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Abstra
tAn important problem in statisti
al ma
hine learning is how to e�e
tivelymodel the predi
tions of multiple related tasks, whi
h is known as multi-task learning. Di�erent from single-task learning where tasks are learnedseparately, multi-task learning aims to jointly model those tasks. The mainbene�t of multi-task learning is that it 
an more e�e
tively use trainingresour
es from all tasks and a
hieve better generalization performan
e whentasks are related. To be more spe
i�
, su

essfully addressing multi-tasklearning 
an not only allay the data pau
ity problem given many tasks,but also generalize to future tasks by transferring knowledge learned fromexisting tasks. Multiple tasks naturally exist in many appli
ations, su
h astext 
lassi�
ation, email anti-spam �ltering, image 
lassi�
ation, et
.We present a novel probabilisti
 framework for multi-task learning wheretask relatedness is modeled using a shared stru
ture through latent variables.Within su
h a framework, we study a series of important multi-task learnings
enarios and propose suitable models a

ordingly, and show that the �exi-bility of the framework is a
hieved by allowing di�erent assumptions aboutlatent variables and the shared stru
ture. In parti
ular, we present sparsitymodels whi
h are parsimonious and suitable for high-dimensional tasks; wepropose the l1 ◦ lp regularization method whi
h is suitable for joint featuresele
tion; we propose to use mixture models as the solution of the 
lustersof tasks s
enario; we also extend our framework to unsupervised learningand show its 
onne
tion to existing topi
 models. Furthermore, model se-le
tion te
hniques for multi-task learning are investigated sin
e they playimportant roles in 
hoosing the best joint model and generalizing to futuretasks. Experiments are 
ondu
ted to support our methods using both simu-lated datasets and real datasets from text 
lassi�
ation, anti-spam �ltering,handwritten letter re
ognition and 
ollaborative �ltering.i
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NotationSymbol Meaningitali
 letters: x, y, z; f, g, h x, y, z : s
alars; f, g, h : fun
tionsbold letters: x,y, z ve
tors (
olumn ve
tors by default)
apital BOLD letters: X,Y,Z matri
esGreeks: µ, θ, α, β,Θ,Λ model parameters
〈X,Y〉 and 〈x,y〉 XTX and xTy

K number of tasks
N number of data instan
es
F number of features/predi
tors
H number of hidden sour
es (latent vari-ables)
Bernoulli(µ) Bernoulli distribution with mean µ
Multinomial(n; θ1, . . . , θF ) Multinomial distribution with param-eter n and proportional parameters

θ1, . . . , θF

Normal(m,V) Gaussian distribution with mean mand 
ovarian
e V

Laplace(m, v) Lapla
e distribution with mean m andvarian
e v
InvGamma(να, νβ) Inverse Gamma distribution
DP(ν,G0) Diri
hlet pro
ess with pre
ision ν andbase distribution G0

GP(f,K) Gaussian pro
esses with mean fun
-tion f(.) and 
ovarian
e fun
tion
K(., .)

E[x] Expe
tation of random variable x

V[x] Varian
e-
ovarian
e matrix of randomvariable x

C[X,Y ] Covarian
e between random variables
X and Yiii
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Chapter 1Introdu
tion
1.1 Why Multi-Task Learning?An important problem in statisti
al ma
hine learning is how to general-ize among multiple related predi
tion tasks. This problem has been 
alled�Multi-Task Learning� [Caruana, 1997℄, �Learning to Learn� and �TransferLearning� [Thrun and Pratt, 1998℄, and sometimes �Predi
tions of Multivari-ate Responses� [Breiman and Friedman, 1997℄ in the ma
hine learning andstatisti
s literature. Multi-task learning has many potential appli
ations,and in the following we give several important examples whi
h 
an be re
astas multi-task learning problems:
• Multi-label Text Classi�
ation: Text 
lassi�
ation is one fundamentalproblem in information retrieval, whose obje
tive is to automati
ally
lassify do
uments into pre-de�ned 
ategories. Multi-label text 
lassi-�
ation refers to the situation where a do
ument is assigned to a subsetof K possible 
ategories, and many of the existing text 
olle
tions aremulti-labeled by nature. Most studies in text 
lassi�
ation de
omposethis problem into K binary 
lassi�
ation problems and solve them in-dependently. However, sin
e it is often the 
ase that 
ategories arerelated to ea
h other (in terms of both semanti
s and statisti
al 
or-relations), it would be bene�
ial to treat this problem as a multi-tasklearning problem. Furthermore, the existen
e of multiple taxonomiesalso leads to multi-task learning problems where ea
h task is a binary
lassi�
ation problem with respe
t to some 
ategory in one of the tax-onomies. 1



CHAPTER 1. INTRODUCTION 2
• Anti-spam Filtering: Email anti-spam �ltering has been an importantresear
h topi
 as people get more and more disturbing spams in theirdaily emails. Typi
ally this problem is treated as a binary 
lassi�
ationproblem [Brutlag and Meek, 2000, Zhang, 2002℄ to distinguish spamsfrom non-spams. In a more realisti
 situation, the system will servemany users for anti-spam �ltering. This provides a good opportunityfor multi-task learning, where we 
ould treat the anti-spam �lteringfor a parti
ular user as one task and borrow information among users.Viewing in this way has the advantage that both user-spe
i�
 anduser-independent preferen
es are e�e
tively 
aptured in the model.
• Multi-user Predi
tion Problems: Essentially many predi
tion problemsinvolved with multiple users 
an be treated as multi-task learning prob-lems, su
h as adaptive �ltering [Roberson and Hull, 2001, Zhang, 2004,Yang et al., 2005℄ w.r.t. multiple users, 
ollaborative �ltering [Breeseet al., 1998℄ with auxiliary information about movies, et
. Similar tothe 
ase of anti-spam �ltering, predi
tion fun
tions for ea
h user areoften 
losely related to ea
h other and thus joint inferen
e 
an 
apturesu
h dependen
ies and work more e�e
tively with all training resour
es.
• Predi
ting Many Sto
ks: Consider the problem where we would like topredi
t the future sto
k pri
es of several 
ompanies in one industry orseveral related industries. Often predi
tions of individual 
ompany'ssto
k pri
e are made using models trained with ea
h 
ompany's previ-ous sto
k data. However, due to their possible 
ompetitive or 
ooper-ative relations and 
ross-industry e�e
ts, those predi
tion tasks 
ouldbe very related. Consequently, this problem 
an be more e�e
tivelysolved as a multi-task learning problem.Multi-task learning simply generalizes single-task learning to a higher leveland as a result, it is able to 
apture the dependen
ies among tasks. Com-pared to single-task learning, multi-task learning has the following bene�ts:(1) It 
an provide better generalization performan
e espe
ially when theamount of training data is limited; (2) It 
an provide meta-level knowledge(whi
h is not available in single-task learning) whi
h is useful to generalizeto future tasks; (3) It 
an provide a joint, su

in
t representation of all taskstru
tures. Multi-task learning is parti
ularly appli
able in the followingsituations:
• In many existing datasets instan
es are naturally asso
iated with mul-tiple responses (e.g., multi-labeled do
ument 
olle
tions) and thus it is



CHAPTER 1. INTRODUCTION 3bene�
ial to use available resour
e and borrow information from otherrelated tasks.
• From the data annotation viewpoint it is more 
onvenient to get re-sponses of multiple related tasks simultaneously if possible (e.g., as-signing do
uments or web pages to multiple 
ategories after reading)as opposed to obtain them in separate steps.
• There are situations (one su
h example is anti-spam �ltering) wherefor some of the tasks it is more di�
ult to get training resour
e thanothers, and multi-task learning 
an be espe
ially bene�
ial for thosetasks with limited training data.Many approa
hes have been proposed in the ma
hine learning literature onhow to e�e
tively learn multiple tasks, su
h as [Baxter, 1996, 1997, Breimanand Friedman, 1997, Caruana, 1997, Minka and Pi
ard, 1997, Baxter, 2000,Heskes, 2000, Ando and Zhang, 2004, Evgeniou et al., 2005, Teh et al., 2005,Yu et al., 2005, Zhang et al., 2005℄. Generally speaking, existing approa
hesshare the basi
 assumption that tasks are related to ea
h other. Based onhow task relatedness is handled we summarize existing methods into several
ategories, su
h as arti�
ial neural networks, hierar
hi
al Bayesian models,regularization methods, et
. Details 
an be found in Chapter 2. The reasonwhy multi-task learning works 
an be seen from several aspe
ts. Given theassumption is that the out
omes in multiple tasks are related, it would bebene�
ial to borrow information from other tasks as opposed to learning ea
htask independently (e.g., single-task learning). The simplest example is that,if task parameters - whi
h index their 
orresponding predi
tion fun
tions -are partly shared, then from a statisti
al estimation viewpoint we 
ouldobtain a more reliable estimation by using all training resour
es togetherand better generalization performan
e 
an be a
hieved.This thesis is aimed at developing models for multi-task learning problems.By presenting a uni�ed probabilisti
 framework, we gain insights in taskrelatedness and 
an systemati
ally explore important multi-task s
enarios,whi
h are key 
omponents in order to su

essfully address multi-task learn-ing. The resulting multi-task learning models 
an provide better generaliza-tion performan
e than 
onventional single-task learning methods when tasksare related, and e�
ient algorithms are a
hievable through (approximate)inferen
e and opitmization te
hniques.



CHAPTER 1. INTRODUCTION 41.2 RoadmapIn this thesis we present a novel probabilisti
 framework for multi-task learn-ing. Unlike previous approa
hes, our framework is �exible and 
an supportmodels for a series of multi-task learning s
enarios, and task dependen
ies are
aptured by using a shared stru
ture through latent variables. The �exibil-ity 
omes from the statisti
al assumptions on latent variables and stru
turalassumptions on the shared 
omponents, and the 
on
ept of task relatedness
an now be better explained by the underlying statisti
al assumption. Mo-tivated from this exploration, we develop suitable models for several tasks
enarios that have not been studied before, as well as investigate modelsele
tion te
hniques. The rest of the thesis is organized as follows:Chapter 2 �rst provides a brief introdu
tion to statisti
al models and al-gorithms whi
h are the building blo
ks for the rest of the thesis, and thenreviews the literature on multi-task learning.Chapter 3 presents the uni�ed probabilisti
 framework for multi-task learn-ing, and analyzes a series of important task s
enarios with asso
iated models.Chapter 4 presents learning and inferen
e algorithms for the generi
 modelssupported by the framework.Chapter 5 presents two types of sparsity models for multi-task learning, anddemonstrates their e�e
tiveness on multi-label text 
lassi�
ation and emailanti-spam �ltering.Chapter 6 presents the l1◦lp regularization for joint feature sele
tion in multi-task learning. We show that it is a generalization of lasso-style algorithmsunder the multi-task learning setting, and our results support the theoreti
al
laims.Chapter 7 proposes to use mixture model for the �
luster of tasks� s
enario.We present e�
ient EM algorithm for the inferen
e, and apply it to the
ollaborative �ltering problem.Chapter 8 investigates the model sele
tion problem in multi-task learningusing 
ross-validation te
hniques.Chapter 9 extends our framework to unsupervised multi-task learning. Weshow its 
onne
tion to existing unsupervised topi
 models, and apply it tothe novelty dete
tion problem.Chapter 10 summarizes the thesis work.



Chapter 2Ba
kground and LiteratureReviewThis thesis relates to a broad set of 
urrent statisti
al te
hniques. To makesure our terminology is 
learly de�ned, we �rst give a brief introdu
tion tothe related statisti
al models, whi
h our proposed framework is based upon,in
luding regression, 
lassi�
ation and dimensionality redu
tion te
hniques.Then we brie�y outline some ba
kground knowledge on general algorithmsfor learning and inferen
e. The se
ond part of this 
hapter presents a liter-ature review for multi-task learning resear
h.2.1 Ba
kground2.1.1 Modeling using Linear RegressionLinear regression is the simplest but probably the most important model forregression problems. The linear regression model [Wasserman, 2005℄ assumesthat
yi = θTxi + ei

ei ∼ Normal(0, σ2) (2.1)or equivalently
yi ∼ Normal(θTxi, σ

2) (2.2)5



CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 6where xi ∈ R
F×1 is the i-th input data ve
tor, θ ∈ R

F×1 is the modelparameter ve
tor, i = 1, 2, . . . , N is the data index, and here we assumethat varian
es of random noises ei's are isotropi
. Given a training dataset
D = {(x1, y1), . . . , (xN , yN )} , the Maximum Likelihood Estimation (MLE)of θ is equivalent to the least square estimation due to the Gaussian noiseassumption:

θ̂ = arg min
θ

{

N
∑

i=1

(yi − θTxi)
2

} (2.3)whi
h has the analyti
al solution θ̂ = (XTX)−1XTy by using the su

in
tmatrix/ve
tor notation X = (x1, . . . ,xN )T ∈ R
N×F and y = (y1, . . . , yN )T ∈

R
N×1.Note that the above optimization problem in equation (2.3) may not have aunique solution if the matrix XTX is singular. By adding a regularizationterm Ω(θ) we are guaranteed to get a more stable solution:

θ̂ = arg min
θ

{

N
∑

i=1

(yi − θTxi)
2 + λΩ(θ)

} (2.4)where λ > 0 is known as the regularization 
oe�
ient whi
h trades o� be-tween empiri
al loss and model 
omplexity. Note that when Ω(θ) = ||θ||22or ||θ||1 the above model is known as ridge regression or lasso regressionrespe
tively. Ridge regression has a L2 regularization while lasso has a L1regularization, and they 
an both be interpreted as Maximum A Posterior(MAP) estimators of a Bayesian model by assuming a Gaussian or Lapla
eprior over θ respe
tively. Finally, it is well understood that L1 regularizationtends to give a sparse solution where most of the elements of θ are zero val-ues; while L2 regularization shrinks all 
oe�
ients to zero smoothly [Hastieet al., 2001℄.2.1.2 Modeling using Logisti
 RegressionClassi�
ation problems need to be handled di�erently from regression due toits binary output y as well as the 0/1 or 
ross entropy loss whi
h is rather dif-ferent from the squared loss used by default in regression. Logisti
 regression
an be thought as a dis
riminative 
lassi�er (as opposed to generative 
las-si�ers like Naive Bayes [M
Callum and Nigam, 1998℄, see also dis
ussions onthose two kinds of 
lassi�ers in [Rubinstein and Hastie, 1997, Ng and Jordan,2002℄), and it is often preferred to generative 
lassi�ers by following Vapnik's



CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 7philosophy [Vapnik, 1998, 1999℄ that �When solving a given problem oneshould avoid solving a more general problem as an intermediate step�.Using probabilisti
 modeling language, the logisti
 regression model 
an beformulated as
yi ∼ Bernoulli(µ(θTxi))

µ(t) =

∫ t

−∞
p(z)dz (2.5)where yi is generated from a Bernoulli distribution with mean µ(θTxi) andits value is either 0 or 1, and p(z) is the probability density fun
tion (pdf) ofthe standard logisti
 distribution p(z) = exp(−z)

(1+exp(−z))2
. In this 
ase, equation(2.5) 
an be simpli�ed as

yi ∼ Bernoulli(µ(θTxi))

µ(t) = (1 + exp(−t))−1 (2.6)Note also that by plugging in di�erent random variable Z with its pdf
p(z) we are able to get several popular probabilisti
 
lassi�ers. As an ex-ample, when p(z) is the pdf of standard Gaussian distribution the abovemodel be
omes the so-
alled probit regression. Given a training set D =
{(x1, y1), . . . , (xn, yn)}, the MLE solution of logisti
 regression 
an be de-rived using equation (2.6):
θ̂ = arg max

θ

{

n
∏

i=1

(

1

1 + exp(−θTxi)

)yi
(

exp(−θTxi)

1 + exp(−θTxi)

)1−yi
}

= arg max
θ

{

−
n
∑

i=1

yi log
(

1 + exp(−θTxi)
)

−
n
∑

i=1

(1− yi) log
(

1 + exp(θTxi)
)

}

yi=0 or 1
= arg min

θ

{

n
∑

i=1

log
(

1 + exp(−(2yi − 1)θTxi)
)

} (2.7)If we re-de�ne yi = −1 instead of yi = 0 for negative 
lass label, then theMLE solution of logisti
 regression 
an be represented as the solution of thefollowing optimization problem:
θ̂ = arg min

θ

{

N
∑

i=1

log(1 + exp(−yiθ
Txi))

} (2.8)Similar to linear regression we 
an also formulate L1 or L2 regularized logisti
regression, and they 
an both be interpreted as MAP estimators as well.



CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 82.1.3 Modeling using Fa
tor AnalysisFa
tor Analysis (FA) is a te
hnique originated from so
ial s
ien
e [Spear-man, 1904, Gorsu
h, 1983℄ whi
h is used to dis
over underlying fa
tors fromasso
iated data. The intrinsi
 assumption in FA is that the hidden fa
torsare distributed as Gaussian
y = Λs + µ + e

s ∼ Normal(0, I) (2.9)
e ∼ Normal(0,Ψ)where we have the observed variable y ∈ R

F×1, hidden sour
e s ∈ R
H×1, andmixing matrix Λ ∈ R

F×H . Often µ is set to the zero ve
tor by 
entering theobserved variable y sin
e we have E[y] = ΛE[s]+µ = µ. So the data ve
tor y
an be thought as a weighted 
ombination of fa
tors (
olumns of Λ) where theweights are randomly generated from standard multivariate Gaussian, plussome random Gaussian noise. By integrating out the hidden sour
es s weget y again a multivariate Gaussian y ∼ Normal(µ,Ψ+ΛΛT ). Alternatively,FA 
an also be viewed as a way to represent the 
ovarian
e matrix V[y] withtwo 
omponents: a low rank matrix ΛΛT and Ψ whi
h is often assumedto be diagonal and 
orrespond to the 
ontribution of 
ommon fa
tors andindividual fa
tors [Gorsu
h, 1983℄, respe
tively. Also note that probabilisti
Prin
ipal Component Analysis (PCA) 
an be treated as a spe
ial 
ase of FA[Tipping and Bishop, 1999℄.2.1.4 Modeling using Independent Component AnalysisIndependent Component Analysis (ICA) [Bell and Sejnowski, 1995, Giro-lami, 2000, Roberts and Everson, 2001℄ assumes the observed data y is gen-erated by the following model
y = Λs + µ + e

s ∼ p(.|Φ) (2.10)
e ∼ Normal(0,Ψ)from whi
h we 
an see that ICA 
an be thought as generalization of FA bythe fa
t that hidden sour
e s is no longer restri
ted to be Gaussian. Thisgeneralization has signi�
ant 
onsequen
es, whi
h serves as the basis of ICAappli
ations in signal pro
essing [Roberts and Everson, 2001℄. Brie�y speak-ing, non-Gaussian hidden sour
e s makes it possible to identify independent
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omponents instead of just modeling the 
orrelation among elements of s asin the Gaussian 
ase.One 
losely related te
hnique of ICA is 
alled Proje
tion Pursuit (PP) [Kruskal,1969, Friedman and Tukey, 1974, Huber, 1985℄, whi
h seeks one proje
tionat a time su
h that the extra
ted signal is as non-Gaussian as possible. This
ontrasts with ICA, whi
h typi
ally extra
ts H signals simultaneously fromthe observed mixtures. One pra
ti
al advantage of PP over ICA is that theextra
tion pro
ess is in
remental and 
an be stopped as needed; on the otherhand, the parallel way of extra
t hidden sour
es makes ICA more robust thanPP.2.1.5 Some ExtensionsBoth linear regression and logisti
 regression 
an be seen as spe
ial 
asesof the Generalized Linear Models (GLM) [M
Cullagh and Nelder, 1989℄,whi
h 
an be expressed as y ∼ P (g(θTx)) with g(θTx) as the mean. Simplyspeaking, GLM generalizes linear regression in two ways: (1) allowing theresponse variable y to follow a distribution in the exponential family insteadof just Gaussian; (2) introdu
ing a link fun
tion g(µ) other than the identityfun
tion. Typi
al 
hoi
es of the distribution P (.) are normal, Bernoulli,Poisson and gamma, and details 
an be found in [M
Cullagh and Nelder,1989℄ or [Dobson, 2001℄.Linear models 
an be extended to the �nonlinear� 
ase by �rst applyinga feature mapping fun
tion φ : x 7→ φ(x), and this 
an also be a
hievedby using the so-
alled �kernel tri
k�: K(xi,xj) = 〈φ(xi), φ(xj)〉H in theReprodu
ing Kernel Hilbert Spa
e. For example, Gaussian Pro
ess (GP)for regression [Williams, 1998℄ and 
lassi�
ation [Gibbs and Ma
Kay℄ 
an bethought as kernelized linear regression and logisti
 regression, respe
tively.This parti
ular view has both 
on
eptual and 
omputational advantages.Con
eptually, a prior over the parameters (e.g., regression 
oe�
ients) 
anoften be treated as spe
ial 
ases of GP with properly 
hosen mean fun
tionand 
ovarian
e fun
tion. Computationally we 
an dire
tly 
ompute a kernelfun
tion without the expli
it 
omputation of the mapping φ(x) whi
h 
anbe high or even in�nite dimensional.Many of the regression and 
lassi�
ation methods 
an be reformulated asoptimization problems, where we are trying to minimize some loss fun
-tion. Viewing in this angle also has 
ertain advantages. For example, thisparti
ular view 
an also be thought as the M-estimators [van der Vaart,
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s whi
h is a generalization of MLE estimators [Lehmannand Casella, 1998℄. Popular loss fun
tions for regression in
lude squared er-ror loss, ε-insensitive loss, absolute error loss, huber loss, et
. Popular lossfun
tions for 
lassi�
ation in
lude exponential loss, logisti
 loss, hinge loss,asymmetri
 squared error loss and asymmetri
 huber loss, et
.It is also possible to extend the basi
 FA and ICA models mentioned above.Note that both FA and ICA disregard any temporal or stru
tural informa-tion in modeling the hidden sour
es, and as a result they are unable to
apture the temporal relationship among s if any, for example. This limita-tion 
omes from the fa
t that we assume hidden sour
es sk's are IID fromsome underlying distribution, whi
h in fa
t is not ne
essary and its relax-ation 
an be very helpful in some situations. In Chapter 3 we will presentone model whi
h is able to in
orporate temporal information in the 
ontextof multi-task learning. Other possible extensions of ICA in
lude non-linearICA, whi
h generalizes the linear relation Λs into a non-linear relation Λ(s).2.1.6 Algorithms for Point EstimationPoint estimation is used everywhere in estimating parameters of non-Bayesianmodels as well as hyper-parameters in the empiri
al Bayes approa
h, whi
hare all treated as �xed but unknown quantities (as opposed to be 
onsideredas random variables). Let us 
onsider the MLE as an example, whi
h is themost frequently used point estimation method. Given a training set D, thelikelihood 
an be written in general as p(D|Θ), and the obje
tive of MLE isto �nd the parameter Θ by maximizing the likelihood (or equivalently, thelog-likelihood):
Θ̂ = arg max

Θ
p(D|Θ) (2.11)whi
h might a

ompany 
onstraints like the non-negativity of some 
ompo-nents of Θ. This is essentially a numeri
al optimization problem, and inmany 
ases it 
an be 
onverted into a 
onvex optimization problem [Boydand Vandenberghe, 2004℄ whi
h is easy to solve for even large-s
ale sys-tems. Algorithms for solving 
onvex optimization problems are mature, andpopular ones are gradient des
ent, 
onjugate gradient, Newton method andquasi-Newton method, et
 [No
edal and Wright, 1999, Luenberger, 2003,Boyd and Vandenberghe, 2004℄.
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eWe start with dire
ted graphi
al models as they are great tools to representand visualize hierar
hi
al Bayesian models [Jordan, 2002℄. Given a graphi
almodel G = (V, E) with V = {X1,X2, . . . ,XN} 
omposed of N random vari-ables and E expressing the set of 
onditional dependen
e1 among those vari-ables, we are interested in the inferen
e of p(H|E) where both H and E aresubsets of V, 
orrespond to unobserved nodes (hidden) and observed nodes(eviden
e). The 
omputation of p(H|E) 
an be di�
ult be
ause of either a
ompli
ated graph stru
ture or the existen
e of non-exponential link fun
tionamong variables. Generally speaking, inferen
e algorithms 
an be 
lassi�edas either deterministi
 approximation algorithms or non-deterministi
 ones(e.g., sampling methods). Note that inferen
e in Bayesian 
lassi�
ation orregression is just a spe
ial 
ase of the above general inferen
e, in whi
h theparameter θ is a random variable we want to do inferen
e on. For 
lassi�-
ation tasks, future predi
tions are 
omputed by integrating out the θ overits posterior distribution, e.g. p(y|x) =
∫

p(θ|D)p(y|θ,x)dθ, and 
on�den
eintervals 
an also be 
omputed in a straightforward way. However, the likeli-hood fun
tion of 
lassi�
ation is not within the exponential family and thusapproximation is needed in the 
omputation.Variational Methods As an approa
h to fun
tion approximation, vari-ational methods [Jaakkola and Jordan, 1997, Ghahramani and Beal, 2000,Jordan, 2002, Beal, 2003℄ 
onvert the inferen
e problem into an optimizationproblem by the appli
ation of appropriate inequalities. The approximation isusually done by optimizing some variational parameters so that the distan
eto the true quantity is minimized. It is deterministi
 and usually e�
ient,and desirable lower/upper bounds 
an often be obtained. Mean Field method[Saul et al., 1996℄ is one of the 
ommonly used variational methods whi
h
onstrains the 
andidate distribution to be fa
torized into individual 
ompo-nents, and generalized Mean Field [Winn, 2003, Xing et al., 2003℄ allows thefa
torization into 
lusters of variables instead of singletons. A disadvantageof variational methods is that they may yield suboptimal solutions due tooverly greedy assumptions.1Formally speaking it only spe
i�es the set of 
onditional independent relations. Tworandom variables 
an be independent even if the graphi
al model indi
ates their depen-den
e.
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e Method Lapla
e method [Kass and Raftery, 1993℄ is one of theoldest methods used in physi
s and statisti
s to approximate posterior dis-tributions. It is a very simple method whi
h approximates the posteriordistribution with a s
aled Gaussian distribution that mat
hes the true pos-terior through its mode, �rst and se
ond derivatives at the mode, where these
ond derivative Hessian matrix is the 
ovarian
e of the target Gaussiandistribution. The disadvantage of Lapla
e method lies in the fa
t that itonly 
onsiders up to se
ond order derivative within a lo
al range near themode, whi
h may not be good enough in some situations.Belief Propagation Belief Propagation (BP) [Pearl, 1998℄ was �rst intro-du
ed for exa
t 
omputation of inferen
e in Bayesian networks, and later itis extended to loopy BP [Murphy et al., 1999℄ and generalized BP [Yedidiaet al., 2002℄ for more 
ompli
ated graphi
al models. For dire
ted a
y
li
graphi
al models, BP is de�ned as a message passing proto
ol that 
onvergesafter two operations: �
olle
ting eviden
e� and �distributing eviden
e�, whi
hare implemented by a set of sum and produ
t operations [Jordan, 2002℄. BPis a fairly good method in general, and 
an be thought as a spe
ial 
ase ofthe following Expe
tation Propagation method.Expe
tation Propagation Expe
tation Propagation (EP) [Minka, 2001℄is another approximate Bayesian inferen
e algorithm whi
h 
an be thoughtas an improvement over the Assumed Density Filtering (ADF). ADF triesto approximate the posterior distribution using a distribution within the ex-ponential family F by minimizing the KL-divergen
e KL(p(x)||q(x)), where
p(x) is the true distribution and q(x) is the approximate one. It turns outthat for q(x) ∈ F , the exponential family, the minimization of KL-divergen
eis equivalent to the established moment mat
hing method used in statisti
sto �nd approximations to distributions [Satterthwaite, 1946℄. ADF does themoment mat
hing in a sequential order, while EP performs iterative ap-proximation using three steps: deletion, proje
tion and updating. EP is ageneralization of BP sin
e it allows the use of exponential fun
tions as anapproximation to non-exponential messages. The advantage of EP is thatmoment mat
hing is sensible in many aspe
ts, but the disadvantage is thatit does not guarantee 
onvergen
e in general.Sampling Methods As opposed to the above deterministi
 approximateBayesian inferen
e algorithms, sampling methods [Neal, 1993, Robert and
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 approximate algorithms for Bayesian in-feren
e. The development of high-speed 
omputers in the last de
ade makessampling methods very popular for Bayesian methods. Furthermore, MarkovChain Monte Carlo te
hniques further push the popularity of Bayesian mod-eling, and there even exists a generi
 software pa
kage BUGS implementingGibbs sampling. The advantages of sampling methods in
lude its theoret-i
al limiting properties and its relatively easy implementation; disadvan-tages in
lude the di�
ulty in 
hoosing 
onvergen
e 
riteria (e.g., mixing andburn-in time, multiple 
hains), as well as slow 
onvergen
e espe
ially forhigh-dimensional problems.2.2 Literature ReviewNext we review some of the literature with respe
t to multi-task learning.Our review is by no means exhaustive on su
h a burgeoning area of resear
h.The hope is to give readers a global pi
ture of what are the problems thathave already been explored and what are left, as well as the relative strengthsand possible 
onne
tions of the methods.2.2.1 Basi
 Con
eptsMulti-task learning is the problem whi
h tries to estimate models forK tasksin a joint manner. Traditional learning, on the other hand, only 
onsidersone task at a time and solves them separately. Multi-task learning 
an bebetter understood by answering the following questions:
• What is task relatedness?Although most methods in multi-task learning assume some related-ness among tasks, the de�nition of relatedness varies. For example,model parameters may be partly shared among tasks, models may betransformation related or probabilisti
ally related. Impli
itly or ex-pli
itly, mathemati
ally or pro
edurely, task relatedness must be spe
-i�ed under 
ertain representation in order to play its role in multi-tasklearning. The main di�eren
e among existing methods lie in their as-sumptions and formulation of task relatedness, pretty mu
h like theparametri
 form assumption in parametri
 models.
• Why would multi-task learning methods work?There is more than one way to explain why multi-task learning methods
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al estimation viewpoint, if some of thetask parameters are shared, then they 
an be better estimated (e.g.with a smaller varian
e) given a lot of tasks. From the hierar
hi
alBayesian viewpoint, multi-task learning is essentially trying to learna good prior (a.k.a. indu
tive bias in some 
ontext) over all tasks to
apture task dependen
ies, whi
h is often not appli
able in single-tasklearning. In other 
ontext, it 
an be thought as trying to learn a setof features that are informative for all tasks.
• When would multi-task learning be advantages?Relatively speaking, multi-task learning methods will work better un-der the following 
onditions:1. When ea
h task has limited amount of training resour
es;2. When the number of tasks is large;3. When the assumption about task relatedness is 
lose to the truth.However, good multi-task learning methods should be robust in thesense that when some of the above 
onditions are violated the perfor-man
e will not severely degrade.
• When would multi-task learning fail?If tasks are not related to ea
h other at all, then it su�
es to learnthem separately (see also the answer to the previous question). If theassumption of task relatedness is ina

urate, then multi-task learning
ould even hurt performan
e by introdu
ing undesirable biases. Notethat even if the assumption is 
orre
t, multi-task learning might giveslightly worse results than single-task learning for some individual task.This is not unexpe
ted as all the arguments hold probabilisti
ally andthe overall performan
e should still be boosted when evaluating overall the tasks.
• Is MTL 
omputationally more expensive than STL?On one hand, multi-task learning algorithms are often more 
ompli-
ated than the 
orresponding single-task learning algorithms be
ausethey often use the latter as 
omponents and need to do joint inferen
eover all tasks parameters. Consequently, it 
an be more expensive tosolve them due to the joint inferen
e/
oupling among task parame-ters. However, the 
omputation should still be in the same order ofmagnitude as ea
h iteration 
all to single-task learning modules doesnot require a full-blown solution. On the other hand, there are also



CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 15
ases where multi-task learning 
an be 
omputationally 
heaper. Forexample, if we are able to sele
t a joint subset of relevant features overgiven tasks then the 
ost to learn a future task is greatly redu
ed inthe newly learned representation.
• What form of data is required for multi-task learning?In order to model the information sharing, task parameters need toshare the same metri
 spa
e (or at least partly, through transformation,et
). As a result, it often requires the input data spa
e for ea
h taskto be the same, i.e. X (k) = X (k = 1, 2, . . . ,K). If the training data ofthose tasks are not in the same metri
 spa
e, 
ertain transformationsare need in the pre-pro
essing steps. How to transform data frommultiple tasks into a uni�ed representation is usually guided by humanat the 
urrent stage.Next, we des
ribe the main approa
hes to multi-task learning in four 
at-egories: arti�
ial neural networks, shrinkage methods, regularized learningmethods and hierar
hi
al Bayesian models, respe
tively. Our goal is topresent a global prefa
e to the reader, with the aspe
ts whi
h we see asbeing most fundamental for multi-task learning. Of 
ourse, we do not in-tend to 
over every method in the literature, and our 
lassi�
ation is notne
essarily perfe
t in the sense that some boundaries may be blurred.2.2.2 Arti�
ial Neural NetworksArti�
ial neural networks are originally motivated from brain studies [Rosen-blatt, 1959℄ and the simple per
eptron is still one of the most widely usedalgorithms in ma
hine learning. Generally speaking, neural networks 
on-sist of three types of units: input units, hidden units and output units. Theset of input units take information about the example to be propagatedthrough the network. By propagation, we mean that the information fromthe input will be passed through the network and rea
h the output units.Hidden units take input as the weighted sum of outputs from input units.Often that the number of hidden units is smaller than the number of inputunits. A weighted sum of outputs from the hidden units is then taken asthe input to the output units. The training of a neural network is oftena
hieved through the ba
k-propagation algorithm [Rumelhart et al., 1986℄.Neural networks are very powerful mathemati
al tools for ma
hine learning,and they are known to be universal approximators in the sense that they



CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 16

Figure 2.1: Multi-Task Learning using Neural Networksare �exible enough to approximate any 
ontinuous fun
tion up to any givenpre
ision [Ivakhnenko, 1971℄.Early work on multi-task learning [Thrun, 1996℄ [Caruana, 1997℄ [Silver andMer
er, 2001℄ uses neural network as the learning ma
hine. Figure 2.1 showsa typi
al setting of multi-task learning with a two-layer neural network. Ea
hhidden unit 
an be thought as a fun
tion of input variables and the shared
omponents among tasks. The links in the �rst layer de�ne the mappingsfrom input variables to the shared 
omponents and the se
ond layer links
orrespond to mappings from the shared 
omponents to tasks. Both levelsof the mapping are jointly learned for all the tasks through ba
k-propagation.
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h to obtain estimators that have smaller risks. Stein[1955℄ �rst showed that for the many normal means problem (e.g. given
Xi ∼ Normal(µi, σ

2), estimate µi's, i = 1, 2, . . . ,m), the maximum likelihoodestimator µ̂i = Xi, i = 1, 2, . . . ,m is not admissible2 with respe
t to the totalsquare error risk when m > 2. In other words, there exist other estimatorswhi
h are uniformly better, su
h as the James-Stein estimator [James andStein, 1961℄.The basi
 idea of shrinkage methods is to trade bias for varian
e so thatthe overall risk is redu
ed 
ompared to the original unbiased estimator. Oneof the simplest forms of shrinkage methods is to do proportional shrinkage,whi
h de�nes a new estimator µ̃ = bµ̂ with 0 < b < 1. To get a �avor of whythis 
an help to redu
e the risk, noti
e that in our example
bias(µ̃) = (1− b)µ

var(µ̃) = b2var(µ̂) (2.12)From equation (2.12) it is obviously that there always exists some 0 < b < 1su
h that risk = bias2 + var is redu
ed, although the optimal amount ofshrinkage depends on fa
tors su
h as sample size. Shrinkage methods havebroad appli
ations and are related to regularization methods, as well ashierar
hi
al Bayesian models.Shrinkage methods have been applied to multi-task learning setting by Breimanand Friedman [1997℄, where they developed the Curds & Whey method formultivariate responses linear regression. The C&W pro
edure is a formof multivariate shrinkage. Its basi
 idea is to �rst transform the responsevariables into the 
anoni
al 
oordinate system, then 
ondu
t a proportionalshrinkage estimation in this new 
oordinate system, and �nally it transformsba
k into the original 
oordinate system. The optimal shrinkage in the trans-formed 
oordinate system 
an be determine by 
ross-validation te
hniques.A

ording to the authors, the power of C&W method is to shrink in the right
oordinate system and it 
an be viewed as a multivariate generalization ofproportional shrinkage based on 
ross-validation. From the stand point ofmulti-task learning, the transformation into the new 
oordinate system is akey step whi
h leverages information among multiple tasks.2An estimator is said to be admissible with respe
t to a loss fun
tion for a 
lass ofdistributions if there is no other estimator whi
h has less than or equal to its loss for alldistributions in the 
lass, with the stri
t inequality holding for at least one distribution.
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tive methods for re-gression tasks. Furthermore, due to the fa
t that they are motivated by re-du
ing the risk, they 
an a
hieve very good performan
e. However, shrinkagemethods are often post-pro
essing methods and it is not straightforward togeneralize them to new tasks (
ompared to generative models, for example).Furthermore, the exa
t amount of shrinkage depends on the form of the riskfun
tion.2.2.4 Regularized Learning MethodsIn standard setting of supervised learning, we aim to �nd a fun
tion mapping
f whi
h maps an input ve
tor x ∈ X to an output y ∈ Y. Usually we aregiven a training setD = {(x1, y1), (x2, y2), . . . , (xn, yn)} whi
h are identi
allyand independently sampled from an unknown probability distribution P:
(xi, yi) ∼ P. The obje
tive is to �nd the best mapping fun
tion f ∈ H inthe sense that the expe
ted loss (with respe
t to P) is minimized:

f̂ = arg min
f∈H

EPL(f(X), Y ). (2.13)The most popular method is the empiri
al risk minimization [Vapnik, 1998℄approa
h whi
h repla
es the unknown distribution P with the observed em-piri
al distribution:
f̂ = arg min

f∈H

1

n

n
∑

i=1

L(f(xi), yi) (2.14)However, empiri
al risk minimization is prone to over�tting. Regularizationte
hniques [Tikhonov, 1963℄ were proposed to avoid over�tting in empiri
alrisk minimization. They often have the form
f̂ = arg min

f∈H

1

n

∑

L(f(xi), yi) + λΩ(f) (2.15)where Ω(f) measures the model 
omplexity or roughness of the predi
tionfun
tion f . Regularized learning methods have been widely and su

ess-fully used in statisti
s and ma
hine learning in
luding ridge regression, lassoregression, regularized logisti
 regression, SVM, et
., where the major di�er-en
es lie in the 
hoi
e of loss fun
tion L(., .) and penalty fun
tion Ω(.).Regularized learning methods have re
ently been applied for multi-task learn-ing problems in [Evgeniou and Pontil, 2004℄ and [Evgeniou et al., 2005℄. In
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hieved by using a joint regularization:
θ̂1, . . . θ̂K = arg min

θ1,...,θK

{

K
∑

k=1

Nk
∑

i=1

L(y
(k)
i , 〈θk,x

(k)
i 〉) + λΩ(θ1, . . . ,θK)

} (2.16)where L(., .) is taken to be the hinge loss and Ω(θ1, . . . ,θK) is taken to bea parti
ular form
Ω(θ1,θ2, . . . ,θK) =

(

θT
1 ,θ

T
2 , . . . ,θ

T
K

)

D











θ1

θ2...
θK











(2.17)in [Evgeniou et al., 2005℄. The method proposed in [Evgeniou and Pontil,2004℄ is similar to our �nosiy tasks� s
enario under some spe
i�
 settings, su
has assuming both µ and ek following a multivariate Gaussian and performingpoint esitmation to obtain µ̂ and êk.Ando and Zhang [2004℄ proposed a stru
ture learning framework for multi-task learning. In their method, the predi
tive fun
tion for the k-th task isassumed to be
f (k)(x) = 〈w(k) + ΘTv(k),x〉

= 〈w(k),x〉+ 〈v(k),Θx〉 (2.18)where the parameter Θ 
an be thought as the shared stru
ture for a set oftasks. When learning those parameters, regularization is put on w(k)'s and
v(k)'s. Alternatively, Θx 
an be thought as a set of good features that arelearned from many tasks. This method is similar to one spe
ial 
ase of ourframework, if we assume the latent variables sk's are multivariate Gaussiandistributed and perform point estimations over sk's.2.2.5 Hierar
hi
al Bayesian ModelsHierar
hi
al Bayesian models [Box and Tiao, 1973, Bernardo and Smith,1993, Gelman et al., 2003℄ are natural ways to model parameters that arerelated by the stru
ture of the problem. In parti
ular, the hierar
hi
al stru
-ture 
an provide a �exible yet 
ompa
t representation of the stru
ture in thedata, and thus produ
e models that 
an both �t the data well and generalizewell on unseen, future data. As a result, we argue that hierar
hi
al Bayesian
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hoi
es for representing the relatedness among tasks andmodeling the task dependen
ies.Baxter [1996℄ dis
ussed the usage of hierar
hi
al Bayesian models for study-ing multi-task learning problems. Parameters that are shared among tasksare treated as hyper-parameters at a higher level as opposed to the task-spe
i�
 model parameters. Analysis are given from a Bayesian/informationtheoreti
al viewpoint.Heskes [2000℄ presented a model for multi-task learning by assuming thatresponse variables of ea
h task follow a normal distribution. The mean ofthe normal distribution is learned using a two-layer neural network, and thevarian
e is 
omposed of a task spe
i�
 
omponent and a task independent
omponent. Empiri
al Bayes method is used to learn the model hyper-parameters.Teh et al [2005℄ proposed a semi-parametri
 model for multi-task learning.Their model uses Gaussian pro
esses as the non-parametri
 
omponents, andthe predi
tive fun
tion of ea
h task is a linear transformation of a set of basisGaussian pro
esses.In [Yu et al., 2005℄ Gaussian pro
esses is applied to learn multiple tasks.In parti
ular, the predi
tive fun
tion of ea
h task is assumed to be f (k) ∼
GP(m,K) wherem(.) and K(., .) are the mean fun
tion and 
ovarian
e fun
-tion of the Gaussian pro
ess, de�ned as:

E[f(x)] = m(x)

C(f(xi), f(xj)) = K(xi,xj) (2.19)Models proposed in this thesis 
an be generally seen as belonging to this 
at-egory. Unlike previous work, we present a uni�ed probabilisti
 frameworkand establish the 
onne
tion between task relatedness and the underlyingstatisti
al assumptions. This also allows us to systemati
ally explore impor-tant multi-task learning s
enarios whi
h are natural 
omponents of multi-task learning resear
h. For example, our mixture model in Chapter 7 is ageneralization of the work in [Yu et al., 2005℄.2.2.6 Other Issues2.2.6.1 Theoreti
al Analysis on Error BoundsIn standard supervised learning, generalization error bounds (a.k.a. largedeviation bounds in statisti
s) 
an be obtained through the 
on
ept of VC
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h measures the size of the hypothesis spa
e). Naively speak-ing, good generalization (at 
ertain a

ura
y ǫ with probability at least 1−δ)
an be obtained as the number of examples is greater than a quantity thatis a fun
tion of ǫ, δ and VC dimension (for quantitative results see [Vapnik,1998℄, [Blumer et al., 1989℄ and [Ehrenfeu
ht et al., 1988℄).Early work on theoreti
al analysis of multi-task learning has been establishedin [Baxter, 1997, 2000℄. Compared to the result of standard supervisedlearning, the basi
 statement is that, under mild 
onditions, the numberof examples required of ea
h task for good generalization will de
rease asthe number of tasks in
reases (and again the a
tual number depends on thea

ura
y and 
apa
ity of the hypothesis spa
e). This result 
learly justi�esthe bene�t of �borrow information� from a theoreti
al viewpoint. In [Ben-David and S
huller, 2003℄ and [Ando and Zhang, 2004℄ the authors alsodevelop spe
i�
 generalization error bounds for multi-task learning undertheir formulation.2.2.6.2 Parametri
 vs. Non-parametri
 MethodsConventional statisti
al methods 
an be 
lassi�ed as parametri
 or non-parametri
 methods based on whether we restri
t f(x) to be of a parti
-ular fun
tional form3. There is also a intermediate 
ategory 
alled semi-parametri
 methods, and examples in
lude models whi
h have both paramet-ri
 and non-parametri
 
omponents. Generally speaking, parametri
 modelsare mu
h more e�
ient when the assumption is 
orre
t, while nonparametri
methods are free from model misspe
i�
ation errors at the 
ost of a mu
hslower 
onvergen
e rate.In multi-task learning we often have (in terms of hierar
hi
al Bayesian model)
f (k) ∼ P(.|Θ), k = 1, 2, . . . ,K. (2.20)We are not only required to model ea
h predi
tive fun
tion f (1), f (2), . . . , butalso fa
ing the problem of how to model the distribution P(f |Θ). Here themodel P(f |Θ) itself 
ould be parametri
, non-parametri
, or semi-parametri
.Our framework 
an be thought as having a �avor of semiparametri
 wherethe task sharing part Λs plays a parametri
 role and the task spe
i�
 part

ek works as a non-parametri
 
omponent whi
h allows f (1), f (2), . . . , f (K) tobe �exible enough as K goes to in�nity.3As stated in [Wasserman, 2006℄, it is di�
ult to give a pre
ise de�nition for �non-parametri
�. It means making as few assumptions as possible and 
an be understood asin�nite-dimensional parametri
 in most 
ases.
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tive LearningThe phases �learning to learn� [Thrun and Pratt, 1998℄ and �transfer learn-ing� [Silver and Mer
er, 2001℄ often refer to the situation that, given the fa
twe have learned K tasks, will the learning of the (K + 1)-th task be easier?We 
an see that the emphasis is slightly di�erent from the standard multi-task learning setting, i.e. after learning K tasks simultaneously, we wantto do a better job with new tasks. Thus, the di�eren
e between multi-tasklearning and transfer learning is analogous to the di�eren
e between onlinelearning and retrospe
tive learning in 
onventional supervised learning.Some of the multi-task learning methods 
annot be dire
tly applied to thetransfer learning setting, due to the fa
t that they are post-pro
essing and/orretrospe
tive methods, su
h as the C&W method. On the other hand, forhierar
hi
al Bayesian models it is straightforward to extend to the transferlearning setting as we have a generative model for f (1), f (2), . . . , f (K) andlearning a new task is easier given a better des
ription of P(f).



Chapter 3Probabilisti
 Models for MTLIn this 
hapter we present a uni�ed probabilisti
 framework for multi-tasklearning, whi
h is based on the assumption that tasks are related by sharing
ommon stru
ture through latent variables. The framework allows �exiblemodeling of both the 
ommon stru
ture as well as statisti
al distributionsof latent variables. Furthermore, we show that a series of important multi-task learning s
enarios 
an be supported within the framework and presentsuitable models for them.3.1 A Uni�ed Probabilisti
 Framework with LatentVariablesLet us assume that we have K related tasks, and suppose we use θ1, . . . ,θKto represent the model parameters of K tasks (for example, to index theirpredi
tion fun
tions f(x;θk)) where θk ∈ R
F×1 is the parameter ve
tor ofthe k-th individual task. If we assume the existen
e of some latent variableswhi
h relate those θk's, then we 
an represent those model parameters θk'susing a general latent variable model [Everitt, 1984℄

p(θ) =

∫

f1(θ|z)f2(z)dz (3.1)where p(θ) is the density of θ and z stands for the underlying latent variableve
tor. It is 
learly impossible to infer f1(.) and f2(.) uniquely from p(.) justbased on this de�nition; further assumptions are needed to a
hieve su
h agoal. 23



CHAPTER 3. PROBABILISTIC MODELS FOR MTL 24Let us return to the multi-task learning setting, and 
onsider the followinggenerative framework of θk's:
θk = Λsk + µ + ek

s1, . . . , sK ∼ p(s1, . . . , sK |Φ) (3.2)
ek ∼ Normal(0,Ψ)where sk ∈ R

H×1 and p(.|Φ) is assumed to be the hidden sour
e model with
Φ denoting its general distribution parameter; Λ ∈ R

F×H is a linear trans-formation matrix on sk's; µ ∈ R
F×1 
an be thought as the mean of theparameter ve
tors of multiple tasks, and the �noise� ve
tor ek ∈ R

F×1 isusually assumed to be multivariate Gaussian with diagonal 
ovarian
e ma-trix Ψ = diag(ψ11, . . . , ψFF ) or even Ψ = σ2I. In other words, we assumethat the entries of ek are independent from ea
h other. Note that in generalwe 
an use any member of the exponential families to model p(ek), howeverin most appli
ations the ek is taken to be a multivariate Gaussian distri-bution for 
onvenien
e. The prior p(s1, . . . , sK |Φ) is usually assumed to be
p(s1, . . . , sK |Φ) =

∏K
k=1 p(sk|Φ).Furthermore, we 
an also assume the parameters Λ and Ψ to be randomvariables by putting prior distributions over them to model parti
ularly in-teresting stru
tures, whi
h we will dis
uss in detail in later 
hapters:

Λ ∼ p(Λ|∆)

Ψ ∼ p(Ψ|Υ) (3.3)The above framework in equation (3.2) is 
learly a spe
ial 
ase of equation(3.1) by de
omposing
f(θ1, . . . ,θK) =

∫

p(s1, . . . , sK |Φ)

K
∏

k=1

p(θk|sk)ds1 . . . dsK (3.4)where p(θk|sk) = Normal(Λsk + µ,Ψ). This framework 
an be thought asa generative pro
ess of how the θk's are generated from a low dimensionalspa
e as we often have H < F , by an unknown linear transformation plussome random noise.Even though the above framework is more spe
i�ed than the general la-tent variable model in equation (3.1), it is still �exible enough to in
orpo-rate many models by spe
ifying the distribution assumptions of sk's and/orputting 
ertain stru
tural 
onstraints on Λ and Ψ. Furthermore, the linear
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an 
apture the �rst order dependen
y,and it 
an be generalized to non-linear mapping fun
tion φ(sk; Λ) to enri
hthe framework. Note that the model spe
i�ed in 3.1 is not identi�able duethe the 
oupling between Λ and sk. However, this 
an be solved trivially byeither putting a 
onstraint on the varian
e of p(sk) or the s
ale of Λ.One major di�eren
e between our framework in equation (3.2) and the gen-eral latent variable model [Everitt, 1984℄ lies in the fa
t that θk's are notobserved but need to be inferred from observed data (i.e. latent variables).For example, in multi-task 
lassi�
ation problems θk is the parameter ve
-tor of the k-th 
lassi�
ation task, assuming we use some linear 
lassi�er
f (k)(x) = 〈θk,x〉 = θT

k x. The default probabilisti
 model we will use for
lassi�
ation is the logisti
 regression model introdu
ed in Chapter 2:
y(k) ∼ Bernoulli(µ(θT

k x))

µ(t) =

∫ t

−∞
f(z)dz =

1

1 + exp(−t)
(3.5)where Bernoulli(µ) denotes the Bernoulli distribution with mean µ and f(z)is the probability density fun
tion of standard logisti
 distribution.The overall graphi
al model by 
ombining equation (3.2) and (3.5) for theabove learning framework is shown in Figure 3.1. In Figure 3.1 the observedvariables areD = D(1)∪. . .∪D(K) whereD(k) = {(x

(k)
1 , y

(k)
1 ), . . . , (x

(k)
nk , y

(k)
nk )},the set of unknown random variables are Z = {(θ1, s1), . . . , (θK , sK)}, andthe set of parameters are Ω = {Φ,Λ,µ,Ψ}. It is worth mentioning that inFigure 3.1 all tasks do not need to share the same set of input instan
es(although that is the 
ase for some of our experiments). The only require-ment is that the input spa
e for those tasks are the same, i.e. X (1) = . . . =

X (K) △
= X .Finally, it is interesting to point out that our model in equation (3.2) hasa dual viewpoint. That is, if we 
onstru
t θ̃f ∈ R

K×1 by taking the f -th 
orresponding 
oordinate of θ1, . . . ,θK , then those θ̃1, . . . , θ̃F 
an alsobe interpreted as a latent variable model where the meaning of the mixingmatrix Λ and hidden sour
es s would be di�erent and rather interesting.However, the asso
iated di�
ulty is that given the model parameters Ω,those θ̃f 's 
annot be separately estimated sin
e they will involve all thetasks.
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Figure 3.1: Graphi
al Model for Multi-task Learning
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enarios and Asso
iated Probabilisti
 Mod-elsFor multi-task learning, it is important to identify di�erent s
enarios1 �how tasks are related to ea
h other � and use appropriate assumptions forea
h s
enario expli
itly. Here we analyze a series of important and interest-ing multi-task learning s
enarios, and demonstrate how to use the generi
framework presented above as a basis for the spe
i�
 probabilisti
 modelsto leverage their dependen
ies in those multi-task learning s
enarios. To bemore spe
i�
 we will show that the generality and �exibility mainly 
omefrom how to model the underlying sour
es sk's, as well as whether spe
ialrestri
tions are put on the parameters Λ, Ψ, et
.3.2.1 Independent TasksOur joint learning framework is 
learly a generalization of single-task learn-ing. By setting the parameters Λ = 0F×H and µ = 0F×1 we totally ignorethe 
onne
tions among θ1, . . . ,θK in the learning framework and have:
θk = ek ∼ Normal(0,Ψ) (3.6)As a result it simply degenerates to learning K individual tasks separately.For example, if the 
lassi�
ation model is logisti
 regression, then by doinga point estimation on θk we will get the standard Maximum A Posterior(MAP) estimation, and similarly we will get a Bayesian logisti
 regressionmodel by inferring the posterior distribution of θk given the observed data.This simple degeneralization is illuminating to show di�erent roles of Λskand ek played in modeling θk in equation (3.2). Λsk is supposed to 
apturethe shared information among tasks whi
h does not need to be ex
lusive orperfe
t; ek 
ontributes to the remaining part that is task spe
i�
. In thisviewpoint multi-task learning is a full-spe
trum while single-task learning isjust one end point!3.2.2 Noisy tasksSuppose our K tasks are all some noisy representations or versions of asingle underlying task θ0 ∈ R

F×1. Then the generi
 framework simpli�es1By �s
enario� we mean how tasks are related to ea
h other. Formally it 
an be thoughtas the 
hoi
e of parametri
 form in parametri
 density estimation.



CHAPTER 3. PROBABILISTIC MODELS FOR MTL 28with Λ = 0F×H and µ = θ0. That is, one may think of the appli
ation asto use di�erent equipments to measure the same physi
al quantity of someobje
t, the di�eren
es among those equipments 
an be modeled as noise, andthe underlying model 
an be thought as the theoreti
ally 
orre
t model. Inother words we have
θk = µ + ek ∼ Normal(µ,Ψ) (3.7)where the 
ovarian
e Ψ of ek re�e
ts our prior knowledge about how noisythose tasks are with respe
t to the 
entroid.3.2.3 Clusters of tasksThis s
enario 
an be thought as a generalization of the �noisy tasks� 
ase,with the prior knowledge telling us that tasks should be grouped into 
ertainnumber of 
lusters. One 
an simply use our framework in equation (3.2) tosubsume this as a spe
ial 
ase by spe
ifying

sk ∼ Multinomial(1; p1, p2, . . . , pH) (3.8)where Multinomial(1; p1, . . . , pH) stands for the Multinomial distribution withparameter n = 1 and proportional parameters p1, . . . , pH satisfying ph ≥ 0and ∑H
h=1 ph = 1.So sk will take the form [0, . . . , 0, 1, 0, . . . , 0] where only one element is 1 andthe rest are 0's. This means that ea
h θk randomly pi
ks up one and onlyone 
olumn of the matrix Λ. As a result, the generated θk will be 
lusteredaround the individual 
olumn ve
tors of Λ, Λ.j's. This model resembles aGaussian mixture model over the task spa
e. In Chapter 7 we fo
us on thismodel and 
ompare it to the simpli�ed s
enario �noisy tasks�.3.2.4 Tasks sharing a linear subspa
eIn this s
enario tasks are assumed to be generated from a linear subspa
efor whi
h we would think of ea
h 
olumn of Λ as a basis and sk storesthe 
orresponding 
oordinates. In other words, the K tasks are sharing a
ommon linear subspa
e. By assuming the hidden sour
es

sk ∼ Normal(0, I) (3.9)to be standard multivariate Gaussian distribution, this generative model for
θk's be
omes the standard fa
tor analysis model. In other words, those K
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e whose basis are the 
olumns of the mixingmatrix Λ, sin
e we have θk =
∑H

h=1 sk,hΛ.h where Λ.h is the h-th 
olumn of
Λ and sk,h is the h-th element of sk.More generally, we would assume the hidden sour
e sk to 
ome from a prod-u
t of generalized Gaussian distributions [Hyvarinen et al., 2001℄, whoseprobability density fun
tion is de�ned as

p(z) =
λν

2Γ(1/ν)
exp (−λ|z|ν) (3.10)where ν denotes the shape parameter and λ relates to the varian
e, and Γ(.)is the Gamma fun
tion de�ned as

Γ(z) =

∫ ∞

0
tz−1e−tdt (z > 0). (3.11)When ν = 2 this redu
es to standard Gaussian distribution and ν = 1 itredu
es to Lapla
e distribution. Furthermore, it is known that ν > 2 willlead to sub-Gaussian distributions and ν < 2 will lead to super-Gaussiandistributions2. Figure 3.2 shows several plots of members in this distributionfamily.3.2.5 Tasks with sparse representationSparsity has be
ome one of the most important 
on
epts in modern learningtheory, and many algorithms are su

essful at least partially due to this prop-erty, in
luding winnow, lasso, SVM, wavelet, et
. Sparsity usually means thatonly a small number of 
omponents of the solution are non-zero. In termsof distribution, sparsity 
ould be generally explained as that the majority ofthe mass is distributed around zero.Sparsity is a ni
e property sin
e theoreti
ally it is often related to the gen-eralization 
apability if the assumption is 
lose to truth (e.g. the relevantdimension is small), and pra
ti
ally it is often asso
iated with 
omputationaladvantages espe
ially for high-dimension problems. Here we are interestedin several types of sparsities:2Formally, super-Gaussian (leptokurti
) are distributions whi
h have positive kurtosiswhile sub-Gaussian (platykurti
) are distributions whi
h have negative kurtosis. For azero-mean random variable X, kurtosis is de�ned as K(X)

△

= E[X4] − 3(E[X2])2.
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Figure 3.2: Generalized Gaussian Distributions
• The �rst sparsity 
an be spe
i�ed by putting a super Gaussian dis-tribution (e.g., Lapla
e distribution) over the hidden sour
e sk, whi
hessentially means that we assume that the target predi
tion fun
tionsof those K tasks are sparse linear 
ombinations of basis predi
tionfun
tions. The generative model 
orresponds to this s
enario 
an bewritten as:

θk = Λsk + ek

sk ∼

H
∏

h=1

Laplace(0, 1) (3.12)
ek ∼ Normal(0,Ψ)Moreover, this model is of parti
ular interest if we have an over-
ompletebasis [Lewi
ki and Sejnowski, 2000℄ (e.g., Λ has a relatively large 
ol-umn basis), sin
e in that situation sparsity 
ould be 
ru
ial to a keyproperty to have a reliable estimation.

• Alternatively, we 
ould assume the matrix Λ is sparse by itself. Thisassumption will lead to a natural sparse solution sin
e θk's are linear
ombinations of 
olumns of Λ and thus will also be sparse. This 
ould
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hieved, for example, if we put a Lapla
e prior over ea
h 
olumnof Λ in addition to the above model assumptions:
Λ.h ∼

F
∏

f=1

Laplace(0, 1) (3.13)As a result, a point estimation of Λ 
ould lead to a natural sparsematrix.In Chapter 6 we will show how to 
ondu
t joint feature sele
tion for multi-task learning, whi
h 
an be thought as another type of sparsity.3.2.6 Tasks sharing a single 
omponentThere are situations when we have multiple tasks sharing a single 
omponent.Although this is very similar to �noisy tasks� and 
an be thought as a spe
ial
ase of treating the shared 
omponent as one 
olumn of Λ (or as µ), here weemphasize the point that di�erent priors 
an be put on both the task-spe
i�

omponent and the task-independent 
omponent. Consider the followinggenerative model with k = 1, . . . ,K:
θk = β0 + βk

β0 ∼ Normal(0,V0) or

F
∏

f=1

Laplace(0, ν0) (3.14)
βk ∼ Normal(0,V) or

F
∏

f=1

Laplace(0, ν0)The shared 
omponent β0 among θ1, . . . ,θK has the same 
ontribution tothem, while β1, . . . ,βK 
an be thought as task spe
i�
 preferen
es. Onemajor di�eren
e with the model in equation (3.2) is that we also put aprior over the shared 
omponent β0. By using the produ
t of Lapla
e asthe prior distribution of β0 and βk we are able to a
hieve two types ofsparse solutions. Having a sparse solution over β0 means that we would likethe shared 
omponent to be signi�
antly supported by eviden
e from dataif exists; while having a sparse solution over βk have the e�e
t that ea
hindividual task is assumed to only deviate from the shared 
ommunity (all
K tasks) when it is ne
essary.
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ommon relevant dimensionsAnother interesting s
enario is that we have the K tasks sharing a similarset of features (whi
h is only small subset of the original set of features),although the 
ontributions of those features to the K predi
tion tasks 
an bequite di�erent (e.g., some of them 
an be positive 
ontribution while othersbeing negative 
ontribution). This s
enario 
an be thought as a variant of�sharing a linear subspa
e�, while the linear subspa
e is aligned with theoriginal feature spa
e. We would have the following generative model to
apture the s
enario:
θk ∼ Normal(0, diag(α))

αf ∼ InvGamma(να, νβ) (3.15)where α = (α1, . . . , αF )T ∈ R
F×1 is a non-negative ve
tor whi
h spe
i�esthe varian
e of ea
h dimension of θk and its ea
h dimension follows a priordistribution su
h as Inverse-Gamma distribution (or any other sensible dis-tribution over R

+):
InvGamma(z | να, νβ) =

ννα
β

Γ(να)
z−να−1 exp(−

νβ

z
) (3.16)By sharing the same α among all K tasks, we are able to re�e
t the as-sumption that those K tasks tend to share the same relevant dimensions,although positive/negative e�e
ts on ea
h dimension 
ould vary dependingon the data likelihood.Equivalently, this model 
an be represented as a spe
ial 
ase of the frameworkin equation (3.2) as follows:

θk = ek

ek ∼ Normal(0,Ψ) (3.17)
Ψf,f ∼ InvGamma(να, νβ)where Ψ = diag(Ψ1,1, . . . ,ΨF,F ). That is, θk equals ek whose 
ovarian
ematrix Ψ is assumed to be diagonal and random. Figure 3.3 shows thegraphi
al model for this s
enario. In Chapter 6 we will dis
uss how to do jointfeature sele
tion for multi-task learning and its 
onne
tion to this s
enario.3.2.8 Dupli
ated tasksIn reality it may happen that we need to solve exa
tly the same task whi
hwe have already solved previously, although there is no indi
ator telling us
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Figure 3.3: Graphi
al Model for Tasks Sharing Relevant Dimensionswhi
h task it is unless we infer from the training data. Formally, we wantto 
onsider the situation where it is likely that we have θk identi
al to oneof the previous models {θ1,θ2, . . . ,θK−1}. In other words, we assume thatthe probability that we will meet previously solved tasks again in the futureis positive and bounded away from zero (as opposed to the probability thata 
ontinuous variable takes a parti
ular value, whi
h equals zero). Havingthis in mind, we 
an use non-parametri
 Bayesian te
hniques like Diri
hletPro
ess [Ferguson, 1973℄ to model the generation pro
ess of the θk's:
G ∼ DP(α,G0)

θk ∼ G (3.18)where α is the pre
ision parameter of Diri
hlet Pro
ess and G0 is its basedistribution. By using Diri
hlet Pro
ess to model the generation of θk wewill have non-zero prior mass on previous seen tasks.Alternatively we 
ould use Diri
hlet Pro
esses to model the generation of θkthrough sk as in our model in Figure 3.1. The advantage of that is we 
ouldstill have �exa
t� tasks subje
t to some random noise ek, and those di�erenttasks are still related through the shared linear subspa
e. The hierar
hi
almodel to 
apture this s
enario 
an be summarized as:
G ∼ DP(α,G0)
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sk ∼ G (3.19)
θk = Λsk + ek

ek ∼ Normal(0,Ψ)where any appropriate distribution over sk 
ould be the 
andidate of thebase distribution G0. Due to the property of DP, given s1, . . . , sk−1, theprobability that sk equals one of them is stri
tly greater than zero. Conse-quently θk is identi
al to one previous model subje
t to some random noise,and the generative model is able to 
apture the s
enario of dupli
ated tasks.It is worth mentioning that although this model 
ould be approximated bya �nite mixture model as in the �
lusters of tasks� s
enario, DPs provide anatural way of handling in
reasing number of 
lusters as the number of tasksgrows.3.2.9 Evolving tasksFor all previous dis
ussions we assume that tasks are ex
hangeable, whi
hmeans that the order of those task parameters does not matter in our gen-erative model. However, there are 
ases of multi-task learning where tasksare evolving one after another. For this s
enario, the model should re�e
tthat fa
t that θk's are evolving. One of the simplest 
hoi
es, for example, isto assume that there is a �rst-order Markov 
hain over θk's:
θk−1 → θk (3.20)whi
h 
an be fully spe
i�ed using the transition probability p(θk|θk−1).Similar to the s
enario of �dupli
ated tasks�, we 
an make the sk's not IIDin Figure 3.1. That is, we assume a Markov 
hain over sk's instead of over

θk's:
θk = Λsk + µ + ek

sk−1 → sk (3.21)One parti
ular advantage of using the latter model is that we have a Markov
hain over a relatively low dimensional spa
e of size H instead of size F . Asa result, we are only responsible for the estimation of parameters involvedin p(sk|sk−1) instead of p(θk|θk−1), whi
h is quadrati
 in the dimensional-ity of θ. This model is 
losely related to the linear State Spa
e Model inthe literature [Ghahramani and Hinton, 1996, Minka, 1999℄ whi
h is widely
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 systems. By making assumptions on the tran-sition probability p(st | st−1) it is possible to do inferen
e on the multipleevolving tasks with observed data. For example, this model 
an be appliedto the problem of 
on
ept drift [Klinkenberg and Joa
hims, 2000℄ where theunderlying model for 
lassi�
ation/regression drifts as it pro
eeds.3.3 SummaryIn this 
hapter we proposed a generi
 probabilisti
 framework for multi-tasklearning. The framework is a spe
ial 
ase of hierar
hi
al Bayesian model andlatent variable model. We analyze a series of important task s
enarios andpresent suitable models within the framework. From the exploration we 
ansee that the �exibility of the proposed framework in Figure 3.1 
omes fromthe fa
t that we 
an model di�erent assumptions about the latent variablesand have 
ertain assumptions over the mixing matrix Λ, 
ovarian
e matrix
Ψ, et
. It should be 
lear that there 
ould exist alternative ways of modelingthose task s
enarios, but putting them in a uni�ed framework make thedi�erent assumptions and restri
tions transparent and 
omparison easy.The 
hoi
e of the parametri
 form p(s|Φ) for hidden sour
e s is 
ru
ial in ourframework and 
an make a lot of di�eren
es in terms of 
ombining the domainknowledge into the modeling pro
ess, in pretty mu
h the same way as the
hoi
e of parametri
 forms in parametri
 density estimation. As we alreadyshowed, when p(s|Φ) is assumed to be the multinomial distribution we areessentially performing 
lustering over the task spa
e; if p(s|Φ) is assumedto be super Gaussian distributions like Lapla
e, then we are expe
ting tohave a more sparse solution than using Gaussian instead. Furthermore, s
an be generalized to be a mixed type random ve
tor if needed, where some
oordinates are 
ontinuous and others are dis
rete. Generally speaking, the
hoi
e of p(s|Φ) should re�e
t the domain knowledge about how the tasksare asso
iated with ea
h other, i.e. what people refer to as �task relatedness�.Furthermore, the shared parameters in
luding Λ, µ, Ψ 
an also be modeledto 
apture di�erent s
enarios, su
h as a sparsity 
onstraint on Λ.Although we presented most of the models for simultaneously learning Ktasks, it should be 
lear that multi-task learning 
an also be applied to situ-ations where we are learning those tasks sequentially. In that 
ase, learninga new task should be easier given the fa
t that we already learned the shared
omponents from previous related tasks. On the other hand, we would like topoint out that in order for the proposed framework to work e�e
tively with
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t to learning ea
h task individually, there are some mild 
onditionsthat need to be satis�ed (refer to Chapter 2 for details):
• Task relatedness: Tasks should be related so that we 
an borrow in-formation from ea
h other when learn them jointly. If we use θk todenote the parameter of the k-th task's predi
tion fun
tion, then it isne
essary that those K tasks should share the same input spa
e (atleast partly) in order to have some 
ommon 
omponents in θk's.
• Number of related tasks: In order to have a reliable estimation of theshared part, we need to have 
ertain number of tasks in order to obtaina reliable estimation of the shared 
omponents among those tasks.Although the exa
t answer depends on the parti
ular task domain,in general we prefer to have more than �ve tasks to apply the jointlearning framework.
• Training resour
es of individual tasks: There are limited training re-sour
es for those related tasks. A
tually as the amount of availableresour
es grows, under regularity 
onditions some general prin
iples(Maximum Likelihood Estimator, Bayes Estimator, et
) for single-tasklearning will lead to the same, asymptoti
 optimal solution. On theother hand, the joint learning framework will bene�t the most whentraining resour
es are quite limited, due to the fa
t that the shared
omponents will be learned using all resour
es from K tasks.However, it is expe
ted that by 
ontrolling the model 
omplexity of theshared 
omponents, violations of some of the above 
onditions should notsigni�
antly deteriorate the joint learning 
ompared to individual learning. Abetter question to ask is when is it appropriate to use whi
h parti
ular modelfor multi-task learning, and this is essentially a model sele
tion problem andwill be dis
ussed in Chapter 8.



Chapter 4Learning and Inferen
eAlgorithmsThe probabilisti
 framework for multi-task learning presented in Chapter 3is a hierar
hi
al Bayesian model [Gelman et al., 2003℄ as well as a latentvariable model [Everitt, 1984℄. Compared to 
onventional latent variablemodels su
h as fa
tor analysis [Gorsu
h, 1983℄ or independent 
omponentanalysis [Hyvarinen et al., 2001℄, the key di�eren
e is that in multi-tasklearning those θk's are not observed (latent) and have to be estimated fromthe training data.In this 
hapter we fo
us on the learning and inferen
e algorithms for modelspresented in Chapter 3. Generally speaking, given a probabilisti
 model we
an either use a full Bayesian approa
h, an empiri
al Bayes approa
h, or apoint estimation approa
h to learn the model. The full Bayesian approa
hhas the advantage of taking into 
onsideration the un
ertainties of parame-ters using their posterior distributions, and does not su�er from the over�t-ting problem. However it is 
omputationally expensive and often intra
tablefor high-dimensional problems, and thus 
ertain approximation algorithmsare ne
essary to apply it in realisti
 situations. The point estimation ap-proa
h dis
ards the un
ertainty of parameters and just 
onsiders their pointestimations instead. By doing so it 
an be 
omputationally very e�
ient, butmay su�er from over�tting. The empiri
al Bayes approa
h 
an be thoughtas in-between of these two approa
hes, whi
h in
orporates the un
ertaintyof the intermediate level parameters but tries to perform point estimationfor hyper-parameters.We present algorithms for both the empiri
al Bayes approa
h and point37



CHAPTER 4. LEARNING AND INFERENCE ALGORITHMS 38estimation approa
h, with the former being able to 
apture the un
ertaintyin the parameters while the later more suitable for high-dimensional tasks.Here we fo
us on how to 
ondu
t learning and inferen
e in the model shownin equation (4.1):
θk = Λsk + µ + ek

sk ∼ p(.|Φ)

ek ∼ Normal(0,Ψ) (4.1)
classification : y

(k)
ik

∼ Bernoulli(σ(θT
k x

(k)
ik

))

regression : y
(k)
ii

∼ Normal(θT
k x

(k)
ik
, σ2)where σ(t) = (1+exp(−t))−1 is the standard logisti
 fun
tion, k = 1, 2, . . . ,Kis the task index and ik = 1, 2, . . . , Nk is the index of data instan
es for task

k. Supers
ript k on both x and y indi
ate the task that they are asso
iatedwith, i.e., we have D(k) = {(x
(k)
ik
, y

(k)
ik

)Nk
ik=1} as the training set for the k-thtask.4.1 Empiri
al Bayes Approa
hThe upper level of the graphi
al model in Figure 3.1 
aptures the rela-tions among tasks. We 
an use an empiri
al Bayes approa
h to learn theparameters Ω = {Φ,Λ,µ,Ψ} from the data while treating the variables

Z = {(θk, sk)Kk=1} as hidden variables (and thus will integrate them out).Be
ause Λ and sk are always 
oupled together in our model, we have theusual identi�ability issue [Lehmann and Casella, 1998℄ in estimating thoseparameters. In parti
ular, to get around the un-identi�ability 
aused by theintera
tion between Λ and sk, we assume that Φ is of standard parametri
form (e.g., zero mean and unit varian
e) and thus remove it from Ω. Thegoal is to learn point estimators Λ̂, µ̂ and Ψ̂ as well as obtain posteriordistributions over hidden variables given training data.Given the training data D = D(1) ∪ D(2) ∪ . . . ∪ D(K), the log-likelihood ofin
omplete data log p(D | Ω)1 
an be 
al
ulated by integrating out hiddenvariables
L =

K
∑

k=1

log







∫ Nk
∏

ik=1

p(y
(k)
ik
| x

(k)
ik
,θk)1Here for simpli
ity we just use p(D | Ω) to denote the likelihood instead of 
onditioningon input ve
tors.
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(∫

p(θk | sk,Λ,µ,Ψ)p(sk|Φ)dsk

)

dθk

} (4.2)for whi
h the maximization over parameters Ω = {Λ,µ,Ψ} involves two
ompli
ated integrals on θk and sk, respe
tively.The integration over sk will be easy if p(sk|Φ) is Gaussian (p(θk|sk,Λ,µ,Ψ)is also Gaussian), otherwise approximation is needed. Furthermore, for 
las-si�
ation tasks the likelihood fun
tion p(y|x,θ) is typi
ally non-exponentialand thus exa
t 
al
ulation be
omes intra
table. However, we 
an approx-imate the solution by applying the Expe
tation Maximization (EM) algo-rithm [Dempster et al., 1977℄ to de
ouple the maximization pro
ess into aseries of simpler E-steps and M-steps. In the EM formulation instead ofmaximizing the log-likelihood of the observed data p(D | Ω), we attemptto maximize the expe
tation of the joint log-likelihood of both the observeddata and the hidden variables in the model E[log p(D,Z | Ω)], where theexpe
tation is taken with respe
t to some distribution q(Z) over the hiddenvariable Z. It is straightforward to show that this expe
tation is alwaysa lower bound of the in
omplete data likelihood with equality holding if
q(Z) = p(Z | D,Ω).The EM algorithm for the empiri
al Bayes approa
h 
an be brie�y stated asfollows:1. E-step: Given the parameter Ωt−1 = {Λ,µ,Ψ}t−1 
al
ulated from theprevious (t− 1)-th step, 
al
ulate the distribution of hidden variablesgiven Ωt−1 and D:

p(Z | Ωt−1,D) (4.3)2. M-step: Maximize the expe
ted log-likelihood of 
omplete data (Z,D),where the expe
tation is taken over the distribution of hidden variablesobtained in the E-step, and the maximization is done with respe
t to
Ω:

Ωt = arg max
Ω

Ep(Z|Ωt−1,D) [log p(D,Z | Ω)] . (4.4)4.1.1 M-stepWe will begin with the M-step instead sin
e it is easier than the E-step. Thelog-likelihood of 
omplete data 
an be written as follows:
log p(D,Z | Ω)
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=

K
∑

k=1

log











Nk
∏

ik=1

p(y
(k)
ik
| x

(k)
ik
,θk)



 p(θk | sk,Λ, µ,Ψ)p(sk | Φ)







=

K
∑

k=1







Nk
∑

ik=1

log p(y
(k)
ik
|x

(k)
ik
,θk) + log p(θk|sk,Λ, µ,Ψ) + log p(sk|Φ)





(4.5)and its expe
ted value with respe
t to q(Z) is:
E [log p(D,Z | Ω)]

=

K
∑

k=1







Nk
∑

ik=1

E[log p(y
(k)
ik
| x

(k)
ik
,θk)] + E[log p(θk | sk,Λ, µ,Ψ)] + E[log p(sk | Φ)]





(4.6)The �rst and third terms in the 
urly bra
ket are the likelihood term for
lassi�
ation/regression and sour
e prior and do not depend on any of theparameters Ω (sin
e we assumed that p(s|Φ) is of standard form), and thus
an be dropped o� in the M-step.Consequently, the M-step 
an be simpli�ed by maximizing the followingexpe
tation with respe
t to the parameters to be estimated, namely Λ,µ,Ψ:
arg max

K
∑

k=1

E[log p(θk | sk,Λ,µ,Ψ)]

= arg max

K
∑

k=1

E

[

−
1

2
log |2πΨ| −

1

2
(θk − Λsk − µ)T Ψ−1(θk − Λsk −µ)

]

= arg min
K
∑

k=1

{

log |Ψ|+ Tr
(

Ψ−1(E[θkθ
T
k ] + ΛE[sks

T
k ]ΛT + µµT

)

+ Tr
(

Ψ−1(−2E[θks
T
k ]ΛT − 2E[θk]µ

T + 2ΛE[sk]µ
T )
)} (4.7)where Tr(.) stands for the matrix tra
e operator that returns the sum of thediagonal elements. Setting the derivative with respe
t to Λ to zero we get

K
∑

k=1

{

2E[sks
T
k ]ΛT − 2E[skµ

T
k ] + 2E[sk]µ

T
}

= 0 (4.8)
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K
∑

k=1

{2µ− 2E[θk] + 2ΛE[sk]} = 0 (4.9)and for Ψ we have
Ψ =

1

K

K
∑

k=1

{

E[θkθ
T
k ] + ΛE[sks

T
k ]ΛT + µµT

− 2E[θks
T
k ]ΛT − 2E[θk]µ

T + 2ΛE[sk]µ
T
} (4.10)Combining the last three equations we 
an solve them to get the �nal esti-mations:

Λ̂ =

(

K
∑

k=1

E[θks
T
k ]−

1

K
(

K
∑

k=1

E[θk])(

K
∑

k=1

E[sk])
T

)

×

(

K
∑

k=1

E[sks
T
k ]−

1

K
(

K
∑

k=1

E[sk])(

K
∑

k=1

E[sk])
T

)−1 (4.11)
µ̂ =

(

K − (
K
∑

k=1

E[sk])
T (

K
∑

k=1

E[sks
T
k ])−1(

K
∑

k=1

E[sk])

)−1

×

(

K
∑

k=1

E[θk]−

K
∑

k=1

E[θks
T
k ](

K
∑

k=1

E[sks
T
k ])−1

E[sk]

) (4.12)Sin
e we assume Ψ to be a diagonal matrix it is only ne
essary to assign thediagonal elements to Ψ̂, whi
h 
an also be veri�ed by dire
tly 
onsideringthe 
onstrained optimization problem. If we do not assume that we knowthe parametri
 form of p(s|Φ) then we should also treat Φ as an unknownparameter and update it during the M-step as follows:
Φ̂ = arg max

K
∑

k=1

E[log p(sk | Φ)]. (4.13)Below we 
onsider the spe
ial 
ase when µ = 0, whi
h 
an greatly simplifythe notation2. In this 
ase,
Λ̂ = (

K
∑

k=1

E[θks
T
k ])(

K
∑

k=1

E[sks
T
k ])−12This is usually �ne as µ's fun
tionality 
an be roughly 
ontributed by one 
olumn of

Λ if there is one element of sk that is 
onst a
ross tasks.
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Ψ̂ =

1

K

(

K
∑

k=1

E[θkθ
T
k ]− (

K
∑

k=1

E[θks
T
k ])Λ̂T

) (4.14)4.1.2 E-stepIn the E-step we need to 
al
ulate posterior distribution p(Z | D,Ω), giventhe parameter Ω 
al
ulated in previous M-step. Essentially only the �rst andse
ond order moments matters in the E-step, namely: E[θk], E[sk], E[θkθ
T
k ],

E[sks
T
k ] and E[θks

T
k ] are needed in the M-step.However, the exa
t 
al
ulation is often intra
table for several reasons. First,

p(sk|Φ) may not be Gaussian or may not even be within the exponen-tial family; se
ond, for 
lassi�
ation tasks the likelihood fun
tion p(y|θ,x)does not belong to the exponential family and thus 
annot be summa-rized with �nite su�
ient statisti
s as data grows. Under su
h situations,we need to 
ome up with a easy-to-handle (e.g., belonging to the expo-nential family) approximation q(Z) that minimizes some distan
e measure
Distance(p(Z|D,Ω), q(Z)) between the true posterior p(Z|D,Ω) and the ap-proximate one q(Z), where 
ommon distan
e measures in
lude Kullba
k-Leibler (KL) divergen
e KL(p(Z|D,Ω)||q(Z)) and KL(q(Z)||p(Z|D,Ω)) (sin
eKL-divergen
e is asymmetri
), whi
h are de�ned as:

KL(p(x)||q(x)) =

∫

p(x) log
p(x)

q(x)
dx. (4.15)Fortunately, the E-step for K tasks is de
oupled given the parameter Ω,its 
al
ulation 
an be done by 
ondu
ting inferen
e on a separate graphi
almodel for ea
h task, as shown in Figure 4.1.Sin
e the resulting task for the E-step is essentially inferen
e in a graphi-
al model. Inferen
e 
an be 
arried out using general-purpose algorithmslike variational methods, belief propagation or expe
tation propagation, asintrodu
ed in Chapter 2. For example, if we use Gaussian distributions toapproximate the posterior distributions p(θk|Ω

t−1,D) and p(sk|Ω
t−1,D), oneparti
ular 
hoi
e of approximation 
riteria (a
tually EP only approximatesthis goal) 
an lead to the following E-step in 
ase of expe
tation propagation:

{E[θk],V[θk]} ≈ arg min
m,V

KL
(

p(θk | Ω
t−1,D) ‖ Normal(θ;m,V)

)

{E[sk],V[sk]} ≈ arg min
m,V

KL
(

p(sk | Ω
t−1,D) ‖ Normal(s;m,V)

)(4.16)
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Figure 4.1: Graphi
al Model for E-step Inferen
e of Task kFor p(.) belonging to the exponential family it is well-known that minimiz-ing KL-divergen
e is equivalent to moment mat
hing [Minka, 2001℄. If wereverse the order in the KL-divergen
e to minimize KL(q||p) then we endup using variational method for the approximate inferen
e. For now we usethe variational method whi
h is known to be more robust with guaranteed
onvergen
e and often results in good quality approximations.The basi
 idea of variational methods is to lower bound the log-likelihoodusing Jensen's inequality:
L = log p(D) = log

∫

p(D,Z)dZ ≥

∫

q(Z) log
p(D,Z)

q(Z)
dZ

△
= O (4.17)where the inequality is due to the 
on
avity of the logarithm fun
tion. TheRHS of the above equation is the obje
tive we want to maximize in thevariational method, and q(Z) is usually taken to be within the exponen-tial family so that it is easy to 
ompute. It is straightforward to show thatmaximizing this lower bound is equivalent to minimizing the KL-divergen
e

KL(q(Z)||p(Z|D)) and the 
al
ulated q(Z) 
an then be used as an approxi-mation to the true posterior distribution p(Z|D,Ω).For simpli
ity we will omit the task index k in the following and simply de-note the 
lassi�
ation parameter ve
tor as θ and the hidden sour
e ve
tor as
s. Furthermore we also assume the q(s,θ) 
an be fa
torized in the followingform

q(s,θ) = q(θ)q(s) (4.18)



CHAPTER 4. LEARNING AND INFERENCE ALGORITHMS 44This is often a reasonable simplifying assumption and allows us to do theoptimization iteratively. Furthermore we assume q(θ) = Normal(mθ,Vθ) tobe a multivariate Gaussian distribution and q(s) = f(s|ms, I) whi
h followssome parametri
 distribution with mean ms and unit 
ovarian
e matrix.Note that Gaussian distribution is usually a good and 
onvenient 
hoi
e,parti
ularly 
onsidering the fa
t that we only need the �rst and se
ond orderstatisti
s in the M-step. Now we have
O =

∫ ∫

q(θ)q(s) log
p(s)p(θ|s)

∏N
i=1 p(yi|θ,xi)

q(θ)q(s)
dθds

=

∫

q(s)

[

log
p(s)

q(s)
+

∫

q(θ) log
p(θ|s)

∏N
i=1 p(yi|θ,xi)

q(θ)
dθ

]

ds (4.19)Although the posterior distribution q(s,θ) is assumed to be fa
torized, s and
θ are still 
oupled in above equation by the distribution p(θ|s). In order tota
kle the problem we propose the following iterative algorithm to solve theE-step, whi
h optimizes q(s) and q(θ) inter
hangeably:1. Given q(s) = f(s|ms, I), the �rst term in equation (4.19) does notinvolve q(θ) and thus 
an be dropped o�. The se
ond term 
an also begreatly simpli�ed sin
e only log p(θ|s) involves s and it 
an be easilyintegrated out due to the Gaussianity of θ given s.

Eq(s)[log p(θ|s)] = Eq(s)[−
1

2
log |2πΨ|]

+ Eq(s)[−
1

2
(θ − Λs− µ)T Ψ−1(θ − Λs− µ)] (4.20)As a result, we 
an obtain an estimate of q(θ).2. Given q(θ) = Normal(θ;mθ ,Vθ), for similar reason the se
ond termin equation (4.19) 
an also be greatly simpli�ed. That is, only theterm log p(θ|s) involves s and its expe
tation with respe
t to q(θ) 
anbe written down. So the �nal obje
tive fun
tion of the optimizationover q(s) 
omposes of two terms: a 
ross entropy term and a quadrati
term whi
h penalizes the distan
e between q(s) and E[θ].The detailed algorithm about the E-step is listed in Algorithm 1 for referen
e,and we would like to 
omment on several things. First, we assume the formof q(θ) to be multivariate Gaussian, whi
h is a reasonable 
hoi
e espe
ially
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Algorithm 1 An Iterative Algorithm for E-step1. Initialize q(s) with some standard distribution, su
h as

q(s) =

H
∏

h=1

Normal(0, 1) or

H
∏

h=1

Laplace(0, 1). (4.21)2. Cal
ulate the expe
ted value of s: Eq(s)[s].3. Solve a Bayesian logisti
/linear regression with a prior Normal(ΛE[s]+
µ,Ψ) on θ (see later se
tion for details):
q(θ) ← arg max

q(θ)
{

∫

q(θ) log
Normal(θ; ΛE[s] + µ,Ψ)

∏N
i=1 p(yi|θ,xi)

q(θ)
dθ

}(4.22)4. Cal
ulate the expe
ted value of θ: Eq(θ)[θ].5. Update q(s):
q(s) ← arg max

q(s)

{∫

q(s)

[

log
p(s)

q(s)
−

1

2
Tr
(

Ψ−1(E[θθT ])
)

−
1

2
Tr
(

Ψ−1((Λs + µ)(Λs + µ)T − 2E[θ](Λs + µ)T )
)

]

ds

}(4.23)6. Repeat steps 2-5 until 
onvergen
e.
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onsidering the fa
t that only �rst and se
ond moments are needed in theM-step. Se
ond, the prior 
hoi
e of q(s) in step 3 is signi�
ant sin
e forea
h s we only have one asso
iated �data point� θ. In parti
ular using theLapla
e distribution will lead to a more sparse solution of E[s], and thiswill be made more 
lear in the 
orresponding point estimation algorithm.Finally, for sparsity models we 
ould take the parametri
 form of q(s) to bethe produ
t of Lapla
e distribution with unit varian
e but unknown mean,where the �xed varian
e is intended to remove the unidenti�ability issue
aused by the intera
tion between s
ales of s and Λ. Although using afull 
ovarian
e Gaussian for q(s) is another 
hoi
e, again due to the un-identi�ability reason 
aused by rotations of s and Λ we 
ould make it adiagonal Gaussian. As a result, we argue that the produ
t of Lapla
es isbetter than the produ
t of Gaussians sin
e it has the same parametri
 formas the prior q(s), and the overall goal in step 5 is to estimate the distributionmean ms = (m1, . . . ,mH).In general we have q(s) = f(s|m) where m is the mean and q(s) is assumedto have standard varian
e. For p(s) a Gaussian distribution Normal(0, I),step 5 be
omes
m̂ = arg min

m

{

mT m + mT ΛT Ψ−1Λm− 2mT ΛT Ψ−1
E[θ]

}

=
(

I + ΛT Ψ−1Λ
)−1

ΛT Ψ−1
E[θ] (4.24)and for p(s) produ
t of Lapla
e distributions ∏H

h=1 Laplace(0, 1) step 5 be-
omes
m̂ = arg min

m

{

2||m||1 + 2
∑

exp(−|mf |)

+ mT ΛT Ψ−1Λm− 2mT ΛT Ψ−1
E[θ]

} (4.25)whi
h need to be solved numeri
ally. Note that similar to the sparsity prop-erty of L1 norm, here we have when ||m||1 is large the l1 norm dominates
∑F

f=1 exp(−|mf |) and thus the distribution mean a
hieves a more �sparse�solution in terms of the mean, e.g., more mass is around zero. Later we willshow that for point estimation approa
h the sparsity property will be mademore 
lear.4.1.3 Variational Method for Bayesian Logisti
 RegressionIn the following we restri
t our dis
ussions to logisti
 regression as our base
lassi�er and present an algorithm for solving the Bayesian logisti
 regres-
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h is used in step 3 of Algorithm 1. Algorithms for other proba-bilisti
 
lassi�ers 
an also be developed in prin
iple. Our algorithm here isbased on the variational method originally proposed by Jaakkola and Jordan[Jaakkola and Jordan, 1997℄, whi
h is an elegant algorithm that is guaran-teed to 
onverge, and experimentally it has been veri�ed to be stable ande�
ient.Here we ignore the task index k as well. Given a Gaussian prior Normal(m0,V0)over the parameter ve
tor θ and a training set D = {(x1, y1), . . . , (xN , yN )},we would like to obtain an approximation to the true posterior distribu-tion p(θ|D). In the following we essentially use an exponential fun
tion toapproximate the non-exponential likelihood fun
tion
p(y|x,θ) =

1

1 + exp(−yθTx)
(4.26)whi
h in turn makes the Bayes formula tra
table.Note that the fun
tion log(1/(1 + exp(−z))) is a 
onvex fun
tion in thevariable z2 (whi
h 
an be veri�ed by taking the se
ond derivative with respe
tto z2), we 
an use the �rst order Taylor series to expand at ξ2 with respe
tto z2. Due to the 
on
avity, we have the following inequality:

p(y|x,θ) ≥ σ(ξ) exp
{

(yxT θ − ξ)/2− λ(ξ)((xT θ)2 − ξ2)
}

△
= p(y|x,θ, ξ) (4.27)where σ(z) = 1/(1 + exp(−z)) is the logisti
 fun
tion and λ(ξ) is de�ned as

λ(ξ) = tanh(ξ/2)/4ξ.Our goal is to maximize the lower bound of
p(y|x) =

∫

p(θ)p(y|x,θ)dθ ≥

∫

p(θ)p(y|x,θ, ξ)dθ (4.28)In order to maximize the RHS lower bound ∫ p(θ)p(y|x,θ, ξ)dθ, we formulatean EM algorithm by treating ξ as the parameter in MLE and θ as the hiddenvariable, and the resulting steps are:
E− step : Q(ξ, ξt) = E

[

log {p(θ)p(y|x,θ, ξ)} | x, y, ξt
]

M− step : ξt+1 = arg max
ξ

Q(ξ, ξt) (4.29)Sin
e both terms in the expe
tation are exponential fun
tions and the ex-pe
tation is taken over a Gaussian distribution p(θ|x, y, ξt), the E-step 
an
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tually be 
omputed as:
(Vt)−1 ← V−1 + 2λ(ξt)xxT

mt ← Vt(V−1m + yx/2) (4.30)where the supers
ript tmeans the t-th step, and we assume p(θ) = Normal(θ;m,V).Taking the derivative of Q(ξ, ξt) with respe
t to ξ and setting it to zero leadsto:
ξt+1 =

√

xTVtx + (xTmt)2. (4.31)Although solving this EM 
an give us a good lower bound of the log likelihoodfun
tion p(y|x) =
∫

p(θ)p(y|x,θ)dθ, it involves expensive matrix inverse 
al-
ulation in the E-step. A
tually this EM pro
edure 
an be greatly simpli�edby realizing the Woodbury formula [Golub and Loan, 1996℄:
(

A + BCT
)−1

= A−1 −A−1B
(

I + CTA−1B
)−1

CTA−1. (4.32)The advantage of applying the Woodbury formula is that if both B and
C are low rank matri
es, 
omputing (I + CTA−1B)−1 
an be mu
h moree�
ient, whi
h is exa
tly our 
ase. By simplifying we 
an get the followingresults as follows:
• E-step:

Vt ← V −
2λ(ξ)

1 + 2λ(ξ)xT Vx
Vx(Vx)T

mt ← m−
2λ(ξ)

1 + 2λ(ξ)xT Vx
VxxTm

+
y

2
Vx−

y

2

2λ(ξ)

1 + 2λ(ξ)xT Vx
VxxTVx (4.33)

• M-step: solving a one-dimensional �xed point equation iteratively (c =
xTVx)

ξ2 = c−
2λ(ξ)

1 + 2λ(ξ)c
c2

+

(

xTm−
2λ(ξ)

1 + 2λ(ξ)c
cxTm +

y

2
c−

y

2

2λ(ξ)

1 + 2λ(ξ)c
c2
)2(4.34)Note the original EM steps is simpli�ed to �rst 
ompute a �xed-point so-lution of a one-dimensional problem, then 
ompute the E-step in one-shot.Furthermore, in the 
omputation of the E-step we do not need to 
al
ulatethe matrix inverse V−1 any more.



CHAPTER 4. LEARNING AND INFERENCE ALGORITHMS 494.1.4 Variational Method for High Dimensional TaskAlthough the 
omputation of the above method is a�ordable for mediums
ale problems (e.g., having several thousand features), the memory require-ment and time 
omplexity be
ome una�ordable as the number of featuresgrows. For high dimensional tasks we have θk ∈ R
F×1 where F ≫ 1. Forexample, this 
ould happen in text or image domain where the number offeatures 
an easily go up to more than ten thousand. Given su
h a highdimensional ve
tor spa
e, approximations using full 
ovarian
e Gaussian dis-tributions are no longer appli
able due to both time and memory 
onstraints.In order to handle su
h 
ases we 
onsider a fully fa
torized version of theabove variational method for whi
h we have:

q(θk) =

F
∏

j=1

q(θk,j) (4.35)This full fa
torization assumption is essentially equivalent to the assumptionthat the approximating Gaussian distribution q(θk) has the following meanand diagonal 
ovarian
e matrix:
E[θk] = (µ(θk,1), . . . , µ(θk,F ))T

V(θk) = diag(σ2(θk,1), . . . , σ
2(θk,F )) (4.36)and thus for ea
h individual 
omponent we have q(θk,j) = Normal(µ(θk,j), σ

2(θk,j)).This additional assumption redu
es the memory 
omplexity from quadrati
to linear in terms of F , the number of features. As a result the algorithm
ould be very e�
ient and 
ompetitive with point estimation approa
h. Sin
eit is not 
lear how to 
onstru
t a tight bound for fully fa
torizable approxi-mation, we 
ould use Lapla
e approximation method introdu
ed in Chapter2, by �rst obtaining the MAP estimate θMAP :
θMAP = arg min

θ

{

N
∑

i=1

log(1 + exp(−yiθ
Txi))

+ log |2πV0|+
1

2
(θ −m0)

T V−1
0 (θ −m0)

} (4.37)The update rule of step 3 in Algorithm 1 now be
omes �rst solving the MAPestimation of θMAP and then �nding the Lapla
e approximation using a fullyfa
torized multivariate Gaussian distribution.
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Algorithm 2 Iterative Algorithm for L1 Regularized Problem1. Given the optimization obje
tive

ŵ = arg min
w
O(w) = arg min

w
{wTAw + bTw + λ||w||1}2. Initialize w = 0 ∈ R

F×1.3. Loop until 
onvergen
e:(a) Pi
k up a wf (
an be sequentially or with other heuristi
s)(b) - wf > 0:
△wf =

−Af.w − bf/2− λ/2

Aff

wf ← max(0, wf +△wf )- wf < 0:
△wf =

−Af.w − bf/2 + λ/2

Aff

wf ← min(0, wf +△wf )- wf = 0: Update wf only if |Af.w + bf/2| > λ/2

△wf =
−Af.w − bf/2 + sign(−Af.w − bf/2)

Aff

wf ← △wf



CHAPTER 4. LEARNING AND INFERENCE ALGORITHMS 514.2 Point EstimationIn our model if we also treat Z as non-random but unknown parameters as
Ω, then we 
an obtain their MLE estimators. Unfortunately, in the followingwe show that straightforward appli
ation of MLE to this generative modelwithout any 
onstraint will lead to fully de
oupled MLE estimations for ea
hindividual task, and as a result the model fails to borrow information amongtasks. To see this, noti
e that for un
onstrained MLE we have

{Z,Ω}MLE = arg max
Z,Ω
L(Z,Ω|D)

= arg max
Z,Ω
{p(D|Z)p(Z|Ω)} (4.38)and the following solution obviously maximizes the above joint likelihood

L(Z,Ω|D):
Λ̂ = 0, µ̂ = 0, Ψ̂→∞. (4.39)In fa
t as long as the varian
e Ψ goes to in�nity, the models of K tasks willbe fully de
oupled and thus this generative framework fails to 
apture therelations among tasks. The failure of un
onstrained MLE demonstrates theimportan
e of having a �nite value Ψ. A
tually it is possible to assume Ψto be �xed when optimizing other parameters while use 
ross-validation asa wrapper to tune the optimal value of the diagonal elements of Ψ. Given Ψ�xed, point estimations of the rest parameters be
ome well-behaved. In Al-gorithm 1 if we take a limiting 
ase by letting both q(θ) and q(s) 
onvergingto the Dira
 delta fun
tion, then step 3 
an be thought as �nding the MAPestimation of θ and step 5 be
omes the following optimization problem forthe 
ase of Gaussian sour
es

m̂s = arg min
ms

{mT
s ms + mT

s ΛT Ψ−1Λms − 2mT
s ΛΨ−1

E[θ]} (4.40)and it be
omes lasso-like optimization problem (ms denotes the point esti-mation of s here) for the 
ase of Lapla
e sour
es
m̂s = arg min

ms

{2||ms||1 + mT
s ΛT Ψ−1Λms − 2mT

s ΛΨ−1
E[θ]}

= arg min
ms

{O(ms) + ||ms||1} (4.41)whi
h 
an be solved numeri
ally by Algorithm 2 below (note that the samealgorithm 
an be used to solve problems like lasso regression with slightmodi�
ation). The solution of this optimization is sparse in ms. This is a
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e property sin
e we would only like to 
onsider hidden sour
es for whi
hthe asso
iation with tasks are signi�
antly supported by eviden
e.Another way is to assign prior distributions over (some of) the parameters
Λ, µ and Ψ and do a point estimation (e.g., MAP over Ω):

{Z,Ω} ← arg max
Z,Ω
{p(Ω)p(Z|Ω)p(D|Z)} (4.42)Compared with MLE estimations, MAP has similar 
omputational 
ost butis usually better behaved due to its prior distribution, whi
h 
an also bethought as putting some regularization term log p(Ω) over the parameter Ω.4.3 SummaryIn this 
hapter we presented the algorithms of both empiri
al Bayes ap-proa
h and point estimation approa
h for the generi
 probabilisti
 model ofmulti-task learning. So far our 
hoi
e of the inferen
e algorithm for 
lassi-�
ation, variational method, is based on the fa
ts that they are guaranteedto 
onverge and e�
ient for high dimensional problems. Also, we fo
usedon 
lassi�
ation problems as regression problems 
an be solved in the samepro
edure (but are mu
h simpler). However, there are other general possi-bilities like expe
tation propagation and sampling method whi
h might bemore a

urate for small-s
aled tasks. Although the presented algorithmsdo not solve all the task s
enarios, this EM-based pro
edure 
an serve asthe basis for our later algorithms of other s
enarios. One advantage of theproposed probabilisti
 learning framework is that it provides a uni�ed viewof those algorithms. Based on spe
i�
 task domains, we 
ould use the fullBayesian approa
h, empiri
al Bayes approa
h or point estimation approa
h,and tradeo�s among those algorithms are also 
lear.



Chapter 5Sparsity Models for MTLIn this 
hapter we fo
us on multi-task learning s
enarios whi
h 
an lead tosparse solutions, as we previously dis
ussed in Chapter 3. In parti
ular wefo
us on two types of sparsity models1 here: model that has sparse hiddensour
e s and model that has sparse linear mixing matrix Λ (e.g., sparsebasis). We show that they lead to di�erent sparse solutions by redu
ing thejoint model 
omplexity and improve the 
lassi�
ation performan
e.5.1 Sparsity ModelsSparsity is often observed in real appli
ations, and it is a both theoreti
allyand pra
ti
ally desirable property. From the theoreti
al viewpoint, sparsity
an greatly redu
e the model 
omplexity; from the pra
ti
al viewpoint itredu
es the storage and 
omputation, espe
ially for high-dimensional data.As des
ribed in Chapter 3, there are two types of sparsity models that 
anbe a
hieved within our probabilisti
 framework:
• sparse linear 
ombination of basis fun
tions:

θk = Λsk + ek

sk ∼

H
∏

h=1

Laplace(0, γ) (5.1)
ek ∼ Normal(0,Ψ)1Our joint feature sele
tion method in Chapter 6 
an be seen as the third type ofsparsity model. 53



CHAPTER 5. SPARSITY MODELS FOR MTL 54where sk will be sparse due to the Lapla
e prior if 
ondu
ting point es-timation to obtain ŝk. This is essentially assuming that ea
h predi
tionfun
tion f (k) is a sparse linear 
ombination of basis 
lassi�ers.
• linear 
ombination of sparse basis fun
tions:

θk = Λsk + ek

sk ∼ p(sk|Φ)

Λ.,h ∼

F
∏

f=1

Laplace(0, γ) (5.2)
ek ∼ Normal(0,Ψ)where Λ.,h denotes the h-th 
olumn of matrix Λ. In other words, weassume that ea
h 
olumn ve
tor of Λ follows a sparse prior distribution.By performing a point estimation Λ̂, this model will lead to a set ofsparse basis 
lassi�ers.In summary, the �rst model is more appropriate when we believe that thosetask predi
tion fun
tions share the same set of basis, but ea
h one is only a
ombination of small number of them (relatively pure tasks); in the se
ondmodel we do not put restri
tion on how many bases are used, but insteadassume that ea
h basis fun
tion is only represented by a few features.5.2 AlgorithmsWe name the �rst typee of sparsity model Latent ICA (LICA), for the reasonthat the generative model for θk's is very similar to the ICA model. For theLICA, generi
 algorithms presented in Chapter 4 
an be dire
tly applied byusing produ
t of Lapla
e distributions as the prior of sk's.Here we fo
us on the algorithm for the se
ond type of sparsity, where ea
hpredi
tion fun
tion is a linear 
ombination of sparse basis fun
tions. Toa
hieve the sparse solution for high-dimensional data like text, we will per-form point estimation to obtain both ŝk and Λ̂. Similar to the algorithmspresented in Chapter 4, we need to propagate information from the known(x's and y's) to the unknown (θk's, sk's and Λ) using some iterative pro
e-dure. Note that parti
ular attention needs to be paid to the estimation of

Ψ. Essentially point estimation for the 
ovarian
e matrix Ψ of ek's is not
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t Ψ to take the form Ψ = λI in our algo-rithm, and use 
ross-validation in an outer loop to tune the s
alar parameter
λ, just as people usually do in traditional single-task learning to tune theregularization 
oe�
ient. Details are given in Algorithm 3.5.3 ExperimentsWe show the experimental results of our models in multi-label text 
lassi�
a-tion and email anti-spam �ltering. Sin
e joint learning will be most e�e
tivewhen we have limited training resour
es, in our experiments we evaluate themodel by varying the number of training instan
es.The model we applied here for text 
lassi�
ation is the one in equation(5.1) where we use Lapla
e distribution to model the hidden sour
e s. Inother words, we assume that the predi
tion fun
tion of ea
h task is a sparselinear 
ombination of basis 
lassi�ers that are shared among all K tasks.In the experiments of anti-spam E-mail �ltering we expli
itly divide the
ontribution to �spam� into two 
omponents for ea
h user: the 
ommon spam
omponent and the user-spe
i�
 spam 
omponent. As a result, the multi-task learning model we used is the model for the �noisy tasks� s
enario withsparse priors on both the µ and ek. Details of the model 
an be found inChapter 3.5.3.1 Multi-label Text Classi�
ationWith the rapid growth of the Internet in re
ent years, people are fa
ing anin
reasingly large amount of information, with the majority stored in an ele
-troni
 form. As a natural result, how to automati
ally and sele
tively obtainuseful information be
omes a very important resear
h 
hallenge. Amongvarious types of information, textual information is arguably the most im-portant be
ause it has a large volume and its pro
essing is relatively easierthan other media types like audio and video so far. In the �eld of infor-mation retrieval, text 
lassi�
ation, the task of 
lassifying natural languagedo
uments into a pre-de�ned set of semanti
 
ategories, has be
ome one ofthe fundamental 
omponents for organizing information.There exists a ri
h literature about text 
lassi�
ation in the past severalde
ades, whi
h provides valuable information about individual 
lassi�
ationmethods as well as their empiri
al evaluation [Yang and Liu, 1999, Zhang and
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Algorithm 3 Probabilisti
 Model for MTL with Sparse ComponentsLoop until 
onvergen
e:1. Learn θ̂k given Λ̂ and ŝk 
omputed in previous step (
onditioned on Λand Ψ, tasks parameters will de
ouple and 
an be estimated separately)for k = 1, . . . ,K:

θ̂k = arg max
θk

{

nk
∑

i=1

log p(y
(k)
i |x

(k)
i ,θk) + log p(θk | Λ̂, ŝk)

} (5.3)This is essentially equivalent to solving the regularized linear methodsfor 
lassi�
ation/regression, and we 
an apply any suitable optimiza-tion algorithm su
h as 
onjugate gradient.2. Learn ŝk given Λ̂ and θ̂k for k = 1, . . . ,K:
ŝk = arg max

sk

{

log p(θk | Λ̂, sk)
} (5.4)3. Update Λ̂ given θ̂k's and ŝk (k = 1, . . . ,K):

Λ̂ = arg max
Λ

{

K
∑

k=1

log p(θ̂k | Λŝk) + log p(Λ)

}

= arg min
Λ







K
∑

k=1

(θ̂k − Λŝk)
T (θ̂k − Λŝk) + γ

H
∑

h=1

F
∑

f=1

|Λf,h|







(5.5)where γ 
ontrols how sparse the solution Λ̂ is. Plugging in the prior of
Λ, it 
an be solved as a set of Lasso-style problems.



CHAPTER 5. SPARSITY MODELS FOR MTL 57Oles, 2001, Zhang and Yang, 2003℄. Although many of the text 
olle
tions aremulti-labeled by their nature, most of the existing approa
hes will 
onvertthe problem into a set of independent binary 
lassi�
ation problems, onefor ea
h 
ategory. Instead, here we treat multi-label text 
lassi�
ation as amulti-task learning problem, where ea
h label 
orresponds to a task.There are several bene�ts of treating the multi-label text 
lassi�
ation as amulti-task learning problem. First of all, it is more 
onvenient that whenpeople label do
uments, they simultaneously 
lassify the do
uments withrespe
t to all the 
ategories at hand. This 
an also be veri�ed from theexisting text 
lassi�
ation 
olle
tions. Se
ond, those 
ategories for a givendata 
olle
tion are often related in both semanti
s and statisti
s. Third, it isknown that most of the 
ategories in existing 
olle
tions obey the Power Lawdistribution [Yang et al., 2003℄, whi
h means that we are often fa
ing thesituation that there are very limited training resour
es for most of the 
ate-gories. And this is blessing for multi-task learning sin
e multi-task learningwill be most e�e
tive under su
h situation.For evaluation we often use the F1 measure instead of error rate due to thefa
t that for text 
lassi�
ation the number of positive and negative do
u-ments are often unbalan
ed and thus F1 is a better measure than error ratewhi
h 
an be insensitive. Given a two-way 
ontingen
y tablepositive negativepredi
ted positive A Bpredi
ted negative C DTable 5.1: A Two-way Contingen
y Tablethe pre
ision p and re
all r are de�ned as
p =

A

A+B

r =
A

A+ C
(5.6)and F1 is de�ned based on pre
ision and re
all as

F1 =
2pr

p+ r
. (5.7)Furthermore, we will also use the notation of ma
ro-F1 and mi
ro-F1 inour experimental results. Ma
ro-F1 is 
al
ulated by averaging over the F1
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Figure 5.1: Multi-label Text Classi�
ation Results on Reuters-21578 (�Indi-vidual� refers to the STL algorithm whi
h is the regularized logisti
 regres-sion; �LICA� is our MTL algorithm)values of all 
ategories; while mi
ro-F1 is the F1 value 
al
ulated by using the
ontingen
y table whose 
ell values are summed over all the 
orresponding
ell values of every 
ategory's 
ontingen
y table. As a result, ma
ro-F1 willtreat ea
h 
ategory equally and thus dominated by small 
ategories due tothe Power Law 
ategory distribution; while mi
ro-F1 will be dominated bylarge 
ategories by nature.5.3.1.1 Results on Reuters-21578Reuters-21578 has been one of the most widely used ben
hmark 
olle
tionfor evaluating text 
lassi�
ation algorithms in the literature [Yang and Ped-ersen, 1997, Yang and Liu, 1999, Zhang and Oles, 2001, Zhang and Yang,2003℄. We use a pre-pro
essed version [Yang and Liu, 1999℄ whi
h has ninety
ategories. Our training and test split is based on the standard ModApt splitas 
ommonly did in the literature.
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e multi-task learning will be most e�e
tive if 
orrelations of tasks arehigh, we 
hoose nine 
ategories out of its ninety 
ategories (those 
ategoriesare 
orn, wheat, grain, ship, 
rude, interest, money-fx, dlr, nat-gas), whi
his based on the fa
t that those 
ategories are often 
orrelated by previousstudies [Koller and Sahami, 1997℄. In other words, the number of tasks forthis data 
olle
tion is K = 9, as we treat ea
h 
ategory as an individual task.After stemming, stopword and rare word (words that happen less than threetimes) removal, we get 3,358 unique features/words. We use the empiri
alBayes method in Chapter 4 to solve the problem, with Lapla
e priors over thehidden sour
es sk's, and furthermore we let H, the dimensionality of hiddensour
e sk, to be the same asK in this experiment. For this data 
olle
tion weonly report the ma
ro-F1 results be
ause this 
orpus is relatively easy andthe mi
ro-F1 results are very similar for both our model and the single-tasklearning algorithm (whi
h is the regularized logisti
 regression 
lassi�er).Results in Figure 5.1 show that multi-task learning outperforms single tasklearning, espe
ially when the amount of training resour
es is limited.5.3.1.2 Results on RCV1RCV1 is the new Reuters 
orpus whi
h was intended to 
onsist of all and onlyEnglish language stories produ
ed by Reuters journalists between August 20,1996, and August 19, 1997. It 
onsists of over 800,000 newswire stories thathave been manually 
oded using three 
ategory sets. In our experiments weused the pre-pro
essed version [Lewis et al., 2004℄ whi
h is publi
ly available.Sin
e there are three taxonomies for the 
orpus, we use the TOPIC 
odewhose total number of 
ategories K = 116 after taking into 
onsiderationsome intermediate level 
ategories suggested in [Lewis et al., 2004℄. We takethe standard training/test split for this 
olle
tion as well. However, sin
e thetest 
olle
tion is huge (more than 700k do
uments), we randomly sele
t 10kas our test set in the following experiments. As in the previous experiment,we take H = K in this experiment.After some prepro
essing, the total number of unique features of this data
olle
tion is 47, 236. Empiri
al Bayes method is not feasible here sin
e theinput spa
e is so high-dimensional that only the memory requirement to storethe 
ovarian
e V[θ] is O(F 2), whi
h is 
learly not a�ordable. Instead wetake the point estimation approa
h, whi
h redu
es the memory requirementto O(F ). In Figure 5.2 the result �individual� is again obtained by usingregularized logisti
 regression for ea
h 
ategory individually, and our modelwith Lapla
e prior over hidden sour
es sk's is estimated using the point
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Figure 5.2: Multi-label Text Classi�
ation Results on RCV1estimation approa
h. For the RCV1 
olle
tion we only report Mi
ro-F1, andin fa
t we observed similar trend in Ma
ro-F1 although values are mu
hlower due to the large number of rare 
ategories.The number of non-zero s elements indi
ates how sparse the solution is, e.g.,how many of the basis 
lassi�ers are a
tually used to form the 
ombined
lassi�er for ea
h task parameter θk in the joint learning framework. Wetake one random training set with 100 examples and 
ount the number ofnon-zeros elements of sk for k = 1, . . . ,K. It turns out that maximumnumber of non-zero elements is 5 (1 time), followed by 4 non-zero elements5 times, 3 non-zero elements 76 times, 2 non-zero elements 30 times, and�nally 1 non-zero element 4 times. The detailed results are shown in Table5.2.
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y 1 5 76 30 4 116Table 5.2: Distribution of Number of Non-zero Elements in sk (training sizeis 100)5.3.2 Anti-Spam FilteringEmails have be
ome more and more important in people's daily life andthe most important 
ommuni
ation tool sin
e the rapid growth of Internet.However, as the growth of its popularity, people are su�ering from re
eiving�spam emails�, whi
h greatly slow down the e�e
tiveness of emails and be-
ome quite annoying. As a result, anti-spam �ltering has be
ome a resear
h
hallenge during the last several years. Anti-spam �ltering 
an in generalbe treated as a binary 
lassi�
ation problem by providing 
ertain number oftraining emails - emails that are labeled �spam� or �non-spam� by users.A simple way to build an anti-spam �ltering system is to train a 
lassi�erfor all users in the system based on the training data they provided, whi
hwe name as �POOLED STL�. However, it is interesting to realize that usersmight have di�erent de�nitions of what is spam based on their preferen
e,although they do share a lot about the de�nition. This observation is espe-
ially important as we gather more and more judgments for a spe
i�
 user,sin
e training a separate model for that user might be bene�
ial. On theother hand, we usually have limited training resour
es for most of the usersin the system and thus training a separate model for ea
h user may not bewise espe
ially 
onsidering the fa
t that users do share a lot on what is spam.We treat the anti-spam �ltering as a multi-task learning problem where ea
huser is de�ned as a task. The predi
tion fun
tion of ea
h task is 
omposedof two parts: a 
ommon 
omponent and a task-spe
i�
 
omponent, as in the�noisy tasks� s
enario in Chapter 3. This method has the advantages of boththe individual learning and learning a single task using pooled data, sin
eall training resour
es are used for ea
h user's predi
tion while he still keepshis spe
i�
 
omponent about what is a spam.The email 
orpus we used in our experiments were 
olle
ted at Carnegie Mel-lon University. It 
ontains personal emails from six users, and those emailswere 
olle
ted in around 3 months (roughly from September 2003 to Novem-ber 2003 and the exa
t time di�ers a
ross six users). Emails were originally
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lassi�ed into �ve 
ategories with di�erent priorities, namely �spam�, �what-ever �, �keep�, �important�, and �very important �. Figure 5.3 shows some
orpus statisti
s about this email 
olle
tion. In our anti-spam �ltering ex-periments we simply treat all emails labeled other than �spam� as belongto a single �non-spam� 
ategory, and thus are able to formulate a binary
lassi�
ation problem for this dataset.
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Figure 5.3: Email Corpus Statisti
sFrom the �gure we 
an see that even the spam populations are quite di�erenta
ross users, with the per
entage ranging from 4.23% to 81.56% in our dataset. The total number of labeled emails is around 2, 300, and we randomlysample 50% as the test set2, while the training set is sampled from theremaining 50% randomly with varying size. The experimental results aremeasured in F1 measure and shown in Figure 5.4.In Figure 5.4 �MTL� refers our model for multi-task learning, �STL� refersto single task learning and is done using regularized logisti
 regression forea
h user, while �POOLED STL� is also performed by regularized logisti
regression by pooling all users' training resour
es together. From the resultswe 
an see that our model is more e�e
tive in terms of dete
ting spams, dueto the fa
t that it 
onsiders both the 
ommon fa
tor as well as individual2Here we did not 
onsider the temporal information inside the emails for simpli
ity.
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Figure 5.4: Email Anti-Spam Filteringspe
i�
 fa
tor. On the other hand, it is not surprising to see that �STL�performs better as we get more and more training resour
es, while �POOLEDSTL� is mostly e�e
tive when the training resour
e is quite limited. It isimportant to have an anti-spam �ltering system that works well for both
ases, sin
e for an email system it is unusual to have every user annotate alot of �spam� emails, but meanwhile it is quite possible that a 
ertain numberof users 
ould be willing to label a lot of their emails in order to a
hieve abetter anti-spam �ltering e�e
t. The above experiment showed that with asfew as six users, we are able to a
hieve a better system using the proposedmulti-task learning framework.It would be interesting to see what are the important features 
aptured inthe shared 
omponent and what are the features that are more e�e
tivefor ea
h individual user. To illustrate that, we rank the features based onthe absolute values of their 
orresponding parameter values. In Table 5.3we show the results of the feature ranking3 for further referen
e. From theresults we 
an see that all users getting spams with words like �vi
odin�3For priva
y reasons we removed words that are related to person identi�
ation in thelist.



CHAPTER 5. SPARSITY MODELS FOR MTL 64rank shared user1 user2 user3 user4 user5 user61 
ampus left hi re: buy title http:2 re: desk please you thanks 
ampus thanks3 hi put http: have question please re:4 thanks yesterday 
ourse time prote
t hi qg5 please hi play vi
odin ti
kets inex please6 you 
heers original do agent parti
ipants free7 vi
odin s
hool university me travel east kv8 have meeting subje
t remember �ight garage mwg9 inex student s
hedule title http: work pm10 parti
ipants 
omputer available 
onvex know http: onlineTable 5.3: Informative Features for Anti-Spam Filtering as MTL (featuresare ranked based on their relative importan
e � whi
h is measured by theabsolute value of the 
orresponding parameter)and �inex�. User 6 is bothered about �free� and �online� things, while user4 is probably involved with booking ti
kets (and those are showed as mostinformative features for non-spams).5.4 SummaryWe 
onsidered two types of sparsity models for multi-task learning within ourframework, and 
ondu
ted experiments on several text 
lassi�
ation ben
h-mark 
olle
tions and one email 
orpus. The results show that our modelsoutperform the single-task learning methods espe
ially when the training re-sour
e for ea
h individual task is limited, whi
h often appears in pra
ti
e.Furthermore, we veri�ed that our models are able to a
hieve the 
laimedsparsity property.



Chapter 6Joint Feature Sele
tion1Besides a
hieving better generalization performan
e in supervised learningproblems, multi-task learning 
an also 
ontribute to other important sta-tisti
al ma
hine learning problems su
h as feature/variable sele
tion2. Inthis 
hapter we formulate the feature sele
tion problem under the multi-tasklearning setting, whi
h 
an be seen to naturally generalize the traditionalfeature sele
tion problem in the single-task learning setting. We develop al-gorithms whi
h are able to identify features that are relevant to all (or most)of the tasks and our primary goal is to show that the proposed method formulti-task feature sele
tion 
an be more e�e
tive than traditional featuresele
tion when tasks share the same subset of relevant features.6.1 Introdu
tionGiven a set of input variables (a.k.a. predi
tors, features) X1,X2, . . . ,XF ,the obje
tive of feature/variable sele
tion is to sele
t a subset of featuresR =
(r1, r2, . . . , rm) ⊂ {1, 2, . . . , F} that are relevant and/or informative. Hererelevan
e is often de�ned with 
ertain appli
ations in mind. For example,in the 
ontext of 
lassi�
ation and regression, it usually means relevant tothe response variable Y ; while in an unsupervised learning setting su
h as1An alternative name would be �Feature Sele
tion for Multi-Task Learning�.2Here we use the phrase �feature sele
tion� and �variable sele
tion� inter
hangeably, asthey do not di�er mu
h in our setting. Stri
tly speaking, feature sele
tion is more generalin the sense that ea
h feature 
an possibly be a fun
tion of several variables. We assumethat ea
h input variable is a feature throughout this 
hapter.65



CHAPTER 6. JOINT FEATURE SELECTION 66density estimation, it 
ould mean relevant to the probability density or massfun
tion (in other words, densities 
hange the most along relevant featuredimensions). In statisti
al language, most of the 
ases 
an be approximatelysummarized through the 
on
ept of independen
e:supervised: f(Y |X1,X2, . . . ,XF ) = f(Y |Xr1 ,Xr2 , . . . ,Xrm)unsupervised: f(X1,X2, . . . ,XF ) ∝ f(Xr1 ,Xr2 , . . . ,Xrm) (6.1)Feature sele
tion has been an important problem in statisti
s [Tibshirani,1996, Hastie et al., 2001℄ and ma
hine learning [Blum and Langley, 1997,Yang and Pedersen, 1997, Liu and Setiono, 1998℄ for many years and is alsoknown as �variable sele
tion�, �dimensionality redu
tion� in other slightlydi�erent 
ontext. Te
hniques for feature sele
tion 
an 
ontribute in severalways, su
h as:
• obtaining better predi
tive power
• a
hieving e�
ien
y in (future) 
omputation and storage
• providing better interpretability and s
ienti�
 dis
overyThere have been many feature sele
tion methods developed during the past,and they 
an be roughly 
ategorized into �lter-based methods and wrapper-based methods, see [Guyon and Elissee�, 2003℄ for a re
ent survey. In theformer, feature sele
tion is done by ranking features by 
orrelation 
oe�-
ients or other 
riteria with respe
t to response variables; while in the lattersubsets of features are assessed in a wrapper (su
h as lasso or SVM) a

ord-ing to their usefulness to some response variables. Generally speaking, �lter-based methods treat features independently and thus are easier to 
ondu
tand more e�
ient; wrapper-based methods are 
omputationally expensivebut more a

urate. In this 
hapter we will fo
us on wrapper-based methodssin
e they do not assume features are independent and provide prin
ipledand elegant solutions whi
h are often better than those o�ered by �lter-basedmethods [Guyon and Elissee�, 2003℄.6.2 Outline of Feature Sele
tion for STLStarting with a training set

D = {(x1, y1), (x2, y2), . . . , (xN , yN )} (6.2)



CHAPTER 6. JOINT FEATURE SELECTION 67where x ∈ X and y ∈ Y, the standard supervised learning problem tries to�nd an estimate f̂ of the fun
tion mapping f : X 7→ Y. Here our fo
us isto 
ondu
t variable sele
tion in the original feature spa
e, and we limit ourdis
ussion to linear predi
tion fun
tions su
h that X = R
F×1 and f(x) =

〈θ,x〉 where 〈., .〉 denotes the inner produ
t operation. It is assumed thatnon-linear feature mapping 
an be applied in the pre-pro
essing step if thegoal is to sele
t features whi
h are known fun
tions of the original set ofvariables.Equipped with any regularized linear method [Zhang and Oles, 2001, Zhangand Yang, 2003℄ as our wrapper, the above estimation problem 
an be 
on-verted into the following optimization problem:
θ̂ = arg min

θ

{

N
∑

i=1

L(yi, 〈θ,xi〉) + λΩ(θ)

} (6.3)where θ ∈ R
F×1 indexes the predi
tion fun
tion f(x) = 〈θ,x〉, xi ∈ R

F×1 isthe i-th input data ve
tor, L(, ., ) is some 
onvex loss fun
tion for regressionor 
lassi�
ation, Ω(θ) here is the penalty fun
tion whi
h 
an be thoughtas a measure of the model 
omplexity, and λ ∈ R
+ is the regularization
oe�
ient whi
h 
ontrols the trade-o� between the empiri
al loss and themodel 
omplexity. Finally note that although we mostly use the square loss

L(y, 〈θ,x〉) = (y − 〈θ,x〉)2 (6.4)for regression tasks and the logisti
 loss
L(y, 〈θ,x〉) = log(1 + exp(−y〈θ,x〉)) (6.5)for 
lassi�
ation tasks in the rest of the 
hapter, in general other 
hoi
es of
onvex loss fun
tions 
an be easily plugged into the framework, su
h as theabsolute error loss for regression, or the hinge loss for 
lassi�
ation.Ideally we would like to perform automati
 model sele
tion by sele
ting vari-ables using the l0 regularization, e.g. penalize ||θ||0 =

∑

f 1(θf 6= 0). Dueto its intrinsi
 non-smoothness, the 
omputation of l0-norm is notorious andknown to be NP-hard [Amaldi and Kann, 1998℄. As a surrogate, peoplehave used 
onvex approximations to the l0 regularization [Tibshirani, 1996,Weston et al., 2003℄.The most popular 
hoi
es of the penalty fun
tion are l2 and l1 regulariza-tions: Ω(θ) = ||θ||22 and Ω(θ) = ||θ||1. However, it is well-known that when
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Ω(θ) takes the form of l1 regularization, the resulting estimator θ̂ will besparse and thus a
hieves an e�e
t of variable sele
tion as a wrapper method[Tibshirani, 1996, Hastie et al., 2001℄. On the other hand, l2 regulariza-tion has the property of rotation invarian
e [Ng, 2004℄ and thus is often notre
ommended for the purpose of feature sele
tion.In parti
ular, equation (6.3) be
omes the famous lasso algorithm [Tibshirani,1996℄ when L(, ., ) takes the form of the square loss and Ω(θ) is set to the
l1-norm:

θ̂lasso(λ) = arg min
θ







N
∑

i=1

(yi − 〈θ,xi〉)
2 + λ

F
∑

f=1

|θf |







(6.6)where we expli
itly emphasize that θ̂lasso(λ) as a fun
tion of λ. We are ableto a
hieve di�erent degree of sparsity by varying the value of λ. A
tuallywhen θ̂lasso(0) is equivalent to least-square solution, and when θ̂lasso(∞) =
0. Another way to look at this is to noti
e that equation (6.6) is mathemat-i
ally equivalent [Luenberger, 2003, Boyd and Vandenberghe, 2004℄ to

minθ
∑N

i=1(yi − 〈θ,xi〉)
2subje
t to: ∑F

f=1 |θf | ≤ A (6.7)where ea
h λ 
orresponds to a positive value A. Geometri
ally, the diamond-shaped 
onstraint in (6.3) results in the e�e
t that many θ̂f elements maybe exa
tly zero. Furthermore, the number of zero elements in θ̂lasso willgo up as we in
rease λ (de
rease A). As a result, feature sele
tion 
an beautomati
ally 
ondu
ted while 
ondu
ting the optimization in equation (6.6)or (6.7).
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Figure 6.1: An example: # of non-zero elements versus λTo illustrate how to 
ondu
t feature sele
tion using the above wrapper-basedmethod, we give an example in text 
lassi�
ation. We use the Reuters-21578data set [Yang and Liu, 1999℄ for this purpose, and the experiment is designedto 
lassify whether do
uments belong to the �earn� 
ategory or not. The lossfun
tion is taken to be the logisti
 loss, and we use di�erent λ values fortraining. Figure 6.1 plots the number of nonzero elements in θ̂ versus λ. We
an see that as we in
rease λ, we are able to a
hieve more sparse results.Table 6.1 lists the ranked list of remaining features when λ = 100 (there areonly 10 features left in this 
ase), where the ranking is based on the absolutevalue |θf |.Finally, note that the re
ently developed least angle regression (LARS)[Efron et al., 2004℄ is an interesting idea whi
h 
an �nd all the solutions
θ̂lasso(λ) for all λ values very e�
iently, and similar idea has been extendedto the SVM method [Hastie et al., 2004℄.6.3 Joint Feature Sele
tion for MTLOur primary interest is how to 
ondu
t e�e
tive feature sele
tion under themulti-task learning setting, whi
h we will also 
all joint feature sele
tion.The key question is: Given K predi
tion tasks that are related, 
an weperform feature sele
tion in a more e�e
tive way? The answer, of 
ourse,again depends on the underlying assumption about the relatedness of the



CHAPTER 6. JOINT FEATURE SELECTION 70rank feature |θ| rank feature |θ|1 
ts 2.49 6 dividend 0.782 net 1.69 7 earnings 0.373 shr 1.05 8 loss 0.174 pro�t 1.04 9 p
t 0.125 re
ord 0.99 10 
ompany 0.07Table 6.1: An example: sele
ted 10 features when λ = 100.0 (data set:Reuters-21578, 
ategory: earn)tasks. Here we take the most natural one: tasks share the same subset ofrelevant features. We show that when this is the 
ase, suitable models 
anbe designed to take that pie
e of information (the existen
e of a subset ofjoint relevant features) into 
onsideration, and thus have an advantage overtraditional methods whi
h sele
t features for ea
h task in a separate manner.Formally, suppose we have K predi
tion tasks asso
iated with K datasetsrespe
tively:
D(1) = {(x

(1)
1 , y

(1)
1 ) . . . , (x(1)

n1
, y(1)

n1
)}... ... ... (6.8)

D(K) = {(x
(K)
1 , y

(K)
1 ) . . . , (x(K)

nK
, y(K)

nK
)}where x

(k)
i = (x

(k)
i,1 , x

(k)
i,2 , . . . , x

(k)
i,F )T ∈ R

F×1. It is assumed that there ex-ists a subset R = {r1, r2, . . . , rm} ⊂ {1, 2, . . . , F} su
h that the fun
tionalmappings f (k)'s 
an be written as
f (k)(x) = f (k)(x1, x2, . . . , xF ) = f (k)(xr1 , xr2 , . . . , xrm). (6.9)e.g. p(y|x) does not depend on the irrelevant dimensions I = {1, 2, . . . , F}\R.Generally speaking, joint feature sele
tion 
ould be useful in the followingways:1. to more a

urately identify relevant features, espe
ially when the num-ber of tasks is large and the number of training instan
es per task issmall;2. to get a more e�
ient joint representation a
ross all tasks;



CHAPTER 6. JOINT FEATURE SELECTION 71As a result, models for multi-task feature sele
tion should also be evaluateda

ordingly.To utilize the shared information among tasks, we 
an formulate the problemwithin the regularization learning framework as follows:
θ̂1, . . . θ̂K = arg min

θ1,...,θK

{

K
∑

k=1

Nk
∑

i=1

L(y
(k)
i , 〈θk,x

(k)
i 〉) + λΩ(θ1, . . . ,θK)

} (6.10)where Ω(θ1, . . . ,θK) is some penalty fun
tion whi
h measures the model
omplexity for allK fun
tions simultaneously. More importantly, Ω(θ1, . . . ,θK)
ould impose 
oupling information between θi and θj whi
h is essentiallyused to model the task relatedness.Similar to the single-task learning 
ase, there are several spe
ial 
ases of Ω.In parti
ular, when
Ω(θ1, . . . ,θK) =

K
∑

k=1

F
∑

f=1

|θk,f | (6.11)or
Ω(θ1, . . . ,θK) =

K
∑

k=1

F
∑

f=1

θ2
k,f (6.12)equation (6.10) de
ouples among K tasks and thus it is equivalent to learnea
h task separately with respe
t to l1 or l2 regularization. Furthermore,when l2 regularization is taken, a more general quadrati
 form 
an be ob-tained by applying [Evgeniou et al., 2005℄

Ω(θ1,θ2, . . . ,θK) =
(

θT
1 ,θ

T
2 , . . . ,θ

T
K

)

D











θ1

θ2...
θK











(6.13)with properly 
hosen matrix D ∈ R
KF×KF that 
an be used to spe
ifyhow those task parameters should be 
o-regularized (or equivalently, howprior knowledge about those task parameters are 
orrelated in the Bayesiansetting). Also noti
e that setting D to diagonal matrix λI re
overs theprevious spe
ial 
ase.



CHAPTER 6. JOINT FEATURE SELECTION 726.3.1 l1 ◦ l∞ RegularizationIn pra
ti
al appli
ations, often only a small subset of features are rele-vant/informative to all K predi
tion tasks. We would like to obtain a sparsesolution in terms of θk,f 's, espe
ially when the 
ardinality of the set of infor-mative/relevant features |R| = |{r1, r2, . . . , rm}| = m is mu
h smaller thanthe total number of features, e.g., m≪ F .Now, for the joint feature sele
tion problem of multi-task learning, we usethe following penalty fun
tion:
Ω(θ1, . . . ,θK) =

F
∑

f=1

sup
k
|θk,f |. (6.14)We name equation (6.14) the �l1 ◦ l∞ regularization�, whi
h 
omes from thefa
t that if we let Θ ∈ R

F×K

Θ = (θ1,θ2 . . . ,θK) =











θ1,1 θ2,1 . . . θK,1

θ1,2 θ2,2 . . . θK,2... ... . . . ...
θ1,F θ2,F . . . θK,F











(6.15)to be the parameter matrix, then the penalty fun
tion Ω(.) �rst does l∞regularization for ea
h row, and then it performs l1 regularization over theresulting elements. In the following we will also use the notation supk |θk,f | =
||θ.,f ||∞ where θ.,f = (θ1,f , θ2,f , . . . , θK,f) ∈ R

1×K to represent the param-eter ve
tor of the f -th feature a
ross all K tasks. Just like the reason why
l1 regularization leads to sparse solutions, the above formulation leads tosparse solutions a
ross all the tasks.Intuitively, if some feature is signi�
antly relevant to at least one task, it willbe sele
ted; otherwise it is likely to be eliminated by having θ̂1,f = . . . =

θ̂K,f = 0. Similar intuition of taking the maximum value a
ross di�erenttasks have been used [Yang and Pedersen, 1997℄ in the setting of �lter-based methods su
h as information gain [Cover and Thomas, 1991℄, mutualinformation [Cover and Thomas, 1991℄ and χ2-statisti
s [Yang and Pedersen,1997, Wasserman, 2005℄.6.3.2 Relaxation to l1 ◦ lp RegularizationIt is obvious that the assumption �all tasks share the same subset of relevantfeatures� is restri
tive. One way to relax the assumption is to assume that
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h relevant feature is shared by many of the tasks, if not all. Noti
e thatin previous model we have Ω(θ1, . . . ,θK) =
∑

f supk |θk,f |, the penalizationon the f -th feature is de
ided by supk |θk,f |, whi
h in turn is 
ontributedto by exa
tly one of the K tasks by taking the supremum. This 
ould beappropriate if all tasks share the relevant feature, but less so if only someof tasks share it as relevant. On the other hand, we observe that the l1regularization will penalize ∑k |θk,f | whi
h is 
ontributed to by every taskwith the essentially same weight. To remove su
h a restri
tive assumption,we 
an instead let Ω(.) to be the more general form
Ω(θ1, . . . ,θK) =

F
∑

f=1

||θ.,f ||p (6.16)with 1 ≤ p ≤ ∞, where ||x||p is the lp-norm and de�ned as
||x||p =

(

∑

i

|xi|
p

)1/p

. (6.17)We name this regularization the l1◦lp regularization. When p lies in the range
(1,∞), the above formulation also 
onsiders the joint sele
tion e�e
t but ina less rigorous way as the l1 ◦ l∞ regularization. Finally, this formulation 
anbe seen as a generalization of the lasso algorithm to the multi-task learningsetting no matter what p's value is. To see this, note that when K = 1,based on equation (6.16) we have

Ω(θ1) =

F
∑

f=1

||θ.,f ||p =

F
∑

f=1

|θ1,f |. (6.18)6.3.3 Numeri
al AlgorithmAll above methods (in
luding our baseline, the l1 regularized method forsingle-task learning) need to solve the following optimization problem
θ̂1, . . . θ̂K = arg min

θ1,...,θK

O(D(1), . . . ,D(K);θ1, . . . ,θK)

= arg min
θ1,...,θK







K
∑

k=1

Nk
∑

i=1

L(y
(k)
i , 〈θk,x

(k)
i 〉) + λ

F
∑

f=1

||θ.,f ||p







(6.19)



CHAPTER 6. JOINT FEATURE SELECTION 74with 1 ≤ p ≤ ∞3. When p > 1, θk's (k = 1, . . . ,K) will be 
oupled togetherand the optimization problem needs to be solved in a joint manner.We take the 
oordinate des
ent approa
h by modi�
ation of the Gauss Seidelalgorithm used in [Zhang and Oles, 2001℄, where in every step we only fo
uson a single variable θk,f and make sure that its 
hange from
θk,f ← θk,f + δ (6.20)will monotoni
ally de
rease the obje
tive in equation (6.19). Having thismonotoni
ity property is elegant as we would easily stop whenever the a

u-ra
y su�
es our appli
ation (su
h as when the maximum value of δk,f in oneiteration is less than 1e−6, or the relative 
hange of loss O is small enough).For ea
h 
oordinate, a quadrati
 trust-region [No
edal and Wright, 1999℄is formed so that it uniformly upper bounds the Hessian of the obje
tivearound the 
urrent position. The pseudo 
ode is listed in Algorithm 4 forreferen
e.6.4 ExperimentsIn our experiments we �rst illustrate the e�e
tiveness of the proposed featuresele
tion methods for multi-task learning by using simulated data sets. Re-sults on l1 ◦ l∞ and l1 ◦ lp will be 
ompared to lasso under di�erent settings,and then we show empiri
ally the relation between the number of tasks ande�e
tive sample size. Finally, we also evaluate its performan
e in terms of
lassi�
ation performan
e.6.4.1 Results on Feature Sele
tionIn order to verify the 
laimed theoreti
al properties of our methods, we will
ondu
t some experiments using simulated data. One of the main purposesof our experiments is to verify that when multiple tasks share a small sub-set of relevant features, whether our method 
an more a

urately sele
t thesubset of relevant features (
ompared to its 
orresponding single-task featuresele
tion method). To 
ondu
t the experiments, we generate a dataset forregression tasks with respe
t to squared loss L(yi, f(xi)) = (yi − f(xi))

2, asshown in Figure 6.2. Note that we only assume features 1, 2, . . . , R out of3Due to boundary problems, we treat p = 1 and p = ∞ separately from 1 < p < ∞ inour implementation. Both spe
ial 
ases 
an be solved more easily in similar way.
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Algorithm 4 Pseudo-
ode for l1 ◦ lp regularized algorithm1. Let θk = 0 (k = 1, 2, . . . ,K), and loop steps 2-5 until 
onvergen
e2. Pi
k up a parameter θk,f (in 
ertain order or random), and de�ne

O(δ) =
∑Nk

i=1 L(y
(k)
i , 〈θk,x

(k)
i 〉+ δx

(k)
i,f ) and a =

∑

k′ 6=k |θk′,f |
p3. If a = 0 (e.g. θ1,f = . . . = θk−1,f = θk+1,f = . . . = θK,f = 0):(a) if θk,f = 0 and |∂O/∂δ| > λ:

δ̂ = min
δ
{O(δ) + λ|δ|} (6.21)(b) if θk,f 6= 0:

δ̂ = min
δ∈[−|θk,f |,|θk,f |]

{O(δ) + λ|θk,f + δ|} (6.22)4. If a > 0:
δ̂ = min

δ

{

O(δ) + λ(a+ |θk,f + δ|p)1/p
} (6.23)5. Update θk,f ← θk,f + δ̂Note: equations 6.21-6.23 are solved using quadrati
 trust-region methodwhere the a
tual quadrati
 form (depends on the form of loss fun
tion L(., .))is taken to be the upper bound of the Hessian.
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F total number of features are relevant while the rest features are just ran-dom, irrelevant noise. We 
ompare how e�e
tive di�erent feature sele
tionmethods are in terms of identifying this small subset of relevant features.We evaluate methods based on the pre
ision and re
all of feature sele
tion,similar to those used in information retrieval:

precision =
# of 
orre
tly predi
ted nonzero θ̂j's# of totally predi
ted nonzero θ̂j's

=
|R̂ ∩R|

|R̂|

recall =
# of 
orre
tly predi
ted nonzero θ̂j's# of nonzero θj's

=
|R̂ ∩R|

|R|
(6.24)where R̂ denotes the set of predi
ted nonzero features. Ideally we have

precision = 1.0 and recall = |R̂|/|R| when |R̂| ≤ |R| and precision = |R|/|R̂|and recall = 1.0 otherwise.



CHAPTER 6. JOINT FEATURE SELECTION 771. Set the number of relevant features be R = 10, the total number offeatures be F = 100, and the number of tasks be K = 20.2. Generate xi ∈ R
F×1 ∼ Normal(0, I) for i = 1, 2, . . . , 100.3. Generate K number of tasks, for the k-th task we generate
θ
(k)
0 ∼ Normal(0, 1)

θ
(k)
j ∼ Normal(0, 1), j = 1, 2, . . . , R (6.25)
θ
(k)
j = 0, j = R+ 1, . . . , F.That is, we only assume that R = 10 features out of F = 100 featuresare a
tually relevant.4. Finally, for ea
h task we generate
y

(k)
i ∼ Normal(θ

(k)
0 +

R
∑

j=1

θ
(k)
j xi,j, 1) (6.26)for i = 1, 2, . . . , 100 as response variables for the regression tasks.Figure 6.2: Generation pro
ess of a syntheti
 dataset6.4.1.1 E�e
tiveness of l1 ◦ l∞ regularizationIn our �rst experiment, we would like to 
ompare our algorithm l1 ◦ l∞ tolasso (whi
h is a spe
ial 
ase of our algorithm when K = 1) whi
h appliesto ea
h task individually. Sin
e the numeri
al value of λ for lasso and the

l1 ◦ l∞ regularization method are not dire
tly 
omparable, we 
ontrol thetotal number of nonzero θ̂j's by varying the regularization parameter λ. Forlasso it is taken to be the average over K = 20 tasks; and for the l1 ◦ l∞regularization method it is the number of nonzero supk |θk,f |'s. The topgraph in Figure 6.3 shows the result of a typi
al run as we vary λ, whi
h
learly illustrates the advantage of the l1 ◦ l∞ regularization method overlasso when the assumption holds.As we mentioned earlier, the assumption that all tasks share the same subsetof featuresXR = {Xr1 ,Xr2 , . . . ,Xrm} is restri
tive. A more realisti
 assump-tion is that relevant features have signi�
ant overlaps a
ross tasks. To study



CHAPTER 6. JOINT FEATURE SELECTION 78the robustness of the l1 ◦ l∞ regularization and later the more general l1 ◦ lpregularization method, we re-generate a simulated data set. The generationis similar to that in Figure 6.2 ex
ept that we only assume the �rst k ≤ Rfeatures are shared among all tasks, while ea
h task has the remaining R−krelevant features randomly generated from indi
es k+ 1, . . . , 100. By 
hoos-ing di�erent values of k = 1, . . . , 10, we are able to measure how robust themethod is with respe
t to the underlying assumption. The bottom graph inFigure 6.3 shows that the results of the l1 ◦ l∞ regularization method is notrobust (sensitive to the assumption).6.4.1.2 E�e
tiveness of l1 ◦ lp regularizationAs pointed out earlier, the assumption that all tasks share the same subset ofrelevant features is 
learly restri
ting. Often when we �nd a good appli
ationof multi-task learning, the reality is that relevant features are shared bymany of the tasks. We would like to investigate how the relaxed model,the l1 ◦ lp regularization method (for general 1 < p < ∞) performs whenthe assumption is violated, and 
ompare it to the methods with p = 1 and
p =∞.
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Figure 6.3: Top: E�e
tiveness of Lasso vs. MTL Lasso on Simulated Re-gression Dataset (This is a typi
al run. In the setting of K = 20 tasks,the l1 ◦ l∞ regularized method always 
orre
tly predi
ts all nonzero θ's inall 10 runs. E.g., they all have the same pie
ewise linear 
urve as shown inthe above graph.); Bottom: e�e
tiveness when assumption does not stri
tlyhold (k = 8)



CHAPTER 6. JOINT FEATURE SELECTION 801. Set the number of relevant features be R = 10, the total number offeatures be F = 100, and the number of tasks be K = 20.2. Generate xi ∈ R
F×1 ∼ Normal(0, I) for i = 1, 2, . . . , 100.3. Generate K number of tasks, for the k-th task we generate

θ
(k)
0 ∼ Normal(0, 1)

θ
(k)
j ∼ rNormal(0, 1) + (1− r)δ0, j = 1, 2, . . . , R (6.27)
θ
(k)
j ∼

R(1− r)

100−R
Normal(0, 1) +

100− 2R +Rr

100−R
δ0, j = R+ 1, . . . , F.The main motivation of the design is to make sure that on average wehave R = 10 features out of F = 100 features are a
tually relevant.4. Finally, for ea
h task we generate

y
(k)
i ∼ Normal(θ

(k)
0 +

F
∑

j=1

θ
(k)
j xi,j, 1) (6.28)for i = 1, 2, . . . , 100 as response variables for the regression tasks.Figure 6.4: Generation pro
ess of syntheti
 dataset-2To 
ondu
t su
h an investigation, in Figure 6.4 we use a modi�ed algorithmof Figure 6.2 to generate the task parameters and data set. For the k-th task,

βj ∼ Normal(0, 1) with probability r and equals 0 with probability 1− r, for
j = 1, . . . , R; βj ∼ Normal(0, 1) with probability R(1 − r)/(100 − R) andequals 0 otherwise, for j = R+ 1, . . . , F . Clearly when r = 1.0 this repeatsthe algorithm in Figure 6.2, and when r < 1.0 it relaxes the assumption,but the expe
ted number of relevant features per task still remains R = 10.In Figure 6.5 we generate simulated data by using r = 0.8 and 
ompare l1,
l1 ◦ l∞ and l1 ◦ lp for �nite p value. Results show that the l1 ◦ l∞ methodsu�ers a lot from the fa
t that the assumption does not hold, while the l1 ◦ lpmethod is mu
h more robust (after all, it 
onverges to lasso as p→ 1).6.4.1.3 Number of tasks vs. e�e
tive sample sizeOne way to understand why multi-task learning 
an help feature sele
tion isto view from the aspe
t of e�e
tive sample size. That is, training examples
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an also 
ontribute to the �e�e
tive� number of trainingexamples for one parti
ular task when tasks are related. Here we 
ondu
texperiments on simulated data to verify su
h theoreti
al 
laims. The ex-periment for single-task feature sele
tion is the same as before ex
ept thatwe vary the number of training examples, from 100 to 1000. For multi-taskfeature sele
tion we vary K - the number of tasks - from 1 to 20 instead,where ea
h task has 100 training examples as before. Again, models are 
om-pared by requiring that they a
hieve the same a

ura
y of feature sele
tion,and again this is a
hieved by tuning the regularization parameter λ for ea
hmethod until they predi
t exa
tly 10 non-zero β's (that is, at the re
all level10). To make the problem more di�
ult, we set F = 1000 instead of 100,e.g. only 1% of the total features are a
tually relevant. Both the datasetand parameters are sampled 20 times a

ording to Figure 6.2 and results arereported in Figure 6.6.By 
omparing both graphs in Figure 6.6 we 
an see that when tasks arerelated, having additional tasks 
an signi�
antly 
ontribute to the a

ura
yof feature sele
tion, in pretty mu
h the same way as we in
rease the samplesize for single-task learning4. This result further supports the e�e
tivenessof the proposed joint feature sele
tion method.6.4.1.4 SummaryWe 
ondu
ted several experiments on several simulated datasets to show thee�e
tiveness of the our approa
hes. Under the assumption that all tasksshare the same set of relevant features, the proposed l1 ◦ l∞ regularizationmethod works very well, as shown in Figure 6.2. Furthermore, the experi-ments in Figure 6.6 
learly indi
ate its strength 
ompared to having a largersample size in the single-task learning setting. When the assumption is vi-olated, espe
ially when relevant features are shared by many (but not all)tasks, we demonstrate that using the l1 ◦ lp regularization approa
h 
an workbetter due to its less rigid assumption.Furthermore, we also 
ondu
ted simulated experiments for 
lassi�
ation taskswith a similar pro
edure des
ribed as above. Spe
i�
ally, the generation of4Note that the simulation results depend quantitatively on the signal/noise ratio in ourexperiments.
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Figure 6.6: Top: a

ura
y of feature sele
tion (at re
all level 10) versusnumber of training examples in l1 regularized lasso; Bottom: a

ura
y offeature sele
tion (at re
all level 10) versus number of tasks in l1 ◦ l∞ regu-larized method



CHAPTER 6. JOINT FEATURE SELECTION 84response variables in Figure 6.2 is repla
ed by
y

(k)
i ∼ Bernoulli



µ(θ
(k)
0 +

10
∑

j=1

θ
(k)
j xi,j)



 (6.29)and square loss is repla
ed by logisti
 loss during the learning, where µ(t) =
(1+exp(−t))−1 is the sigmoid fun
tion. We do not report the results for 
las-si�
ation tasks here sin
e they show very similar patterns to the regression
ase and do not provide more insights.6.4.2 Results on Handwritten Digits Re
ognitionIn this experiment we investigate our proposed methods for the handwrittendigits re
ognition problem. The dataset we used is a subset of the MNISTwhi
h 
ontains 60,000 training images and 10,000 testing images. Ea
h digit(0-9) is represented in a matrix of 28 × 28 pixels. In our prepro
essingwe make ea
h pixel a binary value representing white or bla
k, and extra
tfeatures based on 4×4 shaped square patterns similar to those used in [Andoand Zhang, 2004℄ . After prepro
essing, ea
h digit is represented as a ve
torwith around nine thousand features.

p 1.0 1.001 1.01 1.1 1.5 5.0error rate 0.1410 0.1238 0.1266 0.1328 0.1286 0.141Table 6.2: Results on Handwritten Digits Re
ognitionSin
e there are 10 digits (0-9) in our experiments, we 
ould treat it as a multi-task learning problem with K = 10 where ea
h task is a binary 
lassi�
ationproblem with respe
t to a parti
ular digit. In the experiments we examinethe e�e
tiveness of our methods by using small number of features (100features in our 
ase). Given a set of 
andidate features des
ribed as above,we 
an tune λ to sele
t a subset of features for ea
h learning algorithm.Results are shown in Table 6.2, whi
h show that we 
an bene�t in terms ofpredi
tive power by using p > 1.0, whi
h in turn implies that there is 
ertainamount of information shared (in terms of relevant features) among the tenpredi
tion tasks we study.
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hapter we propose a new approa
h for feature sele
tion in the multi-task learning setting, where the goal is to sele
t a joint subset of featuresthat are relevant to multiple predi
tion tasks. We use a wrapper-based ap-proa
h by introdu
ing the l1 ◦ l∞ regularization that penalizes the overallmodel 
omplexity and naturally imposes parameter sparsity a
ross all tasks,and show that it 
an be e�
iently solved by e�
ient 
onvex optimizationte
hniques. Furthermore, we also relax the assumption whi
h leads to thedis
overy of a full spe
trum of regularization algorithms based on the l1 ◦ lp(1 ≤ p ≤ ∞) regularization. Our model 
an be thought as a generalizationof the lasso algorithm to multi-task learning setting.We 
ondu
t experiments on simulated data sets to verify the theoreti
alproperties and the e�e
tiveness of the proposed models. Furthermore, wedemonstrate the 
ontribution of multi-task learning to the e�e
tive sam-ple size. The results on handwritten digit re
ognition problem also showthe e�e
tiveness and advantages of the proposed method over 
onventionalsingle-task learning method.



Chapter 7Mixture ModelsOne of the multi-task learning s
enarios dis
ussed earlier in 
hapter 3 is the�
lusters of tasks�, whi
h is suitable for the situation where task parametersform several 
lusters. In this 
hapter we �rst introdu
e single-
luster modelsfor multi-task learning [Yu et al., 2005℄ and then propose to use mixturemodels. The proposed method obviously generalizes the single-
luster modeland has more �exibility, and it 
an be thought as applying a 
onventionalmixture model to a higher level - the fun
tional spa
e.7.1 Single-Cluster ModelsHere by single-
luster model we mean that a uni-modal distribution (su
has multivariate Gaussian) is used as the parametri
 family. In our multi-task learning setting this means that tasks parameters θk's are �tted usinga multivariate Gaussian distribution (e.g., θk ∼ Normal(µ,Σ)).7.1.1 Bayesian Linear ModelGiven the linear predi
tive fun
tion f(x) = 〈θ,x〉 (assume x ∈ X = R
F×1),a Bayesian linear regression model assumes

θ ∼ Normal(µ,Σ)

yi|xi ∼ Normal(〈θ,xi〉, σ
2) (7.1)86



CHAPTER 7. MIXTURE MODELS 87where the parameter θ follows a multivariate normal prior. The probabilityof observing a set of i.i.d. data D = {(x1, y1), . . . , (xn, yn)} 
an be writtenas (with slight abuse of notation)
p(D|θ) =

n
∏

i=1

p(yi|θ,xi). (7.2)Consequently, the posterior distribution of θ after observing D 
an be 
al-
ulated by applying the Bayes rule:
p(θ|D) =

p(θ)
∏n

i=1 p(yi|θ,xi)
∫

p(θ)
∏n

i=1 p(yi|θ,xi)dθ

=
Normal(θ | µ,Σ)

∏n
i=1 Normal(yi | 〈θ,xi〉, σ

2)
∫

[Normal(θ | µ,Σ)
∏n

i=1 Normal(yi | 〈θ,xi〉, σ2)] dθ

=
Normal(θ | µ,Σ)Normal(y | Xθ, σ2I)

∫

[Normal(θ | µ,Σ)Normal(y | Xθ, σ2I)] dθ

= Normal(θ | µ̃, Σ̃) (7.3)where X = (x1,x2, . . . ,xn)T ∈ R
n×F and y = (y1, y2, . . . , yn)T ∈ R

n×1,and the derivation 
an be easily obtained by using the 
onjuga
y property.In other words, p(θ|D), the posterior distribution of θ after observing thedataset D, is still a multivariate normal distribution with mean µ̃ and 
o-varian
e Σ̃ updated as:̃
Σ =

(

Σ−1 +
1

σ2
XTX

)−1

µ̃ = Σ̃

(

Σ−1µ +
1

σ2
XTy

) (7.4)To apply this to multi-task learning, we 
an assume that task parameters
θk ∼ Normal(µ,Σ), k = 1, . . . ,K. (7.5)The advantage of modeling multiple tasks using this method is: when tasksform a 
luster we 
an obtain a good estimate of their prior distribution bypulling information together from multiple tasks. Note that although it ispossible to learn the prior distribution for single-task learning, it is moredi�
ult espe
ially when the number of parameters is large and the numberof training examples is small.
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essThe Bayesian linear regresssion 
an also be viewed in the fun
tion spa
e,and in that 
ase it be
omes a spe
ial 
ase of Gaussian pro
ess. The Gaus-sian pro
ess viewpoint does not only enhan
e our understand, but also havepra
ti
al advantages (as dis
ussed below). We follow the steps in [Williams,1998℄. Note that based on equation (7.1), for any xi,xj ∈ X we have
E(f(xi)) = 〈µ,xi〉

C(f(xi), f(xj)) = 〈xi,Σxj〉 (7.6)So from the fun
tional viewpoint, this is a Gaussian pro
ess over the re-gression fun
tions f ∼ GP(m(.),K(., .)) with the mean fun
tion de�ned as
m(x) = 〈µ,x〉 and the 
ovarian
e fun
tion de�ned as K(xi,xj)

△
= Ki,j =

〈xi,Σxj〉.Often one work with Gaussian pro
ess using the kernel representer theorem[Kimeldorf and Wahba, 1971℄. Given a �nite set of training instan
es, theestimation of the mean of the predi
tion fun
tion 
an be represented as
E(f(x)) =

n
∑

i=1

αiK(xi,x). (7.7)It 
an be shown that [Yu et al., 2005℄ the model in equation (7.1) 
orrespondsto the following model
α ∼ Normal(µα,Σα)

y ∼ Normal(XXT α, σ2I) (7.8)with properly 
hosen µα and Σα su
h that XT µα = µ and XTΣαX = Σ.There are several advantages of viewing Bayesian linear model in terms ofGaussian pro
esses. First of all, we 
an apply more �exible mean fun
tionand 
ovarian
e fun
tion in Gaussian pro
esses and thus easily extend tononlinear fun
tions. Se
ond, it is 
omputationally pleasant to work with GPwhen the number of features is greater than the number of instan
es (whi
hoften happens in pra
ti
e). For example, the input ve
tor x in all previousderivations 
an be repla
ed by a non-linear, high-dimensional mapping φ(x).Even if φ(x) is in�nite dimensional, we 
an still work with Gaussian pro
essin the �nite sample spa
e as suggested by equation (7.8). In parti
ular,equation (7.8) be
omes
α ∼ Normal(µα,Σα)

y ∼ Normal(Kα, σ2I) (7.9)



CHAPTER 7. MIXTURE MODELS 89whereK = ΦΦT is the kernel matrix andΦ is de�ned as (φ(x1), . . . , φ(xn))T .7.2 Mixture ModelsIt is well-known that a multivariate Gaussian/normal distribution 
an onlymodel single-
luster distributions well. For exa
tly the same reason, whenused for multi-task learning problems, both the Bayesian linear model andGaussian pro
ess have the limitation that task predi
tive fun
tions f (k)'s areassumed to form a single 
luster. In this se
tion we propose to use mixturemodels for the more general s
enario 
alled �
luster of tasks� introdu
ed inChapter 3. Clearly, mixture models are generalizations of the single-
lustermodels and 
an handle more 
ompli
ated multi-task learning 
ases, and theexisten
e of many tasks makes the usage of mixture model justi�ed andestimatable.7.2.1 Mixture of Bayesian Linear ModelsTo extend the Bayesian linear model in equation (7.1), we assume that
θ(k) ∼ π1Normal(µ1,Σ1) + . . . + πHNormal(µH ,ΣH)

y(k) ∼ Normal(X(k)θ(k), σ2I) (7.10)where πh ≥ 0 (h = 1, . . . ,H) and ∑H
h=1 πh = 1. X(k) = (x

(k)
1 , . . . ,x

(k)
nk )T ∈

R
nk×F and y(k) = (y

(k)
1 , . . . , y

(k)
nk )T ∈ R

nk×1 are again the simpli�ed rep-resentation of the input and output data instan
es for the k-th task. Inother words, tasks are assumed to be generated from one of the 
lusters. Tosimplify notations, we will use the notation
MoNormal

(

(πh,µh,Σh)Hh=1

)

△
= π1Normal(µ1,Σ1) + . . . + πHNormal(µH ,ΣH) (7.11)to represent the mixture of normal distributions.If we know the parameters Ω = {(πh,µh,Σh)Hh=1, σ

2} we 
an obtain theposterior distribution of p(θ(k) | D(k),Ω) similar to the 
ase of Bayesian linearmodel (and this is essentially the E-step in the EM algorithm introdu
edlater):
p(θ(k) | D(k))
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=

p(θ(k))p(D(k) | θ(k))
∫

[

p(θ(k))p(D(k) | θ(k))
]

dθ(k)

=
MoNormal

(

θ(k) | (πh,µh,Σh)Hh=1

)

Normal(y(k) | X(k)θ(k), σ2I)

∫

[

MoNormal
(

θ(k) | (πh,µh,Σh)Hh=1

)

Normal(y(k) | X(k)θ(k), σ2I)
]

dθ(k)

= MoNormal
(

θ(k) | (π̃h, µ̃h, Σ̃h)Hh=1

) (7.12)After some math manipulation, it is not surprisingly to see that the posteriordistribution of p(θ(k) | D(k)) is also a mixture of normal distribution, withparameters updated as
Σ̃

(k)
h =

(

Σ−1
h +

1

σ2
〈X(k),X(k)〉

)−1

µ̃
(k)
h = Σ̃h

(

Σ−1
h µh +

1

σ2
〈X(k),y(k)〉

) (7.13)
π̃

(k)
h =

c
(k)
h πh

∑H
h′=1 c

(k)
h′ πh′where ch is a normalization fa
tor de�ned as

c
(k)
h

=

∫

Normal(θ(k) | µh,Σh)Normal(y(k) | X(k)θ(k), σ2I)dθ(k)

=
|Σ̃h|

1/2

(2πσ2)nk/2|Σh|1/2
exp

(

−
µT

h Σ−1
h µh + 1

σ2 〈y
(k),y(k)〉 − µ̃T

h Σ̃
−1
h µ̃h

2

)(7.14)The last step is obtained after some tedious 
al
ulation (see Appendix A).The above updating should be 
arried out for all tasks k = 1, . . . ,K.We use the empiri
al Bayes method to learn the parameters (πh,µh,Σh)Hh=1and σ2. This will be 
ondu
ted by an EM algorithm that is summarized inAlgorithm 5. The details of the derivations 
an be found in Appendix B atthe end of this 
hapter.7.2.1.1 Hyper-prior smoothingIf we have a relatively small K (number of tasks) 
ompared to H, the num-ber of mixture 
omponents, we may over�t as the number of parameters to
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Algorithm 5 EM Algorithm for Mixture of Bayesian Linear Regression1. InitializationGiven H, the number of 
lusters, initialize (πh,µh,Σh)Hh=1 and σ22. Loop until 
onvergen
e(a) E-step: for ea
h task and ea
h 
omponent 
luster (k = 1, . . . ,K;

h = 1, . . . ,H) update π̃(k)
h , µ̃

(k)
h and Σ̃

(k)
h as follows (appendix Bfor details):

π̃
(k)
h ∝ πh

|Σ̃
(k)
h |1/2

|Σh|1/2
exp

2

4−
µ

T
h Σ

−1
h µh − 〈µ̃

(k)
h , (Σ̃

(k)
h )−1

µ̃
(k)
h 〉

2

3

5

Σ̃
(k)
h =

„

Σ
−1
h +

1

σ2
〈X(k),X(k)〉

«−1

µ̃
(k)
h = Σ̃

(k)
h

„

Σ
−1
h µh +

1

σ2
〈X(k), y(k)〉

«(b) M-step: for ea
h 
omponent 
luster, update πh, µh, Σh

µh =

PK
k=1 π̃

(k)
h µ̃

(k)
h

PK
k=1 π̃

(k)
h
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1

PK
k=1 π̃

(k)
h

K
X
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π̃
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“

Σ̃
(k)
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(k)
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”
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CHAPTER 7. MIXTURE MODELS 92be estimated is large (µh's and Σh's). We would asso
iate a hyper-prior dis-tribution H(µ,Σh) over {µh,Σh}
H
h=1 (espe
ially Σh's) to avoid over�tting.The main di�eren
e is in the M-step, where the maximization w.r.t. µh and

Σh is penalized by logH(µh,Σh). An even simpler method is to smooth theestimate in the M-step su
h as
Σh =

1

λ+
∑K

k=1 π̃
(k)
h

K
∑

k=1

π̃
(k)
h

(

λI + Σ̃
(k)
h + (µ̃

(k)
h − µh)(µ̃

(k)
h − µh)T

) (7.15)so that estimates of Σh will not be ill-behaved.7.2.1.2 Conne
tion to the MTL FrameworkThe MTL framework proposed in Chapter 3 
an be easily adapted to supportthe mixture of Bayesian linear models. Mixture of Bayesian linear models
an be a
hieved by assuming that ea
h 
olumn of the matrix Λ follow amultivariate normal distribution
θ(k) = Λsk

sk ∼ Multinomial(π1, π2, . . . , πH) (7.16)
Λ.,h ∼ Normal(µh,Σh)together with the observation model

y
(k)
i ∼ Normal(〈θ(k),x

(k)
i 〉, σ

2) k = 1, . . . ,K; i = 1, . . . , nk. (7.17)The prior probability of θ(k) 
an be easily seen to be a mixture of normaldistributions by summing over sk:
p(θ(k)) =

∑

sk

p(sk)p(θ
(k)|sk) =

H
∑

h=1

πhNormal(µh,Σh) (7.18)Thus it follows that equation (7.16) and (7.17) is equivalent to the model inequation (7.10).



CHAPTER 7. MIXTURE MODELS 937.2.1.3 Mixtures with Common Covarian
eSometimes we would like to obtain simpler mixture model than the one usedin equation (7.16), where ea
h mixture 
omponent has its own mean butshare a 
ommon 
ovarian
e. One of the bene�ts of doing so is to redu
e thenumber of parameters and prevent over�tting. The model in equation (7.16)
an be simply modi�ed to the following:
θk = Λsk + ek

sk ∼ Multinomial(π1, π2, . . . , πH) (7.19)
ek ∼ Normal(0,Σ)Geometri
ally, all task fun
tions form H 
lusters, where they share the same
ovarian
e Σ. Details of algorithm 
an be found in Appendix B.7.2.2 Mixture of Gaussian Pro
essesMixture of Gaussian pro
esses 
an be seen as a parti
ular variant of mixtureof experts in [Ja
obs et al., 1991℄. Tresp [Tresp, 2001℄ introdu
ed the mixtureof Gaussian pro
ess model with di�erent s
ale parameters and dis
ussedits 
onne
tion to related methods; Rasmussen and Ghahramani [Rasmussenand Ghahramani, 2002℄ proposed the in�nite mixture of Gaussian pro
esseswhose 
ovarian
e fun
tions are learned from the data.In the multi-task learning setting we will show that mixture of Gaussianpro
esses 
an naturally handle the �
lusters of tasks� s
enario, where ea
h
luster 
an be modeled by a Gaussian pro
ess expert with di�erent meanand 
ovarian
e fun
tion.Under the assumption of mixture of Gaussian pro
esses, the hierar
hi
almodel 
an be written as

f (k)|sk = h ∼ GP(mh(.),Kh(., .))

sk ∼ Multinomial(π1, π2, . . . , πH) (7.20)whi
h has parameters π1, . . . , πH as well as mh(.)'s and Kh(., .)'s.Note that we are free to 
hoose any valid 
ovarian
e fun
tion, possibly dif-ferent ones for di�erent 
omponent. One �exible 
hoi
e that is often used inthe literature [Williams, 1998, Rasmussen and Ghahramani, 2002℄ takes the
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K(xi,xj) = v0 exp



−
1

2

F
∑

f=1

(xi,f − xj,f)2

w2
f



+ v1δ(i, j) (7.21)with hyper-parameters v0 
ontrolling the signal varian
e, v1 
ontrolling thenoise varian
e, and wf 
ontrolling the relevan
e of the f -th feature in pre-di
ting the response variable.By using the representation in equation (7.8), we 
an formulate the multi-task learning algorithm by learning µα,h and Σα,h as well as πh's. Sin
ethe derivation of the EM algorithm is similar to that of mixture of Bayesianlinear models, we only give the results in Algorithm 6 .7.3 Experiments7.3.1 Syntheti
 DatasetThe purpose of this experiment is to show that if tasks are formed into
lusters, our model 
an 
orre
tly identify those 
lusters as well as give ana

urate estimation of the s
ales of the 
lusters.We generate K samples {θ1, . . . ,θK} from a mixture of three 2-dimensionalnormal distributions with the following parameters: π1 = 0.5, µ1 = (2, 2)T ,
Σ1 = ((0.5, 0.4)T , (0.4, 0.5)T ); π2 = 0.3, µ2 = (2,−2)T , Σ2 = 0.5I; π3 = 0.2,
µ2 = (−2, 2)T , Σ3 = 0.5I. Figure 7.1 shows the probability density of thismixture distribution. For ea
h generated parameter θk, we further generatean asso
iated dataset {(x(k)

i , y
(k)
i )ni=1} su
h that

x
(k)
i ∼ Normal(0, 2I)

y
(k)
i ∼ Normal(〈θk,x

(k)
i 〉, 1). (7.22)In our simulation, we generate K = 100 tasks and for ea
h task we generate

n = 10 pairs of data instan
es.We apply our algorithm where we use K(xi,xj) = 〈xi,xj〉 as the base ker-nel, and the number of 
lusters is 
hosen by 5-fold likelihood-based 
rossvalidation (see Chapter 8), and in this 
ase H∗ is found to be 3 whi
h is the
orre
t number of 
lusters. Figure 7.1 shows the 
ontours of densities for
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Algorithm 6 EM Algorithm for Mixture of Gaussian Pro
esses1. InitializationGiven H, the number of 
lusters, initialize (πh,µα,h,Σα,h)Hh=1 and σ2;spe
ify Kh's parametri
 form for h = 1, . . . ,H2. Loop until 
onvergen
e(a) E-step: for ea
h task and ea
h 
omponent 
luster (k = 1, . . . ,K;

h = 1, . . . ,H) update π̃(k)
h , µ̃

(k)
α,h and Σ̃

(k)
α,h:

π̃
(k)
h ∝ πh

|Σ̃
(k)
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«where K
(K)
h is the kernel matrix between X(k) and X = ∪kX

(k), im-plemented with Kh.(b) M-step: for ea
h 
omponent 
luster, update πh, µα,h, Σα,h
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Figure 7.1: Left: mixture model (θ(k) ∼ MoNormal({πh,µh,Σh}
3
h=1));Right: estimated densitymodel SSE model SSEMixture 2.53± 0.19 Ridge λ = 0.1 2.84 ± 0.18MLE 2.89 ± 0.18 Ridge λ = 0.2 2.82 ± 0.19Ridge λ = 0.01 2.88 ± 0.18 Ridge λ = 0.5 2.83 ± 0.21Ridge λ = 0.02 2.88 ± 0.18 Ridge λ = 1.0 3.07 ± 0.25Ridge λ = 0.05 2.86 ± 0.18 Ridge λ = 2.0 3.86 ± 0.28Table 7.1: Sum of Squared Error (results are summarized over 10 randomtrials)both the true density and the estimated mixture model. From the graph we
an see that the estimation ni
ely resembles the true underlying density.Furthermore, we also evaluate the model in terms of the Sum Squared Errors(SSE):

SSE =

K
∑

k=1

(θ̂k − θk)
T (θ̂k − θk). (7.23)For the mixture model we use the posterior mean θMAE as the estimator,and 
ompare the results with ridge regression estimators with parameter λ(when λ = 0 it be
omes the Maximum Likelihood Estimation). Results areshown in table 7.1, whi
h 
learly shows that the SSE of mixture model issigni�
antly better than using single-task learning algorithms.
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e Predi
tionHere we apply our model to the task of predi
ting user preferen
es in 
ollab-orative �ltering, whi
h has been used as a test bed for multi-task learning[Yu et al., 2006℄. The major di�eren
e is that here we would like to in-vestigate how well does mixture model perform. The dataset we use hereis the MovieLens dataset1, whi
h 
ontains 100,000 ratings 
olle
ted from943 users over 1,682 movies in total. Furthermore, the minimum number ofrated movies by any user is 20 in this data set. Ea
h rating is an integers
ore ranging from 1 to 5, with 1 meaning least favorable and 5 meaningmost favorable. Furthermore, ea
h movie in this dataset is assigned a setof genre labels. There are 19 di�erent genres in total: Unknown, A
tion,Adventure, Animation, Children's, Comedy, Crime, Do
umentary, Drama,Fantasy, Film-Noir, Horror, Musi
al, Mystery, Roman
e, S
i-Fi, Thriller,War, Western. In the dataset ea
h genre is given as a binary feature andthey will be used to predi
t movie ratings for ea
h user.In the multi-task learning setting we treat ea
h user as a task and ea
h movieas a data point. Thus we have ea
h movie x ∈ R
20 representing 19 binaryfeatures plus one bias term. Sin
e the matrix is sparse we do not expe
tusers to rate the same set of movies, e.g. the data instan
es are not shareda
ross tasks in this 
ase. We use the Mean Absolute Error (MAE) as ourevaluation measure, as people usually do in this type of experiments. It isde�ned as

MAE =
1

n

n
∑

i=1

|r(i)− r̂(i)| (7.24)where i is the index of test pairs of (movie, user) for whi
h we have truerelevan
e judgment, r(i) is the user's true rating, and r̂(i) is the predi
tedrating by our algorithms.We 
ondu
t experiments by varying the number of movies known to thesystem (e.g. number of training examples) from 5, 10 to 20, where in ea
hrun we randomly sample 100 users (e.g., 100 tasks). First of all, we runsingle-task learning algorithms and report the results in Table 7.2. Thealgorithm we use is ridge regression (see Chapter 2), with the regularization
oe�
ient λ 
hosen by 
ross-validation for ea
h 
ondition.1It is available at http://www.grouplens.org/.
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ross-validation) MAE
nk = 5 λ∗ = 0.1 1.144 ± 0.0314

nk = 10 λ∗ = 1.0 1.024 ± 0.0189

nk = 20 λ∗ = 1.0 0.9313 ± 0.0119Table 7.2: Results on Movie Rating (single-task learning)We then run the mixture of Gaussian pro
esses with base kernel K(xi,xj) =
〈xi,xj〉 and results are shown in Table 7.3. From the results we 
an see thatusing mixture models for the preferen
e predi
tion problem does not providebetter performan
e. This is a little bit surprising as before we expe
ted tosee 
lusters of users' predi
tive fun
tions based on the genres of di�erentmovies. In other words, the results suggest that a single multivariate normaldistribution does a very good job in terms of modeling the θk's.# of 
lusters nk = 5 nk = 10 nk = 20

H = 1 0.8759 ± 0.0129 0.8554 ± 0.0128 0.8253 ± 0.0060

H = 2 0.8764 ± 0.0135 0.8607 ± 0.0163 0.8317 ± 0.0096

H = 3 0.8761 ± 0.0134 0.8638 ± 0.0179 0.8321 ± 0.0078

H = 4 0.8769 ± 0.0139 0.8672 ± 0.0203 0.8361 ± 0.0077

H = 6 0.8775 ± 0.0145 0.8682 ± 0.0205 0.8399 ± 0.0089

H = 8 0.8772 ± 0.0143 0.8699 ± 0.0206 0.8419 ± 0.0094

H = 10 0.8784 ± 0.0153 0.8732 ± 0.0228 0.8441 ± 0.0091

H = 14 0.8783 ± 0.0152 0.8720 ± 0.0224 0.8469 ± 0.0122

H = 18 0.8796 ± 0.0160 0.8739 ± 0.0225 0.8477 ± 0.0116Table 7.3: Results on Movie Rating (base kernel K(xi,xj) = 〈xi,xj〉)We would like to verify our 
onje
ture about the unimodality and normalityof the task parameters θk's. Pro
edurely we want to �rst obtain a set ofestimated θ̂k's, and then test their normality. Among all users who ratedmore than 50 movies, we randomly sele
t 500 users. And for the k-th userwe randomly sele
t 50 movies as training set for the k-th predi
tion task.Now we are able to do maximum likelihood estimation on K = 500 tasksto obtain θ̂k's. We would like to 
ondu
t hypothesis testing about whether
θ̂1, . . . , θ̂K are from a multivariate normal distribution or not.If θ̂k's are one-dimensional we 
an easy 
ondu
t the test or even visual-ize the results. Sin
e θ̂k ∈ R

20, we instead 
onsider its proje
tion into



CHAPTER 7. MIXTURE MODELS 99one-dimensional real line. Based on the Cramer-Wold theorem, a ran-dom ve
tor x follows multivariate normal if and only if its every proje
tion(into 1-dimension) follows a univariate normal distribution. Furthermore,instead of testing for any proje
tion p whether pT θ̂1, . . . ,p
T θ̂K follows aone-dimensional normal distribution, we would �rst identify the most non-Gaussian dire
tion and then perform the test (e.g. the worst 
ase). In ourexperiments we use the fastICA algorithm [Hyvarinen et al., 2001℄ to �ndthe most non-Gaussian proje
tion from samples θ̂1, . . . , θ̂K , and then verifyhow far it is deviate from normal distribution.
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Figure 7.2: non-Gaussian proje
tion and qq-plot of θ̂1, . . . , θ̂KThe top graph in Figure 7.2 shows the proje
ted distribution of θ̂k's, wherethe proje
tion is the most non-Gaussian like proje
tion found by the fastICAalgorithm, and the density is smoothed using kernel density estimator. We
an see that even the most non-Gaussian proje
tion is not far from Gaussian.



CHAPTER 7. MIXTURE MODELS 101The bottom graph shows the qq-plot2 of the proje
ted samples, whi
h furtherveri�es our previous 
laim.Be
ause of the fa
t that the task parameters do roughly follow a multivari-ate normal distribution, we try to break the distribution by using di�erentbase kernel Kh's. In this new set of experiments, we 
hoose Kh=1(xi,xj) =
〈xi,xj〉. For h > 1 and ea
h data pair xi and xj, we randomly sele
t a subsetof features Ih = {i1, . . . , iqh

} ⊂ {1, . . . , F} and de�ne
Kh(xi,xj) = 〈x̃i, x̃j〉 (7.25)where x̃i,f = xi,f if f ∈ Ih and otherwise 0, and the same thing is done toget x̃j,f . That is, x̃i only keeps features whose index is in the random setby setting the rest of the features to zero. The way that we 
hoose Ih isvery simple: ea
h feature is randomly 
hosen with probability 0.5. By usingthis newly de�ned base kernel (as we 
an see, for ea
h 
luster 
omponentwe use a di�erent kernel due to the random feature sele
tion) we re-run theexperiments and the results are shown in Table 7.4.system nk = 5 nk = 10 nk = 20baseline: H = 1 0.8821 ± 0.0149 0.8527 ± 0.0096 0.8331 ± 0.0080mixture:H∗ by CV 0.8384 ± 0.0050 0.8365± 0.0057 0.8230 ± 0.0067Table 7.4: Results on Movie Rating (with random kernel)Note that H∗ denotes the optimal number of 
lusters, whi
h is obtained bya 5-fold likelihood-based 
ross-validation (see Chapter 8 for details). Fromthe results we 
an see that by using randomly sele
ted base kernels, ourmixture model improved the performan
e of the single-
luster model in 
aseswhen the number of rated movies is small. Our way of sele
ting randombase kernel is motivated by the idea of Random Forest by Breiman. Thisresults illustrate that when single-
luster models are not su�
ient for thetask s
enario, mixture models 
an provide more powerful representation and�t the task s
enario better.2Brie�y speaking, qq-plot (quantile-quantile plot) is a graphi
al te
hnique for determin-ing if two datasets have the same distribution. It shows the quantile of one dataset w.r.t.the quantile of another dataset. In our 
ase, it is the quantile of normal vs. the quantileof our data (whi
h is the proje
tion of θ̂k's). If the plot does not deviate mu
h from astraight line, then it is reasonable to a

ept that the data follows a normal distribution.



CHAPTER 7. MIXTURE MODELS 102Appendix A: Normalization ConstBelow we ignore s
ripts k and h:
∫

Normal(θ | µ,Σ)Normal(y | Xθ, σ2I)dθ

=

∫

|2πΣ|−1/2

|2πσ2I|1/2
exp

(

−
(θ − µ)TΣ−1(θ − µ) + 1

σ2 (y −Xθ)T (y −Xθ)

2

)

dθLet us de�ne
A

△
= (θ − µ)TΣ−1(θ − µ) +

1

σ2
(y −Xθ)T (y −Xθ)

= θTΣ−1θ − 2µTΣ−1θ + µΣ−1µ +
1

σ2
yT y −

2

σ2
yT Xθ +

1

σ2
θT XTXθ

= θT (Σ−1 +
1

σ2
XTX)θ − 2(µTΣ−1 +

1

σ2
yT X)θ + µΣ−1µ +

1

σ2
yTy

= (θ − µ̃)T Σ̃
−1

(θ − µ̃) + µΣ−1µ +
1

σ2
yTy − µ̃T Σ̃

−1
µ̃where

Σ̃ = (Σ−1 +
1

σ2
XTX)−1

µ̃ = Σ̃(Σ−1µ +
1

σ2
XTy)As a result, we have

|2πΣ|−1/2

|2πσ2I|1/2

∫

exp(−
A

2
)dθ

=
|2πΣ|−1/2

|2πσ2I|1/2
|2πΣ̃|1/2 exp

(

−
µΣ−1µ + 1

σ2 y
T y − µ̃T Σ̃

−1
µ̃

2

)

=
|Σ̃|1/2

(2πσ2)n/2|Σ|1/2
exp

(

−
µΣ−1µ + 1

σ2 y
T y− µ̃T Σ̃

−1
µ̃

2

)
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CHAPTER 7. MIXTURE MODELS 103Appendix B: EM for Mixture of Bayesian Linear Re-gressionThe parameters we would like to estimate are Ω = {(πh,µh,Σh)Hh=1, σ
2}, andthe basi
 idea is that we 
ompute them by maximizing the log-likelihood

∑K
k=1 log p(D(k) | Ω). Sin
e we have two set of variables to be integratedout (θ(k)'s and Z(k)'s, where Z(k) ∈ {1, . . . ,H} is the indi
ator variable ofthe mixture 
omponent for the k-th task), we derive the E-step and M-stepformulas from the beginning by using Jensen's inequalities.In the following derivations we will use the notation Ω̊ to denote the param-eter Ω obtained in previous M-step. For the k-th task, the log-likelihood 
anbe lower bounded as follows:

log p(D(k) | Ω)

= log

(

H
∑

h=1

p(Z(k) = h | Ω̊,D(k))
p(Z(k) = h,D(k) | Ω)

p(Z(k) = h | Ω̊,D(k))

)

≥

H
∑

h=1

p(Z(k) = h | Ω̊,D(k)) log
p(Z(k) = h,D(k) | Ω)

p(Z(k) = h | Ω̊,D(k))

arg max
=

H
∑

h=1

p(Z(k) = h | Ω̊,D(k)) log p(Z(k) = h,D(k) | Ω)

=
H
∑

h=1

p(Z(k) = h | Ω̊,D(k))

× log

(

∫

p(θ(k) | Ω̊,D(k), Z(k) = h)
p(θ(k), Z(k) = h,D(k) | Ω)

p(θ(k) | Ω̊,D(k), Z(k) = h)
dθ(k)

)

≥

H
∑

h=1

p(Z(k) = h | Ω̊,D(k))

×

(

∫

p(θ(k) | Ω̊,D(k), Z(k) = h) log
p(θ(k), Z(k) = h,D(k) | Ω)

p(θ(k) | Ω̊,D(k), Z(k) = h)
dθ(k)

)

arg max
=

H
∑

h=1

p(Z(k) = h | Ω̊,D(k))

×

(∫

p(θ(k) | Ω̊,D(k), Z(k) = h) log p(θ(k), Z(k) = h,D(k) | Ω)dθ(k)

)



CHAPTER 7. MIXTURE MODELS 104where the inequalities are due to Jensen inequality, and the operator arg max
=means �equivalent w.r.t. the arg max operation over parameters Ω�. So inthe E-step we should 
al
ulate

π̃
(k)
h

△
= p(Z(k) = h | Ω̊,D(k))

∝ π̊hp(D
(k) | Z(k) = h, Ω̊)

= π̊hp(D
(k) | µ̊h, Σ̊h, σ̊

2)

= π̊h

∫

Normal(θ(k) | µ̊h, Σ̊h)Normal(y(k) | X(k)θ(k), σ̊2I)dθ(k)

=
π̊h|Σ̃

(k)
h |

1/2

(2πσ̊2)nk/2|Σ̊h|1/2

× exp



−
µ̊T

h Σ̊
−1
h µ̊h + 1

σ̊2 〈y
(k),y(k)〉 − 〈µ̃

(k)
h , (Σ̃

(k)
h )−1µ̃

(k)
h 〉

2





∝ π̊h
|Σ̃

(k)
h |

1/2

|Σ̊h|1/2
exp

[

−
µ̊T

h Σ̊
−1
h µ̊h − 〈µ̃

(k)
h , (Σ̃

(k)
h )−1µ̃

(k)
h 〉

2

]and
p(θ(k) | Ω̊,D(k), Z(k) = h)

=
p(θ(k),D(k), Z(k) = h | Ω̊)

∫

p(θ(k),D(k), Z(k) = h | Ω̊)dθ

=
p(Z(k) = h | Ω̊)p(θ(k) | Ω̊, Z(k) = h)p(D(k) | θ(k), Ω̊, Z(k) = h)

∫

(

p(Z(k) = h | Ω̊)p(θ(k) | Ω̊, Z(k) = h)p(D(k) | θ(k), Ω̊, Z(k) = h)
)

dθ(k)

=
πhNormal(θ(k) | µ̊h, Σ̊h)Normal(y(k) | X(k)θ(k), σ̊2I)

∫

(

πhNormal(θ(k) | µ̊h, Σ̊h)Normal(y(k) | X(k)θ(k), σ̊2I)
)

dθ(k)

= Normal(θ(k) | µ̃
(k)
h , Σ̃

(k)
h )where

Σ̃
(k)
h =

(

Σ̊
−1
h +

1

σ̊2
〈X(k),X(k)〉

)−1

µ̃
(k)
h = Σ̃

(k)
h

(

Σ̊
−1
h µ̊h +

1

σ̊2
〈X(k),y(k)〉

)



CHAPTER 7. MIXTURE MODELS 105This �nishes the E-step. We plug in the E-step results and de�ne Q(k)(Ω)
△
=

log p(D(k) | Ω) to be
Q(k)(Ω) =

H
∑

h=1

π̃
(k)
h

(∫

Normal(θ(k) | µ̃
(k)
h , Σ̃

(k)
h ) log p(θ(k), Z(k),D(k) | Ω)dθ(k)

)

=

H
∑

h=1

π̃
(k)
h

{

log πh −
1

2
log |2πΣh| −

1

2
E

[

(θ(k) − µh)T Σ−1
h (θ(k) − µh)

]

−
1

2
log |2πσ2I| −

1

2σ2
E

[

(y(k) −X(k)θ(k))T (y(k) −X(k)θ(k))
]

}

= C(k) +

H
∑

h=1

π̃
(k)
h log πh −

nk log σ2

2
−
〈y(k),y(k)〉

2σ2

−

H
∑

h=1

π̃
(k)
h

2
log |Σh| −

H
∑

h=1

π̃
(k)
h

2
µT

h Σ−1
h µh

+
H
∑

h=1

π̃
(k)
h E

[(

µT
h Σ−1

h +
1

σ2
〈y(k),X(k)〉

)

θ(k)

]

−

H
∑

h=1

π̃
(k)
h

2
E

[

〈θ(k),

(

Σ−1
h +

1

σ2
〈X(k),X(k)〉

)

θ(k)〉

]where C(k) = −F+nk
2 log 2π is a 
onstant that does not depend on any of theparameters, and

E

[

〈θ(k),

(

Σ−1
h +

1

σ2
〈X(k),X(k)〉

)

θ(k)〉

]

= Tr

[(

Σ−1
h +

1

σ2
〈X(k),X(k)〉

)

Σ̃
(k)
h

]

+

〈

µ̃
(k)
h ,

(

Σ−1
h +

1

σ2
〈X(k),X(k)〉

)

µ̃
(k)
h

〉

E

[(

µT
h Σ−1

h +
1

σ2
〈y(k),X(k)〉

)

θ(k)

]

=

(

µT
h Σ−1

h +
1

σ2
〈y(k),X(k)〉

)

µ̃
(k)
hFinally, we have the log-likelihood

Q(Ω) =

K
∑

k=1

Q(k)(Ω).To obtain the M-step, we set the partial derivatives of Q w.r.t. task-dependent parameters (πh,µh,Σh)Hh=1 to zeros (note that for ∂Q/∂πh we
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onstraint ∑h πh = 1 using Lagrange multiplier method):
µh =

∑K
k=1 π̃

(k)
h µ̃

(k)
h

∑K
k=1 π̃

(k)
h

Σh =
1

∑K
k=1 π̃

(k)
h

K
∑

k=1

π̃
(k)
h

(

Σ̃
(k)
h + (µ̃

(k)
h − µh)(µ̃

(k)
h − µh)T

)

πh =
1

K

K
∑

k=1

π̃
(k)
hand set the partial derivative of Q w.r.t. task-independent parameter σ2 tozero:

σ2 =
1

∑K
k=1 nk

K
∑

k=1

[

〈y(k),y(k)〉 − 2〈y(k),X(k)〉(

H
∑

h=1

π̃
(k)
h µ̃

(k)
h )

+

H
∑

h=1

π̃
(k)
h 〈X

(k)µ̃
(k)
h ,X(k)µ̃

(k)
h 〉+

H
∑

h=1

π̃
(k)
h Tr

[

〈X(k),X(k)Σ̃
(k)
h 〉
]

]

EM for Mixture Models with Common Covarian
eMost of the derivations are the same ex
ept that the subs
ripts h on Σ̃
(k),

Σ and Σ̊ will disappear, and the parameters to be estimated are Ω =
{(πh,µh)Hh=1,Σ, σ

2}. In the E-step we 
ompute
π̃

(k)
h ∝ π̊h exp

[

−
µ̊T

h Σ̊
−1

µ̊h − 〈µ̃
(k)
h , (Σ̃

(k)
)−1µ̃

(k)
h 〉

2

]

Σ̃
(k)

=

(

Σ̊
−1

+
1

σ̊2
〈X(k),X(k)〉

)−1

µ̃
(k)
h = Σ̃

(k)
(

Σ̊
−1

µ̊h +
1

σ̊2
〈X(k),y(k)〉

)where µ̃
(k)
h and Σ̃

(k) are updated mean and 
ovarian
e of p(θ(k) | Ω̊,D(k), Z(k) =
h); in the M-step we 
ompute

µh =

∑K
k=1 π̃

(k)
h µ̃

(k)
h

∑K
k=1 π̃

(k)
h
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Σ =

1

K

K
∑

k=1

(

Σ̃
(k)

+

H
∑

h=1

π̃
(k)
h (µh − µ̃

(k)
h )(µh − µ̃

(k)
h )T

)

πh =
1

K

K
∑

k=1

π̃
(k)
hand

σ2 =
1

∑K
k=1 nk

K
∑

k=1

[

〈y(k),y(k)〉 − 2〈y(k),X(k)〉(

H
∑

h=1

π̃
(k)
h µ̃

(k)
h )

+

H
∑

h=1

π̃
(k)
h 〈X

(k)µ̃
(k)
h ,X(k)µ̃

(k)
h 〉+

H
∑

h=1

π̃
(k)
h Tr

[

〈X(k),X(k)Σ̃
(k)
〉
]

]
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Chapter 8Model Sele
tion in MTLModel sele
tion is an important step in standard supervised and unsuper-vised learning in order to 
ontrol model 
omplexity and to a
hieve goodgeneralization performan
e on future test data. For multi-task learning italso plays an important role, sin
e we not only want to generalize well on fu-ture data of a parti
ular task, but also want to a
hieve good performan
e onfuture tasks. There are two types of model 
omplexities in multi-task learn-ing: the model 
omplexity of ea
h predi
tive fun
tion f (k) and the model
omplexity of the joint modeling of all f (k)'s. Sin
e the former type of model
omplexity has been extensively studied in the literature [Hastie et al., 2001,Wasserman, 2005℄, in this 
hapter we fo
us on the investigation of the latter.8.1 Introdu
tionModel sele
tion is a 
ommon topi
 that exists in almost every appli
ation ofma
hine learning. Basi
ally speaking, it aims to �nd the model that has the�best� trade-o� between good �t (explains the data well) and 
omplexity (sothat reliable estimation 
an be obtained). As stated in [Hastie et al., 2001℄,the goal of model sele
tion is to estimate the performan
e of di�erent modelsin order to 
hoose the (approximate) best one.A well-known statisti
al 
on
ept is that as the model 
omplexity in
reases,the predi
tion error of the model typi
ally de
reases �rst and then in
reases.Figure 8.1 shows a toy example where we try to learn a one-dimensionalGaussian pro
ess model for regression with kernel K(x, y) = exp(−||x −109
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y||2/2s2). For this model, we have high model 
omplexity when s is smalland vi
e versa. The data is generated a

ording to

x ∼ Uniform(0, 10)

y ∼ Normal(f(x), 0.52) (8.1)where the true fun
tion is set to
f(x) = log(x) sin(x1.2). (8.2)From the top graph in Figure 8.1 we 
an see that as the model 
omplexityin
reases, the predi
tion error �rst goes down and then goes up. �Over�tting�often refers to the situation where model 
omplexity is more than needed(supported by the amount of availability data), and in this 
ase the modelhas low bias but high varian
e. On the other hand, �under�tting� refers tothe situation where model is not 
omplex enough to explain the data well,and in this 
ase the model has low varian
e but high bias. The bottom graphshows the true regression fun
tion and the �tted fun
tion with appropriately
hosen s
ale/bandwidth parameter s.Generally speaking there are many ways to do model sele
tion [Hastie et al.,2001, Wasserman, 2005℄, su
h as AIC, BIC, 
ross-validation, et
. Here wefo
us on the 
ross-validation approa
h be
ause it is simple to implement,easy to use and very powerful.8.2 Cross-Validation8.2.1 Cross-validation for STL

Kcv-fold1 
ross-validation is a pro
edure de�ned as the following. Given atraining set D, �rst split it into Kcv equal-sized subsets D1, . . . ,DKcv , thenestimate the extra sample loss [Hastie et al., 2001℄ on ea
h subset using theremaining Kcv − 1 subsets as the training data, and average over all thesubsets to obtain the CV s
ore. The �nal CV s
ore 
an be written as
CV(θ) =

1

n

N
∑

i=1

L(yi, f
\D(i)(xi|θ)) (8.3)1Be
ause K is reserved for the number of tasks, we use Kcv to denote the number offolds in 
ross-validation.
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CHAPTER 8. MODEL SELECTION IN MTL 112where f\D(i)(.) denotes the fun
tion that is estimated using all data in Dex
ept the subset that 
ontains the i-th data point. Note that if the pre-di
tion fun
tion f(.) is indexed by its parameter θ ∈ Θ, then the modelsele
tion problem is to �nd the best parameter that gives the lowest s
ore
θ̂ = arg minθ CV(θ).Typi
al 
hoi
es ofKcv in
lude 5, 10 and N . It is well-known that when Kcv islarge, the 
ross-validation s
ore 
an be a low bias but high varian
e estimatorof the true predi
tion loss; while on the other hand when Kcv is small, we geta high bias but low varian
e estimation. When Kcv equals N it is also knownas Leave One Out Cross-Validation (LOOCV). Although 
ross-validationmethods are extremely simple, they are theoreti
ally justi�ed. For example,it 
an be shown that the LOOCV s
ore is almost an unbiased estimation forthe true predi
tion error.Based on the the 
hoi
e of the loss L(., .) we 
an have several variants of 
ross-validation methods, and 
ommon 
hoi
es in
lude negative log-likelihood andpredi
tion error:
• 
ross-validation by likelihood : when L(y, f(x)) takes the form of nega-tive log-likelihood, e.g.

L(y, f(x)) = − log p(y|x,θ). (8.4)In order to use this method we need to have a probabilisti
 model forthe response variable y 
onditioned on x, and thus it may be sensitiveto the model assumption.
• 
ross-validation by predi
tion error : typi
ally we use

regression : L(y, f(x)) = (y − f(x))2

classification : L(y, f(x)) = I(yf(x) < 0) (8.5)where I(.) equals 1 if the argument is true and 0 otherwise. The bene�tof this method is that the error measures do not need to be dependenton the model assumptions. For example, even if the response variableis assumed to be 
orrupted with Gaussian noise, we 
an still use theabsolute error |y − f(x)| as the 
hoi
e of the loss fun
tion if it makessense for the appli
ation.



CHAPTER 8. MODEL SELECTION IN MTL 1138.2.2 Cross-validation for MTLApplying 
ross-validation to multi-task learning is straightforward. The onlydi�eren
e from its 
onventional usage is that we apply it to the task-levelinstead of data-level. Given K tasks with their asso
iated training datasets,we split the tasks into Kcv folds randomly su
h that: T1 ∪ T2 ∪ . . . ∪ TKcv =
{1, 2, . . . ,K}. Again we 
an have two 
hoi
es for the CV loss fun
tion:
• 
ross-validation by likelihood : The c-th iteration of the 
ross-validationinvolves three steps: (1) a generative model p̂\c(θ) is �tted using the(Kcv-1) folds' tasks T1, . . . , Tc−1, Tc+1, . . . , TKcv by the MTL algorithm;(2) for ea
h task in the validation fold Tc, a single-task learning algo-rithm is used to obtain point estimations θ̂k's; (3) 
ompute the negativelog-likelihood − log p̂\c(θ̂k) for k ∈ Tc. The �nal s
ore is 
omputed as:

CV =

Kcv
∑

c=1

∑

k∈Tc

− log p̂\c(θ̂k). (8.6)
• 
ross-validation by predi
tion error : For the c-th iteration of the 
ross-validation: (1) a generative model p̂\c(θ) is �tted using the (Kcv-1)folds' tasks (T1, . . . , Tc−1, Tc+1, . . . , TKcv); (2) for all tasks in the restfold (validation fold), prior p̂\c(θ) is evaluated in ea
h task, where theevaluation is 
ondu
ted with another error-based 
ross-validation atthe data-level. The �nal obje
tive 
an be summarized as:

CV =

Kcv
∑

c=1

∑

k∈Tc

CVk(p̂
\c(θ)) (8.7)where CVk(p̂

\c(θ)) is the error-based 
ross-validation s
ore (like theone de�ned in equation (8.3)) obtained by using p̂\c(θ) as the prior ofthe θ for the k-th task, and the 
ross-validation is done by splittingthe training set D(k) for the k-th task.We 
an see that in order to 
ondu
t 
ross-validation at the task level, weneed a model2 to measure the 
loseness of the tasks (often in terms of theirparameters θk's). Also the latter one is 
omputationally more expensivesin
e another inner-loop 
ross-validation needs to be done to obtain the s
ore.2Although the model need not be probabilisti
, having probabilisti
 model over θ is anatural 
hoi
e.
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ondu
t simulations to illustrate the use of the previously des
ribed 
ross-validation methods. For simpli
ity we fo
us on the mixture model presentedin Chapter 7. We use mixture models to generate the parameters θ's ofpredi
tion fun
tions, in whi
h the true number of 
lusters varies from 1 to8. For ea
h mixture model we generate 100 tasks θ1, . . . ,θ100 from a priordistribution
θk ∼ MoNormal({πh,mh,Vh}

H
h=1). (8.8)The parameters πh, mh andVh of the mixture model are randomly generatedas follows:

πh ∝ 0.3 + Uniform(0, 1)

mh ∼ Uniform

([

−6
−6

]

,

[

6
6

]) (8.9)
Vh ∼

1

19
Wishart(I, 20).Finally, for ea
h task we generate 10 training examples and 100 test examplesusing

x
(k)
i ∼ Normal(0, I)

y
(k)
i ∼ Normal(〈θk,x

(k)
i 〉, σ

2) (8.10)where we simply use σ2 = 1.0.In our experiments we 
reate 6 generative models for θk's with the numberof 
lusters taken to be H = 1, 2, 3, 4, 6, 8 respe
tively. Figure 8.2 showsone sample of the generative models we used for the 6 
ases. We repeat thesimulation pro
ess 20 times, whi
h results in 20∗6 = 120 runs of our mixturemodel algorithm.We evaluate the results using the Mean Squared Error (MSE) measure withthe following notation:
• MSE(f̂Ĥ): MSE for the mixture model where the number of 
lusters
Ĥ is 
hosen by 
ross-validation;

• MSE(f̂H): MSE for the mixture model where the true number of 
lus-ters H is given;
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Figure 8.2: Example densities of generative models for θk's; H equals1,2,3,4,6,8 from top to bottom, left to right



CHAPTER 8. MODEL SELECTION IN MTL 116H MSE(f̂Ĥ)/MSE(f̂H) MSE(f̂Ĥ)/MSE(f̂p(θ)) MSE(f̂STL)/MSE(f̂p(θ))1 1.0011 ± 0.0033 1.0028 ± 0.0029 1.0400 ± 0.02532 1.0000 ± 0.0064 1.0099 ± 0.0105 1.0357 ± 0.02153 0.9984 ± 0.0105 1.0084 ± 0.0079 1.0327 ± 0.01334 1.0025 ± 0.0080 1.0120 ± 0.0095 1.0321 ± 0.01886 1.0007 ± 0.0054 1.0186 ± 0.0155 1.0347 ± 0.01328 0.9984 ± 0.0067 1.0128 ± 0.0136 1.0255 ± 0.0191Table 8.1: Results for 
ross-validation by likelihoodH MSE(f̂Ĥ)/MSE(f̂H) MSE(f̂Ĥ)/MSE(f̂p(θ)) MSE(f̂STL)/MSE(f̂p(θ))1 1.0000 ± 0.0019 1.0016 ± 0.0055 1.0474 ± 0.02752 0.9993 ± 0.0081 1.0041 ± 0.0091 1.0408 ± 0.02363 0.9993 ± 0.0086 1.0091 ± 0.0088 1.0394 ± 0.02034 0.9985 ± 0.0101 1.0102 ± 0.0146 1.0359 ± 0.01696 1.0005 ± 0.0054 1.0113 ± 0.0100 1.0284 ± 0.01588 1.0050 ± 0.0144 1.0190 ± 0.0209 1.0256 ± 0.0259Table 8.2: Results for 
ross-validation by predi
tion error
• MSE(f̂p(θ)): MSE for the mixture model where the true prior p(θ)(whi
h is a mixture of normal) is given3;
• MSE(f̂STL): MSE obtained by using single-task learning algorithms;We are interested in several 
omparisons from the experiments. First of all,we would like to know how good is our �tted model 
ompared to the oneobtained by knowing H, the true number of 
lusters. Se
ond, we want tomeasure the relative goodness of the �tted model with respe
t to the �goldenmodel� where we are given the true prior distribution of θk's. Finally, wewant to see how good is the model obtained by using single-task learningalgorithm whi
h does not 
onsider the relations among tasks.Table 8.1 and 8.2 show the results for the likelihood-based and error-based
ross-validation, respe
tively. There are several observations. First, themodel f̂Ĥ (with the number of 
lusters identi�ed by 
ross-validation) is al-most identi
al to the one �tted by given the true number of 
lusters. Fur-thermore, it is slightly inferior to the �golden model� whi
h is given the3This is the upper bound of the performan
e we 
an possibly a
hieve.
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ond, the performan
e obtained by single-task learning(e.g. without learning a joint prior over θk's) 
an be signi�
antly worse, asshown in the last 
olumn of both tables. Finally, we observed that boththe likelihood-based CV and error-based CV methods work well and theyperform very similarly.Also note that if those 
lusters are well-separated then they 
an be easilyidenti�ed by our algorithm; otherwise (e.g. when 
lusters are overlappingwith ea
h other) it is very di�
ult to identify the 
orre
t number of 
lusters.In either 
ase, however, the identi�ed model works well in terms of predi
tivepower.8.4 SummaryIn our experiments we show the appli
ation of 
ross-validation te
hniques tomulti-task learning, and results for two methods are 
omparable. Althoughwe only illustrated this ability using the learning of number of 
omponentsin mixture models, this should not be interpreted as the only appli
ation ofthe idea. We 
ould, as another example, sele
t the appropriate multi-tasklearning s
enario.The appli
ation of 
ross-validation te
hniques to the model sele
tion prob-lem in multi-task learning is pro
edurely straight-forward yet 
on
eptuallystimulating. In order to 
ondu
t 
ross-validation for multi-task learning (e.g.a
ross tasks), it is essentially for the MTL method to have the 
apability of�passing� or �transferring� knowledge from old tasks to new tasks. All MTLmethods proposed in this thesis 
an pass knowledge as a prior and pass itinto new tasks. The error-based 
ross-validation is 
omputationally moreexpensive sin
e an inner loop CV is needed to evaluate the prior learnedfrom other tasks.
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Chapter 9Unsupervised Multi-TaskLearningIn previous 
hapters we have fo
used on the probabilisti
 framework in equa-tion (3.2) for multi-task learning in a supervised learning setting, e.g. with
lassi�
ation and regression tasks. In this 
hapter we extend the frameworkto enable its use in unsupervised learning, and apply it to novelty dete
-tion [Allan et al., 2000℄ as a signi�
ant and 
on
rete example. We alsoshow the theoreti
al 
onne
tions between this new framework and other un-supervised learning methods, in
luding Latent Diri
hlet Allo
ation (LDA)[Blei et al., 2003b℄ and Correlated Topi
 Models (CTM) [Blei and La�erty,2005℄ proposed in information retrieval, by re
asting the latter models froma multi-task learning point of view.9.1 Extending the Framework from Supervised toUnsupervisedRe
all that our probabilisti
 framework has been de�ned with K supervisedlearning tasks, ea
h of whi
h 
orresponds to a fun
tion f(x|θk) = θT
k x, whi
hthe prior over θk de�ned as

θk = Λsk + ek

sk ∼ p(.|Φ) (9.1)
ek ∼ Normal(0,Ψ)119
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tor of task-spe
i�
 
oe�
ients, the 
olumns of matrix
Λ = (β1, . . . ,βH) ∈ R

F×H are the shared 
omponents (e.g., the hidden�topi
s� or �fa
tors�) among tasks; ve
tor sk 
onsists of the mixture weights ofthe 
omponents in the k-th task, generated at random from some distribution
p(sk|Ψ) (open to further spe
i�
ation as a prior); and ek is the non-shared
omponent (random noise) in the k-th task. Given K training sets

D(k) = {(x
(k)
1 , y

(k)
1 ), . . . , (x(k)

nk
, y(k)

nk
)}, k = 1, . . . ,K, (9.2)the learning problem is to �t the model parameters that best explain the dataunder 
ertain Bayesian priors over the parameters. An alternative way tolook at the problem is that we have an in�nite spa
e of predi
tion fun
tions,and we want to �nd the K optimal fun
tions simultaneously, one per task.By introdu
ing the shared 
omponents as parameters of the models (i.e., thefun
tions), we aim to learn more e�e
tively from limited training exampleswhen the tasks are not totally independent from ea
h other.To make this framework suitable for unsupervised learning, we introdu
esome di�erent settings. First, the training data are unlabeled, that is,

D(k) = {x
(k)
1 , . . . , ,x(k)

nk
}. (9.3)Se
ond, our obje
tive here is to optimize the generative model g(D(k)|θk)for ea
h dataset instead of the predi
tion fun
tion f(x(k)|θk), although both
an be done using the likelihood prin
iple.Having the tasks re-de�ned, the remaining equation (3.2) in our frameworkare the same for both supervised learning and unsupervised learning. In thelatter, θk is a random variable (ve
tor), inheriting the randomness from skand ek, respe
tively, and spe
i�es the probability distribution for generating

D(k). The two-step pro
ess, i.e. �rst generating the θk (with some Bayesianpriors over sk and ek) and se
ond generating the data D(k) using parame-ter θk, 
an be viewed as a hierar
hi
al generative model for the data sets
D(1), . . . ,D(K). By modeling all the tasks together, more reliable estimationof the model parameters using limited training data is possible if the tasksare 
losely related to ea
h other, or, when the estimated density fun
tions
g(D(k)|θk) for k = 1, . . . ,K have 
ertain dependen
ies among ea
h other.Despite the di�erent settings, it should be point out that both supervised andunsupervised models 
an be put together into a 
omprehensive frameworkfor multi-task learning. That is, the learning problem is to sear
h through
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tion spa
e for the optimal one per task. The fun
tion spa
e 
onsistsof predi
tion fun
tions (predi
ting output variables given input variables) inthe supervised settings, and of density fun
tions (generating input variables)in the unsupervised settings.In the remaining se
tions we show how to apply the 
omprehensive frame-work to 
on
rete problems in unsupervised learning, and how to establishtheoreti
al 
onne
tions from existing unsupervised methods to multi-tasklearning. Be
ause all the examples are used in modeling do
uments, we will
hange our notation for 
onvenien
e in the rest of this 
hapter:1. We use x = (n
(x)
1 , n

(x)
2 , . . . , n

(x)
V ) to represent a do
ument ve
tor 1where ea
h element n(x)

v is the within-do
ument term frequen
y of the
v-th word, and V is the total size of the vo
abulary.2. Every single do
ument xi is a task2 (i.e., xi is the training dataset forthe i-th task, D(i)), and thus we have i = 1, . . . , N tasks instead of Ktasks before.3. For ea
h do
ument, we try to estimate the density g(xi|θi), and we use
T instead of H to denote the number of hidden 
omponents (topi
s).It is interesting to point out that under this setting, single-task learning doesnot make mu
h sense: it just memorizes the bag-of-words representation inevery do
ument!9.2 Multi-Task Learning and Unsupervised Clus-teringLatent Diri
hlet Allo
ation (LDA) [Blei et al., 2003b℄ and Correlated Topi
Models (CTM) [Blei and La�erty, 2005℄ are two well-known approa
hes tounsupervised 
lustering of do
uments. By proje
ting a do
ument onto a setof �topi
s�, do
uments 
an be better represented, interpreted and visualized1This is the so-
alled �bag-of-words� representation whi
h simply ignores the wordo

urring order in the do
ument.2This may seem a little bit weird. However, re
all that if we want to model a do
ument

x using Multinomial distribution, then ea
h word xt 
an be thought as a �data point� forthe task. Thus we are still using a lot of data points to estimate ea
h task here.
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s rather than the original bag-of-words representa-tion. Next we show that the above two topi
 models 
an be seen as spe
ial
ases of equation (9.1) for multi-task learning3.Re
all that in LDA, a do
ument x is generated in the following steps:1. A topi
 distribution variable s ∈ R
T×1 is �rst generated as s ∼ Dirichlet(α)(that is, s belongs to the (T − 1) dimensional simplex);2. For ea
h word w in the do
ument4:(a) Choose a topi
 z ∼ Multinomial(s);(b) Choose a word w ∼ Multinomial(βz), where βz ∈ R

F×1 is themultinomial parameter ve
tor for topi
 z.It is important to realize that, by 
ombining steps 2(a) and 2(b), we 
anintegrate out the latent variable z whi
h represents the topi
:
p(w) =

T
∑

z=1

p(z)p(w|z)

=

T
∑

z=1

Multinomial(z|s)Multinomial(w|βz)

=

T
∑

z=1

szβz(w)

= θ(w) (9.4)where T is the total number of topi
s, βz(w) is the element of βz that
orresponds to word w, and θ =
∑T

z=1 szβz ∈ R
F×1. That is, by integratingout z, we have w ∼ Multinomial(θ)5. Thus, the overall generation pro
ess
an be summarized using the following su

in
t form

θi = Λsi

si ∼ Dirichlet(α) (9.5)3Note that it has been previously pointed out in [Buntine, 2002℄ that LDA 
an also beseen as multinomial PCA.4We ignore the do
ument length here as it does not a�e
t the LDA model.5Basi
ally it results from the fa
t that a mixture of multinomial is still a multinomial,if we limit our dis
ussion to the spe
ial 
ase of multinomial distributions Multinomial(N =
1, p1, . . . , pJ) where only one ball is sele
ted out of a bag of J 
olored balls with propor-tional probabilities p1, . . . , pJ .



CHAPTER 9. UNSUPERVISED MULTI-TASK LEARNING 123where θi is the multinomial parameter for the i-th do
ument, si lies in the
(T −1) dimensional simplex and denotes the topi
 proportional distribution,and 
olumns of Λ = (β1, . . . ,βT ) ∈ R

F×T are the multinomial parametersof those topi
s.Comparing these formulae to equation (9.1), it is easy to see that our multi-task learning framework resembles the LDA formula ex
ept that now ea
h
olumn of Λ is restri
ted to a high-dimensional simplex in order to be avalid model. That is, it has to satisfy Λt,f ≥ 0 and ∑F
f=1 Λt,f = 1 for

∀t = 1, . . . , T . In other words, LDA 
an be thought as a spe
ial appli
ationof the multi-task learning framework to unsupervised 
lustering.Correlated Topi
 Models (CTM) is an alternative approa
h to unsupervised
lustering. It 
an be viewed as a modi�
ation of LDA so that the 
orrelationsamong topi
s 
an be expli
itly modeled. The model 
an be written in asu

in
t form as
θi = Λs̃i

si ∼ LogNormal(µ,Σ) (9.6)where the ve
tor s̃i is a re-s
aled version of si su
h that ∑H
h=1 s̃i,h = 1,a ne
essary 
ondition for ensuring θk to be a valid multinomial parameter(belongs to a (F − 1) dimensional simplex).Comparing the si formula in CTM with the one in LDA: By using the

LogNormal distribution [Gelman et al., 2003℄ 6 instead of the Dirichlet dis-tribution, 
orrelations among topi
 o

urren
e (e.g., elements of si) 
an been
oded in the 
ovarian
e parameter Σ and thus the topi
 models estimatedare generally 
orrelated. As a result, the CTM model is more �exible thanthe LDA model in the sense it users T + T (T + 1)/2 number of parame-ters to model si while in LDA only T parameters are used to model si. Inother words, CTM 
an model both the �rst-order (mean) and se
ond-orderstatisti
s (
ovarian
e) of si while LDA is only 
apable of modeling the �rst-order statisti
s. Nevertheless, 
omparing the CTM formula to equation (9.1),again our multi-task learning framework resembles the CTM model, ex
eptthe assumed prior distribution si is di�erent from the prior used in LDA.The above 
onne
tion between those topi
 models and models for multi-task learning is simple, yet interesting. Ideas and insights from one �eld
an motivate resear
h problems in the other. For example, it is known in6Brie�y speaking, if a random variable X has a Normal distribution, then exp(X) hasa LogNormal distribution.
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i�
 
omponents ek's are important in orderto have good performan
e as the number of training examples grows. Indo
ument modeling although ea
h do
ument is a task (and thus has �xednumber of words), adding a task-spe
i�
 
omponent might be helpful inmodeling topi
s as well. Sin
e in the 
ontext of topi
 modeling ea
h task
orresponds to a single do
ument, task-spe
i�
 
omponent 
ould be learned,say, by limiting its deviation from a general English multinomial distribution[Miller et al., 1999, Zhang et al., 2004℄.As a summarization statement, the 
onne
tions between LDA, CTM andmodels for multi-task learning have not been analyzed so far, to our knowl-edge. Nevertheless, these 
onne
tions are not surprising to see, but rather
on
eptually natural. From a higher-level point of view, the 
ommon goalof LDA, CTM and multi-task learning is to model fun
tions f (k) in somegeneri
 metri
 spa
e H, either in a supervised or unsupervised way, and ourframework supports the sear
h for solutions under di�erent s
enarios.9.3 Unsupervised Learning of Novelty Dete
tion7In this se
tion we illustrate how to use a probabilisti
 model for noveltydete
tion. The task of online do
ument 
lustering is to group do
uments into
lusters as long as they arrive in a temporal sequen
e. Generally speaking,it is di�
ult for several reasons: First, it is unsupervised learning and thelearning has to be done in an online fashion, whi
h imposes 
onstraints onboth strategy and e�
ien
y. Se
ond, similar to other learning problems intext, we have to deal with a high-dimensional spa
e with tens of thousandsof features. And �nally, the number of 
lusters 
an be as large as thousandsin newswire data. The obje
tive of novelty dete
tion is to identify the novelobje
ts from a sequen
e of data, where �novel� is usually de�ned as dissimilarto previous seen instan
es. Here we are interested in novelty dete
tion in thetext domain, where we want to identify the earliest report of every newevent in a sequen
e of news stories. The most obvious appli
ation of noveltydete
tion is that, by dete
ting novel events, systems 
an automati
ally alertpeople when new events happen, for example. Applying online do
ument
lustering to the novelty dete
tion task is straightforward by assigning the�rst seed of every 
luster as novel and all its remaining ones as non-novel.Our probabilisti
 model 
an also be seen as a very spe
ial 
ase of equa-tion (9.1). To be more spe
i�
, we use non-parametri
 Diri
hlet pro
ess7This part is primarily based on our previous paper [Zhang et al., 2004℄.
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lusters (whi
h is modeled by multi-nomial distribution with parameter θ), and use a prior of general Englishlanguage model as the base distribution of DP to handle the generation ofnovel 
lusters. Furthermore, 
luster un
ertainty is modeled with a BayesianDiri
hlet-multinomial distribution. The Bayesian inferen
e 
an be easily 
ar-ried out due to 
onjuga
y, and model hyper-parameters are estimated usinga histori
al dataset by the empiri
al Bayes method. The probabilisti
 modelis applied to the novelty dete
tion task in Topi
 Dete
tion and Tra
king(TDT), whi
h has been regarded as the hardest task in TDT [Allan et al.,2000℄, and 
ompared with existing approa
hes in the literature.9.3.1 A Probabilisti
 Model for Online Do
ument ClusteringBelow we des
ribe the generative probabilisti
 model for online do
ument
lustering.Diri
hlet-Multinomial ModelThe multinomial distribution has been the most frequently used languagemodel for probabilisti
 representation of do
uments in information retrieval.Let x = (n
(x)
1 , . . . n

(x)
V ) be the ve
tor representation of a do
ument and θ =

(θ1, . . . , θV ) be the model parameter of a do
ument 
luster, a do
ument x isgenerated with the following probability:
p(x|θ) =

(

∑V
v=1 n

(x)
v

)

!

∏V
v=1 n

(x)
v !

V
∏

v=1

θn
(x)
v

v . (9.7)From the formula we 
an see the so-
alled naive assumption: words in ado
ument are assumed to be independent of ea
h other8. Given a 
olle
tionof do
uments generated from the same model, the parameter θ 
an be es-timated with Maximum Likelihood Estimation. In a Bayesian approa
h wewould like to put a Diri
hlet prior over the parameter (θ ∼ Dirichlet(α)) su
hthat the probability of generating a do
ument is obtained by integrating overthe parameter spa
e:
p(x) =

∫

p(θ|α)p(x|θ)dθ (9.8)This integration 
an be easily written down due to the 
onjuga
y betweenDiri
hlet and multinomial distributions. The key di�eren
e between the8Stri
tly speaking, words are weakly dependent given N , the do
ument length, wherethe weak dependen
y 
omes from the fa
t that N =
P

v nv(x).
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h and the MLE is that the former uses a distribution tomodel the un
ertainty of the parameter θ, while the latter gives only a pointestimation.Online Do
ument Clustering with Diri
hlet Pro
ess Mixture ModelIn our system do
uments are grouped into 
lusters in an online fashion. Ea
h
luster is modeled with a multinomial distribution whose parameter θ followsa Diri
hlet prior. First, a 
luster is 
hosen based on a Diri
hlet pro
ess prior(
an be either a new or existing 
luster), and then a do
ument is drawn fromthat 
luster. We use Diri
hlet Pro
ess (DP) to model the prior distributionof θ's, and our hierar
hi
al model is as follows:
θi ∼ G

G ∼ DP(λ,G0) (9.9)
xi|ci ∼ Multinomial(.|θci)where ci is the 
luster indi
ator variable, θi is the multinomial parameter forea
h do
ument, and θ(ci) is the unique θ for the 
luster ci. G is a randomdistribution generated from the Diri
hlet pro
ess DP(λ,G0) [Ferguson, 1973℄,whi
h has a pre
ision parameter λ and a base distribution G0. Here our basedistribution G0 is a Diri
hlet distribution Dirichlet(γπ1, γπ2, . . . , γπV ) with

∑V
t=1 πt = 1, whi
h re�e
ts our expe
ted knowledge about G. Intuitively,our G0 distribution 
an be treated as the prior over general English wordfrequen
ies, whi
h has been used in information retrieval literature [Zaragozaet al., 2003℄ to model general English do
uments.The exa
t 
luster-do
ument generation pro
ess 
an be des
ribed as follows:1. Let xi be the 
urrent do
ument under pro
essing (the i-th do
umentin the input sequen
e), and C1,C2, . . . ,Cm are already generated 
lus-ters.2. Draw a 
luster ci based on the following Diri
hlet pro
ess prior [Fer-guson, 1973℄:

p(ci = Cj) =
|Cj|

λ+
∑m

j=1 |Cj|
(j = 1, 2, . . . ,m)

p(ci = Cm+1) =
λ

λ+
∑m

j=1 |Cj|
(9.10)where |Cj| stands for the 
ardinality of 
luster j with∑m

j=1 |Cj| = i−1,and with 
ertain probability a new 
luster Cm+1 will be generated.
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ument xi from the 
luster ci.Model UpdatingOur models for ea
h 
luster need to be updated based on in
oming do
u-ments. We 
an write down the probability that the 
urrent do
ument xi isgenerated by any 
luster as
p(xi|Cj) =

∫

p(θ(Cj)|Cj)p(xi|θ
(Cj))dθ(Cj) (j = 1, 2, . . . ,m,m+ 1) (9.11)where p(θ(Cj)|Cj) is the posterior distribution of parameters of the j-th 
lus-ter whose update is based on equation (9.14) and we use p(θ(Cm+1)|Cm+1) =

p(θ(Cm+1)) to represent the prior distribution of the parameters of the new
luster for 
onvenien
e. Although the dimensionality of θ is high (V ≈
105 in our 
ase), 
losed-form solution 
an be obtained under our Diri
hlet-multinomial assumption. On
e the 
onditional probabilities p(xi|Cj) are
omputed, the probabilities p(Cj|xi) 
an be easily 
al
ulated using Bayesrule:

p(Cj|xi) =
p(Cj)p(xi|Cj)

∑m+1
j′=1 p(Cj′)p(xi|Cj′)

(9.12)where the prior probability of ea
h 
luster is 
al
ulated using equation (9.10).Now there are several 
hoi
es we 
an 
onsider on how to update the 
lustermodels. The �rst 
hoi
e, whi
h is 
orre
t but obviously intra
table, is tofork m + 1 
hildren of the 
urrent system where the j-th 
hild is updatedwith do
ument xi assigned to 
luster j, while the �nal system is a proba-bilisti
 
ombination of those 
hildren with the 
orresponding probabilities
p(Cj|xi). The se
ond 
hoi
e is to make a hard de
ision by assigning the
urrent do
ument xi to the 
luster with the maximum probability:

ci = arg max
Cj

p(Cj |xi) =
p(Cj)p(xi|Cj)

∑m+1
j′=1 p(Cj′)p(xi|Cj′)

. (9.13)The third 
hoi
e is to use a soft probabilisti
 updating, whi
h is similarin spirit to the Assumed Density Filtering (ADF) [Minka, 2001℄ in the lit-erature. That is, ea
h 
luster is updated by exponentiating the likelihoodfun
tion with probabilities:
p(θ(Cj)|xi,Cj) ∝

(

p(xi|θ
(Cj))

)p(Cj |xi)
p(θ(Cj)|Cj) (9.14)
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ially deal with the new 
luster sin
e we 
annota�ord both time-wise and spa
e-wise to generate a new 
luster for ea
hin
oming do
ument. Instead, we will update all existing 
lusters as above,and new 
luster will be generated only if ci = Cm+1. We will use HD and PD(hard de
ision and probabilisti
 de
ision) to denote the last two 
andidatesin our experiments.9.3.2 Learning Model ParametersIn the above probabilisti
 model there are still several hyper-parameters notspe
i�ed, namely the π and γ in the base distribution
G0 = Dirichlet(γπ1, γπ2, . . . , γπV ), (9.15)and the pre
ision parameter λ in the DP(λ,G0). Sin
e we 
an obtain apartially labeled histori
al dataset9, we now dis
uss how to estimate thoseparameters respe
tively. We will mainly use the empiri
al Bayes method[Gelman et al., 2003℄ to estimate those parameters instead of taking a fullBayesian approa
h, sin
e it is easier to 
ompute and generally reliable whenthe number of data points is relatively large 
ompared to the number ofparameters. Be
ause the θi's are IID. from the random distribution G, byintegrating out the G we get

θi|θ1,θ2, . . . ,θi−1 ∼
λ

λ+ i− 1
G0 +

1

λ+ i− 1

∑

j<i

δθj
(9.16)where the distribution is a mixture of 
ontinuous and dis
rete distributions,and the δθ denotes the probability measure giving point mass to θ.Now suppose we have a histori
al dataset H whi
h 
ontains K labeled 
lus-ters Hj(j = 1, 2, . . . ,K), with the k-th 
luster Hk = {xk,1,xk,2, . . . ,xk,mk

}having mk do
uments. The joint probability of θ's of all do
uments 
an beobtained as
p(θ1,θ2, . . . ,θ|H|) =

|H|
∏

i=1





λ

λ+ i− 1
G0 +

1

λ+ i− 1

∑

j<i

δθj



 (9.17)9Although do
uments are grouped into 
lusters in the histori
al dataset,we 
annotmake dire
tly use of those labels due to the fa
t that 
lusters in the test dataset aredi�erent from those in the histori
al dataset.



CHAPTER 9. UNSUPERVISED MULTI-TASK LEARNING 129where |H| is the total number of do
uments. By integrating over the un-known parameter θ's we 
an get
p(H) =

∫





|H|
∏

i=1

p(xi|θi)



 p(θ1,θ2, . . . ,θ|H|)dθ1dθ2 . . . dθ|H|

=

|H|
∏

i=1





∫

p(xi|θi)





λ

λ+ i− 1
G0 +

1

λ+ i− 1

∑

j<i

δθj



 dθi



 (9.18)Empiri
al Bayes method 
an be applied to equation (9.18) to estimate themodel parameters by maximization10. In the following we dis
uss how toestimate parameters individually in detail.Estimating πt'sOur hyper-parameter π ve
tor 
ontains V number of parameters for the basedistribution G0, whi
h 
an be treated as the expe
ted distribution of G �the prior of the 
luster parameter θ's. Although π 
ontains V ≈ 105 numberof a
tual parameters in our 
ase, we 
an still use the empiri
al Bayes to doa reliable point estimation sin
e the amount of data we have to representgeneral English is large (in our histori
al dataset there are around 106 do
u-ments, around 1.8×108 English words in total) and highly informative about
π. We use the smoothed estimation

π ∝ (1 + n
(H)
1 , 1 + n

(H)
2 , . . . , 1 + n

(H)
V ) (9.19)where n(H)

t =
∑

x∈H n
(x)
t is the total number of times that term t happenedin the 
olle
tion H, and ∑V

t=1 πt should be normalized to 1. Furthermore,the pseudo-
ount one is added to alleviate the out-of-vo
abulary problem (amore systemati
 way is to assign a Diri
hlet prior).Estimating γThough γ is just a s
alar parameter, it has the e�e
t of 
ontrolling theun
ertainty of the prior knowledge about how 
lusters are related to thegeneral English model with the parameter π. We 
an see that γ 
ontrolshow far ea
h new 
luster 
an deviate from the general English model11. It10Sin
e only a subset of do
uments are labeled in the histori
al dataset H , the maxi-mization is only taken over the union of the labeled 
lusters.11Re
all that the mean and varian
e of a Diri
hlet distribution (θ1, θ2, . . . , θV ) ∼

Dirichlet(γπ1, γπ2, . . . , γπV ) are: R[θv] = πv and V[θv] = πv(1−πv)
(γ+1)

.
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an be estimated as follows:
γ̂ = arg max

γ

K
∏

k=1

p(Hk|γ)

= arg max
γ

K
∏

k=1

∫

p(Hk|θ
(k))p(θ(k)|γ)dθ(k) (9.20)By setting the derivative to zero, γ̂ 
an be numeri
ally 
omputed by solvingthe following equation:

0 = KΨ(γ)−K

V
∑

v=1

Ψ(γπv)πv

+

K
∑

k=1

V
∑

v=1

Ψ(γπv + n(Hk)
v )πv −

K
∑

k=1

Ψ(γ +

V
∑

v=1

n(Hk)
v ) (9.21)where the digamma fun
tion Ψ(x) is de�ned as Ψ(x) ≡ d

dx ln Γ(x). Alter-natively we 
an 
hoose γ by evaluating over the histori
al dataset. This isappli
able (though 
omputationally expensive) sin
e it is only a s
alar pa-rameter and we 
an pre-
ompute its possible range based on the result ofequation (9.20).Estimating λThe pre
ision parameter λ of the DP is also very important for the model,whi
h 
ontrols how far the random distribution G 
an deviate from thebaseline model G0. In our 
ase, it is also the prior belief about how qui
klynew 
lusters will be generated in the sequen
e. Similarly we 
an use equation(9.20) to estimate λ, sin
e items related to λ 
an be fa
tored out as
|H|
∏

i=1

λyi

λ+ i− 1
. (9.22)Suppose we have a labeled subset HL = {(x1, y1), (x2, y2), . . . , (xM , yM )} oftraining data, where yi is 1 if xi is a novel do
ument or 0 otherwise. Herewe des
ribe two possible 
hoi
es:1. The simplest way is to assume that λ is a �xed 
onstant during thepro
ess, and it 
an be 
omputed as

λ̂ = arg max
λ

∏

i∈HL

λyi

λ+ i− 1
, (9.23)
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es of labeled do
uments in thewhole sequen
e.2. The assumption that λ is �xed may be too restri
tive in reality, espe-
ially 
onsidering the fa
t that it re�e
ts the generation rate of new
lusters. More generally, we 
an assume that λ is some fun
tion ofvariable i12. In parti
ular, we assume λ = a/i + b + ci where a, band c are non-negative numbers. This formulation is a generalizationof the above 
ase, where the i−1 term allows a mu
h faster de
reaseat the beginning, and c is the asymptoti
 rate of events happening as
i → ∞. Again the parameters a, b and c are estimated by MLE overthe training dataset:

â, b̂, ĉ = arg max
a,b,c>0

∏

i∈HL

(a/i+ b+ ci)yi

a/i+ b+ ci
. (9.24)9.3.3 ExperimentsWe apply the above online 
lustering model to the novelty dete
tion task inTopi
 Dete
tion and Tra
king (TDT). TDT has been a resear
h 
ommunitysin
e its 1997 pilot study, whi
h is a resear
h initiative that aims at te
h-niques to automati
ally pro
ess news do
uments in terms of events. Thereare several tasks de�ned in TDT, and among them Novelty Dete
tion (a.k.a.First Story Dete
tion or New Event Dete
tion) has been regarded as thehardest task in this area [Allan et al., 2000℄. The obje
tive of the noveltydete
tion task is to dete
t the earliest report for ea
h event as soon as thatreport arrives in the temporal sequen
e of news stories.DatasetWe use the TDT2 
orpus as our histori
al dataset for estimating parameters,and use the TDT3 
orpus to evaluate our model13. Noti
e that we have asubset of do
uments in the histori
al dataset (TDT2) for whi
h events labelsare given. The TDT2 
orpus used for novelty dete
tion task 
onsists of62,962 do
uments, among them 8,401 do
uments are labeled in 96 
lusters.Stopwords are removed and words are stemmed, and after that there areon average 180 words per do
ument. The total number of features (uniquewords) is around 100,000.12It is not a DP anymore after this adaptation.13Stri
tly speaking we only used the subsets of TDT2 and TDT3 that is designated forthe novelty dete
tion task.



CHAPTER 9. UNSUPERVISED MULTI-TASK LEARNING 132Evaluation MeasureIn our experiments we use the standard TDT evaluation measure [Yang et al.,2002℄ to evaluate our results. The performan
e is 
hara
terized in terms ofthe probability of two types of errors: Miss and False Alarm (FA) (PMissand PFA). These two error probabilities are then 
ombined into a singledete
tion 
ost, Cdet, by assigning 
osts to Miss and FA errors:
Cdet = CMiss · PMiss · Ptarget + CFA · PFA · Pnon−target (9.25)where1. CMiss and CFA are the 
osts of a miss and a false alarm, respe
tively,2. PMiss and PFA are the 
onditional probabilities of a miss and a falsealarm, respe
tively and,3. Ptarget and Pnon−target is the priori target probabilities su
h that Ptarget =

1− Pnon−target.It is the following normalized 
ost that is a
tually used in evaluating variousTDT systems:
(Cdet)norm =

Cdet

min(CMiss · Ptarget, CFA · Pnon−target)
(9.26)where the denominator is the minimum of two trivial systems. Besides,two types of evaluations are used in TDT, namely ma
ro-averaged (topi
-weighted) and mi
ro-averaged (story-weighted) evaluations. In ma
ro-averagedevaluation, the 
ost is 
omputed for every event, and then the average istaken. In mi
ro-averaged evaluation the 
ost is averaged over all do
uments'de
isions generated by the system, thus large event will have bigger impa
ton the overall performan
e. Note that ma
ro-averaged evaluation is used asthe primary evaluation measure in TDT.In addition to the binary de
ision �novel� or �non-novel�, ea
h system isrequired to generated a 
on�den
e s
ore for ea
h test do
ument. The higherthe s
ore is, the more likely the do
ument is novel. Here we mainly usethe minimum 
ost to evaluate systems by varying the threshold, whi
h isindependent of the threshold setting.Methods
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tive method is the �GAC-INCR� 
lustering method[Yang et al., 1998, 1999℄ with 
osine similarity metri
 and TFIDF termweighting, whi
h has remained to be the top performing system in TDT2002 & 2003 o�
ial evaluations. For this method the novelty 
on�den
es
ore we used is one minus the similarity s
ore between the 
urrent 
luster
xi and its nearest neighbor 
luster:

s(xi) = 1.0−max
j<i

sim(ci, cj) (9.27)where ci and cj are the 
lusters that xi and xj are assigned to, respe
-tively,and the similarity is taken to be the 
osine similarity between two
luster ve
tors, where the lt
 TFIDF term weighting s
heme [Salton andBu
kley, 1988℄ is used to s
ale ea
h dimension of the ve
tor. Our se
ondmethod is to train a logisti
 regression model whi
h 
ombines multiple fea-tures generated by the GAC-INCR method. Those features not only in
ludethe similarity s
ore used by the �rst method, but also in
lude the size of itsnearest 
luster, the time di�eren
e between the 
urrent 
luster and the near-est 
luster, et
. We 
all this method �Logisti
 Regression�, where we use theposterior probability p(novelty|xi) as the 
on�den
e s
ore. Finally, for ouronline 
lustering algorithm we 
hoose the quantity s(xi) = log p(Cnew|xi) asthe output 
on�den
e s
ore.Experimental ResultsOur results for three methods are listed in Table 9.1, where both ma
ro-averaged and mi
ro-averaged minimum normalized 
osts are reported. Fur-thermore, we also report the Miss and FA results to show the trade-o�(re
all that they are the two 
omponents of the 
ost in equation 9.25).The GAC-INCR method performs very well, so does the logisti
 regressionmethod. For our DP results, we observed that using the optimized γ̂ willget results (not listed in the table) that are around 10% worse than usingthe γ obtained through validation, whi
h might be due to the �atness ofthe optimal fun
tion value as well as the sample bias of the 
lusters in thehistori
al dataset14. Another observation is that the probabilisti
 de
isiondoes not a
tually improve the hard de
ision performan
e, espe
ially for the
λvar option (remember that in the 
ase of λfix option we learn λ̂ from thedata; in the 
ase of λvar-option we a
tually assume it to be a fun
tion ofdo
ument index λ = a/i+ b+ ci and learn the fun
tion parameters â, b̂ and
ĉ). Generally speaking, our DP methods are 
omparable to the other twomethods, espe
ially in terms of topi
-weighted measure.14It is known that the 
luster labeling pro
ess of LDC is biased toward topi
s that are
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-weighted Cost(Miss, FA) Story-weighted Cost(Miss, FA)GAC-INCR 0.6945 (0.5614, 0.0272) 0.7090 (0.5614, 0.0301)Logisti
 Regression 0.7027 (0.5732, 0.0264) 0.6911 (0.5732, 0.0241)DP with λfix, HD 0.7054 (0.4737, 0.0473) 0.7744 (0.5965, 0.0363)DP with λvar, HD 0.6901 (0.5789, 0.0227) 0.7541 (0.5789, 0.0358)DP with λfix, PD 0.7054 (0.4737, 0.0473) 0.7744 (0.5965, 0.0363)DP with λvar, PD 0.9025 (0.8772, 0.0052) 0.9034 (0.8772, 0.0053)Table 9.1: Results for Novelty Dete
tion on TDT3 Corpus9.4 SummaryIn this 
hapter we presented an extended version of our multi-task learn-ing framework, to in
lude both supervised and unsupervised settings. As a
on
rete and signi�
ant example, we show how to apply the framework tothe novelty dete
tion problem, with the evaluation results on a ben
hmark
orpus that are 
omparable to the results of the best system in novelty de-te
tion. We also establish theoreti
al 
onne
tions between our frameworkand other well-known Bayesian approa
hes to unsupervised learning of topi
models su
h as the Latent Diri
hlet Allo
ation and Correlated Topi
 Models.Related work in unsupervised learning are the follows. Zaragoza et al.[Zaragoza et al., 2003℄ applied a Bayesian Diri
hlet-multinomial model tothe ad ho
 information retrieval task and showed that it is 
omparable toother smoothed language models. Blei et al. [Blei et al., 2003a℄ used Chi-nese Restaurant Pro
esses to model topi
 hierar
hies for a 
olle
tion of do
-uments.Another interesting and related resear
h topi
 is semi-supervised learningwhere some of the response variable y's are given and some of them aremissing. Various approa
hes have been proposed, su
h as [Zhu et al., 2003,Zhou et al., 2005, Zhang and Ando, 2005℄. Viewed from the multi-task learn-ing perspe
tive, it is possible to extend our multi-task learning frameworkfurther to model parameters θunlabeled and θlabeled jointly while 
onsidering
p(x|θunlabeled) and p(y|x,θlabeled). By 
apturing the dependen
ies between
θunlabeled and θlabeled, we may be able to make more e�e
tive use of bothlabeled and unlabeled data.
overed in multiple languages instead of one single language.



Chapter 10Summary and Dis
ussionsIn this thesis we have presented a uni�ed probabilisti
 framework for multi-task learning, together with a series of models suitable for di�erent tasks
enarios. In our framework task relatedness is explained by sharing a 
om-mon stru
ture through latent variables, and mathemati
ally a �exible priordistribution is learned for task parameters using all training resour
es. Ex-periments show that they are able to take advantage of multiple related tasksto improve performan
e. Contributions of the thesis in
lude:
• A Uni�ed Probabilisti
 Framework for Multi-Task Learning: We pro-posed a novel probabilisti
 framework for multi-task learning. It 
an beseen as a hierar
hi
al Bayesian model or latent variable model, whose�exibility (i.e., the 
apability to support a variety of task s
enarios)mainly 
omes from two sour
es: the statisti
al assumption about la-tent variable s and the form of the shared stru
ture (e.g., the mixingmatrix Λ).
• Systemati
 Exploration of Multi-Task Learning S
enarios: We ana-lyzed a series of important multi-task learning s
enarios, and presentedsuitable models within the framework. The s
enario analysis also shedslight on how to properly formulate various appli
ations into multi-tasklearning problems.
• Sparsity Models for Multi-Task Learning: We proposed sparsity modelsfor multi-task learning, where the sparsity is either in terms of thehidden sour
e sk or the linear mixing matrix Λ. In the former ea
hpredi
tion fun
tion is a sparse linear 
ombination of basis fun
tions;135
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h predi
tion fun
tion is a linear 
ombination ofbasis fun
tions that are sparse.
• New Algorithms for Joint Feature Sele
tion for Multi-Task Learning:We proposed the l1 ◦ lp regularization algorithm whi
h 
an be seen asa generalization of lasso for the multi-task learning setting. It 
ouplesthe the same feature 
oe�
ients of all tasks by using a lp-norm penalty,and thus is 
apable of utilizing information from all tasks.
• Mixture Models for �Clusters of Tasks�: We generalize previous workby proposing mixture models for multi-task learning, whi
h are theright 
hoi
e for the �
lusters of tasks� s
enario. An e�
ient learningalgorithm based on EM is presented and we a
hieved good results onboth simulated data and 
ollaborative �ltering tasks.
• Investigation on Model Sele
tion for Multi-Task Learning: We adaptedthe general idea of model sele
tion to the multi-task learning setting,where the best joint model of all task parameters is 
hosen. This e�ort
overs an unexplored area in multi-task learning, and is indispensablein order to �nd good models, espe
ially when domain knowledge doesnot lead to an obvious 
hoi
e.There are still many open questions and opportunities in multi-task learningresear
h:
• The performan
e gain of multi-task learning depends a lot on the num-ber of tasks available. Ando and Zhang [2004℄ used heuristi
s to 
reatemany auxiliary tasks from unlabeled data and got good performan
ein several appli
ations. How to design auxiliary tasks su
h that themulti-task learning 
an most bene�t is an open question and deserves
areful investigation.
• Classi�
ation with stru
tured outputs has be
ome a very popular re-sear
h topi
 and has been applied to many interesting problems in nat-ural language pro
essing, information extra
tion and bio-informati
s,where stru
tured outputs naturally exist. A deep understanding of its
onne
tion to multi-task learning will be 
ontribute to both resear
h�elds.
• In this thesis we mainly fo
used on supervised learning problems, andbrie�y dis
ussed unsupervised multi-task learning. More generally we
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an 
onsider semi-supervised learning, where we have both labeledand unlabeled tasks. Can we develop e�e
tive approa
hes to semi-supervised multi-task learning?
• All s
enarios dis
ussed in this thesis assume that tasks have the sameinput spa
e X . However, it is not ne
essary sin
e we 
an have multipletasks with the their input spa
e X (k) = X ⊕ Z(k) where the X partof the input spa
e is shared. In parti
ular, semi-parametri
 models[Bi
kel et al., 1998℄ might be a good 
andidate whi
h 
an have a non-parametri
 part for Z(k) and a 
ommon parametri
 
omponent for X .It is still un
lear how e�e
tive multi-task learning methods are for thispartially sharing situation.
• In Chapter 8 we have fo
used on 
ross-validation te
hniques for modelsele
tion in multi-task learning. It is meaningful to investigate howwell other model sele
tion te
hniques perform, su
h as Bayesian modelsele
tion, AIC, BIC, MDL, GCV, et
. Another important questionis, 
an we design e�
ient algorithms to obtain 
ross-validation errorswithout 
arrying out the expensiveK-fold 
omputation (using approxi-mation or bounds?), espe
ially the leave-one-task-out 
ross-validation?We think that su

essfully addressing the above problems will signi�
antly
ontribute to multi-task learning and make multi-task learning a more ma-ture �eld.
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