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ABSTRACT

Recent work in machine translation has evolved from the traditional word

and phrase-based models to include hierarchical phrase-based and syntax-

based models. These advances are motivated by the desire to integrate richer

knowledge within the translation process to explicitly address limitations of

the purely lexical phrase-based model.

Generalized phrases as discussed in (Chiang, 2005) attempt to directly

address the limitations of purely lexical phrases, and have shown significant

improvements in translation quality by introducing constructs for sub-phrase

representation. However, generalizations are represented by a single sub-

phrase category (and a glue rule for serial combination), providing the ability

(and risk) of inserting any available sub-phrase into a larger phrase.

The first contribution of this dissertation work is the grammar extrac-

tion method of syntax-augmented machine translation (SAMT), an exten-

sion to Chiang’s model that provides multiple generalization types based on

the phrase-structure parse trees of the training target sentences. We report

improvements over strong phrase-based as well as hierarchical phrase-based

baselines for French-to-English, Chinese-to-English, and Urdu-to-English.

We then propose several improvements to hierarchical and syntax-

augmented MT. We add a source-span variance model that estimates rule

probabilities based on the number of source words spanned by the rule and

its substituted child rules, introduce methods of combining hierarchical and

syntax-based PSCFG models, and experiment with syntax-augmented MT

variants based on source-side syntax as well as joint source and target syntax.

Syntax-based models such as SAMT typically rely on word-alignments
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and parse trees of the training sentence pairs, which are assumed to be cor-

rect. In reality, these alignments and parses are not human-generated, but

instead result from the most probable configuration of a stochastic model.

We provide a method to induce grammars over hidden alignments and parses,

approximated from N -best lists. We present results showing improvements

for hierarchical phrase-based MT as well as SAMT when using the widened

pipeline.

The SAMT model presupposes the availability of phrase-structure parse

trees for the target training sentences. However, syntactic parsers are only

available for a limited set of languages. We propose methods to label prob-

abilistic synchronous context-free grammar (PSCFG) rules using only word

tags, generated by either part-of-speech analysis or unsupervised word class

induction. The proposals range from simple tag-combination schemes to a

phrase clustering model that can incorporate an arbitrary number of features.

Our models improve translation quality over Chiang’s hierarchical phrase-

based MT model on the NIST large resource Chinese-to-English translation

task. These improvements persist when using automatically learned word

tags, suggesting broad applicability of our technique across diverse language

pairs for which syntactic resources are not available.
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CHAPTER 1

Introduction

Recent work in machine translation (MT) has evolved from the traditional

word (Brown, Pietra, Pietra, and Mercer, 1993) and phrase-based (Koehn,

Och, and Marcu, 2004) models to include hierarchical phrase-based (Chiang,

2005) and syntax based models (Poutsma, 2000; Yamada and Knight, 2001;

Galley, Hopkins, Knight, and Marcu, 2004). These advances are motivated by

the desire to integrate more information such as context-dependent reorder-

ing behavior and hypothesis compatibility within the translation process to

explicitly address limitations of the purely lexical phrase-based model. As

Chiang (2005) and Koehn, Och, and Marcu (2003) note, phrase-based mod-

els suffer from sparse data effects when required to translate conceptual ele-

ments that span or skip across several words, and distortion based reordering

techniques tend to limit their range of operation for reasons of efficiency and

model strength (Och and Ney, 2004).

Generalized phrases as discussed in Chiang (2005) and noted in Block

(2000), attempt to directly address the limitations of purely lexical phrases,

and have shown significant improvements in translation quality by introduc-

ing constructs for sub-phrase representation. Block (2000) introduces a sin-

gle generalization per phrase within the example-based MT framework, while

Chiang (2005) can generate multiple generalizations within each phrase. In

both these cases, however, generalizations are represented by a single sub-
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phrase category (and a glue rule for serial combination), providing the ability

(and risk) of inserting any available sub-phrase into a larger phrase.

The use of a single generalization category X (left hand side in CFG nota-

tion) in the model of Chiang (2005) comes at the cost of the lost opportunity

to model the types of phrase pairs represented by a generalization operation,

resulting in a less directed search process during decoding. Figure 1.0.1 gives

a training corpus consisting of only training sentence pairs, and some of the

rules that would be extracted from it when using Chiang’s method. Even

for that simple corpus, the model is unable to unambiguously reproduce the

correct translation when presented with the second training source sentence.

Instead it is ambivalent between two equally probable translation hypotheses,

one of them correct and one false. Even worse, if the first training sentence

pair were repeated twice, the incorrect hypothesis would become more prob-

able than the correct one.

The first contribution of this dissertation work is syntax-augmented ma-

chine translation (SAMT), an extension to Chiang’s model that provides mul-

tiple generalization types based on the phrase-structure parse trees of the

training target sentences (Chapter 3). Figure 1.0.2 sketches how this model

solves the problem of reproducing the example training corpus above unam-

biguously. This was the first syntax-based MT system to achieve an improve-

ment over phrase-based MT (Zollmann and Venugopal, 2006). We show how

to scale our model to large-data translation tasks using the multi-processor

MapReduce paradigm and present experimental results across different lan-

guage pairs, showing improvements over strong phrase-based as well as hi-

erarchical phrase-based baselines for French-to-English, Chinese-to-English,

and Urdu-to-English.
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S1: die Frau , die ein UFO gesehen hat , ist nicht verrueckt . |

the woman who has seen a UFO is not crazy .

(1A) die Frau | the woman

(1B) Frau | woman

(1C) ein UFO gesehen | seen a UFO

(1D) X

1

, die X

2

hat X
3

. | X
1

who has X
2

X

3

.

S2: ich glaube , die Frau hat ein UFO gesehen . |

I think the woman has seen a UFO .

(2A) ich glaube | I think

(2B) X

1

, die X

2

hat X
3

. | X
1

the X

2

has X
3

.

Test sentence: ich glaube , die Frau hat ein UFO gesehen .

either: 2B+2A+1B+1C���������! I think the woman has seen a UFO .

or: 1D+2B+1B+1C���������! I think who has woman seen a UFO .

Figure 1.0.1: A training corpus which the hierarchical SMT model of Chiang (2005) fails to

reproduce unambivalently.
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• Use nonterminal labels to constrain the space of eligible derivations

S1: die Frau , die ein UFO gesehen hat , ist nicht verrueckt . |

the woman who has seen a UFO is not crazy .

(1A) NP ! die Frau | the woman

(1B) NN ! Frau | woman

(1C) VBN+NP ! ein UFO gesehen | seen a UFO

(1D) S ! NP , die VBN+NP hat VP . | NP who has VBN+NP VP .

S2: ich glaube , die Frau hat ein UFO gesehen . |

I think the woman has seen a UFO .

(2A) NP+V ! ich glaube | I think

(2B) S ! NP+V , die NN hat VBN+NP . | NP+V the NN has VBN+NP

.

Test sentence: ich glaube , die Frau hat ein UFO gesehen .
2B+2A+1B+1C���������! I think the woman has seen a UFO .

Figure 1.0.2: The syntax-augmented MT model applied to the training corpus from Fig-

ure 1.0.1.
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In Chapter 4, we propose several improvements to the hierarchical phrase-

based MT model of Chiang (2005) and its syntax-based extension by Zoll-

mann and Venugopal (2006). We add a source-span variance model that,

for each rule utilized in a probabilistic synchronous context-free grammar

(PSCFG) derivation, gives a confidence estimate in the rule based on the num-

ber of source words spanned by the rule and its substituted child rules, with

the distributions of these source span sizes estimated during training time.

We further propose different methods of combining hierarchical and syntax-

based PSCFG models, by merging the grammars as well as by interpolating

the translation models. Finally, we compare syntax-augmented MT, which

extracts rules based on target-side syntax, to a corresponding variant based

on source-side syntax, and experiment with a model extension that jointly

takes source and target syntax into account.

As is the case with phrase-based MT models, SAMT relies on word align-

ments of the training sentence pairs, which it assumes to be correct. In reality,

these alignments are not human-generated, but instead result from the most

probable configuration of a generative latent-variable model. Similarly (but

unique to SAMT), the syntactic parses used for the grammar induction are

1-best results returned from a parser and thus prone to errors. In Chapter 5,

we provide a method to induce grammars over hidden alignments and parses,

approximated from N -best lists. We present results showing improvements

for hierarchical phrase-based MT as well as SAMT when using the widened

pipeline.

The SAMT model presupposes the availability of phrase-structure parse

trees for the target training sentences. However, syntactic parsers are only

available for a limited set of languages. In Chapter 6, we propose a label-
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ing approach that is based merely on part-of-speech analysis of the source

or target language (or even both). We achieve improvements in translation

quality over Chiang’s hierarchical phrase-based MT model on a large-scale

NIST Chinese-to-English translation task. These improvements persist when

using automatically learned word tags, suggesting broad applicability of our

technique across diverse language pairs for which syntactic resources are not

available. We further introduce a more flexible labeling approach based on

K-means clustering, which allows the incorporation of an arbitrary number

of word-class based features, including phrasal contexts, can make use of

multiple tagging schemes, and also allows non-class features such as phrase

sizes.

All code written for this dissertation work is made available as part of the

open-source SAMT toolkit, co-written with Ashish Venugopal and available

at:

www.cs.cmu.edu/˜zollmann/samt

The remainder of this document is structured as follows: Chapter 2 estab-

lishes the necessary background by discussing phrase-based and hierarchical

phrase-based machine translation. Chapters 3 to 6 present our contributions,

as outlined above. Chapter 7 gives a summary of the contributions of this

work.
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CHAPTER 2

Background

2.1 Statistical machine translation

Given a source language sentence f , most current statistical machine transla-

tion (SMT) approaches define the translation task as selecting the translation

tgt(

ˆd) represented by the most likely derivation1
ˆd under a model P (d|f),

i.e.:

ˆd = argmax

d2D. src(d)=f
P (d|f) , (2.1.1)

which is accomplished by a search through a structured space D of trans-

lation hypotheses. Here, a derivation is a sequence of translation units:

phrase pairs in the case of phrase-based SMT, grammar rules in the case

of synchronous-grammar based SMT. Not all sequences of translation units

are valid derivations; for example, in the case of probabilistic synchronous

context-free grammars the rules in the sequence must correspond to succes-

sive substitutions of each rule into the source-left-most nonterminal pair of

the partial derivation produced so far. This will become clear later in this

chapter.

1Some approaches instead sum over derivations representing the same translation.
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Commonly, a log-linear model of the form

P (d|f) = 1

Z(�)

mY

i=1

�

i

(d)�i (2.1.2)

is employed, where �
i

(d) are bilingual features of d and monolingual features

of tgt(d), and weights �
i

are trained discriminatively to maximize translation

quality (based on automatic metrics) on held-out data. Most loss functions

used in MT are piecewise linear with respect to a single parameter �
i

, whence

coordinate descent can be applied using a simple line intersection method

known as minimum-error-rate training (MERT) (Och, 2003). Other optimiza-

tions proposed for MT are sampling the error surface (Venugopal, Zollmann,

and Waibel, 2005), minimum-risk annealing (Smith and Eisner, 2006), or on-

line large-margin training (Watanabe, Suzuki, Tsukada, and Isozaki, 2007;

Chiang, Marton, and Resnik, 2008).

Most SMT approaches make independence assumptions to structure this

search space and thus most features �

i

(d) are designed to be local to each

phrase pair or rule. A notable exception is the n-gram language model (LM),

which evaluates the likelihood of the sequential target words output. Phrase-

based systems also typically allow source segments to be translated out of

order, and include distortion models to evaluate such operations. These fea-

tures suggest the efficient dynamic programming algorithms for phrase-based

systems described in Koehn et al. (2004).

2.2 Phrase-based MT

Phrase-based methods (Och, Tillmann, and Ney, 1999) identify contiguous

bilingual phrase pairs based on automatically generated word alignments.

Phrase pairs are extracted up to a fixed maximum length, since very long
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phrases rarely have a tangible impact during translation (Koehn et al., 2003).

During decoding, extracted phrase pairs are reordered to generate fluent tar-

get output. Reordered translation output is evaluated under a distortion model

and corroborated by one or more n-gram language models. These models do

not have an explicit representation of how to reorder phrases. To avoid search

space explosion, most systems place a limit on the distance that source seg-

ments can be moved within the source sentence. This limit, along with the

phrase length limit (where local reorderings are implicit in the phrase), deter-

mine the scope of reordering represented in a phrase-based system.

Phrase-based systems typically include in their log-linear model a tar-

get language model, a distortion model capturing the reordering of translated

phrases, and the following six features, each factored into a product of phrasal

components over the phrase pairs p applied in the translation process:

• p̂(p| src(p)): probability of a phrase pair given its source side;

• p̂(p| tgt(p)): probability of a phrase pair given its target side;

• p̂

w

(p| src(p)), p̂
w

(p| tgt(p)): translation model probabilities estimated

based on word based models (Brown et al., 1993)

• exp(| tgt(p)|) : a word count feature to trade off shorter vs. longer

translations

• exp(1) : a phrase count to prefer translations with fewer or more seg-

ments

In our notation, src returns the source side of a phrase pair, and tgt returns

the target side.
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2.3 Probabilistic synchronous context-free grammars

Probabilistic synchronous context-free grammars (PSCFGs) (Aho and Ull-

mann, 1969) are defined by a source terminal set (source vocabulary) T
S

, a

target terminal set (target vocabulary) T
T

, a shared nonterminal set N and

induce rules of the form

X ! h�,↵,⇠, wi

where

• X 2 N is a nonterminal (called the left-hand side of the rule),

• � 2 (N [ T
S

)

⇤ is a sequence of nonterminals and source terminals

(called the source right-hand side or simply source side),

• ↵ 2 (N [ T
T

)

⇤ is a sequence of nonterminals and target terminals

(called the target right-hand side or target side),

• the count #NT(�) of nonterminal tokens in � is equal to the count

#NT(↵) of nonterminal tokens in ↵,

• ⇠: {1, . . . ,#NT(�)} ! {1, . . . ,#NT(↵)} is a one-to-one mapping

from nonterminal tokens in � to nonterminal tokens in ↵, and

• w 2 [0,1) is a nonnegative real-valued weight assigned to the rule.

In our notation, we will assume ⇠ to be implicitly defined by indexing the

NT occurrences in � from left to right starting with 1, and by indexing the NT

occurrences in ↵ by the indices of their corresponding counterparts in �.

PSCFG derivations function analogously to context-free grammar (CFG)

derivations, and can be used to express probabilistic hypotheses for the task of
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machine translation analogously to monolingual parsing with a probabilistic

context-free grammar (PCFG): We find the most likely derivation ˆ

d that has

the input source sentence f as its source yield, but where we are free to range

over all possible target yields.

ˆ

d = argmax

d:src(d)=f

p(d) (2.3.1)

where src(·) maps a derivation to its source yield. Finally we read off the

English translation from this derivation:

ê = tgt

⇣
ˆ

d

⌘
(2.3.2)

where tgt(·) maps a derivation to its target yield.

The distribution p over derivations can be defined by a log-linear model.

The probability of a derivation D is defined in terms of the rules r that are

used in D:

p(D) =

p

LM

(tgt(D))

�LM ⇥
Q

r2D
Q

i

�

i

(r)

�i

Z(�)

(2.3.3)

where �

i

is a feature function on rules, p
LM

is an n-gram probability of the

target yield tgt(D), and Z(�) is a normalization constant chosen such that

the probabilities sum up to one.2

Performing translation with PSCFG grammars containing only rules with

no more than two nonterminal pairs on their right hand sides amounts to

straight-forward generalizations of the CYK (Kasami, 1965) chart parsing

algorithm for PCFG grammars. In contrast to PCFGs, however, PSCFGs are

not generally reducible to a 2-NT normal form. Nevertheless, decoding time

2Note that we never need to actually compute Z(�) since we are merely interested in the
maximum-probability derivation.
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cubic in sentence length can still be achieved, for example by using a syn-

chronous version of the CYK+ (Chappelier and Rajman, 1998) algorithm,

itself a variant of the Earley algorithm (Earley, 1970) that parses arbitrary

PCFGs in cubic time. Adaptations to the algorithms in the presence of n-gram

LMs are discussed in (Chiang, 2007; Venugopal, Zollmann, and Vogel, 2007;

Huang and Chiang, 2007; Zollmann, Venugopal, Och, and Ponte, 2008a).

The use of PSCFGs for statistical machine translation was first proposed

by Wu (1997), who induce an inversion transduction grammar (ITG) from a

parallel training corpus, where the right-hand-sides of the rules could have

either only terminals (at most one each for source and target portion) or only

nonterminals (exactly two nonterminal pairs). The former rules thus rep-

resent the possible lexical translations, and the latter rules allow to either

monotonously glue the two partial translations represented by the two right-

hand-side target nonterminals or to swap them.

2.4 Hierarchical phrase-based MT

Building upon the success of phrase-based methods, Chiang (2005) presents

a model of translation that uses the bilingual phrase pairs of phrase-based

MT as starting point to learn phrases containing gaps—so-called hierarchical

phrases. Formally, these phrases are rules of a PSCFG with a single generic

nonterminal symbol X , and an auxiliary nonterminal symbol S that is used

to realize the glue operations explained below.

In Chiang’s rule extraction method, for each training sentence pair a set

of PSCFG rules is generated from a set of extracted phrase pairs as follows:

First, each phrase pair is assigned the X-nonterminal as left-hand-side, mak-
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ing it an initial rule. We can now recursively generalize each already obtained

rule (initial or including nonterminals)

N ! f

1

. . . f

m

| e
1

. . . e

n

for which there is an initial rule

M ! f

i

. . . f

u

| e
j

. . . e

v

where 1  i < u  m and 1  j < v  n, to obtain a new rule

N ! f

i�1

1

X

k

f

m

u+1

| ej�1

1

X

k

e

n

v+1

where e.g. f

i�1

1

is short-hand for f

1

. . . f

i�1

, and where k is an index for

the nonterminal X that indicates the one-to-one correspondence between the

new X tokens on the two sides (it is not in the space of word indices like

i, j, u, v,m, n).

During decoding, Chiang allows application of all rules of the grammar

for chart items spanning up to a fixed number of source words. When that

limit is reached, only a special glue rule allowing monotonic concatenation

of hypotheses is allowed, thus making decoding time asymptotically linear

instead of cubic in sentence length. Such a limit is also employed during

training, with the effect of only generalizing phrases up to a certain maximum

length.

Chiang (2005) uses the same features as in phrase-based translation (cf.

Section 2.2), with the addition of a binary glue rule feature that fires only for

glue rule applications.

In contrast to a phrase-based model, hierarchical MT allows for trans-

lation of discontiguous words (e.g. French “ne . . . pas”) as a unit, thereby

resulting in a hypothesis space that is a strict superset of that of phrase-based
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MT. In practice, however, nearly all 1-best outputs of a hierarchical system

turn out to be also reachable by a corresponding phrase-based system trained

on the same training data; cf. Zollmann et al. (2008a) for an analysis on

Chinese-to-English, and Auli, Lopez, Hoang, and Koehn (2009) for a more

detailed analysis on French-to-English, German-to-English, and English-to-

German, which also investigates the impact of unaligned word handling. The

main benefit of hierarchical over phrase-based MT therefore stems from its

statistical model, not from the increased hypothesis space.

Chiang’s work has been preceded and succeeded by a plethora of other

PSCFG approaches to machine translation. These will be discussed in Sec-

tion 3.6.

2.5 Evaluation

In principle, machine translation is best evaluated by human judgments, di-

rectly comparing different systems’ outputs against each other and against

one or several reference translations. However, this methodology is expen-

sive in practice because of the human in the loop. Automatic evaluation

metrics such as word error rate borrowed from the speech recognition com-

munity became popular in the 1990’s, but did not correlate well with human

judgments. A breakthrough metric with much improved correlation was the

Bilingual Evaluation Understudy (BLEU) of Papineni, Roukos, Ward, and

Zhu (2002), which is still the most popular translation evaluation metric to-

day and is therefore the metric of choice throughout this work. BLEU com-

putes test-corpus-level n-gram (where n ranges from 1 to 4) precision rates,

combines these by taking the geometric mean, and then multiplies the result

by a brevity penalty preventing MT systems from obtaining perfect scores by
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providing empty translations. BLEU has been criticized of favoring phrase-

based models due to the n-gram base approach. Another issue is its inability

to give credits to output words that are semantically equivalent to the cor-

responding references but do not appear in any reference. The approach of

Banerjee and Lavie (2005) overcomes that problem by additionally allowing

for stemming and synonymy matching.

2.6 Discussion

While non-statistical approaches based on hand-crafted rules were the domi-

nating approach in commercial MT systems until mid way though the 2000’s

decade, phrase-based SMT has now become the de-facto standard. Despite

of the superior translation quality of Chiang’s hierarchical approach for cer-

tain language pairs and its popularity in the scientific community, it has not

been able to dethrone phrase-based MT from its preeminence in commer-

cial systems. This is chiefly due to its far higher decoding memory and time

requirements. As rules are extracted recursively by carving out phrase pairs

from other phrase pairs, the number of extracted grammar rules is in the order

of sK , where s is the number of phrase pairs in a corresponding phrase-based

system and K the maximum number of allowed abstractions per rule. While

decoding time complexity in principle is exponential in sentence length for

the phrase-based model, in practice it is kept linear by limiting reordering to

occur only within a fixed window. In contrast, decoding with the hierarchical

model, which amounts to parsing the PSCFG, is cubic in sentence length in

principle, and also becomes linear when fixing a maximum window size for

non-glue rule applications (which corresponds to limiting reordering). How-

ever, due to high grammar size, decoding is usually orders of magnitudes
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slower in practice.

As we will see later, our proposed methods suffer from the same curse,

and in an even higher degree because of greater grammar constants. How-

ever, as has been proved time and time again in the field of computer science,

even solutions that at the time of proposal seemed utterly practically infeasi-

ble (which we will demonstrate is not the case with our methods by providing

empirical results on large-scale translation tasks), became viable only a few

years later, either because of newly discovered smart approximation tech-

niques or because of exponential improvements in computational resources

due to Moore’s law. Therefore, our aim in this thesis is to concentrate on

devising novel models that improve translation quality, while worrying less

about computational efficiency.
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CHAPTER 3

Syntax-Augmented Machine Translation

The use of a single grammar nonterminal symbol (not counting the glue rule

nonterminal) in the hierarchical phrase-based MT model of Chiang (2005)

makes the model agnostic to the types of phrase pairs that can be substituted

in a grammar derivation. As in traditional phrase-based MT, the task of dis-

tinguishing grammatically coherent from incoherent translations is left solely

to the language model.

In practice, Chiang also restricts the grammar by allowing only two gen-

eralizations within a single rule and discarding rules which contain adjacent

generalizations. These restrictions amongst others described are designed to

compensate for the use of a single generalization category. It is easy to see

why they are necessary. Every phrase is marked with the same category X,

allowing it to fill in any generalization of a phrase above it in the hierarchy.

Without the knowledge of syntactic categories to restrict possible hierarchical

combinations, these restrictions are required to make parsing efficient, at the

expense of representational ability in the grammar.

In this chapter, we consider the scenario where we have access to a tar-

get language parser to annotate and guide the generalization of the derived

synchronous grammar. By associating target language parse trees with their

corresponding search lattices built by lexical phrases (trained using traditional

phrase extraction techniques (Koehn et al., 2004)), we assign syntactic cate-
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gories to phrases that align directly with the parse hierarchy. We also in-

troduce syntax-derived categories that represent partially matched syntactic

categories, thereby annotating every phrase in the initial phrase table. Our

techniques produce grammars with several thousand unique nonterminals;

therefore an efficient decoding algorithm and effective pruning strategies are

crucial to the success of our translation system. Our work addresses specific

issues with inducing a grammar directly from parallel text, but does not move

towards the work of (Yamada and Knight, 2002), where linguistic structures

and motivation drive even the operation of the parsing process.

Most of the work in this chapter has been published in (Zollmann and

Venugopal, 2006; Zollmann, Venugopal, Vogel, and Waibel, 2006; Zollmann,

Venugopal, and Vogel, 2007; Zollmann et al., 2008a; Zollmann, Venugopal,

and Vogel, 2008b; Venugopal and Zollmann, 2009). All of this work is part

of this thesis contribution.

3.1 Rule extraction

SAMT extends the purely hierarchical grammar proposed in (Chiang, 2005)

to use nonterminal labels learned from target language parse trees. The inputs

to the SAMT rule extraction procedure are tuples, hf, e,Phrases(a, f, e), ⇡i,

where f is a source sentence, e is a target sentence, a is a word-to-word

alignment associating words in f with words in e, Phrases(a, e, f), are the

set of phrase pairs (source and target phrases) consistent with the alignment a

(Koehn et al., 2003; Och and Ney, 2004), and ⇡ is a phrase structure parse tree

of e. SAMT rule extraction associates each phrase pair from Phrases(a, e, f)

with a left-hand-side label, and then applies the rule generalization proce-

dure from (Chiang, 2005) to generate complex rules with labeled nonterminal
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S

NP VP

PRN AUX RB VB

he does not go

il ne va pas

Figure 3.1.1: Alignment graph (word alignment and target parse tree) for a French-English

sentence pair.

symbols on the right hand side.

Consider a French-to-English example sentence with alignment graph (a

word alignment and target language parse tree as defined in (Galley et al.,

2004)) given in Figure 3.1.1. The phrase extraction method from (Koehn

et al., 2003) extracts all phrase pairs where no word inside the phrase pair is

aligned to a word outside the phrase pair. The following phrase-pairs would

be extracted for our example sentence:

il | he

va | go

ne va pas | does not go

ne va pas | not go

il ne va pas | he does not go

SAMT now assigns a left-hand-side label to every phrase pair extracted

from the current sentence-pair, based on the corresponding target language
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il 1 ne 2 va 3 pas 4

he 1

does 2

not 3

go 4
⇡

�i

�
�

9

S

RB+VB

VB
VP

PRP:NP+AUX

PRP:NP

Figure 3.1.2: Spans of initial lexical phrases w.r.t. f, e. Each phrase is labeled with a category

derived from the tree in Fig. 3.1.1.

parse tree ⇡, forming initial rules (Figure 3.1.2. These labels are assigned

based on the constituent spanning the target side word sequence in ⇡. When

the target side of the phrase-pair is spanned by a single constituent in ⇡, the

constituent label is assigned as the label of the phrase pair. If the target side

of the phrase is not spanned by a single constituent in ⇡, we use the labels

of subsuming, subsumed, and neighboring constituents in ⇡ to assign an ex-

tended label of the form C

1

+ C

2

, C
1

/C

2

, or C

2

\C
1

(the latter two being

inspired by the operations in combinatory categorial grammar (CCG) (Steed-

man, 2000)), indicating that the phrase pair’s target side spans two adjacent

syntactic categories (e.g., she went: NP+VB), a partial syntactic category C

1

missing a C

2

at the right (e.g., the great: NP/NN), or a partial C
1

missing a

C

2

at the left (e.g., great wall: DT\NP), respectively. The label assignment is

attempted in the order just described, i.e., assembling labels based on ‘+’ con-

catenation of two subsumed constituents is preferred, as smaller constituents

tend to be more accurately labeled. If no label is assignable by either of these
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three methods, a default label ‘ FAIL’ is assigned.

An ambiguity arises when unary rules N
1

! ... ! N

m

in the target parse

tree are encountered, such as the NP!PRP subtree in Figure 3.1.1. In this

case, we use a combined label N
m

: . . . : N

1

.

Based on the obtained labeled initial rules, we now perform the rule gener-

alization procedure from (Chiang, 2005), resulting in the following complex

rules extracted from our example sentence:

S ! PRP:NP
1

ne va pas | PRP:NP
1

does not go

S ! il ne VB
1

pas | he does not VB
1

S ! il VP
1

| he VP
1

S ! il RB+VB
1

| he does RB+VB
1

S ! PRP:NP
1

VP
2

| PRP:NP
1

VP
2

S ! PRP:NP
1

RB+VB
2

| PRP:NP
1

does RB+VB
2

VP ! ne VB
1

pas | does not VB
1

RB+VB ! ne VB
1

pas | not VB
1

VP ! RB+VB
1

| does RB+VB
1

Under the rectangle representation of phrase pairs from Fig. 3.1.2, general-

ization can be viewed as a process that selects a rectangle, and proceeds to

subtract out one or more sub-rectangles to form a generalized rule.

We also add the following system rules to the grammar:

• Beginning-of-sentence rule: S!< s > | < s >

• Glue rules similar to Chiang (2005) for each NT N in the grammar: S

! S
1

N

2

| S
1

N

2
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• End-of-sentence rule: S ! S
1

< /s > | S
1

< /s >

• ‘Unknown’-rules (e.g. NNP ! UNKNOWN | UNKNOWN) gen-

erating a limited set of labels for the word ‘ UNKNOWN’, which the

decoder substitutes for unknown source words

The design of the S-rules above anchors the glue operation to the beginning-

and end-of-sentence and ensures that glue derivations are always left-

branching, thereby avoiding spurious ambiguity. These glue operations al-

low the system to produce translations that violate the syntactic constraints

encoded in the labels of the grammar—at a cost determined by the corre-

sponding feature weight �
glue

(see Section 3.2).

The number of rules generated by this procedure is exponential in the

number of initial phrase pairs, producing a grammar that is impractical for

efficient translation. The following pruning parameters are used to restrict

the number of rules extracted per sentence:

• max abstraction count (default: 2): maximum number of abstractions

(nonterminal pairs) on a rule’s right-hand-side.

• max source symbol count (default: 5): maximum number of symbols

(terminals and nonterminals) on the source side of the rule.

• allow consec nts (default: 1): if set to 0, discards rules that have con-

secutive nonterminals on the source side.

• allow src abstract (default: 1): if 0, discards rules that do not have

any source terminal symbols, for example: S ! NP
1

VP
2

| NP
2

VP
1

.

Setting this parameter to 0 drastically reduces decoding time.
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• nonlexminfreq, lexminfreq (defaults: 0): minimum frequency (i.e.,

number of occurrences in the training data) thresholds for non-lexical

and lexical rules respectively. Increasing these thresholds reduces the

size of the grammar, but often at the cost of translation quality (Zoll-

mann et al., 2008a).

• min freq given src arg (default: 0): minimum relative frequency of a

rule given its labeled source.

• allow dangling second nt (default: false): Whether to allow creation

of rules with at least two right-hand-side nonterminal pairs in which

one of the pairs is at the left or right phrase pair boundary (i.e., source

NT is at beginning/end of source side of rule and corresponding target

NT is at beginning/end of target side of rule, respectively). Setting this

to false drastically speeds up decoding by prohibiting multi-NT-pair

rules with dangling NTs. (Note, however, that all two-NT-pair rules

doing reordering are kept, since in such a case the source and target

parts of the NT pair could never be both at the beginning or both at the

end of the phrase.)

3.2 SAMT Features

The labeling and extraction procedures defined above identify rules from the

input word-aligned parallel corpora and associated parse trees. The occur-

rence counts from this extraction process are used in estimating the following

features for each rule:

• p̂(r| lhs(r)) : Relative frequency of a rule given its left-hand-side label
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• p̂(r| src(r)) : Relative frequency of a rule given its source side

• p̂(r| tgt(r)) : Relative frequency of a rule given its target side

• p̂(r| ul(src(r))) : Relative frequency of a rule given its un-labeled

source side

• p̂(r| ul(tgt(r))) : Relative frequency of a rule given its un-labeled target

side

• p̂(ul(tgt(r))| ul(src(r)) : Relative frequency of the un-labeled target

side of the rule given its un-labeled source side, i.e., marginalizing over

left-hand-side and right-hand-side labels

• p̂(ul(src(r))| ul(tgt(r)) : Relative frequency of the un-labeled source

side of the rule given its un-labeled target side

where lhs returns the left-hand-side of a rule, src returns the source side, tgt

returns the target side, and ul removes all labels from nonterminal symbols.

For example, ul(NP+AUX
1

does not go) = X
1

does not go.

To estimate the features above, we use relative frequency estimation

based on counts of the rules extracted from the training data. For example,

p(r| lhs(r)) is estimated by computing #(r)/ #(lhs(r)), aggregating counts

from all extracted rules.

We also add the following features to the model:

• p̂

w

(src(r)| tgt(r)), p̂
w

(tgt(r)| src(r)) : lexical weights based on termi-

nal symbols as for phrase-based and hierarchical phrase-based MT (cf.

Chapter 2)
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• �

glue

(r) = exp(1) if the rule is a glue rule, 1 otherwise; as for hierar-

chical phrase-based MT

• �

ra

(r) = exp(1) for all rules. A rule application count, allowing the

model to favor derivations with more or less rules depending on the

weight assigned to this feature, analogously to phrase-based and hier-

archical phrase-based MT

• �

tgt

(r) = exp(‘# target terminals in r’. Allows the model to prefer

longer or shorter translations, analogously to phrase-based and hier-

archical phrase-based MT

• �

lex

(r) = exp(1) if the rule’s right-hand-side has no nonterminals, 1

otherwise.

• �

abs

(r) = exp(1) if the right-hand-side has no terminals, 1 otherwise.

• �

srcadj

(r) = exp(1) if the source side has adjacent nonterminals, 1

otherwise. Allows the model to indicate confidence in derivations that

include multiple sequential nonterminals.

• �

tgtadj

(r) = exp(1) if the target side has adjacent nonterminals, 1 oth-

erwise.

• �

bal

(r) = exp(| log(R(r)/

ˆ

R)|) where R(r) the ratio of source to target

terminals in r and ˆ

R is the same ratio measured over sentences in the

corpus.

• �

mono

(r) = exp(1) if the rule does not re-order its nonterminals, 1

otherwise.
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• �

rare

(r) = exp((1/ #(r))): uses the number of times a rule has been

seen during training, #(r), to allow penalization of derivations that use

rare rules.

3.3 Decoding

Apart from the issues to consider when parsing PSCFGs mentioned in Sec-

tion 2.3, multi-nonterminal PSCFGs face the additional challenge of needing

to keep hypotheses stemming from rules with different left-hand-side non-

terminals in separate equivalence classes in the chart in order to guarantee

obtaining the most probable derivation. In practice, some pruning across

equivalence classes representing different nonterminals is necessary in or-

der to keep memory and decoding time requirements at a reasonable level.

Solutions to this problem are given by Venugopal (2008).

3.4 Large-scale training and decoding with MapReduce

Computing clusters with many parallel processors have become increasingly

available to the research community. In 2008, for example, Yahoo! made

a 4000-processor cluster called M45 available to universities, which runs

MapReduce (Dean and Ghemawat, 2004) jobs under the Hadoop (Cutting

and Baldeschwieler, 2007) architecture. For machine translation systems to

benefit from large clusters like these, training and decoding have to be paral-

lelized. In this section, we show how this can be achieved for SAMT under

the MapReduce paradigm. To our knowledge, this contribution is the first

to show how to do training and decoding with a PSCFG-based SMT system

using MapReduce.
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3.4.1 MapReduce

Given a cluster of machines, there are several solutions to exploit these re-

sources for computational work. Systems like Condor (Thain, Tannenbaum,

and Livny, 2005) and Sun’s Grid Engine, provide coarse-grained job man-

agement (accepting, scheduling, dispatching, and managing the remote exe-

cution) to a cluster of machines. These systems are primarily responsible for

managing the smooth execution of jobs submitted to the cluster, while placing

minimal constraints on the nature of the running jobs.

Alternatively, the MapReduce (Dean and Ghemawat, 2004) architecture

is a programming model where large computational tasks are split into two

distinct phases, a Map phase and a Reduce phase. In the Map phase, unstruc-

tured input data is processed by parallel tasks generating intermediate output

in the form of key-value pairs. In the Reduce phase, tasks running in par-

allel receive this intermediate data with the guarantee that each process will

receive all intermediate key-value pairs that share the same key. Under this

framework, large computational tasks and task pipelines (like identifying and

estimating parameters for SAMT rules and running decoding and MERT) can

be distributed to run on a cluster of commodity hardware.

3.4.2 The SAMT pipeline

For each MapReduce phase of the pipeline, we specify the MapInput (data re-

ceived by the Map task), MapOptions (parameters to the Map task), MapOut-

put (key-value pairs output by the Map task), ReduceInput (input guaranteed

to be contiguous to the Reduce task), ReduceOptions (parameters to the Re-

duce task), and ReduceOutput (unstructured output format from the Reduce
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task). SAMT assumes input of the format e, f, a(e, f), ⇡(e), where e is a

target language sentence from the training data, f is a source language sen-

tence from the training data, a(e, f) is a word-to-word alignment (Brown

et al., 1993) on e, f and ⇡(e) is phrase structure parse tree on e. Confer Dyer,

Cordova, Mont, and Lin (2008a) on how to parallelize word alignment with

MapReduce. We also parallelize the parsing of the training sentences, which

can be achieved with a simple shell script acting as a mapper that calls the

parser on its assigned chunk of sentences.

The SAMT pipeline can be split into the following phases: Phrase Ex-

traction, Rule Extraction, Rule Filtering, LM filtering (optional), Decoding,

N-Best Merge and MERT. In each phase we try to limit the number of key-

value pairs to reduce I/O overhead, outputting multiple values that share the

same key from the same Map task on a single line. The Rule Filtering and LM

Filtering phases build sentence specific models for each sentence in the de-

velopment and test corpus allowing the Decoding phrase to load these models

directly into memory. We now describe each phase.

Phrase Extraction Map:

• MapInput: Input lines of the form f, e, a(e, f), ⇡(e)

• MapOptions: Maximum extractable phrase length

• MapOutput:

key = sno, value = hf, e,Phrases(e, f), ⇡(e)i

where sno is the respective sentence number

The Phrase Extraction phase identifies Phrases(e, f) based on the word-

aligned data and adds it to the training data stream. There is no Reduce step

in this Phase.
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Rule Extraction Map:

• MapInput: Each line contains f, e,Phrases(e, f), ⇡(e)

• MapOptions: Maximum number of nonterminals per rule, maximum

length of �, options to select lhs from ⇡

• MapOutput:

key = ul(�), value = h�,↵, lhs, 1i and

key = ul(↵), value = 1 and

key = lhs , value = 1

Rule Extraction uses its input to generate PSCFG rules via the procedure in

Section 3.1, taking several parameters that constrain the grammar. MapOut-

put ouputs the unlabeled source side of each rule ul(�) as key, with the rule

itself as value. Since the subsequent Reduce input will see rules grouped by

ul (�), efficient computation of features p̂(r| src(r)), p̂(ul(tgt(r))| ul(src(r)))

is possible in the Reduce step. MapOutput also outputs occurrence statistics

for each lhs and for each unlabelled target side of the rule in order to compute

additional features in � in later phases.

Rule Extraction Reduce:

• ReduceInput: All rules that share the same ul(�)

• ReduceOptions: Minimum occurrence counts for lexical and nonlexical

rules

• ReduceOutput: Rules with subset of features in �. Rules that share the

same ul(�) are output on the same line.

Features p̂(r| src(r)), p̂(ul(tgt(r))| ul(src(r))) are computed in the Reduce

step since all rules that share the same unlabelled source are available con-
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tiguously to the Reduce step. Key-value pairs indicating lhs and ul(↵) are

simply accumulated.

In the Rule Filtering phase, we select those rules that can possibly be

applied to each sentence in the development and test corpus in the Map step,

and in the Reduce step we take these rules, add special SAMT rules to handle

unknown words and glue-rule (Chiang, 2005), resulting in a sentence specific

PSCFG.

Rule Filtering Map:

• MapInput: Rules from Rule Extraction stage (single source as key with

multiple rules as values)

• MapOptions: Source corpus to filter rules against (whole source corpus is

loaded into memory)

• MapOutput:

key = sno

value = h�,↵,�i

such that all words in � are in sentence sno in the source corpus

Count information for lhs and ul(↵) is keyed for every sentence. In the fil-

tering step this count information is used to generate the remaining relative

frequency features. Note that this can only be done at this point, because at

the previous phase these counts were not yet available in accumulated form.

Rule Filtering Reduce:

• ReduceInput: All rules and special counts for a single test sentence

• ReduceOptions: Additional models to generate the remaining features �

• ReduceOutput: Rules with fully formed � for a single sentence. Rules for

a particular sentence are written to a canonically named file.
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The Rule Filtering phase outputs canonical per-sentence grammar files as a

side-effect file on the distributed file system, rather than on the standard out-

put stream. On the standard output stream we output the potential target vo-

cabulary for each sentence based on the sentence-specific grammar.

LM Filtering is an optional phase to run when the n-gram language mod-

els used for decoding are too large to fit in memory. By using the potential

target language vocabulary for each sentence, we can build sentence-specific

n-gram language models which are much smaller without losing any relevant

parameters.

LM Filtering Map:

• MapInput: Each line is a line from an ARPA format LM

• MapOptions: Access to a sno ! vocabulary map from the filtering stage

(loaded into memory)

• MapOutput:

key = sno , value = t

1

· · · t
n

if every t

i

is in the target vocabulary of sno.

The Map step selects relevant n-gram lines for each sentence, while the Re-

duce step re-builds a valid ARPA LM. Just like the Rule Filtering phase, LM

Filtering produces canonically named sentence-specific language model files

as side-effects on HDFS.

LM Filtering Reduce:

• ReduceInput: All n-grams that are compliant with a single sentence’s vo-

cabulary

• ReduceOuput: Statistics over n-grams are computed and output as a header

to form a complete ARPA LM
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The Decoding phase runs translation accessing the sentence specific trans-

lation and language models and outputting an n-best list for each sentence.

Decoding Map:

• MapInput: A single sentence to translate per line with sno information

• MapOptions: Options typically passed to a decoder to run translation. We

also specify a path to a HDFS directory containing per-sentence grammars

and language models.

• MapOutput: key = sno , value = N -best list

If we are running Minimum Error Rate training (MERT), i.e., multiple

iterations of development-set decoding and MERT parameter optimization,

we perform an additional Merge phase that takes n-best list output from all

iterations performed so far and runs a trivial MapReduce to merge n-best

lists across iterations and remove duplicates. Minimum Error Rate training is

implemented as a MapReduce task as well. We do not parallelize the inner-

working of the MERT process, rather we simply allow multiple initial pa-

rameter configurations to be evaluated in parallel. In order to pass different

parameters to each MERT task, we define MERT MapReduce as follows:

MERT Map:

• MapInput: N-Best lists for MERT optimization

• MapOptions: Multiple parameter conditions for MERT. Each parameter

condition includes initial parameters to start MERT

• MapOutput:

key = one MERT parameter config.

value = all optimization data
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In the Reduce step, each Reduce task receives all the N-best list data and

parameters to run the optimization with, allowing each Reducer to run opti-

mization with different parameters.

The Decoding and MERT phases are run subsequently until the number

of new translations as a percentage of the total merged n-best list is below a

certain threshold (in our experiments, 1%). This usually leads to around 10

to 15 iterations.

Our MapReduce framework has the advantages of scaling MT to huge

training sets, thus overcoming the problem of limited per-processor memory

and CPU speed. However, a drawback is that the test data must be known

during training time (at least from the rule filtering phase onwards); thus, the

framework is only suitable for batch-processing, not for online translation.

3.5 Empirical results

3.5.1 Experiments for a French-to-English translation task

We present experiments on the Europarl French-English task as defined at

the NAACL 2006 workshop: Exploiting Parallel Texts for Statistical Ma-

chine Translation (Koehn and Monz, 2006). We compare a state-of-the-art

phrase-based system against several degrees of modeling refinement within

our system. All systems use the same initial phrase table (maximum phrase

length 7) generated by the scripts provided for the workshop, described in

(Koehn et al., 2003). The language model is also provided in the 2006 shared

task, and is built on 13 million English words using Knesser-Ney smoothing.

We evaluated our results using the BLEU metric (Papineni et al., 2002), op-

timizing the parameters on the first 500 sentences of the provided ’Develop-
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ment Set’ (identical to the 2005 development set), and testing on the provided

’Development Test Set’ (identical to the 2005 test set). The threshold for sta-

tistical significance is 0.78 BLEU points at the 95 percent confidence level as

calculated by (Zhang and Vogel, 2005).

The baseline phrase-based translation system is Pharaoh (Koehn et al.,

2004), using the default settings specified by the provided minimum-error-

rate training scripts (phrase pruning b=100, chart pruning = 1e-5, distortion

limit=4, K-Best=100). Minimum Error Rate training is run for 13 iterations

till convergence, compensating for the relatively smaller K-Best size com-

pared to our experiments.

• Baseline - Pharaoh as described above

• Lex - Phrase-decoder simulation: using only the initial lexical rules

from the phrase table, all with LHS X , and the glue rule. An additional

re-ordering rule is added for swap based re-ordering and a feature is

added to reflect this operation. Thus, adjacent phrases can swap during

translation, and the resulting combined double-phrase can again swap

with neighbors, and so on recursively, but the resulting space of possi-

ble reorderings is still a subset of that of a true phrase-based system.

• Hier - Hierarchical phrase-based MT, i.e., using only a single X non-

terminal (besides the glue nonterminal); identical filtering to (Chiang,

2005)

• Syn - Syntactic extraction using the Penn Treebank parse categories as

nonterminals; rules containing up to 4 nonterminal abstraction sites.

• SynExt - Syntactic extraction using the extended-category scheme, but

with rules only containing up to 3 nonterminal abstraction sites (the
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System #Nonterminals DevSet BLEU TestSet BLEU

Baseline - max. phrase length 7 0 31.11 30.61

Lex - max. phrase length 7 2 28.96 29.12

Hier - max. phrase length 7 2 30.89 31.01

Syn - max. phrase length 7 75 31.52 31.31

SynExt - max. phrase length 7 3900 31.73 31.41

Baseline - max. phr. length 12 0 31.16 30.90

Lex - max. phr. length 12 2 29.30 29.51

Hier - max. phr. length 12 2 30.79 30.59

SynExt - max. phr. length 12 3900 31.07 31.76

Table 3.5.1: Translation results (IBM BLEU) for each system on the Fr-En ’06 Shared Task

‘Development Set’ (used for MER parameter tuning) and ’06 ‘Development Test Set’ (identical

to previous year’s Shared Task’s test set).

restriction to 3 nonterminals was necessary due to memory require-

ments).

We also explored the impact of longer initial phrases by training another

phrase table with phrases up to length 12. The results based on the length-7

phrase table as well as the length-12 phrase table are presented in Table 3.5.1.

Our results show a statistically significant improvement of the Syn and

SynExt system over the traditional phrase-based decoding system. We also

see a clear trend towards improving translation quality as we employ richer

extraction techniques. However, our results do not show as great an improve-

ment over the baseline as Chiang (2005) reported on the Chinese-English

Tides data. We believe that this is due to the difference in language pairs,

French offers fewer opportunities to benefit from stronger and better informed
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re-ordering models.

Note also that our decoding performance with the basic Lex system

(which is essentially phrase-based) is significantly below par compared to di-

rect beam based decoding. This is likely due to the limited reordering model:

only binary swaps of two adjacent hypotheses in the chart are possible, and

the reordering feature merely counts the number of such swaps, rather than

being based on the reordering distance in terms of words as in Pharaoh’s dis-

tortion model.

3.5.2 Experiments for a Spanish-to-English translation task

We participated with our SAMT system in the MT’07 Spanish-to-English

shared task of the ACL 2007 Workshop on Statistical Machine Translation.

We trained the system on the Spanish-English in-domain training data pro-

vided for the workshop. NIST-BLEU scores are reported on the 2K sentence

development ‘dev06’ and test ‘test06’ corpora as per the workshop guidelines

(case sensitive, de-tokenized). We compare our scores against the CMU-

UKA ISL phrase-based submission, a state-of-the art phrase-based SMT sys-

tem with part-of-speech (POS) based word reordering (Paulik, Rottmann,

Niehues, Hildebrand, and Vogel, 2007).

3.5.2.1 Translation results

The SAMT system achieves a BLEU score of 32.48% on the ‘dev06’ devel-

opment corpus and 32.15% on the unseen ’test06’ corpus. This is slightly

better than the score of the CMU-UKA phrase-based system, which achieves

32.20% and 31.85% when trained and tuned under the same in-domain con-
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ditions. 1

To understand why the syntax augmented approach has limited additional

impact on the Spanish-to-English task, we consider the impact of reordering

within our phrase-based system. Table 3.5.2 shows the impact of increas-

ing reordering window length (Koehn et al., 2003) on translation quality for

the ‘dev06’ data.2 Increasing the reordering window past 2 has minimal im-

pact on translation quality, implying that most of the reordering effects across

Spanish and English are well modeled at the local or phrase level. The ben-

efit of syntax-based systems to capture long-distance reordering phenomena

based on syntactic structure seems to be of limited value for the Spanish to

English translation task.

ReOrder 1 2 3 4 POS SAMT

BLEU 31.98 32.24 32.30 32.26 32.20 32.48

Table 3.5.2: Impact of phrase-based reordering model settings compared to SAMT on the

Spanish-to-English Shared Task ‘dev06’ corpus measured by NIST-BLEU.

3.5.3 Experiments on three NIST machine translation tasks

In the following experiments, published in Zollmann et al. (2008a), we com-

pare the phrase-based MT system of the statistical MT research group at

1The CMU-UKA phrase-based workshop submission was tuned on out-of-domain data
as well.

2Variant of the CMU-UKA ISL phrase-based system without POS based reordering.
With POS-based reordering turned on, additional window-based reordering even for window
length 1 had no improvement in NIST-BLEU.
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Ch.-En. System \ %BLEU Dev (MT04) MT02 MT03 MT05 MT06 MT08 TstAvg

FULL

Phraseb. reo=4 37.5 38.0 38.9 36.5 32.2 26.2 34.4

Phraseb. reo=7 40.2 40.3 41.1 38.5 34.6 27.7 36.5

Phraseb. reo=12 41.3* 41.0 41.8 39.4 35.2 27.9 37.0

Hier. 41.6* 40.9 42.5 40.3 36.5 28.7 37.8

SAMT 41.9* 41.0 43.0 40.6 36.5 29.2 38.1

TARGET-LM

Phraseb. reo=4 35.9* 36.0 36.0 33.5 30.2 24.6 32.1

Phraseb. reo=7 38.3* 38.3 38.6 35.8 31.8 25.8 34.1

Phraseb. reo=12 39.0* 38.7 38.9 36.4 33.1 25.9 34.6

Hier. 38.1* 37.8 38.3 36.0 33.5 26.5 34.4

SAMT 39.9* 39.8 40.1 36.6 34.0 26.9 35.5

TARGET-LM, 10%TM

Phraseb. reo=12 36.4* 35.8 35.3 33.5 29.9 22.9 31.5

Hier. 36.4* 36.5 36.3 33.8 31.5 23.9 32.4

SAMT 36.5* 36.1 35.8 33.7 31.2 23.8 32.1

Table 3.5.3: Results (% case-sensitive IBM-BLEU) for Ch-En NIST-large. Dev. scores with

* indicate that the parameters of the decoder were MER-tuned for this configuration and also

used in the corresponding non-marked configurations.

Google to a hierarchical phrase-based as well as a syntax-augmented MT

system that use the same pre-processing, word alignment, phrase extraction,

parameter tuning, and post-processing modules as the phrase-based system.

The phrase-based system is based on Och and Ney (2004) but additionally

features the lexicalized distortion model of Zens and Ney (2006).
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Ar.-En. System \ %BLEU Dev (MT04) MT02 MT03 MT05 MT06 MT08 TstAvg

FULL

Phraseb. reo=4 51.7 64.3 54.5 57.8 45.9 44.2 53.3

Phraseb. reo=7 51.7* 64.5 54.3 58.2 45.9 44.0 53.4

Phraseb. reo=9 51.7 64.3 54.4 58.3 45.9 44.0 53.4

Hier. 52.0* 64.4 53.5 57.5 45.5 44.1 53.0

SAMT 52.5* 63.9 54.2 57.5 45.5 44.9 53.2

TARGET-LM

Phraseb. reo=4 49.3 61.3 51.4 53.0 42.6 40.2 49.7

Phraseb. reo=7 49.6* 61.5 51.9 53.2 42.8 40.1 49.9

Phraseb. reo=9 49.6 61.5 52.0 53.4 42.8 40.1 50.0

Hier. 49.1* 60.5 51.0 53.5 42.0 40.0 49.4

SAMT 48.3* 59.5 50.0 51.9 41.0 39.1 48.3

TARGET-LM, 10%TM

Phraseb. reo=7 47.7* 59.4 50.1 51.5 40.5 37.6 47.8

Hier. 46.7* 58.2 48.8 50.6 39.5 37.4 46.9

SAMT 45.9* 57.6 48.7 50.7 40.0 37.3 46.9

Table 3.5.4: Results (% case-sensitive IBM-BLEU) for Ar-En NIST-large. Dev. scores with

* indicate that the parameters of the decoder were MER-tuned for this configuration and also

used in the corresponding non-marked configurations.
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3.5.3.1 Chinese-English and Arabic-English

We report experiments on three data configurations. The first configuration

(Full) uses all the data (both bilingual and monolingual) data available for

the NIST 2008 large track translation task. The parallel training data com-

prises of 9.1M sentence pairs (223M Arabic words, 236M English words)

for Arabic-English and 15.4M sentence pairs (295M Chinese Words, 336M

English words) for Chinese-English. This configuration (for both Chinese-

English and Arabic-English) includes three 5-gram LMs trained on the target

side of the parallel data (549M tokens, 448M 1..5-grams), the LDC Gigaword

corpus (3.7B tokens, 2.9B 1..5-grams) and the Web 1T 5-Gram Corpus (1T

tokens, 3.8B 1..5-grams). The second configuration (TargetLM) uses a single

language model trained only on the target side of the parallel training text

to compare approaches with a relatively weaker n-gram LM. The third con-

figuration is a simulation of a low data scenario (10%TM), where only 10%

of the bilingual training data is used, with the language model from the Tar-

getLM configuration. Translation quality is automatically evaluated by the

IBM-BLEU metric (Papineni et al., 2002) (case-sensitive, using length of the

closest reference translation) on the following publicly available NIST test

corpora: MT02, MT03, MT05, MT06, MT08. We used the NIST MT04 cor-

pus as development set to train the model parameters �. For the purposes of

stable comparison across multiple test sets, we additionally report a TstAvg

score which is the average of all test set scores.3

Tables 3.5.3 and 3.5.4 show results comparing phrase-based, hierarchical

3We prefer this over taking the average over the aggregate test data to avoid artificially
generous BLEU scores due to length penalty effects resulting from e.g. being too brief in a
hard test set but compensating this by over-generating in an easy test set.
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and SAMT systems on the Chinese-English and Arabic-English large-track

NIST 2008 tasks, respectively. Our primary goal here is to evaluate the rela-

tive impact of the PSCFG methods above the phrase-based approach, and to

verify that these improvements persist with the use of of large n-gram LMs.

We also show the impact of larger reordering capability under the phrase-

based approach, providing a fair comparison to the PSCFG approaches.

Chinese-to-English configurations: We see consistent improvements

moving from phrase-based models to PSCFG models. This trend holds in

both LM configurations (Full and TargetLM) as well as the 10%TM case,

with the exception of the hierarchical system for TargetLM, which performs

slightly worse than the maximum-reordering phrase-based system.

We vary the reordering limit “reo” for the phrase-based Full and Tar-

getLM configurations and see that Chinese-to-English translation requires

significant reordering to generate fluent translations, as shown by the TstAvg

difference between phrase-based reordering limited to 4 words (34.4) and

12 words (37.0). Increasing the reordering limit beyond 12 did not yield

further improvement. Relative improvements over the most capable phrase-

based model demonstrate that PSCFG models are able to model reordering

effects more effectively than the phrase-based approach, even in the presence

of strong n-gram LMs (to aid the distortion models) and comparable reorder-

ing constraints.

Our results with hierarchical rules are consistent with those reported in

Chiang (2007), where the hierarchical system uses a reordering limit of 10

(implicit in the maximum length of the initial phrase pairs used for the con-

struction of the rules, and the decoder’s maximum source span length, above

which only the glue rule is applied) and is compared to a phrase-based system
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with a reordering limit of 7.

Arabic-to-English configurations: Neither the hierarchical nor the

SAMT system show consistent improvements over the phrase-based base-

line, outperforming the baseline on some test sets, but underperforming on

others. We believe this is due to the lack of mid- and long-range reordering

phenomena between the two languages, as evident by the minimal TstAvg

improvement the phrase-based system can achieve when increasing the re-

ordering limit from 4 words (53.3) to 9 words (53.4).

N-Gram LMs: The impact of using additional language models in con-

figuration Full instead of only a target-side LM (configuration TargetLM) is

clear; the phrase-based system improves the TstAvg score from 34.6 to 37.0

for Chinese-English and from 50.0 to 53.4 for Arabic-English. Interestingly,

the hierarchical system and SAMT benefit from the additional LMs to the

same extent, and retain their relative improvement compared to the phrase-

based system for Chinese-English.

3.5.3.2 Urdu-English

Table 3.5.5 shows results comparing phrase-based, hierarchical and SAMT

system on the Urdu-English large-track NIST 2008 task. Systems were

trained on the bilingual data provided by the NIST competition (207K sen-

tence pairs; 2.2M Urdu words / 2.1M English words) and used a n-gram LM

estimated from the English side of the parallel data (4M 1..5-grams). We see

clear improvements moving from phrase-based to hierarchy, and additional

improvements from hierarchy to syntax. As with Chinese-to-English, longer-

distance reordering plays an important role when translating from Urdu to

English (the phrase-based system is able to improve the test score from 18.1
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System \ %BLEU Dev MT08

Phr.b. reo=4 12.8 18.1

Phr.b. reo=7 14.2 19.9

Phr.b. reo=10 14.8* 20.2

Phr.b. reo=12 15.0 20.1

Hier. 16.0* 22.1

SAMT 16.1* 22.6

Table 3.5.5: Translation quality (% case-sensitive IBM-BLEU) for Urdu-English NIST-large.

We mark dev. scores with * to indicate that the parameters of the corresponding decoder were

MER-tuned for this configuration.

to 20.2), and PSCFGs seem to be able to take this reordering better into ac-

count than the phrasal distance-based and lexical-reordering models.

3.6 Related work

There have been several previous proposals of using syntax to aid statistical

machine translation. The data-oriented translation (DOT) model of Poutsma

(2000) is an extension of data-oriented parsing paradigm (Scha, 1990), in

which a probabilistic tree-substitution grammar is inferred from a treebank,

to the case of a parallel treebank of pairs of source and target language phrase

structure trees with linked sub-trees, from which a probabilistic synchronous

tree-substitution grammar (PSTSG) is inferred. The task of translation then

amounts to computing the most probable source-target parse-tree pair with

the test sentence as its source yield, which is tractable, or computing the most

probable target sentence by marginalizing over all tree pairs with identical
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yields, which is intractable but can be approximated by sampling.

Yamada and Knight (2001) present a noisy-channel model transforming a

target language phrase-structure parse tree into a source language sentence by

applying the following stochastic operations on each tree node: child reorder-

ing, word insertion, and leaf node translation. The model can be cast as a top-

down (also called root-to-frontier) tree transducer (Knight and Graehl, 2005),

and is equivalent to a probabilistic context-free grammar model. Therefore,

decoding amounts to CYK parsing, which will find the most probable target

tree for a given source sentence in time cubic in sentence length (Yamada and

Knight, 2002).4

The model of Galley et al. (2004) uses the formalism of tree-to-string

transducers to model the transformation of a (target) phrase-structure tree into

a (source) sentence, resulting in an efficient (linear in the number of parse

tree nodes) algorithm to learn syntactic translation rules from data. Trans-

lation can thus be modeled in the traditional noisy-channel SMT approach

(Brown, Cocke, Pietra, Pietra, Jelinek, Lafferty, Mercer, and Roossin, 1990)

of maximizing the probability of the target tree multiplied by the probability

of the source sentence given the target tree. The case of summing over trees to

compute the most probable translation was considered for a scenario without

language model by May and Knight (2006).

In work developed in parallel to ours, Galley, Graehl, Knight, Marcu,

DeNeefe, Wang, and Thayer (2006) extend the work of Galley et al. (2004)

to allow context into the rules, resulting in grammar rules of a restricted class

of PSTSGs for which each rule’s right-hand-side is flat (as in context-free

4The problem of finding the most probable target sentence, i.e., marginalizing over target
trees representing the same translation, was not considered, but cf. also the next paragraph.
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grammars) in the source part and a tree (as in tree-substitution grammars) in

the target part. The model results in significant improvement in translation

quality over the one of Galley et al. (2004), and in follow-up work, Marcu,

Wang, Echihabi, and Knight (2006) manage to beat a phrase-based baseline

with an improved model.

Another syntax-based model developed in parallel was the one of Liu,

Liu, and Lin (2006), which extracts tree-to-string (i.e., source-side trees and

flat target sides) translation rules from a parallel corpus with parsed source

sentences. For translation, the source sentence is parsed with the same (ex-

ternal) parser used to parse the training source sentences, and then the re-

sulting tree fragments are pattern-matched against the translation rules. The

decoding algorithm is thus linear in sentence length; however, the system is

inherently prone to errors in the parsing of the training as well as the test sen-

tences, as the translation of a training corpus phrase can only be applied if the

source subtree it spans during training is identical to the one it spans during

translation. Mi, Huang, and Liu (2008) and Mi and Huang (2008) solve this

problem with the efficient use of packed forests to represent alternative test

sentence parses and training source sentence parses, respectively, achieving

outperformance of phrase-based as well as hierarchical MT.

The work of Lavie, Parlikar, and Ambati (2008) follows Poutsma (2000)

in using phrase-structure parse trees for both source and target training sen-

tences. They provide a novel algorithm to align the source and target tree

nodes, and then extract syntactic constituents from the training sentence pairs,

resulting in a syntax-annotated phrase-table and synchronous context-free

grammar rules.

Carreras and Collins (2009) present an approach to syntax-based MT
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based on a variant tree-adjoining grammars (TAG) allowing for flexible re-

ordering operations. Their formalism also enables direct integration of lexi-

calized syntactic language models. Hypothesis selection proceeds according

to a log-linear combination of the models used in phrase-based SMT, with

the addition of a syntactic language model and a dependency-based transla-

tion model, which is a discriminatively trained global linear model.

Hybrids of syntax-based and non-syntactic models are gaining popular-

ity as well. Originally employed via N -best list system combination in MT

evaluations, hybrid decoders have been proposed in recent work. Liu, Mi,

Feng, and Liu (2009) devise a decoder integrating hierarchical phrase-based

and tree-to-string models. Hanneman and Lavie (2009) present a hybrid of

phrase-based and syntactic MT. Gimpel and Smith (2009) give a feature-

based model that uses dependency syntax and phrases.

3.7 Conclusions and contributions

We presented syntax-augmented machine translation (SAMT), a novel sta-

tistical MT model over synchronous context-free grammars with multiple

nonterminals. This was the first syntax-based MT system to achieve an

improvement over phrase-based MT (Zollmann and Venugopal, 2006). We

showed how to parallelize the system under the MapReduce paradigm, and

reported experimental results comparing SAMT to phrase-based and hierar-

chical phrase-based MT for multiple language pairs. We reported improve-

ments over these baselines for French-to-English, Chinese-to-English, and

Urdu-to-English, but failed to obtain improvements for Spanish-to-English

and Arabic-to-English. We draw the conclusion that SAMT (as well as hier-

archical phrase-based MT) fails to outperform phrase-based MT for language
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pairs that have mainly short-range word reordering. Indeed, Birch, Blunsom,

and Osborne (2009) thoroughly substantiate this hypothesis for Arabic-to-

English and Chinese-to-English by grouping the test set sentences into classes

with low-range, mid-range, and high-range reordering, and then comparing

phrase-based and hierarchical phrase-based performance, with the conclu-

sion that phrase-based systems perform relatively better for low-range sen-

tences, hierarchical phrase-based perform relatively better for medium-range

sentences, and neither of the systems deal adequately with longer-range re-

ordering.
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CHAPTER 4

SAMT Extensions and Variations

In this chapter, we propose several improvements to the hierarchical phrase-

based MT model of Chiang (2005) and its syntax-based extension introduced

in Chapter 3. We add a source span variance model that, for each rule uti-

lized in a probabilistic synchronous context-free grammar (PSCFG) deriva-

tion, gives a confidence estimate in the rule based on the number of source

words spanned by the rule and its substituted child rules, with the distributions

of these source span sizes estimated during training (i.e., rule extraction) time.

We further propose different methods of combining hierarchical and

syntax-based PSCFG models, by merging the grammars as well as by in-

terpolating the translation models.

Finally, we compare syntax-augmented MT, which extracts rules based

on target-side syntax, to a corresponding variant based on source-side syntax,

and experiment with a model extension based on source and target syntax.

We evaluate the different models on the NIST large resource Chinese-to-

English translation task. Most of this work was published in Zollmann and

Vogel (2010).
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4.1 Related work

Chiang et al. (2008) introduce structural distortion features into a hierarchical

phrase-based model, aimed at modeling nonterminal reordering given source

span length, by estimating for each possible source span length ` a Bernoulli

distribution p(R|`) where R takes value one if reordering takes place and

zero otherwise. Maximum-likelihood estimation of the distribution amounts

to simply counting the relative frequency of nonterminal reorderings over

all extracted rule instances that incurred a substitution of span length `. In

a more fine-grained approach they add a separate binary feature hR, `i for

each combination of reordering truth value R and span length ` (where all

` � 10 are merged into a single value), and then tune the feature weights

discriminatively on a development set. Our approach differs from Chiang

et al. (2008) in that we estimate one source span length distribution for each

substitution site of each grammar rule, resulting in unique distributions for

each rule, estimated from all instances of the rule in the training data. This

enables our model to condition reordering range on the individual rules used

in a derivation, and even allows to distinguish between two rules r

1

and r

2

that both reorder arguments with identical mean span lengths `, but where

the span lengths encountered in extracted instances of r
1

are all close to `,

whereas span length instances for r
2

vary widely.

Chen and Eisele (2010) propose a hybrid approach between hierarchical

phrase-based MT and a rule based MT system, reporting improvement over

each individual model on an English-to-German translation task. Essentially,

the rule based system is converted to a single-nonterminal PSCFG, and hence

can be combined with the hierarchical model, another single-nonterminal

PSCFG, by taking the union of the rule sets and concatenating the feature
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vectors. For rules that only exist in one of the two grammars, we assign zero-

values for all features corresponding to the missing grammar. We face the

challenge of combining the single-nonterminal hierarchical grammar with a

multi-nonterminal syntax-augmented grammar. Thus one hierarchical rule

typically corresponds to many syntax-augmented rules.

Chiang (2010) augments a hierarchical phrase-based MT model with bi-

nary syntax features representing the source and target syntactic constituents

of a given rule’s instantiations during training, thus taking source and tar-

get syntax into account while avoiding the data-sparseness and decoding-

complexity problems of multi-nonterminal PSCFG models. In our approach,

the source- and target-side syntax directly determines the grammar, result-

ing in a nonterminal set derived from the labels underlying the source- and

target-language treebanks.

4.2 Modeling Source Span Length of PSCFG Rule Substi-

tution Sites

Extracting a rule with k right-hand-side nonterminal pairs, i.e., substitution

sites, (from now on called order-k rule) involves k + 1 phrase pairs: one

phrase pair used as initial rule and k phrase pairs that are sub phrase pairs of

the first and replaced by nonterminal pairs. Conversely, during translation,

applying this rule amounts to combining k hypotheses from k different chart

cells, each represented by a source span and a nonterminal, to form a new

hypothesis and file it into a chart cell. Intuitively, we want the source span

lengths of these k + 1 chart cells to be close to the source side lengths of the

k + 1 phrase pairs from the training corpus that were involved in extracting
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the rule. Of course, each rule generally was extracted from multiple training

corpus locations, with different involved phrase pairs of different lengths. We

therefore model k + 1 source span length distributions for each order-k rule

in the grammar.

Ignoring the discreteness of source span length for the sake of easier es-

timation, we assume the distribution to be log-normal. This is motivated by

the fact that source span length is positive and that we expect its deviation

between instances of the same rule to be greater for long phrase pairs than for

short ones.

We can now add ˆ

k + 1 features to the translation framework, where ˆ

k

is the maximum number of PSCFG rule nonterminal pairs, in our case two.

Each feature is computed during translation time. Ideally, it should represent

the probability of the hypothesized rule given the respective chart cell span

length. However, as each competing rule underlies a different distribution,

this would require a Bayesian setting, in which priors over distributions are

specified. In this work we take a simpler approach: Based on the rule’s span

distribution, we compute the probability that a span length no likelier than the

one encountered was generated from the distribution. This probability thus

yields a confidence estimate for the rule. More formally, let µ be the mean and

� the standard deviation of the logarithm of the span length random variable

X concerned, and let x be the span length encountered during decoding. Then

the computed confidence estimate is given by

P (| ln(X)� µ| � | ln(x)� µ|) = 2 ⇤ Z (�(| ln(x)� µ|)/�)

where Z is the cumulative density function of the normal distribution with

mean zero and variance one.

The confidence estimate is one if the encountered span length is equal to
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the mean of the distribution, and decreases as the encountered span length

deviates further from the mean. The severity of that decline is determined

by the distribution variance: the higher the variance, the less a deviation from

the mean is penalized. Note that this also ameliorates the problem of sparsity:

Rare events result in high variance distributions, leading to low penalties and

thus small discriminative power of this feature.

Mean and variance of log source span length are sufficient statistics of the

log-normal distribution. As we extract rules in a distributed fashion, we use

a straightforward parallelization of the online algorithm of Welford (1962)

and its improvement by West (1979) to compute the sample variance over

all instances of a rule. In the case of single-occurrence events, the sample

variance would be infinite. We avoid this issue by using add-0.01 smoothing.

4.3 Merging a Hierarchical and a Syntax-Based Model

While syntax-based grammars allow for more refined statistical models and

guide the search by constraining substitution possibilities in a grammar

derivation, grammar sizes tend to be much greater than for hierarchical gram-

mars. Therefore the average occurrence count of a syntax rule is much lower

than that of a hierarchical rule, and thus estimated probabilities are less reli-

able.

We propose to augment the syntax-based “rule given source side” and

“rule given target side” distributions by hierarchical counterparts obtained by

marginalizing over the left-hand-side and right-hand-side rule nonterminals.

For example, the hierarchical equivalent of the “rule given source side” prob-

ability is obtained by summing occurrence counts over all rules that have the
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same source and target terminals and substitution positions but possibly differ

in the left- and/or right-hand side nonterminal labels, divided by the sum of

occurrence counts of all rules that have the same source side terminals and

source side substitution positions. Similarly, an alternative rareness penalty

based on the combined frequency of all rules with the same terminals and

substitution positions is obtained.

Using these syntax and hierarchical features side by side amounts to in-

terpolation of the respective probability models in log-space, with minimum-

error-rate training (MERT) determining the optimal interpolation coeffi-

cient. We also include respective models interpolated with coefficient .5 in

probability-space as additional features to the system.

We further experiment with adding hierarchical rules separately to the

syntax-augmented grammar, as proposed in Zollmann et al. (2008a), with the

respective syntax-specific features set to zero. A ‘hierarchical-indicator’ fea-

ture is added to all rules, which is one for hierarchical rules and zero for syn-

tax rules, allowing the joint model to trade off hierarchical against syntactic

rules. During translation, the hierarchical and syntax worlds are bridged by

glue rules, which allow monotonic concatenation of hierarchical and syntactic

partial sentence hypotheses. We separate the glue feature used in hierarchi-

cal and syntax-augmented translation into a glue feature that only fires when

a hierarchical rule is glued, and a distinct glue feature firing when gluing a

syntax-augmented rule.
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4.4 Extension of SAMT to a bilingually parsed corpus

Syntax-based MT models have been proposed both based on target-side syn-

tactic annotations (Galley et al., 2004; Zollmann and Venugopal, 2006) as

well source-side annotations (Liu et al., 2006). Syntactic annotations for both

source and target language are available for popular language pairs such as

Chinese-English. In this case, our grammar extraction procedure can be easily

extended to impose both source and target constraints on the eligible substi-

tutions simultaneously.

Let N
f

be the nonterminal label that would be assigned to a given initial

rule when utilizing the source-side parse tree, and N

e

the assigned label ac-

cording to the target-side parse. Then our bilingual model assigns ‘N
f

+N

e

’

to the initial rule. The extraction of complex rules proceeds as before. The

number of nonterminals in this model, based on a source-model label set of

size s and a target label set of size t, is thus given by st.

4.5 Experiments

We evaluate our approaches by comparing translation quality according to the

IBM-BLEU (Papineni et al., 2002) metric on the NIST Chinese-to-English

translation task using MT04 as development set to train the model parameters

�, and MT05, MT06 and MT08 as test sets.

We perform PSCFG rule extraction and decoding using our own imple-

mentations for the hierarchical and syntax-augmented grammars. For all sys-

tems, we use a decoding-time reordering limit of 15 source words, and corre-

spondingly extract rules from initial phrase pairs of maximum source length

15. All rules have at most two nonterminal symbols, which must be non-
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consecutive on the source side, and rules must contain at least one source-side

terminal symbol.

The parallel training data comprises of 9.6M sentence pairs (206M Chi-

nese Words, 228M English words). The source and target language parses for

the syntax-augmented grammar were generated by the Stanford parser (Klein

and Manning, 2003). From manual inspection we found the quality of the

parses, especially regarding constituents of small (leq5) and medium (leq15)

length spans, which are most crucial for our syntax-augmented grammars,

very accurate.

Dev (MT04) MT05 MT06 MT08 TestAvg Time

Hierarchical 38.63 36.51 33.26 25.77 31.85 14.3

Hier+span 39.03 36.44 33.29 26.26 32.00 16.7

Syntax 39.17 37.17 33.87 26.81 32.62 59

Syntax+hiermodels 39.61 37.74 34.30 27.30 33.11 68.4

Syntax+hiermodels+hierrules 39.69 37.56 34.66 26.93 33.05 34.6

Syntax+span+hiermodels+hierrules 39.81 38.02 34.50 27.41 33.31 39.6

Syntax/src+span+hiermodels+hierrules 39.62 37.25 33.99 26.44 32.56 20.1

Syntax/src&tgt+span+hiermodels+hierrules 39.15 36.92 33.70 26.24 32.29 17.5

Table 4.5.1: Translation quality in % case-insensitive IBM-BLEU (i.e., brevity penalty based

on closest reference length) for different systems on Chinese-English NIST-large translation

tasks. ‘TestAvg’ shows the average score over the three test sets. ‘Time’ is the average decoding

time per sentence in seconds on one CPU.

The results are given in Table 4.5.1. The source span models (indicated by

+span) achieve small test set improvements of 0.15 BLEU points on average

for the hierarchical and 0.26 BLEU points for the syntax-augmented system,

but these are not statistically significant.
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Augmenting a syntax-augmented grammar with hierarchical features

(“Syntax+hiermodels”) results in average test set improvements of 0.5 BLEU

points. These improvements are not statistically significant either, but per-

sist across all three test sets. This demonstrates the benefit of more reliable

feature estimation. Further augmenting the hierarchical rules to the grammar

(“Syntax+hiermodels+hierrules”) does not yield additional improvements.

The use of bilingual syntactic parses (‘Syntax/src&tgt’) turns out detri-

mental to translation quality. We assume this is due to the huge number of

nonterminals in these grammars and the great amount of badly-estimated low-

occurrence-count rules, as well as an increasing number of blocked syntactic

derivations due to nonterminal mismatches. Perhaps merging this grammar

with a regular syntax-augmented grammar could yield better results. The

problem of nonterminal mismatches is also investigated in the thesis work

proposed by Hanneman (2011).

We also experimented with a source-parse based model (‘Syntax/src’).

While not being able to match translation quality of its target-based counter-

part, the model still outperforms the hierarchical system on all test sets.

TestAvg BLEU LM cost #Glues Total #rules #Target words

Hier+span 32.00 52.5 9.03 22.2 27.5

Syntax+span+hiermodels+hierrules 33.31 55.4 7.19 21.4 28.5

Syntax/src+span+hiermodels+hierrules 32.56 53.2 7.13 22.6 27.6

Syntax/src&tgt+span+hiermodels+hierrules 32.29 54.3 7.46 21.2 27.7

Table 4.5.2: Mean (taken over all MT08 test sentences) negative log base 10 language model

probabilities, number of glue rule applications, number of total rule applications, and number

of produced target-language words for different systems on Chinese-English NIST-large trans-

lation tasks.
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4.5.1 Analysis of grammar rule, glue rule, and language model reliance

Table 4.5.2 shows the average language model costs, number of glue rule ap-

plications, number of total rule applications, and number of produced target-

language words for the model-best hierarchical, target-syntax-augmented,

source-syntax-augmented and source-and-target-syntax-augmented outputs,

computed over all MT08 test sentences.1 Hierarchical MT, despite having the

lowest translation score, has the lowest language model costs (52.5 on aver-

age) assigned to its translations. Thus, a sentence from the hierarchical model

tends to be considered about 800 times as probable (1055.4�52.5 ⇡ 794.3) as

a (target-side-)syntax-model sentence by the language model. The other two

syntax models are somewhere in between. The many-nonterminal PSCFG

underlying the syntax models is thus much stronger than the hierarchical

grammar in pushing good derivations despite the “disapproval” of the my-

opic 5-gram language model (note that all the grammars are weakly equiva-

lent, i.e., can produce the same derivations).

With refined grammars, the need to resort to glue operations is diminished

compared to the hierarchical grammar. This can be seen more clearly when

considering the total number of rules (glue and regular grammar rules) per

derivation: 9.03 for the hierarchical model vs. 7.19 to 7.46 for the syntax-

augmented models. The syntax rules are specific enough to allow more accu-

rate application to longer-range sentence structures than the purely hierarchi-

cal rules, thus leading to a smaller total number of rule applications and less

1We refrain from analysis of the corresponding feature weights, as these are not directly
comparable across systems even when normalized by L1 or L2 norm, since the relative
weight assigned to a given feature can be arbitrarily diminished by increasing the weights
of two other negatively correlated features without diminishing the actual contribution of the
former feature to the model.
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gluing.

The average number of generated target words is highest for the target-

syntax system, most likely due to it being the best performing system, de-

creasing the risk of incurring penalties from generating wrong translations.2

4.6 Conclusions and Contributions

We proposed several improvements to hierarchical phrase-based MT and

syntax-augmented MT. We added a source span length model that, for each

rule utilized in a probabilistic synchronous context-free grammar (PSCFG)

derivation, gives a confidence estimate in the rule based on the number of

source words spanned by the rule and its substituted child rules, result-

ing in small improvements for hierarchical phrase-based as well as syntax-

augmented MT.

We further demonstrated the utility of combining hierarchical and syntax-

based PSCFG models and grammars.

Finally, we compared the original SAMT, which extracts rules based on

target-side syntax, to a corresponding variant based on source-side syntax,

showing that target syntax is more beneficial, and unsuccessfully experi-

mented with a model extension that jointly takes source and target syntax

into account. We believe that using target syntax is superior to using soure

syntax because translation is inherently asymmetric task: target side con-

straints directly enforce grammaticality of the translation output, while source

2The worse a statistical machine translation system tuned towards an automatic evaluation
metric such as BLEU performs, the briefer its output translations tend to become, as its false
guesses become more costly than the penalty incurred for being too brief.
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side constraints yield synchronous grammars that discriminate based on input

sentence structure, which is a less explicit way of achieving good translations.

The challenge of moving from monolingual syntactic structures to bilingual

ones is sparsity: the number of nonterminals is now the product of the num-

ber of source labels and the number of target labels, and thus the grammar

size explodes. We will revisit this problem and propose a solution to it in

Chapter 6.
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CHAPTER 5

Widening the Pipeline: Grammar Learning from

N-best Distributions of Parses and Alignments

So far we have been concerned with learning a grammar from sentence pairs

annotated with word alignments and target parses. Even though these align-

ments and parses are usually not human-generated, but instead come from a

separate module in the pipeline that is prone to errors, we have so far assumed

them to be the truth. We will now lift that assumption and treat alignments and

parses as hidden variables instead. Instead of providing a single integrated

model, our aim is to retain the pipeline of self-contained modules responsible

for alignment, parsing and extraction. Most of the work in this chapter has

been published in (Venugopal, Zollmann, Smith, and Vogel, 2008; Zollmann

et al., 2008b). All of the work is an original thesis contribution.

5.1 Motivation

Current phrase-based and hierarchically structured systems rely on the output

of a sequential “pipeline” of maximum a posteriori inference steps to iden-

tify hidden translation structure and estimate the parameters of their transla-

tion models. The first step in this pipeline typically involves learning word-

alignments (Brown et al., 1993) over parallel sentence aligned training data.
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The outputs of this step are the model’s most probable word-to-word corre-

spondences within each parallel sentence pair. These alignments are used as

the input to a phrase extraction step, where multi-word phrase pairs are iden-

tified and scored (with multiple features) based on statistics computed across

the training data. The most successful methods extract phrases that adhere

to heuristic constraints (Koehn et al., 2003; Och and Ney, 2004). Thus, er-

rors made within the single-best alignment are propagated (1) to the iden-

tification of phrases, since errors in the alignment affect which phrases are

extracted, and (2) to the estimation of phrase weights, since each extracted

phrase is counted as evidence for relative frequency estimates. Methods like

those described in Wu (1997), Marcu and Wong (2002), and DeNero, Gillick,

Zhang, and Klein (2006) address this problem by jointly modeling alignment

and phrase identification, yet have not achieved the same empirical results as

surface heuristic based methods, or require substantially more computational

effort to train.

In this work we describe an approach that “widens” the pipeline, rather

than performing two steps jointly. We present N -best alignments and parses

to the downstream phrase extraction algorithm and define a probability distri-

bution over these alternatives to generate expected, possibly fractional counts

for the extracted translation rules, under that distribution. These fractional

counts are then used when assigning weights to rules.

This technique is directly applicable to both flat and hierarchically-

structured translation models. In syntax-based translation, single-best target

language parse trees (given by a statistical parser) are used to assign syntactic

categories within each rule, and to constrain the combination of those rules.

Decisions made during the parsing step of the pipeline affect the choice of
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nonterminals used for each rule in the PSCFG. Presenting N -best parse alter-

natives to the rule extraction process allows the identification of more diverse

structures for use during translation and, perhaps, better generalization abil-

ity.

The remainder of this chapter is structured as follows: In Section 5.2, we

present a method of integrating PSCFG rules extracted from N -best align-

ments and parses and allow the posterior fractional counts to influence the rule

weights. In Section 5.3, we show how the widened pipeline improves trans-

lation performance on the limited-domain domain speech translation task in-

troduced in Chapter 3, the IWSLT Chinese-English data track (Paul, 2006).

Section 5.4 summarizes our contributions.

5.2 N -best evidence

The SAMT rule extraction procedure (cf. Section 3.1) relies on high quality

word alignments and parses. The quality of the alignments affects the set of

phrases that can be identified by the heuristics in (Koehn et al., 2003). Im-

proving or diversifying the set of initial phrases also affects the rules with

nonterminals that are identified via the procedure described in Chapter 3.

Since PSCFG systems rely on rules with nonterminal symbols to represent

reordering operations, the set of these initial phrases has the potential to have

a profound impact on translation quality. The quality of the parses affects

the syntactic categories assigned to the left-hand-side and nonterminal sym-

bols of each rule. These categories play an important role in constraining the

decoding process to grammatically feasible target parse trees.

Several recent studies explore the relationship between the quality of

71



the initial models in the “pipeline” and final translation quality. Quirk and

Corston-Oliver (2006) show improvements in translation quality when the

quality of parsing is improved by adding additional training data within the

“treelet” paradigm introduced by Quirk, Menezes, and Cherry (2005). Koehn

et al. (2003) show that translation quality in a phrase-based system does not

vary significantly when increasing the complexity of the model used for align-

ment (ranging from IBM model 1 through 4), but that increasing the amount

of parallel training data does improve alignment quality. Ganchev, Graca,

and Taskar (2008) demonstrate significant improvements in both alignment

quality (as measured by alignment error rate (Och and Ney, 2003)) and trans-

lation quality when using a posterior decoding method to select alignments

(as opposed to the single-best Viterbi alignment). Xue, Li, Zhao, Yang, and

Li (2006) apply n-best alignments to improve phrase-based translation, while

Dyer, Muresan, and Resnik (2008b) and Mi et al. (2008) widen the pipeline by

considering word-lattice and forest-based translation, respectively, rather than

translating the single-best hypothesis from a previous stage in the pipeline.

Our approach considers alignment and parse quality for a fixed training

data size and model complexity. The alignment model and the parser are ca-

pable of generating N -best alternative candidates along with corresponding

probabilities for each candidate. Informal examination of the highest proba-

bility alignment and target parse tree reveals two important arguments in fa-

vor of integrating N -best hypotheses into the rule extraction process. Firstly,

there are often multiple reasonable alignments and parses that can model the

bilingual sentence pair and the target sentence. We can expect that rules ex-

tracted from more diverse, correct evidence can improve translation quality

on new sentences, since more (good) rules will be extracted. Secondly, where

there is a high degree of agreement across each alternative in the N -best lists,
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the remaining differences between alternatives are often the source of error

or ambiguity.

Attempts to reduce the use (in decoding) of rules extracted from sections

of the alignment and parse that are not consistent with other alternatives could

reduce errors made during translation. Put another way, the more complete

hypotheses a word-link or constituent appears in, and the more probable those

hypotheses, the more we should trust rules that use these links.

Our approach toward the integration of N -best evidence into the grammar

construction process allows us to take advantage of the diversity found in the

N best alternatives, while reducing the negative impact of errors made in

these alternatives.

5.2.1 Counting from N -best lists

In this work we propose extraction of complex rules over N -best alignments

and N

0-best parses, making use of probability distributions over these alter-

natives to assign fractional posterior counts to each extracted rule.

Taking the alignment N -best list to define a posterior distribution over

alignments and the parse N 0-best list to define a posterior over parse trees, we

can estimate the posterior probability of each rule that might be extracted for

each (alignment, tree) pair. Assuming that the alignment module gives align-

ments a
1

, ..., a

N

, with posterior probabilities p(a
1

| e, f), ..., p(a
N

| e, f), we

approximate the posterior by renormalizing:

p̂(a

i

| e, f) = p(a

i

| e, f)
,

NX

j=1

p(a

j

| e, f) (5.2.1)

The same is applied to the parser’s N 0-best parses, ⇡
1

, ..., ⇡

N

0 .

Given a single alignment-parse pair, we can extract rules as described
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in Section 3.1. Our approach is to extract rules from the cross-product

{a
1

, ..., a

N

} ⇥ {⇡
1

, ..., ⇡

N

0}, incrementing the partial count of each rule ex-

tracted by p̂(a

i

) · p̂(⇡
j

). A rule instance r’s total count for the sentence pair

hf, ei is:

NX

i=1

N

0X

j=1

p̂(a

i

| e, f) · p̂(⇡
j

| e) ·

8
>>><

>>>:

1 if r can be extracted from

e, f , a
i

, ⇡
j

0 otherwise

(5.2.2)

If r is extracted at multiple places in the sentence pair, all these instances’

counts are added up. In practice, Formula 5.2.2 can be computed more ef-

ficiently through structure-sharing. Note that if N = N

0
= 1, this counting

method is equivalent to the original counting method.

Note that GIZA++ (Och and Ney, 2003) can infer the N -best word align-

ments under IBM Model 4 and the Charniak parser (Charniak, 2000) outputs

its N 0-best parses, with their associated probabilities.

Instead of using the simple counts for rules given the derivation inferred

using the maximum a posteriori estimated alignment and parse (a
1

, ⇡

1

), we

now use the expected counts under the approximate posterior. These pos-

teriors encode (in a principled way) a measurement of confidence in sub-

structures used to generate each rule. Possible rule instances supported by

more and more likely alignments and parses should, intuitively, receive higher

counts (approaching 1 as certainty increases, supported by more and higher-

probability alternatives), while rule instances that rely on low probability or

fewer alignments and parses will get lower counts (approaching 0 as cer-

tainty increases). We will give examples of such rules from real data in Sec-

tion 5.3.3.
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5.2.2 Refined alignments

Work by Och and Ney (2004) and Koehn et al. (2003) demonstrates the value

of generating word alignments in both source-to-target and target-to-source

directions in order to facilitate the extraction of phrases with many-to-many

word relationships. We follow Koehn et al. (2003) in generating a refined

bidirectional alignment using the heuristic algorithm “grow-diag-final-and”

described in that work. Since we require N -best alignments, we first extract

N -best alignments in each direction, and then perform the refinement tech-

nique to all N2 bidirectional alignment pairs. The resulting alignments are

assigned the probability (p

f

.p

r

)

↵ where p
f

is the candidate probability for the

forward alignment and p

r

is the candidate probability to the reverse align-

ment.

We then remove any duplicate refined alignments (the refined alignment

with the highest probability is retained) that came about due to the refinement

process. Finally, we select the top N alignments from this set of refined

alignments.

The parameter ↵ controls the entropy of the resulting (normalized) distri-

bution over candidate alignments (note, however, that the order of the ranked

sequence of alignments is not affected). Higher values of ↵ make the distri-

bution more peaked (affecting the estimation of features on rules from these

alignments), while smaller values make the distribution more uniform. A

more peaked distribution favors rules from the top alignments, while a more

uniform one gives rules from lower performing alignments more of a chance

to participate in translation. As a special case, ↵ = 1/2 effectively uses the

geometric mean of forward and reverse alignment weights. We can also use

this same technique to control the distribution over parses.
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5.3 Translation results

5.3.1 Experimental setup

We present results on the IWSLT 2007 and 2008 Chinese-to-English trans-

lation task, based on the full BTEC corpus of travel expressions with 120K

parallel sentences (906K source words and 1.2M target words) as well as the

evaluation corpora from the evaluation years preceding 2007. The develop-

ment data consists of 489 sentences (average length of 10.6 words) from the

2006 evaluation, the 2007 test set contains 489 sentence (average length of

6.47 words) sentences and the 2008 test set contains 507 sentences (aver-

age length of 5.59 words). Word alignment was trained using the GIZA++

toolkit, and N -best parses generated by the Charniak (2000) parser, without

additional re-ranking.1 N -best alignments were generated from source to tar-

get and target to source, refined as described above.

Initial phrases of up to length 10 were identified using the heuristics pro-

posed by Koehn et al. (2003). Rules with up to 2 nonterminals are extracted

using our SAMT toolkit (cf. Chapter 3), modified to handle N -best align-

ments and parses and posterior counting. Note that lexical weights (Koehn

et al., 2003) as described above are assigned to � based on “single-best” word

alignments. Rules that receive zero probability value for their lexical weights

are immediately discarded, since they would then have a prohibitively high

cost when used during translation. Rules extracted from single-best evidence

as well as N best evidence can be discarded in this way.

The n-gram language model is trained on the target side of the parallel

1Reranking might be used to change estimates of p̂(⌧i), but would not change the set of
rules extracted—only the fractional counts.
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training corpus2 and translation experiments use the decoder and MER trainer

available in the SAMT toolkit. We use the cube-pruning option (Chiang,

2007) in these experiments.

5.3.2 Cumulative (N,N

0
)-best

We measure translation quality using the mixed-cased IBM-BLEU (Papineni

et al., 2002) metric as we vary the size of N and N

0 for alignments and parses

respectively. Each value of N implies that the first N alternatives have been

considered when building the grammar. For each grammar we also track the

number of rules relevant for the first sentence in the IWSLT 2007 test set

(grammars are subsampled on a per-sentence basis to keep memory require-

ments low during decoding). We also note the number of seconds required

to translate each test set. Due to time and resource constraints we limit our

evaluation to varying the number of alignments and parses separately, and we

limit N 0 to 10 (due to the significant increase in decoding time that results

from adding more nonterminal labels to the grammar).

As noted above, many rules extracted based on N -best alignments cannot

participate in the decoding process because lexical weight features can have

costs of infinity if the underlying word based models p̂(s|t) and p̂(t|s), esti-

mated based on “single-best” alignments, yield zero probabilities. Smoothing

these models alleviates the problem, but does not fix it at its root. In the spirit

of softening our pipelined decisions, we create lexical weight features based

on the IBM Model 4 tables output by GIZA++ at the end of its training, in-

stead of single-best alignment relative frequencies. Using these IBM Model

2As BTEC is a very domain-specific corpus, training the language model on large avail-
able monolingual corpora (e.g., from the news-domain) is of limited utility.
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4 weights allows a larger number of rules to be added to the grammar since

more rules have non-zero lexical weights.

We also investigate the impact of the shape N -best probability distribution

used to estimate features � by varying ↵.

N -best alignments. Table 5.3.1 shows translation results on the IWSLT

translation task for the Development (IWSLT 2006) and two test corpora

(IWSLT 2007 and 2008) using the Syntax Augmented grammar. In this table

we vary the number of alternative alignments, consider first-best (1), 5, 10

and 50 best alternatives. We also experiment with lexical weights from the

first-best alignment (lex = 1st) and directly from IBM Model 4 (lex = m4),

while ↵ controls the entropy of the normalized distribution over alternative

alignments.

For the Syntax-Augmented grammar, using lex = m4 slightly increases

the number of rules in the grammar, but only adds benefit for the 2007 test

set. We continue to use lex = m4 for the remaining experiments since we do

not want to discard rules based on the lexical weights. Increasing N = 1 to

N = 5 brings significant improvements in translation quality on all 3 evalu-

ation corpora, while increasing N further to N = 10 and N = 50 retain the

improvements but at the cost of a significantly larger grammar and decoding

times. Varying ↵ to modify the entropy of the alignment distribution does not

seem to have a consistent impact on translation quality; some test sets show

improvements while others suffer.

N -best alignments (hierarchical grammar). Similar results with the

purely hierarchical grammar are shown in Table 5.3.2. We see clear improve-
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System # Rules (1 sent.) Dev 2007 2008 2007 Time (s) 2008 Time (s)

N = 1 (lex=1st) 400K 0.309 0.355 0.453 8108 8367

N = 1 (↵ = 1 lex=m4) 420K 0.301 0.361 0.440 8024 8250

N = 5 (↵ = 1 lex=m4) 680K 0.322 0.374 0.470 15376 15577

N = 10 (↵ = 1 lex=m4) 900K 0.313 0.382 0.467 19298 19469

N = 50 (↵ = 1 lex=m4) 1500K 0.316 0.370 0.478 29500 30894

N = 10 (↵ = 0.5 lex=m4) 900K 0.315 0.395 0.477 20398 20118

N = 50 (↵ = 0.5 lex=m4) 1500K 0.317 0.373 0.477 33682 34760

N = 10 (↵ = 2 lex=m4) 900K 0.313 0.375 0.464 15117 15070

N = 50 (↵ = 2 lex=m4) 1500K 0.315 0.373 0.488 26590 27126

Table 5.3.1: Grammar statistics and translation quality (IBM-BLEU) on development (IWSLT

2006) and test set (IWSLT 2007, 2008) when integrating N -best alignments for alternative

Syntax Augmented grammar configurations. # Rules reflect rules that are applicable to the

first sentence in IWSLT 2007. Decoding times in seconds are cumulative over all sentences in

respective test set.

79



ments when moving to N = 5, and even further small improvement up to

N = 10, but a slight degradation going further to N = 50. Again, we do not

see a clear benefit from varying ↵. Surprisingly, while Dev. scores are signif-

icantly lower with the purely hierarchical grammar compared to the Syntax

Augmented grammar, unseen test set scores are very similar, and achieved

at significantly lower decoding times. Since the number of features in � are

very similar for both models, it is unlikely that this discrepancy is solely due

to overfitting during MER training. It is more likely that this discrepancy is

related to the relative lengths of each evaluation corpus. The development

corpus contains longer sentences on average than the evaluation corpora. The

number of rules used in purely hierarchical grammar is significantly lower

than in the Syntax Augmented grammar, and increasing N does not exhibit

the same growth in the number of rules either. The Syntax Augmented gram-

mar grows much faster since rule identified from alternative alignment candi-

dates have syntactic nonterminal symbols and are less likely to be duplicates

of already identified rules.

N

0-best parses. Table 5.3.3 summarizes results when varying the number

of alternative parses. These experiments use ↵ = 1, lex = m4 and 1-best

alignments only. We also additionally track the number of nonterminal labels

represented in the grammar. Using additional evidence from N

0-best parses

seems to have an overall slightly negative impact on translation quality while

taking significantly longer to perform decoding. It is possible that N 0
= 10 is

still too small to provide enough variation in the N 0-best list. However, as can

bee seen in the table, the growth in the number of nonterminal labels when

going from N

0
= 1 to N

0
= 10 already leads to nearly three times as many

rules. Furthermore, this increased number of rules has a dramatic impact
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System # Rules (1 sent.) Dev 2007 2008 2007 Time (s) 2008 Time (s)

Hier N = 1 10K 0.277 0.367 0.460 895 1451

Hier N = 5 (↵ = 1) 12K 0.286 0.374 0.472 906 1476

Hier N = 10 (↵ = 1) 13K 0.291 0.382 0.477 944 1516

Hier N = 50 (↵ = 1) 14K 0.282 0.384 0.463 979 1596

Hier N = 10 (↵ = 0.5) 13K 0.285 0.399 0.476 963 1547

Hier N = 50 (↵ = 0.5) 14K 0.283 0.376 0.470 982 1599

Hier N = 10 (↵ = 2) 13K 0.284 0.372 0.467 965 1570

Hier N = 50 (↵ = 2) 14K 0.290 0.374 0.459 921 1483

Table 5.3.2: Grammar statistics and translation quality (IBM-BLEU) on development (IWSLT

2006) and test sets (IWSLT 2007, 2008) when integrating N -best alignments for purely hier-

archical grammar configurations. # Rules reflect rules that are applicable to the first sentence

in IWSLT 2007. Decoding times in seconds are cumulative over all sentences in respective test

set.
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System # Rules (1 sent.) # Labels Dev 2007 2008 2007 Time (s) 2008 Time (s)

N

0 = 1 420K 10K 0.301 0.361 0.440 8024 8250

N

0 = 5 800K 15K 0.300 0.358 0.447 16930 15102

N

0 = 10 1079K 18K 0.299 0.361 0.460 26944 23662

Table 5.3.3: Grammar statistics and translation quality (IBM-BLEU) on development (IWSLT

2006) and test sets (IWSLT 2007, 2008) and when integrating N -best parses with the Syntax

Augmented grammar. # Rules reflect rules that are applicable to the first sentence in IWSLT

2007. Decoding times in seconds are cumulative over all sentences in respective test set. All

experiments in this table use lex = m4, ↵ = 1 and 1-best alignments.

on decoding time and likely contributes to additional search errors. The one

corpus where alternative parses (N 0
= 10) produces results comparable to

using N best alignments is IWSLT 2008, which is also the corpus with the

shortest sentences on average, thus reducing the potential impact of search

error.

5.3.3 Grammar rules

Figure 5.3.1 shows the most frequently occurring rules that exist only in the

best performing N = 10, N

0
= 1 grammar, and not in the baseline (Model-

4 lexicon) grammar. We show the estimated counts on these rules as well

as their source, target and left-hand-side nonterminal symbol. These rules

are particularly interesting when considering the domain of this translation

task. The source side of the training data contains no punctuation (since it

is transcribed speech), while the target side does (since they were manually

generated translations). The system therefore attempts to generate punctua-

tion during translation. Consider the first example, where the Chinese word
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Figure 5.3.1: Top rules extracted by our method, but not the baseline.

for “please” (often found at the beginning of a sentence) is aligned to the En-

glish “please .” (at the end of the sentence as indicated by the punctuation).

This rule is extracted from a lower-probability alignment with high levels of

distortion. This pattern was not seen in any single-best alignments.

5.4 Conclusion and contributions

In this chapter we have demonstrated the feasibility and benefits of widen-

ing the MT pipeline to include additional evidence from N -best alignments

and parses. We integrate this diverse knowledge under a principled model

that uses a probability distribution over these alternatives. We achieve signifi-

cant improvements in translation quality over grammars built on “single-best”

evidence alone when considering N -best alignments, while N

0-best parses

seem to have no impact on translation quality. Using a relatively small num-

ber of additional alternative alignments results in significant improvements in

quality, with minimal impact on the number of rules in the grammar and the

translation runtime for a hierarchical system, but at significantly increased
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grammar size and runtime for a syntax-augmented system. We made our

‘wider-pipeline’ model freely available to the MT community by integrating

it into the PSCFG grammar construction process of our SAMT system.
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CHAPTER 6

Word-Class Based Rule Labeling

As we have seen in Chapters 2 and 3, the PSCFG formalism suggests an

intuitive approach to model the long-distance and lexically sensitive reorder-

ing phenomena that often occur across language pairs considered for statisti-

cal machine translation. As in monolingual parsing, nonterminal symbols in

translation rules are used to generalize beyond purely lexical operations. In

the SAMT model, labels on these nonterminal symbols are used to enforce

syntactic constraints in the generation of bilingual sentences and imply condi-

tional independence assumptions in the statistical translation model. While

this method results in improvements in translation quality over the single X

label approach (cf. Section 3.5), high quality syntactic trees are not read-

ily available for all languages. Parse trees used for SAMT training rely on

stochastic parsers that have been trained on manually created syntactic tree-

banks. These treebanks are difficult and expensive to create and exist for

a limited set of languages only, while simpler part-of-speech (POS) taggers

are available on a wide range of languages such as, e.g., Slovene, Galician,

Greek, Russian and Finnish. Furthermore, when the genre and domain of the

parallel data differs from that of the treebank, parses deteriorate, a problem

that is less severe for part-of-speech taggers.

In this chapter, we propose a labeling approach that is based merely on

part-of-speech analysis source or target language (or even both). When using
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English POS tags in our labeling approach we achieve improvements in trans-

lation quality over the single label approach from Chiang (2005), and come

close to the SAMT model.

Towards the ultimate goal of building end-to-end machine translation sys-

tems without any human annotations, we also experiment with automatically

inferred word classes using distributional clustering (Kneser and Ney, 1993).

Since the number of classes is a parameter of our clustering method and the

resulting nonterminal size of our grammar is a function of the number of

word classes, the PSCFG grammar complexity can be adjusted to the spe-

cific translation task at hand. Varying the number of classes in our clustering

model allows us to find conditions where clustered tags almost match the

performance of the POS-based approach.

Finally, we introduce a more flexible labeling approach based on K-means

clustering, which allows the incorporation of an arbitrary number of word-

class based features, including phrasal contexts, can make use of multiple

tagging schemes, and also allows non-class features such as phrase sizes.

The work in this chapter has been published in Zollmann and Vogel

(2011).

6.1 Hard rule labeling from word classes

We now describe the extraction of PSCFG rules based on a parallel corpus

with word-tagged target side sentences. The same procedure can straightfor-

wardly be applied to a corpus with tagged source side sentences. We use the

simple term ‘tag’ to stand for any kind of word-level analysis—a syntactic,

statistical, or other means of grouping words into classes, possibly based on
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their position and context in the sentence, part-of-speech tagging being the

most obvious example.

As in Chiang’s hierarchical model and the SAMT model, we rely on an

external phrase-extraction procedure, such as the one of Koehn et al. (2003).

Let f = f

1

· · · f
m

be the current source sentence, e = e

1

· · · e
n

the current

target sentence, and t = t

1

· · · t
n

its corresponding target tag sequence. We

convert each extracted phrase pair p, represented by its source span start

and end points hsrcbeg(p), srcend(p)i and target span start and end points

htrgbeg(p), trgend(p)i, into an initial rule

t

trgbeg(p)

-t
trgend(p)

! f

srcbeg(p)

· · · f
srcend(p)

| e
trgbeg(p)

· · · e
trgend(p)

by assigning it a nonterminal “t
trgbeg(p)

-t
trgend(p)

” constructed by combining

the tag of the target phrase’s left-most word with the tag of its right-most

word.

The creation of complex rules based on all initial rules obtained from the

current sentence now proceeds just as in Chiang’s model.

Consider the target-tagged example sentence pair

“Ich habe ihn gesehen | I/PRP saw/VBD him/PRP”

with extracted span-annotated phrase pairs:

1: Ich (1-1) | I (1-1)

2: ihn (3-3) | him (3-3)

3: gesehen (4-4) | saw (2-2)

4: habe ihn gesehen (1-3) | saw him (2-3)

5: Ich habe ihn gesehen (1-4) | I saw him (1-3)
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Then our method extracts the rules shown in Figure 6.1.1, where the sub-

script indices of the right-hand-side nonterminals indicate the one-to-one cor-

respondence between the source and target substitution sites. For example,

the rule

“VBD-PRP ! habe PRP-PRP
1

gesehen | saw PRP-PRP
1

”

would be extracted by abstracting-out phrase pair 2 from phrase pair 4.

Intuitively, the labeling of initial rules with tags marking the boundary

of their target sides results in complex rules whose nonterminal occurrences

impose weak syntactic constraints on the rules eligible for substitution in a

PSCFG derivation: The left and right boundary word tags of the inserted

rule’s target side have to match the respective boundary word tags of the

phrase pair that was replaced by a nonterminal when the complex rule was

created from a training sentence pair. Since consecutive words within a rule

stem from consecutive words in the training corpus and thus are already con-

sistent, the boundary word tags are more informative than tags of words be-

tween the boundaries for the task of combining different rules in a derivation,

and are therefore a more appropriate choice for the creation of grammar labels

than tags of inside words.
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Initial rules

PRP-PRP ! Ich , I

PRP-PRP ! ihn , him

VBD-VBD ! gesehen , saw

VBD-PRP ! habe ihn gesehen , saw him

PRP-PRP ! Ich habe ihn gesehen , I saw him

Complex rules

VBD-PRP ! habe PRP-PRP
1

gesehen , saw PRP-PRP
1

VBD-PRP ! habe ihn VBD-VBD
1

, VBD-VBD
1

him

VBD-PRP ! habe PRP-PRP
1

VBD-VBD
2

, VBD-VBD
2

PRP-PRP
1

PRP-PRP ! PRP-PRP
1

habe ihn gesehen , PRP-PRP
1

saw him

PRP-PRP ! Ich VBD-PRP
1

, I VBD-PRP
1

PRP-PRP ! PRP-PRP
1

VBD-PRP
2

, PRP-PRP
1

VBD-PRP
2

PRP-PRP ! Ich habe ihn VBD-VBD
1

, I VBD-VBD
1

him

PRP-PRP ! Ich habe PRP-PRP
1

VBD-VBD
2

, I VBD-VBD
2

PRP-PRP
1

PRP-PRP ! PRP-PRP
1

habe ihn VBD-VBD
2

, PRP-PRP
1

VBD-VBD
2

him

PRP-PRP ! PRP-PRP
1

habe PRP-PRP
2

VBD-VBD
3

, PRP-PRP
1

VBD-VBD
3

PRP-PRP
2

Figure 6.1.1: Rules extracted from our example by the basic target-tag based model.
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6.1.1 Glue rules

As in the SAMT model, we use glue rules of the form

S !< s > | < s >

S ! S
1

N

2

| S
1

N

2

(for all nonterminals N )

S ! S
1

< /s > | S
1

< /s >

(where < s > is the beginning-of-sentence and < /s > the end-of-sentence

marker).

6.1.2 Accounting for phrase size

In syntax-based PSCFGs, initial rules corresponding to large phrase pairs

tend to be assigned different nonterminal symbols than ones corresponding

to small phrase pairs, as they represent constituents at different depths in the

corresponding parse tree. A potential pitfall of the tag-based model suggested

above is that a single-word initial rule such as

PRP-PRP ! Ich | I

can have the same left-hand-side nonterminal as a long rule with identical left

and right boundary tags, such as (when using target-side tags):

PRP-PRP ! Ich habe ihn gesehen | I saw him

In an extension of our model, we therefore introduce a means of distinguish-

ing between one-word, two-word, and multiple-word phrases as follows:

Each one-word phrase with tag T simply receives the label T , instead of

T -T . Two-word phrases with tag sequence T

1

T

2

are labeled T

1

-T
2

as before.
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Phrases of length greater two with tag sequence T

1

· · ·T
n

are labeled T

1

..T

n

to denote that tags were omitted from the phrase’s tag sequence. The result-

ing number of grammar nonterminals based on a tag vocabulary of size t is

thus given by 2t

2

+ t. We do not mark phrase sizes greater than two explicitly

by length as this would create many sparse, low-frequency rules, and one of

the strengths of PSCFG-based translation is the ability to substitute flexible-

length spans into nonterminals of a derivation.

As explained in more detail in Section 4.1, an alternative way of account-

ing for phrase size is presented by Chiang et al. (2008), who introduce binary

structural distortion features into a hierarchical phrase-based model. Our ap-

proach instead uses distinct grammar rules and labels to discriminate phrase

size, with the advantage of enabling all translation models to estimate distinct

weights for distinct size classes and avoiding the need of additional models

in the log-linear framework; however, the increase in the number of labels

and thus grammar rules decreases the reliability of estimated models for rare

events due to increased data sparseness, and results in more blocked rules due

to increased label mismatch.

6.1.3 Extension to a bilingually tagged corpus

While the availability of syntactic annotations for both source and target lan-

guage is unlikely in most translation scenarios, some form of word tags, be

it part-of-speech tags or learned word clusters (cf. Section 6.1.4) might be

available on both sides. In this case, our grammar extraction procedure can

be easily extended to impose both source and target constraints on the eligible

substitutions simultaneously.

Let N
f

be the nonterminal label that would be assigned to a given initial

91



rule when utilizing the source-side tag sequence, and N

e

the assigned label

according to the target-side tag sequence. Then our bilingual tag-based model

assigns ‘N
f

+N

e

’ to the initial rule. The extraction of complex rules proceeds

as before. The number of nonterminals in this model, based on a source tag

vocabulary of size s and a target tag vocabulary of size t, is thus given by s

2

t

2

for the regular labeling method and (2s

2

+ s)(2t

2

+ t) when accounting for

phrase size.

Consider again our example sentence pair (now also annotated with

source-side part-of-speech tags):

Ich/PRP habe/AUX ihn/PRP gesehen/VBN

I/PRP saw/VBD him/PRP

Given the same phrase extraction method as before, the resulting initial rules

for our bilingual model, when also accounting for phrase size, are as follows:

1: PRP+PRP ! Ich | I

2: PRP+PRP ! ihn | him

3: VBN+VBD ! gesehen | saw

4: AUX..VBN+VBD-PRP ! habe ihn gesehen | saw him

5: PRP..VBN+PRP..PRP ! Ich habe ihn gesehen | I saw him

Abstracting-out rule 2 from rule 4, for instance, leads to the complex rule:

AUX..VBN+VBD-PRP ! habe PRP+PRP
1

gesehen | saw PRP+PRP
1

A full list of extracted rules is shown in Figure 6.1.2.
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Initial rules

PRP+PRP ! Ich , I

PRP+PRP ! ihn , him

VBN+VBD ! gesehen , saw

AUX..VBN+VBD-PRP ! habe ihn gesehen , saw him

PRP..VBN+PRP..PRP ! Ich habe ihn gesehen , I saw him

Complex rules

AUX..VBN+VBD-PRP ! habe PRP+PRP
1

gesehen , saw PRP+PRP
1

AUX..VBN+VBD-PRP ! habe ihn VBN+VBD
1

, VBN+VBD
1

him

AUX..VBN+VBD-PRP ! habe PRP+PRP
1

VBN+VBD
2

,

VBN+VBD
2

PRP+PRP
1

PRP..VBN+PRP..PRP ! PRP+PRP
1

habe ihn gesehen , PRP+PRP
1

saw him

PRP..VBN+PRP..PRP ! Ich AUX..VBN+VBD-PRP
1

, I

AUX..VBN+VBD-PRP
1

PRP..VBN+PRP..PRP ! PRP+PRP
1

AUX..VBN+VBD-PRP
2

,

PRP+PRP
1

AUX..VBN+VBD-PRP
2

PRP..VBN+PRP..PRP ! Ich habe ihn VBN+VBD
1

, I VBN+VBD
1

him

PRP..VBN+PRP..PRP ! Ich habe PRP+PRP
1

VBN+VBD
2

, I

VBN+VBD
2

PRP+PRP
1

PRP..VBN+PRP..PRP ! PRP+PRP
1

habe ihn VBN+VBD
2

,

PRP+PRP
1

VBN+VBD
2

him

PRP..VBN+PRP..PRP ! PRP+PRP
1

habe PRP+PRP
2

VBN+VBD
3

,

PRP+PRP
1

VBN+VBD
3

PRP+PRP
2

Figure 6.1.2: Rules extracted from our example by the bilingual tag based model with ac-

counting for phrase size.
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6.1.4 Unsupervised word class assignment by clustering

The unsupervised clustering methods we employed to obtain the class as-

signments are based on the exchange algorithm (Kneser and Ney, 1993). Its

objective function is maximizing the likelihood
nY

i=1

P (w

i

|w
1

, . . . , w

i�1

)

of the training data w = w

1

, . . . , w

n

given a partially class-based bigram

model of the form

P (w

i

|w
1

, . . . , w

i�1

) ⇡ p(c(w

i

)|w
i�1

) · p(w
i

|c(w
i

))

where c : V ! {1, . . . , N} maps a word w to its class c(w), V is the vocabu-

lary, and N the fixed number of classes, which has to be chosen a priori. We

use the publicly available implementation MKCLS (Och, 1999) to train this

model. As training data we use the respective side of the parallel training data

for the translation system.

We also experiment with the extension of this model by Clark (2003), who

incorporated morphological information by imposing a Bayesian prior on the

class mapping c, based on N individual distributions over strings, one for

each word class. Each such distribution is a character-based hidden Markov

model, thus encouraging the grouping of morphologically similar words into

the same class.

6.2 Clustering phrase pairs directly using the K-means al-

gorithm

Even though we have only made use of the first and last words’ classes

in the labeling methods described so far, the number of resulting grammar
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nonterminals quickly explodes. Using a scheme based on source and target

phrases with accounting for phrase size, with 36 word classes (the size of

the Penn English POS tag set) for both languages, yields a grammar with

(36 + 2 ⇤ 362)2 = 6.9 million nonterminal labels.

Quite plausibly, phrase labeling should be informed by more than just the

classes of the first and last words of the phrase. Taking phrase context into

account, for example, can aid the learning of syntactic properties: a phrase

beginning with a determiner and ending with a noun, with a verb as right

context, is more likely to be a noun phrase than the same phrase with another

noun as right context. In the current scheme, there is no way of distinguishing

between these two cases. Similarly, it is conceivable that using non-boundary

words inside the phrase might aid the labeling process.

When relying on unsupervised learning of the word classes, we are forced

to chose a fixed number of classes. A smaller number of word clusters will

result in smaller number of grammar nonterminals, and thus more reliable

feature estimation and more opportunities for rules to combine during decod-

ing, while a larger number has the potential to discover more subtle syntactic

properties. Using multiple word clusterings simultaneously, each based on a

different number of classes, could turn this global, hard trade-off into a lo-

cal, soft one, informed by the number of phrase pair instances available for a

given granularity.

Lastly, our method of accounting for phrase size is somewhat displeas-

ing: While there is a hard partitioning of one-word and two-word phrases,

no distinction is made between phrases of length greater than two. Mark-

ing phrase sizes greater than two explicitly by length, however, would create

many sparse, low-frequency rules, and one of the strengths of PSCFG-based
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translation is the ability to substitute flexible-length spans into nonterminals

of a derivation. A partitioning where phrase size is instead merely a feature

informing the labeling process seems more desirable.

We thus propose to represent each phrase pair instance (including its bilin-

gual one-word contexts) as feature vectors, i.e., points of a vector space. We

then use these data points to partition the space into clusters, and subsequently

assign each phrase pair instance the cluster of its corresponding feature vector

as label.

The feature mapping Consider the phrase pair instance

(f

0

)f

1

· · · f
m

(f

m+1

) | (e
0

)e

1

· · · e
n

(e

n+1

)

(where f
0

, f

m+1

, e

0

, e

n+1

are the left and right, source and target side contexts,

respectively). We begin with the case of only a single, target-side word class

scheme (either a tagger or an unsupervised word clustering/POS induction

method). Let C = {c
1

, . . . , c

N

} be its set of word classes. Further, let c
0

be a

short-hand for the result of looking up the class of a word that is out of bounds

(e.g., the left context of the first word of a sentence, or the second word of a

one-word phrase). We now map our phrase pair instance to the real-valued

vector (where
[P ]

is the indicator function defined as 1 if property P is true,
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and 0 otherwise):

D
[e1=c0], . . . , [e1=cN ]

,

[en=c0], . . . , [en=cN ]

,

↵

sec [e2=c0], . . . ,↵sec [e2=cN ]

,

↵

sec [en�1=c0], . . . ,↵sec [en�1=cN ]

,

↵

ins

P
n

i=1

[ei=c0]

n

, . . . ,

↵

ins

P
n

i=1

[ei=cN ]

n

,

↵

cntxt [e0=c0], . . . ,↵cntxt [e0=cN ]

,

↵

cntxt [en+1=c0], . . . ,↵cntxt [en+1=cN ]

,

↵

phrsize

p
N + 1 log

10

(n)

E

The ↵ parameters determine the influence of the different types of informa-

tion. The elements in the first line represent the phrase boundary word classes,

the next two lines the classes of the second and penultimate word, followed

by a line representing the accumulated contents of the whole phrase, fol-

lowed by two lines pertaining to the context word classes. The final element

of the vector is proportional to the logarithm of the phrase length.1 We chose

the logarithm assuming that length deviation of syntactic phrasal units is not

constant, but proportional to the average length. Thus, all other features being

equal, the distance between a two-word and a four-word phrase is the same

as the distance between a four-word and an eight-word phrase.

We will mainly use the Euclidean (L
2

) distance to compare points for

clustering purposes. Our feature space is thus the Euclidean vector space

R7N+8.

To additionally make use of source-side word classes, we append ele-

1The
p
N + 1 factor serves to make the feature’s influence independent of the number

of word classes by yielding the same distance (under L2) as N + 1 identical copies of the
feature.
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ments analogous to the ones above to the vector, all further multiplied by a

parameter ↵
src

that allows trading off the relevance of source-side and target-

side information. In the same fashion, we can incorporate multiple tagging

schemes (e.g., word clusterings of different granularities) into the same fea-

ture vector. As finer-grained schemes have more elements in the feature vec-

tor than coarser-grained ones, and thus exert more influence, we set the ↵

parameter for each scheme to 1/N (where N is the number of word classes

of the scheme).

The K-means algorithm To create the clusters, we chose the K-means al-

gorithm (Steinhaus, 1956; MacQueen, 1967) for both its computational effi-

ciency and ease of implementation and parallelization. Given an initial map-

ping from the data points to K clusters, the procedure alternates between (i)

computing the centroid of each cluster and (ii) re-allocating each data point

to the closest cluster centroid, until convergence.

We implemented two commonly used initialization methods: Forgy and

Random Partition. The Forgy method randomly chooses K observations from

the data set and uses these as the initial means. The Random Partition method

first randomly assigns a cluster to each observation and then proceeds straight

to step (ii). Forgy tends to spread the initial means out, while Random Par-

tition places all of them close to the center of the data set. As the resulting

clusters looked similar, and Random Partition sometimes led to a high rate of

empty clusters, we settled for Forgy.
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6.3 Experiments

We evaluate our approach by comparing translation quality, as evaluated

by the IBM-BLEU (Papineni et al., 2002) metric on the NIST Chinese-to-

English translation task using MT04 as development set to train the model

parameters �, and MT05, MT06 and MT08 as test sets. Even though a key

advantage of our method is its applicability to resource-poor languages, we

used a language pair for which linguistic resources are available in order to

determine how close translation performance can get to a fully syntax-based

system. Accordingly, we use Chiang’s hierarchical phrase-based translation

model (Chiang, 2007) as a baseline, and the syntax-augmented MT model

from Chapter 3 as a ‘targetline’, a model that would not be applicable for

language pairs without linguistic resources.

We perform PSCFG rule extraction and decoding with the “SAMT” sys-

tem (Chapter 3), using the provided implementations for the hierarchical and

syntax-augmented grammars. To mitigate badly estimated PSCFG deriva-

tions based on low-frequency rules of the much sparser syntax model, the

syntax grammar also contains the hierarchical grammar as a backbone (cf.

Chapter 4 for details and empirical analysis).

We implemented our rule labeling approach within the SAMT rule ex-

traction pipeline, resulting in comparable features across all systems. For

all systems, we use the bottom-up chart parsing decoder implemented in the

SAMT toolkit with a reordering limit of 15 source words, and correspond-

ingly extract rules from initial phrase pairs of maximum source length 15. All

rules have at most two nonterminal symbols, which must be non-consecutive

on the source side, and rules must contain at least one source-side terminal

symbol. The beam settings for the hierarchical system are 600 items per ‘X’
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(generic rule) cell, and 600 per ‘S’ (glue) cell.2 Due to memory limitations,

the multi-nonterminal grammars have to be pruned more harshly: We allow

100 ‘S’ items, and a total of 500 non-‘S’ items, but maximally 40 items per

nonterminal. For all systems, we further discard non-initial rules occurring

only once.3 For the multi-nonterminal systems, we generally further discard

all non-generic non-initial rules occurring less than 6 times, but we addition-

ally give results for a ‘slow’ version of the Syntax targetline system and our

best word class based systems, where only single-occurrences were removed.

For parameter tuning, we use the L

0

-regularized minimum-error-rate

training tool provided by the SAMT toolkit. Each system is trained sep-

arately to adapt the parameters to its specific properties (size of nontermi-

nal set, grammar complexity, features sparseness, reliance on the language

model, etc.).

The parallel training data comprises of 9.6M sentence pairs (206M Chi-

nese and 228M English words). The source and target language parses for

the syntax-augmented grammar, as well as the POS tags for our POS-based

grammars were generated by the Stanford parser (Klein and Manning, 2003).

The results are given in Table 6.3.1. Results for the Syntax system are

consistent with previous results (Zollmann et al., 2008a), indicating improve-

ments over the hierarchical system. Our approach, using target POS tags

(‘POS-tgt (no phr. s.)’), outperforms the hierarchical system on all three tests

sets, and gains further improvements when accounting for phrase size (‘POS-

2For comparison, Chiang (2007) uses 30 and 15, respectively, and further prunes items
that deviate too much in score from the best item. He extracts initial phrases of maximum
length 10.

3As shown in Zollmann et al. (2008a), the impact of these rules on translation quality is
negligible.
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Dev (MT04) MT05 MT06 MT08 TestAvg Time

Hierarchical 38.63 36.51 33.26 25.77 31.85 14.3

Syntax 39.39 37.09 34.01 26.53 32.54 18.1

Syntax-slow 39.69 37.56 34.66 26.93 33.05 34.6

POS-tgt (no phr. s.) 39.31 37.29 33.79 26.13 32.40 27.7

POS-tgt 39.14 37.29 33.97 26.77 32.68 19.2

POS-src 38.74 36.75 33.85 26.76 32.45 12.2

POS-src&tgt 38.78 36.71 33.65 26.52 32.29 18.8

POS-tgt-slow 39.86 37.78 34.37 27.14 33.10 44.6

Clust-7-tgt 39.24 36.74 34.00 26.93 32.56 24.3

Clust-7-morph-tgt 39.08 36.57 33.81 26.40 32.26 23.6

Clust-7-src 38.68 36.17 33.23 26.55 31.98 11.1

Clust-7-src&tgt 38.71 36.49 33.65 26.33 32.16 15.8

Clust-7-tgt-slow 39.48 37.70 34.31 27.24 33.08 45.2

kmeans-POS-src&tgt 39.11 37.23 33.92 26.80 32.65 18.5

kmeans-POS-src&tgt-L
1

39.33 36.92 33.81 26.59 32.44 17.6

kmeans-POS-src&tgt-cosine 39.15 37.07 33.98 26.68 32.58 17.7

kmeans-POS-src&tgt (↵
ins

= .5) 39.07 36.88 33.71 26.26 32.28 16.5

kmeans-Clust-7-src&tgt 39.19 36.96 34.26 26.97 32.73 19.3

kmeans-Clust-7..36-src&tgt 39.09 36.93 34.24 26.92 32.70 17.3

kmeans-POS-src&tgt-slow 39.28 37.16 34.38 27.11 32.88 36.3

kmeans-Clust-7..36-s&t-slow 39.18 37.12 34.13 27.35 32.87 34.3

Table 6.3.1: Translation quality in % case-insensitive IBM-BLEU (i.e., brevity penalty based

on closest reference length) for Chinese-English NIST-large translation tasks, comparing base-

line Hierarchical and Syntax systems with POS and clustering based approaches proposed in

this work. ‘TestAvg’ shows the average score over the three test sets. ‘Time’ is the average

decoding time per sentence in seconds on one CPU.
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tgt’). The latter approach is roughly on par with the corresponding Syntax

system, slightly outperforming it on average, but not consistently across all

test sets. The same is true for the ‘slow’ version (‘POS-tgt-slow’).

The model based on bilingually tagged training instances (‘POS-src&tgt’)

does not gain further improvements over the merely target-based one, but ac-

tually performs worse. We assume this is due to the huge number of nonter-

minals of ‘POS-src&tgt’ ((2 ⇤ 332 + 33)(2 ⇤ 362 + 36) = 5.8M in principle)

compared to ‘POS-tgt’ (2 ⇤ 36

2

+ 36 = 2628), increasing the sparseness of

the grammar and thus leading to less reliable statistical estimates.

We also experimented with a source-tag based model (‘POS-src’). In line

with previous findings for syntax-augmented grammars (Zollmann and Vogel,

2010), the source-side-based grammar does not reach the translation quality

of its target-based counterpart; however, the model still outperforms the hi-

erarchical system on all test sets. Further, decoding is much faster than for

‘POS-ext-tgt’ and even slightly faster than ‘Hierarchical’. This is due to the

fact that for the source-tag based approach, a given chart cell in the CYK de-

coder, represented by a start and end position in the source sentence, almost

uniquely determines the nonterminal any hypothesis in this cell can have:

Disregarding part-of-speech tag ambiguity and phrase size accounting, that

nonterminal will be the composition of the tags of the start and end source

words spanned by that cell. At the same time, this demonstrates that there is

hence less of a role for the nonterminal labels to resolve translational ambi-

guity in the source based model than in the target based model.
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Figure 6.3.1: Performance of the distributional clustering model ‘Clust’ and its morphology-

sensitive extension ‘Clust-morph’ according to L

0

-penalized development set BLEU score for

varying numbers N of word classes. For each data point N , its corresponding # nonterminals

of the induced grammar is stated in parentheses.
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6.3.1 Performance of the word-clustering based models

To empirically validate the unsupervised clustering approaches, we first need

to decide how to determine the number of word classes, N . A straightforward

approach is to run experiments and report test set results for many different

N . While this would allow us to reliably conclude the optimal number N ,

a comparison of that best-performing clustering method to the hierarchical,

syntax, and POS systems would be tainted by the fact that N was effectively

tuned on the test sets. We therefore choose N merely based on development

set performance. Unfortunately, variance in development set BLEU scores

tends to be higher than test set scores, despite of SAMT MERT’s inbuilt algo-

rithms to overcome local optima, such as random restarts and zeroing-out. We

have noticed that using an L

0

-penalized BLEU score4 as MERT’s objective

on the merged n-best lists over all iterations is more stable and will therefore

use this score to determine N .

Figure 6.3.1 shows the performance of the distributional clustering model

(‘Clust’) and its morphology-sensitive extension (‘Clust-morph’) (cf. Sec-

tion 6.1.4) according to this score for varying values of N = 1, . . . , 36 (the

number Penn treebank POS tags, used for the ‘POS’ models, is 36).5 For

‘Clust’, we see a comfortably wide plateau of nearly-identical scores from

N = 7, . . . , 15. Scores for ‘Clust-morph’ are lower throughout, and peak at

N = 7.

Looking back at Table 6.3.1, we now compare the clustering models cho-

sen by the procedure above—resulting in N = 7 for the morphology-unaware

4Given by: BLEU�� ⇥ |{i 2 {1, . . . ,K}|�i 6= 0}|, where �1, . . . ,�K are the feature
weights and the constant � (which we set to 0.00001) is the regularization penalty.

5All these models account for phrase size.
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model (‘Clust-7-tgt’) as well as the morphology-aware model (‘Clust-7-

morph-tgt’)—to the other systems. ‘Clust-7-tgt’ improves over the hierar-

chical baseline on all three test sets and is on par with the corresponding

Syntax and POS targetlines. The same holds for the ‘Clust-7-tgt-slow’ ver-

sion. We also experimented with a model variant based on seven source and

seven target language clusters (‘Clust-7-src&tgt’) and a source-only labeled

model (‘Clust-7-src’)—both performing worse.

Surprisingly, the morphology-sensitive clustering model (‘Clust-7-

morph-tgt’), while still improving over the hierarchical system, performs

worse than the morphology-unaware model. An inspection of the trained

word clusters showed that the model, while superior to the morphology-

unaware model in e.g. mapping all numbers to the same class, is overzealous

in discovering morphological regularities (such as the ‘-ed’ suffix) to parti-

tion functionally only slightly dissimilar words (such present-tense and past-

tense verbs) into different classes. While these subtle distinctions make for

good partitionings when the number of clusters is large, they appear to lead

to inferior results for our task that relies on coarse-grained partitionings of

the vocabulary. Note that there are no ‘src’ or ‘src&tgt’ systems for ‘Clust-

morph’, as Chinese, being a syllabic writing system, does not lend itself to

morphology-sensitive clustering.

6.3.2 K-means clustering based models

To establish suitable values for the ↵ parameters and investigate the impact of

the number of clusters, we looked at the development performance over vari-

ous parameter combinations for a K-means model based on source and/or tar-
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Figure 6.3.2: Dev. set performance of K-means for various #labels and values of ↵
src

and

↵

cntxt

. Note that there is no x-axis, as we only compare the development scores of the different

parameterizations and thus horizontal stretching is for presentational purposes only.
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get part-of-speech tags (Figure 6.3.2).6 As explained in Section 6.3.1, we use

an L

0

-penalty adjusted MERT objective to decrease MERT fluctuation, but

the differences in score are too small here to exclude the possibility of differ-

ence in performance due to chance. As can be seen quite clearly though, our

method reaches its peak performance at around 50 clusters and then levels off

slightly. Encouragingly, in contrast to the hard labeling procedure, K-means

actually improves when adding source-side information. The optimal ratio

of weighting source and target classes is 0.5:1, corresponding to ↵

src

= .5.

Incorporating context information also helps, and does best for ↵
cntxt

= 0.25,

i.e. when giving contexts 1/4 the influence of the phrase boundary words.

Entry ‘kmeans-POS-src&tgt’ in Table 6.3.1 shows the test set results for

the development-set best K-means configuration (i.e., ↵
src

= .5, ↵
cntxt

=

0.25, and using 500 clusters). While beating the hierarchical baseline, it

is only minimally better than the much simpler target-based hard labeling

method ‘POS-tgt’. We also tried K-means variants in which the Euclidean

distance metric is replaced by the city block distance L

1

(‘kmeans-POS-

src&tgt-L
1

’) and the cosine dissimilarity (‘kmeans-POS-src&tgt-cosine’),

respectively, with slightly worse outcomes. Configuration ‘kmeans-POS-

src&tgt (↵
ins

= .5)’ investigates the incorporation of non-boundary word

tags inside the phrase. Unfortunately, these features appear to worsen perfor-

mance, presumably because given a fixed number of clusters, accounting for

contents inside the phrase comes at the cost of neglect of boundary words,

which are more relevant to producing correctly reordered translations.

The two completely unsupervised systems ‘kmeans-Clust-7-src&tgt’

(based on 7-class MKCLS distributional word clustering) and ‘kmeans-Clust-

6We set ↵sec = .25, ↵ins = 0, and ↵phrsize = .5 throughout.
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7..36-src&tgt’ (using six different word clustering models simultaneously: all

the MKCLS models from Figure 6.3.1 except for the two-, three- and five-

class models) have the best results, outperforming the other K-means models

as well as ‘Syntax’ and ‘POS-tgt’ on average, but not on all test sets.

Lastly, we give results for ‘slow’ K-means configurations (‘kmeans-POS-

src&tgt-slow’ and ‘kmeans-Clust-7..36-s&t-slow’). Unfortunately (or fortu-

nately, from a pragmatic viewpoint), the models are outperformed by the

much simpler ‘POS-tgt-slow’ and ‘Clust-7-tgt-slow’ models. Figure 6.3.3

shows automatically selected random phrase pairs from ten random clus-

ters (out of 500) for system ‘kmeans-Clust-7..36-s&t-slow’. While smaller

phrases are being clustered quite well (e.g. the ‘verb phrase followed by

punctuation mark’ cluster in the lower right-hand corner or the named-entities

cluster in the lower left), the clusterings for large phrases are rather disap-

pointing.

6.4 Related work

Hassan, Sima’an, and Way (2007) improve the statistical phrase-based MT

model by injecting supertags, lexical information such as the POS tag of the

word and its subcategorization information, into the phrase table, resulting

in generalized phrases with placeholders in them. The supertags are also

injected into the language model. Our approach also generates phrase labels

and placeholders based on word tags (albeit in a different manner and without

the use of subcategorization information), but produces PSCFG rules for use

in a parsing-based decoding system.

Liang, Petrov, Jordan, and Klein (2007) propose a nonparametric
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Figure 6.3.3: Randomly sampled phrase pairs from ten random clusters (out of 500) for the

K-means based unsupervised phrase pair clustering model ‘kmeans-Clust-7..36-s&t-slow’.
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Bayesian model that can learn probabilistic context-free grammars. The tech-

nique is also used to improve on a syntactic parsing task, by learning to

split each label in the training set into K subsymbols. Petrov, Haghighi, and

Klein (2008) present a coarse-to-fine PSCFG decoder for syntax-based MT,

in which word clustering of the target language is performed to compress the

language model, enabling them to decode in multiple passes with increas-

ingly more fine grained language models, thus trading off speed vs. search

error. We use shallow syntactic analysis and word clustering not as a means to

grammar refinement or approximative decoding, but rather as an alternative

to fully syntax-based approaches.

Unsupervised synchronous grammar induction, apart from the contribu-

tion of Chiang (2005) discussed earlier, has been proposed by Wu (1997) for

inversion transduction grammars, but like Chiang’s model only uses a single

generic nonterminal label (and no glue nonterminal). Blunsom, Cohn, Dyer,

and Osborne (2009) present a nonparametric PSCFG translation model that

directly induces a grammar from parallel sentences without constraints from

a word-alignment model, and Cohn and Blunsom (2009) achieve the same

for tree-to-string grammars, with encouraging results on small data. Our ap-

proach treats the training sentences’ word alignments and phrase pairs, ob-

tained from external modules, as ground truth and employs a straight-forward

generalization of Chiang’s popular rule extraction approach to labeled phrase

pairs, resulting in a PSCFG with multiple nonterminal labels.

Our phrase pair clustering approach is similar in spirit to the work of Lin

and Wu (2009), who use K-means to cluster (monolingual) phrases and use

the resulting clusters as features in discriminative classifiers for a named-

entity-recognition and a query classification task. Phrases are represented
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in terms of their contexts, which can be more than one word long; words

within the phrase are not considered. Further, each context contributes one

dimension per vocabulary word (not per word class as in our approach) to the

feature space, allowing for the discovery of subtle semantic similarities in the

phrases, but at much greater computational expense. Another distinction is

that Lin and Wu (2009) work with phrase types instead of phrase instances,

obtaining a phrase type’s contexts by averaging the contexts of all its phrase

instances.

Nagata, Saito, Yamamoto, and Ohashi (2006) present a reordering model

for machine translation, and make use of clustered phrase pairs to cope with

data sparseness in the model. They achieve the clustering by reducing phrases

to their head words and then applying the MKCLS tool to these pseudo-

words.

Kuhn, Chen, Foster, and Stratford (2010) cluster the phrase pairs of an

SMT phrase table based on their co-occurrence counts and edit distances in

order to arrive at semantically similar phrases for the purpose of phrase ta-

ble smoothing. The clustering proceeds in a bottom-up fashion, gradually

merging similar phrases while alternating back and forth between the two

languages.

The idea of using (tag-level) contexts for unsupervised learning of phrase

classes underlies both the distributional model of Clark (2001) and the gener-

ative Constituent-Context Model of Klein and Manning (2002). Both models

aim only to learn syntactic constituents, i.e., phrase spans that are yielded

by a single node in the (inferred) phrase-structure tree, whereas we need to

be able to provide any phrase span with a label. As demonstrated in Fig-

ure 3 of Klein and Manning (2002), which shows constituents and distituents,
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as context vectors, projected onto their first two principal components, with

constituents well-separable and distituents badly separable, the task of dis-

tinguishing between constituents and distituents based on context vectors is

very hard; therefore, and application of these models to our problem does

not look very promising. A variant of the Constituent Context Model in

which the beginning-of-phrase and end-of-phrase tags are generated explic-

itly in addition to the contexts (instead of being generated as part of the con-

stituent/distituent yield) might be more successful.

6.5 Conclusion

In this chapter, we proposed methods of labeling phrase pairs to create auto-

matically learned PSCFG rules for machine translation. Crucially, our meth-

ods only rely on “shallow” lexical tags, either generated by POS taggers or

by automatic clustering of words into classes. Evaluated on a Chinese-to-

English translation task, our approach improves translation quality over a

popular PSCFG baseline—the hierarchical model of Chiang (2005) —and

performs on par with the syntax-augmented model of Chapter 3, using heuris-

tically generated labels from parse trees. Using automatically obtained word

clusters instead of POS tags yields essentially the same results, thus making

our methods applicable to all languages pairs with parallel corpora, whether

syntactic resources are available for them or not.

We also propose a more flexible way of obtaining the phrase labels from

word classes using K-means clustering. While currently the simple hard-

labeling methods perform just as well, we hope that the ease of incorporating

new features into the K-means labeling method will spur interesting future

research.
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CHAPTER 7

Conclusions and Future Work

In this thesis, we developed several new methods for machine translation

based on PSCFGs with multiple nonterminals. While we originally designed

these methods to be informed by source and/or target phrase-structure parse

trees, we showed how to adapt the models to make use only of part-of-speech

analysis or even completely unsupervised word clusters, without degradation

in translation performance. We further proposed and evaluated a simple way

of widening the in- and output “pipelines” between individual modules of our

MT system by moving from hard single-best decisions to distributions over

inputs and outputs approximated by N -best lists.

We started out with syntax-augmented machine translation (SAMT),

which extracts a PSCFG from a bilingual corpus in which target sentences

are annotated with phrase-structure parse trees (Chapter 3). This was the first

syntax-based MT system to achieve an improvement over phrase-based MT

(Zollmann and Venugopal, 2006). We showed how to parallelize the system

under the MapReduce paradigm, and reported experimental results compar-

ing SAMT to phrase-based and hierarchical phrase-based MT for multiple

language pairs. We reported improvements over these baselines for French-

to-English, Chinese-to-English, and Urdu-to-English, but failed to obtain im-

provements for Spanish-to-English and Arabic-to-English. We drew the con-

clusion that SAMT (as well as hierarchical phrase-based MT) fails to outper-
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form phrase-based MT for language pairs that have mainly short-range word

reordering.

We then proposed several improvements to hierarchical phrase-based MT

and syntax-augmented MT (Chapter 4). We added a source span length model

that, for each rule utilized in a probabilistic synchronous context-free gram-

mar (PSCFG) derivation, gives a confidence estimate in the rule based on

the number of source words spanned by the rule and its substituted child

rules, resulting in small improvements for hierarchical phrase-based as well

as syntax-augmented MT. We further demonstrated the utility of combining

hierarchical and syntax-based PSCFG models and grammars.

We also compared the original SAMT, which extracts rules based on

target-side syntax, to a corresponding variant based on source-side syntax,

showing that target syntax is more beneficial, and unsuccessfully experi-

mented with a model extension that jointly takes source and target syntax

into account. A more promising future avenue for source and target syn-

tax combination is the simultaneously developed approach of Chiang (2010),

who supplies his hierarchical MT model with separate binary features, each

indicating whether a given source or target syntactic constituent is present.

This approach could be applied to a multi-nonterminal grammar such as our

SAMT grammar by adding such features based on the source parses. Unfor-

tunately, due to the large number of features of such a model, minimum-error-

rate training then becomes infeasible and alternative tuning approaches such

as that of Chiang et al. (2008) have to be used, implementations of which are

not publicly available and hard to reproduce due to the amount of technical

detail in the algorithm.

In Chapter 5, we demonstrated the feasibility and benefits of widening
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the MT pipeline to include additional evidence from N -best alignments and

parses. We integrate this diverse knowledge under a principled model that

uses a probability distribution over these alternatives. We achieved signifi-

cant improvements in translation quality over grammars built on “single-best”

evidence alone when considering N -best alignments, while N

0-best parses

seem to have no impact on translation quality. Using a relatively small num-

ber of additional alternative alignments results in significant improvements

in quality, with minimal impact on the number of rules in the grammar and

the translation runtime for a hierarchical system, but at significantly increased

grammar size and runtime for a syntax-augmented system.

Finally, we proposed methods of creating multi-nonterminal PSCFG rules

just from “shallow” lexical tags (Chapter 6). It turned out that, at least for

Chinese-to-English NIST, translation quality is as good as that of SAMT.

Using automatically obtained word clusters instead of POS tags yields essen-

tially the same results, thus making our methods applicable to all languages

pairs with parallel corpora, whether syntactic resources are available for them

or not. Future work should confirm our findings for other than the Chinese-

to-English NIST translation task, and include alternative parameterizations of

the clustering used to generate word-tags, with a focus on evaluating perfor-

mance degradation when moving to limited resource conditions.

We also proposed a more flexible way of obtaining the phrase labels from

word classes using K-means clustering. While currently the simple hard-

labeling methods perform just as well, we hope that the ease of incorporating

new features into the K-means labeling method will spur interesting future

research. For example, the notorious Chinese ‘DE’ word, which, depending

on its role in the sentence, can trigger long-range reorderings of noun phrases,
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could easily be incorporated into the clustering process by means of features

indicating its presence before, at the beginning, at the end, or after the phrase.

The clustering model could also show a way towards mastering the chal-

lenge of moving from syntax to semantics in machine translation: semantic

features such as role labels can directly be employed.

When considering the constraints and independence relationships implied

by each labeling approach, we can distinguish between approaches that label

rules differently within the context of the sentence that they were extracted

from, and those that do not. The syntax-augmented model is at one end of

this spectrum. A given target span might be labeled differently depending on

the syntactic analysis of the sentence that it is a part of. On the other extreme,

the clustering based approach labels phrases based on the contained words

alone.1 The POS grammar represents an intermediate point on this spectrum,

since POS tags can change based on surrounding words in the sentence; and

the position of the K-means model depends on the influence of the phrase

contexts on the clustering process. Context insensitive labeling has the ad-

vantage that there are less alternative left-hand-side labels for initial rules,

producing grammars with less rules, whose weights can be more accurately

estimated. This could explain the strong performance of the word-clustering

based labeling approach. Our results also suggest a hybrid approach, where

instead of following the heuristics in Chapter 3 to label non-constituent spans,

word-tag based labels are used instead.

Hierarchical phrase-based MT suffers from spurious ambiguity: A sin-

gle translation for a given source sentence can usually be accomplished by

1Note, however, that the creation of clusters itself did take the context of the clustered
words into account.
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many different PSCFG derivations. This problem is exacerbated by syntax-

augmented MT with its thousands of nonterminals, and made even worse by

its joint source-and-target extension. Future research should apply the work

of Blunsom, Cohn, and Osborne (2008) and Blunsom and Osborne (2008),

who marginalize over derivations to find the most probable translation rather

than the most probable derivation, to these multi-nonterminal grammars.

All algorithms developed in this work were incorporated into the open-

source SAMT toolkit, co-written with Ashish Venugopal and available at:

www.cs.cmu.edu/˜zollmann/samt
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