable takes a particular value, which equals zero). Having
this in mind, we can use non-parametric Bayesian techniques like Dirichlet
Process |Ferguson, 1973| to model the generation process of the y’s:

G ~ DP(a,Gy)
0, ~ G (3.18)

where « is the precision parameter of Dirichlet Process and Gy is its base
distribution. By using Dirichlet Process to model the generation of 8y we
will have non-zero prior mass on previous seen tasks.

Alternatively we could use Dirichlet Processes to model the generation of 6y,
through s as in our model in Figure 3.1. The advantage of that is we could
still have “exact” tasks subject to some random noise ey, and those different
tasks are still related through the shared linear subspace. The hierarchical
model to capture this scenario can be summarized as:

G ~ DP(a,Gp)

CHAPTER 3. PROBABILISTIC MODELS FOR MTL 34

S~ G (3.19)
0, = Asp+eg
er ~ Normal(0, V)

where any appropriate distribution over s; could be the candidate of the
base distribution Gy. Due to the property of DP, given si,...,s;p_1, the
probability that s, equals one of them is strictly greater than zero. Conse-
quently @y is identical to one previous model subject to some random noise,
and the generative model is able to capture the scenario of duplicated tasks.
It is worth mentioning that although this model could be approximated by
a finite mixture model as in the “clusters of tasks” scenario, DPs provide a
natural way of handling increasing number of clusters as the number of tasks
grows.

3.2.9 Evolving tasks

For all previous discussions we assume that tasks are exchangeable, which
means that the order of those task parameters does not matter in our gen-
erative model. However, there are cases of multi-task learning where tasks
are evolving one after another. For this scenario, the model should reflect
that fact that 6;’s are evolving. One of the simplest choices, for example, is
to assume that there is a first-order Markov chain over 8}’s:

01 — 0 (3.20)

which can be fully specified using the transition probability p(0y|0k_1).

Similar to the scenario of “duplicated tasks”, we can make the s;’s not 11D
in Figure 3.1. That is, we assume a Markov chain over s;’s instead of over
ok’S:

0, = Asp+p+es
Sp—-1 — Sk (3.21)

One particular advantage of using the latter model is that we have a Markov
chain over a relatively low dimensional space of size H instead of size F'. As
a result, we are only responsible for the estimation of parameters involved
in p(sk|sg—_1) instead of p(@k|@r_1), which is quadratic in the dimensional-
ity of 8. This model is closely related to the linear State Space Model in
the literature |[Ghahramani and Hinton, 1996, Minka, 1999] which is widely

CHAPTER 3. PROBABILISTIC MODELS FOR MTL 35

used in modeling dynamic systems. By making assumptions on the tran-
sition probability p(s; | s;—1) it is possible to do inference on the multiple
evolving tasks with observed data. For example, this model can be applied
to the problem of concept drift [Klinkenberg and Joachims, 2000] where the
underlying model for classification/regression drifts as it proceeds.

3.3 Summary

In this chapter we proposed a generic probabilistic framework for multi-task
learning. The framework is a special case of hierarchical Bayesian model and
latent variable model. We analyze a series of important task scenarios and
present suitable models within the framework. From the exploration we can
see that the flexibility of the proposed framework in Figure 3.1 comes from
the fact that we can model different assumptions about the latent variables
and have certain assumptions over the mixing matrix A, covariance matrix
W, ete. It should be clear that there could exist alternative ways of modeling
those task scenarios, but putting them in a unified framework make the
different assumptions and restrictions transparent and comparison easy.

The choice of the parametric form p(s|®) for hidden source s is crucial in our
framework and can make a lot of differences in terms of combining the domain
knowledge into the modeling process, in pretty much the same way as the
choice of parametric forms in parametric density estimation. As we already
showed, when p(s|®) is assumed to be the multinomial distribution we are
essentially performing clustering over the task space; if p(s|®) is assumed
to be super Gaussian distributions like Laplace, then we are expecting to
have a more sparse solution than using Gaussian instead. Furthermore, s
can be generalized to be a mixed type random vector if needed, where some
coordinates are continuous and others are discrete. Generally speaking, the
choice of p(s|®) should reflect the domain knowledge about how the tasks
are associated with each other, i.e. what people refer to as “task relatedness”.
Furthermore, the shared parameters including A, u, ¥ can also be modeled
to capture different scenarios, such as a sparsity constraint on A.

Although we presented most of the models for simultaneously learning K
tasks, it should be clear that multi-task learning can also be applied to situ-
ations where we are learning those tasks sequentially. In that case, learning
a new task should be easier given the fact that we already learned the shared
components from previous related tasks. On the other hand, we would like to
point out that in order for the proposed framework to work effectively with

CHAPTER 3. PROBABILISTIC MODELS FOR MTL 36

respect to learning each task individually, there are some mild conditions
that need to be satisfied (refer to Chapter 2 for details):

o Task relatedness: Tasks should be related so that we can borrow in-
formation from each other when learn them jointly. If we use 0y to
denote the parameter of the k-th task’s prediction function, then it is
necessary that those K tasks should share the same input space (at
least partly) in order to have some common components in 6y’s.

e Number of related tasks: In order to have a reliable estimation of the
shared part, we need to have certain number of tasks in order to obtain
a reliable estimation of the shared components among those tasks.
Although the exact answer depends on the particular task domain,
in general we prefer to have more than five tasks to apply the joint
learning framework.

e Training resources of individual tasks: There are limited training re-
sources for those related tasks. Actually as the amount of available
resources grows, under regularity conditions some general principles
(Maximum Likelihood Estimator, Bayes Estimator, etc) for single-task
learning will lead to the same, asymptotic optimal solution. On the
other hand, the joint learning framework will benefit the most when
training resources are quite limited, due to the fact that the shared
components will be learned using all resources from K tasks.

However, it is expected that by controlling the model complexity of the
shared components, violations of some of the above conditions should not
significantly deteriorate the joint learning compared to individual learning. A
better question to ask is when is it appropriate to use which particular model
for multi-task learning, and this is essentially a model selection problem and
will be discussed in Chapter 8.

Chapter 4

Learning and Inference
Algorithms

The probabilistic framework for multi-task learning presented in Chapter 3
is a hierarchical Bayesian model [Gelman et al., 2003] as well as a latent
variable model |Everitt, 1984|. Compared to conventional latent variable
models such as factor analysis [Gorsuch, 1983] or independent component
analysis |Hyvarinen et al., 2001|, the key difference is that in multi-task
learning those 6}’s are not observed (latent) and have to be estimated from
the training data.

In this chapter we focus on the learning and inference algorithms for models
presented in Chapter 3. Generally speaking, given a probabilistic model we
can either use a full Bayesian approach, an empirical Bayes approach, or a
point estimation approach to learn the model. The full Bayesian approach
has the advantage of taking into consideration the uncertainties of parame-
ters using their posterior distributions, and does not suffer from the overfit-
ting problem. However it is computationally expensive and often intractable
for high-dimensional problems, and thus certain approximation algorithms
are necessary to apply it in realistic situations. The point estimation ap-
proach discards the uncertainty of parameters and just considers their point
estimations instead. By doing so it can be computationally very efficient, but
may suffer from overfitting. The empirical Bayes approach can be thought
as in-between of these two approaches, which incorporates the uncertainty
of the intermediate level parameters but tries to perform point estimation
for hyper-parameters.

We present algorithms for both the empirical Bayes approach and point

37

CHAPTER 4. LEARNING AND INFERENCE ALGORITHMS 38

estimation approach, with the former being able to capture the uncertainty
in the parameters while the later more suitable for high-dimensional tasks.
Here we focus on how to conduct learning and inference in the model shown
in equation (4.1):

0, = Asp+u+eg
sk~ p(.|)
e ~ Normal(0, V) (4.1)

classification:yZ(:) ~ Bernoulli(o(6%x (k)))

regression : yl(zk) ~ Norma|(0 Ek),02)

where o (t) = (1+exp(—t))~! is the standard logistic function, k = 1,2,..., K
is the task index and i, = 1,2,..., N} is the index of data instances for task
k. Superscript k£ on both x and y indicate the task that they are associated
with, i.e., we have D) = {(X;, ,yz(k)“v 1} as the training set for the k-th
task.

4.1 Empirical Bayes Approach

The upper level of the graphical model in Figure 3.1 captures the rela-
tions among tasks. We can use an empirical Bayes approach to learn the
parameters = {®, A, u, ¥} from the data while treating the variables
Z = {(Ok,sr)5_,} as hidden variables (and thus will integrate them out).
Because A and sj are always coupled together in our model, we have the
usual identifiability issue [Lehmann and Casella, 1998| in estimating those
parameters. In particular, to get around the un-identifiability caused by the
interaction between A and sj, we assume that ® is of standard parametric
form (e.g., zero mean and unit variance) and thus remove it from . The
goal is to learn point estimators A, [and U as well as obtain posterior
distributions over hidden variables given training data.

Given the training data D = DM UD® U...UDE) the log-likelihood of
incomplete data logp(D | Q2)! can be calculated by integrating out hidden
variables

S ol k k
> log / [T pe? 1%, 61)
k=1 =1

!Here for simplicity we just use p(D | 2) to denote the likelihood instead of conditioning
on input vectors.

CHAPTER 4. LEARNING AND INFERENCE ALGORITHMS 39

([p@1se u,w>p<sk|<1>>dsk> dok} (42)

for which the maximization over parameters Q@ = {A, p, U} involves two
complicated integrals on @ and si, respectively.

The integration over si will be easy if p(s;|®) is Gaussian (p(@k|sk, A, p, ¥)
is also Gaussian), otherwise approximation is needed. Furthermore, for clas-
sification tasks the likelihood function p(y|x, @) is typically non-exponential
and thus exact calculation becomes intractable. However, we can approx-
imate the solution by applying the Expectation Maximization (EM) algo-
rithm [Dempster et al., 1977] to decouple the maximization process into a
series of simpler E-steps and M-steps. In the EM formulation instead of
maximizing the log-likelihood of the observed data p(D |), we attempt
to maximize the expectation of the joint log-likelihood of both the observed
data and the hidden variables in the model E[logp(D, Z |)], where the
expectation is taken with respect to some distribution ¢(Z) over the hidden
variable Z. It is straightforward to show that this expectation is always
a lower bound of the incomplete data likelihood with equality holding if
4(Z) = p(Z | D, Q).

The EM algorithm for the empirical Bayes approach can be briefly stated as
follows:

1. E-step: Given the parameter Q=1 = {A u, U}!~! calculated from the
previous (t — 1)-th step, calculate the distribution of hidden variables
given Q=1 and D:

p(Z Q7 D) (4.3)

2. M-step: Maximize the expected log-likelihood of complete data (Z,D),
where the expectation is taken over the distribution of hidden variables
obtained in the E-step, and the maximization is done with respect to
Q:

O = argmngp(z‘Qtfl,D) [logp(D, Z | 2)]. (4.4)

4.1.1 M-step

We will begin with the M-step instead since it is easier than the E-step. The
log-likelihood of complete data can be written as follows:

logp(D, Z | Q)

CHAPTER 4. LEARNING AND INFERENCE ALGORITHMS 40

K
=) log H p(u [x.00) | p(Ok | 1, A, ©)p(syc | @)
k=1

tp=1

K
= > Zlogp (1, 65,) + 1og p(Bylsk, A, 1,) + log p(sy,|@)
k=1

Zk 1
(4.5)

and its expected value with respect to ¢(2) is:

E[logp(D, Z |)]

K [N .
= >4 > Elogp(uy | xiy, 64)] + Ellogp(B | s, A s,)] + Ellogp(sy | @)

k=1 | ir=1

(4.6)

The first and third terms in the curly bracket are the likelihood term for
classification /regression and source prior and do not depend on any of the
parameters) (since we assumed that p(s|®) is of standard form), and thus
can be dropped off in the M-step.

Consequently, the M-step can be simplified by maximizing the following
expectation with respect to the parameters to be estimated, namely A, p, ¥

K
argmax 3 Eflog p(6x | s, A, s, V)]
k=1
a 1 1
= argmaX;E [—5 log |27¥| — 5(01: — Asp —)T U0 — As —)
K
= argmin Z{log W[+ Tr (U Y(E[040F] + AE[ssi AT + pp”)
k=1
+ Tr (U (—2E[0ys] AT — 2E[0;]u” + 2AE[si]u”)) } (4.7)

where Tr(.) stands for the matrix trace operator that returns the sum of the
diagonal elements. Setting the derivative with respect to A to zero we get

S {2E[sis] AT — 2E[sepf] + 2Elsy]u”} = 0 (4.8)

CHAPTER 4. LEARNING AND INFERENCE ALGORITHMS 41
similarly for g we have

K
> {2p — 2E[64] + 2AE[s]} = 0 (4.9)
k=1

and for ¥ we have

K
1
Vo= > {E[0x6F] + AE[sps{ AT + pp”
k=1
— 2E[6;st]AT - 2E[04)p” + 2AE[si]pu” } (4.10)

Combining the last three equations we can solve them to get the final esti-
mations:

k=1 k=1 k=1
K | X K -1
X (Z Efsisi] — E(Z Els))(> E[Sk])T> (4.11)
k=1 k=1 k=1
K K K -1
po= (K - (Z E[Sk])T(Z E[sks}]) (Z E[Sk])>
k=1 k=1 k=1
K K K
(Xm0 - siod(Y met) o) a2
k=1 k=1 k=1

Since we assume ¥ to be a diagonal matrix it is only necessary to assign the
diagonal elements to \i', which can also be verified by directly considering
the constrained optimization problem. If we do not assume that we know
the parametric form of p(s|®) then we should also treat ® as an unknown
parameter and update it during the M-step as follows:
K

d = arg maxZE[logp(sk | ®)]. (4.13)

k=1
Below we consider the special case when g = 0, which can greatly simplify
the notation®. In this case,

K

K
A = OCEBsSIO Elsist)) ™
k=1

k=1

2This is usually fine as p’s functionality can be roughly contributed by one column of
A if there is one element of s; that is const across tasks.

CHAPTER 4. LEARNING AND INFERENCE ALGORITHMS 42

. 1 (K K .
v o= = (Z E[6:67] — (> E[Oka])AT) (4.14)
k=1

k=1

4.1.2 E-step

In the E-step we need to calculate posterior distribution p(Z | D,2), given
the parameter €) calculated in previous M-step. Essentially only the first and
second order moments matters in the E-step, namely: E[8}], E[si], E[0,0%],
E[ss]] and E[@;s]] are needed in the M-step.

However, the exact calculation is often intractable for several reasons. First,
p(sk|®) may not be Gaussian or may not even be within the exponen-
tial family; second, for classification tasks the likelihood function p(y|@,x)
does not belong to the exponential family and thus cannot be summa-
rized with finite sufficient statistics as data grows. Under such situations,
we need to come up with a easy-to-handle (e.g., belonging to the expo-
nential family) approximation ¢(Z) that minimizes some distance measure
Distance(p(Z|D,), q(Z)) between the true posterior p(Z|D, 2) and the ap-
proximate one ¢(Z), where common distance measures include Kullback-
Leibler (KL) divergence KL(p(Z|D,Q)||q¢(2)) and KL(q(2)||p(Z|D, 2)) (since

KL-divergence is asymmetric), which are defined as:

= x)lo M x
KLop@lae) = [pla)tog B0 (1.15)

Fortunately, the E-step for K tasks is decoupled given the parameter (2,
its calculation can be done by conducting inference on a separate graphical
model for each task, as shown in Figure 4.1.

Since the resulting task for the E-step is essentially inference in a graphi-
cal model. Inference can be carried out using general-purpose algorithms
like variational methods, belief propagation or expectation propagation, as
introduced in Chapter 2. For example, if we use Gaussian distributions to
approximate the posterior distributions p(6;|Q'~!, D) and p(s;|Q~!, D), one
particular choice of approximation criteria (actually EP only approximates
this goal) can lead to the following E-step in case of expectation propagation:

(B0, VIO]} ~ argminKL (p(0) | 1, D) || Normal(6;m, V)
m,

{E[s], V[sx]} =~ argrnr;’ig KL (p(sk | Q=1 D) || Normal(s; m, V))4.16)

CHAPTER 4. LEARNING AND INFERENCE ALGORITHMS 43

Sk - @ T

A
B
O':
i=1,..,N

Figure 4.1: Graphical Model for E-step Inference of Task k

For p(.) belonging to the exponential family it is well-known that minimiz-
ing KL-divergence is equivalent to moment matching [Minka, 2001]. If we
reverse the order in the KL-divergence to minimize KL(q||p) then we end
up using variational method for the approximate inference. For now we use
the variational method which is known to be more robust with guaranteed
convergence and often results in good quality approximations.

The basic idea of variational methods is to lower bound the log-likelihood
using Jensen’s inequality:

p(D,2)
q(2)

L =log p(D) = log/p(D,Z)dZ > /q(Z) log dZ20 (4.17)
where the inequality is due to the concavity of the logarithm function. The
RHS of the above equation is the objective we want to maximize in the
variational method, and ¢(Z) is usually taken to be within the exponen-
tial family so that it is easy to compute. It is straightforward to show that
maximizing this lower bound is equivalent to minimizing the KL-divergence
KL(¢(Z2)||p(Z|D)) and the calculated ¢(Z) can then be used as an approxi-
mation to the true posterior distribution p(Z|D, Q).

For simplicity we will omit the task index k in the following and simply de-
note the classification parameter vector as 6 and the hidden source vector as
s. Furthermore we also assume the ¢(s, 8) can be factorized in the following
form

q(s,0) = q(0)q(s) (4.18)

CHAPTER 4. LEARNING AND INFERENCE ALGORITHMS 44

This is often a reasonable simplifying assumption and allows us to do the
optimization iteratively. Furthermore we assume ¢(6) = Normal(mg, Vg) to
be a multivariate Gaussian distribution and ¢(s) = f(s|ms, I) which follows
some parametric distribution with mean mg and unit covariance matrix.

Note that Gaussian distribution is usually a good and convenient choice,
particularly considering the fact that we only need the first and second order
statistics in the M-step. Now we have

B o log PEIPOIS) T pil0.x1)
© = / / 4(0)q(s)log 20)q(s) 104

/q(s) [log% +/q(0) log p(Ols) quz(lez))(ylw’ Z)dt9 ds (4.19)

Although the posterior distribution ¢(s,) is assumed to be factorized, s and
0 are still coupled in above equation by the distribution p(@]s). In order to
tackle the problem we propose the following iterative algorithm to solve the
E-step, which optimizes ¢(s) and ¢(0) interchangeably:

1. Given ¢(s) = f(s|ms,I), the first term in equation (4.19) does not
involve ¢(@) and thus can be dropped off. The second term can also be
greatly simplified since only log p(0|s) involves s and it can be easily
integrated out due to the Gaussianity of 8 given s.

1
Eq@) [logp(0[s)] = Eye) [—5 log [2mW|]
1 _
+ Eyp) [—5(0 — As — ,u)T\I/ 1(0 — As — p)] (4.20)

As a result, we can obtain an estimate of ¢(6).

2. Given ¢(8) = Normal(8;mg, V), for similar reason the second term
in equation (4.19) can also be greatly simplified. That is, only the
term log p(@s) involves s and its expectation with respect to ¢(@) can
be written down. So the final objective function of the optimization
over ¢(s) composes of two terms: a cross entropy term and a quadratic
term which penalizes the distance between ¢(s) and E[6].

The detailed algorithm about the E-step is listed in Algorithm 1 for reference,
and we would like to comment on several things. First, we assume the form
of ¢(@) to be multivariate Gaussian, which is a reasonable choice especially

CHAPTER 4. LEARNING AND INFERENCE ALGORITHMS 45
Algorithm 1 An Iterative Algorithm for E-step
1. Initialize ¢(s) with some standard distribution, such as
H H
q(s) = H Normal(0,1) or H Laplace(0, 1). (4.21)

h=1 h=1

2. Calculate the expected value of s: Eg g [s].

3. Solve a Bayesian logistic/linear regression with a prior Normal(AE[s] +

@, V) on O (see later section for details):

q(@) «— argmax
9(0)

{/q(e) log Normal(6; AE[s] -I-ql(ﬁé)‘l’) T1Y, p(yil6, %)

4. Calculate the expected value of 6: E g, [0].

5. Update ¢(s):

«— argmax S o@—lr -1 T
q(s) g mas {/q() [l e 5Tr (¥ (E[067]))

d@}m)

— %Tr (T ((As + p)(As + p)T — 2E[0](As + u)T))} ds}(4.23)

6. Repeat steps 2-5 until convergence.

CHAPTER 4. LEARNING AND INFERENCE ALGORITHMS 46

considering the fact that only first and second moments are needed in the
M-step. Second, the prior choice of ¢(s) in step 3 is significant since for
each s we only have one associated “data point” 8. In particular using the
Laplace distribution will lead to a more sparse solution of E[s], and this
will be made more clear in the corresponding point estimation algorithm.
Finally, for sparsity models we could take the parametric form of ¢(s) to be
the product of Laplace distribution with unit variance but unknown mean,
where the fixed variance is intended to remove the unidentifiability issue
caused by the interaction between scales of s and A. Although using a
full covariance Gaussian for ¢(s) is another choice, again due to the un-
identifiability reason caused by rotations of s and A we could make it a
diagonal Gaussian. As a result, we argue that the product of Laplaces is
better than the product of Gaussians since it has the same parametric form
as the prior ¢(s), and the overall goal in step 5 is to estimate the distribution
mean mg = (Mq,...,mg).

In general we have ¢(s) = f(s|m) where m is the mean and ¢(s) is assumed
to have standard variance. For p(s) a Gaussian distribution Normal(0,I)
step 5 becomes

Y

m = argmin{m’m+m”AT¥'Am - 2m" ATU'E[g]}
m
= (IT+ATTA) T ATU RG] (4.24)

and for p(s) product of Laplace distributions Hthl Laplace(0,1) step 5 be-
comes

m = argmin {2||m||1 + 2Zexp(—|mf|)
+ m"ATU T Am - 2m" AT U 'E[9]} (4.25)

which need to be solved numerically. Note that similar to the sparsity prop-
erty of L norm, here we have when ||m||; is large the {; norm dominates
Z?Zl exp(—|my|) and thus the distribution mean achieves a more “sparse”
solution in terms of the mean, e.g., more mass is around zero. Later we will
show that for point estimation approach the sparsity property will be made
more clear.

4.1.3 Variational Method for Bayesian Logistic Regression

In the following we restrict our discussions to logistic regression as our base
classifier and present an algorithm for solving the Bayesian logistic regres-

CHAPTER 4. LEARNING AND INFERENCE ALGORITHMS 47

sion, which is used in step 3 of Algorithm 1. Algorithms for other proba-
bilistic classifiers can also be developed in principle. Our algorithm here is
based on the variational method originally proposed by Jaakkola and Jordan
[Jaakkola and Jordan, 1997|, which is an elegant algorithm that is guaran-
teed to converge, and experimentally it has been verified to be stable and
efficient.

Here we ignore the task index k as well. Given a Gaussian prior Normal(my, V)
over the parameter vector @ and a training set D = {(x1,91),--., (XN, YnN)},
we would like to obtain an approximation to the true posterior distribu-
tion p(@|D). In the following we essentially use an exponential function to
approximate the non-exponential likelihood function

1
T
1+ exp(—y0* x)

p(ylx,0) = (4.26)

which in turn makes the Bayes formula tractable.

Note that the function log(1/(1 + exp(—=z))) is a convex function in the
variable 22 (which can be verified by taking the second derivative with respect
to 22), we can use the first order Taylor series to expand at &2 with respect
to z2. Due to the concavity, we have the following inequality:

p(ylx,0) > o(€)exp {(yx"0 — €)/2 — ME((x70)* — %)}
2 pylx,6,¢) (4.27)

where o(z) = 1/(1 + exp(—2)) is the logistic function and A(§) is defined as
A(§) = tanh(£/2)/4€.

Our goal is to maximize the lower bound of

p(yl%) = / P(O)p(ylx, 0)d6 > / p(O)p(ylx.0.6)d8 (4.28)

In order to maximize the RHS lower bound [p(8)p(y|x, 8, £)d6, we formulate
an EM algorithm by treating & as the parameter in MLE and 6 as the hidden
variable, and the resulting steps are:

E—step: Q&) = E[log{p(0)p(ylx,0,€)} | x,y.¢']
M—step: & = arg msaX Q(&,¢h (4.29)

Since both terms in the expectation are exponential functions and the ex-
pectation is taken over a Gaussian distribution p(8|x,y,£?), the E-step can

CHAPTER 4. LEARNING AND INFERENCE ALGORITHMS 48

be actually be computed as:
(VH™ — v pan(eh)xxT
m' — VYV im+yx/2) (4.30)
where the superscript ¢ means the ¢-th step, and we assume p(6€) = Normal(6@; m, V).

Taking the derivative of Q(&,£!) with respect to € and setting it to zero leads
to:

gt = \/XTVtX+(XTmt)2. (4.31)

Although solving this EM can give us a good lower bound of the log likelihood
function p(y|x) = [p(0)p(y|x,0)d, it involves expensive matrix inverse cal-
culation in the E-step. Actually this EM procedure can be greatly simplified
by realizing the Woodbury formula [Golub and Loan, 1996|:

(A+BCT)™ = A —AT'BI+CTA'B) ' CTAL. (4.32)

The advantage of applying the Woodbury formula is that if both B and
C are low rank matrices, computing (I + CTA™'B)~! can be much more
efficient, which is exactly our case. By simplifying we can get the following
results as follows:

e E-step:
2X(§) T
\% \= Vx(V
- 14+ 2X()xTVx x(Vx)
2X(§)
t T
— Vv
mes o me gy 20(&)xTVx oo m
y y 2M¢) T
SVx — 2 Vv \% 4.33
VX T VR VX VX (439
e M-step: solving a one-dimensional fixed point equation iteratively (¢ =
xT'Vx)
&2 2)\(5) 2

T I 26"

n (XTm 2X(§) T

2
1T 2)\(£)ch m + %c - %L@g) (4.34)

1+ 2X(¢)c

Note the original EM steps is simplified to first compute a fixed-point so-
lution of a one-dimensional problem, then compute the E-step in one-shot.
Furthermore, in the computation of the E-step we do not need to calculate
the matrix inverse V~1 any more.

CHAPTER 4. LEARNING AND INFERENCE ALGORITHMS 49

4.1.4 Variational Method for High Dimensional Task

Although the computation of the above method is affordable for medium
scale problems (e.g., having several thousand features), the memory require-
ment and time complexity become unaffordable as the number of features
grows. For high dimensional tasks we have 8, € RF*! where F > 1. For
example, this could happen in text or image domain where the number of
features can easily go up to more than ten thousand. Given such a high
dimensional vector space, approximations using full covariance Gaussian dis-
tributions are no longer applicable due to both time and memory constraints.
In order to handle such cases we consider a fully factorized version of the
above variational method for which we have:

F
90r) = []a6ks) (4.35)
=1

This full factorization assumption is essentially equivalent to the assumption
that the approximating Gaussian distribution ¢(6y) has the following mean
and diagonal covariance matrix:

E@r] = (k1) pn(Orr))"
V(8y) = diag(c?(Or1),. .., (Or.F)) (4.36)

and thus for each individual component we have q(6 ;) = Normal(u(0y.;), 0% (0k ;).
This additional assumption reduces the memory complexity from quadratic

to linear in terms of F', the number of features. As a result the algorithm
could be very efficient and competitive with point estimation approach. Since

it is not clear how to construct a tight bound for fully factorizable approxi-
mation, we could use Laplace approximation method introduced in Chapter

2, by first obtaining the MAP estimate §MAF:

N

OMAP — argmin log(1 + exp(— ,~0Tx,~
g i {; g (—4:6" i)

1
+ log |27 V| + 5(0 —mg)" V(e - mo)} (4.37)
The update rule of step 3 in Algorithm 1 now becomes first solving the MAP

estimation of @4 and then finding the Laplace approximation using a fully
factorized multivariate Gaussian distribution.

CHAPTER 4. LEARNING AND INFERENCE ALGORITHMS 20

Algorithm 2 Iterative Algorithm for L; Regularized Problem
1. Given the optimization objective

W = argmin O(w) = argmin{w? Aw + b"w + \||w||;}
w w

2. Initialize w = 0 € RF*1,

3. Loop until convergence:

(a) Pick up a wy (can be sequentially or with other heuristics)

(b) - wy > 0:
Awj = —Arw —bs/2—-X/2
Ayy
wy «— max(0,wy + Awy)
-wyp < 0:

—Af.W — bf/2+)\/2

Ayy
wy <« min(0,ws + Awy)

Awy =

-w¢ = 0: Update ws only if |[Arw +b¢/2] > \/2
i P f y f f

—Af.W — bf/2 + sz’gn(—Af.W — bf/2)
Ars

Awy =

wf — Awf

CHAPTER 4. LEARNING AND INFERENCE ALGORITHMS ol

4.2 Point Estimation

In our model if we also treat Z as non-random but unknown parameters as
2, then we can obtain their MLE estimators. Unfortunately, in the following
we show that straightforward application of MLE to this generative model
without any constraint will lead to fully decoupled MLE estimations for each
individual task, and as a result the model fails to borrow information among
tasks. To see this, notice that for unconstrained MLE we have

{2, Qe = argmaxL(Z,9QD)
= argmax {p(D|2)p(Z|Q)} (4.38)

and the following solution obviously maximizes the above joint likelihood
L(Z,Q|D):

A=0, =0, ¥ — . (4.39)
In fact as long as the variance W goes to infinity, the models of K tasks will
be fully decoupled and thus this generative framework fails to capture the
relations among tasks. The failure of unconstrained MLE demonstrates the
importance of having a finite value W. Actually it is possible to assume ¥
to be fixed when optimizing other parameters while use cross-validation as
a wrapper to tune the optimal value of the diagonal elements of ¥. Given ¥
fixed, point estimations of the rest parameters become well-behaved. In Al-
gorithm 1 if we take a limiting case by letting both ¢(0) and ¢(s) converging
to the Dirac delta function, then step 3 can be thought as finding the MAP
estimation of @ and step 5 becomes the following optimization problem for
the case of Gaussian sources

g = argmin{m!mg+ mIATU ' Amg — 2mIAUIE[9]} (4.40)

and it becomes lasso-like optimization problem (mg denotes the point esti-
mation of s here) for the case of Laplace sources

g = argmin{2||mg||; + mIAT T Amg — 2mI AT E[6]}
mg
= argmin{O(ms) + |jms|[1} (4.41)
which can be solved numerically by Algorithm 2 below (note that the same

algorithm can be used to solve problems like lasso regression with slight
modification). The solution of this optimization is sparse in mg. This is a

CHAPTER 4. LEARNING AND INFERENCE ALGORITHMS 02

nice property since we would only like to consider hidden sources for which
the association with tasks are significantly supported by evidence.

Another way is to assign prior distributions over (some of) the parameters
A, pand ¥ and do a point estimation (e.g., MAP over Q):

{2,Q} « arg ng%{p(ﬂ)p(zlﬂ)pwlz)} (4.42)

Compared with MLE estimations, MAP has similar computational cost but
is usually better behaved due to its prior distribution, which can also be
thought as putting some regularization term log p(£2) over the parameter Q.

4.3 Summary

In this chapter we presented the algorithms of both empirical Bayes ap-
proach and point estimation approach for the generic probabilistic model of
multi-task learning. So far our choice of the inference algorithm for classi-
fication, variational method, is based on the facts that they are guaranteed
to converge and efficient for high dimensional problems. Also, we focused
on classification problems as regression problems can be solved in the same
procedure (but are much simpler). However, there are other general possi-
bilities like expectation propagation and sampling method which might be
more accurate for small-scaled tasks. Although the presented algorithms
do not solve all the task scenarios, this EM-based procedure can serve as
the basis for our later algorithms of other scenarios. One advantage of the
proposed probabilistic learning framework is that it provides a unified view
of those algorithms. Based on specific task domains, we could use the full
Bayesian approach, empirical Bayes approach or point estimation approach,
and tradeoffs among those algorithms are also clear.

Chapter 5

Sparsity Models for MTL

In this chapter we focus on multi-task learning scenarios which can lead to
sparse solutions, as we previously discussed in Chapter 3. In particular we
focus on two types of sparsity models' here: model that has sparse hidden
source s and model that has sparse linear mixing matrix A (e.g., sparse
basis). We show that they lead to different sparse solutions by reducing the
joint model complexity and improve the classification performance.

5.1 Sparsity Models

Sparsity is often observed in real applications, and it is a both theoretically
and practically desirable property. From the theoretical viewpoint, sparsity
can greatly reduce the model complexity; from the practical viewpoint it
reduces the storage and computation, especially for high-dimensional data.

As described in Chapter 3, there are two types of sparsity models that can
be achieved within our probabilistic framework:

e sparse linear combination of basis functions:

0, = As,+eg
H

Sk~ HLapIace(O,'y) (5.1)
h=1

er ~ Normal(0, V)

'Our joint feature selection method in Chapter 6 can be seen as the third type of
sparsity model.

93

CHAPTER 5. SPARSITY MODELS FOR MTL o4

where s will be sparse due to the Laplace prior if conducting point es-
timation to obtain §;. This is essentially assuming that each prediction
function f(*) is a sparse linear combination of basis classifiers.

e linear combination of sparse basis functions:

0, = Asp+e
sk~ p(sk|®)
F
Ay ~ H Laplace(0,) (5.2)
f=1

er ~ Normal(0, V)

where A j; denotes the h-th column of matrix A. In other words, we
assume that each column vector of A follows a sparse prior distribution.
By performing a point estimation A, this model will lead to a set of
sparse basis classifiers.

In summary, the first model is more appropriate when we believe that those
task prediction functions share the same set of basis, but each one is only a
combination of small number of them (relatively pure tasks); in the second
model we do not put restriction on how many bases are used, but instead
assume that each basis function is only represented by a few features.

5.2 Algorithms

We name the first typee of sparsity model Latent ICA (LICA), for the reason
that the generative model for ’s is very similar to the ICA model. For the
LICA, generic algorithms presented in Chapter 4 can be directly applied by
using product of Laplace distributions as the prior of sp’s.

Here we focus on the algorithm for the second type of sparsity, where each
prediction function is a linear combination of sparse basis functions. To
achieve the sparse solution for high-dimensional data like text, we will per-
form point estimation to obtain both §, and A. Similar to the algorithms
presented in Chapter 4, we need to propagate information from the known
(x’s and y’s) to the unknown (0y’s, sx’s and A) using some iterative proce-
dure. Note that particular attention needs to be paid to the estimation of
W. Essentially point estimation for the covariance matrix ¥ of e;’s is not

CHAPTER 5. SPARSITY MODELS FOR MTL 25

well-behaved, we instead restrict ¥ to take the form ¥ = AI in our algo-
rithm, and use cross-validation in an outer loop to tune the scalar parameter
A, just as people usually do in traditional single-task learning to tune the
regularization coefficient. Details are given in Algorithm 3.

5.3 Experiments

We show the experimental results of our models in multi-label text classifica-
tion and email anti-spam filtering. Since joint learning will be most effective
when we have limited training resources, in our experiments we evaluate the
model by varying the number of training instances.

The model we applied here for text classification is the one in equation
(5.1) where we use Laplace distribution to model the hidden source s. In
other words, we assume that the prediction function of each task is a sparse
linear combination of basis classifiers that are shared among all K tasks.
In the experiments of anti-spam E-mail filtering we explicitly divide the
contribution to “spam” into two components for each user: the common spam
component and the user-specific spam component. As a result, the multi-
task learning model we used is the model for the “noisy tasks” scenario with
sparse priors on both the g and ej. Details of the model can be found in
Chapter 3.

5.3.1 Multi-label Text Classification

With the rapid growth of the Internet in recent years, people are facing an
increasingly large amount of information, with the majority stored in an elec-
tronic form. As a natural result, how to automatically and selectively obtain
useful information becomes a very important research challenge. Among
various types of information, textual information is arguably the most im-
portant because it has a large volume and its processing is relatively easier
than other media types like audio and video so far. In the field of infor-
mation retrieval, text classification, the task of classifying natural language
documents into a pre-defined set of semantic categories, has become one of
the fundamental components for organizing information.

There exists a rich literature about text classification in the past several
decades, which provides valuable information about individual classification
methods as well as their empirical evaluation [Yang and Liu, 1999, Zhang and

CHAPTER 5. SPARSITY MODELS FOR MTL 06

Algorithm 3 Probabilistic Model for MTL with Sparse Components
Loop until convergence:

1. Learn ék given A and S computed in previous step (conditioned on A
and W, tasks parameters will decouple and can be estimated separately)
fork=1,...,K:

n
6. = argmax {Z log p(y™ |x{F), 64) +log p(6y | A, éw} (5.3)
k i=1

This is essentially equivalent to solving the regularized linear methods
for classification/regression, and we can apply any suitable optimiza-
tion algorithm such as conjugate gradient.

2. Learn §i given A and 6y, for k = 1,...,K:

S = arg max {logp(Ok | A,sk)} (5.4)

k

3. Update A given 8;’s and §j, (k=1,...,K):

K
A = argmax {Zlogp(ék | ASk) + logp(A)
A k=1
K A H F
= argmin D 0k — A8K)T(0r — ASp) +7D D |Agal p(5.5)
k=1 h=1f=1

where ~ controls how sparse the solution A is. Plugging in the prior of
A, it can be solved as a set of Lasso-style problems.

CHAPTER 5. SPARSITY MODELS FOR MTL o7

Oles, 2001, Zhang and Yang, 2003|. Although many of the text collections are
multi-labeled by their nature, most of the existing approaches will convert
the problem into a set of independent binary classification problems, one
for each category. Instead, here we treat multi-label text classification as a
multi-task learning problem, where each label corresponds to a task.

There are several benefits of treating the multi-label text classification as a
multi-task learning problem. First of all, it is more convenient that when
people label documents, they simultaneously classify the documents with
respect to all the categories at hand. This can also be verified from the
existing text classification collections. Second, those categories for a given
data collection are often related in both semantics and statistics. Third, it is
known that most of the categories in existing collections obey the Power Law
distribution [Yang et al., 2003|, which means that we are often facing the
situation that there are very limited training resources for most of the cate-
gories. And this is blessing for multi-task learning since multi-task learning
will be most effective under such situation.

For evaluation we often use the F1 measure instead of error rate due to the
fact that for text classification the number of positive and negative docu-
ments are often unbalanced and thus F1 is a better measure than error rate
which can be insensitive. Given a two-way contingency table

‘ ‘ positive ‘ negative ‘

predicted positive A B
predicted negative C D

Table 5.1: A Two-way Contingency Table

the precision p and recall r are defined as

B A
P = A7B
A
e W (5.6)

and F1 is defined based on precision and recall as

2
F1 = 2 (5.7)
p+r

Furthermore, we will also use the notation of macro-F1 and micro-F1 in
our experimental results. Macro-F1 is calculated by averaging over the F1

CHAPTER 5. SPARSITY MODELS FOR MTL o8

Reuters-21578
T

0.8

T
Il Individual
Il LICA

0.75 B

Macro-F1

50 100 200 500
Training Set Size

Figure 5.1: Multi-label Text Classification Results on Reuters-21578 (“Indi-
vidual” refers to the STL algorithm which is the regularized logistic regres-
sion; “LICA” is our MTL algorithm)

values of all categories; while micro-F1 is the F'1 value calculated by using the
contingency table whose cell values are summed over all the corresponding
cell values of every category’s contingency table. As a result, macro-F1 will
treat each category equally and thus dominated by small categories due to
the Power Law category distribution; while micro-F1 will be dominated by
large categories by nature.

5.3.1.1 Results on Reuters-21578

Reuters-21578 has been one of the most widely used benchmark collection
for evaluating text classification algorithms in the literature |Yang and Ped-
ersen, 1997, Yang and Liu, 1999, Zhang and Oles, 2001, Zhang and Yang,
2003|. We use a pre-processed version |Yang and Liu, 1999] which has ninety
categories. Our training and test split is based on the standard ModApt split
as commonly did in the literature.

CHAPTER 5. SPARSITY MODELS FOR MTL 29

Since multi-task learning will be most effective if correlations of tasks are
high, we choose nine categories out of its ninety categories (those categories
are corn, wheat, grain, ship, crude, interest, money-fz, dlr, nat-gas), which
is based on the fact that those categories are often correlated by previous
studies |Koller and Sahami, 1997|. In other words, the number of tasks for
this data collection is K = 9, as we treat each category as an individual task.
After stemming, stopword and rare word (words that happen less than three
times) removal, we get 3,358 unique features/words. We use the empirical
Bayes method in Chapter 4 to solve the problem, with Laplace priors over the
hidden sources s;’s, and furthermore we let H, the dimensionality of hidden
source sg, to be the same as K in this experiment. For this data collection we
only report the macro-F1 results because this corpus is relatively easy and
the micro-F1 results are very similar for both our model and the single-task
learning algorithm (which is the regularized logistic regression classifier).
Results in Figure 5.1 show that multi-task learning outperforms single task
learning, especially when the amount of training resources is limited.

5.3.1.2 Results on RCV1

RCV1 is the new Reuters corpus which was intended to consist of all and only
English language stories produced by Reuters journalists between August 20,
1996, and August 19, 1997. It consists of over 800,000 newswire stories that
have been manually coded using three category sets. In our experiments we
used the pre-processed version [Lewis et al., 2004] which is publicly available.
Since there are three taxonomies for the corpus, we use the TOPIC code
whose total number of categories K = 116 after taking into consideration
some intermediate level categories suggested in |Lewis et al., 2004|. We take
the standard training/test split for this collection as well. However, since the
test collection is huge (more than 700k documents), we randomly select 10k
as our test set in the following experiments. As in the previous experiment,
we take H = K in this experiment.

After some preprocessing, the total number of unique features of this data
collection is 47,236. Empirical Bayes method is not feasible here since the
input space is so high-dimensional that only the memory requirement to store
the covariance V[0] is O(F?), which is clearly not affordable. Instead we
take the point estimation approach, which reduces the memory requirement
to O(F). In Figure 5.2 the result “individual” is again obtained by using
regularized logistic regression for each category individually, and our model
with Laplace prior over hidden sources s;’s is estimated using the point

CHAPTER 5. SPARSITY MODELS FOR MTL 60

RCV1

T
Hl Individual
Il LICA

Micro-F1

100 200 500 1000
Training Set Size

Figure 5.2: Multi-label Text Classification Results on RCV1

estimation approach. For the RCV1 collection we only report Micro-F1, and
in fact we observed similar trend in Macro-F1 although values are much
lower due to the large number of rare categories.

The number of non-zero s elements indicates how sparse the solution is, e.g.,
how many of the basis classifiers are actually used to form the combined
classifier for each task parameter @5 in the joint learning framework. We
take one random training set with 100 examples and count the number of
non-zeros elements of s, for £ = 1,..., K. It turns out that maximum
number of non-zero elements is 5 (1 time), followed by 4 non-zero elements
5 times, 3 non-zero elements 76 times, 2 non-zero elements 30 times, and
finally 1 non-zero element 4 times. The detailed results are shown in Table
5.2.

CHAPTER 5. SPARSITY MODELS FOR MTL 61

| # of non-zero elements ins; [5]4] 3 | 2 | 1] total |
‘ frequency [1[5[76]30]4] 116 |

Table 5.2: Distribution of Number of Non-zero Elements in sy (training size
is 100)

5.3.2 Anti-Spam Filtering

Emails have become more and more important in people’s daily life and
the most important communication tool since the rapid growth of Internet.
However, as the growth of its popularity, people are suffering from receiving
“spam emails”, which greatly slow down the effectiveness of emails and be-
come quite annoying. As a result, anti-spam filtering has become a research
challenge during the last several years. Anti-spam filtering can in general
be treated as a binary classification problem by providing certain number of
training emails - emails that are labeled “spam” or “non-spam” by users.

A simple way to build an anti-spam filtering system is to train a classifier
for all users in the system based on the training data they provided, which
we name as “POOLED STL”. However, it is interesting to realize that users
might have different definitions of what is spam based on their preference,
although they do share a lot about the definition. This observation is espe-
cially important as we gather more and more judgments for a specific user,
since training a separate model for that user might be beneficial. On the
other hand, we usually have limited training resources for most of the users
in the system and thus training a separate model for each user may not be
wise especially considering the fact that users do share a lot on what is spam.

We treat the anti-spam filtering as a multi-task learning problem where each
user is defined as a task. The prediction function of each task is composed
of two parts: a common component and a task-specific component, as in the
“noisy tasks” scenario in Chapter 3. This method has the advantages of both
the individual learning and learning a single task using pooled data, since
all training resources are used for each user’s prediction while he still keeps
his specific component about what is a spam.

The email corpus we used in our experiments were collected at Carnegie Mel-
lon University. It contains personal emails from six users, and those emails
were collected in around 3 months (roughly from September 2003 to Novem-
ber 2003 and the exact time differs across six users). Emails were originally

CHAPTER 5. SPARSITY MODELS FOR MTL 62

classified into five categories with different priorities, namely “spam”, “what-
ever”, “keep”, “important”, and “wvery important”. Figure 5.3 shows some
corpus statistics about this email collection. In our anti-spam filtering ex-
periments we simply treat all emails labeled other than “spam” as belong
to a single “non-spam” category, and thus are able to formulate a binary
classification problem for this dataset.

Histogram of Emails
800 T T T T T T T

Hl spam (-1)
700 |- I whatever (0) —
[keep (1)

[important (2)

Hll very important (3)

600

500

400

300

Number of Emails in the Dataset

200

100

userl user2 user3 user4 user5 user6 Total

Figure 5.3: Email Corpus Statistics

From the figure we can see that even the spam populations are quite different
across users, with the percentage ranging from 4.23% to 81.56% in our data
set. The total number of labeled emails is around 2,300, and we randomly
sample 50% as the test set?, while the training set is sampled from the
remaining 50% randomly with varying size. The experimental results are
measured in F1 measure and shown in Figure 5.4.

In Figure 5.4 “MTL” refers our model for multi-task learning, “STL” refers
to single task learning and is done using regularized logistic regression for
each user, while “POOLED STL” is also performed by regularized logistic
regression by pooling all users’ training resources together. From the results
we can see that our model is more effective in terms of detecting spams, due
to the fact that it considers both the common factor as well as individual

?Here we did not consider the temporal information inside the emails for simplicity.

CHAPTER 5. SPARSITY MODELS FOR MTL 63

T
I VTL
st
0.95| | I POOLED STL 1

0.85r b

0.8 1

F1

0.75 1

0.7 b

0.65 1

0.6
5 10 20 50 100 all available

training size
Figure 5.4: Email Anti-Spam Filtering

specific factor. On the other hand, it is not surprising to see that “STL”
performs better as we get more and more training resources, while “POOLED
STL” is mostly effective when the training resource is quite limited. It is
important to have an anti-spam filtering system that works well for both
cases, since for an email system it is unusual to have every user annotate a
lot of “spam” emails, but meanwhile it is quite possible that a certain number
of users could be willing to label a lot of their emails in order to achieve a
better anti-spam filtering effect. The above experiment showed that with as
few as six users, we are able to achieve a better system using the proposed
multi-task learning framework.

It would be interesting to see what are the important features captured in
the shared component and what are the features that are more effective
for each individual user. To illustrate that, we rank the features based on
the absolute values of their corresponding parameter values. In Table 5.3
we show the results of the feature ranking® for further reference. From the
results we can see that all users getting spams with words like “vicodin”

3For privacy reasons we removed words that are related to person identification in the
list.

CHAPTER 5. SPARSITY MODELS FOR MTL 64
‘ rank ‘ shared ‘ userl ‘ user2 ‘ user3 ‘ user4 userb user6
1 campus left hi re: buy title http:
2 re: desk please you thanks campus thanks
3 hi put http: have question please re:
4 thanks yesterday course time protect hi qg
5 please hi play vicodin tickets inex please
6 you cheers original do agent participants free
7 vicodin school university me travel east kv
8 have meeting subject remember flight garage mwg
9 inex student schedule title http: work pm
10 participants | computer available convex know http: online

Table 5.3: Informative Features for Anti-Spam Filtering as MTL (features
are ranked based on their relative importance
absolute value of the corresponding parameter)

which is measured by the

and “inex”. User 6 is bothered about “free” and “online” things, while user
4 is probably involved with booking tickets (and those are showed as most
informative features for non-spams).

5.4 Summary

We considered two types of sparsity models for multi-task learning within our
framework, and conducted experiments on several text classification bench-
mark collections and one email corpus. The results show that our models
outperform the single-task learning methods especially when the training re-
source for each individual task is limited, which often appears in practice.
Furthermore, we verified that our models are able to achieve the claimed
sparsity property.

Chapter 6

Joint Feature Selection!

Besides achieving better generalization performance in supervised learning
problems, multi-task learning can also contribute to other important sta-
tistical machine learning problems such as feature/variable selection?. In
this chapter we formulate the feature selection problem under the multi-task
learning setting, which can be seen to naturally generalize the traditional
feature selection problem in the single-task learning setting. We develop al-
gorithms which are able to identify features that are relevant to all (or most)
of the tasks and our primary goal is to show that the proposed method for
multi-task feature selection can be more effective than traditional feature
selection when tasks share the same subset of relevant features.

6.1 Introduction

Given a set of input variables (a.k.a. predictors, features) X1, Xo,..., Xp,
the objective of feature/variable selection is to select a subset of features R =
(ri,72,...,7m) C {1,2,..., F'} that are relevant and/or informative. Here

relevance is often defined with certain applications in mind. For example,
in the context of classification and regression, it usually means relevant to
the response variable Y; while in an unsupervised learning setting such as

! An alternative name would be “Feature Selection for Multi-Task Learning”.

?Here we use the phrase “feature selection” and “variable selection” interchangeably, as
they do not differ much in our setting. Strictly speaking, feature selection is more general
in the sense that each feature can possibly be a function of several variables. We assume
that each input variable is a feature throughout this chapter.

65

CHAPTER 6. JOINT FEATURE SELECTION 66

density estimation, it could mean relevant to the probability density or mass
function (in other words, densities change the most along relevant feature
dimensions). In statistical language, most of the cases can be approximately
summarized through the concept of independence:

supervised: fY| X, Xo, ..., Xp) = f(Y X0y, Xigy oo, X))

I Tm

unsupervised: f(X1, Xo,..., Xp) < f(Xp, Xy oo, Xi)) (6.1)
Feature selection has been an important problem in statistics |Tibshirani,
1996, Hastie et al., 2001] and machine learning [Blum and Langley, 1997,
Yang and Pedersen, 1997, Liu and Setiono, 1998|] for many years and is also
“variable selection”, “dimensionality reduction” in other slightly
different context. Techniques for feature selection can contribute in several

known as
ways, such as:

e obtaining better predictive power
e achieving efficiency in (future) computation and storage

e providing better interpretability and scientific discovery

There have been many feature selection methods developed during the past,
and they can be roughly categorized into filter-based methods and wrapper-
based methods, see [Guyon and Elisseeff, 2003| for a recent survey. In the
former, feature selection is done by ranking features by correlation coeffi-
cients or other criteria with respect to response variables; while in the latter
subsets of features are assessed in a wrapper (such as lasso or SVM) accord-
ing to their usefulness to some response variables. Generally speaking, filter-
based methods treat features independently and thus are easier to conduct
and more efficient; wrapper-based methods are computationally expensive
but more accurate. In this chapter we will focus on wrapper-based methods
since they do not assume features are independent and provide principled
and elegant solutions which are often better than those offered by filter-based
methods [Guyon and Elisseeff, 2003].

6.2 Outline of Feature Selection for STL

Starting with a training set

D = {(x1,y1), (x2,92), ..., (Xn,yn) } (6.2)

CHAPTER 6. JOINT FEATURE SELECTION 67

where x € X and y €), the standard supervised learning problem tries to
find an estimate f of the function mapping f : X +—). Here our focus is
to conduct variable selection in the original feature space, and we limit our
discussion to linear prediction functions such that X = Rf*! and f(x) =
(6,x) where (.,.) denotes the inner product operation. It is assumed that
non-linear feature mapping can be applied in the pre-processing step if the
goal is to select features which are known functions of the original set of
variables.

Equipped with any regularized linear method [Zhang and Oles, 2001, Zhang
and Yang, 2003| as our wrapper, the above estimation problem can be con-
verted into the following optimization problem:

N
6= argomin {Z L(y;, (0,%;)) +)\Q(G)} (6.3)
i=1

where 8 € RF*! indexes the prediction function f(x) = (0,x), x; € RF*! is
the i-th input data vector, L(,.,) is some convex loss function for regression
or classification, (@) here is the penalty function which can be thought
as a measure of the model complexity, and A € RT is the regularization
coefficient which controls the trade-off between the empirical loss and the
model complexity. Finally note that although we mostly use the square loss

L(y, (0,x)) = (y — (6,x))* (6.4)

for regression tasks and the logistic loss

L(y, (8,x)) = log(1 + exp(—y(0,x))) (6.5)

for classification tasks in the rest of the chapter, in general other choices of
convex loss functions can be easily plugged into the framework, such as the
absolute error loss for regression, or the hinge loss for classification.

Ideally we would like to perform automatic model selection by selecting vari-
ables using the Iy regularization, e.g. penalize |[0]]o = >_,1(0y # 0). Due
to its intrinsic non-smoothness, the computation of lp-norm is notorious and
known to be NP-hard [Amaldi and Kann, 1998]. As a surrogate, people
have used convex approximations to the [y regularization |Tibshirani, 1996,
Weston et al., 2003].

The most popular choices of the penalty function are Iy and [; regulariza-
tions: Q(0) = ||0]|2 and (0) = ||0||;. However, it is well-known that when

CHAPTER 6. JOINT FEATURE SELECTION 68

Q(0) takes the form of I; regularization, the resulting estimator 6 will be
sparse and thus achieves an effect of variable selection as a wrapper method
|Tibshirani, 1996, Hastie et al., 2001]. On the other hand, Iy regulariza-
tion has the property of rotation invariance [Ng, 2004] and thus is often not
recommended for the purpose of feature selection.

In particular, equation (6.3) becomes the famous lasso algorithm [Tibshirani,
1996] when L(,.,) takes the form of the square loss and (@) is set to the
l1-norm:

N

F
O10550(N) = argomin z:(yZ —(0,x,))? +)\Z 6] (6.6)
i=1 f=1

where we explicitly emphasize that élasso()\) as a function of \. We are able
to achieve different degree of sparsity by varying the value of A. Actually
when 9la850(0) is equivalent to least-square solution, and when 9la850(oo) =
0. Another way to look at this is to notice that equation (6.6) is mathemat-
ically equivalent [Luenberger, 2003, Boyd and Vandenberghe, 2004] to

ming 355, (v — (0,%:))?
subject to: ZJIZ;I 0 < A (6.7)

where each A corresponds to a positive value A. Geometrically, the diamond-
shaped constraint in (6.3) results in the effect that many éf elements may
be exactly zero. Furthermore, the number of zero elements in 9lasso will
go up as we increase A\ (decrease A). As a result, feature selection can be
automatically conducted while conducting the optimization in equation (6.6)
or (6.7).

CHAPTER 6. JOINT FEATURE SELECTION 69

600

500 *-

w £
=] o
(=] =]
T T
s
A

of non-zero elements in 8
N
o
o
T
*

100 N

Figure 6.1: An example: # of non-zero elements versus A

To illustrate how to conduct feature selection using the above wrapper-based
method, we give an example in text classification. We use the Reuters-21578
data set [Yang and Liu, 1999 for this purpose, and the experiment is designed
to classify whether documents belong to the “earn” category or not. The loss
function is taken to be the logistic loss, and we use different A values for
training. Figure 6.1 plots the number of nonzero elements in 6 versus A. We
can see that as we increase)\, we are able to achieve more sparse results.
Table 6.1 lists the ranked list of remaining features when A = 100 (there are
only 10 features left in this case), where the ranking is based on the absolute
value |6y

Finally, note that the recently developed least angle regression (LARS)
[Efron et al., 2004] is an interesting idea which can find all the solutions
élasso()\) for all A values very efficiently, and similar idea has been extended
to the SVM method [Hastie et al., 2004].

6.3 Joint Feature Selection for MTL

Our primary interest is how to conduct effective feature selection under the
multi-task learning setting, which we will also call joint feature selection.
The key question is: Given K prediction tasks that are related, can we
perform feature selection in a more effective way? The answer, of course,
again depends on the underlying assumption about the relatedness of the

CHAPTER 6. JOINT FEATURE SELECTION 70

‘ rank ‘ feature ‘ 6] ‘ rank ‘ feature ‘ 6] ‘
1 cts 2.49 6 dividend | 0.78
2 net 1.69 7 earnings | 0.37
3 shr 1.05 8 loss 0.17
4 profit 1.04 9 pct 0.12
5 record | 0.99 10 | company | 0.07

Table 6.1: An example: selected 10 features when A = 100.0 (data set:
Reuters-21578, category: earn)

tasks. Here we take the most natural one: tasks share the same subset of
relevant features. We show that when this is the case, suitable models can
be designed to take that piece of information (the existence of a subset of
joint relevant features) into consideration, and thus have an advantage over
traditional methods which select features for each task in a separate manner.

Formally, suppose we have K prediction tasks associated with K datasets

respectively:
) (1
DO = (=M, xD W)y
L (6.8)
K) (K
DE) = () xB), yyy
where Xz(k) = (x§ﬁ>,$§f3), e ,xz(kz;)T € RF>*1 It is assumed that there ex-

ists a subset R = {ry,r9,... ,7'7m} C {1,2,...,F} such that the functional
mappings f®)’s can be written as

f(k)(x) = f(k)($1,$2,...,l'F) = f(k)(:nrl,xTz,...,a?Tm). (6.9)

e.g. p(y|x) does not depend on the irrelevant dimensions Z = {1,2,..., F}\R.

Generally speaking, joint feature selection could be useful in the following
ways:

1. to more accurately identify relevant features, especially when the num-
ber of tasks is large and the number of training instances per task is
small;

2. to get a more efficient joint representation across all tasks;

CHAPTER 6. JOINT FEATURE SELECTION 71

As a result, models for multi-task feature selection should also be evaluated
accordingly.

To utilize the shared information among tasks, we can formulate the problem
within the regularization learning framework as follows:

K N
0, OK:argmln{ZZL , (O, ()>)+)\Q(01,...,0K)} (6.10)

0.,..0k \k=1i=1
where Q(01,...,0k) is some penalty function which measures the model
complexity for all K functions simultaneously. More importantly, Q(01,...,0k)

could impose coupling information between ; and 6; which is essentially
used to model the task relatedness.

Similar to the single-task learning case, there are several special cases of €.
In particular, when

M=

K
Q6:,...,0K) =)

%3 (6.11)
k=1 f=1
or
K F
Q61,...,0K)=>_ > 07, (6.12)
k=1 f=1

equation (6.10) decouples among K tasks and thus it is equivalent to learn
each task separately with respect to l; or ly regularization. Furthermore,
when [y regularization is taken, a more general quadratic form can be ob-
tained by applying [Evgeniou et al., 2005]

0,

02
(61,02, ...,0x) = (61,03,...,0)D | (6.13)

Ok
with properly chosen matrix D € REFXKF that can be used to specify
how those task parameters should be co-regularized (or equivalently, how
prior knowledge about those task parameters are correlated in the Bayesian

setting). Also notice that setting D to diagonal matrix AI recovers the
previous special case.

CHAPTER 6. JOINT FEATURE SELECTION 72

6.3.1 [, ol, Regularization

In practical applications, often only a small subset of features are rele-
vant/informative to all K prediction tasks. We would like to obtain a sparse
solution in terms of 6, ;’s, especially when the cardinality of the set of infor-
mative/relevant features |R| = [{r1,72,...,7n}| = m is much smaller than
the total number of features, e.g., m < F.

Now, for the joint feature selection problem of multi-task learning, we use
the following penalty function:

F
Q(6,,...,0K) = Zs%pwm. (6.14)
f=1

We name equation (6.14) the “lj o o, regularization”, which comes from the
fact that if we let ® € RFF*K

9171 9271 ... 9[(71

6’172 6’272 - 9[(72
®=(0,0,...,0K)= . . . (6.15)

917}:‘ 6’27F 9K7F

to be the parameter matrix, then the penalty function €(.) first does lo
regularization for each row, and then it performs [y regularization over the
resulting elements. In the following we will also use the notation supy, |0k, f| =
110 ¢||oc Where @ 5 = (61,02¢,...,0k) € RP™E to represent the param-
eter vector of the f-th feature across all K tasks. Just like the reason why
Iy regularization leads to sparse solutions, the above formulation leads to
sparse solutions across all the tasks.

Intuitively, if some feature is significantly relevant to at least one task, it will
be selected; otherwise it is likely to be eliminated by having 6’A17f =...=
éK7f = 0. Similar intuition of taking the maximum value across different
tasks have been used |Yang and Pedersen, 1997| in the setting of filter-
based methods such as information gain [Cover and Thomas, 1991|, mutual
information |Cover and Thomas, 1991] and x?-statistics |Yang and Pedersen,
1997, Wasserman, 2005].

6.3.2 Relaxation to [, o[, Regularization

It is obvious that the assumption “all tasks share the same subset of relevant
features” is restrictive. One way to relax the assumption is to assume that

CHAPTER 6. JOINT FEATURE SELECTION 73

each relevant feature is shared by many of the tasks, if not all. Notice that
in previous model we have Q(01,...,0k) = Ef supy, |0k, |, the penalization
on the f-th feature is decided by supy, |0k, |, which in turn is contributed
to by exactly one of the K tasks by taking the supremum. This could be
appropriate if all tasks share the relevant feature, but less so if only some
of tasks share it as relevant. On the other hand, we observe that the [y
regularization will penalize), |0y ¢| which is contributed to by every task
with the essentially same weight. To remove such a restrictive assumption,
we can instead let ©(.) to be the more general form

F
Q61,...,05) =D 116 ¢l (6.16)
f=1

with 1 <p < oo, where ||x]|, is the [,-norm and defined as

1/p
|x|lp = (Z\xi1p> : (6.17)

We name this regularization the [y 0l, regularization. When p lies in the range
(1,00), the above formulation also considers the joint selection effect but in
a less rigorous way as the [] ol regularization. Finally, this formulation can
be seen as a generalization of the lasso algorithm to the multi-task learning
setting no matter what p’s value is. To see this, note that when K = 1,
based on equation (6.16) we have

F F
Q61) =D _110.fllp =D [014]. (6.18)
f=1 f=1

6.3.3 Numerical Algorithm

All above methods (including our baseline, the [; regularized method for
single-task learning) need to solve the following optimization problem

01,...0k = argminODY, ... D)0, ... 0k)

0., .0k
K Ng

F
= argmin { Y S LM, (05, x") + A3 16,41l ((6.19)

0.0k | k=1i=1 F=1

CHAPTER 6. JOINT FEATURE SELECTION 74

with 1 < p < o0, When p > 1, 0,’s (k=1,...,K) will be coupled together
and the optimization problem needs to be solved in a joint manner.

We take the coordinate descent approach by modification of the Gauss Seidel
algorithm used in |Zhang and Oles, 2001|, where in every step we only focus
on a single variable 6 ; and make sure that its change from

Ok,f — Orp+0 (6.20)

will monotonically decrease the objective in equation (6.19). Having this
monotonicity property is elegant as we would easily stop whenever the accu-
racy suffices our application (such as when the maximum value of d;, ; in one
iteration is less than le — 6, or the relative change of loss O is small enough).
For each coordinate, a quadratic trust-region |Nocedal and Wright, 1999|
is formed so that it uniformly upper bounds the Hessian of the objective
around the current position. The pseudo code is listed in Algorithm 4 for
reference.

6.4 Experiments

In our experiments we first illustrate the effectiveness of the proposed feature
selection methods for multi-task learning by using simulated data sets. Re-
sults on /j ol and [; ol, will be compared to lasso under different settings,
and then we show empirically the relation between the number of tasks and
effective sample size. Finally, we also evaluate its performance in terms of
classification performance.

6.4.1 Results on Feature Selection

In order to verify the claimed theoretical properties of our methods, we will
conduct some experiments using simulated data. One of the main purposes
of our experiments is to verify that when multiple tasks share a small sub-
set of relevant features, whether our method can more accurately select the
subset of relevant features (compared to its corresponding single-task feature
selection method). To conduct the experiments, we generate a dataset for
regression tasks with respect to squared loss L(y;, f(x;)) = (y; — f(x:))?, as
shown in Figure 6.2. Note that we only assume features 1,2,..., R out of

*Due to boundary problems, we treat p = 1 and p = oo separately from 1 < p < oo in
our implementation. Both special cases can be solved more easily in similar way.

CHAPTER 6. JOINT FEATURE SELECTION 75

Algorithm 4 Pseudo-code for l; o[, regularized algorithm

1. Let 8, =0 (k=1,2,...,K), and loop steps 2-5 until convergence

2. Pick up a parameter 6 ; (in certain order or random), and define
O(8) = M Ly, (0, xY) + 8]y and a = 3y 100 [P

3. Ifa=0 (Pg 017f =...= Ok_l,f = ek—l—l,f =...= 9K7f = 0)
(a) if Hk,f =0and ’80/8(5’ > A

5:m(5in{(’)((5) + 8]} (6.21)

(b) if 6r # 0:

5= min OW) + N+ +6 6.22
6e[—|ek,f|7|ek,fn{ () + Mbs + 91} (6.22)

4. If a > 0:

§ = -n{O(a) + Ma+ |9k,f+5|¥’)1/p} (6.23)

8:

5. Update 0 5 < O ¢ +6

Note: equations 6.21-6.23 are solved using quadratic trust-region method
where the actual quadratic form (depends on the form of loss function L(.,.))
15 taken to be the upper bound of the Hessian.

CHAPTER 6. JOINT FEATURE SELECTION 76

F total number of features are relevant while the rest features are just ran-
dom, irrelevant noise. We compare how effective different feature selection
methods are in terms of identifying this small subset of relevant features.

We evaluate methods based on the precision and recall of feature selection,
similar to those used in information retrieval:

of correctly predicted nonzero éj’s

precision = - —
of totally predicted nonzero 6;’s
_ |RNR|
|R|
ecall # of correctly predicted nonzero 6;’s
I =

of nonzero 0;’s

IRN R
= (6.24)
|R|

where R denotes the set of predicted nonzero features. Ideally we have
precision = 1.0 and recall = |R|/|R| when |R| < |R| and precision = |R|/|R|
and recall = 1.0 otherwise.

CHAPTER 6. JOINT FEATURE SELECTION 7

1. Set the number of relevant features be R = 10, the total number of
features be F' = 100, and the number of tasks be K = 20.

2. Generate x; € RF*! ~ Normal(0,1) for i = 1,2,...,100.

3. Generate K number of tasks, for the k-th task we generate

9((]’“) ~ Normal(0,1)
HJ(.k) ~ Normal(0,1), j=1,2,...,R (6.25)

That is, we only assume that R = 10 features out of F' = 100 features
are actually relevant.

4. Finally, for each task we generate

R
ygk) ~ Normal(@ék) + ZGJ(»k)a:m, 1) (6.26)
j=1
for ¢ =1,2,...,100 as response variables for the regression tasks.

Figure 6.2: Generation process of a synthetic dataset

6.4.1.1 Effectiveness of [; o [, regularization

In our first experiment, we would like to compare our algorithm [; o [, to
lasso (which is a special case of our algorithm when K = 1) which applies
to each task individually. Since the numerical value of A for lasso and the
l1 o lo regularization method are not directly comparable, we control the
total number of nonzero éj’s by varying the regularization parameter A. For
lasso it is taken to be the average over K = 20 tasks; and for the l; ol
regularization method it is the number of nonzero supy |0k |'s. The top
graph in Figure 6.3 shows the result of a typical run as we vary A, which
clearly illustrates the advantage of the l; o [regularization method over
lasso when the assumption holds.

As we mentioned earlier, the assumption that all tasks share the same subset
of features Xp = {X,,, Xy, ..., X, } is restrictive. A more realistic assump-
tion is that relevant features have significant overlaps across tasks. To study

CHAPTER 6. JOINT FEATURE SELECTION 78

the robustness of the /1 o [regularization and later the more general [o1,
regularization method, we re-generate a simulated data set. The generation
is similar to that in Figure 6.2 except that we only assume the first £k < R
features are shared among all tasks, while each task has the remaining R —k
relevant features randomly generated from indices k£ +1,...,100. By choos-
ing different values of k = 1,...,10, we are able to measure how robust the
method is with respect to the underlying assumption. The bottom graph in
Figure 6.3 shows that the results of the [1 ol regularization method is not
robust (sensitive to the assumption).

6.4.1.2 Effectiveness of [; o[, regularization

As pointed out earlier, the assumption that all tasks share the same subset of
relevant features is clearly restricting. Often when we find a good application
of multi-task learning, the reality is that relevant features are shared by
many of the tasks. We would like to investigate how the relaxed model,
the [; o [, regularization method (for general 1 < p < oo) performs when
the assumption is violated, and compare it to the methods with p = 1 and
P = 00.

CHAPTER 6. JOINT FEATURE SELECTION 79

number of correct nonzero 3

16 I1 regularization (lasso) |
o1 L= |, regularization (mtl lasso)
2 3 1 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90 100
number of predicted nonzero 3
10
9r 4

number of correct nonzero 3
(6]
.

4t 4
3r 4
2r 4
1 I1 regularization (lasso) |
o1 L= |, regularization (mtl lasso)
C'z\ 1 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90 100

number of predicted nonzero 3

Figure 6.3: Top: Effectiveness of Lasso vs. MTL Lasso on Simulated Re-
gression Dataset (This is a typical run. In the setting of K = 20 tasks,
the [y o 5 regularized method always correctly predicts all nonzero 6’s in
all 10 runs. E.g., they all have the same piecewise linear curve as shown in
the above graph.); Bottom: effectiveness when assumption does not strictly
hold (k = 8)

CHAPTER 6. JOINT FEATURE SELECTION 80

1. Set the number of relevant features be R = 10, the total number of
features be F' = 100, and the number of tasks be K = 20.

2. Generate x; € RF*! ~ Normal(0,1) for i = 1,2,...,100.

3. Generate K number of tasks, for the k-th task we generate

Hék) ~ Normal(0,1)

6’](.]“) ~ rNormal(0,1) + (1 —r)do, j=1,2,..., R (6.27)
w _ RU-7m 100 - 2R+ Rr _
0, 00 = orma 0,1) + 100—-R oo, J=R+1,...,

The main motivation of the design is to make sure that on average we
have R = 10 features out of F' = 100 features are actually relevant.

4. Finally, for each task we generate

F
y? ~ Normal (65 + 57 6%z 5, 1) (6.28)
j=1
for ¢ =1,2,...,100 as response variables for the regression tasks.

Figure 6.4: Generation process of synthetic dataset-2

To conduct such an investigation, in Figure 6.4 we use a modified algorithm
of Figure 6.2 to generate the task parameters and data set. For the k-th task,
Bj ~ Normal(0, 1) with probability and equals 0 with probability 1 —r, for
j=1,...,R; Bj ~ Normal(0,1) with probability R(1 —r)/(100 — R) and
equals 0 otherwise, for j = R+ 1,..., F. Clearly when » = 1.0 this repeats
the algorithm in Figure 6.2, and when r < 1.0 it relaxes the assumption,
but the expected number of relevant features per task still remains R = 10.
In Figure 6.5 we generate simulated data by using r = 0.8 and compare [y,
l1 ols and [y o[, for finite p value. Results show that the [o [, method
suffers a lot from the fact that the assumption does not hold, while the /; o1,
method is much more robust (after all, it converges to lasso as p — 1).

6.4.1.3 Number of tasks vs. effective sample size

One way to understand why multi-task learning can help feature selection is
to view from the aspect of effective sample size. That is, training examples

CHAPTER 6. JOINT FEATURE SELECTION

12

10 B

number of correct nonzero 3
o
T
L

|l regularization (lasso)

e |l -1, regularization (mtl lasso)

Gf L L L L I I I I I

0 10 20 30 40 50 60 70 80 90 100
number of predicted nonzero

12

number of correct nonzero 3

—+ | regularization (lasso)
I1 - Ip regularization (p=1.1)

—o—

2 I I I I ! T T T T
0 10 20 30 40 50 60 70 80 90 100

number of predicted nonzero

Figure 6.5: I} — lo and l; — [, regularization (relaxed assumption)

81

CHAPTER 6. JOINT FEATURE SELECTION 82

from other tasks can also contribute to the “effective” number of training
examples for one particular task when tasks are related. Here we conduct
experiments on simulated data to verify such theoretical claims. The ex-
periment for single-task feature selection is the same as before except that
we vary the number of training examples, from 100 to 1000. For multi-task
feature selection we vary K - the number of tasks - from 1 to 20 instead,
where each task has 100 training examples as before. Again, models are com-
pared by requiring that they achieve the same accuracy of feature selection,
and again this is achieved by tuning the regularization parameter A for each
method until they predict exactly 10 non-zero (3’s (that is, at the recall level
10). To make the problem more difficult, we set F' = 1000 instead of 100,
e.g. only 1% of the total features are actually relevant. Both the dataset
and parameters are sampled 20 times according to Figure 6.2 and results are
reported in Figure 6.6.

By comparing both graphs in Figure 6.6 we can see that when tasks are
related, having additional tasks can significantly contribute to the accuracy
of feature selection, in pretty much the same way as we increase the sample
size for single-task learning®. This result further supports the effectiveness
of the proposed joint feature selection method.

6.4.1.4 Summary

We conducted several experiments on several simulated datasets to show the
effectiveness of the our approaches. Under the assumption that all tasks
share the same set of relevant features, the proposed [; ol regularization
method works very well, as shown in Figure 6.2. Furthermore, the experi-
ments in Figure 6.6 clearly indicate its strength compared to having a larger
sample size in the single-task learning setting. When the assumption is vi-
olated, especially when relevant features are shared by many (but not all)
tasks, we demonstrate that using the [; ol, regularization approach can work
better due to its less rigid assumption.

Furthermore, we also conducted simulated experiments for classification tasks
with a similar procedure described as above. Specifically, the generation of

*Note that the simulation results depend quantitatively on the signal/noise ratio in our
experiments.

CHAPTER 6. JOINT FEATURE SELECTION 83

accuracy of feature selection

0.55 B

! ! ! ! ! ! ! !

05
100 200 300 400 500 600 700 800 900 1000
number of training examples

accuracy of feature selection

05 L L L L L L L L L
2 4 6 8 10 12 14 16 18 20

number of tasks

Figure 6.6: Top: accuracy of feature selection (at recall level 10) versus
number of training examples in [y regularized lasso; Bottom: accuracy of
feature selection (at recall level 10) versus number of tasks in I; o [o regu-
larized method

CHAPTER 6. JOINT FEATURE SELECTION 84

response variables in Figure 6.2 is replaced by

10
yz.(k) ~ Bernoulli N(H(()k) + 26’§k)xi,j) (6.29)
=1

and square loss is replaced by logistic loss during the learning, where p(t) =
(1+exp(—t))~!is the sigmoid function. We do not report the results for clas-
sification tasks here since they show very similar patterns to the regression
case and do not provide more insights.

6.4.2 Results on Handwritten Digits Recognition

In this experiment we investigate our proposed methods for the handwritten
digits recognition problem. The dataset we used is a subset of the MNIST
which contains 60,000 training images and 10,000 testing images. Each digit
(0-9) is represented in a matrix of 28 x 28 pixels. In our preprocessing
we make each pixel a binary value representing white or black, and extract
features based on 4 x 4 shaped square patterns similar to those used in [Ando
and Zhang, 2004] . After preprocessing, each digit is represented as a vector
with around nine thousand features.

\ P | 10 [1001] 101 | 1.1 [15 | 50 |
| error rate | 0.1410 | 0.1238 [0.1266 | 0.1328 | 0.1286 | 0.141 |

Table 6.2: Results on Handwritten Digits Recognition

Since there are 10 digits (0-9) in our experiments, we could treat it as a multi-
task learning problem with K = 10 where each task is a binary classification
problem with respect to a particular digit. In the experiments we examine
the effectiveness of our methods by using small number of features (100
features in our case). Given a set of candidate features described as above,
we can tune A to select a subset of features for each learning algorithm.
Results are shown in Table 6.2, which show that we can benefit in terms of
predictive power by using p > 1.0, which in turn implies that there is certain
amount of information shared (in terms of relevant features) among the ten
prediction tasks we study.

CHAPTER 6. JOINT FEATURE SELECTION 85
6.5 Summary

In this chapter we propose a new approach for feature selection in the multi-
task learning setting, where the goal is to select a joint subset of features
that are relevant to multiple prediction tasks. We use a wrapper-based ap-
proach by introducing the l; o o, regularization that penalizes the overall
model complexity and naturally imposes parameter sparsity across all tasks,
and show that it can be efficiently solved by efficient convex optimization
techniques. Furthermore, we also relax the assumption which leads to the
discovery of a full spectrum of regularization algorithms based on the [y o,
(1 < p < o) regularization. Our model can be thought as a generalization
of the lasso algorithm to multi-task learning setting.

We conduct experiments on simulated data sets to verify the theoretical
properties and the effectiveness of the proposed models. Furthermore, we
demonstrate the contribution of multi-task learning to the effective sam-
ple size. The results on handwritten digit recognition problem also show
the effectiveness and advantages of the proposed method over conventional
single-task learning method.

Chapter 7

Mixture Models

One of the multi-task learning scenarios discussed earlier in chapter 3 is the
“clusters of tasks”, which is suitable for the situation where task parameters
form several clusters. In this chapter we first introduce single-cluster models
for multi-task learning [Yu et al., 2005] and then propose to use mixture
models. The proposed method obviously generalizes the single-cluster model
and has more flexibility, and it can be thought as applying a conventional
mixture model to a higher level - the functional space.

7.1 Single-Cluster Models

Here by single-cluster model we mean that a uni-modal distribution (such
as multivariate Gaussian) is used as the parametric family. In our multi-
task learning setting this means that tasks parameters 6;’s are fitted using
a multivariate Gaussian distribution (e.g., O ~ Normal(p, 3)).

7.1.1 Bayesian Linear Model

Given the linear predictive function f(x) = (0,x) (assume x € X = RF*1),
a Bayesian linear regression model assumes

0 ~ Normal(p,X)
yi|x; ~ Normal((0,x;),0?) (7.1)

86

CHAPTER 7. MIXTURE MODELS 87

where the parameter 8 follows a multivariate normal prior. The probability
of observing a set of i.i.d. data D = {(x1,91),-..,(Xpn,yn)} can be written
as (with slight abuse of notation)

p(D|6) = Hp vil6, ;). (7:2)

Consequently, the posterior distribution of 8 after observing D can be cal-
culated by applying the Bayes rule:

(6D) — p(0) H? 1 P(yil0, %)
fp , 1p (vil0,x:)d6
Normal(6 | p,)], Normal(y; | (0,x;),0?)
J [Normal(0 | p, =) [Ti; Normal(y; | (0,x%;),0?)] d0
Normal(8 | p, ¥)Normal(y | X8, 1)
J [Normal(8 | p, X)Normal(y | X0, c%I)] d6

= Normal(8 | 1,) (7.3)

where X = (x1,X2,...,%,)7 € R™F and y = (y1,92,...,yn)’ € R™¥1,
and the derivation can be easily obtained by using the conjugacy property.
In other words, p(8|D), the posterior distribution of @ after observing the
dataset D, is still a multivariate normal distribution with mean g and co-
variance 3 updated as:

. 1 -1

3 = <2 + XTX>

. c -1 I o1

o= (X u+ EX y (7.4)
To apply this to multi-task learning, we can assume that task parameters

0y ~ Normal(p, X), k=1,..., K. (7.5)

The advantage of modeling multiple tasks using this method is: when tasks
form a cluster we can obtain a good estimate of their prior distribution by
pulling information together from multiple tasks. Note that although it is
possible to learn the prior distribution for single-task learning, it is more
difficult especially when the number of parameters is large and the number
of training examples is small.

CHAPTER 7. MIXTURE MODELS 88

7.1.2 Gaussian Process

The Bayesian linear regresssion can also be viewed in the function space,
and in that case it becomes a special case of Gaussian process. The Gaus-
sian process viewpoint does not only enhance our understand, but also have
practical advantages (as discussed below). We follow the steps in [Williams,
1998]. Note that based on equation (7.1), for any x;,x; € X we have

E(f(xi) = (m,xi)
Clf(xi), f(x5)) = (xi,2x;5) (7.6)

So from the functional viewpoint, this is a Gaussian process over the re-
gression functions f ~ GP(m(.), K(.,.)) with the mean function defined as

. . A
m(x) = (u,x) and the covariance function defined as K(x;,x;) = K, ; =
<Xi, 2Xj>.
Often one work with Gaussian process using the kernel representer theorem

[Kimeldorf and Wahba, 1971|. Given a finite set of training instances, the
estimation of the mean of the prediction function can be represented as

E(f(x) = i (xi,x). (7.7)
=1

It can be shown that [Yu et al., 2005 the model in equation (7.1) corresponds
to the following model

a ~ Normal(u,,X,)
y ~ Normal(XXTa, o%I) (7.8)

with properly chosen p,, and 3, such that X”pu, = p and X738,X = 3.

There are several advantages of viewing Bayesian linear model in terms of
Gaussian processes. First of all, we can apply more flexible mean function
and covariance function in Gaussian processes and thus easily extend to
nonlinear functions. Second, it is computationally pleasant to work with GP
when the number of features is greater than the number of instances (which
often happens in practice). For example, the input vector x in all previous
derivations can be replaced by a non-linear, high-dimensional mapping ¢(x).
Even if ¢(x) is infinite dimensional, we can still work with Gaussian process
in the finite sample space as suggested by equation (7.8). In particular,
equation (7.8) becomes

a ~ Normal(u,,X)
y ~ Normal(Ka,o?I) (7.9)

CHAPTER 7. MIXTURE MODELS 89

where K = ®®7 is the kernel matrix and ® is defined as (¢(x1),. .., ¢(x,))T.

7.2 Mixture Models

It is well-known that a multivariate Gaussian/normal distribution can only
model single-cluster distributions well. For exactly the same reason, when
used for multi-task learning problems, both the Bayesian linear model and
Gaussian process have the limitation that task predictive functions f(k)’s are
assumed to form a single cluster. In this section we propose to use mixture
models for the more general scenario called “cluster of tasks” introduced in
Chapter 3. Clearly, mixture models are generalizations of the single-cluster
models and can handle more complicated multi-task learning cases, and the
existence of many tasks makes the usage of mixture model justified and
estimatable.

7.2.1 Mixture of Bayesian Linear Models

To extend the Bayesian linear model in equation (7.1), we assume that

0%~ mNormal(py,31) + ... 4+ mgNormal(py, Xp)
y® ~ Normal(X®e®) 521) (7.10)

where m, > 0(h =1,...,H) and 37 7 = 1. X*) = (ng),...,xgz))T €
R™*F and y*) = (ygk), e ,yﬁff})T € R™X! are again the simplified rep-
resentation of the input and output data instances for the k-th task. In
other words, tasks are assumed to be generated from one of the clusters. To
simplify notations, we will use the notation

MoNormal ((s, 2y, Eh)thl)
2 miNormal(p1, 1) + ... + mgNormal(p, Xpr) (7.11)

to represent the mixture of normal distributions.

If we know the parameters Q = {(mp, y, 2p) |, 0%} we can obtain the
posterior distribution ofp(O(k) | D), Q) similar to the case of Bayesian linear
model (and this is essentially the E-step in the EM algorithm introduced
later):

p(6%) | D)

CHAPTER 7. MIXTURE MODELS 90

p(8*)p(D*) | 6)
J [p@®)p(D®) | 6®)] ag®

MoNormal (O(k) | (Wh,uh,Zh)thl) Normal(y® | X(*)g*) 521)

[[MoNormaI <0<k> | (7p, uh,zh)gf:l) Normal (y(®) | X(k)e(k),a21)] dg®)
= MoNormal (G(k) | (ﬁh,ﬁh,f)h)thl) (7.12)

After some math manipulation, it is not surprisingly to see that the posterior
distribution of p(@®) | D®)) is also a mixture of normal distribution, with
parameters updated as

~1
22’9) _ (2;1 + %(X(k),X(k)>>
~ - _ 1
Hglk) = X (Eh 1Mh + ;(X(k), y(k)>> (7.13)
(k)
ﬁék) _ Ch_Th

H (k)
Zh’:l Ch’ Th
where ¢, is a normalization factor defined as

oo

- / Normal(8%) | p,., 52,)Normal(y™ | X®)g®) 521)26%)

~ _ AR Y
_ DARS ox _ufﬁhluh + 5y ", y®W) — @3, , (7.14)
RCRRE e 2 |

The last step is obtained after some tedious calculation (see Appendix A).
The above updating should be carried out for all tasks k =1,..., K.

We use the empirical Bayes method to learn the parameters (7, @, Eh)thl
and 2. This will be conducted by an EM algorithm that is summarized in
Algorithm 5. The details of the derivations can be found in Appendix B at
the end of this chapter.

7.2.1.1 Hyper-prior smoothing

If we have a relatively small K (number of tasks) compared to H, the num-
ber of mixture components, we may overfit as the number of parameters to

CHAPTER 7. MIXTURE MODELS 91

Algorithm 5 EM Algorithm for Mixture of Bayesian Linear Regression
1. Initialization

Given H, the number of clusters, initialize (7, py,, Eh)thl and o2

2. Loop until convergence

(a) E-step: for each task and each component cluster (k =1,..., K;

h=1,...,H) update ﬁgk), [jl,gk) and flék) as follows (appendix B
for details):

=(k — ~(k = (k)_1~(k
(k) =512 uIy ey, — (B9, (300) 1 M)
7rh X W}Lil) —

[=5 2
= (k) 1 1 ") & —1
20— (3 & .x)
(k ~(k _ 1
“;L) = Z;L) <2h1“'h + ?(X(k)vy(k)>)

(b) M-step: for each component cluster, update 7, @, Xp
oy iy
Zé(:l ﬁf(tk)
1

K

~ (k) (&(k) ~(k ~(k

2 = k- > 7T§L) (Zh + (MEL) M;L)(MEL)~ l"h)T>
Zk:1 Ty k=1

1 k)
T = };ﬁh

Hp =

and

K H
= = Z[<y<k>,y<k>>—2<y<’c),x<’“><2ﬁ,§’“>n;’“>>
2k=1Mk (=1 h=1

H H

~ ~ ~ ~ S (k

b AP RO XO0) 3 AT [x®, X0 5 >>ﬂ
h=1 h=1

CHAPTER 7. MIXTURE MODELS 92

be estimated is large (p;,’s and 35’s). We would associate a hyper-prior dis-
tribution H (g, Xp) over {py, Bp}_, (especially £j’s) to avoid overfitting.
The main difference is in the M-step, where the maximization w.r.t. p; and
¥, is penalized by log H(uy,, Xp). An even simpler method is to smooth the
estimate in the M-step such as

K
1 _(k (k) |~ (k _(k
X = K -(F) Zﬂi(z) ()‘I + 357+ (A —) ()~ Nh)T> (7.15)
A+ D et T k=t

so that estimates of X; will not be ill-behaved.

7.2.1.2 Connection to the MTL Framework

The MTL framework proposed in Chapter 3 can be easily adapted to support
the mixture of Bayesian linear models. Mixture of Bayesian linear models
can be achieved by assuming that each column of the matrix A follow a
multivariate normal distribution

G(k) = ASk
s~ Multinomial(my, mo, ..., 7TH) (7.16)
A ~ Normal(uy,,3p)

together with the observation model
g~ Normal((0®) xF)y 62) k=1,... Kii=1,... n (7.17)

The prior probability of 0*) can be easily seen to be a mixture of normal
distributions by summing over sg:

H
p(O®)) = Zp(sk)p(e(k)|5k) — ZyrhNormal(uh, 3h) (7.18)
- h=1

Thus it follows that equation (7.16) and (7.17) is equivalent to the model in
equation (7.10).

CHAPTER 7. MIXTURE MODELS 93

7.2.1.3 Mixtures with Common Covariance

Sometimes we would like to obtain simpler mixture model than the one used
in equation (7.16), where each mixture component has its own mean but
share a common covariance. One of the benefits of doing so is to reduce the
number of parameters and prevent overfitting. The model in equation (7.16)

can be simply modified to the following:

0, = Asp+e;
sk~ Multinomial(my, mo,...,7TH) (7.19)
er ~ Normal(0,X)

Geometrically, all task functions form H clusters, where they share the same
covariance X. Details of algorithm can be found in Appendix B.

7.2.2 Mixture of Gaussian Processes

Mixture of Gaussian processes can be seen as a particular variant of mixture
of experts in |Jacobs et al., 1991]. Tresp [Tresp, 2001] introduced the mixture
of Gaussian process model with different scale parameters and discussed
its connection to related methods; Rasmussen and Ghahramani [Rasmussen
and Ghahramani, 2002] proposed the infinite mixture of Gaussian processes
whose covariance functions are learned from the data.

In the multi-task learning setting we will show that mixture of Gaussian
processes can naturally handle the “clusters of tasks” scenario, where each
cluster can be modeled by a Gaussian process expert with different mean
and covariance function.

Under the assumption of mixture of Gaussian processes, the hierarchical
model can be written as

fPlsk=h ~ GP(mu(.), Kn(..))
sr ~ Multinomial(my,ma, ..., 7x) (7.20)
which has parameters mq,..., 7y as well as my(.)’s and Kp(.,.)’s.

Note that we are free to choose any valid covariance function, possibly dif-
ferent ones for different component. One flexible choice that is often used in
the literature [Williams, 1998, Rasmussen and Ghahramani, 2002] takes the

CHAPTER 7. MIXTURE MODELS 94

following form:

F 2
1 Tif— T; .
K (x;,%;) = vg exp —3 E 7(it - if) + v10(3,) (7.21)
f=1 !

with hyper-parameters vy controlling the signal variance, v; controlling the
noise variance, and wy controlling the relevance of the f-th feature in pre-
dicting the response variable.

By using the representation in equation (7.8), we can formulate the multi-
task learning algorithm by learning g, ;, and 3,5 as well as m,’s. Since
the derivation of the EM algorithm is similar to that of mixture of Bayesian
linear models, we only give the results in Algorithm 6 .

7.3 Experiments

7.3.1 Synthetic Dataset

The purpose of this experiment is to show that if tasks are formed into
clusters, our model can correctly identify those clusters as well as give an
accurate estimation of the scales of the clusters.

We generate K samples {601, ...,0k} from a mixture of three 2-dimensional
normal distributions with the following parameters: m = 0.5, puy = (2,2)7,
2 = ((0.5,0.4)T,(0.4,0.5)7); m = 0.3, py = (2, —2)T, Ty = 0.5I; 73 = 0.2,
o = (—2,2)7, X3 = 0.5I. Figure 7.1 shows the probability density of this
mixture distribution. For each generated parameter 6, we further generate
an associated dataset {(xgk),ygk))?zl} such that

xF) Normal(0, 2T)

(3

yi(k) ~ Normal((G/Lc,xgk)>7 1). (7.22)

In our simulation, we generate K = 100 tasks and for each task we generate
n = 10 pairs of data instances.

We apply our algorithm where we use K(x;,%;) = (x;,x;) as the base ker-
nel, and the number of clusters is chosen by 5-fold likelihood-based cross
validation (see Chapter 8), and in this case H* is found to be 3 which is the
correct number of clusters. Figure 7.1 shows the contours of densities for

CHAPTER 7. MIXTURE MODELS 95

Algorithm 6 EM Algorithm for Mixture of Gaussian Processes
1. Initialization
Given H, the number of clusters, initialize (7, Hahs Za,h)thl and o?;
specify Kj,’s parametric form for h=1,..., H

2. Loop until convergence

(a) E-step: for each task and each component cluster (k =1,..., K;

h=1,...,H) update F(k) ﬂ(();l and Z((I;L

= (k - k (k) \—1~(k
S BB ke — B (Ban))
"B 72 7P 2
S = (o S0
~(k k — 1 k
uflil = L L (Ea,lhﬂa,h + 07<K§L)7y(k)>)

where K{* is the kernel matrix between X*) and X = U, X®) | im-
plemented with Kj,.
(b) M-step: for each component cluster, update m, Mo Bah

~ (k) ~(k
PITNRRA T

~(k
PR

K
1 - < (k
Ea,h = ..(k) § }(Lk) (Eg,gl ((k) I‘l’a h)(“(k) _“a,h)T>
Zk 17h k=1

1S k)
Th = E};ﬂ'h

and

H

K
1 ~(k K k) ~(k

K
2 k=1 T =1 h=1

H
~(k) (k) 7, (k) g () = (k) ~ (k) (k) ¢ (k)52 (k)
+ Z (K, B K3, B,) + 7, Tr [<Kh K, Ea,h>:|:|
h=1

CHAPTER 7. MIXTURE MODELS 96

Figure 7.1: Left: mixture model (%) ~ MoNormal ({7, s, En}3_1));
Right: estimated density

| model | SSE | | model | SSE |
Mixture 253 +0.19 | | Ridge A=10.1 | 2.84£0.18
MLE 289 £0.18 | | Ridge A=10.2 | 2.82£0.19

Ridge A =0.01 | 2.88 £0.18 Ridge A =0.5 | 2.83 £0.21
Ridge A =0.02 | 2.88 £0.18 Ridge A =1.0 | 3.07 £0.25
Ridge A =0.05 | 2.86 £0.18 Ridge A =2.0 | 3.86 £0.28

Table 7.1: Sum of Squared Error (results are summarized over 10 random
trials)

both the true density and the estimated mixture model. From the graph we
can see that the estimation nicely resembles the true underlying density.

Furthermore, we also evaluate the model in terms of the Sum Squared Errors
(SSE):

K

SSE = (8x — 6x)" (61 — 6%). (7.23)

k=1
For the mixture model we use the posterior mean 6,4 as the estimator,
and compare the results with ridge regression estimators with parameter A
(when A = 0 it becomes the Maximum Likelihood Estimation). Results are
shown in table 7.1, which clearly shows that the SSE of mixture model is
significantly better than using single-task learning algorithms.

CHAPTER 7. MIXTURE MODELS 97

7.3.2 Preference Prediction

Here we apply our model to the task of predicting user preferences in collab-
orative filtering, which has been used as a test bed for multi-task learning
[Yu et al., 2006]. The major difference is that here we would like to in-
vestigate how well does mixture model perform. The dataset we use here
is the MovieLens dataset!, which contains 100,000 ratings collected from
943 users over 1,682 movies in total. Furthermore, the minimum number of
rated movies by any user is 20 in this data set. Each rating is an integer
score ranging from 1 to 5, with 1 meaning least favorable and 5 meaning
most favorable. Furthermore, each movie in this dataset is assigned a set
of genre labels. There are 19 different genres in total: Unknown, Action,
Adventure, Animation, Children’s, Comedy, Crime, Documentary, Drama,
Fantasy, Film-Noir, Horror, Musical, Mystery, Romance, Sci-Fi, Thriller,
War, Western. In the dataset each genre is given as a binary feature and
they will be used to predict movie ratings for each user.

In the multi-task learning setting we treat each user as a task and each movie
as a data point. Thus we have each movie x € R?? representing 19 binary
features plus one bias term. Since the matrix is sparse we do not expect
users to rate the same set of movies, e.g. the data instances are not shared
across tasks in this case. We use the Mean Absolute Error (MAE) as our

evaluation measure, as people usually do in this type of experiments. It is
defined as

MAE — % S 1r() — 7)) (7.24)
i=1

where i is the index of test pairs of (movie, user) for which we have true
relevance judgment, 7(i) is the user’s true rating, and 7(7) is the predicted
rating by our algorithms.

We conduct experiments by varying the number of movies known to the
system (e.g. number of training examples) from 5, 10 to 20, where in each
run we randomly sample 100 users (e.g., 100 tasks). First of all, we run
single-task learning algorithms and report the results in Table 7.2. The
algorithm we use is ridge regression (see Chapter 2), with the regularization
coefficient A chosen by cross-validation for each condition.

'Tt is available at http://www.grouplens.org/.

CHAPTER 7. MIXTURE MODELS 98

‘ | optimal A (by cross-validation) | MAE ‘

ng =195 A =0.1 1.144 £0.0314
ng = 10 A =1.0 1.024 £ 0.0189
ng =20 A =1.0 0.9313 +0.0119

Table 7.2: Results on Movie Rating (single-task learning)

We then run the mixture of Gaussian processes with base kernel K (x;,x;) =
(x4,%;) and results are shown in Table 7.3. From the results we can see that
using mixture models for the preference prediction problem does not provide
better performance. This is a little bit surprising as before we expected to
see clusters of users’ predictive functions based on the genres of different
movies. In other words, the results suggest that a single multivariate normal
distribution does a very good job in terms of modeling the 6;’s.

‘ # of clusters ‘ nE=2>5 ‘ ng = 10 ‘ ng = 20 ‘
H=1 0.8759 +0.0129 | 0.8554 + 0.0128 | 0.8253 £ 0.0060
H=2 0.8764 +£0.0135 | 0.8607 +0.0163 | 0.8317 + 0.0096
H=3 0.8761 £ 0.0134 | 0.8638 +0.0179 | 0.8321 &£ 0.0078
H=4 0.8769 = 0.0139 | 0.8672 4+ 0.0203 | 0.8361 £ 0.0077
H=6 0.8775 £0.0145 | 0.8682 4+ 0.0205 | 0.8399 + 0.0089
H =28 0.8772 £0.0143 | 0.8699 4+ 0.0206 | 0.8419 + 0.0094
H=10 0.8784 £0.0153 | 0.8732 +0.0228 | 0.8441 + 0.0091
H=14 0.8783 £0.0152 | 0.8720 £0.0224 | 0.8469 4+ 0.0122
H =18 0.8796 £ 0.0160 | 0.8739 +0.0225 | 0.8477 £+ 0.0116

Table 7.3: Results on Movie Rating (base kernel K (x;,x;) = (x;,X;))

We would like to verify our conjecture about the unimodality and normality
of the task parameters 6;’'s. Procedurely we want to first obtain a set of
estimated 9k’s, and then test their normality. Among all users who rated
more than 50 movies, we randomly select 500 users. And for the k-th user
we randomly select 50 movies as training set for the k-th prediction task.
Now we are able to do maximum likelihood estimation on K = 500 tasks
to obtain 0;’s. We would like to conduct hypothesis testing about whether
91, cen O are from a multivariate normal distribution or not.

If 6,’s are one-dimensional we can easy conduct the test or even visual-
ize the results. Since 0, € R, we instead consider its projection into

CHAPTER 7. MIXTURE MODELS 99

one-dimensional real line. Based on the CRAMER-WOLD theorem, a ran-
dom vector x follows multivariate normal if and only if its every projection
(into 1-dimension) follows a univariate normal distribution. Furthermore,
instead of testing for any projection p whether pTél, ces ,pTéK follows a
one-dimensional normal distribution, we would first identify the most non-
Gaussian direction and then perform the test (e.g. the worst case). In our
experiments we use the fastICA algorithm |[Hyvarinen et al., 2001] to find
the most non-Gaussian projection from samples 91, ceey 91(, and then verify
how far it is deviate from normal distribution.

CHAPTER 7. MIXTURE MODELS 100

0.4

0.35]

0.3]

0.2 J

0.15 J

0.05- 1

0 T T T T T

Quantiles of Input Sample

-8 | | | | | | |
-4 -3 -2 -1 0 1 2 3 4
Standard Normal Quantiles

N

Figure 7.2: non-Gaussian projection and qgg-plot of 91, e, 0K

The top graph in Figure 7.2 shows the projected distribution of ék’s, where
the projection is the most non-Gaussian like projection found by the fastICA
algorithm, and the density is smoothed using kernel density estimator. We
can see that even the most non-Gaussian projection is not far from Gaussian.

CHAPTER 7. MIXTURE MODELS 101

The bottom graph shows the qq-plot? of the projected samples, which further
verifies our previous claim.

Because of the fact that the task parameters do roughly follow a multivari-
ate normal distribution, we try to break the distribution by using different
base kernel K},’s. In this new set of experiments, we choose Kj—(x;,%;) =
(x4,%;). For h > 1 and each data pair x; and x;, we randomly select a subset
of features Ij, = {i1,... 14, } C {1,...,F'} and define

Kh(Xi,Xj) = <>~<i7>~<j> (7.25)

where X; y = x; ¢ if f € I}, and otherwise 0, and the same thing is done to
get X; y. That is, X; only keeps features whose index is in the random set
by setting the rest of the features to zero. The way that we choose I} is
very simple: each feature is randomly chosen with probability 0.5. By using
this newly defined base kernel (as we can see, for each cluster component
we use a different kernel due to the random feature selection) we re-run the
experiments and the results are shown in Table 7.4.

‘ system ‘ nE =25 ‘ ni = 10 ‘ ng = 20

baseline: H =1 0.8821 +0.0149 | 0.8527 £0.0096 | 0.8331 = 0.0080

mixture:* by CV | 0.8384 £+ 0.0050 | 0.8365 £ 0.0057 | 0.8230 =+ 0.0067

Table 7.4: Results on Movie Rating (with random kernel)

Note that H* denotes the optimal number of clusters, which is obtained by
a b-fold likelihood-based cross-validation (see Chapter 8 for details). From
the results we can see that by using randomly selected base kernels, our
mixture model improved the performance of the single-cluster model in cases
when the number of rated movies is small. Our way of selecting random
base kernel is motivated by the idea of Random Forest by Breiman. This
results illustrate that when single-cluster models are not sufficient for the
task scenario, mixture models can provide more powerful representation and
fit the task scenario better.

2Briefly speaking, qg-plot (quantile-quantile plot) is a graphical technique for determin-
ing if two datasets have the same distribution. It shows the quantile of one dataset w.r.t.
the quantile of another dataset. In our case, it is the quantile of normal vs. the quantile
of our data (which is the projection of 9k’s). If the plot does not deviate much from a
straight line, then it is reasonable to accept that the data follows a normal distribution.

CHAPTER 7. MIXTURE MODELS 102
Appendix A: Normalization Const

Below we ignore scripts k and h:

/Normal(0 | i, £)Normal(y | X0, 021)d6

/ 273 ~1/2 (0 —)=S0 —p)+ 5y —X60)"(y — X0)
_ _ a0
|27 o21|1/2 2

Let us define

AL O wTSTO) + ly — X6) (v~ X0)
= ' —2uTS O+ uE T+ %yTy — %yTXO + %OTXTXO
= 7'z + %XTX)E) —2(uTe "t 4 %yTX)G) +uX i+ %yTy
= (0-W)'S T O0-f)+pS %yTy RS SET
where
> = (4 %XTX)‘I
o= X+ %XTy)
As a result, we have
—1/2
% /exp(—g)de
27 3|1/ 27512 _“2_1” + Yy - D>
|27 021 |1/2 2] exp < 2 >

~ _ TS~
B DRGS0 v+ Hyly-p"S a
(21022512 p

CHAPTER 7. MIXTURE MODELS 103

Appendix B: EM for Mixture of Bayesian Linear Re-
gression

The parameters we would like to estimate are Q0 = {(mp, s, £p)_ |, 0%}, and
the basic idea is that we compute them by maximizing the log-likelihood
SK logp(D®) | Q). Since we have two set of variables to be integrated
out (8%)s and Z* s, where Z*) € {1,..., H} is the indicator variable of
the mixture component for the k-th task), we derive the E-step and M-step
formulas from the beginning by using Jensen’s inequalities.

In the following derivations we will use the notation Q to denote the param-
eter (2 obtained in previous M-step. For the k-th task, the log-likelihood can
be lower bounded as follows:

logp(D™) | Q)

A . (k) — 1, D)
= log [Sop(z® = n| 4 penP L =D D)
he1 p(Z*) = h | Q , D))

Z®) = h, DF) | Q)
Zk) = h | Q,D®)

H
> p(@® = 1|9, DW)log 2
h=1 p(

H
argmax > p(z® = h | Q,D*))log p(2® = h, DV | Q)
h=1

H o
= Y p(z® =h|Q,DW)
h=1

k)
(0 \Q,D ,Z<k> = h)

X
<)
0

p(Z® =1 |0, D)

M=

>
Il
—

. (k) z(k) —
PO | 9,00, 20 — p)log X002 = I DYID g0
p(g() | Q,D(k ,Z(k) = h)

X
—
—

arg max

p(Z® =1 |0, D)

M=

>
Il
—

X </p(0(k) | Q,D®) 20 = p)logp(@F), Zz*) = b, DF) | 0)d6! >>

CHAPTER 7. MIXTURE MODELS 104

arg max

where the inequalities are due to Jensen inequality, and the operator &2

means “equivalent w.r.t. the argmax operation over parameters €2". So in
the E-step we should calculate

~ (k)

T

and

p(Z® = n |0, DW)

wnp(DW | 20 = h, Q)

7%hp(’Z)(k) | ﬁhv i]h’OO_2)

frh/NormaI(O(k) | fuy,, 3p)Normal(y®) | X0 k) 521)00*)
inlSh |12

(2W0°—2)nk/2’203h‘1/2

WIs (k) o (B)\ 1 - (k
exp [uzﬁh fon + 2™y ®) — (B (5,) 1#2)1
>

= (k Tl ~ (k) k)1~ (k
. =002 [s, - G @) e
SSAE 2

p(g(k) | f’z,p(k)7 (k) — h)

p(0®) DE) Z(F) = p | ()

[p(0®) , D®), 20 =1 | Q)d6

p(Z2% = h| p@O™ |0, 25 = h)p(d® | 6% 0, 2® = 1)

J (25 =1 | Q)p(0® |, 20 = pp(D® | 60,0, Z4) = 1)) do®
)

mpNormal (0" | f1,,, 3,)Normal (y*

J (ﬂhNormaI(O(k) | fuy,, 3n)Normal (y (%) | X(k)O(k),&zl)) de™)

= Normal(6™ | ﬁﬁf),iﬁk))

where

= (k) -1 1 -
S <§]h +O—2<X(k),X(k)>>

- k) [&-1, 1
) = 22)<2h HhJFg(X(k)’y(k)O

CHAPTER 7. MIXTURE MODELS 105

1>

This finishes the E-step. We plug in the E-step results and define Q(k)(Q)
log p(D™) | Q) to be

H
QP@)= Y& < / Normal(8%) | &), £ 1og p(8%), 2) Db | Q)do(k)>

2 202

A 2 (k) ()
_ C(k)+Z7~1'(k)lOg7Th nylog o ", y™)

H - H
Th Th_, Ty—1
- Z 5 log [3y] — Z Tuhzh o
h=1 h=1
d 1
+ Y AR [(u%fzgl + ;<y<’“>,x<’“>>> e“ﬂ
h=1
e Lo (s1 4 L x))
h=1
where C*) = —% log 27 is a constant that does not depend on any of the
parameters, and
_ 1 | _ 1 < (k
B (00, (37 + Sx®.x)) 00y — | (2 + S, x0)) 21
- _ 1 -
N <M§lk)’ <2h1 n ﬁ(X(k)’X(k)>> u%k)>
_ 1] _ 1 -
E [(szhl + ;<y(k’,X(’“)>> oW | — (ufzhl + ;<y(k’,X(’“)>> e

Finally, we have the log-likelihood

K
Q) =) M)

k=1

To obtain the M-step, we set the partial derivatives of @ w.r.t. task-
dependent parameters (Wh,,uh,Zh)hH:l to zeros (note that for 0Q/dn), we

CHAPTER 7. MIXTURE MODELS 106

should add the constraint), 75, = 1 using Lagrange multiplier method):

(k) ~ (k
ZkK:NTf(L)Hg)
fo

K
S = ——m A (B + Y -)@ -)
k;:

7T
K
T = Z

and set the partial derivative of Q w.r.t. task-independent parameter o2 to
ZETO:

K
I
Zk 1%k =1

+ Zﬂ'h ,uh ,X(k

ry =

M

N |

H

(y®), X ®) (S 7k

h=1

BTy [X (k) X (k >2(’“)>]

|Mm

EM for Mixture Models with Common Covariance

. =~ (k
Most of the derivations are the same except that the subscripts h on 3),
3> and X will disappear, and the parameters to be estimated are 2 =
{(mh,)i, 2,02}, In the E-step we compute

e —1 o k) &)1~ (k
ars (=) ad)
2

T, X Tpexp |—

1
5® _ (2 1+ _(x®), X (>>>

- ~ (k) [e—1, 1

0 - 5 (5 i)

where ﬂ;}k) and f](k) are updated mean and covariance ofp(O(k) | &'02, RIORAQ)

h); in the M-step we compute

Ek | h W
Zk:l 7Th

Ky =

CHAPTER 7. MIXTURE MODELS

=] =

Mwiw

M

= 2

x| =
ol
Il
[

(y®, y)

+ YA (XM, x®

(+Zw (n —) (i, —ﬂﬁf’)T)

H
— 20y, X0 (3" 7P k)
h=1

z (k) (k)”(k)
hz Tr[X > >]

107

CHAPTER 7. MIXTURE MODELS 108

Chapter 8

Model Selection in MTL

Model selection is an important step in standard supervised and unsuper-
vised learning in order to control model complexity and to achieve good
generalization performance on future test data. For multi-task learning it
also plays an important role, since we not only want to generalize well on fu-
ture data of a particular task, but also want to achieve good performance on
future tasks. There are two types of model complexities in multi-task learn-
ing: the model complexity of each predictive function f*) and the model
complexity of the joint modeling of all f*)’s. Since the former type of model
complexity has been extensively studied in the literature |Hastie et al., 2001,
Wasserman, 2005], in this chapter we focus on the investigation of the latter.

8.1 Introduction

Model selection is a common topic that exists in almost every application of
machine learning. Basically speaking, it aims to find the model that has the
“best” trade-off between good fit (explains the data well) and complexity (so
that reliable estimation can be obtained). As stated in [Hastie et al., 2001],
the goal of model selection is to estimate the performance of different models
in order to choose the (approximate) best one.

A well-known statistical concept is that as the model complexity increases,
the prediction error of the model typically decreases first and then increases.
Figure 8.1 shows a toy example where we try to learn a one-dimensional
Gaussian process model for regression with kernel K(z,y) = exp(—|lz —

109

CHAPTER 8. MODEL SELECTION IN MTL 110

y|[?/2s%). For this model, we have high model complexity when s is small
and vice versa. The data is generated according to

x ~ Uniform(0, 10)
y ~ Normal(f(x),0.5%) (8.1)

where the true function is set to

f(x) = log(x) sin(z?). (8.2)

From the top graph in Figure 8.1 we can see that as the model complexity
increases, the prediction error first goes down and then goes up. “Overfitting”
often refers to the situation where model complexity is more than needed
(supported by the amount of availability data), and in this case the model
has low bias but high variance. On the other hand, “underfitting” refers to
the situation where model is not complex enough to explain the data well,
and in this case the model has low variance but high bias. The bottom graph
shows the true regression function and the fitted function with appropriately

chosen scale/bandwidth parameter s.

Generally speaking there are many ways to do model selection |[Hastie et al.,
2001, Wasserman, 2005|, such as AIC, BIC, cross-validation, etc. Here we
focus on the cross-validation approach because it is simple to implement,
easy to use and very powerful.

8.2 Cross-Validation

8.2.1 Cross-validation for STL

K,,-fold" cross-validation is a procedure defined as the following. Given a
training set D, first split it into K., equal-sized subsets Dy, ..., Dk, , then
estimate the extra sample loss [Hastie et al., 2001| on each subset using the
remaining K., — 1 subsets as the training data, and average over all the
subsets to obtain the CV score. The final CV score can be written as

N
V) = =3 Ly PO i) (83)
=1

'Because K is reserved for the number of tasks, we use K., to denote the number of
folds in cross-validation.

CHAPTER 8. MODEL SELECTION IN MTL 111

110
100
90
[}
(%]
o
B
] 80
>
jon
2]
£
5 70
5]
5
5 6or
°
o
o
50
401
30 Il Il Il Il Il Il Il Il Il
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Model Complexity (scale parameter s)
4
X training data
3l true function |
— - — - predict (s=optimal)
predict s=0.2
1N predict s=1.6 % -

0 1 2 3 4 5 6 7 8 9 10

Figure 8.1: Top: model complexity vs. prediction error (the smaller the scale
parameter s, the more complex the model); Bottom: true function vs. fitted
function (with appropriately chosen bandwidth s)

CHAPTER 8. MODEL SELECTION IN MTL 112

where f\P(®)(.) denotes the function that is estimated using all data in D
except the subset that contains the i-th data point. Note that if the pre-
diction function f(.) is indexed by its parameter § € ©, then the model
selection problem is to find the best parameter that gives the lowest score

0 = argming CV(6).

Typical choices of K., include 5,10 and N. It is well-known that when K, is
large, the cross-validation score can be a low bias but high variance estimator
of the true prediction loss; while on the other hand when K., is small, we get
a high bias but low variance estimation. When K, equals N it is also known
as Leave One Out Cross-Validation (LOOCV). Although cross-validation
methods are extremely simple, they are theoretically justified. For example,
it can be shown that the LOOCYV score is almost an unbiased estimation for
the true prediction error.

Based on the the choice of the loss L(., .) we can have several variants of cross-
validation methods, and common choices include negative log-likelihood and
prediction error:

o cross-validation by likelihood: when L(y, f(x)) takes the form of nega-
tive log-likelihood, e.g.

L(y, f(x)) = —logp(ylx,8). (8.4)

In order to use this method we need to have a probabilistic model for
the response variable y conditioned on x, and thus it may be sensitive
to the model assumption.

e cross-validation by prediction error: typically we use

regression : L(y, f(x)) = (y— f(x))’
classification : L(y, f(x)) = I(yf(x) <0) (8.5)

where I(.) equals 1 if the argument is true and 0 otherwise. The benefit
of this method is that the error measures do not need to be dependent
on the model assumptions. For example, even if the response variable
is assumed to be corrupted with Gaussian noise, we can still use the
absolute error |y — f(x)| as the choice of the loss function if it makes
sense for the application.

CHAPTER 8. MODEL SELECTION IN MTL 113

8.2.2 Cross-validation for MTL

Applying cross-validation to multi-task learning is straightforward. The only
difference from its conventional usage is that we apply it to the task-level
instead of data-level. Given K tasks with their associated training datasets,
we split the tasks into K, folds randomly such that: Ty UToU...UTk,, =
{1,2,..., K}. Again we can have two choices for the CV loss function:

o cross-validation by likelihood: The c-th iteration of the cross-validation
involves three steps: (1) a generative model p\°() is fitted using the
(K1) folds’ tasks T4, ..., Ty, Tey 1, - - ., Tk, by the MTL algorithm;
(2) for each task in the validation fold T, a single-task learning algo-
rithm is used to obtain point estimations ék’s; (3) compute the negative
log-likelihood — log p\(8},) for k € T,.. The final score is computed as:

KC’U

Vo= D> —logp(By). (8.6)

c=1 keTe

e cross-validation by prediction error: For the c-th iteration of the cross-
validation: (1) a generative model $\°(0) is fitted using the (K,,-1)
folds’ tasks (T, ..., Te—1,T¢c41,...,Tk.,); (2) for all tasks in the rest
fold (validation fold), prior $\() is evaluated in each task, where the
evaluation is conducted with another error-based cross-validation at
the data-level. The final objective can be summarized as:

KC’U

v o= > avi(p() (8.7)

c=1keT,

where CVj(p\°(0)) is the error-based cross-validation score (like the
one defined in equation (8.3)) obtained by using $\°(8) as the prior of
the @ for the k-th task, and the cross-validation is done by splitting
the training set D®) for the k-th task.

We can see that in order to conduct cross-validation at the task level, we
need a model? to measure the closeness of the tasks (often in terms of their
parameters 6;’s). Also the latter one is computationally more expensive
since another inner-loop cross-validation needs to be done to obtain the score.

2 Although the model need not be probabilistic, having probabilistic model over 0 is a
natural choice.

CHAPTER 8. MODEL SELECTION IN MTL 114
8.3 Experiments

We conduct simulations to illustrate the use of the previously described cross-
validation methods. For simplicity we focus on the mixture model presented
in Chapter 7. We use mixture models to generate the parameters 8’s of
prediction functions, in which the true number of clusters varies from 1 to
8. For each mixture model we generate 100 tasks 01,...,0199 from a prior
distribution

0, ~ MoNormal({m,, my, V,}iL). (8.8)

The parameters 7y, my, and Vj, of the mixture model are randomly generated
as follows:

7y, o< 0.3 4 Uniform(0, 1)

m;, ~ Uniform <[:2 } , [2 D (8.9)

1.
Vy o~ 1—9W|shart(I, 20).

Finally, for each task we generate 10 training examples and 100 test examples
using

xl(.k) ~ Normal(0,I)
yz.(k) ~ Normal((Gk,xgk)>,a2) (8.10)

where we simply use o2 = 1.0.

In our experiments we create 6 generative models for 6;’s with the number
of clusters taken to be H = 1,2,3,4,6,8 respectively. Figure 8.2 shows
one sample of the generative models we used for the 6 cases. We repeat the
simulation process 20 times, which results in 20%6 = 120 runs of our mixture
model algorithm.

We evaluate the results using the Mean Squared Error (MSE) measure with
the following notation:

° I\/ISE(ff{): MSE for the mixture model where the number of clusters
H is chosen by cross-validation;

e MSE(fz): MSE for the mixture model where the true number of clus-
ters H is given;

CHAPTER 8. MODEL SELECTION IN MTL

116

H | MSE(f;)/MSE(fu) | MSE(f;)/MSE(f,9)) | MSE(fs1)/MSE(f,g)) |

1 1.0011 +£ 0.0033 1.0028 4 0.0029 1.0400 4 0.0253
2 1.0000 £ 0.0064 1.0099 £ 0.0105 1.0357 £ 0.0215
3 0.9984 £ 0.0105 1.0084 4+ 0.0079 1.0327 +0.0133
4 1.0025 +£ 0.0080 1.0120 £ 0.0095 1.0321 £ 0.0188
6 1.0007 £ 0.0054 1.0186 £ 0.0155 1.0347 + 0.0132
8 0.9984 £+ 0.0067 1.0128 £ 0.0136 1.0255 + 0.0191
Table 8.1: Results for cross-validation by likelihood
H | MSE(f;)/MSE(fu) | MSE(7;)/MSE(F, ,) | MSE(fs71)/MSE(/,) |
1 1.0000 +£ 0.0019 1.0016 £ 0.0055 1.0474 £ 0.0275
2 0.9993 £ 0.0081 1.0041 £ 0.0091 1.0408 £ 0.0236
3 0.9993 £ 0.0086 1.0091 +£ 0.0088 1.0394 £ 0.0203
4 0.9985 + 0.0101 1.0102 £ 0.0146 1.0359 £ 0.0169
6 1.0005 +£ 0.0054 1.0113 4+ 0.0100 1.0284 4+ 0.0158
8 1.0050 £ 0.0144 1.0190 4 0.0209 1.0256 4+ 0.0259

Table 8.2: Results for cross-validation by prediction error

A

o I\/ISE(fp(e)): MSE for the mixture model where the true prior p(0)
(which is a mixture of normal) is given?;

° I\/ISE(fSTL): MSE obtained by using single-task learning algorithms;

We are interested in several comparisons from the experiments. First of all,
we would like to know how good is our fitted model compared to the one
obtained by knowing H, the true number of clusters. Second, we want to
measure the relative goodness of the fitted model with respect to the “golden
model” where we are given the true prior distribution of 8;’s. Finally, we
want to see how good is the model obtained by using single-task learning
algorithm which does not consider the relations among tasks.

Table 8.1 and 8.2 show the results for the likelihood-based and error-based
cross-validation, respectively. There are several observations. First, the
model fH (with the number of clusters identified by cross-validation) is al-
most identical to the one fitted by given the true number of clusters. Fur-
thermore, it is slightly inferior to the “golden model” which is given the

#This is the upper bound of the performance we can possibly achieve.

CHAPTER 8. MODEL SELECTION IN MTL 117

true prior p(6y). Second, the performance obtained by single-task learning
(e.g. without learning a joint prior over 8’s) can be significantly worse, as
shown in the last column of both tables. Finally, we observed that both

the likelihood-based CV and error-based CV methods work well and they
perform very similarly.

Also note that if those clusters are well-separated then they can be easily
identified by our algorithm; otherwise (e.g. when clusters are overlapping
with each other) it is very difficult to identify the correct number of clusters.
In either case, however, the identified model works well in terms of predictive
power.

8.4 Summary

In our experiments we show the application of cross-validation techniques to
multi-task learning, and results for two methods are comparable. Although
we only illustrated this ability using the learning of number of components
in mixture models, this should not be interpreted as the only application of
the idea. We could, as another example, select the appropriate multi-task
learning scenario.

The application of cross-validation techniques to the model selection prob-
lem in multi-task learning is procedurely straight-forward yet conceptually
stimulating. In order to conduct cross-validation for multi-task learning (e.g.
across tasks), it is essentially for the MTL method to have the capability of
“passing” or “transferring” knowledge from old tasks to new tasks. All MTL
methods proposed in this thesis can pass knowledge as a prior and pass it
into new tasks. The error-based cross-validation is computationally more
expensive since an inner loop CV is needed to evaluate the prior learned
from other tasks.

CHAPTER 8. MODEL SELECTION IN MTL 118

Chapter 9

Unsupervised Multi-Task
Learning

In previous chapters we have focused on the probabilistic framework in equa-
tion (3.2) for multi-task learning in a supervised learning setting, e.g. with
classification and regression tasks. In this chapter we extend the framework
to enable its use in unsupervised learning, and apply it to novelty detec-
tion [Allan et al., 2000] as a significant and concrete example. We also
show the theoretical connections between this new framework and other un-
supervised learning methods, including Latent Dirichlet Allocation (LDA)
[Blei et al., 2003b] and Correlated Topic Models (CTM) [Blei and Lafferty,
2005| proposed in information retrieval, by recasting the latter models from
a multi-task learning point of view.

9.1 Extending the Framework from Supervised to
Unsupervised

Recall that our probabilistic framework has been defined with K supervised
learning tasks, each of which corresponds to a function f(x|6;) = 61 x, which
the prior over 8 defined as

0, = As,+eg
st~ p(|®) (9.1)
er ~ Normal(0,¥)

119

CHAPTER 9. UNSUPERVISED MULTI-TASK LEARNING 120

where 0} is the vector of task-specific coefficients, the columns of matrix
A = (Bq,...,8y) € RF*H are the shared components (e.g., the hidden
“topics” or “factors”) among tasks; vector sy consists of the mixture weights of
the components in the k-th task, generated at random from some distribution
p(sk|¥) (open to further specification as a prior); and ey, is the non-shared
component (random noise) in the k-th task. Given K training sets

D® = (=P y ™) By k=1, K, (9.2)

ng ynk

the learning problem is to fit the model parameters that best explain the data
under certain Bayesian priors over the parameters. An alternative way to
look at the problem is that we have an infinite space of prediction functions,
and we want to find the K optimal functions simultaneously, one per task.
By introducing the shared components as parameters of the models (i.e., the
functions), we aim to learn more effectively from limited training examples
when the tasks are not totally independent from each other.

To make this framework suitable for unsupervised learning, we introduce
some different settings. First, the training data are unlabeled, that is,

Pk = (P xB)), (9.3)

29N

Second, our objective here is to optimize the generative model g(D®*)|@},)
for each dataset instead of the prediction function f(x(¥)|@},), although both
can be done using the likelihood principle.

Having the tasks re-defined, the remaining equation (3.2) in our framework
are the same for both supervised learning and unsupervised learning. In the
latter, @ is a random variable (vector), inheriting the randomness from s
and ey, respectively, and specifies the probability distribution for generating
D®*) | The two-step process, i.e. first generating the @y (with some Bayesian
priors over s; and ey) and second generating the data D) using parame-
ter @, can be viewed as a hierarchical generative model for the data sets
DO .. DE) By modeling all the tasks together, more reliable estimation
of the model parameters using limited training data is possible if the tasks
are closely related to each other, or, when the estimated density functions
g(D®)|6,) for k =1,..., K have certain dependencies among each other.

Despite the different settings, it should be point out that both supervised and
unsupervised models can be put together into a comprehensive framework
for multi-task learning. That is, the learning problem is to search through

CHAPTER 9. UNSUPERVISED MULTI-TASK LEARNING 121

a function space for the optimal one per task. The function space consists
of prediction functions (predicting output variables given input variables) in
the supervised settings, and of density functions (generating input variables)
in the unsupervised settings.

In the remaining sections we show how to apply the comprehensive frame-
work to concrete problems in unsupervised learning, and how to establish
theoretical connections from existing unsupervised methods to multi-task
learning. Because all the examples are used in modeling documents, we will
change our notation for convenience in the rest of this chapter:

1. We use x = (ngx),ngx),...,ng)) to represent a document vector !
(%)

where each element ny ’ is the within-document term frequency of the
v-th word, and V is the total size of the vocabulary.

2. Every single document x; is a task? (i.e., x; is the training dataset for
the i-th task, D(i)), and thus we have ¢ = 1,..., N tasks instead of K
tasks before.

3. For each document, we try to estimate the density g(x;|0;), and we use
T instead of H to denote the number of hidden components (topics).

It is interesting to point out that under this setting, single-task learning does
not make much sense: it just memorizes the bag-of-words representation in
every document!

9.2 Multi-Task Learning and Unsupervised Clus-
tering

Latent Dirichlet Allocation (LDA) [Blei et al., 2003b| and Correlated Topic
Models (CTM) [Blei and Lafferty, 2005] are two well-known approaches to
unsupervised clustering of documents. By projecting a document onto a set
of “topics”, documents can be better represented, interpreted and visualized

'This is the so-called “bag-of-words” representation which simply ignores the word
occurring order in the document.

2This may seem a little bit weird. However, recall that if we want to model a document
x using Multinomial distribution, then each word x; can be thought as a “data point” for
the task. Thus we are still using a lot of data points to estimate each task here.

CHAPTER 9. UNSUPERVISED MULTI-TASK LEARNING 122

using the estimated topics rather than the original bag-of-words representa-
tion. Next we show that the above two topic models can be seen as special
cases of equation (9.1) for multi-task learning®.

Recall that in LDA, a document x is generated in the following steps:

1. A topic distribution variable s € RT*! is first generated as s ~ Dirichlet(cx)
(that is, s belongs to the (7" — 1) dimensional simplex);

2. For each word w in the document?*:

(a) Choose a topic z ~ Multinomial(s);

(b) Choose a word w ~ Multinomial(3,), where 3, € RF*! is the
multinomial parameter vector for topic z.

It is important to realize that, by combining steps 2(a) and 2(b), we can
integrate out the latent variable z which represents the topic:

T
pw) = Y p(z)p(w|?)
z=1

T
= Z Multinomial(z|s)Multinomial(w|3,)

z=1

T
z=1

— o) (9.4)

where T is the total number of topics, 8,(w) is the element of 3, that
corresponds to word w, and 8 = Zle 5.8, € RF*¥1 That is, by integrating
out z, we have w ~ Multinomial(8)®. Thus, the overall generation process
can be summarized using the following succinct form

02' = ASZ'
si ~ Dirichlet(a) (9.5)

3Note that it has been previously pointed out in [Buntine, 2002] that LDA can also be
seen as multinomial PCA.

*We ignore the document length here as it does not affect the LDA model.

®Basically it results from the fact that a mixture of multinomial is still a multinomial,
if we limit our discussion to the special case of multinomial distributions Multinomial(N =
1,p1,...,ps) where only one ball is selected out of a bag of J colored balls with propor-
tional probabilities p1,...,pJ.

CHAPTER 9. UNSUPERVISED MULTI-TASK LEARNING 123

where 6; is the multinomial parameter for the ¢-th document, s; lies in the
(T —1) dimensional simplex and denotes the topic proportional distribution,
and columns of A = (B,...,B87) € RF*T are the multinomial parameters
of those topics.

Comparing these formulae to equation (9.1), it is easy to see that our multi-
task learning framework resembles the LDA formula except that now each
column of A is restricted to a high-dimensional simplex in order to be a
valid model. That is, it has to satisfy Ay s > 0 and Z?Zl Ayy =1 for
Vt=1,...,T. In other words, LDA can be thought as a special application
of the multi-task learning framework to unsupervised clustering.

Correlated Topic Models (CTM) is an alternative approach to unsupervised
clustering. It can be viewed as a modification of LDA so that the correlations
among topics can be explicitly modeled. The model can be written in a
succinct form as

0; = As;
s; ~ LogNormal(p,3) (9.6)

where the vector §; is a re-scaled version of s; such that Zthl Sin = 1,
a necessary condition for ensuring 6 to be a valid multinomial parameter
(belongs to a (F' — 1) dimensional simplex).

Comparing the s; formula in CTM with the one in LDA: By using the
LogNormal distribution [Gelman et al., 2003] instead of the Dirichlet dis-
tribution, correlations among topic occurrence (e.g., elements of s;) can be
encoded in the covariance parameter 3 and thus the topic models estimated
are generally correlated. As a result, the CTM model is more flexible than
the LDA model in the sense it users T'+ T(T + 1)/2 number of parame-
ters to model s; while in LDA only 7" parameters are used to model s;. In
other words, CTM can model both the first-order (mean) and second-order
statistics (covariance) of s; while LDA is only capable of modeling the first-
order statistics. Nevertheless, comparing the CTM formula to equation (9.1),
again our multi-task learning framework resembles the CTM model, except
the assumed prior distribution s; is different from the prior used in LDA.

The above connection between those topic models and models for multi-
task learning is simple, yet interesting. Ideas and insights from one field
can motivate research problems in the other. For example, it is known in

®Briefly speaking, if a random variable X has a Normal distribution, then exp(X) has
a LogNormal distribution.

CHAPTER 9. UNSUPERVISED MULTI-TASK LEARNING 124

multi-task learning that task-specific components e;’s are important in order
to have good performance as the number of training examples grows. In
document modeling although each document is a task (and thus has fixed
number of words), adding a task-specific component might be helpful in
modeling topics as well. Since in the context of topic modeling each task
corresponds to a single document, task-specific component could be learned,
say, by limiting its deviation from a general English multinomial distribution
[Miller et al., 1999, Zhang et al., 2004].

As a summarization statement, the connections between LDA, CTM and
models for multi-task learning have not been analyzed so far, to our knowl-
edge. Nevertheless, these connections are not surprising to see, but rather
conceptually natural. From a higher-level point of view, the common goal
of LDA, CTM and multi-task learning is to model functions f®*) in some
generic metric space H, either in a supervised or unsupervised way, and our
framework supports the search for solutions under different scenarios.

9.3 Unsupervised Learning of Novelty Detection’

In this section we illustrate how to use a probabilistic model for novelty
detection. The task of online document clustering is to group documents into
clusters as long as they arrive in a temporal sequence. Generally speaking,
it is difficult for several reasons: First, it is unsupervised learning and the
learning has to be done in an online fashion, which imposes constraints on
both strategy and efficiency. Second, similar to other learning problems in
text, we have to deal with a high-dimensional space with tens of thousands
of features. And finally, the number of clusters can be as large as thousands
in newswire data. The objective of novelty detection is to identify the novel
objects from a sequence of data, where “novel” is usually defined as dissimilar
to previous seen instances. Here we are interested in novelty detection in the
text domain, where we want to identify the earliest report of every new
event in a sequence of news stories. The most obvious application of novelty
detection is that, by detecting novel events, systems can automatically alert
people when new events happen, for example. Applying online document
clustering to the novelty detection task is straightforward by assigning the
first seed of every cluster as novel and all its remaining ones as non-novel.

Our probabilistic model can also be seen as a very special case of equa-
tion (9.1). To be more specific, we use non-parametric Dirichlet process

"This part is primarily based on our previous paper |Zhang et al., 2004].

CHAPTER 9. UNSUPERVISED MULTI-TASK LEARNING 125

prior to model the growing number of clusters (which is modeled by multi-
nomial distribution with parameter €), and use a prior of general English
language model as the base distribution of DP to handle the generation of
novel clusters. Furthermore, cluster uncertainty is modeled with a Bayesian
Dirichlet-multinomial distribution. The Bayesian inference can be easily car-
ried out due to conjugacy, and model hyper-parameters are estimated using
a historical dataset by the empirical Bayes method. The probabilistic model
is applied to the novelty detection task in Topic Detection and Tracking
(TDT), which has been regarded as the hardest task in TDT [Allan et al.,

2000[, and compared with existing approaches in the literature.

9.3.1 A Probabilistic Model for Online Document Clustering

Below we describe the generative probabilistic model for online document
clustering.

Dirichlet-Multinomial Model

The multinomial distribution has been the most frequently used language
model for probabilistic representation of documents in information retrieval.
Let x = (ngx), o ng)) be the vector representation of a document and 6 =
(01,...,0y) be the model parameter of a document cluster, a document x is

generated with the following probability:

(Zz‘;fﬂ nqu))! LA
pixle) = LT e (9.7)
HL/:1 ”gx)! vl;Il

From the formula we can see the so-called naive assumption: words in a
document are assumed to be independent of each other®. Given a collection
of documents generated from the same model, the parameter 8 can be es-
timated with Maximum Likelihood Estimation. In a Bayesian approach we
would like to put a Dirichlet prior over the parameter (€ ~ Dirichlet(cax)) such
that the probability of generating a document is obtained by integrating over
the parameter space:

p(x) = / p(6]a)p(x]6)d6 (9.8)

This integration can be easily written down due to the conjugacy between
Dirichlet and multinomial distributions. The key difference between the

&Strictly speaking, words are weakly dependent given N, the document length, where
the weak dependency comes from the fact that N = n,(x).

CHAPTER 9. UNSUPERVISED MULTI-TASK LEARNING 126

Bayesian approach and the MLE is that the former uses a distribution to
model the uncertainty of the parameter 6, while the latter gives only a point
estimation.

Online Document Clustering with Dirichlet Process Mixture Model

In our system documents are grouped into clusters in an online fashion. Each
cluster is modeled with a multinomial distribution whose parameter 8 follows
a Dirichlet prior. First, a cluster is chosen based on a Dirichlet process prior
(can be either a new or existing cluster), and then a document is drawn from
that cluster. We use Dirichlet Process (DP) to model the prior distribution
of @’s, and our hierarchical model is as follows:

0, ~ G
G ~ DP(\ Gp) (9.9)
xilci ~ Multinomial(.|6%)

where ¢; is the cluster indicator variable, 8; is the multinomial parameter for
each document, and 0(¢) is the unique @ for the cluster ¢;. G is a random
distribution generated from the Dirichlet process DP(X, Gy) |[Ferguson, 1973],
which has a precision parameter A and a base distribution GGy. Here our base
distribution Gq is a Dirichlet distribution Dirichlet(ymy,yme,...,ymy) with
Zz/:l m = 1, which reflects our expected knowledge about G. Intuitively,
our Gg distribution can be treated as the prior over general English word
frequencies, which has been used in information retrieval literature [Zaragoza
et al., 2003| to model general English documents.

The exact cluster-document generation process can be described as follows:

1. Let x; be the current document under processing (the i-th document
in the input sequence), and Cy, Co, ..., C,, are already generated clus-
ters.

2. Draw a cluster ¢; based on the following Dirichlet process prior |Fer-
guson, 1973

Gl ,
pci=Cj) = ——=m—— U=12,....m
=9 = e | :
A
p(ci = Cpy — 9.10
| AP ED » e 10

where |C;| stands for the cardinality of cluster j with 377" [C;] = i—1,
and with certain probability a new cluster C,,+1 will be generated.

CHAPTER 9. UNSUPERVISED MULTI-TASK LEARNING 127
3. Draw the document x; from the cluster c¢;.

Model Updating

Our models for each cluster need to be updated based on incoming docu-
ments. We can write down the probability that the current document x; is
generated by any cluster as

p(xi|Cj) :/p(9(Cj)|Cj)p(xi|0(cj))d0(cj) (G=12,...,mm+1) (9.11)

where p(O(Cj) |C;) is the posterior distribution of parameters of the j-th clus-
ter whose update is based on equation (9.14) and we use p(8€m+1)|C,, 1) =
p(O(Cm“)) to represent the prior distribution of the parameters of the new
cluster for convenience. Although the dimensionality of @ is high (V =
10° in our case), closed-form solution can be obtained under our Dirichlet-
multinomial assumption. Once the conditional probabilities p(x;|C;) are
computed, the probabilities p(Cj|x;) can be easily calculated using Bayes
rule:

p(Che) = g h V)
> 521 p(Cy)p(xi|Cyr)

where the prior probability of each cluster is calculated using equation (9.10).
Now there are several choices we can consider on how to update the cluster
models. The first choice, which is correct but obviously intractable, is to
fork m + 1 children of the current system where the j-th child is updated
with document x; assigned to cluster j, while the final system is a proba-
bilistic combination of those children with the corresponding probabilities
p(Cj|x;). The second choice is to make a hard decision by assigning the
current document x; to the cluster with the maximum probability:

(9.12)

c; = argmax p(Cjlx;) = P(Cy)p(xi|Cy) . (9.13)

+1
C; > p(Cj)p(x:]Cyr)
The third choice is to use a soft probabilistic updating, which is similar
in spirit to the Assumed Density Filtering (ADF) [Minka, 2001] in the lit-
erature. That is, each cluster is updated by exponentiating the likelihood
function with probabilities:

>p(Cj\Xz') »

p(0'%)|x;,C)) o (p(xi\e(cj)) (0'°|Cy) (9.14)

CHAPTER 9. UNSUPERVISED MULTI-TASK LEARNING 128

However, we have to specially deal with the new cluster since we cannot
afford both time-wise and space-wise to generate a new cluster for each
incoming document. Instead, we will update all existing clusters as above,
and new cluster will be generated only if ¢; = C,, 1. We will use HD and PD
(hard decision and probabilistic decision) to denote the last two candidates
in our experiments.

9.3.2 Learning Model Parameters

In the above probabilistic model there are still several hyper-parameters not
specified, namely the m and v in the base distribution

Gy = Dirichlet(ymy,yma, ...,y), (9.15)

and the precision parameter A in the DP(A,Gp). Since we can obtain a
partially labeled historical dataset’, we now discuss how to estimate those
parameters respectively. We will mainly use the empirical Bayes method
|Gelman et al., 2003] to estimate those parameters instead of taking a full
Bayesian approach, since it is easier to compute and generally reliable when
the number of data points is relatively large compared to the number of
parameters. Because the 6;’s are I1D. from the random distribution G, by
integrating out the G we get

A 1

0:6.,05,...,0;_1 ~ G) 9.16

i101,02,...,0;1 NTio1 0+)\+Z._1Z 0, (9.16)
1<

where the distribution is a mixture of continuous and discrete distributions,

and the dg denotes the probability measure giving point mass to 6.

Now suppose we have a historical dataset H which contains K labeled clus-
ters Hj(j = 1,2,...,K), with the k-th cluster Hy = {Xp1,Xk2, - Xk.m, }
having myj documents. The joint probability of 8’s of all documents can be
obtained as

|H|

A
p(61,6,...0m) =][|—5—Co+)\~|—z—1250 (9.17)
=1

9Although documents are grouped into clusters in the historical dataset,we cannot
make directly use of those labels due to the fact that clusters in the test dataset are
different from those in the historical dataset.

CHAPTER 9. UNSUPERVISED MULTI-TASK LEARNING 129

where |H| is the total number of documents. By integrating over the un-
known parameter 0’s we can get

|H|
p(H) = / [p(xil6:) | p(6:1.62,....0/4)d0:d0; ... d0
i=1

|H|

A 1
il0:) | ~—— — | d6; 1
E /p(x|))\—i-z—lGO—{_)\—i-z—l;éoJ d (9.18)

Empirical Bayes method can be applied to equation (9.18) to estimate the
model parameters by maximization'®. In the following we discuss how to
estimate parameters individually in detail.

Estimating m;’s

Our hyper-parameter 7w vector contains V' number of parameters for the base
distribution G, which can be treated as the expected distribution of G —
the prior of the cluster parameter 8’s. Although 7 contains V' = 10° number
of actual parameters in our case, we can still use the empirical Bayes to do
a reliable point estimation since the amount of data we have to represent
general English is large (in our historical dataset there are around 10° docu-
ments, around 1.8 x 10® English words in total) and highly informative about
m. We use the smoothed estimation

oo (L4+n8 14nl® 14l (9.19)
where ngH) = wcH ngx) is the total number of times that term ¢ happened

in the collection H, and Z}e/:1 m¢ should be normalized to 1. Furthermore,
the pseudo-count one is added to alleviate the out-of-vocabulary problem (a
more systematic way is to assign a Dirichlet prior).

Estimating ~y

Though ~ is just a scalar parameter, it has the effect of controlling the
uncertainty of the prior knowledge about how clusters are related to the
general English model with the parameter m. We can see that ~ controls
how far each new cluster can deviate from the general English model'!. Tt

Since only a subset of documents are labeled in the historical dataset H, the maxi-
mization is only taken over the union of the labeled clusters.
"Recall that the mean and variance of a Dirichlet distribution (01,02,...,0v) ~

Dirichlet(ym1,y7m2, ..., ymv) are: R[f,] = 7, and V[§,] = %

CHAPTER 9. UNSUPERVISED MULTI-TASK LEARNING 130

can be estimated as follows:

K
5 = argmax [p(Hyly)

T k=1
K

= argmaxH/p(HkIG(k))p(G(k)\'y)de(k) (9.20)
T k=1

By setting the derivative to zero, 4 can be numerically computed by solving
the following equation:

14
0 = KU(y)-K> U(ym)m,
v=1
K K 14
+ > W(ym + nlT), = Y w(y+ > i) (9.21)
k=1v=1 k=1 v=1

where the digamma function () is defined as ¥(z) = L InT'(z). Alter-
natively we can choose v by evaluating over the historical dataset. This is
applicable (though computationally expensive) since it is only a scalar pa-
rameter and we can pre-compute its possible range based on the result of
equation (9.20).

Estimating A

The precision parameter A\ of the DP is also very important for the model,
which controls how far the random distribution G can deviate from the
baseline model Gg. In our case, it is also the prior belief about how quickly
new clusters will be generated in the sequence. Similarly we can use equation
(9.20) to estimate A, since items related to A\ can be factored out as

\Yi
S E— 9.22
2,1;[1)\—1—1'—1 ()

Suppose we have a labeled subset H* = {(x1,y1), (X2,92), ..., (Xar,yar)} of
training data, where y; is 1 if x; is a novel document or 0 otherwise. Here
we describe two possible choices:

1. The simplest way is to assume that A is a fixed constant during the
process, and it can be computed as

o \Yi
A= _— 2
arg max H T (9.23)
i€HL

CHAPTER 9. UNSUPERVISED MULTI-TASK LEARNING 131

here HL denotes the subset of indices of labeled documents in the
whole sequence.

2. The assumption that A is fixed may be too restrictive in reality, espe-
cially considering the fact that it reflects the generation rate of new
clusters. More generally, we can assume that A\ is some function of
variable i'2. In particular, we assume A = a/i + b + ci where a, b
and c¢ are non-negative numbers. This formulation is a generalization
of the above case, where the i~! term allows a much faster decrease
at the beginning, and c is the asymptotic rate of events happening as
i — 00. Again the parameters a, b and ¢ are estimated by MLE over

the training dataset:

(afi+ b+ ci)¥

9.24
ali+b+ci (5:24)

a,b,¢ = arg max

a,b,c>0 icHL

9.3.3 Experiments

We apply the above online clustering model to the novelty detection task in
Topic Detection and Tracking (TDT). TDT has been a research community
since its 1997 pilot study, which is a research initiative that aims at tech-
niques to automatically process news documents in terms of events. There
are several tasks defined in TDT, and among them Novelty Detection (a.k.a.
First Story Detection or New Event Detection) has been regarded as the
hardest task in this area [Allan et al., 2000]. The objective of the novelty
detection task is to detect the earliest report for each event as soon as that
report arrives in the temporal sequence of news stories.

Dataset

We use the TDT2 corpus as our historical dataset for estimating parameters,
and use the TDT3 corpus to evaluate our model'®. Notice that we have a
subset of documents in the historical dataset (TDT2) for which events labels
are given. The TDT2 corpus used for novelty detection task consists of
62,962 documents, among them 8,401 documents are labeled in 96 clusters.
Stopwords are removed and words are stemmed, and after that there are
on average 180 words per document. The total number of features (unique

words) is around 100,000.

21t is not a DP anymore after this adaptation.
13Gtrictly speaking we only used the subsets of TDT2 and TDT3 that is designated for
the novelty detection task.

CHAPTER 9. UNSUPERVISED MULTI-TASK LEARNING 132

FEvaluation Measure

In our experiments we use the standard TDT evaluation measure [Yang et al.,
2002| to evaluate our results. The performance is characterized in terms of
the probability of two types of errors: Miss and False Alarm (FA) (Ppy;ss
and Pr4). These two error probabilities are then combined into a single
detection cost, Cget, by assigning costs to Miss and FA errors:

Cdet = CMiss ' PMiss ' Ptarget + CVFA : PFA : Pnon—target (925)

where

1. Cuiss and Cp 4 are the costs of a miss and a false alarm, respectively,

2. Puriss and Pry are the conditional probabilities of a miss and a false
alarm, respectively and,

3. Piarget and Ppon_target is the priori target probabilities such that Pigrger =

1- Pnon—target-

It is the following normalized cost that is actually used in evaluating various
TDT systems:

Cdet

: 9.26
mln(CMiss : Ptargeta C’FA : Pnon—target) ()

(Cdet)norm =

where the denominator is the minimum of two trivial systems. Besides,
two types of evaluations are used in TDT, namely macro-averaged (topic-
weighted) and micro-averaged (story-weighted) evaluations. In macro-averaged
evaluation, the cost is computed for every event, and then the average is
taken. In micro-averaged evaluation the cost is averaged over all documents’
decisions generated by the system, thus large event will have bigger impact
on the overall performance. Note that macro-averaged evaluation is used as
the primary evaluation measure in TDT.

In addition to the binary decision “novel” or “non-novel”, each system is
required to generated a confidence score for each test document. The higher
the score is, the more likely the document is novel. Here we mainly use
the minimum cost to evaluate systems by varying the threshold, which is
independent of the threshold setting.

Methods

CHAPTER 9. UNSUPERVISED MULTI-TASK LEARNING 133

One simple but effective method is the “GAC-INCR” clustering method
[Yang et al., 1998, 1999] with cosine similarity metric and TFIDF term
weighting, which has remained to be the top performing system in TDT
2002 & 2003 official evaluations. For this method the novelty confidence
score we used is one minus the similarity score between the current cluster
x; and its nearest neighbor cluster:

s(x;) = 1.0 — ?gfsim(ci,cj) (9.27)
where ¢; and c; are the clusters that x; and x; are assigned to, respec-
tively,and the similarity is taken to be the cosine similarity between two
cluster vectors, where the ltc TFIDF term weighting scheme [Salton and
Buckley, 1988] is used to scale each dimension of the vector. Our second
method is to train a logistic regression model which combines multiple fea-
tures generated by the GAC-INCR method. Those features not only include
the similarity score used by the first method, but also include the size of its
nearest cluster, the time difference between the current cluster and the near-
est cluster, etc. We call this method “Logistic Regression”, where we use the
posterior probability p(novelty|x;) as the confidence score. Finally, for our
online clustering algorithm we choose the quantity s(x;) = log p(Cpew|x;) as
the output confidence score.

Ezperimental Results

Our results for three methods are listed in Table 9.1, where both macro-
averaged and micro-averaged minimum normalized costs are reported. Fur-
thermore, we also report the Miss and FA results to show the trade-off
(recall that they are the two components of the cost in equation 9.25).
The GAC-INCR method performs very well, so does the logistic regression
method. For our DP results, we observed that using the optimized 4 will
get results (not listed in the table) that are around 10% worse than using
the v obtained through validation, which might be due to the flatness of
the optimal function value as well as the sample bias of the clusters in the
historical dataset'*. Another observation is that the probabilistic decision
does not actually improve the hard decision performance, especially for the
Avar Option (remember that in the case of A, option we learn A from the
data; in the case of \,q--option we actually assume it to be a function of
document index A\ = a/i + b+ ci and learn the function parameters a, b and
¢). Generally speaking, our DP methods are comparable to the other two
methods, especially in terms of topic-weighted measure.

"1t is known that the cluster labeling process of LDC is biased toward topics that are

CHAPTER 9. UNSUPERVISED MULTI-TASK LEARNING 134

Method Topic-weighted Cost | Story-weighted Cost
(Miss, FA) (Miss, FA)

GAC-INCR 0.6945 (0.5614, 0.0272) 0.7090 (0.5614, 0.0301)
Logistic Regression | 0.7027 (0.5732, 0.0264) 0.6911 (0.5732, 0.0241)
DP with Ag,, HD | 0.7054 (0.4737, 0.0473) 0.7744 (0.5965, 0.0363)

DP with Ay, HD | 0.6901 (0.5789, 0.0227) 0.7541 (0.5789, 0.0358)
DP with A, PD | 0.7054 (0.4737, 0.0473) 0.7744 (0.5965, 0.0363)
DP with Ayer, PD | 0.9025 (0.8772, 0.0052) 0.9034 (0.8772, 0.0053)

Table 9.1: Results for Novelty Detection on TDT3 Corpus

9.4 Summary

In this chapter we presented an extended version of our multi-task learn-
ing framework, to include both supervised and unsupervised settings. As a
concrete and significant example, we show how to apply the framework to
the novelty detection problem, with the evaluation results on a benchmark
corpus that are comparable to the results of the best system in novelty de-
tection. We also establish theoretical connections between our framework
and other well-known Bayesian approaches to unsupervised learning of topic
models such as the Latent Dirichlet Allocation and Correlated Topic Models.

Related work in unsupervised learning are the follows. Zaragoza et al.
|Zaragoza et al., 2003] applied a Bayesian Dirichlet-multinomial model to
the ad hoc information retrieval task and showed that it is comparable to
other smoothed language models. Blei et al. [Blei et al., 2003a| used Chi-
nese Restaurant Processes to model topic hierarchies for a collection of doc-
uments.

Another interesting and related research topic is semi-supervised learning
where some of the response variable y’s are given and some of them are
missing. Various approaches have been proposed, such as [Zhu et al., 2003,
Zhou et al., 2005, Zhang and Ando, 2005]. Viewed from the multi-task learn-
ing perspective, it is possible to extend our multi-task learning framework
further to model parameters ,,1qpeieqd and Qgpereq jointly while considering
P(X]Ouniaveted) and p(y|x, Orapereq). By capturing the dependencies between
0. niabeled and Bpgpereq, we may be able to make more effective use of both
labeled and unlabeled data.

covered in multiple languages instead of one single language.

Chapter 10

Summary and Discussions

In this thesis we have presented a unified probabilistic framework for multi-
task learning, together with a series of models suitable for different task
scenarios. In our framework task relatedness is explained by sharing a com-
mon structure through latent variables, and mathematically a flexible prior
distribution is learned for task parameters using all training resources. Ex-
periments show that they are able to take advantage of multiple related tasks
to improve performance. Contributions of the thesis include:

o A Unified Probabilistic Framework for Multi-Task Learning: We pro-
posed a novel probabilistic framework for multi-task learning. It can be
seen as a hierarchical Bayesian model or latent variable model, whose
flexibility (i.e., the capability to support a variety of task scenarios)
mainly comes from two sources: the statistical assumption about la-
tent variable s and the form of the shared structure (e.g., the mixing
matrix A).

o Systematic Exploration of Multi-Task Learning Scenarios: We ana-
lyzed a series of important multi-task learning scenarios, and presented
suitable models within the framework. The scenario analysis also sheds
light on how to properly formulate various applications into multi-task
learning problems.

o Sparsity Models for Multi- Task Learning: We proposed sparsity models
for multi-task learning, where the sparsity is either in terms of the
hidden source sj or the linear mixing matrix A. In the former each
prediction function is a sparse linear combination of basis functions;

135

CHAPTER 10. SUMMARY AND DISCUSSIONS 136

while in the later each prediction function is a linear combination of
basis functions that are sparse.

o New Algorithms for Joint Feature Selection for Multi-Task Learning:
We proposed the [y o[, regularization algorithm which can be seen as
a generalization of lasso for the multi-task learning setting. It couples
the the same feature coefficients of all tasks by using a [,-norm penalty,
and thus is capable of utilizing information from all tasks.

o Mizture Models for “Clusters of Tasks”: We generalize previous work
by proposing mixture models for multi-task learning, which are the
right choice for the “clusters of tasks” scenario. An efficient learning
algorithm based on EM is presented and we achieved good results on
both simulated data and collaborative filtering tasks.

o [nvestigation on Model Selection for Multi- Task Learning: We adapted
the general idea of model selection to the multi-task learning setting,
where the best joint model of all task parameters is chosen. This effort
covers an unexplored area in multi-task learning, and is indispensable
in order to find good models, especially when domain knowledge does
not lead to an obvious choice.

There are still many open questions and opportunities in multi-task learning
research:

e The performance gain of multi-task learning depends a lot on the num-
ber of tasks available. Ando and Zhang [2004| used heuristics to create
many auxiliary tasks from unlabeled data and got good performance
in several applications. How to design auxiliary tasks such that the
multi-task learning can most benefit is an open question and deserves
careful investigation.

e (Classification with structured outputs has become a very popular re-
search topic and has been applied to many interesting problems in nat-
ural language processing, information extraction and bio-informatics,
where structured outputs naturally exist. A deep understanding of its
connection to multi-task learning will be contribute to both research

fields.

e In this thesis we mainly focused on supervised learning problems, and
briefly discussed unsupervised multi-task learning. More generally we

CHAPTER 10. SUMMARY AND DISCUSSIONS 137

can consider semi-supervised learning, where we have both labeled
and unlabeled tasks. Can we develop effective approaches to semi-
supervised multi-task learning?

e All scenarios discussed in this thesis assume that tasks have the same
input space X'. However, it is not necessary since we can have multiple
tasks with the their input space X®) = X @ Z(*) where the X part
of the input space is shared. In particular, semi-parametric models
[Bickel et al., 1998] might be a good candidate which can have a non-
parametric part for Z() and a common parametric component for X
It is still unclear how effective multi-task learning methods are for this
partially sharing situation.

e In Chapter 8 we have focused on cross-validation techniques for model
selection in multi-task learning. It is meaningful to investigate how
well other model selection techniques perform, such as Bayesian model
selection, AIC, BIC, MDL, GCV, etc. Another important question
is, can we design efficient algorithms to obtain cross-validation errors
without carrying out the expensive K-fold computation (using approxi-
mation or bounds?), especially the leave-one-task-out cross-validation?

We think that successfully addressing the above problems will significantly
contribute to multi-task learning and make multi-task learning a more ma-
ture field.

CHAPTER 10. SUMMARY AND DISCUSSIONS 138

Bibliography

J. Allan, V. Lavrenko, and H. Jin. First story detection in tdt is hard. In
Proceeding of CIKM, 2000.

Edoardo Amaldi and Viggo Kann. On the approximability of minimizing
nonzero variables or unsatisfied relations in linear systems. Theoretical
Computer Science, 209:237-260, 1998.

R. Ando and T. Zhang. A framework for learning predictive structures from
multiple tasks and unlabeled data. Technical Report RC23462, IBM T.J.
Watson Research Center, 45, 2004.

J. Baxter. Theoretical models of learning to learn, 1997.

J. Baxter. A bayesian/information theoretic model of bias learning. In Pro-
ceedings of the 9th International Conference on Computational Learning
Theory (COLT), 1996.

Jonathan Baxter. A model of inductive bias learning. Journal of Artificial
Intelligence Research, 12:149 198, 2000.

M.J. Beal. Variational Algorithms for Approzimate Bayesian Inference.
Ph.D. Thesis, Gatsby Computational Neuroscience Unit, University Col-
lege London, 2003.

A.J. Bell and T.J. Sejnowski. An information-maximization approach to
blind separation and blind deconvolution. Neural Computation, 7:1129
1159, 1995.

S. Ben-David and R. Schuller. Exploiting task relatedness for multiple task
learning, 2003.

J. Bernardo and A. Smith. Bayesian Theory. John Wiley & Sons, 1993.

139

BIBLIOGRAPHY 140

P. Bickel, C. Klaassen, Y. Ritov, and J. Wellner. Efficient and Adaptive
Estimation for Semiparametric Models. Springer, 1998.

D. Blei and J. Lafferty. Correlated topic models. In Neural Information
Processing Systems (NIPS) 18, 2005.

D. Blei, T. Griffiths, M. Jordan, and J. Tenenbaum. Hierarchical topic
models and the nested chinese restaurant process. In Neural Information
Processing Systems (NIPS) 15, 2003a.

D. Blei, A. Ng, and M. Jordan. Latent dirichlet allocation. Journal of
Machine Learning Research, 3:993-1022, 2003b.

Avrim Blum and Pat Langley. Selection of relevant features and examples
in machine learning. Artificial Intelligence, 97(1-2):245 271, 1997.

A. Blumer, A. Ehrenfeucht, D. Haussler, and M. Warmuth. Learnability
and the vapnikchervonenkis dimension. Journal of the ACM, 36:929 965,
1989.

G. Box and G. Tiao. Bayesian Inference in Statistical Analysis. Addison-
Wesley, 1973.

S. Boyd and L. Vandenberghe. Convez Optimization. Cambridge University
Press, 2004.

John S. Breese, David Heckerman, and Carl Kadie. Empirical analysis of
predictive algorithms for collaborative filtering. In Proceedings of the Four-
teenth Conference on Uncertainty in Artificial Intelligence, pages 43-52,
1998.

L. Breiman and J.H. Friedman. Predicting multivariate responses in multiple
linear regression. J. Royal. Statist. Soc B., 59(1):3-54, 1997.

J. Brutlag and C. Meek. Challenges of the email domain for text classifi-
cation. In Proceedings of the 17th International Conference on Machine
Learning (ICML), 2000.

W. Buntine. Variational extensions to em and multinomial pca. In Proceed-
ings of European Conference on Machine Learning, 2002.

R. Caruana. Multitask learning. Machine Learning, 28(1):41-75, 1997.

T. Cover and J. Thomas. Elements of Information Theory. John Wiley,
1991.

BIBLIOGRAPHY 141

A.P. Dempster, N.M. Laird, and D.B. Rubin. Maximum likelihood from
incomplete data via the em algorithm. Journal of the Royal Statistical
Society, Series B, 39:1-38, 1977.

Annette J. Dobson. An Introduction to Generalized Linear Models. Chapman
and Hall/CRC, second edition, 2001.

B. Efron, T. Hastie, . Johnstone, and R. Tibshirani. Least angle regression.
The Annals of Statistics, 2004.

A. Ehrenfeucht, D. Haussler, M. Kearns, and L. Valiant. A general lower
bound on the number of examples needed for learning. In Proceedings of
the 1988 Workshop on Computational Learning Theory, pages 110 120.
Morgan Kaufmann, 1988.

B. Everitt. An Introduction to Latent Variable Models. Chapman and Hall,
1984.

T. Evgeniou and M. Pontil. Regularized multitask learning. In Proceedings
of 17th SIGKDD Conference on Knowledge Discovery and Data Mining,
2004.

T. Evgeniou, C. Micchelli, and M. Pontil. Learning multiple tasks with kernel
methods. Journal of Machine Learning Research, 6:615-637, 2005.

T. Ferguson. A bayesian analysis of some nonparametric problems. Annals
of Statistics, 1:209 230, 1973.

J. Friedman and J. Tukey. A projection pursuit algorithm for exploratory
data analysis. IEEE Transactions on Computers, 23(9):881 890, 1974.

A. Gelman, J. Carlin, H. Stern, and D. Rubin. Bayesian Data Analysis.
Chapman & Hall/CRC, second edition, 2003.

Z. Ghahramani and M. Beal. Variational inference for bayesian mixtures of
factor analysers. In Advances in Neural Information Processing Systems,
volume 12, pages 449 455, 2000.

Z. Ghahramani and G. Hinton. Parameter estimation for linear dynamical
systems. University of Toronto, Technical Report CRG-TR-96-2, 1996.

M.N. Gibbs and D. MacKay. Efficient implementation of gaussian processes.
URL http://wuw.inference.phy.cam.ac.uk/mngl10/GP/.

BIBLIOGRAPHY 142

M. Girolami, editor. Advances in Independent Component Analysis.
Springer-Verlag, 2000.

G. Golub and C. Van Loan. Matriz Computation. John Hopkins University
Press, third edition, 1996.

R. Gorsuch. Factor Analysis. Lawrence Erlbaum Associates, second edition,
1983.

I. Guyon and A. Elisseeff. An introduction to variable and feature selection.
Journal of Machine Learning Research, 3:1157 1182, 2003.

T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learn-
ing: Data Mining, Inference and Prediction. Springer-Verlag, first edition,
2001.

Trevor Hastie, Saharon Rosset, Robert Tibshirani, and Ji Zhu. The entire
regularization path for the support vector machine. Journal of Machine
Learning Research, 5:1391-1415, 2004.

Tom Heskes. Empirical bayes for learning to learn. In Proc. 17th Inter-
national Conf. on Machine Learning, pages 367-374. Morgan Kaufmann,
San Francisco, CA, 2000.

P. Huber. Project pursuit. The Annals of Statistics, 13(2):435 475, 1985.

A. Hyvarinen, J. Karhumen, and E. Oja. Independent Component Analysis.
John Wiley & Sons, Inc., 2001.

A.G. Ivakhnenko. Polynomial theory of complex systems. IEEE Transactions
on Systems, Man, and Cybernetics, 1(4):364-378, 1971.

T. Jaakkola and M. Jordan. A variational approach to bayesian logistic
regression models and their extensions. In Proceedings of 6th International
Worksop on Al and Statistics, 1997.

R. A. Jacobs, M. I. Jordan, S. J. Nowlan, and G. E. Hinton. Adaptive
mixtures of local experts. Neural Computation, 3:79-87, 1991.

W. James and C. Stein. Estimation with quadratic loss. In Proceeding of
Fourth Berkeley Symp. Math. Statist. Probab., pages 361-380, 1961.

M. Jordan. An Introduction to Graphical Models. unpublished manuscript,
2002.

BIBLIOGRAPHY 143

R.E. Kass and A.E. Raftery. Bayes factors and model uncertainty. Technical
Report 254, University of Washington, 1993.

G. Kimeldorf and G. Wahba. Some results on tchebycheffian spline functions.
Journal of Mathematical Analysis and Applications, 33(1):82-95, 1971.

K. Klinkenberg and T. Joachims. Detecting concept drift with support vector
machines. In Proceedings of the 17th International Conference on Machine
Learning (ICML), 2000.

D. Koller and M. Sahami. Hierarchically classifying documents using very
few words. In Proceedings of the 14th International Conference on Machine

Learning (ICML), 1997.

J.B. Kruskal. Toward a practical method which helps uncover the structure
of a set of observations by finding the line transformation which optimizes
a new index of condensation. Academic Press, New York, 1969.

E. Lehmann and G. Casella. Theory of Point Estimation. Springer-Verlag,
second edition, 1998.

M. Lewicki and T.J. Sejnowski. Learning overcomplete representations. Neu-
ral Computation, 12:337 365, 2000.

D. Lewis, Y. Yang, T. Rose, and F. Li. Rcvl: A new benchmark collection
for text categorization research. Journal of Machine Learning Research,
5:361 397, 2004.

Huan Liu and Rudy Setiono. Incremental feature selection. Applied Intelli-
gence, 9(3):217 230, 1998.

David Luenberger. Linear and Nonlinear Programming. Springer, second
edition, 2003.

A. McCallum and K. Nigam. A comparison of event models for naive bayes
text classification. In AAAI-98 Workshop on Learning for Text Catego-
rization, 1998.

P. McCullagh and J. A. Nelder. Generalized Linear Models. Chapman and
Hall/CRC, second edition, 1989.

D. Miller, T. Leek, and R. Schwartz. Bbn at trec 7: Using hidden markov
models for information retrieval. In Proceeding of TREC 7, 1999.

BIBLIOGRAPHY 144

T. Minka. From hidden markov models to linear dy-
namical systems. Technical Report, MIT, 1999. URL
http://vismod.media.mit.edu/tech-reports/TR-531-ABSTRACT .html.

T. Minka. A Family of Algorithms for Approzimate Bayesian Inference.
Ph.D. Thesis, MIT, 2001.

T. Minka and R. Picard. Learning how to learn is learning with point sets,
1997.

K. Murphy, Y. Weiss, and M. Jordan. Loopy belief propagation for approx-
imate inference: An empirical study. In Proceedings of Uncertainty in
Artificial Intelligence, 1999.

R. Neal. Probabilistic inference using markov chain monte carlo methods.
Technical Report CRG-TR-93-1, Department of Computer Science, Uni-
versity of Toronto, 1993.

A. Ng and M. Jordan. On discriminative vs. generative classifiers: A com-
parison of logistic regression and naive bayes. In Advances in Neural In-
formation Processing Systems 14. Cambridge, MA, 2002.

Andrew Ng. Feature selection, 11 vs. 12 regularization, and rotational in-
variance. In Proceedings of the Twenty-first International Conference on
Machine Learning (ICML), 2004.

J. Nocedal and S. Wright. Numerical Optimization. Springer-Verlag, 1999.

J. Pearl. Probabilistic Reasoning in Intelligence Systems: Networks of Plau-
sible Inference. Morgan Kaufmann, 1998.

Carl Rasmussen and Zoubin Ghahramani. Infinite mixtures of gaussian pro-
cess experts. In Neural Information Processing Systems (NIPS) 1/, 2002.

S. Roberson and D. Hull. The trec-9 filtering track report. In Proceedings of
TREC-9, 2001.

C. Robert and G. Casella. Monte Carlo Statistical Methods. Springer Text
in Statistics, 2005.

S. Roberts and R. Everson, editors. Independent Component Analysis: Prin-
ciples and Practice. Cambridge University Press, 2001.

R. Rosenblatt. Principles of neuro dynamics. Spartan books, New York,
1959.

BIBLIOGRAPHY 145

Y. Rubinstein and T. Hastie. Discriminative vs. informative learning. In
Proceedings of the Third International Conference on Knowledge Discovery
and Data Mining, 1997.

D. Rumelhart, G. Hinton, and R. williams. Learning internal representations
by error propagation. MIT Press, Cambridge, MA, 1986.

G. Salton and C. Buckley. Term-weighting aapproaches in automatic text
retrieval. Information Processing and Management, 24(5):513 523, 1988.

F.E. Satterthwaite. An approximation distribution of estimates of variance
components. Biometrics Bulletin, 2:110-114, 1946.

L. Saul, T. Jaakkola, and M. Jordan. Mean field theory for sigmoid belief
networks. Journal of Artificial Intelligence Research, 4:61-76, 1996.

D. Silver and R. Mercer. Selective functional transfer: Inductive bias from
related tasks. In Proceedings of the IASTED International Conference
on Artificial Intelligence and Soft Computing (ASC2001), pages 182-189,
2001.

C. Spearman. General intelligence objectively determined and measured.
American Journal of Psychology, 15:201 293, 1904.

C. Stein. Inadmissibility of the usual estimator for the mean of a multivariate
normal distribution. In Proceeding of Third Berkeley Symp. Math. Statist.
Probab., pages 197 206, 1955.

Y. Teh, M. Seeger, and M. Jordan. Semiparametric latent factor models. In
AISTAT, 2005.

S. Thrun and L. Pratt. Learning to Learn. Kluwer Academic Publishers,
1998.

Sebastian Thrun. Is learning the n-th thing any easier than learning the
first? In David S. Touretzky, Michael C. Mozer, and Michael E. Hasselmo,
editors, Advances in Neural Information Processing Systems, volume 8§,
pages 640-646. The MIT Press, 1996.

Robert Tibshirani. Regression shrinkage and selection via the lasso. J. Royal.
Statist. Soc B., 58:1:267 288, 1996.

A. N. Tikhonov. Solutions of incorrectly formulated problems and the regu-
larization method. Sowviet Math Dokl 4:1035 1038, 1963.

BIBLIOGRAPHY 146

M. Tipping and C. Bishop. Probabilistic principal component analysis. Jour-
nal of the Royal Statistical Society, Series B, 21(3):611 622, 1999.

Volker Tresp. Mixture of gaussian processes. In Neural Information Process-
ing Systems (NIPS) 13, 2001.

van der Vaart. Asymptotic Statistics. Cambridge University Press, 2000.
V. Vapnik. Statistical Learning Theory. John Wiley & Sons, 1998.

V. Vapnik. The Nature of Statistical Learning Theory. Springer-Verlag,
second edition, 1999.

L. Wasserman. All of Statistics: A Concise Course in Statistical Inference.
Springer, 2005.

L. Wasserman. All of Nonparametrics. Springer, 2006.

Jason Weston, Andre Elisseeff, Bernhard Scholkopf, and Mike Tipping. The
use of zero-norm with linear models and kernel methods. Journal of Ma-
chine Learning Research Special Issue on Feature Selection, 3(Mar):1439
1461, 2003.

C. Williams. Prediction with gaussian processes: From linear regression to
linear prediction and beyond. 1998.

J. Winn. Variational Message Passing and Its Applications. Ph.D. Thesis,
Department of Physics, University of Cambridge, 2003.

E. Xing, M. Jordan, and S. Russell. A generalized mean field algorithm for
variational inference in exponential families. In Proceedings of Uncertainty
i Artificial Intelligence, 2003.

Y. Yang, T. Pierce, and J. Carbonell. A study on retrospective and on-line
event detection. In Proceeding of SIGIR, 1998.

Y. Yang, J. Carbonell, R. Brown, T. Pierce, B. Archibald, and X. Liu.
Learning approaches for detecting and tracking news events. [EFEE In-

telligent Systems: Special Issue on Applications of Intelligent Information
Retrieval, 14:32 43, 1999.

Y. Yang, J. Zhang, J. Carbonell, and C. Jin. Topic-conditioned novelty
detection. In Proceeding of 8th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, 2002.

BIBLIOGRAPHY 147

Yiming Yang and Xin Liu. A re-examination of text categorization meth-
ods. In Proceedings of SIGIR-99, 22nd ACM International Conference on
Research and Development in Information Retrieval, pages 42—49, 1999.

Yiming Yang and Jan O. Pedersen. A comparative study on feature selection
in text categorization. In Proceedings of ICML-97, 14th International
Conference on Machine Learning, pages 412—420, 1997.

Yiming Yang, Jian Zhang, and Bryan Kisiel. A scalability analysis of classi-
fiers in text categorization. In Proceedings of the 26th Annual International
ACM SIGIR Conference, 2003.

Yiming Yang, Shinjae Yoo, Jian Zhang, and Bryan Kisiel. Robustness of
adaptive filtering methods in a cross-benchmark evaluation. In Proceedings
of the 28th Annual International ACM SIGIR Conference, 2005.

J. Yedidia, W. Freeman, and Y. Weiss. Understanding belief propagation
and its generalizations. Technical Report TR-2001-22, Mitsubishi Electric
Research Laboratories, Inc., 2002.

K. Yu, V. Tresp, and A. Schwaighofer. Learning gaussian processes from mul-
tiple tasks. In Proceedings of 22nd International Conference on Machine
Learning (ICML), 2005.

Shipeng Yu, Kai Yu, Volker Tresp, and Hans-Peter Kriegel. Collaborative
ordinal regression. In Proceedings of 23rd International Conference on
Machine Learning (ICML), 2006.

H. Zaragoza, D. Hiemstra, D. Tipping, and S. Robertson. Bayesian extension
to the language model for ad hoc information retrieval. In Proceeding of
SIGIR, 2003.

J. Zhang. Preliminary results on email prioritization. In Unpublished
Manuscript, 2002.

J. Zhang and Y. Yang. Robustness of regularized linear methods in text
classification. In SIGIR, 2003.

J. Zhang, Z. Ghahramani, and Y. Yang. A probabilistic model for online
document clustering with application to novelty detection. In Neural In-
formation Processing Systems (NIPS) 17, 2004.

J. Zhang, 7. Ghahramani, and Y. Yang. Learning multiple related tasks using
latent independent component analysis. In Neural Information Processing
Systems (NIPS) 18, 2005.

BIBLIOGRAPHY 148

T. Zhang and R. Ando. Graph-based semi-supervised learning and spectral
kernel design. Technical Report RC23713, IBM T.J. Watson Research
Center, 2005.

Tong Zhang and Frank J. Oles. Text categorization based on regularized
linear classification methods. Information Retrieval, 4(1):5 31, 2001.

Yi Zhang. Using bayesian priors to combine classifiers for adaptive filtering.
In Proceedings of the 27th Annual International ACM SIGIR Conference,
2004.

D. Zhou, J. Huang, and B. Scholkopf. Learning from labeled and unlabeled
data on a directed graph. In The 22nd International Conference on Ma-
chine Learning (ICML), 2005.

Z. Zhu, Z. Ghahramani, and J. Lafferty. Semi-supervised learning using
gaussian fields and harmonic functions. In The Twentieth International
Conference on Machine Learning (ICML), 2003.

